]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Adjust channel counting to F15h
[mirror_ubuntu-artful-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
b2b0c605
BP
110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
2bc65418
DT
183/*
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
395ae783 201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
395ae783 217 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
2bc65418 231
5980bb9c 232 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 233
39094443
BP
234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
2bc65418
DT
237 return 0;
238}
239
395ae783 240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
241{
242 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 243
8d5b5d9c 244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
245}
246
39094443 247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
39094443 251 int i, retval = -EINVAL;
2bc65418 252
5980bb9c 253 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
254
255 scrubval = scrubval & 0x001F;
256
24f9a7fe 257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 258
926311fd 259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 260 if (scrubrates[i].scrubval == scrubval) {
39094443 261 retval = scrubrates[i].bandwidth;
2bc65418
DT
262 break;
263 }
264 }
39094443 265 return retval;
2bc65418
DT
266}
267
6775763a 268/*
7f19bf75
BP
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
6775763a 271 */
7f19bf75 272static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 273{
7f19bf75 274 u64 addr;
6775763a
DT
275
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
281 */
282 addr = sys_addr & 0x000000ffffffffffull;
283
7f19bf75
BP
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
286}
287
288/*
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
291 *
292 * On failure, return NULL.
293 */
294static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
296{
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
300
301 /*
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
304 */
305 pvt = mci->pvt_info;
306
307 /*
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
311 */
7f19bf75 312 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
313
314 if (intlv_en == 0) {
7f19bf75 315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 317 goto found;
6775763a 318 }
8edc5445 319 goto err_no_match;
6775763a
DT
320 }
321
72f158fe
BP
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
24f9a7fe 325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
326 return NULL;
327 }
328
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
330
331 for (node_id = 0; ; ) {
7f19bf75 332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
333 break; /* intlv_sel field matches */
334
7f19bf75 335 if (++node_id >= DRAM_RANGES)
6775763a
DT
336 goto err_no_match;
337 }
338
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
6775763a
DT
344 return NULL;
345 }
346
347found:
348 return edac_mc_find(node_id);
349
350err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
353
354 return NULL;
355}
e2ce7255
DT
356
357/*
11c75ead
BP
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 360 */
11c75ead
BP
361static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
e2ce7255 363{
11c75ead
BP
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
e2ce7255 366
11c75ead
BP
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
e2ce7255 377
11c75ead
BP
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
382 }
e2ce7255 383
11c75ead 384 *base = (csbase & base_bits) << addr_shift;
e2ce7255 385
11c75ead
BP
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
391}
392
11c75ead
BP
393#define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
395
396#define for_each_chip_select_mask(i, dct, pvt) \
397 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
398
e2ce7255
DT
399/*
400 * @input_addr is an InputAddr associated with the node given by mci. Return the
401 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
402 */
403static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
404{
405 struct amd64_pvt *pvt;
406 int csrow;
407 u64 base, mask;
408
409 pvt = mci->pvt_info;
410
11c75ead
BP
411 for_each_chip_select(csrow, 0, pvt) {
412 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
413 continue;
414
11c75ead
BP
415 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
416
417 mask = ~mask;
e2ce7255
DT
418
419 if ((input_addr & mask) == (base & mask)) {
420 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
421 (unsigned long)input_addr, csrow,
422 pvt->mc_node_id);
423
424 return csrow;
425 }
426 }
e2ce7255
DT
427 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
428 (unsigned long)input_addr, pvt->mc_node_id);
429
430 return -1;
431}
432
e2ce7255
DT
433/*
434 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
435 * for the node represented by mci. Info is passed back in *hole_base,
436 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
437 * info is invalid. Info may be invalid for either of the following reasons:
438 *
439 * - The revision of the node is not E or greater. In this case, the DRAM Hole
440 * Address Register does not exist.
441 *
442 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
443 * indicating that its contents are not valid.
444 *
445 * The values passed back in *hole_base, *hole_offset, and *hole_size are
446 * complete 32-bit values despite the fact that the bitfields in the DHAR
447 * only represent bits 31-24 of the base and offset values.
448 */
449int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
450 u64 *hole_offset, u64 *hole_size)
451{
452 struct amd64_pvt *pvt = mci->pvt_info;
453 u64 base;
454
455 /* only revE and later have the DRAM Hole Address Register */
1433eb99 456 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
457 debugf1(" revision %d for node %d does not support DHAR\n",
458 pvt->ext_model, pvt->mc_node_id);
459 return 1;
460 }
461
bc21fa57 462 /* valid for Fam10h and above */
c8e518d5 463 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
464 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
465 return 1;
466 }
467
c8e518d5 468 if (!dhar_valid(pvt)) {
e2ce7255
DT
469 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
470 pvt->mc_node_id);
471 return 1;
472 }
473
474 /* This node has Memory Hoisting */
475
476 /* +------------------+--------------------+--------------------+-----
477 * | memory | DRAM hole | relocated |
478 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
479 * | | | DRAM hole |
480 * | | | [0x100000000, |
481 * | | | (0x100000000+ |
482 * | | | (0xffffffff-x))] |
483 * +------------------+--------------------+--------------------+-----
484 *
485 * Above is a diagram of physical memory showing the DRAM hole and the
486 * relocated addresses from the DRAM hole. As shown, the DRAM hole
487 * starts at address x (the base address) and extends through address
488 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
489 * addresses in the hole so that they start at 0x100000000.
490 */
491
bc21fa57 492 base = dhar_base(pvt);
e2ce7255
DT
493
494 *hole_base = base;
495 *hole_size = (0x1ull << 32) - base;
496
497 if (boot_cpu_data.x86 > 0xf)
bc21fa57 498 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 499 else
bc21fa57 500 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
501
502 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
503 pvt->mc_node_id, (unsigned long)*hole_base,
504 (unsigned long)*hole_offset, (unsigned long)*hole_size);
505
506 return 0;
507}
508EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
509
93c2df58
DT
510/*
511 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
512 * assumed that sys_addr maps to the node given by mci.
513 *
514 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
515 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
516 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
517 * then it is also involved in translating a SysAddr to a DramAddr. Sections
518 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
519 * These parts of the documentation are unclear. I interpret them as follows:
520 *
521 * When node n receives a SysAddr, it processes the SysAddr as follows:
522 *
523 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
524 * Limit registers for node n. If the SysAddr is not within the range
525 * specified by the base and limit values, then node n ignores the Sysaddr
526 * (since it does not map to node n). Otherwise continue to step 2 below.
527 *
528 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
529 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
530 * the range of relocated addresses (starting at 0x100000000) from the DRAM
531 * hole. If not, skip to step 3 below. Else get the value of the
532 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
533 * offset defined by this value from the SysAddr.
534 *
535 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
536 * Base register for node n. To obtain the DramAddr, subtract the base
537 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
538 */
539static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
540{
7f19bf75 541 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
542 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
543 int ret = 0;
544
7f19bf75 545 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
546
547 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
548 &hole_size);
549 if (!ret) {
550 if ((sys_addr >= (1ull << 32)) &&
551 (sys_addr < ((1ull << 32) + hole_size))) {
552 /* use DHAR to translate SysAddr to DramAddr */
553 dram_addr = sys_addr - hole_offset;
554
555 debugf2("using DHAR to translate SysAddr 0x%lx to "
556 "DramAddr 0x%lx\n",
557 (unsigned long)sys_addr,
558 (unsigned long)dram_addr);
559
560 return dram_addr;
561 }
562 }
563
564 /*
565 * Translate the SysAddr to a DramAddr as shown near the start of
566 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
567 * only deals with 40-bit values. Therefore we discard bits 63-40 of
568 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
569 * discard are all 1s. Otherwise the bits we discard are all 0s. See
570 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
571 * Programmer's Manual Volume 1 Application Programming.
572 */
f678b8cc 573 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
574
575 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
576 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
577 (unsigned long)dram_addr);
578 return dram_addr;
579}
580
581/*
582 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
583 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
584 * for node interleaving.
585 */
586static int num_node_interleave_bits(unsigned intlv_en)
587{
588 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
589 int n;
590
591 BUG_ON(intlv_en > 7);
592 n = intlv_shift_table[intlv_en];
593 return n;
594}
595
596/* Translate the DramAddr given by @dram_addr to an InputAddr. */
597static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
598{
599 struct amd64_pvt *pvt;
600 int intlv_shift;
601 u64 input_addr;
602
603 pvt = mci->pvt_info;
604
605 /*
606 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
607 * concerning translating a DramAddr to an InputAddr.
608 */
7f19bf75 609 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
610 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
611 (dram_addr & 0xfff);
93c2df58
DT
612
613 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
614 intlv_shift, (unsigned long)dram_addr,
615 (unsigned long)input_addr);
616
617 return input_addr;
618}
619
620/*
621 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
622 * assumed that @sys_addr maps to the node given by mci.
623 */
624static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
625{
626 u64 input_addr;
627
628 input_addr =
629 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
630
631 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
632 (unsigned long)sys_addr, (unsigned long)input_addr);
633
634 return input_addr;
635}
636
637
638/*
639 * @input_addr is an InputAddr associated with the node represented by mci.
640 * Translate @input_addr to a DramAddr and return the result.
641 */
642static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
643{
644 struct amd64_pvt *pvt;
645 int node_id, intlv_shift;
646 u64 bits, dram_addr;
647 u32 intlv_sel;
648
649 /*
650 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
651 * shows how to translate a DramAddr to an InputAddr. Here we reverse
652 * this procedure. When translating from a DramAddr to an InputAddr, the
653 * bits used for node interleaving are discarded. Here we recover these
654 * bits from the IntlvSel field of the DRAM Limit register (section
655 * 3.4.4.2) for the node that input_addr is associated with.
656 */
657 pvt = mci->pvt_info;
658 node_id = pvt->mc_node_id;
659 BUG_ON((node_id < 0) || (node_id > 7));
660
7f19bf75 661 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
662
663 if (intlv_shift == 0) {
664 debugf1(" InputAddr 0x%lx translates to DramAddr of "
665 "same value\n", (unsigned long)input_addr);
666
667 return input_addr;
668 }
669
f678b8cc
BP
670 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
671 (input_addr & 0xfff);
93c2df58 672
7f19bf75 673 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
674 dram_addr = bits + (intlv_sel << 12);
675
676 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
677 "(%d node interleave bits)\n", (unsigned long)input_addr,
678 (unsigned long)dram_addr, intlv_shift);
679
680 return dram_addr;
681}
682
683/*
684 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
685 * @dram_addr to a SysAddr.
686 */
687static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
688{
689 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 690 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
691 int ret = 0;
692
693 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
694 &hole_size);
695 if (!ret) {
696 if ((dram_addr >= hole_base) &&
697 (dram_addr < (hole_base + hole_size))) {
698 sys_addr = dram_addr + hole_offset;
699
700 debugf1("using DHAR to translate DramAddr 0x%lx to "
701 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705 }
706 }
707
7f19bf75 708 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
709 sys_addr = dram_addr + base;
710
711 /*
712 * The sys_addr we have computed up to this point is a 40-bit value
713 * because the k8 deals with 40-bit values. However, the value we are
714 * supposed to return is a full 64-bit physical address. The AMD
715 * x86-64 architecture specifies that the most significant implemented
716 * address bit through bit 63 of a physical address must be either all
717 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
718 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
719 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
720 * Programming.
721 */
722 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
723
724 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
725 pvt->mc_node_id, (unsigned long)dram_addr,
726 (unsigned long)sys_addr);
727
728 return sys_addr;
729}
730
731/*
732 * @input_addr is an InputAddr associated with the node given by mci. Translate
733 * @input_addr to a SysAddr.
734 */
735static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
736 u64 input_addr)
737{
738 return dram_addr_to_sys_addr(mci,
739 input_addr_to_dram_addr(mci, input_addr));
740}
741
742/*
743 * Find the minimum and maximum InputAddr values that map to the given @csrow.
744 * Pass back these values in *input_addr_min and *input_addr_max.
745 */
746static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
747 u64 *input_addr_min, u64 *input_addr_max)
748{
749 struct amd64_pvt *pvt;
750 u64 base, mask;
751
752 pvt = mci->pvt_info;
11c75ead 753 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 754
11c75ead 755 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
756
757 *input_addr_min = base & ~mask;
11c75ead 758 *input_addr_max = base | mask;
93c2df58
DT
759}
760
93c2df58
DT
761/* Map the Error address to a PAGE and PAGE OFFSET. */
762static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
764{
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
767}
768
769/*
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
776 */
777static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
778{
779 int csrow;
780
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
782
783 if (csrow == -1)
24f9a7fe
BP
784 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
785 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
786 return csrow;
787}
e2ce7255 788
bfc04aec 789static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 790
ad6a32e9
BP
791static u16 extract_syndrome(struct err_regs *err)
792{
793 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
794}
795
2da11654
DT
796/*
797 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
798 * are ECC capable.
799 */
800static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
801{
cb328507 802 u8 bit;
584fcff4 803 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 804
1433eb99 805 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
806 ? 19
807 : 17;
808
584fcff4 809 if (pvt->dclr0 & BIT(bit))
2da11654
DT
810 edac_cap = EDAC_FLAG_SECDED;
811
812 return edac_cap;
813}
814
815
8566c4df 816static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 817
68798e17
BP
818static void amd64_dump_dramcfg_low(u32 dclr, int chan)
819{
820 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
821
822 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
823 (dclr & BIT(16)) ? "un" : "",
824 (dclr & BIT(19)) ? "yes" : "no");
825
826 debugf1(" PAR/ERR parity: %s\n",
827 (dclr & BIT(8)) ? "enabled" : "disabled");
828
cb328507
BP
829 if (boot_cpu_data.x86 == 0x10)
830 debugf1(" DCT 128bit mode width: %s\n",
831 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
832
833 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
834 (dclr & BIT(12)) ? "yes" : "no",
835 (dclr & BIT(13)) ? "yes" : "no",
836 (dclr & BIT(14)) ? "yes" : "no",
837 (dclr & BIT(15)) ? "yes" : "no");
838}
839
2da11654 840/* Display and decode various NB registers for debug purposes. */
b2b0c605 841static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 842{
68798e17
BP
843 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
844
845 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 846 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 847
68798e17 848 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
849 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
850 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
851
852 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 853
8de1d91e 854 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 855
8de1d91e
BP
856 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
857 "offset: 0x%08x\n",
bc21fa57
BP
858 pvt->dhar, dhar_base(pvt),
859 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
860 : f10_dhar_offset(pvt));
2da11654 861
c8e518d5 862 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 863
4d796364
BP
864 amd64_debug_display_dimm_sizes(0, pvt);
865
8de1d91e 866 /* everything below this point is Fam10h and above */
4d796364 867 if (boot_cpu_data.x86 == 0xf)
2da11654 868 return;
4d796364
BP
869
870 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 871
24f9a7fe 872 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 873
8de1d91e 874 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
875 if (!dct_ganging_enabled(pvt))
876 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
877}
878
94be4bff 879/*
11c75ead 880 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 881 */
11c75ead 882static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 883{
1433eb99 884 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
885 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
886 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 887 } else {
11c75ead
BP
888 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
889 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
890 }
891}
892
893/*
11c75ead 894 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 895 */
b2b0c605 896static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 897{
11c75ead 898 int cs;
94be4bff 899
11c75ead 900 prep_chip_selects(pvt);
94be4bff 901
11c75ead
BP
902 for_each_chip_select(cs, 0, pvt) {
903 u32 reg0 = DCSB0 + (cs * 4);
904 u32 reg1 = DCSB1 + (cs * 4);
905 u32 *base0 = &pvt->csels[0].csbases[cs];
906 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 907
11c75ead 908 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 909 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 910 cs, *base0, reg0);
94be4bff 911
11c75ead
BP
912 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
913 continue;
b2b0c605 914
11c75ead
BP
915 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
916 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
917 cs, *base1, reg1);
94be4bff
DT
918 }
919
11c75ead
BP
920 for_each_chip_select_mask(cs, 0, pvt) {
921 u32 reg0 = DCSM0 + (cs * 4);
922 u32 reg1 = DCSM1 + (cs * 4);
923 u32 *mask0 = &pvt->csels[0].csmasks[cs];
924 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 925
11c75ead 926 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 927 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 928 cs, *mask0, reg0);
94be4bff 929
11c75ead
BP
930 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
931 continue;
b2b0c605 932
11c75ead
BP
933 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
934 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
935 cs, *mask1, reg1);
94be4bff
DT
936 }
937}
938
24f9a7fe 939static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
940{
941 enum mem_type type;
942
cb328507
BP
943 /* F15h supports only DDR3 */
944 if (boot_cpu_data.x86 >= 0x15)
945 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
946 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
947 if (pvt->dchr0 & DDR3_MODE)
948 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
949 else
950 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 951 } else {
94be4bff
DT
952 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
953 }
954
24f9a7fe 955 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
956
957 return type;
958}
959
cb328507 960/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
961static int k8_early_channel_count(struct amd64_pvt *pvt)
962{
cb328507 963 int flag;
ddff876d 964
9f56da0e 965 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
966 /* RevF (NPT) and later */
967 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 968 else
ddff876d
DT
969 /* RevE and earlier */
970 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
971
972 /* not used */
973 pvt->dclr1 = 0;
974
975 return (flag) ? 2 : 1;
976}
977
cb328507 978/* Extract the ERROR ADDRESS for the K8 CPUs */
ddff876d 979static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 980 struct err_regs *info)
ddff876d
DT
981{
982 return (((u64) (info->nbeah & 0xff)) << 32) +
983 (info->nbeal & ~0x03);
984}
985
7f19bf75 986static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 987{
7f19bf75 988 u32 off = range << 3;
ddff876d 989
7f19bf75
BP
990 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
991 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 992
7f19bf75
BP
993 if (boot_cpu_data.x86 == 0xf)
994 return;
ddff876d 995
7f19bf75
BP
996 if (!dram_rw(pvt, range))
997 return;
ddff876d 998
7f19bf75
BP
999 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1000 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
1001}
1002
1003static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1004 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1005{
1006 struct mem_ctl_info *src_mci;
ddff876d
DT
1007 int channel, csrow;
1008 u32 page, offset;
ad6a32e9 1009 u16 syndrome;
ddff876d 1010
ad6a32e9 1011 syndrome = extract_syndrome(err_info);
ddff876d
DT
1012
1013 /* CHIPKILL enabled */
a97fa68e 1014 if (err_info->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1015 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1016 if (channel < 0) {
1017 /*
1018 * Syndrome didn't map, so we don't know which of the
1019 * 2 DIMMs is in error. So we need to ID 'both' of them
1020 * as suspect.
1021 */
24f9a7fe
BP
1022 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1023 "error reporting race\n", syndrome);
ddff876d
DT
1024 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1025 return;
1026 }
1027 } else {
1028 /*
1029 * non-chipkill ecc mode
1030 *
1031 * The k8 documentation is unclear about how to determine the
1032 * channel number when using non-chipkill memory. This method
1033 * was obtained from email communication with someone at AMD.
1034 * (Wish the email was placed in this comment - norsk)
1035 */
44e9e2ee 1036 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1037 }
1038
1039 /*
1040 * Find out which node the error address belongs to. This may be
1041 * different from the node that detected the error.
1042 */
44e9e2ee 1043 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1044 if (!src_mci) {
24f9a7fe 1045 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1046 (unsigned long)sys_addr);
ddff876d
DT
1047 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1048 return;
1049 }
1050
44e9e2ee
BP
1051 /* Now map the sys_addr to a CSROW */
1052 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1053 if (csrow < 0) {
1054 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1055 } else {
44e9e2ee 1056 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1057
1058 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1059 channel, EDAC_MOD_STR);
1060 }
1061}
1062
1433eb99 1063static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1064{
1433eb99 1065 int *dbam_map;
ddff876d 1066
1433eb99
BP
1067 if (pvt->ext_model >= K8_REV_F)
1068 dbam_map = ddr2_dbam;
1069 else if (pvt->ext_model >= K8_REV_D)
1070 dbam_map = ddr2_dbam_revD;
1071 else
1072 dbam_map = ddr2_dbam_revCG;
ddff876d 1073
1433eb99 1074 return dbam_map[cs_mode];
ddff876d
DT
1075}
1076
1afd3c98
DT
1077/*
1078 * Get the number of DCT channels in use.
1079 *
1080 * Return:
1081 * number of Memory Channels in operation
1082 * Pass back:
1083 * contents of the DCL0_LOW register
1084 */
7d20d14d 1085static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1086{
6ba5dcdc 1087 int i, j, channels = 0;
1afd3c98 1088
7d20d14d
BP
1089 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1090 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
1091 return 2;
1afd3c98
DT
1092
1093 /*
d16149e8
BP
1094 * Need to check if in unganged mode: In such, there are 2 channels,
1095 * but they are not in 128 bit mode and thus the above 'dclr0' status
1096 * bit will be OFF.
1afd3c98
DT
1097 *
1098 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1099 * their CSEnable bit on. If so, then SINGLE DIMM case.
1100 */
d16149e8 1101 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1102
1afd3c98
DT
1103 /*
1104 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1105 * is more than just one DIMM present in unganged mode. Need to check
1106 * both controllers since DIMMs can be placed in either one.
1107 */
525a1b20
BP
1108 for (i = 0; i < 2; i++) {
1109 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1110
57a30854
WW
1111 for (j = 0; j < 4; j++) {
1112 if (DBAM_DIMM(j, dbam) > 0) {
1113 channels++;
1114 break;
1115 }
1116 }
1afd3c98
DT
1117 }
1118
d16149e8
BP
1119 if (channels > 2)
1120 channels = 2;
1121
24f9a7fe 1122 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1123
1124 return channels;
1afd3c98
DT
1125}
1126
1433eb99 1127static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1128{
1433eb99
BP
1129 int *dbam_map;
1130
1131 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1132 dbam_map = ddr3_dbam;
1133 else
1134 dbam_map = ddr2_dbam;
1135
1136 return dbam_map[cs_mode];
1afd3c98
DT
1137}
1138
1afd3c98 1139static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1140 struct err_regs *info)
1afd3c98
DT
1141{
1142 return (((u64) (info->nbeah & 0xffff)) << 32) +
1143 (info->nbeal & ~0x01);
1144}
1145
6163b5d4
DT
1146static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1147{
6163b5d4 1148
78da121e
BP
1149 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1150 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1151 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1152
78da121e 1153 debugf0(" mode: %s, All DCTs on: %s\n",
72381bd5
BP
1154 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1155 (dct_dram_enabled(pvt) ? "yes" : "no"));
1156
1157 if (!dct_ganging_enabled(pvt))
1158 debugf0(" Address range split per DCT: %s\n",
1159 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1160
78da121e 1161 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1162 "DRAM cleared since last warm reset: %s\n",
1163 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1164 (dct_memory_cleared(pvt) ? "yes" : "no"));
1165
78da121e
BP
1166 debugf0(" channel interleave: %s, "
1167 "interleave bits selector: 0x%x\n",
72381bd5 1168 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1169 dct_sel_interleave_addr(pvt));
1170 }
1171
78da121e 1172 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1173}
1174
f71d0a05 1175/*
229a7a11 1176 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1177 * Interleaving Modes.
1178 */
11c75ead 1179static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1180 bool hi_range_sel, u8 intlv_en)
6163b5d4 1181{
78da121e 1182 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1183
1184 if (dct_ganging_enabled(pvt))
229a7a11 1185 return 0;
6163b5d4 1186
229a7a11
BP
1187 if (hi_range_sel)
1188 return dct_sel_high;
6163b5d4 1189
229a7a11
BP
1190 /*
1191 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1192 */
1193 if (dct_interleave_enabled(pvt)) {
1194 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1195
1196 /* return DCT select function: 0=DCT0, 1=DCT1 */
1197 if (!intlv_addr)
1198 return sys_addr >> 6 & 1;
1199
1200 if (intlv_addr & 0x2) {
1201 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1202 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1203
1204 return ((sys_addr >> shift) & 1) ^ temp;
1205 }
1206
1207 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1208 }
1209
1210 if (dct_high_range_enabled(pvt))
1211 return ~dct_sel_high & 1;
6163b5d4
DT
1212
1213 return 0;
1214}
1215
c8e518d5
BP
1216/* Convert the sys_addr to the normalized DCT address */
1217static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1218 u64 sys_addr, bool hi_rng,
1219 u32 dct_sel_base_addr)
6163b5d4
DT
1220{
1221 u64 chan_off;
c8e518d5
BP
1222 u64 dram_base = get_dram_base(pvt, range);
1223 u64 hole_off = f10_dhar_offset(pvt);
1224 u32 hole_valid = dhar_valid(pvt);
1225 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1226
c8e518d5
BP
1227 if (hi_rng) {
1228 /*
1229 * if
1230 * base address of high range is below 4Gb
1231 * (bits [47:27] at [31:11])
1232 * DRAM address space on this DCT is hoisted above 4Gb &&
1233 * sys_addr > 4Gb
1234 *
1235 * remove hole offset from sys_addr
1236 * else
1237 * remove high range offset from sys_addr
1238 */
1239 if ((!(dct_sel_base_addr >> 16) ||
1240 dct_sel_base_addr < dhar_base(pvt)) &&
1241 hole_valid &&
1242 (sys_addr >= BIT_64(32)))
bc21fa57 1243 chan_off = hole_off;
6163b5d4
DT
1244 else
1245 chan_off = dct_sel_base_off;
1246 } else {
c8e518d5
BP
1247 /*
1248 * if
1249 * we have a valid hole &&
1250 * sys_addr > 4Gb
1251 *
1252 * remove hole
1253 * else
1254 * remove dram base to normalize to DCT address
1255 */
1256 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1257 chan_off = hole_off;
6163b5d4 1258 else
c8e518d5 1259 chan_off = dram_base;
6163b5d4
DT
1260 }
1261
c8e518d5 1262 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1263}
1264
1265/* Hack for the time being - Can we get this from BIOS?? */
1266#define CH0SPARE_RANK 0
1267#define CH1SPARE_RANK 1
1268
1269/*
1270 * checks if the csrow passed in is marked as SPARED, if so returns the new
1271 * spare row
1272 */
11c75ead 1273static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4
DT
1274{
1275 u32 swap_done;
1276 u32 bad_dram_cs;
1277
1278 /* Depending on channel, isolate respective SPARING info */
11c75ead 1279 if (dct) {
6163b5d4
DT
1280 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1281 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1282 if (swap_done && (csrow == bad_dram_cs))
1283 csrow = CH1SPARE_RANK;
1284 } else {
1285 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1286 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1287 if (swap_done && (csrow == bad_dram_cs))
1288 csrow = CH0SPARE_RANK;
1289 }
1290 return csrow;
1291}
1292
1293/*
1294 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1295 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1296 *
1297 * Return:
1298 * -EINVAL: NOT FOUND
1299 * 0..csrow = Chip-Select Row
1300 */
11c75ead 1301static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1302{
1303 struct mem_ctl_info *mci;
1304 struct amd64_pvt *pvt;
11c75ead 1305 u64 cs_base, cs_mask;
6163b5d4
DT
1306 int cs_found = -EINVAL;
1307 int csrow;
1308
cc4d8860 1309 mci = mcis[nid];
6163b5d4
DT
1310 if (!mci)
1311 return cs_found;
1312
1313 pvt = mci->pvt_info;
1314
11c75ead 1315 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1316
11c75ead
BP
1317 for_each_chip_select(csrow, dct, pvt) {
1318 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1319 continue;
1320
11c75ead 1321 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1322
11c75ead
BP
1323 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1324 csrow, cs_base, cs_mask);
6163b5d4 1325
11c75ead 1326 cs_mask = ~cs_mask;
6163b5d4 1327
11c75ead
BP
1328 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1329 "(CSBase & ~CSMask)=0x%llx\n",
1330 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1331
11c75ead
BP
1332 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1333 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1334
1335 debugf1(" MATCH csrow=%d\n", cs_found);
1336 break;
1337 }
1338 }
1339 return cs_found;
1340}
1341
f71d0a05 1342/* For a given @dram_range, check if @sys_addr falls within it. */
7f19bf75 1343static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1344 u64 sys_addr, int *nid, int *chan_sel)
1345{
229a7a11 1346 int cs_found = -EINVAL;
c8e518d5
BP
1347 u64 chan_addr;
1348 u32 tmp, dct_sel_base;
11c75ead 1349 u8 channel;
229a7a11 1350 bool high_range = false;
f71d0a05 1351
7f19bf75 1352 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1353 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1354 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1355
c8e518d5
BP
1356 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1357 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1358
e726f3c3 1359 if (intlv_en &&
f71d0a05
DT
1360 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1361 return -EINVAL;
1362
1363 dct_sel_base = dct_sel_baseaddr(pvt);
1364
1365 /*
1366 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1367 * select between DCT0 and DCT1.
1368 */
1369 if (dct_high_range_enabled(pvt) &&
1370 !dct_ganging_enabled(pvt) &&
1371 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1372 high_range = true;
f71d0a05
DT
1373
1374 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1375
c8e518d5
BP
1376 chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
1377 high_range, dct_sel_base);
f71d0a05 1378
f678b8cc 1379 /* remove Node ID (in case of node interleaving) */
f71d0a05
DT
1380 tmp = chan_addr & 0xFC0;
1381
f678b8cc 1382 chan_addr = ((chan_addr >> hweight8(intlv_en)) & GENMASK(12, 47)) | tmp;
f71d0a05
DT
1383
1384 /* remove channel interleave and hash */
1385 if (dct_interleave_enabled(pvt) &&
1386 !dct_high_range_enabled(pvt) &&
1387 !dct_ganging_enabled(pvt)) {
1388 if (dct_sel_interleave_addr(pvt) != 1)
f678b8cc 1389 chan_addr = (chan_addr >> 1) & GENMASK(6, 63);
f71d0a05
DT
1390 else {
1391 tmp = chan_addr & 0xFC0;
f678b8cc 1392 chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp;
f71d0a05
DT
1393 }
1394 }
1395
11c75ead 1396 debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
f71d0a05 1397
11c75ead 1398 cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1399
1400 if (cs_found >= 0) {
1401 *nid = node_id;
1402 *chan_sel = channel;
1403 }
1404 return cs_found;
1405}
1406
1407static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1408 int *node, int *chan_sel)
1409{
7f19bf75 1410 int range, cs_found = -EINVAL;
f71d0a05 1411
7f19bf75 1412 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1413
7f19bf75 1414 if (!dram_rw(pvt, range))
f71d0a05
DT
1415 continue;
1416
7f19bf75
BP
1417 if ((get_dram_base(pvt, range) <= sys_addr) &&
1418 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1419
7f19bf75 1420 cs_found = f10_match_to_this_node(pvt, range,
f71d0a05
DT
1421 sys_addr, node,
1422 chan_sel);
1423 if (cs_found >= 0)
1424 break;
1425 }
1426 }
1427 return cs_found;
1428}
1429
1430/*
bdc30a0c
BP
1431 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1432 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1433 *
bdc30a0c
BP
1434 * The @sys_addr is usually an error address received from the hardware
1435 * (MCX_ADDR).
f71d0a05
DT
1436 */
1437static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1438 struct err_regs *err_info,
f71d0a05
DT
1439 u64 sys_addr)
1440{
1441 struct amd64_pvt *pvt = mci->pvt_info;
1442 u32 page, offset;
f71d0a05 1443 int nid, csrow, chan = 0;
ad6a32e9 1444 u16 syndrome;
f71d0a05
DT
1445
1446 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1447
bdc30a0c
BP
1448 if (csrow < 0) {
1449 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1450 return;
1451 }
1452
1453 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1454
ad6a32e9 1455 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1456
1457 /*
1458 * We need the syndromes for channel detection only when we're
1459 * ganged. Otherwise @chan should already contain the channel at
1460 * this point.
1461 */
a97fa68e 1462 if (dct_ganging_enabled(pvt))
bdc30a0c 1463 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1464
bdc30a0c
BP
1465 if (chan >= 0)
1466 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1467 EDAC_MOD_STR);
1468 else
f71d0a05 1469 /*
bdc30a0c 1470 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1471 */
bdc30a0c 1472 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1473 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1474 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1475}
1476
f71d0a05 1477/*
8566c4df 1478 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1479 * CSROWs
f71d0a05 1480 */
8566c4df 1481static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1482{
603adaf6 1483 int dimm, size0, size1, factor = 0;
525a1b20
BP
1484 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1485 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1486
8566c4df 1487 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1488 if (pvt->dclr0 & F10_WIDTH_128)
1489 factor = 1;
1490
8566c4df 1491 /* K8 families < revF not supported yet */
1433eb99 1492 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1493 return;
1494 else
1495 WARN_ON(ctrl != 0);
1496 }
1497
4d796364 1498 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1499 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1500 : pvt->csels[0].csbases;
f71d0a05 1501
4d796364 1502 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1503
8566c4df
BP
1504 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1505
f71d0a05
DT
1506 /* Dump memory sizes for DIMM and its CSROWs */
1507 for (dimm = 0; dimm < 4; dimm++) {
1508
1509 size0 = 0;
11c75ead 1510 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1433eb99 1511 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1512
1513 size1 = 0;
11c75ead 1514 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1433eb99 1515 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1516
24f9a7fe
BP
1517 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1518 dimm * 2, size0 << factor,
1519 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1520 }
1521}
1522
4d37607a
DT
1523static struct amd64_family_type amd64_family_types[] = {
1524 [K8_CPUS] = {
0092b20d 1525 .ctl_name = "K8",
8d5b5d9c
BP
1526 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1527 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1528 .ops = {
1433eb99
BP
1529 .early_channel_count = k8_early_channel_count,
1530 .get_error_address = k8_get_error_address,
1433eb99
BP
1531 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1532 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1533 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1534 }
1535 },
1536 [F10_CPUS] = {
0092b20d 1537 .ctl_name = "F10h",
8d5b5d9c
BP
1538 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1539 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1540 .ops = {
7d20d14d 1541 .early_channel_count = f1x_early_channel_count,
1433eb99 1542 .get_error_address = f10_get_error_address,
1433eb99
BP
1543 .read_dram_ctl_register = f10_read_dram_ctl_register,
1544 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1545 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1546 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1547 }
1548 },
1549 [F15_CPUS] = {
1550 .ctl_name = "F15h",
1551 .ops = {
7d20d14d 1552 .early_channel_count = f1x_early_channel_count,
b2b0c605 1553 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1554 }
1555 },
4d37607a
DT
1556};
1557
1558static struct pci_dev *pci_get_related_function(unsigned int vendor,
1559 unsigned int device,
1560 struct pci_dev *related)
1561{
1562 struct pci_dev *dev = NULL;
1563
1564 dev = pci_get_device(vendor, device, dev);
1565 while (dev) {
1566 if ((dev->bus->number == related->bus->number) &&
1567 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1568 break;
1569 dev = pci_get_device(vendor, device, dev);
1570 }
1571
1572 return dev;
1573}
1574
b1289d6f 1575/*
bfc04aec
BP
1576 * These are tables of eigenvectors (one per line) which can be used for the
1577 * construction of the syndrome tables. The modified syndrome search algorithm
1578 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1579 *
bfc04aec 1580 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1581 */
bfc04aec
BP
1582static u16 x4_vectors[] = {
1583 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1584 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1585 0x0001, 0x0002, 0x0004, 0x0008,
1586 0x1013, 0x3032, 0x4044, 0x8088,
1587 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1588 0x4857, 0xc4fe, 0x13cc, 0x3288,
1589 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1590 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1591 0x15c1, 0x2a42, 0x89ac, 0x4758,
1592 0x2b03, 0x1602, 0x4f0c, 0xca08,
1593 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1594 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1595 0x2b87, 0x164e, 0x642c, 0xdc18,
1596 0x40b9, 0x80de, 0x1094, 0x20e8,
1597 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1598 0x11c1, 0x2242, 0x84ac, 0x4c58,
1599 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1600 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1601 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1602 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1603 0x16b3, 0x3d62, 0x4f34, 0x8518,
1604 0x1e2f, 0x391a, 0x5cac, 0xf858,
1605 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1606 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1607 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1608 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1609 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1610 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1611 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1612 0x185d, 0x2ca6, 0x7914, 0x9e28,
1613 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1614 0x4199, 0x82ee, 0x19f4, 0x2e58,
1615 0x4807, 0xc40e, 0x130c, 0x3208,
1616 0x1905, 0x2e0a, 0x5804, 0xac08,
1617 0x213f, 0x132a, 0xadfc, 0x5ba8,
1618 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1619};
1620
bfc04aec
BP
1621static u16 x8_vectors[] = {
1622 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1623 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1624 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1625 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1626 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1627 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1628 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1629 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1630 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1631 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1632 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1633 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1634 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1635 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1636 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1637 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1638 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1639 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1640 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1641};
1642
1643static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1644 int v_dim)
b1289d6f 1645{
bfc04aec
BP
1646 unsigned int i, err_sym;
1647
1648 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1649 u16 s = syndrome;
1650 int v_idx = err_sym * v_dim;
1651 int v_end = (err_sym + 1) * v_dim;
1652
1653 /* walk over all 16 bits of the syndrome */
1654 for (i = 1; i < (1U << 16); i <<= 1) {
1655
1656 /* if bit is set in that eigenvector... */
1657 if (v_idx < v_end && vectors[v_idx] & i) {
1658 u16 ev_comp = vectors[v_idx++];
1659
1660 /* ... and bit set in the modified syndrome, */
1661 if (s & i) {
1662 /* remove it. */
1663 s ^= ev_comp;
4d37607a 1664
bfc04aec
BP
1665 if (!s)
1666 return err_sym;
1667 }
b1289d6f 1668
bfc04aec
BP
1669 } else if (s & i)
1670 /* can't get to zero, move to next symbol */
1671 break;
1672 }
b1289d6f
DT
1673 }
1674
1675 debugf0("syndrome(%x) not found\n", syndrome);
1676 return -1;
1677}
d27bf6fa 1678
bfc04aec
BP
1679static int map_err_sym_to_channel(int err_sym, int sym_size)
1680{
1681 if (sym_size == 4)
1682 switch (err_sym) {
1683 case 0x20:
1684 case 0x21:
1685 return 0;
1686 break;
1687 case 0x22:
1688 case 0x23:
1689 return 1;
1690 break;
1691 default:
1692 return err_sym >> 4;
1693 break;
1694 }
1695 /* x8 symbols */
1696 else
1697 switch (err_sym) {
1698 /* imaginary bits not in a DIMM */
1699 case 0x10:
1700 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1701 err_sym);
1702 return -1;
1703 break;
1704
1705 case 0x11:
1706 return 0;
1707 break;
1708 case 0x12:
1709 return 1;
1710 break;
1711 default:
1712 return err_sym >> 3;
1713 break;
1714 }
1715 return -1;
1716}
1717
1718static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1719{
1720 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1721 int err_sym = -1;
1722
1723 if (pvt->syn_type == 8)
1724 err_sym = decode_syndrome(syndrome, x8_vectors,
1725 ARRAY_SIZE(x8_vectors),
1726 pvt->syn_type);
1727 else if (pvt->syn_type == 4)
1728 err_sym = decode_syndrome(syndrome, x4_vectors,
1729 ARRAY_SIZE(x4_vectors),
1730 pvt->syn_type);
1731 else {
24f9a7fe 1732 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1733 return err_sym;
bfc04aec 1734 }
ad6a32e9
BP
1735
1736 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1737}
1738
d27bf6fa
DT
1739/*
1740 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1741 * ADDRESS and process.
1742 */
1743static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1744 struct err_regs *info)
d27bf6fa
DT
1745{
1746 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1747 u64 sys_addr;
d27bf6fa
DT
1748
1749 /* Ensure that the Error Address is VALID */
bcd781f4 1750 if (!(info->nbsh & NBSH_VALID_ERROR_ADDR)) {
24f9a7fe 1751 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1752 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1753 return;
1754 }
1755
1f6bcee7 1756 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa 1757
24f9a7fe 1758 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1759
44e9e2ee 1760 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1761}
1762
1763/* Handle any Un-correctable Errors (UEs) */
1764static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1765 struct err_regs *info)
d27bf6fa 1766{
1f6bcee7
BP
1767 struct amd64_pvt *pvt = mci->pvt_info;
1768 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1769 int csrow;
44e9e2ee 1770 u64 sys_addr;
d27bf6fa 1771 u32 page, offset;
d27bf6fa
DT
1772
1773 log_mci = mci;
1774
bcd781f4 1775 if (!(info->nbsh & NBSH_VALID_ERROR_ADDR)) {
24f9a7fe 1776 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1777 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1778 return;
1779 }
1780
1f6bcee7 1781 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1782
1783 /*
1784 * Find out which node the error address belongs to. This may be
1785 * different from the node that detected the error.
1786 */
44e9e2ee 1787 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1788 if (!src_mci) {
24f9a7fe
BP
1789 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1790 (unsigned long)sys_addr);
d27bf6fa
DT
1791 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1792 return;
1793 }
1794
1795 log_mci = src_mci;
1796
44e9e2ee 1797 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1798 if (csrow < 0) {
24f9a7fe
BP
1799 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1800 (unsigned long)sys_addr);
d27bf6fa
DT
1801 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1802 } else {
44e9e2ee 1803 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1804 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1805 }
1806}
1807
549d042d 1808static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1809 struct err_regs *info)
d27bf6fa 1810{
62452882
BP
1811 u16 ec = EC(info->nbsl);
1812 u8 xec = XEC(info->nbsl, 0x1f);
17adea01 1813 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1814
b70ef010 1815 /* Bail early out if this was an 'observed' error */
5980bb9c 1816 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1817 return;
d27bf6fa 1818
ecaf5606
BP
1819 /* Do only ECC errors */
1820 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1821 return;
d27bf6fa 1822
ecaf5606 1823 if (ecc_type == 2)
d27bf6fa 1824 amd64_handle_ce(mci, info);
ecaf5606 1825 else if (ecc_type == 1)
d27bf6fa 1826 amd64_handle_ue(mci, info);
d27bf6fa
DT
1827}
1828
7cfd4a87 1829void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1830{
cc4d8860 1831 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1832 struct err_regs regs;
d27bf6fa 1833
7cfd4a87
BP
1834 regs.nbsl = (u32) m->status;
1835 regs.nbsh = (u32)(m->status >> 32);
1836 regs.nbeal = (u32) m->addr;
1837 regs.nbeah = (u32)(m->addr >> 32);
1838 regs.nbcfg = nbcfg;
1839
1840 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 1841}
d27bf6fa 1842
0ec449ee 1843/*
8d5b5d9c 1844 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1845 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1846 */
360b7f3c 1847static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1848{
0ec449ee 1849 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1850 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1851 if (!pvt->F1) {
24f9a7fe
BP
1852 amd64_err("error address map device not found: "
1853 "vendor %x device 0x%x (broken BIOS?)\n",
1854 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1855 return -ENODEV;
0ec449ee
DT
1856 }
1857
1858 /* Reserve the MISC Device */
8d5b5d9c
BP
1859 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1860 if (!pvt->F3) {
1861 pci_dev_put(pvt->F1);
1862 pvt->F1 = NULL;
0ec449ee 1863
24f9a7fe
BP
1864 amd64_err("error F3 device not found: "
1865 "vendor %x device 0x%x (broken BIOS?)\n",
1866 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1867
bbd0c1f6 1868 return -ENODEV;
0ec449ee 1869 }
8d5b5d9c
BP
1870 debugf1("F1: %s\n", pci_name(pvt->F1));
1871 debugf1("F2: %s\n", pci_name(pvt->F2));
1872 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1873
1874 return 0;
1875}
1876
360b7f3c 1877static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1878{
8d5b5d9c
BP
1879 pci_dev_put(pvt->F1);
1880 pci_dev_put(pvt->F3);
0ec449ee
DT
1881}
1882
1883/*
1884 * Retrieve the hardware registers of the memory controller (this includes the
1885 * 'Address Map' and 'Misc' device regs)
1886 */
360b7f3c 1887static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1888{
1889 u64 msr_val;
ad6a32e9 1890 u32 tmp;
7f19bf75 1891 int range;
0ec449ee
DT
1892
1893 /*
1894 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1895 * those are Read-As-Zero
1896 */
e97f8bb8
BP
1897 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1898 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1899
1900 /* check first whether TOP_MEM2 is enabled */
1901 rdmsrl(MSR_K8_SYSCFG, msr_val);
1902 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1903 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1904 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1905 } else
1906 debugf0(" TOP_MEM2 disabled.\n");
1907
5980bb9c 1908 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee
DT
1909
1910 if (pvt->ops->read_dram_ctl_register)
1911 pvt->ops->read_dram_ctl_register(pvt);
1912
7f19bf75
BP
1913 for (range = 0; range < DRAM_RANGES; range++) {
1914 u8 rw;
0ec449ee 1915
7f19bf75
BP
1916 /* read settings for this DRAM range */
1917 read_dram_base_limit_regs(pvt, range);
1918
1919 rw = dram_rw(pvt, range);
1920 if (!rw)
1921 continue;
1922
1923 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1924 range,
1925 get_dram_base(pvt, range),
1926 get_dram_limit(pvt, range));
1927
1928 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1929 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1930 (rw & 0x1) ? "R" : "-",
1931 (rw & 0x2) ? "W" : "-",
1932 dram_intlv_sel(pvt, range),
1933 dram_dst_node(pvt, range));
0ec449ee
DT
1934 }
1935
b2b0c605 1936 read_dct_base_mask(pvt);
0ec449ee 1937
bc21fa57 1938 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1939 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1940
8d5b5d9c 1941 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1942
cb328507
BP
1943 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1944 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1945
78da121e 1946 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1947 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1948 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1949 }
ad6a32e9 1950
525a1b20 1951 if (boot_cpu_data.x86 >= 0x10) {
b2b0c605 1952 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20
BP
1953 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1954 }
b2b0c605 1955
ad6a32e9
BP
1956 if (boot_cpu_data.x86 == 0x10 &&
1957 boot_cpu_data.x86_model > 7 &&
1958 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1959 tmp & BIT(25))
1960 pvt->syn_type = 8;
1961 else
1962 pvt->syn_type = 4;
1963
b2b0c605 1964 dump_misc_regs(pvt);
0ec449ee
DT
1965}
1966
1967/*
1968 * NOTE: CPU Revision Dependent code
1969 *
1970 * Input:
11c75ead 1971 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
1972 * k8 private pointer to -->
1973 * DRAM Bank Address mapping register
1974 * node_id
1975 * DCL register where dual_channel_active is
1976 *
1977 * The DBAM register consists of 4 sets of 4 bits each definitions:
1978 *
1979 * Bits: CSROWs
1980 * 0-3 CSROWs 0 and 1
1981 * 4-7 CSROWs 2 and 3
1982 * 8-11 CSROWs 4 and 5
1983 * 12-15 CSROWs 6 and 7
1984 *
1985 * Values range from: 0 to 15
1986 * The meaning of the values depends on CPU revision and dual-channel state,
1987 * see relevant BKDG more info.
1988 *
1989 * The memory controller provides for total of only 8 CSROWs in its current
1990 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
1991 * single channel or two (2) DIMMs in dual channel mode.
1992 *
1993 * The following code logic collapses the various tables for CSROW based on CPU
1994 * revision.
1995 *
1996 * Returns:
1997 * The number of PAGE_SIZE pages on the specified CSROW number it
1998 * encompasses
1999 *
2000 */
2001static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2002{
1433eb99 2003 u32 cs_mode, nr_pages;
0ec449ee
DT
2004
2005 /*
2006 * The math on this doesn't look right on the surface because x/2*4 can
2007 * be simplified to x*2 but this expression makes use of the fact that
2008 * it is integral math where 1/2=0. This intermediate value becomes the
2009 * number of bits to shift the DBAM register to extract the proper CSROW
2010 * field.
2011 */
1433eb99 2012 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2013
1433eb99 2014 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2015
2016 /*
2017 * If dual channel then double the memory size of single channel.
2018 * Channel count is 1 or 2
2019 */
2020 nr_pages <<= (pvt->channel_count - 1);
2021
1433eb99 2022 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2023 debugf0(" nr_pages= %u channel-count = %d\n",
2024 nr_pages, pvt->channel_count);
2025
2026 return nr_pages;
2027}
2028
2029/*
2030 * Initialize the array of csrow attribute instances, based on the values
2031 * from pci config hardware registers.
2032 */
360b7f3c 2033static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2034{
2035 struct csrow_info *csrow;
2299ef71 2036 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2037 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2038 u32 val;
6ba5dcdc 2039 int i, empty = 1;
0ec449ee 2040
a97fa68e 2041 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2042
2299ef71 2043 pvt->nbcfg = val;
0ec449ee 2044
2299ef71
BP
2045 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2046 pvt->mc_node_id, val,
a97fa68e 2047 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2048
11c75ead 2049 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2050 csrow = &mci->csrows[i];
2051
11c75ead 2052 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2053 debugf1("----CSROW %d EMPTY for node %d\n", i,
2054 pvt->mc_node_id);
2055 continue;
2056 }
2057
2058 debugf1("----CSROW %d VALID for MC node %d\n",
2059 i, pvt->mc_node_id);
2060
2061 empty = 0;
2062 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2063 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2064 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2065 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2066 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2067 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2068
2069 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2070 csrow->page_mask = ~mask;
0ec449ee
DT
2071 /* 8 bytes of resolution */
2072
24f9a7fe 2073 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2074
2075 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2076 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2077 (unsigned long)input_addr_min,
2078 (unsigned long)input_addr_max);
2079 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2080 (unsigned long)sys_addr, csrow->page_mask);
2081 debugf1(" nr_pages: %u first_page: 0x%lx "
2082 "last_page: 0x%lx\n",
2083 (unsigned)csrow->nr_pages,
2084 csrow->first_page, csrow->last_page);
2085
2086 /*
2087 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2088 */
a97fa68e 2089 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2090 csrow->edac_mode =
a97fa68e 2091 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2092 EDAC_S4ECD4ED : EDAC_SECDED;
2093 else
2094 csrow->edac_mode = EDAC_NONE;
2095 }
2096
2097 return empty;
2098}
d27bf6fa 2099
f6d6ae96
BP
2100/* get all cores on this DCT */
2101static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2102{
2103 int cpu;
2104
2105 for_each_online_cpu(cpu)
2106 if (amd_get_nb_id(cpu) == nid)
2107 cpumask_set_cpu(cpu, mask);
2108}
2109
2110/* check MCG_CTL on all the cpus on this node */
2111static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2112{
2113 cpumask_var_t mask;
50542251 2114 int cpu, nbe;
f6d6ae96
BP
2115 bool ret = false;
2116
2117 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2118 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2119 return false;
2120 }
2121
2122 get_cpus_on_this_dct_cpumask(mask, nid);
2123
f6d6ae96
BP
2124 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2125
2126 for_each_cpu(cpu, mask) {
50542251 2127 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2128 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2129
2130 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2131 cpu, reg->q,
f6d6ae96
BP
2132 (nbe ? "enabled" : "disabled"));
2133
2134 if (!nbe)
2135 goto out;
f6d6ae96
BP
2136 }
2137 ret = true;
2138
2139out:
f6d6ae96
BP
2140 free_cpumask_var(mask);
2141 return ret;
2142}
2143
2299ef71 2144static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2145{
2146 cpumask_var_t cmask;
50542251 2147 int cpu;
f6d6ae96
BP
2148
2149 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2150 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2151 return false;
2152 }
2153
ae7bb7c6 2154 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2155
f6d6ae96
BP
2156 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2157
2158 for_each_cpu(cpu, cmask) {
2159
50542251
BP
2160 struct msr *reg = per_cpu_ptr(msrs, cpu);
2161
f6d6ae96 2162 if (on) {
5980bb9c 2163 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2164 s->flags.nb_mce_enable = 1;
f6d6ae96 2165
5980bb9c 2166 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2167 } else {
2168 /*
d95cf4de 2169 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2170 */
ae7bb7c6 2171 if (!s->flags.nb_mce_enable)
5980bb9c 2172 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2173 }
f6d6ae96
BP
2174 }
2175 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2176
f6d6ae96
BP
2177 free_cpumask_var(cmask);
2178
2179 return 0;
2180}
2181
2299ef71
BP
2182static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2183 struct pci_dev *F3)
f9431992 2184{
2299ef71 2185 bool ret = true;
c9f4f26e 2186 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2187
2299ef71
BP
2188 if (toggle_ecc_err_reporting(s, nid, ON)) {
2189 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2190 return false;
2191 }
2192
c9f4f26e 2193 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2194
ae7bb7c6
BP
2195 s->old_nbctl = value & mask;
2196 s->nbctl_valid = true;
f9431992
DT
2197
2198 value |= mask;
c9f4f26e 2199 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2200
a97fa68e 2201 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2202
a97fa68e
BP
2203 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2204 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2205
a97fa68e 2206 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2207 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2208
ae7bb7c6 2209 s->flags.nb_ecc_prev = 0;
d95cf4de 2210
f9431992 2211 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2212 value |= NBCFG_ECC_ENABLE;
2213 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2214
a97fa68e 2215 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2216
a97fa68e 2217 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2218 amd64_warn("Hardware rejected DRAM ECC enable,"
2219 "check memory DIMM configuration.\n");
2299ef71 2220 ret = false;
f9431992 2221 } else {
24f9a7fe 2222 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2223 }
d95cf4de 2224 } else {
ae7bb7c6 2225 s->flags.nb_ecc_prev = 1;
f9431992 2226 }
d95cf4de 2227
a97fa68e
BP
2228 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2229 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2230
2299ef71 2231 return ret;
f9431992
DT
2232}
2233
360b7f3c
BP
2234static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2235 struct pci_dev *F3)
f9431992 2236{
c9f4f26e
BP
2237 u32 value, mask = 0x3; /* UECC/CECC enable */
2238
f9431992 2239
ae7bb7c6 2240 if (!s->nbctl_valid)
f9431992
DT
2241 return;
2242
c9f4f26e 2243 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2244 value &= ~mask;
ae7bb7c6 2245 value |= s->old_nbctl;
f9431992 2246
c9f4f26e 2247 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2248
ae7bb7c6
BP
2249 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2250 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2251 amd64_read_pci_cfg(F3, NBCFG, &value);
2252 value &= ~NBCFG_ECC_ENABLE;
2253 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2254 }
2255
2256 /* restore the NB Enable MCGCTL bit */
2299ef71 2257 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2258 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2259}
2260
2261/*
2299ef71
BP
2262 * EDAC requires that the BIOS have ECC enabled before
2263 * taking over the processing of ECC errors. A command line
2264 * option allows to force-enable hardware ECC later in
2265 * enable_ecc_error_reporting().
f9431992 2266 */
cab4d277
BP
2267static const char *ecc_msg =
2268 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2269 " Either enable ECC checking or force module loading by setting "
2270 "'ecc_enable_override'.\n"
2271 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2272
2299ef71 2273static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2274{
2275 u32 value;
2299ef71 2276 u8 ecc_en = 0;
06724535 2277 bool nb_mce_en = false;
f9431992 2278
a97fa68e 2279 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2280
a97fa68e 2281 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2282 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2283
2299ef71 2284 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2285 if (!nb_mce_en)
2299ef71
BP
2286 amd64_notice("NB MCE bank disabled, set MSR "
2287 "0x%08x[4] on node %d to enable.\n",
2288 MSR_IA32_MCG_CTL, nid);
f9431992 2289
2299ef71
BP
2290 if (!ecc_en || !nb_mce_en) {
2291 amd64_notice("%s", ecc_msg);
2292 return false;
2293 }
2294 return true;
f9431992
DT
2295}
2296
7d6034d3
DT
2297struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2298 ARRAY_SIZE(amd64_inj_attrs) +
2299 1];
2300
2301struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2302
360b7f3c 2303static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2304{
2305 unsigned int i = 0, j = 0;
2306
2307 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2308 sysfs_attrs[i] = amd64_dbg_attrs[i];
2309
a135cef7
BP
2310 if (boot_cpu_data.x86 >= 0x10)
2311 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2312 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2313
2314 sysfs_attrs[i] = terminator;
2315
2316 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2317}
2318
360b7f3c 2319static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2320{
2321 struct amd64_pvt *pvt = mci->pvt_info;
2322
2323 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2324 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2325
5980bb9c 2326 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2327 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2328
5980bb9c 2329 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2330 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2331
2332 mci->edac_cap = amd64_determine_edac_cap(pvt);
2333 mci->mod_name = EDAC_MOD_STR;
2334 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2335 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2336 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2337 mci->ctl_page_to_phys = NULL;
2338
7d6034d3
DT
2339 /* memory scrubber interface */
2340 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2341 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2342}
2343
0092b20d
BP
2344/*
2345 * returns a pointer to the family descriptor on success, NULL otherwise.
2346 */
2347static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2348{
0092b20d
BP
2349 u8 fam = boot_cpu_data.x86;
2350 struct amd64_family_type *fam_type = NULL;
2351
2352 switch (fam) {
395ae783 2353 case 0xf:
0092b20d 2354 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2355 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2356 pvt->ctl_name = fam_type->ctl_name;
2357 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2358 break;
2359 case 0x10:
0092b20d 2360 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2361 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2362 pvt->ctl_name = fam_type->ctl_name;
2363 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2364 break;
2365
2366 default:
24f9a7fe 2367 amd64_err("Unsupported family!\n");
0092b20d 2368 return NULL;
395ae783 2369 }
0092b20d 2370
b8cfa02f
BP
2371 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2372
24f9a7fe 2373 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2374 (fam == 0xf ?
24f9a7fe
BP
2375 (pvt->ext_model >= K8_REV_F ? "revF or later "
2376 : "revE or earlier ")
2377 : ""), pvt->mc_node_id);
0092b20d 2378 return fam_type;
395ae783
BP
2379}
2380
2299ef71 2381static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2382{
2383 struct amd64_pvt *pvt = NULL;
0092b20d 2384 struct amd64_family_type *fam_type = NULL;
360b7f3c 2385 struct mem_ctl_info *mci = NULL;
7d6034d3 2386 int err = 0, ret;
360b7f3c 2387 u8 nid = get_node_id(F2);
7d6034d3
DT
2388
2389 ret = -ENOMEM;
2390 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2391 if (!pvt)
360b7f3c 2392 goto err_ret;
7d6034d3 2393
360b7f3c 2394 pvt->mc_node_id = nid;
8d5b5d9c 2395 pvt->F2 = F2;
7d6034d3 2396
395ae783 2397 ret = -EINVAL;
0092b20d
BP
2398 fam_type = amd64_per_family_init(pvt);
2399 if (!fam_type)
395ae783
BP
2400 goto err_free;
2401
7d6034d3 2402 ret = -ENODEV;
360b7f3c 2403 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2404 if (err)
2405 goto err_free;
2406
360b7f3c 2407 read_mc_regs(pvt);
7d6034d3 2408
7d6034d3
DT
2409 /*
2410 * We need to determine how many memory channels there are. Then use
2411 * that information for calculating the size of the dynamic instance
360b7f3c 2412 * tables in the 'mci' structure.
7d6034d3 2413 */
360b7f3c 2414 ret = -EINVAL;
7d6034d3
DT
2415 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2416 if (pvt->channel_count < 0)
360b7f3c 2417 goto err_siblings;
7d6034d3
DT
2418
2419 ret = -ENOMEM;
11c75ead 2420 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2421 if (!mci)
360b7f3c 2422 goto err_siblings;
7d6034d3
DT
2423
2424 mci->pvt_info = pvt;
8d5b5d9c 2425 mci->dev = &pvt->F2->dev;
7d6034d3 2426
360b7f3c
BP
2427 setup_mci_misc_attrs(mci);
2428
2429 if (init_csrows(mci))
7d6034d3
DT
2430 mci->edac_cap = EDAC_FLAG_NONE;
2431
360b7f3c 2432 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2433
2434 ret = -ENODEV;
2435 if (edac_mc_add_mc(mci)) {
2436 debugf1("failed edac_mc_add_mc()\n");
2437 goto err_add_mc;
2438 }
2439
549d042d
BP
2440 /* register stuff with EDAC MCE */
2441 if (report_gart_errors)
2442 amd_report_gart_errors(true);
2443
2444 amd_register_ecc_decoder(amd64_decode_bus_error);
2445
360b7f3c
BP
2446 mcis[nid] = mci;
2447
2448 atomic_inc(&drv_instances);
2449
7d6034d3
DT
2450 return 0;
2451
2452err_add_mc:
2453 edac_mc_free(mci);
2454
360b7f3c
BP
2455err_siblings:
2456 free_mc_sibling_devs(pvt);
7d6034d3 2457
360b7f3c
BP
2458err_free:
2459 kfree(pvt);
7d6034d3 2460
360b7f3c 2461err_ret:
7d6034d3
DT
2462 return ret;
2463}
2464
2299ef71 2465static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2466 const struct pci_device_id *mc_type)
7d6034d3 2467{
ae7bb7c6 2468 u8 nid = get_node_id(pdev);
2299ef71 2469 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2470 struct ecc_settings *s;
2299ef71 2471 int ret = 0;
7d6034d3 2472
7d6034d3 2473 ret = pci_enable_device(pdev);
b8cfa02f
BP
2474 if (ret < 0) {
2475 debugf0("ret=%d\n", ret);
2476 return -EIO;
2477 }
7d6034d3 2478
ae7bb7c6
BP
2479 ret = -ENOMEM;
2480 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2481 if (!s)
2299ef71 2482 goto err_out;
ae7bb7c6
BP
2483
2484 ecc_stngs[nid] = s;
2485
2299ef71
BP
2486 if (!ecc_enabled(F3, nid)) {
2487 ret = -ENODEV;
2488
2489 if (!ecc_enable_override)
2490 goto err_enable;
2491
2492 amd64_warn("Forcing ECC on!\n");
2493
2494 if (!enable_ecc_error_reporting(s, nid, F3))
2495 goto err_enable;
2496 }
2497
2498 ret = amd64_init_one_instance(pdev);
360b7f3c 2499 if (ret < 0) {
ae7bb7c6 2500 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2501 restore_ecc_error_reporting(s, nid, F3);
2502 }
7d6034d3
DT
2503
2504 return ret;
2299ef71
BP
2505
2506err_enable:
2507 kfree(s);
2508 ecc_stngs[nid] = NULL;
2509
2510err_out:
2511 return ret;
7d6034d3
DT
2512}
2513
2514static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2515{
2516 struct mem_ctl_info *mci;
2517 struct amd64_pvt *pvt;
360b7f3c
BP
2518 u8 nid = get_node_id(pdev);
2519 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2520 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2521
2522 /* Remove from EDAC CORE tracking list */
2523 mci = edac_mc_del_mc(&pdev->dev);
2524 if (!mci)
2525 return;
2526
2527 pvt = mci->pvt_info;
2528
360b7f3c 2529 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2530
360b7f3c 2531 free_mc_sibling_devs(pvt);
7d6034d3 2532
549d042d
BP
2533 /* unregister from EDAC MCE */
2534 amd_report_gart_errors(false);
2535 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2536
360b7f3c
BP
2537 kfree(ecc_stngs[nid]);
2538 ecc_stngs[nid] = NULL;
ae7bb7c6 2539
7d6034d3 2540 /* Free the EDAC CORE resources */
8f68ed97 2541 mci->pvt_info = NULL;
360b7f3c 2542 mcis[nid] = NULL;
8f68ed97
BP
2543
2544 kfree(pvt);
7d6034d3
DT
2545 edac_mc_free(mci);
2546}
2547
2548/*
2549 * This table is part of the interface for loading drivers for PCI devices. The
2550 * PCI core identifies what devices are on a system during boot, and then
2551 * inquiry this table to see if this driver is for a given device found.
2552 */
2553static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2554 {
2555 .vendor = PCI_VENDOR_ID_AMD,
2556 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2557 .subvendor = PCI_ANY_ID,
2558 .subdevice = PCI_ANY_ID,
2559 .class = 0,
2560 .class_mask = 0,
7d6034d3
DT
2561 },
2562 {
2563 .vendor = PCI_VENDOR_ID_AMD,
2564 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2565 .subvendor = PCI_ANY_ID,
2566 .subdevice = PCI_ANY_ID,
2567 .class = 0,
2568 .class_mask = 0,
7d6034d3 2569 },
7d6034d3
DT
2570 {0, }
2571};
2572MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2573
2574static struct pci_driver amd64_pci_driver = {
2575 .name = EDAC_MOD_STR,
2299ef71 2576 .probe = amd64_probe_one_instance,
7d6034d3
DT
2577 .remove = __devexit_p(amd64_remove_one_instance),
2578 .id_table = amd64_pci_table,
2579};
2580
360b7f3c 2581static void setup_pci_device(void)
7d6034d3
DT
2582{
2583 struct mem_ctl_info *mci;
2584 struct amd64_pvt *pvt;
2585
2586 if (amd64_ctl_pci)
2587 return;
2588
cc4d8860 2589 mci = mcis[0];
7d6034d3
DT
2590 if (mci) {
2591
2592 pvt = mci->pvt_info;
2593 amd64_ctl_pci =
8d5b5d9c 2594 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2595
2596 if (!amd64_ctl_pci) {
2597 pr_warning("%s(): Unable to create PCI control\n",
2598 __func__);
2599
2600 pr_warning("%s(): PCI error report via EDAC not set\n",
2601 __func__);
2602 }
2603 }
2604}
2605
2606static int __init amd64_edac_init(void)
2607{
360b7f3c 2608 int err = -ENODEV;
7d6034d3
DT
2609
2610 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2611
2612 opstate_init();
2613
9653a5c7 2614 if (amd_cache_northbridges() < 0)
56b34b91 2615 goto err_ret;
7d6034d3 2616
cc4d8860 2617 err = -ENOMEM;
ae7bb7c6
BP
2618 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2619 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2620 if (!(mcis && ecc_stngs))
cc4d8860
BP
2621 goto err_ret;
2622
50542251 2623 msrs = msrs_alloc();
56b34b91 2624 if (!msrs)
360b7f3c 2625 goto err_free;
50542251 2626
7d6034d3
DT
2627 err = pci_register_driver(&amd64_pci_driver);
2628 if (err)
56b34b91 2629 goto err_pci;
7d6034d3 2630
56b34b91 2631 err = -ENODEV;
360b7f3c
BP
2632 if (!atomic_read(&drv_instances))
2633 goto err_no_instances;
7d6034d3 2634
360b7f3c
BP
2635 setup_pci_device();
2636 return 0;
7d6034d3 2637
360b7f3c 2638err_no_instances:
7d6034d3 2639 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2640
56b34b91
BP
2641err_pci:
2642 msrs_free(msrs);
2643 msrs = NULL;
cc4d8860 2644
360b7f3c
BP
2645err_free:
2646 kfree(mcis);
2647 mcis = NULL;
2648
2649 kfree(ecc_stngs);
2650 ecc_stngs = NULL;
2651
56b34b91 2652err_ret:
7d6034d3
DT
2653 return err;
2654}
2655
2656static void __exit amd64_edac_exit(void)
2657{
2658 if (amd64_ctl_pci)
2659 edac_pci_release_generic_ctl(amd64_ctl_pci);
2660
2661 pci_unregister_driver(&amd64_pci_driver);
50542251 2662
ae7bb7c6
BP
2663 kfree(ecc_stngs);
2664 ecc_stngs = NULL;
2665
cc4d8860
BP
2666 kfree(mcis);
2667 mcis = NULL;
2668
50542251
BP
2669 msrs_free(msrs);
2670 msrs = NULL;
7d6034d3
DT
2671}
2672
2673module_init(amd64_edac_init);
2674module_exit(amd64_edac_exit);
2675
2676MODULE_LICENSE("GPL");
2677MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2678 "Dave Peterson, Thayne Harbaugh");
2679MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2680 EDAC_AMD64_VERSION);
2681
2682module_param(edac_op_state, int, 0444);
2683MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");