]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Simplify scrubrate setting
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
117static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119{
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134}
135
2bc65418
DT
136/*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150/*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
395ae783 154static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
155{
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
395ae783 170 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
2bc65418 184
5980bb9c 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 186
39094443
BP
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
2bc65418
DT
190 return 0;
191}
192
395ae783 193static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
194{
195 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 196 u32 min_scrubrate = 0x5;
2bc65418 197
87b3e0e6
BP
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
202}
203
39094443 204static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
205{
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
39094443 208 int i, retval = -EINVAL;
2bc65418 209
5980bb9c 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
211
212 scrubval = scrubval & 0x001F;
213
24f9a7fe 214 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 215
926311fd 216 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 217 if (scrubrates[i].scrubval == scrubval) {
39094443 218 retval = scrubrates[i].bandwidth;
2bc65418
DT
219 break;
220 }
221 }
39094443 222 return retval;
2bc65418
DT
223}
224
6775763a 225/*
7f19bf75
BP
226 * returns true if the SysAddr given by sys_addr matches the
227 * DRAM base/limit associated with node_id
6775763a 228 */
7f19bf75 229static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 230{
7f19bf75 231 u64 addr;
6775763a
DT
232
233 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
234 * all ones if the most significant implemented address bit is 1.
235 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
236 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
237 * Application Programming.
238 */
239 addr = sys_addr & 0x000000ffffffffffull;
240
7f19bf75
BP
241 return ((addr >= get_dram_base(pvt, nid)) &&
242 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
243}
244
245/*
246 * Attempt to map a SysAddr to a node. On success, return a pointer to the
247 * mem_ctl_info structure for the node that the SysAddr maps to.
248 *
249 * On failure, return NULL.
250 */
251static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
252 u64 sys_addr)
253{
254 struct amd64_pvt *pvt;
255 int node_id;
256 u32 intlv_en, bits;
257
258 /*
259 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
260 * 3.4.4.2) registers to map the SysAddr to a node ID.
261 */
262 pvt = mci->pvt_info;
263
264 /*
265 * The value of this field should be the same for all DRAM Base
266 * registers. Therefore we arbitrarily choose to read it from the
267 * register for node 0.
268 */
7f19bf75 269 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
270
271 if (intlv_en == 0) {
7f19bf75 272 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 273 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 274 goto found;
6775763a 275 }
8edc5445 276 goto err_no_match;
6775763a
DT
277 }
278
72f158fe
BP
279 if (unlikely((intlv_en != 0x01) &&
280 (intlv_en != 0x03) &&
281 (intlv_en != 0x07))) {
24f9a7fe 282 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
283 return NULL;
284 }
285
286 bits = (((u32) sys_addr) >> 12) & intlv_en;
287
288 for (node_id = 0; ; ) {
7f19bf75 289 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
290 break; /* intlv_sel field matches */
291
7f19bf75 292 if (++node_id >= DRAM_RANGES)
6775763a
DT
293 goto err_no_match;
294 }
295
296 /* sanity test for sys_addr */
297 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
298 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
299 "range for node %d with node interleaving enabled.\n",
300 __func__, sys_addr, node_id);
6775763a
DT
301 return NULL;
302 }
303
304found:
305 return edac_mc_find(node_id);
306
307err_no_match:
308 debugf2("sys_addr 0x%lx doesn't match any node\n",
309 (unsigned long)sys_addr);
310
311 return NULL;
312}
e2ce7255
DT
313
314/*
11c75ead
BP
315 * compute the CS base address of the @csrow on the DRAM controller @dct.
316 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 317 */
11c75ead
BP
318static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
319 u64 *base, u64 *mask)
e2ce7255 320{
11c75ead
BP
321 u64 csbase, csmask, base_bits, mask_bits;
322 u8 addr_shift;
e2ce7255 323
11c75ead
BP
324 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
325 csbase = pvt->csels[dct].csbases[csrow];
326 csmask = pvt->csels[dct].csmasks[csrow];
327 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
328 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
329 addr_shift = 4;
330 } else {
331 csbase = pvt->csels[dct].csbases[csrow];
332 csmask = pvt->csels[dct].csmasks[csrow >> 1];
333 addr_shift = 8;
e2ce7255 334
11c75ead
BP
335 if (boot_cpu_data.x86 == 0x15)
336 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
337 else
338 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
339 }
e2ce7255 340
11c75ead 341 *base = (csbase & base_bits) << addr_shift;
e2ce7255 342
11c75ead
BP
343 *mask = ~0ULL;
344 /* poke holes for the csmask */
345 *mask &= ~(mask_bits << addr_shift);
346 /* OR them in */
347 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
348}
349
11c75ead
BP
350#define for_each_chip_select(i, dct, pvt) \
351 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
352
614ec9d8
BP
353#define chip_select_base(i, dct, pvt) \
354 pvt->csels[dct].csbases[i]
355
11c75ead
BP
356#define for_each_chip_select_mask(i, dct, pvt) \
357 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
358
e2ce7255
DT
359/*
360 * @input_addr is an InputAddr associated with the node given by mci. Return the
361 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
362 */
363static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
364{
365 struct amd64_pvt *pvt;
366 int csrow;
367 u64 base, mask;
368
369 pvt = mci->pvt_info;
370
11c75ead
BP
371 for_each_chip_select(csrow, 0, pvt) {
372 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
373 continue;
374
11c75ead
BP
375 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
376
377 mask = ~mask;
e2ce7255
DT
378
379 if ((input_addr & mask) == (base & mask)) {
380 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
381 (unsigned long)input_addr, csrow,
382 pvt->mc_node_id);
383
384 return csrow;
385 }
386 }
e2ce7255
DT
387 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
388 (unsigned long)input_addr, pvt->mc_node_id);
389
390 return -1;
391}
392
e2ce7255
DT
393/*
394 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
395 * for the node represented by mci. Info is passed back in *hole_base,
396 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
397 * info is invalid. Info may be invalid for either of the following reasons:
398 *
399 * - The revision of the node is not E or greater. In this case, the DRAM Hole
400 * Address Register does not exist.
401 *
402 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
403 * indicating that its contents are not valid.
404 *
405 * The values passed back in *hole_base, *hole_offset, and *hole_size are
406 * complete 32-bit values despite the fact that the bitfields in the DHAR
407 * only represent bits 31-24 of the base and offset values.
408 */
409int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
410 u64 *hole_offset, u64 *hole_size)
411{
412 struct amd64_pvt *pvt = mci->pvt_info;
413 u64 base;
414
415 /* only revE and later have the DRAM Hole Address Register */
1433eb99 416 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
417 debugf1(" revision %d for node %d does not support DHAR\n",
418 pvt->ext_model, pvt->mc_node_id);
419 return 1;
420 }
421
bc21fa57 422 /* valid for Fam10h and above */
c8e518d5 423 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
424 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
425 return 1;
426 }
427
c8e518d5 428 if (!dhar_valid(pvt)) {
e2ce7255
DT
429 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
430 pvt->mc_node_id);
431 return 1;
432 }
433
434 /* This node has Memory Hoisting */
435
436 /* +------------------+--------------------+--------------------+-----
437 * | memory | DRAM hole | relocated |
438 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
439 * | | | DRAM hole |
440 * | | | [0x100000000, |
441 * | | | (0x100000000+ |
442 * | | | (0xffffffff-x))] |
443 * +------------------+--------------------+--------------------+-----
444 *
445 * Above is a diagram of physical memory showing the DRAM hole and the
446 * relocated addresses from the DRAM hole. As shown, the DRAM hole
447 * starts at address x (the base address) and extends through address
448 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
449 * addresses in the hole so that they start at 0x100000000.
450 */
451
bc21fa57 452 base = dhar_base(pvt);
e2ce7255
DT
453
454 *hole_base = base;
455 *hole_size = (0x1ull << 32) - base;
456
457 if (boot_cpu_data.x86 > 0xf)
bc21fa57 458 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 459 else
bc21fa57 460 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
461
462 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
463 pvt->mc_node_id, (unsigned long)*hole_base,
464 (unsigned long)*hole_offset, (unsigned long)*hole_size);
465
466 return 0;
467}
468EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
469
93c2df58
DT
470/*
471 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
472 * assumed that sys_addr maps to the node given by mci.
473 *
474 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
475 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
476 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
477 * then it is also involved in translating a SysAddr to a DramAddr. Sections
478 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
479 * These parts of the documentation are unclear. I interpret them as follows:
480 *
481 * When node n receives a SysAddr, it processes the SysAddr as follows:
482 *
483 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
484 * Limit registers for node n. If the SysAddr is not within the range
485 * specified by the base and limit values, then node n ignores the Sysaddr
486 * (since it does not map to node n). Otherwise continue to step 2 below.
487 *
488 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
489 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
490 * the range of relocated addresses (starting at 0x100000000) from the DRAM
491 * hole. If not, skip to step 3 below. Else get the value of the
492 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
493 * offset defined by this value from the SysAddr.
494 *
495 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
496 * Base register for node n. To obtain the DramAddr, subtract the base
497 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
498 */
499static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
500{
7f19bf75 501 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
502 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
503 int ret = 0;
504
7f19bf75 505 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
506
507 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
508 &hole_size);
509 if (!ret) {
510 if ((sys_addr >= (1ull << 32)) &&
511 (sys_addr < ((1ull << 32) + hole_size))) {
512 /* use DHAR to translate SysAddr to DramAddr */
513 dram_addr = sys_addr - hole_offset;
514
515 debugf2("using DHAR to translate SysAddr 0x%lx to "
516 "DramAddr 0x%lx\n",
517 (unsigned long)sys_addr,
518 (unsigned long)dram_addr);
519
520 return dram_addr;
521 }
522 }
523
524 /*
525 * Translate the SysAddr to a DramAddr as shown near the start of
526 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
527 * only deals with 40-bit values. Therefore we discard bits 63-40 of
528 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
529 * discard are all 1s. Otherwise the bits we discard are all 0s. See
530 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
531 * Programmer's Manual Volume 1 Application Programming.
532 */
f678b8cc 533 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
534
535 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
536 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
537 (unsigned long)dram_addr);
538 return dram_addr;
539}
540
541/*
542 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
543 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
544 * for node interleaving.
545 */
546static int num_node_interleave_bits(unsigned intlv_en)
547{
548 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
549 int n;
550
551 BUG_ON(intlv_en > 7);
552 n = intlv_shift_table[intlv_en];
553 return n;
554}
555
556/* Translate the DramAddr given by @dram_addr to an InputAddr. */
557static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
558{
559 struct amd64_pvt *pvt;
560 int intlv_shift;
561 u64 input_addr;
562
563 pvt = mci->pvt_info;
564
565 /*
566 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
567 * concerning translating a DramAddr to an InputAddr.
568 */
7f19bf75 569 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
570 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
571 (dram_addr & 0xfff);
93c2df58
DT
572
573 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
574 intlv_shift, (unsigned long)dram_addr,
575 (unsigned long)input_addr);
576
577 return input_addr;
578}
579
580/*
581 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
582 * assumed that @sys_addr maps to the node given by mci.
583 */
584static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
585{
586 u64 input_addr;
587
588 input_addr =
589 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
590
591 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
592 (unsigned long)sys_addr, (unsigned long)input_addr);
593
594 return input_addr;
595}
596
597
598/*
599 * @input_addr is an InputAddr associated with the node represented by mci.
600 * Translate @input_addr to a DramAddr and return the result.
601 */
602static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
603{
604 struct amd64_pvt *pvt;
605 int node_id, intlv_shift;
606 u64 bits, dram_addr;
607 u32 intlv_sel;
608
609 /*
610 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
611 * shows how to translate a DramAddr to an InputAddr. Here we reverse
612 * this procedure. When translating from a DramAddr to an InputAddr, the
613 * bits used for node interleaving are discarded. Here we recover these
614 * bits from the IntlvSel field of the DRAM Limit register (section
615 * 3.4.4.2) for the node that input_addr is associated with.
616 */
617 pvt = mci->pvt_info;
618 node_id = pvt->mc_node_id;
619 BUG_ON((node_id < 0) || (node_id > 7));
620
7f19bf75 621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
622
623 if (intlv_shift == 0) {
624 debugf1(" InputAddr 0x%lx translates to DramAddr of "
625 "same value\n", (unsigned long)input_addr);
626
627 return input_addr;
628 }
629
f678b8cc
BP
630 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
631 (input_addr & 0xfff);
93c2df58 632
7f19bf75 633 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
634 dram_addr = bits + (intlv_sel << 12);
635
636 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
637 "(%d node interleave bits)\n", (unsigned long)input_addr,
638 (unsigned long)dram_addr, intlv_shift);
639
640 return dram_addr;
641}
642
643/*
644 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
645 * @dram_addr to a SysAddr.
646 */
647static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
648{
649 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 650 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
651 int ret = 0;
652
653 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
654 &hole_size);
655 if (!ret) {
656 if ((dram_addr >= hole_base) &&
657 (dram_addr < (hole_base + hole_size))) {
658 sys_addr = dram_addr + hole_offset;
659
660 debugf1("using DHAR to translate DramAddr 0x%lx to "
661 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
662 (unsigned long)sys_addr);
663
664 return sys_addr;
665 }
666 }
667
7f19bf75 668 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
669 sys_addr = dram_addr + base;
670
671 /*
672 * The sys_addr we have computed up to this point is a 40-bit value
673 * because the k8 deals with 40-bit values. However, the value we are
674 * supposed to return is a full 64-bit physical address. The AMD
675 * x86-64 architecture specifies that the most significant implemented
676 * address bit through bit 63 of a physical address must be either all
677 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
678 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
679 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
680 * Programming.
681 */
682 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
683
684 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
685 pvt->mc_node_id, (unsigned long)dram_addr,
686 (unsigned long)sys_addr);
687
688 return sys_addr;
689}
690
691/*
692 * @input_addr is an InputAddr associated with the node given by mci. Translate
693 * @input_addr to a SysAddr.
694 */
695static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
696 u64 input_addr)
697{
698 return dram_addr_to_sys_addr(mci,
699 input_addr_to_dram_addr(mci, input_addr));
700}
701
702/*
703 * Find the minimum and maximum InputAddr values that map to the given @csrow.
704 * Pass back these values in *input_addr_min and *input_addr_max.
705 */
706static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
707 u64 *input_addr_min, u64 *input_addr_max)
708{
709 struct amd64_pvt *pvt;
710 u64 base, mask;
711
712 pvt = mci->pvt_info;
11c75ead 713 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 714
11c75ead 715 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
716
717 *input_addr_min = base & ~mask;
11c75ead 718 *input_addr_max = base | mask;
93c2df58
DT
719}
720
93c2df58
DT
721/* Map the Error address to a PAGE and PAGE OFFSET. */
722static inline void error_address_to_page_and_offset(u64 error_address,
723 u32 *page, u32 *offset)
724{
725 *page = (u32) (error_address >> PAGE_SHIFT);
726 *offset = ((u32) error_address) & ~PAGE_MASK;
727}
728
729/*
730 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
731 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
732 * of a node that detected an ECC memory error. mci represents the node that
733 * the error address maps to (possibly different from the node that detected
734 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
735 * error.
736 */
737static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
738{
739 int csrow;
740
741 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
742
743 if (csrow == -1)
24f9a7fe
BP
744 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
745 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
746 return csrow;
747}
e2ce7255 748
bfc04aec 749static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 750
2da11654
DT
751/*
752 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
753 * are ECC capable.
754 */
755static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
756{
cb328507 757 u8 bit;
584fcff4 758 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 759
1433eb99 760 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
761 ? 19
762 : 17;
763
584fcff4 764 if (pvt->dclr0 & BIT(bit))
2da11654
DT
765 edac_cap = EDAC_FLAG_SECDED;
766
767 return edac_cap;
768}
769
770
8566c4df 771static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 772
68798e17
BP
773static void amd64_dump_dramcfg_low(u32 dclr, int chan)
774{
775 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
776
777 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
778 (dclr & BIT(16)) ? "un" : "",
779 (dclr & BIT(19)) ? "yes" : "no");
780
781 debugf1(" PAR/ERR parity: %s\n",
782 (dclr & BIT(8)) ? "enabled" : "disabled");
783
cb328507
BP
784 if (boot_cpu_data.x86 == 0x10)
785 debugf1(" DCT 128bit mode width: %s\n",
786 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
787
788 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
789 (dclr & BIT(12)) ? "yes" : "no",
790 (dclr & BIT(13)) ? "yes" : "no",
791 (dclr & BIT(14)) ? "yes" : "no",
792 (dclr & BIT(15)) ? "yes" : "no");
793}
794
2da11654 795/* Display and decode various NB registers for debug purposes. */
b2b0c605 796static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 797{
68798e17
BP
798 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
799
800 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 801 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 802
68798e17 803 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
804 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
805 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
806
807 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 808
8de1d91e 809 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 810
8de1d91e
BP
811 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
812 "offset: 0x%08x\n",
bc21fa57
BP
813 pvt->dhar, dhar_base(pvt),
814 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
815 : f10_dhar_offset(pvt));
2da11654 816
c8e518d5 817 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 818
4d796364
BP
819 amd64_debug_display_dimm_sizes(0, pvt);
820
8de1d91e 821 /* everything below this point is Fam10h and above */
4d796364 822 if (boot_cpu_data.x86 == 0xf)
2da11654 823 return;
4d796364
BP
824
825 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 826
24f9a7fe 827 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 828
8de1d91e 829 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
830 if (!dct_ganging_enabled(pvt))
831 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
832}
833
94be4bff 834/*
11c75ead 835 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 836 */
11c75ead 837static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 838{
1433eb99 839 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
840 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
841 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 842 } else {
11c75ead
BP
843 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
844 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
845 }
846}
847
848/*
11c75ead 849 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 850 */
b2b0c605 851static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 852{
11c75ead 853 int cs;
94be4bff 854
11c75ead 855 prep_chip_selects(pvt);
94be4bff 856
11c75ead
BP
857 for_each_chip_select(cs, 0, pvt) {
858 u32 reg0 = DCSB0 + (cs * 4);
859 u32 reg1 = DCSB1 + (cs * 4);
860 u32 *base0 = &pvt->csels[0].csbases[cs];
861 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 862
11c75ead 863 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 864 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 865 cs, *base0, reg0);
94be4bff 866
11c75ead
BP
867 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
868 continue;
b2b0c605 869
11c75ead
BP
870 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
871 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
872 cs, *base1, reg1);
94be4bff
DT
873 }
874
11c75ead
BP
875 for_each_chip_select_mask(cs, 0, pvt) {
876 u32 reg0 = DCSM0 + (cs * 4);
877 u32 reg1 = DCSM1 + (cs * 4);
878 u32 *mask0 = &pvt->csels[0].csmasks[cs];
879 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 880
11c75ead 881 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 882 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 883 cs, *mask0, reg0);
94be4bff 884
11c75ead
BP
885 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
886 continue;
b2b0c605 887
11c75ead
BP
888 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
889 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
890 cs, *mask1, reg1);
94be4bff
DT
891 }
892}
893
24f9a7fe 894static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
895{
896 enum mem_type type;
897
cb328507
BP
898 /* F15h supports only DDR3 */
899 if (boot_cpu_data.x86 >= 0x15)
900 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
901 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
902 if (pvt->dchr0 & DDR3_MODE)
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
904 else
905 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 906 } else {
94be4bff
DT
907 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
908 }
909
24f9a7fe 910 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
911
912 return type;
913}
914
cb328507 915/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
916static int k8_early_channel_count(struct amd64_pvt *pvt)
917{
cb328507 918 int flag;
ddff876d 919
9f56da0e 920 if (pvt->ext_model >= K8_REV_F)
ddff876d 921 /* RevF (NPT) and later */
41d8bfab 922 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 923 else
ddff876d
DT
924 /* RevE and earlier */
925 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
926
927 /* not used */
928 pvt->dclr1 = 0;
929
930 return (flag) ? 2 : 1;
931}
932
70046624
BP
933/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
934static u64 get_error_address(struct mce *m)
ddff876d 935{
70046624
BP
936 u8 start_bit = 1;
937 u8 end_bit = 47;
938
939 if (boot_cpu_data.x86 == 0xf) {
940 start_bit = 3;
941 end_bit = 39;
942 }
943
944 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
945}
946
7f19bf75 947static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 948{
7f19bf75 949 u32 off = range << 3;
ddff876d 950
7f19bf75
BP
951 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
952 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 953
7f19bf75
BP
954 if (boot_cpu_data.x86 == 0xf)
955 return;
ddff876d 956
7f19bf75
BP
957 if (!dram_rw(pvt, range))
958 return;
ddff876d 959
7f19bf75
BP
960 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
961 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
962}
963
f192c7b1
BP
964static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
965 u16 syndrome)
ddff876d
DT
966{
967 struct mem_ctl_info *src_mci;
f192c7b1 968 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
969 int channel, csrow;
970 u32 page, offset;
ddff876d
DT
971
972 /* CHIPKILL enabled */
f192c7b1 973 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 974 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
975 if (channel < 0) {
976 /*
977 * Syndrome didn't map, so we don't know which of the
978 * 2 DIMMs is in error. So we need to ID 'both' of them
979 * as suspect.
980 */
24f9a7fe
BP
981 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
982 "error reporting race\n", syndrome);
ddff876d
DT
983 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
984 return;
985 }
986 } else {
987 /*
988 * non-chipkill ecc mode
989 *
990 * The k8 documentation is unclear about how to determine the
991 * channel number when using non-chipkill memory. This method
992 * was obtained from email communication with someone at AMD.
993 * (Wish the email was placed in this comment - norsk)
994 */
44e9e2ee 995 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
996 }
997
998 /*
999 * Find out which node the error address belongs to. This may be
1000 * different from the node that detected the error.
1001 */
44e9e2ee 1002 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1003 if (!src_mci) {
24f9a7fe 1004 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1005 (unsigned long)sys_addr);
ddff876d
DT
1006 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1007 return;
1008 }
1009
44e9e2ee
BP
1010 /* Now map the sys_addr to a CSROW */
1011 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1012 if (csrow < 0) {
1013 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1014 } else {
44e9e2ee 1015 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1016
1017 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1018 channel, EDAC_MOD_STR);
1019 }
1020}
1021
41d8bfab 1022static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1023{
41d8bfab 1024 unsigned shift = 0;
ddff876d 1025
41d8bfab
BP
1026 if (i <= 2)
1027 shift = i;
1028 else if (!(i & 0x1))
1029 shift = i >> 1;
1433eb99 1030 else
41d8bfab 1031 shift = (i + 1) >> 1;
ddff876d 1032
41d8bfab
BP
1033 return 128 << (shift + !!dct_width);
1034}
1035
1036static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1037 unsigned cs_mode)
1038{
1039 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1040
1041 if (pvt->ext_model >= K8_REV_F) {
1042 WARN_ON(cs_mode > 11);
1043 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1044 }
1045 else if (pvt->ext_model >= K8_REV_D) {
1046 WARN_ON(cs_mode > 10);
1047
1048 if (cs_mode == 3 || cs_mode == 8)
1049 return 32 << (cs_mode - 1);
1050 else
1051 return 32 << cs_mode;
1052 }
1053 else {
1054 WARN_ON(cs_mode > 6);
1055 return 32 << cs_mode;
1056 }
ddff876d
DT
1057}
1058
1afd3c98
DT
1059/*
1060 * Get the number of DCT channels in use.
1061 *
1062 * Return:
1063 * number of Memory Channels in operation
1064 * Pass back:
1065 * contents of the DCL0_LOW register
1066 */
7d20d14d 1067static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1068{
6ba5dcdc 1069 int i, j, channels = 0;
1afd3c98 1070
7d20d14d 1071 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1072 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1073 return 2;
1afd3c98
DT
1074
1075 /*
d16149e8
BP
1076 * Need to check if in unganged mode: In such, there are 2 channels,
1077 * but they are not in 128 bit mode and thus the above 'dclr0' status
1078 * bit will be OFF.
1afd3c98
DT
1079 *
1080 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1081 * their CSEnable bit on. If so, then SINGLE DIMM case.
1082 */
d16149e8 1083 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1084
1afd3c98
DT
1085 /*
1086 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1087 * is more than just one DIMM present in unganged mode. Need to check
1088 * both controllers since DIMMs can be placed in either one.
1089 */
525a1b20
BP
1090 for (i = 0; i < 2; i++) {
1091 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1092
57a30854
WW
1093 for (j = 0; j < 4; j++) {
1094 if (DBAM_DIMM(j, dbam) > 0) {
1095 channels++;
1096 break;
1097 }
1098 }
1afd3c98
DT
1099 }
1100
d16149e8
BP
1101 if (channels > 2)
1102 channels = 2;
1103
24f9a7fe 1104 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1105
1106 return channels;
1afd3c98
DT
1107}
1108
41d8bfab 1109static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1110{
41d8bfab
BP
1111 unsigned shift = 0;
1112 int cs_size = 0;
1113
1114 if (i == 0 || i == 3 || i == 4)
1115 cs_size = -1;
1116 else if (i <= 2)
1117 shift = i;
1118 else if (i == 12)
1119 shift = 7;
1120 else if (!(i & 0x1))
1121 shift = i >> 1;
1122 else
1123 shift = (i + 1) >> 1;
1124
1125 if (cs_size != -1)
1126 cs_size = (128 * (1 << !!dct_width)) << shift;
1127
1128 return cs_size;
1129}
1130
1131static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1132 unsigned cs_mode)
1133{
1134 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1135
1136 WARN_ON(cs_mode > 11);
1433eb99
BP
1137
1138 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1139 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1140 else
41d8bfab
BP
1141 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1142}
1143
1144/*
1145 * F15h supports only 64bit DCT interfaces
1146 */
1147static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1148 unsigned cs_mode)
1149{
1150 WARN_ON(cs_mode > 12);
1433eb99 1151
41d8bfab 1152 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1153}
1154
5a5d2371 1155static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1156{
6163b5d4 1157
5a5d2371
BP
1158 if (boot_cpu_data.x86 == 0xf)
1159 return;
1160
78da121e
BP
1161 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1162 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1163 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1164
5a5d2371
BP
1165 debugf0(" DCTs operate in %s mode.\n",
1166 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1167
1168 if (!dct_ganging_enabled(pvt))
1169 debugf0(" Address range split per DCT: %s\n",
1170 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1171
78da121e 1172 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1173 "DRAM cleared since last warm reset: %s\n",
1174 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1175 (dct_memory_cleared(pvt) ? "yes" : "no"));
1176
78da121e
BP
1177 debugf0(" channel interleave: %s, "
1178 "interleave bits selector: 0x%x\n",
72381bd5 1179 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1180 dct_sel_interleave_addr(pvt));
1181 }
1182
78da121e 1183 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1184}
1185
f71d0a05 1186/*
229a7a11 1187 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1188 * Interleaving Modes.
1189 */
b15f0fca 1190static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1191 bool hi_range_sel, u8 intlv_en)
6163b5d4 1192{
78da121e 1193 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1194
1195 if (dct_ganging_enabled(pvt))
229a7a11 1196 return 0;
6163b5d4 1197
229a7a11
BP
1198 if (hi_range_sel)
1199 return dct_sel_high;
6163b5d4 1200
229a7a11
BP
1201 /*
1202 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1203 */
1204 if (dct_interleave_enabled(pvt)) {
1205 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1206
1207 /* return DCT select function: 0=DCT0, 1=DCT1 */
1208 if (!intlv_addr)
1209 return sys_addr >> 6 & 1;
1210
1211 if (intlv_addr & 0x2) {
1212 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1213 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1214
1215 return ((sys_addr >> shift) & 1) ^ temp;
1216 }
1217
1218 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1219 }
1220
1221 if (dct_high_range_enabled(pvt))
1222 return ~dct_sel_high & 1;
6163b5d4
DT
1223
1224 return 0;
1225}
1226
c8e518d5 1227/* Convert the sys_addr to the normalized DCT address */
b15f0fca 1228static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
c8e518d5
BP
1229 u64 sys_addr, bool hi_rng,
1230 u32 dct_sel_base_addr)
6163b5d4
DT
1231{
1232 u64 chan_off;
c8e518d5
BP
1233 u64 dram_base = get_dram_base(pvt, range);
1234 u64 hole_off = f10_dhar_offset(pvt);
1235 u32 hole_valid = dhar_valid(pvt);
1236 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1237
c8e518d5
BP
1238 if (hi_rng) {
1239 /*
1240 * if
1241 * base address of high range is below 4Gb
1242 * (bits [47:27] at [31:11])
1243 * DRAM address space on this DCT is hoisted above 4Gb &&
1244 * sys_addr > 4Gb
1245 *
1246 * remove hole offset from sys_addr
1247 * else
1248 * remove high range offset from sys_addr
1249 */
1250 if ((!(dct_sel_base_addr >> 16) ||
1251 dct_sel_base_addr < dhar_base(pvt)) &&
1252 hole_valid &&
1253 (sys_addr >= BIT_64(32)))
bc21fa57 1254 chan_off = hole_off;
6163b5d4
DT
1255 else
1256 chan_off = dct_sel_base_off;
1257 } else {
c8e518d5
BP
1258 /*
1259 * if
1260 * we have a valid hole &&
1261 * sys_addr > 4Gb
1262 *
1263 * remove hole
1264 * else
1265 * remove dram base to normalize to DCT address
1266 */
1267 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1268 chan_off = hole_off;
6163b5d4 1269 else
c8e518d5 1270 chan_off = dram_base;
6163b5d4
DT
1271 }
1272
c8e518d5 1273 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1274}
1275
6163b5d4
DT
1276/*
1277 * checks if the csrow passed in is marked as SPARED, if so returns the new
1278 * spare row
1279 */
11c75ead 1280static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1281{
614ec9d8
BP
1282 int tmp_cs;
1283
1284 if (online_spare_swap_done(pvt, dct) &&
1285 csrow == online_spare_bad_dramcs(pvt, dct)) {
1286
1287 for_each_chip_select(tmp_cs, dct, pvt) {
1288 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1289 csrow = tmp_cs;
1290 break;
1291 }
1292 }
6163b5d4
DT
1293 }
1294 return csrow;
1295}
1296
1297/*
1298 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1299 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1300 *
1301 * Return:
1302 * -EINVAL: NOT FOUND
1303 * 0..csrow = Chip-Select Row
1304 */
b15f0fca 1305static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1306{
1307 struct mem_ctl_info *mci;
1308 struct amd64_pvt *pvt;
11c75ead 1309 u64 cs_base, cs_mask;
6163b5d4
DT
1310 int cs_found = -EINVAL;
1311 int csrow;
1312
cc4d8860 1313 mci = mcis[nid];
6163b5d4
DT
1314 if (!mci)
1315 return cs_found;
1316
1317 pvt = mci->pvt_info;
1318
11c75ead 1319 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1320
11c75ead
BP
1321 for_each_chip_select(csrow, dct, pvt) {
1322 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1323 continue;
1324
11c75ead 1325 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1326
11c75ead
BP
1327 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1328 csrow, cs_base, cs_mask);
6163b5d4 1329
11c75ead 1330 cs_mask = ~cs_mask;
6163b5d4 1331
11c75ead
BP
1332 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1333 "(CSBase & ~CSMask)=0x%llx\n",
1334 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1335
11c75ead
BP
1336 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1337 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1338
1339 debugf1(" MATCH csrow=%d\n", cs_found);
1340 break;
1341 }
1342 }
1343 return cs_found;
1344}
1345
95b0ef55
BP
1346/*
1347 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1348 * swapped with a region located at the bottom of memory so that the GPU can use
1349 * the interleaved region and thus two channels.
1350 */
b15f0fca 1351static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1352{
1353 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1354
1355 if (boot_cpu_data.x86 == 0x10) {
1356 /* only revC3 and revE have that feature */
1357 if (boot_cpu_data.x86_model < 4 ||
1358 (boot_cpu_data.x86_model < 0xa &&
1359 boot_cpu_data.x86_mask < 3))
1360 return sys_addr;
1361 }
1362
1363 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1364
1365 if (!(swap_reg & 0x1))
1366 return sys_addr;
1367
1368 swap_base = (swap_reg >> 3) & 0x7f;
1369 swap_limit = (swap_reg >> 11) & 0x7f;
1370 rgn_size = (swap_reg >> 20) & 0x7f;
1371 tmp_addr = sys_addr >> 27;
1372
1373 if (!(sys_addr >> 34) &&
1374 (((tmp_addr >= swap_base) &&
1375 (tmp_addr <= swap_limit)) ||
1376 (tmp_addr < rgn_size)))
1377 return sys_addr ^ (u64)swap_base << 27;
1378
1379 return sys_addr;
1380}
1381
f71d0a05 1382/* For a given @dram_range, check if @sys_addr falls within it. */
b15f0fca 1383static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1384 u64 sys_addr, int *nid, int *chan_sel)
1385{
229a7a11 1386 int cs_found = -EINVAL;
c8e518d5 1387 u64 chan_addr;
5d4b58e8 1388 u32 dct_sel_base;
11c75ead 1389 u8 channel;
229a7a11 1390 bool high_range = false;
f71d0a05 1391
7f19bf75 1392 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1393 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1394 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1395
c8e518d5
BP
1396 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1397 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1398
355fba60
BP
1399 if (dhar_valid(pvt) &&
1400 dhar_base(pvt) <= sys_addr &&
1401 sys_addr < BIT_64(32)) {
1402 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1403 sys_addr);
1404 return -EINVAL;
1405 }
1406
e726f3c3 1407 if (intlv_en &&
355fba60
BP
1408 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1409 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1410 intlv_en, intlv_sel);
f71d0a05 1411 return -EINVAL;
355fba60 1412 }
f71d0a05 1413
b15f0fca 1414 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1415
f71d0a05
DT
1416 dct_sel_base = dct_sel_baseaddr(pvt);
1417
1418 /*
1419 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1420 * select between DCT0 and DCT1.
1421 */
1422 if (dct_high_range_enabled(pvt) &&
1423 !dct_ganging_enabled(pvt) &&
1424 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1425 high_range = true;
f71d0a05 1426
b15f0fca 1427 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1428
b15f0fca 1429 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1430 high_range, dct_sel_base);
f71d0a05 1431
e2f79dbd
BP
1432 /* Remove node interleaving, see F1x120 */
1433 if (intlv_en)
1434 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1435 (chan_addr & 0xfff);
f71d0a05 1436
5d4b58e8 1437 /* remove channel interleave */
f71d0a05
DT
1438 if (dct_interleave_enabled(pvt) &&
1439 !dct_high_range_enabled(pvt) &&
1440 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1441
1442 if (dct_sel_interleave_addr(pvt) != 1) {
1443 if (dct_sel_interleave_addr(pvt) == 0x3)
1444 /* hash 9 */
1445 chan_addr = ((chan_addr >> 10) << 9) |
1446 (chan_addr & 0x1ff);
1447 else
1448 /* A[6] or hash 6 */
1449 chan_addr = ((chan_addr >> 7) << 6) |
1450 (chan_addr & 0x3f);
1451 } else
1452 /* A[12] */
1453 chan_addr = ((chan_addr >> 13) << 12) |
1454 (chan_addr & 0xfff);
f71d0a05
DT
1455 }
1456
5d4b58e8 1457 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1458
b15f0fca 1459 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1460
1461 if (cs_found >= 0) {
1462 *nid = node_id;
1463 *chan_sel = channel;
1464 }
1465 return cs_found;
1466}
1467
b15f0fca 1468static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1469 int *node, int *chan_sel)
1470{
7f19bf75 1471 int range, cs_found = -EINVAL;
f71d0a05 1472
7f19bf75 1473 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1474
7f19bf75 1475 if (!dram_rw(pvt, range))
f71d0a05
DT
1476 continue;
1477
7f19bf75
BP
1478 if ((get_dram_base(pvt, range) <= sys_addr) &&
1479 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1480
b15f0fca 1481 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1482 sys_addr, node,
1483 chan_sel);
1484 if (cs_found >= 0)
1485 break;
1486 }
1487 }
1488 return cs_found;
1489}
1490
1491/*
bdc30a0c
BP
1492 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1493 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1494 *
bdc30a0c
BP
1495 * The @sys_addr is usually an error address received from the hardware
1496 * (MCX_ADDR).
f71d0a05 1497 */
b15f0fca 1498static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1499 u16 syndrome)
f71d0a05
DT
1500{
1501 struct amd64_pvt *pvt = mci->pvt_info;
1502 u32 page, offset;
f71d0a05
DT
1503 int nid, csrow, chan = 0;
1504
b15f0fca 1505 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1506
bdc30a0c
BP
1507 if (csrow < 0) {
1508 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1509 return;
1510 }
1511
1512 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1513
bdc30a0c
BP
1514 /*
1515 * We need the syndromes for channel detection only when we're
1516 * ganged. Otherwise @chan should already contain the channel at
1517 * this point.
1518 */
a97fa68e 1519 if (dct_ganging_enabled(pvt))
bdc30a0c 1520 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1521
bdc30a0c
BP
1522 if (chan >= 0)
1523 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1524 EDAC_MOD_STR);
1525 else
f71d0a05 1526 /*
bdc30a0c 1527 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1528 */
bdc30a0c 1529 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1530 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1531 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1532}
1533
f71d0a05 1534/*
8566c4df 1535 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1536 * CSROWs
f71d0a05 1537 */
8566c4df 1538static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1539{
603adaf6 1540 int dimm, size0, size1, factor = 0;
525a1b20
BP
1541 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1542 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1543
8566c4df 1544 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1545 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1546 factor = 1;
1547
8566c4df 1548 /* K8 families < revF not supported yet */
1433eb99 1549 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1550 return;
1551 else
1552 WARN_ON(ctrl != 0);
1553 }
1554
4d796364 1555 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1556 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1557 : pvt->csels[0].csbases;
f71d0a05 1558
4d796364 1559 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1560
8566c4df
BP
1561 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1562
f71d0a05
DT
1563 /* Dump memory sizes for DIMM and its CSROWs */
1564 for (dimm = 0; dimm < 4; dimm++) {
1565
1566 size0 = 0;
11c75ead 1567 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1568 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1569 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1570
1571 size1 = 0;
11c75ead 1572 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1573 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1574 DBAM_DIMM(dimm, dbam));
f71d0a05 1575
24f9a7fe
BP
1576 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1577 dimm * 2, size0 << factor,
1578 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1579 }
1580}
1581
4d37607a
DT
1582static struct amd64_family_type amd64_family_types[] = {
1583 [K8_CPUS] = {
0092b20d 1584 .ctl_name = "K8",
8d5b5d9c
BP
1585 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1586 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1587 .ops = {
1433eb99 1588 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1589 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1590 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1591 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1592 }
1593 },
1594 [F10_CPUS] = {
0092b20d 1595 .ctl_name = "F10h",
8d5b5d9c
BP
1596 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1597 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1598 .ops = {
7d20d14d 1599 .early_channel_count = f1x_early_channel_count,
b15f0fca 1600 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1601 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1602 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1603 }
1604 },
1605 [F15_CPUS] = {
1606 .ctl_name = "F15h",
1607 .ops = {
7d20d14d 1608 .early_channel_count = f1x_early_channel_count,
b15f0fca 1609 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1610 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1611 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1612 }
1613 },
4d37607a
DT
1614};
1615
1616static struct pci_dev *pci_get_related_function(unsigned int vendor,
1617 unsigned int device,
1618 struct pci_dev *related)
1619{
1620 struct pci_dev *dev = NULL;
1621
1622 dev = pci_get_device(vendor, device, dev);
1623 while (dev) {
1624 if ((dev->bus->number == related->bus->number) &&
1625 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1626 break;
1627 dev = pci_get_device(vendor, device, dev);
1628 }
1629
1630 return dev;
1631}
1632
b1289d6f 1633/*
bfc04aec
BP
1634 * These are tables of eigenvectors (one per line) which can be used for the
1635 * construction of the syndrome tables. The modified syndrome search algorithm
1636 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1637 *
bfc04aec 1638 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1639 */
bfc04aec
BP
1640static u16 x4_vectors[] = {
1641 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1642 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1643 0x0001, 0x0002, 0x0004, 0x0008,
1644 0x1013, 0x3032, 0x4044, 0x8088,
1645 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1646 0x4857, 0xc4fe, 0x13cc, 0x3288,
1647 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1648 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1649 0x15c1, 0x2a42, 0x89ac, 0x4758,
1650 0x2b03, 0x1602, 0x4f0c, 0xca08,
1651 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1652 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1653 0x2b87, 0x164e, 0x642c, 0xdc18,
1654 0x40b9, 0x80de, 0x1094, 0x20e8,
1655 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1656 0x11c1, 0x2242, 0x84ac, 0x4c58,
1657 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1658 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1659 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1660 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1661 0x16b3, 0x3d62, 0x4f34, 0x8518,
1662 0x1e2f, 0x391a, 0x5cac, 0xf858,
1663 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1664 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1665 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1666 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1667 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1668 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1669 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1670 0x185d, 0x2ca6, 0x7914, 0x9e28,
1671 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1672 0x4199, 0x82ee, 0x19f4, 0x2e58,
1673 0x4807, 0xc40e, 0x130c, 0x3208,
1674 0x1905, 0x2e0a, 0x5804, 0xac08,
1675 0x213f, 0x132a, 0xadfc, 0x5ba8,
1676 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1677};
1678
bfc04aec
BP
1679static u16 x8_vectors[] = {
1680 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1681 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1682 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1683 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1684 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1685 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1686 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1687 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1688 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1689 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1690 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1691 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1692 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1693 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1694 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1695 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1696 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1697 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1698 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1699};
1700
1701static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1702 int v_dim)
b1289d6f 1703{
bfc04aec
BP
1704 unsigned int i, err_sym;
1705
1706 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1707 u16 s = syndrome;
1708 int v_idx = err_sym * v_dim;
1709 int v_end = (err_sym + 1) * v_dim;
1710
1711 /* walk over all 16 bits of the syndrome */
1712 for (i = 1; i < (1U << 16); i <<= 1) {
1713
1714 /* if bit is set in that eigenvector... */
1715 if (v_idx < v_end && vectors[v_idx] & i) {
1716 u16 ev_comp = vectors[v_idx++];
1717
1718 /* ... and bit set in the modified syndrome, */
1719 if (s & i) {
1720 /* remove it. */
1721 s ^= ev_comp;
4d37607a 1722
bfc04aec
BP
1723 if (!s)
1724 return err_sym;
1725 }
b1289d6f 1726
bfc04aec
BP
1727 } else if (s & i)
1728 /* can't get to zero, move to next symbol */
1729 break;
1730 }
b1289d6f
DT
1731 }
1732
1733 debugf0("syndrome(%x) not found\n", syndrome);
1734 return -1;
1735}
d27bf6fa 1736
bfc04aec
BP
1737static int map_err_sym_to_channel(int err_sym, int sym_size)
1738{
1739 if (sym_size == 4)
1740 switch (err_sym) {
1741 case 0x20:
1742 case 0x21:
1743 return 0;
1744 break;
1745 case 0x22:
1746 case 0x23:
1747 return 1;
1748 break;
1749 default:
1750 return err_sym >> 4;
1751 break;
1752 }
1753 /* x8 symbols */
1754 else
1755 switch (err_sym) {
1756 /* imaginary bits not in a DIMM */
1757 case 0x10:
1758 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1759 err_sym);
1760 return -1;
1761 break;
1762
1763 case 0x11:
1764 return 0;
1765 break;
1766 case 0x12:
1767 return 1;
1768 break;
1769 default:
1770 return err_sym >> 3;
1771 break;
1772 }
1773 return -1;
1774}
1775
1776static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1777{
1778 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1779 int err_sym = -1;
1780
1781 if (pvt->syn_type == 8)
1782 err_sym = decode_syndrome(syndrome, x8_vectors,
1783 ARRAY_SIZE(x8_vectors),
1784 pvt->syn_type);
1785 else if (pvt->syn_type == 4)
1786 err_sym = decode_syndrome(syndrome, x4_vectors,
1787 ARRAY_SIZE(x4_vectors),
1788 pvt->syn_type);
1789 else {
24f9a7fe 1790 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1791 return err_sym;
bfc04aec 1792 }
ad6a32e9
BP
1793
1794 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1795}
1796
d27bf6fa
DT
1797/*
1798 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1799 * ADDRESS and process.
1800 */
f192c7b1 1801static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1802{
1803 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1804 u64 sys_addr;
f192c7b1 1805 u16 syndrome;
d27bf6fa
DT
1806
1807 /* Ensure that the Error Address is VALID */
f192c7b1 1808 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1809 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1810 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1811 return;
1812 }
1813
70046624 1814 sys_addr = get_error_address(m);
f192c7b1 1815 syndrome = extract_syndrome(m->status);
d27bf6fa 1816
24f9a7fe 1817 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1818
f192c7b1 1819 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1820}
1821
1822/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1823static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1824{
1f6bcee7 1825 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1826 int csrow;
44e9e2ee 1827 u64 sys_addr;
d27bf6fa 1828 u32 page, offset;
d27bf6fa
DT
1829
1830 log_mci = mci;
1831
f192c7b1 1832 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1833 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1834 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1835 return;
1836 }
1837
70046624 1838 sys_addr = get_error_address(m);
d27bf6fa
DT
1839
1840 /*
1841 * Find out which node the error address belongs to. This may be
1842 * different from the node that detected the error.
1843 */
44e9e2ee 1844 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1845 if (!src_mci) {
24f9a7fe
BP
1846 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1847 (unsigned long)sys_addr);
d27bf6fa
DT
1848 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1849 return;
1850 }
1851
1852 log_mci = src_mci;
1853
44e9e2ee 1854 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1855 if (csrow < 0) {
24f9a7fe
BP
1856 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1857 (unsigned long)sys_addr);
d27bf6fa
DT
1858 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1859 } else {
44e9e2ee 1860 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1861 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1862 }
1863}
1864
549d042d 1865static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1866 struct mce *m)
d27bf6fa 1867{
f192c7b1
BP
1868 u16 ec = EC(m->status);
1869 u8 xec = XEC(m->status, 0x1f);
1870 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1871
b70ef010 1872 /* Bail early out if this was an 'observed' error */
5980bb9c 1873 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1874 return;
d27bf6fa 1875
ecaf5606
BP
1876 /* Do only ECC errors */
1877 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1878 return;
d27bf6fa 1879
ecaf5606 1880 if (ecc_type == 2)
f192c7b1 1881 amd64_handle_ce(mci, m);
ecaf5606 1882 else if (ecc_type == 1)
f192c7b1 1883 amd64_handle_ue(mci, m);
d27bf6fa
DT
1884}
1885
7cfd4a87 1886void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1887{
cc4d8860 1888 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1889
f192c7b1 1890 __amd64_decode_bus_error(mci, m);
d27bf6fa 1891}
d27bf6fa 1892
0ec449ee 1893/*
8d5b5d9c 1894 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1895 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1896 */
360b7f3c 1897static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1898{
0ec449ee 1899 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1900 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1901 if (!pvt->F1) {
24f9a7fe
BP
1902 amd64_err("error address map device not found: "
1903 "vendor %x device 0x%x (broken BIOS?)\n",
1904 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1905 return -ENODEV;
0ec449ee
DT
1906 }
1907
1908 /* Reserve the MISC Device */
8d5b5d9c
BP
1909 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1910 if (!pvt->F3) {
1911 pci_dev_put(pvt->F1);
1912 pvt->F1 = NULL;
0ec449ee 1913
24f9a7fe
BP
1914 amd64_err("error F3 device not found: "
1915 "vendor %x device 0x%x (broken BIOS?)\n",
1916 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1917
bbd0c1f6 1918 return -ENODEV;
0ec449ee 1919 }
8d5b5d9c
BP
1920 debugf1("F1: %s\n", pci_name(pvt->F1));
1921 debugf1("F2: %s\n", pci_name(pvt->F2));
1922 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1923
1924 return 0;
1925}
1926
360b7f3c 1927static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1928{
8d5b5d9c
BP
1929 pci_dev_put(pvt->F1);
1930 pci_dev_put(pvt->F3);
0ec449ee
DT
1931}
1932
1933/*
1934 * Retrieve the hardware registers of the memory controller (this includes the
1935 * 'Address Map' and 'Misc' device regs)
1936 */
360b7f3c 1937static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1938{
1939 u64 msr_val;
ad6a32e9 1940 u32 tmp;
7f19bf75 1941 int range;
0ec449ee
DT
1942
1943 /*
1944 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1945 * those are Read-As-Zero
1946 */
e97f8bb8
BP
1947 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1948 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1949
1950 /* check first whether TOP_MEM2 is enabled */
1951 rdmsrl(MSR_K8_SYSCFG, msr_val);
1952 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1953 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1954 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1955 } else
1956 debugf0(" TOP_MEM2 disabled.\n");
1957
5980bb9c 1958 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1959
5a5d2371 1960 read_dram_ctl_register(pvt);
0ec449ee 1961
7f19bf75
BP
1962 for (range = 0; range < DRAM_RANGES; range++) {
1963 u8 rw;
0ec449ee 1964
7f19bf75
BP
1965 /* read settings for this DRAM range */
1966 read_dram_base_limit_regs(pvt, range);
1967
1968 rw = dram_rw(pvt, range);
1969 if (!rw)
1970 continue;
1971
1972 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1973 range,
1974 get_dram_base(pvt, range),
1975 get_dram_limit(pvt, range));
1976
1977 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1978 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1979 (rw & 0x1) ? "R" : "-",
1980 (rw & 0x2) ? "W" : "-",
1981 dram_intlv_sel(pvt, range),
1982 dram_dst_node(pvt, range));
0ec449ee
DT
1983 }
1984
b2b0c605 1985 read_dct_base_mask(pvt);
0ec449ee 1986
bc21fa57 1987 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1988 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1989
8d5b5d9c 1990 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1991
cb328507
BP
1992 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1993 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1994
78da121e 1995 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1996 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1997 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1998 }
ad6a32e9 1999
525a1b20 2000 if (boot_cpu_data.x86 >= 0x10) {
b2b0c605 2001 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20
BP
2002 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2003 }
b2b0c605 2004
ad6a32e9
BP
2005 if (boot_cpu_data.x86 == 0x10 &&
2006 boot_cpu_data.x86_model > 7 &&
2007 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2008 tmp & BIT(25))
2009 pvt->syn_type = 8;
2010 else
2011 pvt->syn_type = 4;
2012
b2b0c605 2013 dump_misc_regs(pvt);
0ec449ee
DT
2014}
2015
2016/*
2017 * NOTE: CPU Revision Dependent code
2018 *
2019 * Input:
11c75ead 2020 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2021 * k8 private pointer to -->
2022 * DRAM Bank Address mapping register
2023 * node_id
2024 * DCL register where dual_channel_active is
2025 *
2026 * The DBAM register consists of 4 sets of 4 bits each definitions:
2027 *
2028 * Bits: CSROWs
2029 * 0-3 CSROWs 0 and 1
2030 * 4-7 CSROWs 2 and 3
2031 * 8-11 CSROWs 4 and 5
2032 * 12-15 CSROWs 6 and 7
2033 *
2034 * Values range from: 0 to 15
2035 * The meaning of the values depends on CPU revision and dual-channel state,
2036 * see relevant BKDG more info.
2037 *
2038 * The memory controller provides for total of only 8 CSROWs in its current
2039 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2040 * single channel or two (2) DIMMs in dual channel mode.
2041 *
2042 * The following code logic collapses the various tables for CSROW based on CPU
2043 * revision.
2044 *
2045 * Returns:
2046 * The number of PAGE_SIZE pages on the specified CSROW number it
2047 * encompasses
2048 *
2049 */
41d8bfab 2050static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2051{
1433eb99 2052 u32 cs_mode, nr_pages;
0ec449ee
DT
2053
2054 /*
2055 * The math on this doesn't look right on the surface because x/2*4 can
2056 * be simplified to x*2 but this expression makes use of the fact that
2057 * it is integral math where 1/2=0. This intermediate value becomes the
2058 * number of bits to shift the DBAM register to extract the proper CSROW
2059 * field.
2060 */
1433eb99 2061 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2062
41d8bfab 2063 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2064
2065 /*
2066 * If dual channel then double the memory size of single channel.
2067 * Channel count is 1 or 2
2068 */
2069 nr_pages <<= (pvt->channel_count - 1);
2070
1433eb99 2071 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2072 debugf0(" nr_pages= %u channel-count = %d\n",
2073 nr_pages, pvt->channel_count);
2074
2075 return nr_pages;
2076}
2077
2078/*
2079 * Initialize the array of csrow attribute instances, based on the values
2080 * from pci config hardware registers.
2081 */
360b7f3c 2082static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2083{
2084 struct csrow_info *csrow;
2299ef71 2085 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2086 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2087 u32 val;
6ba5dcdc 2088 int i, empty = 1;
0ec449ee 2089
a97fa68e 2090 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2091
2299ef71 2092 pvt->nbcfg = val;
0ec449ee 2093
2299ef71
BP
2094 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2095 pvt->mc_node_id, val,
a97fa68e 2096 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2097
11c75ead 2098 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2099 csrow = &mci->csrows[i];
2100
11c75ead 2101 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2102 debugf1("----CSROW %d EMPTY for node %d\n", i,
2103 pvt->mc_node_id);
2104 continue;
2105 }
2106
2107 debugf1("----CSROW %d VALID for MC node %d\n",
2108 i, pvt->mc_node_id);
2109
2110 empty = 0;
41d8bfab 2111 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2112 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2113 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2114 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2115 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2116 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2117
2118 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2119 csrow->page_mask = ~mask;
0ec449ee
DT
2120 /* 8 bytes of resolution */
2121
24f9a7fe 2122 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2123
2124 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2125 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2126 (unsigned long)input_addr_min,
2127 (unsigned long)input_addr_max);
2128 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2129 (unsigned long)sys_addr, csrow->page_mask);
2130 debugf1(" nr_pages: %u first_page: 0x%lx "
2131 "last_page: 0x%lx\n",
2132 (unsigned)csrow->nr_pages,
2133 csrow->first_page, csrow->last_page);
2134
2135 /*
2136 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2137 */
a97fa68e 2138 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2139 csrow->edac_mode =
a97fa68e 2140 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2141 EDAC_S4ECD4ED : EDAC_SECDED;
2142 else
2143 csrow->edac_mode = EDAC_NONE;
2144 }
2145
2146 return empty;
2147}
d27bf6fa 2148
f6d6ae96
BP
2149/* get all cores on this DCT */
2150static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2151{
2152 int cpu;
2153
2154 for_each_online_cpu(cpu)
2155 if (amd_get_nb_id(cpu) == nid)
2156 cpumask_set_cpu(cpu, mask);
2157}
2158
2159/* check MCG_CTL on all the cpus on this node */
2160static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2161{
2162 cpumask_var_t mask;
50542251 2163 int cpu, nbe;
f6d6ae96
BP
2164 bool ret = false;
2165
2166 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2167 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2168 return false;
2169 }
2170
2171 get_cpus_on_this_dct_cpumask(mask, nid);
2172
f6d6ae96
BP
2173 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2174
2175 for_each_cpu(cpu, mask) {
50542251 2176 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2177 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2178
2179 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2180 cpu, reg->q,
f6d6ae96
BP
2181 (nbe ? "enabled" : "disabled"));
2182
2183 if (!nbe)
2184 goto out;
f6d6ae96
BP
2185 }
2186 ret = true;
2187
2188out:
f6d6ae96
BP
2189 free_cpumask_var(mask);
2190 return ret;
2191}
2192
2299ef71 2193static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2194{
2195 cpumask_var_t cmask;
50542251 2196 int cpu;
f6d6ae96
BP
2197
2198 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2199 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2200 return false;
2201 }
2202
ae7bb7c6 2203 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2204
f6d6ae96
BP
2205 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2206
2207 for_each_cpu(cpu, cmask) {
2208
50542251
BP
2209 struct msr *reg = per_cpu_ptr(msrs, cpu);
2210
f6d6ae96 2211 if (on) {
5980bb9c 2212 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2213 s->flags.nb_mce_enable = 1;
f6d6ae96 2214
5980bb9c 2215 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2216 } else {
2217 /*
d95cf4de 2218 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2219 */
ae7bb7c6 2220 if (!s->flags.nb_mce_enable)
5980bb9c 2221 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2222 }
f6d6ae96
BP
2223 }
2224 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2225
f6d6ae96
BP
2226 free_cpumask_var(cmask);
2227
2228 return 0;
2229}
2230
2299ef71
BP
2231static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2232 struct pci_dev *F3)
f9431992 2233{
2299ef71 2234 bool ret = true;
c9f4f26e 2235 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2236
2299ef71
BP
2237 if (toggle_ecc_err_reporting(s, nid, ON)) {
2238 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2239 return false;
2240 }
2241
c9f4f26e 2242 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2243
ae7bb7c6
BP
2244 s->old_nbctl = value & mask;
2245 s->nbctl_valid = true;
f9431992
DT
2246
2247 value |= mask;
c9f4f26e 2248 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2249
a97fa68e 2250 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2251
a97fa68e
BP
2252 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2253 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2254
a97fa68e 2255 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2256 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2257
ae7bb7c6 2258 s->flags.nb_ecc_prev = 0;
d95cf4de 2259
f9431992 2260 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2261 value |= NBCFG_ECC_ENABLE;
2262 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2263
a97fa68e 2264 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2265
a97fa68e 2266 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2267 amd64_warn("Hardware rejected DRAM ECC enable,"
2268 "check memory DIMM configuration.\n");
2299ef71 2269 ret = false;
f9431992 2270 } else {
24f9a7fe 2271 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2272 }
d95cf4de 2273 } else {
ae7bb7c6 2274 s->flags.nb_ecc_prev = 1;
f9431992 2275 }
d95cf4de 2276
a97fa68e
BP
2277 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2278 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2279
2299ef71 2280 return ret;
f9431992
DT
2281}
2282
360b7f3c
BP
2283static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2284 struct pci_dev *F3)
f9431992 2285{
c9f4f26e
BP
2286 u32 value, mask = 0x3; /* UECC/CECC enable */
2287
f9431992 2288
ae7bb7c6 2289 if (!s->nbctl_valid)
f9431992
DT
2290 return;
2291
c9f4f26e 2292 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2293 value &= ~mask;
ae7bb7c6 2294 value |= s->old_nbctl;
f9431992 2295
c9f4f26e 2296 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2297
ae7bb7c6
BP
2298 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2299 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2300 amd64_read_pci_cfg(F3, NBCFG, &value);
2301 value &= ~NBCFG_ECC_ENABLE;
2302 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2303 }
2304
2305 /* restore the NB Enable MCGCTL bit */
2299ef71 2306 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2307 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2308}
2309
2310/*
2299ef71
BP
2311 * EDAC requires that the BIOS have ECC enabled before
2312 * taking over the processing of ECC errors. A command line
2313 * option allows to force-enable hardware ECC later in
2314 * enable_ecc_error_reporting().
f9431992 2315 */
cab4d277
BP
2316static const char *ecc_msg =
2317 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2318 " Either enable ECC checking or force module loading by setting "
2319 "'ecc_enable_override'.\n"
2320 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2321
2299ef71 2322static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2323{
2324 u32 value;
2299ef71 2325 u8 ecc_en = 0;
06724535 2326 bool nb_mce_en = false;
f9431992 2327
a97fa68e 2328 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2329
a97fa68e 2330 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2331 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2332
2299ef71 2333 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2334 if (!nb_mce_en)
2299ef71
BP
2335 amd64_notice("NB MCE bank disabled, set MSR "
2336 "0x%08x[4] on node %d to enable.\n",
2337 MSR_IA32_MCG_CTL, nid);
f9431992 2338
2299ef71
BP
2339 if (!ecc_en || !nb_mce_en) {
2340 amd64_notice("%s", ecc_msg);
2341 return false;
2342 }
2343 return true;
f9431992
DT
2344}
2345
7d6034d3
DT
2346struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2347 ARRAY_SIZE(amd64_inj_attrs) +
2348 1];
2349
2350struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2351
360b7f3c 2352static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2353{
2354 unsigned int i = 0, j = 0;
2355
2356 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2357 sysfs_attrs[i] = amd64_dbg_attrs[i];
2358
a135cef7
BP
2359 if (boot_cpu_data.x86 >= 0x10)
2360 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2361 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2362
2363 sysfs_attrs[i] = terminator;
2364
2365 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2366}
2367
360b7f3c 2368static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2369{
2370 struct amd64_pvt *pvt = mci->pvt_info;
2371
2372 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2373 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2374
5980bb9c 2375 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2376 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2377
5980bb9c 2378 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2379 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2380
2381 mci->edac_cap = amd64_determine_edac_cap(pvt);
2382 mci->mod_name = EDAC_MOD_STR;
2383 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2384 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2385 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2386 mci->ctl_page_to_phys = NULL;
2387
7d6034d3
DT
2388 /* memory scrubber interface */
2389 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2390 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2391}
2392
0092b20d
BP
2393/*
2394 * returns a pointer to the family descriptor on success, NULL otherwise.
2395 */
2396static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2397{
0092b20d
BP
2398 u8 fam = boot_cpu_data.x86;
2399 struct amd64_family_type *fam_type = NULL;
2400
2401 switch (fam) {
395ae783 2402 case 0xf:
0092b20d 2403 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2404 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d 2405 pvt->ctl_name = fam_type->ctl_name;
395ae783
BP
2406 break;
2407 case 0x10:
0092b20d 2408 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2409 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d 2410 pvt->ctl_name = fam_type->ctl_name;
395ae783
BP
2411 break;
2412
2413 default:
24f9a7fe 2414 amd64_err("Unsupported family!\n");
0092b20d 2415 return NULL;
395ae783 2416 }
0092b20d 2417
b8cfa02f
BP
2418 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2419
24f9a7fe 2420 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2421 (fam == 0xf ?
24f9a7fe
BP
2422 (pvt->ext_model >= K8_REV_F ? "revF or later "
2423 : "revE or earlier ")
2424 : ""), pvt->mc_node_id);
0092b20d 2425 return fam_type;
395ae783
BP
2426}
2427
2299ef71 2428static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2429{
2430 struct amd64_pvt *pvt = NULL;
0092b20d 2431 struct amd64_family_type *fam_type = NULL;
360b7f3c 2432 struct mem_ctl_info *mci = NULL;
7d6034d3 2433 int err = 0, ret;
360b7f3c 2434 u8 nid = get_node_id(F2);
7d6034d3
DT
2435
2436 ret = -ENOMEM;
2437 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2438 if (!pvt)
360b7f3c 2439 goto err_ret;
7d6034d3 2440
360b7f3c 2441 pvt->mc_node_id = nid;
8d5b5d9c 2442 pvt->F2 = F2;
7d6034d3 2443
395ae783 2444 ret = -EINVAL;
0092b20d
BP
2445 fam_type = amd64_per_family_init(pvt);
2446 if (!fam_type)
395ae783
BP
2447 goto err_free;
2448
7d6034d3 2449 ret = -ENODEV;
360b7f3c 2450 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2451 if (err)
2452 goto err_free;
2453
360b7f3c 2454 read_mc_regs(pvt);
7d6034d3 2455
7d6034d3
DT
2456 /*
2457 * We need to determine how many memory channels there are. Then use
2458 * that information for calculating the size of the dynamic instance
360b7f3c 2459 * tables in the 'mci' structure.
7d6034d3 2460 */
360b7f3c 2461 ret = -EINVAL;
7d6034d3
DT
2462 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2463 if (pvt->channel_count < 0)
360b7f3c 2464 goto err_siblings;
7d6034d3
DT
2465
2466 ret = -ENOMEM;
11c75ead 2467 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2468 if (!mci)
360b7f3c 2469 goto err_siblings;
7d6034d3
DT
2470
2471 mci->pvt_info = pvt;
8d5b5d9c 2472 mci->dev = &pvt->F2->dev;
7d6034d3 2473
360b7f3c
BP
2474 setup_mci_misc_attrs(mci);
2475
2476 if (init_csrows(mci))
7d6034d3
DT
2477 mci->edac_cap = EDAC_FLAG_NONE;
2478
360b7f3c 2479 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2480
2481 ret = -ENODEV;
2482 if (edac_mc_add_mc(mci)) {
2483 debugf1("failed edac_mc_add_mc()\n");
2484 goto err_add_mc;
2485 }
2486
549d042d
BP
2487 /* register stuff with EDAC MCE */
2488 if (report_gart_errors)
2489 amd_report_gart_errors(true);
2490
2491 amd_register_ecc_decoder(amd64_decode_bus_error);
2492
360b7f3c
BP
2493 mcis[nid] = mci;
2494
2495 atomic_inc(&drv_instances);
2496
7d6034d3
DT
2497 return 0;
2498
2499err_add_mc:
2500 edac_mc_free(mci);
2501
360b7f3c
BP
2502err_siblings:
2503 free_mc_sibling_devs(pvt);
7d6034d3 2504
360b7f3c
BP
2505err_free:
2506 kfree(pvt);
7d6034d3 2507
360b7f3c 2508err_ret:
7d6034d3
DT
2509 return ret;
2510}
2511
2299ef71 2512static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2513 const struct pci_device_id *mc_type)
7d6034d3 2514{
ae7bb7c6 2515 u8 nid = get_node_id(pdev);
2299ef71 2516 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2517 struct ecc_settings *s;
2299ef71 2518 int ret = 0;
7d6034d3 2519
7d6034d3 2520 ret = pci_enable_device(pdev);
b8cfa02f
BP
2521 if (ret < 0) {
2522 debugf0("ret=%d\n", ret);
2523 return -EIO;
2524 }
7d6034d3 2525
ae7bb7c6
BP
2526 ret = -ENOMEM;
2527 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2528 if (!s)
2299ef71 2529 goto err_out;
ae7bb7c6
BP
2530
2531 ecc_stngs[nid] = s;
2532
2299ef71
BP
2533 if (!ecc_enabled(F3, nid)) {
2534 ret = -ENODEV;
2535
2536 if (!ecc_enable_override)
2537 goto err_enable;
2538
2539 amd64_warn("Forcing ECC on!\n");
2540
2541 if (!enable_ecc_error_reporting(s, nid, F3))
2542 goto err_enable;
2543 }
2544
2545 ret = amd64_init_one_instance(pdev);
360b7f3c 2546 if (ret < 0) {
ae7bb7c6 2547 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2548 restore_ecc_error_reporting(s, nid, F3);
2549 }
7d6034d3
DT
2550
2551 return ret;
2299ef71
BP
2552
2553err_enable:
2554 kfree(s);
2555 ecc_stngs[nid] = NULL;
2556
2557err_out:
2558 return ret;
7d6034d3
DT
2559}
2560
2561static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2562{
2563 struct mem_ctl_info *mci;
2564 struct amd64_pvt *pvt;
360b7f3c
BP
2565 u8 nid = get_node_id(pdev);
2566 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2567 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2568
2569 /* Remove from EDAC CORE tracking list */
2570 mci = edac_mc_del_mc(&pdev->dev);
2571 if (!mci)
2572 return;
2573
2574 pvt = mci->pvt_info;
2575
360b7f3c 2576 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2577
360b7f3c 2578 free_mc_sibling_devs(pvt);
7d6034d3 2579
549d042d
BP
2580 /* unregister from EDAC MCE */
2581 amd_report_gart_errors(false);
2582 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2583
360b7f3c
BP
2584 kfree(ecc_stngs[nid]);
2585 ecc_stngs[nid] = NULL;
ae7bb7c6 2586
7d6034d3 2587 /* Free the EDAC CORE resources */
8f68ed97 2588 mci->pvt_info = NULL;
360b7f3c 2589 mcis[nid] = NULL;
8f68ed97
BP
2590
2591 kfree(pvt);
7d6034d3
DT
2592 edac_mc_free(mci);
2593}
2594
2595/*
2596 * This table is part of the interface for loading drivers for PCI devices. The
2597 * PCI core identifies what devices are on a system during boot, and then
2598 * inquiry this table to see if this driver is for a given device found.
2599 */
2600static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2601 {
2602 .vendor = PCI_VENDOR_ID_AMD,
2603 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2604 .subvendor = PCI_ANY_ID,
2605 .subdevice = PCI_ANY_ID,
2606 .class = 0,
2607 .class_mask = 0,
7d6034d3
DT
2608 },
2609 {
2610 .vendor = PCI_VENDOR_ID_AMD,
2611 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2612 .subvendor = PCI_ANY_ID,
2613 .subdevice = PCI_ANY_ID,
2614 .class = 0,
2615 .class_mask = 0,
7d6034d3 2616 },
7d6034d3
DT
2617 {0, }
2618};
2619MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2620
2621static struct pci_driver amd64_pci_driver = {
2622 .name = EDAC_MOD_STR,
2299ef71 2623 .probe = amd64_probe_one_instance,
7d6034d3
DT
2624 .remove = __devexit_p(amd64_remove_one_instance),
2625 .id_table = amd64_pci_table,
2626};
2627
360b7f3c 2628static void setup_pci_device(void)
7d6034d3
DT
2629{
2630 struct mem_ctl_info *mci;
2631 struct amd64_pvt *pvt;
2632
2633 if (amd64_ctl_pci)
2634 return;
2635
cc4d8860 2636 mci = mcis[0];
7d6034d3
DT
2637 if (mci) {
2638
2639 pvt = mci->pvt_info;
2640 amd64_ctl_pci =
8d5b5d9c 2641 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2642
2643 if (!amd64_ctl_pci) {
2644 pr_warning("%s(): Unable to create PCI control\n",
2645 __func__);
2646
2647 pr_warning("%s(): PCI error report via EDAC not set\n",
2648 __func__);
2649 }
2650 }
2651}
2652
2653static int __init amd64_edac_init(void)
2654{
360b7f3c 2655 int err = -ENODEV;
7d6034d3
DT
2656
2657 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2658
2659 opstate_init();
2660
9653a5c7 2661 if (amd_cache_northbridges() < 0)
56b34b91 2662 goto err_ret;
7d6034d3 2663
cc4d8860 2664 err = -ENOMEM;
ae7bb7c6
BP
2665 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2666 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2667 if (!(mcis && ecc_stngs))
cc4d8860
BP
2668 goto err_ret;
2669
50542251 2670 msrs = msrs_alloc();
56b34b91 2671 if (!msrs)
360b7f3c 2672 goto err_free;
50542251 2673
7d6034d3
DT
2674 err = pci_register_driver(&amd64_pci_driver);
2675 if (err)
56b34b91 2676 goto err_pci;
7d6034d3 2677
56b34b91 2678 err = -ENODEV;
360b7f3c
BP
2679 if (!atomic_read(&drv_instances))
2680 goto err_no_instances;
7d6034d3 2681
360b7f3c
BP
2682 setup_pci_device();
2683 return 0;
7d6034d3 2684
360b7f3c 2685err_no_instances:
7d6034d3 2686 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2687
56b34b91
BP
2688err_pci:
2689 msrs_free(msrs);
2690 msrs = NULL;
cc4d8860 2691
360b7f3c
BP
2692err_free:
2693 kfree(mcis);
2694 mcis = NULL;
2695
2696 kfree(ecc_stngs);
2697 ecc_stngs = NULL;
2698
56b34b91 2699err_ret:
7d6034d3
DT
2700 return err;
2701}
2702
2703static void __exit amd64_edac_exit(void)
2704{
2705 if (amd64_ctl_pci)
2706 edac_pci_release_generic_ctl(amd64_ctl_pci);
2707
2708 pci_unregister_driver(&amd64_pci_driver);
50542251 2709
ae7bb7c6
BP
2710 kfree(ecc_stngs);
2711 ecc_stngs = NULL;
2712
cc4d8860
BP
2713 kfree(mcis);
2714 mcis = NULL;
2715
50542251
BP
2716 msrs_free(msrs);
2717 msrs = NULL;
7d6034d3
DT
2718}
2719
2720module_init(amd64_edac_init);
2721module_exit(amd64_edac_exit);
2722
2723MODULE_LICENSE("GPL");
2724MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2725 "Dave Peterson, Thayne Harbaugh");
2726MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2727 EDAC_AMD64_VERSION);
2728
2729module_param(edac_op_state, int, 0444);
2730MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");