]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Fix DCT argument type
[mirror_ubuntu-jammy-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
117static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119{
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134}
135
2bc65418
DT
136/*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150/*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
395ae783 154static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
155{
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
395ae783 170 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
2bc65418 184
5980bb9c 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 186
39094443
BP
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
2bc65418
DT
190 return 0;
191}
192
395ae783 193static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
194{
195 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 196 u32 min_scrubrate = 0x5;
2bc65418 197
87b3e0e6
BP
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
202}
203
39094443 204static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
205{
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
39094443 208 int i, retval = -EINVAL;
2bc65418 209
5980bb9c 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
211
212 scrubval = scrubval & 0x001F;
213
24f9a7fe 214 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 215
926311fd 216 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 217 if (scrubrates[i].scrubval == scrubval) {
39094443 218 retval = scrubrates[i].bandwidth;
2bc65418
DT
219 break;
220 }
221 }
39094443 222 return retval;
2bc65418
DT
223}
224
6775763a 225/*
7f19bf75
BP
226 * returns true if the SysAddr given by sys_addr matches the
227 * DRAM base/limit associated with node_id
6775763a 228 */
b487c33e
BP
229static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
230 unsigned nid)
6775763a 231{
7f19bf75 232 u64 addr;
6775763a
DT
233
234 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
235 * all ones if the most significant implemented address bit is 1.
236 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
237 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
238 * Application Programming.
239 */
240 addr = sys_addr & 0x000000ffffffffffull;
241
7f19bf75
BP
242 return ((addr >= get_dram_base(pvt, nid)) &&
243 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
244}
245
246/*
247 * Attempt to map a SysAddr to a node. On success, return a pointer to the
248 * mem_ctl_info structure for the node that the SysAddr maps to.
249 *
250 * On failure, return NULL.
251 */
252static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
253 u64 sys_addr)
254{
255 struct amd64_pvt *pvt;
b487c33e 256 unsigned node_id;
6775763a
DT
257 u32 intlv_en, bits;
258
259 /*
260 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
261 * 3.4.4.2) registers to map the SysAddr to a node ID.
262 */
263 pvt = mci->pvt_info;
264
265 /*
266 * The value of this field should be the same for all DRAM Base
267 * registers. Therefore we arbitrarily choose to read it from the
268 * register for node 0.
269 */
7f19bf75 270 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
271
272 if (intlv_en == 0) {
7f19bf75 273 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 274 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 275 goto found;
6775763a 276 }
8edc5445 277 goto err_no_match;
6775763a
DT
278 }
279
72f158fe
BP
280 if (unlikely((intlv_en != 0x01) &&
281 (intlv_en != 0x03) &&
282 (intlv_en != 0x07))) {
24f9a7fe 283 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
284 return NULL;
285 }
286
287 bits = (((u32) sys_addr) >> 12) & intlv_en;
288
289 for (node_id = 0; ; ) {
7f19bf75 290 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
291 break; /* intlv_sel field matches */
292
7f19bf75 293 if (++node_id >= DRAM_RANGES)
6775763a
DT
294 goto err_no_match;
295 }
296
297 /* sanity test for sys_addr */
298 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
299 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
300 "range for node %d with node interleaving enabled.\n",
301 __func__, sys_addr, node_id);
6775763a
DT
302 return NULL;
303 }
304
305found:
b487c33e 306 return edac_mc_find((int)node_id);
6775763a
DT
307
308err_no_match:
309 debugf2("sys_addr 0x%lx doesn't match any node\n",
310 (unsigned long)sys_addr);
311
312 return NULL;
313}
e2ce7255
DT
314
315/*
11c75ead
BP
316 * compute the CS base address of the @csrow on the DRAM controller @dct.
317 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 318 */
11c75ead
BP
319static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
320 u64 *base, u64 *mask)
e2ce7255 321{
11c75ead
BP
322 u64 csbase, csmask, base_bits, mask_bits;
323 u8 addr_shift;
e2ce7255 324
11c75ead
BP
325 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
326 csbase = pvt->csels[dct].csbases[csrow];
327 csmask = pvt->csels[dct].csmasks[csrow];
328 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
329 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
330 addr_shift = 4;
331 } else {
332 csbase = pvt->csels[dct].csbases[csrow];
333 csmask = pvt->csels[dct].csmasks[csrow >> 1];
334 addr_shift = 8;
e2ce7255 335
11c75ead
BP
336 if (boot_cpu_data.x86 == 0x15)
337 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
338 else
339 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
340 }
e2ce7255 341
11c75ead 342 *base = (csbase & base_bits) << addr_shift;
e2ce7255 343
11c75ead
BP
344 *mask = ~0ULL;
345 /* poke holes for the csmask */
346 *mask &= ~(mask_bits << addr_shift);
347 /* OR them in */
348 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
349}
350
11c75ead
BP
351#define for_each_chip_select(i, dct, pvt) \
352 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
353
614ec9d8
BP
354#define chip_select_base(i, dct, pvt) \
355 pvt->csels[dct].csbases[i]
356
11c75ead
BP
357#define for_each_chip_select_mask(i, dct, pvt) \
358 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
359
e2ce7255
DT
360/*
361 * @input_addr is an InputAddr associated with the node given by mci. Return the
362 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
363 */
364static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
365{
366 struct amd64_pvt *pvt;
367 int csrow;
368 u64 base, mask;
369
370 pvt = mci->pvt_info;
371
11c75ead
BP
372 for_each_chip_select(csrow, 0, pvt) {
373 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
374 continue;
375
11c75ead
BP
376 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
377
378 mask = ~mask;
e2ce7255
DT
379
380 if ((input_addr & mask) == (base & mask)) {
381 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
382 (unsigned long)input_addr, csrow,
383 pvt->mc_node_id);
384
385 return csrow;
386 }
387 }
e2ce7255
DT
388 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
389 (unsigned long)input_addr, pvt->mc_node_id);
390
391 return -1;
392}
393
e2ce7255
DT
394/*
395 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
396 * for the node represented by mci. Info is passed back in *hole_base,
397 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
398 * info is invalid. Info may be invalid for either of the following reasons:
399 *
400 * - The revision of the node is not E or greater. In this case, the DRAM Hole
401 * Address Register does not exist.
402 *
403 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
404 * indicating that its contents are not valid.
405 *
406 * The values passed back in *hole_base, *hole_offset, and *hole_size are
407 * complete 32-bit values despite the fact that the bitfields in the DHAR
408 * only represent bits 31-24 of the base and offset values.
409 */
410int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
411 u64 *hole_offset, u64 *hole_size)
412{
413 struct amd64_pvt *pvt = mci->pvt_info;
414 u64 base;
415
416 /* only revE and later have the DRAM Hole Address Register */
1433eb99 417 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
418 debugf1(" revision %d for node %d does not support DHAR\n",
419 pvt->ext_model, pvt->mc_node_id);
420 return 1;
421 }
422
bc21fa57 423 /* valid for Fam10h and above */
c8e518d5 424 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
425 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
426 return 1;
427 }
428
c8e518d5 429 if (!dhar_valid(pvt)) {
e2ce7255
DT
430 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
431 pvt->mc_node_id);
432 return 1;
433 }
434
435 /* This node has Memory Hoisting */
436
437 /* +------------------+--------------------+--------------------+-----
438 * | memory | DRAM hole | relocated |
439 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
440 * | | | DRAM hole |
441 * | | | [0x100000000, |
442 * | | | (0x100000000+ |
443 * | | | (0xffffffff-x))] |
444 * +------------------+--------------------+--------------------+-----
445 *
446 * Above is a diagram of physical memory showing the DRAM hole and the
447 * relocated addresses from the DRAM hole. As shown, the DRAM hole
448 * starts at address x (the base address) and extends through address
449 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
450 * addresses in the hole so that they start at 0x100000000.
451 */
452
bc21fa57 453 base = dhar_base(pvt);
e2ce7255
DT
454
455 *hole_base = base;
456 *hole_size = (0x1ull << 32) - base;
457
458 if (boot_cpu_data.x86 > 0xf)
bc21fa57 459 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 460 else
bc21fa57 461 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
462
463 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
464 pvt->mc_node_id, (unsigned long)*hole_base,
465 (unsigned long)*hole_offset, (unsigned long)*hole_size);
466
467 return 0;
468}
469EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
470
93c2df58
DT
471/*
472 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
473 * assumed that sys_addr maps to the node given by mci.
474 *
475 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
476 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
477 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
478 * then it is also involved in translating a SysAddr to a DramAddr. Sections
479 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
480 * These parts of the documentation are unclear. I interpret them as follows:
481 *
482 * When node n receives a SysAddr, it processes the SysAddr as follows:
483 *
484 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
485 * Limit registers for node n. If the SysAddr is not within the range
486 * specified by the base and limit values, then node n ignores the Sysaddr
487 * (since it does not map to node n). Otherwise continue to step 2 below.
488 *
489 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
490 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
491 * the range of relocated addresses (starting at 0x100000000) from the DRAM
492 * hole. If not, skip to step 3 below. Else get the value of the
493 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
494 * offset defined by this value from the SysAddr.
495 *
496 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
497 * Base register for node n. To obtain the DramAddr, subtract the base
498 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
499 */
500static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
501{
7f19bf75 502 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
503 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
504 int ret = 0;
505
7f19bf75 506 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
507
508 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
509 &hole_size);
510 if (!ret) {
511 if ((sys_addr >= (1ull << 32)) &&
512 (sys_addr < ((1ull << 32) + hole_size))) {
513 /* use DHAR to translate SysAddr to DramAddr */
514 dram_addr = sys_addr - hole_offset;
515
516 debugf2("using DHAR to translate SysAddr 0x%lx to "
517 "DramAddr 0x%lx\n",
518 (unsigned long)sys_addr,
519 (unsigned long)dram_addr);
520
521 return dram_addr;
522 }
523 }
524
525 /*
526 * Translate the SysAddr to a DramAddr as shown near the start of
527 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
528 * only deals with 40-bit values. Therefore we discard bits 63-40 of
529 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
530 * discard are all 1s. Otherwise the bits we discard are all 0s. See
531 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
532 * Programmer's Manual Volume 1 Application Programming.
533 */
f678b8cc 534 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
535
536 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
537 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
538 (unsigned long)dram_addr);
539 return dram_addr;
540}
541
542/*
543 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
544 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
545 * for node interleaving.
546 */
547static int num_node_interleave_bits(unsigned intlv_en)
548{
549 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
550 int n;
551
552 BUG_ON(intlv_en > 7);
553 n = intlv_shift_table[intlv_en];
554 return n;
555}
556
557/* Translate the DramAddr given by @dram_addr to an InputAddr. */
558static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
559{
560 struct amd64_pvt *pvt;
561 int intlv_shift;
562 u64 input_addr;
563
564 pvt = mci->pvt_info;
565
566 /*
567 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
568 * concerning translating a DramAddr to an InputAddr.
569 */
7f19bf75 570 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
571 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
572 (dram_addr & 0xfff);
93c2df58
DT
573
574 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
575 intlv_shift, (unsigned long)dram_addr,
576 (unsigned long)input_addr);
577
578 return input_addr;
579}
580
581/*
582 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
583 * assumed that @sys_addr maps to the node given by mci.
584 */
585static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
586{
587 u64 input_addr;
588
589 input_addr =
590 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
591
592 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
593 (unsigned long)sys_addr, (unsigned long)input_addr);
594
595 return input_addr;
596}
597
598
599/*
600 * @input_addr is an InputAddr associated with the node represented by mci.
601 * Translate @input_addr to a DramAddr and return the result.
602 */
603static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
604{
605 struct amd64_pvt *pvt;
b487c33e 606 unsigned node_id, intlv_shift;
93c2df58
DT
607 u64 bits, dram_addr;
608 u32 intlv_sel;
609
610 /*
611 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
612 * shows how to translate a DramAddr to an InputAddr. Here we reverse
613 * this procedure. When translating from a DramAddr to an InputAddr, the
614 * bits used for node interleaving are discarded. Here we recover these
615 * bits from the IntlvSel field of the DRAM Limit register (section
616 * 3.4.4.2) for the node that input_addr is associated with.
617 */
618 pvt = mci->pvt_info;
619 node_id = pvt->mc_node_id;
b487c33e
BP
620
621 BUG_ON(node_id > 7);
93c2df58 622
7f19bf75 623 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
624 if (intlv_shift == 0) {
625 debugf1(" InputAddr 0x%lx translates to DramAddr of "
626 "same value\n", (unsigned long)input_addr);
627
628 return input_addr;
629 }
630
f678b8cc
BP
631 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
632 (input_addr & 0xfff);
93c2df58 633
7f19bf75 634 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
635 dram_addr = bits + (intlv_sel << 12);
636
637 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
638 "(%d node interleave bits)\n", (unsigned long)input_addr,
639 (unsigned long)dram_addr, intlv_shift);
640
641 return dram_addr;
642}
643
644/*
645 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
646 * @dram_addr to a SysAddr.
647 */
648static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
649{
650 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 651 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
652 int ret = 0;
653
654 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
655 &hole_size);
656 if (!ret) {
657 if ((dram_addr >= hole_base) &&
658 (dram_addr < (hole_base + hole_size))) {
659 sys_addr = dram_addr + hole_offset;
660
661 debugf1("using DHAR to translate DramAddr 0x%lx to "
662 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
663 (unsigned long)sys_addr);
664
665 return sys_addr;
666 }
667 }
668
7f19bf75 669 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
670 sys_addr = dram_addr + base;
671
672 /*
673 * The sys_addr we have computed up to this point is a 40-bit value
674 * because the k8 deals with 40-bit values. However, the value we are
675 * supposed to return is a full 64-bit physical address. The AMD
676 * x86-64 architecture specifies that the most significant implemented
677 * address bit through bit 63 of a physical address must be either all
678 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
679 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
680 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
681 * Programming.
682 */
683 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
684
685 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
686 pvt->mc_node_id, (unsigned long)dram_addr,
687 (unsigned long)sys_addr);
688
689 return sys_addr;
690}
691
692/*
693 * @input_addr is an InputAddr associated with the node given by mci. Translate
694 * @input_addr to a SysAddr.
695 */
696static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
697 u64 input_addr)
698{
699 return dram_addr_to_sys_addr(mci,
700 input_addr_to_dram_addr(mci, input_addr));
701}
702
703/*
704 * Find the minimum and maximum InputAddr values that map to the given @csrow.
705 * Pass back these values in *input_addr_min and *input_addr_max.
706 */
707static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
708 u64 *input_addr_min, u64 *input_addr_max)
709{
710 struct amd64_pvt *pvt;
711 u64 base, mask;
712
713 pvt = mci->pvt_info;
11c75ead 714 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 715
11c75ead 716 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
717
718 *input_addr_min = base & ~mask;
11c75ead 719 *input_addr_max = base | mask;
93c2df58
DT
720}
721
93c2df58
DT
722/* Map the Error address to a PAGE and PAGE OFFSET. */
723static inline void error_address_to_page_and_offset(u64 error_address,
724 u32 *page, u32 *offset)
725{
726 *page = (u32) (error_address >> PAGE_SHIFT);
727 *offset = ((u32) error_address) & ~PAGE_MASK;
728}
729
730/*
731 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
732 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
733 * of a node that detected an ECC memory error. mci represents the node that
734 * the error address maps to (possibly different from the node that detected
735 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
736 * error.
737 */
738static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
739{
740 int csrow;
741
742 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
743
744 if (csrow == -1)
24f9a7fe
BP
745 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
746 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
747 return csrow;
748}
e2ce7255 749
bfc04aec 750static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 751
2da11654
DT
752/*
753 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
754 * are ECC capable.
755 */
756static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
757{
cb328507 758 u8 bit;
584fcff4 759 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 760
1433eb99 761 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
762 ? 19
763 : 17;
764
584fcff4 765 if (pvt->dclr0 & BIT(bit))
2da11654
DT
766 edac_cap = EDAC_FLAG_SECDED;
767
768 return edac_cap;
769}
770
8c671751 771static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 772
68798e17
BP
773static void amd64_dump_dramcfg_low(u32 dclr, int chan)
774{
775 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
776
777 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
778 (dclr & BIT(16)) ? "un" : "",
779 (dclr & BIT(19)) ? "yes" : "no");
780
781 debugf1(" PAR/ERR parity: %s\n",
782 (dclr & BIT(8)) ? "enabled" : "disabled");
783
cb328507
BP
784 if (boot_cpu_data.x86 == 0x10)
785 debugf1(" DCT 128bit mode width: %s\n",
786 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
787
788 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
789 (dclr & BIT(12)) ? "yes" : "no",
790 (dclr & BIT(13)) ? "yes" : "no",
791 (dclr & BIT(14)) ? "yes" : "no",
792 (dclr & BIT(15)) ? "yes" : "no");
793}
794
2da11654 795/* Display and decode various NB registers for debug purposes. */
b2b0c605 796static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 797{
68798e17
BP
798 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
799
800 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 801 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 802
68798e17 803 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
804 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
805 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
806
807 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 808
8de1d91e 809 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 810
8de1d91e
BP
811 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
812 "offset: 0x%08x\n",
bc21fa57
BP
813 pvt->dhar, dhar_base(pvt),
814 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
815 : f10_dhar_offset(pvt));
2da11654 816
c8e518d5 817 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 818
8c671751 819 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 820
8de1d91e 821 /* everything below this point is Fam10h and above */
4d796364 822 if (boot_cpu_data.x86 == 0xf)
2da11654 823 return;
4d796364 824
8c671751 825 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 826
a3b7db09 827 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 828
8de1d91e 829 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
830 if (!dct_ganging_enabled(pvt))
831 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
832}
833
94be4bff 834/*
11c75ead 835 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 836 */
11c75ead 837static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 838{
1433eb99 839 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
840 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
841 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 842 } else {
11c75ead
BP
843 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
844 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
845 }
846}
847
848/*
11c75ead 849 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 850 */
b2b0c605 851static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 852{
11c75ead 853 int cs;
94be4bff 854
11c75ead 855 prep_chip_selects(pvt);
94be4bff 856
11c75ead 857 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
858 int reg0 = DCSB0 + (cs * 4);
859 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
860 u32 *base0 = &pvt->csels[0].csbases[cs];
861 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 862
11c75ead 863 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 864 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 865 cs, *base0, reg0);
94be4bff 866
11c75ead
BP
867 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
868 continue;
b2b0c605 869
11c75ead
BP
870 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
871 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
872 cs, *base1, reg1);
94be4bff
DT
873 }
874
11c75ead 875 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
876 int reg0 = DCSM0 + (cs * 4);
877 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
878 u32 *mask0 = &pvt->csels[0].csmasks[cs];
879 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 880
11c75ead 881 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 882 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 883 cs, *mask0, reg0);
94be4bff 884
11c75ead
BP
885 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
886 continue;
b2b0c605 887
11c75ead
BP
888 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
889 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
890 cs, *mask1, reg1);
94be4bff
DT
891 }
892}
893
24f9a7fe 894static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
895{
896 enum mem_type type;
897
cb328507
BP
898 /* F15h supports only DDR3 */
899 if (boot_cpu_data.x86 >= 0x15)
900 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
901 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
902 if (pvt->dchr0 & DDR3_MODE)
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
904 else
905 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 906 } else {
94be4bff
DT
907 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
908 }
909
24f9a7fe 910 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
911
912 return type;
913}
914
cb328507 915/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
916static int k8_early_channel_count(struct amd64_pvt *pvt)
917{
cb328507 918 int flag;
ddff876d 919
9f56da0e 920 if (pvt->ext_model >= K8_REV_F)
ddff876d 921 /* RevF (NPT) and later */
41d8bfab 922 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 923 else
ddff876d
DT
924 /* RevE and earlier */
925 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
926
927 /* not used */
928 pvt->dclr1 = 0;
929
930 return (flag) ? 2 : 1;
931}
932
70046624
BP
933/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
934static u64 get_error_address(struct mce *m)
ddff876d 935{
70046624
BP
936 u8 start_bit = 1;
937 u8 end_bit = 47;
938
939 if (boot_cpu_data.x86 == 0xf) {
940 start_bit = 3;
941 end_bit = 39;
942 }
943
944 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
945}
946
7f19bf75 947static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 948{
71d2a32e 949 int off = range << 3;
ddff876d 950
7f19bf75
BP
951 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
952 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 953
7f19bf75
BP
954 if (boot_cpu_data.x86 == 0xf)
955 return;
ddff876d 956
7f19bf75
BP
957 if (!dram_rw(pvt, range))
958 return;
ddff876d 959
7f19bf75
BP
960 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
961 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
962}
963
f192c7b1
BP
964static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
965 u16 syndrome)
ddff876d
DT
966{
967 struct mem_ctl_info *src_mci;
f192c7b1 968 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
969 int channel, csrow;
970 u32 page, offset;
ddff876d
DT
971
972 /* CHIPKILL enabled */
f192c7b1 973 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 974 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
975 if (channel < 0) {
976 /*
977 * Syndrome didn't map, so we don't know which of the
978 * 2 DIMMs is in error. So we need to ID 'both' of them
979 * as suspect.
980 */
24f9a7fe
BP
981 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
982 "error reporting race\n", syndrome);
ddff876d
DT
983 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
984 return;
985 }
986 } else {
987 /*
988 * non-chipkill ecc mode
989 *
990 * The k8 documentation is unclear about how to determine the
991 * channel number when using non-chipkill memory. This method
992 * was obtained from email communication with someone at AMD.
993 * (Wish the email was placed in this comment - norsk)
994 */
44e9e2ee 995 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
996 }
997
998 /*
999 * Find out which node the error address belongs to. This may be
1000 * different from the node that detected the error.
1001 */
44e9e2ee 1002 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1003 if (!src_mci) {
24f9a7fe 1004 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1005 (unsigned long)sys_addr);
ddff876d
DT
1006 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1007 return;
1008 }
1009
44e9e2ee
BP
1010 /* Now map the sys_addr to a CSROW */
1011 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1012 if (csrow < 0) {
1013 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1014 } else {
44e9e2ee 1015 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1016
1017 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1018 channel, EDAC_MOD_STR);
1019 }
1020}
1021
41d8bfab 1022static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1023{
41d8bfab 1024 unsigned shift = 0;
ddff876d 1025
41d8bfab
BP
1026 if (i <= 2)
1027 shift = i;
1028 else if (!(i & 0x1))
1029 shift = i >> 1;
1433eb99 1030 else
41d8bfab 1031 shift = (i + 1) >> 1;
ddff876d 1032
41d8bfab
BP
1033 return 128 << (shift + !!dct_width);
1034}
1035
1036static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1037 unsigned cs_mode)
1038{
1039 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1040
1041 if (pvt->ext_model >= K8_REV_F) {
1042 WARN_ON(cs_mode > 11);
1043 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1044 }
1045 else if (pvt->ext_model >= K8_REV_D) {
1046 WARN_ON(cs_mode > 10);
1047
1048 if (cs_mode == 3 || cs_mode == 8)
1049 return 32 << (cs_mode - 1);
1050 else
1051 return 32 << cs_mode;
1052 }
1053 else {
1054 WARN_ON(cs_mode > 6);
1055 return 32 << cs_mode;
1056 }
ddff876d
DT
1057}
1058
1afd3c98
DT
1059/*
1060 * Get the number of DCT channels in use.
1061 *
1062 * Return:
1063 * number of Memory Channels in operation
1064 * Pass back:
1065 * contents of the DCL0_LOW register
1066 */
7d20d14d 1067static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1068{
6ba5dcdc 1069 int i, j, channels = 0;
1afd3c98 1070
7d20d14d 1071 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1072 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1073 return 2;
1afd3c98
DT
1074
1075 /*
d16149e8
BP
1076 * Need to check if in unganged mode: In such, there are 2 channels,
1077 * but they are not in 128 bit mode and thus the above 'dclr0' status
1078 * bit will be OFF.
1afd3c98
DT
1079 *
1080 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1081 * their CSEnable bit on. If so, then SINGLE DIMM case.
1082 */
d16149e8 1083 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1084
1afd3c98
DT
1085 /*
1086 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1087 * is more than just one DIMM present in unganged mode. Need to check
1088 * both controllers since DIMMs can be placed in either one.
1089 */
525a1b20
BP
1090 for (i = 0; i < 2; i++) {
1091 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1092
57a30854
WW
1093 for (j = 0; j < 4; j++) {
1094 if (DBAM_DIMM(j, dbam) > 0) {
1095 channels++;
1096 break;
1097 }
1098 }
1afd3c98
DT
1099 }
1100
d16149e8
BP
1101 if (channels > 2)
1102 channels = 2;
1103
24f9a7fe 1104 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1105
1106 return channels;
1afd3c98
DT
1107}
1108
41d8bfab 1109static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1110{
41d8bfab
BP
1111 unsigned shift = 0;
1112 int cs_size = 0;
1113
1114 if (i == 0 || i == 3 || i == 4)
1115 cs_size = -1;
1116 else if (i <= 2)
1117 shift = i;
1118 else if (i == 12)
1119 shift = 7;
1120 else if (!(i & 0x1))
1121 shift = i >> 1;
1122 else
1123 shift = (i + 1) >> 1;
1124
1125 if (cs_size != -1)
1126 cs_size = (128 * (1 << !!dct_width)) << shift;
1127
1128 return cs_size;
1129}
1130
1131static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1132 unsigned cs_mode)
1133{
1134 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1135
1136 WARN_ON(cs_mode > 11);
1433eb99
BP
1137
1138 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1139 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1140 else
41d8bfab
BP
1141 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1142}
1143
1144/*
1145 * F15h supports only 64bit DCT interfaces
1146 */
1147static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1148 unsigned cs_mode)
1149{
1150 WARN_ON(cs_mode > 12);
1433eb99 1151
41d8bfab 1152 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1153}
1154
5a5d2371 1155static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1156{
6163b5d4 1157
5a5d2371
BP
1158 if (boot_cpu_data.x86 == 0xf)
1159 return;
1160
78da121e
BP
1161 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1162 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1163 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1164
5a5d2371
BP
1165 debugf0(" DCTs operate in %s mode.\n",
1166 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1167
1168 if (!dct_ganging_enabled(pvt))
1169 debugf0(" Address range split per DCT: %s\n",
1170 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1171
78da121e 1172 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1173 "DRAM cleared since last warm reset: %s\n",
1174 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1175 (dct_memory_cleared(pvt) ? "yes" : "no"));
1176
78da121e
BP
1177 debugf0(" channel interleave: %s, "
1178 "interleave bits selector: 0x%x\n",
72381bd5 1179 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1180 dct_sel_interleave_addr(pvt));
1181 }
1182
78da121e 1183 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1184}
1185
f71d0a05 1186/*
229a7a11 1187 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1188 * Interleaving Modes.
1189 */
b15f0fca 1190static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1191 bool hi_range_sel, u8 intlv_en)
6163b5d4 1192{
151fa71c 1193 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1194
1195 if (dct_ganging_enabled(pvt))
229a7a11 1196 return 0;
6163b5d4 1197
229a7a11
BP
1198 if (hi_range_sel)
1199 return dct_sel_high;
6163b5d4 1200
229a7a11
BP
1201 /*
1202 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1203 */
1204 if (dct_interleave_enabled(pvt)) {
1205 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1206
1207 /* return DCT select function: 0=DCT0, 1=DCT1 */
1208 if (!intlv_addr)
1209 return sys_addr >> 6 & 1;
1210
1211 if (intlv_addr & 0x2) {
1212 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1213 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1214
1215 return ((sys_addr >> shift) & 1) ^ temp;
1216 }
1217
1218 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1219 }
1220
1221 if (dct_high_range_enabled(pvt))
1222 return ~dct_sel_high & 1;
6163b5d4
DT
1223
1224 return 0;
1225}
1226
c8e518d5 1227/* Convert the sys_addr to the normalized DCT address */
e761359a 1228static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1229 u64 sys_addr, bool hi_rng,
1230 u32 dct_sel_base_addr)
6163b5d4
DT
1231{
1232 u64 chan_off;
c8e518d5
BP
1233 u64 dram_base = get_dram_base(pvt, range);
1234 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1235 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1236
c8e518d5
BP
1237 if (hi_rng) {
1238 /*
1239 * if
1240 * base address of high range is below 4Gb
1241 * (bits [47:27] at [31:11])
1242 * DRAM address space on this DCT is hoisted above 4Gb &&
1243 * sys_addr > 4Gb
1244 *
1245 * remove hole offset from sys_addr
1246 * else
1247 * remove high range offset from sys_addr
1248 */
1249 if ((!(dct_sel_base_addr >> 16) ||
1250 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1251 dhar_valid(pvt) &&
c8e518d5 1252 (sys_addr >= BIT_64(32)))
bc21fa57 1253 chan_off = hole_off;
6163b5d4
DT
1254 else
1255 chan_off = dct_sel_base_off;
1256 } else {
c8e518d5
BP
1257 /*
1258 * if
1259 * we have a valid hole &&
1260 * sys_addr > 4Gb
1261 *
1262 * remove hole
1263 * else
1264 * remove dram base to normalize to DCT address
1265 */
972ea17a 1266 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1267 chan_off = hole_off;
6163b5d4 1268 else
c8e518d5 1269 chan_off = dram_base;
6163b5d4
DT
1270 }
1271
c8e518d5 1272 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1273}
1274
6163b5d4
DT
1275/*
1276 * checks if the csrow passed in is marked as SPARED, if so returns the new
1277 * spare row
1278 */
11c75ead 1279static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1280{
614ec9d8
BP
1281 int tmp_cs;
1282
1283 if (online_spare_swap_done(pvt, dct) &&
1284 csrow == online_spare_bad_dramcs(pvt, dct)) {
1285
1286 for_each_chip_select(tmp_cs, dct, pvt) {
1287 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1288 csrow = tmp_cs;
1289 break;
1290 }
1291 }
6163b5d4
DT
1292 }
1293 return csrow;
1294}
1295
1296/*
1297 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1298 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1299 *
1300 * Return:
1301 * -EINVAL: NOT FOUND
1302 * 0..csrow = Chip-Select Row
1303 */
b15f0fca 1304static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1305{
1306 struct mem_ctl_info *mci;
1307 struct amd64_pvt *pvt;
11c75ead 1308 u64 cs_base, cs_mask;
6163b5d4
DT
1309 int cs_found = -EINVAL;
1310 int csrow;
1311
cc4d8860 1312 mci = mcis[nid];
6163b5d4
DT
1313 if (!mci)
1314 return cs_found;
1315
1316 pvt = mci->pvt_info;
1317
11c75ead 1318 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1319
11c75ead
BP
1320 for_each_chip_select(csrow, dct, pvt) {
1321 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1322 continue;
1323
11c75ead 1324 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1325
11c75ead
BP
1326 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1327 csrow, cs_base, cs_mask);
6163b5d4 1328
11c75ead 1329 cs_mask = ~cs_mask;
6163b5d4 1330
11c75ead
BP
1331 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1332 "(CSBase & ~CSMask)=0x%llx\n",
1333 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1334
11c75ead
BP
1335 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1336 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1337
1338 debugf1(" MATCH csrow=%d\n", cs_found);
1339 break;
1340 }
1341 }
1342 return cs_found;
1343}
1344
95b0ef55
BP
1345/*
1346 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1347 * swapped with a region located at the bottom of memory so that the GPU can use
1348 * the interleaved region and thus two channels.
1349 */
b15f0fca 1350static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1351{
1352 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1353
1354 if (boot_cpu_data.x86 == 0x10) {
1355 /* only revC3 and revE have that feature */
1356 if (boot_cpu_data.x86_model < 4 ||
1357 (boot_cpu_data.x86_model < 0xa &&
1358 boot_cpu_data.x86_mask < 3))
1359 return sys_addr;
1360 }
1361
1362 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1363
1364 if (!(swap_reg & 0x1))
1365 return sys_addr;
1366
1367 swap_base = (swap_reg >> 3) & 0x7f;
1368 swap_limit = (swap_reg >> 11) & 0x7f;
1369 rgn_size = (swap_reg >> 20) & 0x7f;
1370 tmp_addr = sys_addr >> 27;
1371
1372 if (!(sys_addr >> 34) &&
1373 (((tmp_addr >= swap_base) &&
1374 (tmp_addr <= swap_limit)) ||
1375 (tmp_addr < rgn_size)))
1376 return sys_addr ^ (u64)swap_base << 27;
1377
1378 return sys_addr;
1379}
1380
f71d0a05 1381/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1382static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1383 u64 sys_addr, int *nid, int *chan_sel)
1384{
229a7a11 1385 int cs_found = -EINVAL;
c8e518d5 1386 u64 chan_addr;
5d4b58e8 1387 u32 dct_sel_base;
11c75ead 1388 u8 channel;
229a7a11 1389 bool high_range = false;
f71d0a05 1390
7f19bf75 1391 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1392 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1393 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1394
c8e518d5
BP
1395 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1396 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1397
355fba60
BP
1398 if (dhar_valid(pvt) &&
1399 dhar_base(pvt) <= sys_addr &&
1400 sys_addr < BIT_64(32)) {
1401 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1402 sys_addr);
1403 return -EINVAL;
1404 }
1405
e726f3c3 1406 if (intlv_en &&
355fba60
BP
1407 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1408 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1409 intlv_en, intlv_sel);
f71d0a05 1410 return -EINVAL;
355fba60 1411 }
f71d0a05 1412
b15f0fca 1413 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1414
f71d0a05
DT
1415 dct_sel_base = dct_sel_baseaddr(pvt);
1416
1417 /*
1418 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1419 * select between DCT0 and DCT1.
1420 */
1421 if (dct_high_range_enabled(pvt) &&
1422 !dct_ganging_enabled(pvt) &&
1423 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1424 high_range = true;
f71d0a05 1425
b15f0fca 1426 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1427
b15f0fca 1428 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1429 high_range, dct_sel_base);
f71d0a05 1430
e2f79dbd
BP
1431 /* Remove node interleaving, see F1x120 */
1432 if (intlv_en)
1433 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1434 (chan_addr & 0xfff);
f71d0a05 1435
5d4b58e8 1436 /* remove channel interleave */
f71d0a05
DT
1437 if (dct_interleave_enabled(pvt) &&
1438 !dct_high_range_enabled(pvt) &&
1439 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1440
1441 if (dct_sel_interleave_addr(pvt) != 1) {
1442 if (dct_sel_interleave_addr(pvt) == 0x3)
1443 /* hash 9 */
1444 chan_addr = ((chan_addr >> 10) << 9) |
1445 (chan_addr & 0x1ff);
1446 else
1447 /* A[6] or hash 6 */
1448 chan_addr = ((chan_addr >> 7) << 6) |
1449 (chan_addr & 0x3f);
1450 } else
1451 /* A[12] */
1452 chan_addr = ((chan_addr >> 13) << 12) |
1453 (chan_addr & 0xfff);
f71d0a05
DT
1454 }
1455
5d4b58e8 1456 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1457
b15f0fca 1458 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1459
1460 if (cs_found >= 0) {
1461 *nid = node_id;
1462 *chan_sel = channel;
1463 }
1464 return cs_found;
1465}
1466
b15f0fca 1467static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1468 int *node, int *chan_sel)
1469{
e761359a
BP
1470 int cs_found = -EINVAL;
1471 unsigned range;
f71d0a05 1472
7f19bf75 1473 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1474
7f19bf75 1475 if (!dram_rw(pvt, range))
f71d0a05
DT
1476 continue;
1477
7f19bf75
BP
1478 if ((get_dram_base(pvt, range) <= sys_addr) &&
1479 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1480
b15f0fca 1481 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1482 sys_addr, node,
1483 chan_sel);
1484 if (cs_found >= 0)
1485 break;
1486 }
1487 }
1488 return cs_found;
1489}
1490
1491/*
bdc30a0c
BP
1492 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1493 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1494 *
bdc30a0c
BP
1495 * The @sys_addr is usually an error address received from the hardware
1496 * (MCX_ADDR).
f71d0a05 1497 */
b15f0fca 1498static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1499 u16 syndrome)
f71d0a05
DT
1500{
1501 struct amd64_pvt *pvt = mci->pvt_info;
1502 u32 page, offset;
f71d0a05
DT
1503 int nid, csrow, chan = 0;
1504
b15f0fca 1505 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1506
bdc30a0c
BP
1507 if (csrow < 0) {
1508 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1509 return;
1510 }
1511
1512 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1513
bdc30a0c
BP
1514 /*
1515 * We need the syndromes for channel detection only when we're
1516 * ganged. Otherwise @chan should already contain the channel at
1517 * this point.
1518 */
a97fa68e 1519 if (dct_ganging_enabled(pvt))
bdc30a0c 1520 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1521
bdc30a0c
BP
1522 if (chan >= 0)
1523 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1524 EDAC_MOD_STR);
1525 else
f71d0a05 1526 /*
bdc30a0c 1527 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1528 */
bdc30a0c 1529 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1530 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1531 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1532}
1533
f71d0a05 1534/*
8566c4df 1535 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1536 * CSROWs
f71d0a05 1537 */
8c671751 1538static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1539{
603adaf6 1540 int dimm, size0, size1, factor = 0;
525a1b20
BP
1541 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1542 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1543
8566c4df 1544 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1545 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1546 factor = 1;
1547
8566c4df 1548 /* K8 families < revF not supported yet */
1433eb99 1549 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1550 return;
1551 else
1552 WARN_ON(ctrl != 0);
1553 }
1554
4d796364 1555 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1556 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1557 : pvt->csels[0].csbases;
f71d0a05 1558
4d796364 1559 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1560
8566c4df
BP
1561 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1562
f71d0a05
DT
1563 /* Dump memory sizes for DIMM and its CSROWs */
1564 for (dimm = 0; dimm < 4; dimm++) {
1565
1566 size0 = 0;
11c75ead 1567 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1568 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1569 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1570
1571 size1 = 0;
11c75ead 1572 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1573 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1574 DBAM_DIMM(dimm, dbam));
f71d0a05 1575
24f9a7fe
BP
1576 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1577 dimm * 2, size0 << factor,
1578 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1579 }
1580}
1581
4d37607a
DT
1582static struct amd64_family_type amd64_family_types[] = {
1583 [K8_CPUS] = {
0092b20d 1584 .ctl_name = "K8",
8d5b5d9c
BP
1585 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1586 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1587 .ops = {
1433eb99 1588 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1589 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1590 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1591 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1592 }
1593 },
1594 [F10_CPUS] = {
0092b20d 1595 .ctl_name = "F10h",
8d5b5d9c
BP
1596 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1597 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1598 .ops = {
7d20d14d 1599 .early_channel_count = f1x_early_channel_count,
b15f0fca 1600 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1601 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1602 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1603 }
1604 },
1605 [F15_CPUS] = {
1606 .ctl_name = "F15h",
df71a053
BP
1607 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1608 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1609 .ops = {
7d20d14d 1610 .early_channel_count = f1x_early_channel_count,
b15f0fca 1611 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1612 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1613 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1614 }
1615 },
4d37607a
DT
1616};
1617
1618static struct pci_dev *pci_get_related_function(unsigned int vendor,
1619 unsigned int device,
1620 struct pci_dev *related)
1621{
1622 struct pci_dev *dev = NULL;
1623
1624 dev = pci_get_device(vendor, device, dev);
1625 while (dev) {
1626 if ((dev->bus->number == related->bus->number) &&
1627 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1628 break;
1629 dev = pci_get_device(vendor, device, dev);
1630 }
1631
1632 return dev;
1633}
1634
b1289d6f 1635/*
bfc04aec
BP
1636 * These are tables of eigenvectors (one per line) which can be used for the
1637 * construction of the syndrome tables. The modified syndrome search algorithm
1638 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1639 *
bfc04aec 1640 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1641 */
bfc04aec
BP
1642static u16 x4_vectors[] = {
1643 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1644 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1645 0x0001, 0x0002, 0x0004, 0x0008,
1646 0x1013, 0x3032, 0x4044, 0x8088,
1647 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1648 0x4857, 0xc4fe, 0x13cc, 0x3288,
1649 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1650 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1651 0x15c1, 0x2a42, 0x89ac, 0x4758,
1652 0x2b03, 0x1602, 0x4f0c, 0xca08,
1653 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1654 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1655 0x2b87, 0x164e, 0x642c, 0xdc18,
1656 0x40b9, 0x80de, 0x1094, 0x20e8,
1657 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1658 0x11c1, 0x2242, 0x84ac, 0x4c58,
1659 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1660 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1661 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1662 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1663 0x16b3, 0x3d62, 0x4f34, 0x8518,
1664 0x1e2f, 0x391a, 0x5cac, 0xf858,
1665 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1666 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1667 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1668 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1669 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1670 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1671 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1672 0x185d, 0x2ca6, 0x7914, 0x9e28,
1673 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1674 0x4199, 0x82ee, 0x19f4, 0x2e58,
1675 0x4807, 0xc40e, 0x130c, 0x3208,
1676 0x1905, 0x2e0a, 0x5804, 0xac08,
1677 0x213f, 0x132a, 0xadfc, 0x5ba8,
1678 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1679};
1680
bfc04aec
BP
1681static u16 x8_vectors[] = {
1682 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1683 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1684 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1685 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1686 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1687 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1688 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1689 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1690 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1691 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1692 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1693 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1694 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1695 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1696 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1697 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1698 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1699 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1700 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1701};
1702
1703static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1704 int v_dim)
b1289d6f 1705{
bfc04aec
BP
1706 unsigned int i, err_sym;
1707
1708 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1709 u16 s = syndrome;
1710 int v_idx = err_sym * v_dim;
1711 int v_end = (err_sym + 1) * v_dim;
1712
1713 /* walk over all 16 bits of the syndrome */
1714 for (i = 1; i < (1U << 16); i <<= 1) {
1715
1716 /* if bit is set in that eigenvector... */
1717 if (v_idx < v_end && vectors[v_idx] & i) {
1718 u16 ev_comp = vectors[v_idx++];
1719
1720 /* ... and bit set in the modified syndrome, */
1721 if (s & i) {
1722 /* remove it. */
1723 s ^= ev_comp;
4d37607a 1724
bfc04aec
BP
1725 if (!s)
1726 return err_sym;
1727 }
b1289d6f 1728
bfc04aec
BP
1729 } else if (s & i)
1730 /* can't get to zero, move to next symbol */
1731 break;
1732 }
b1289d6f
DT
1733 }
1734
1735 debugf0("syndrome(%x) not found\n", syndrome);
1736 return -1;
1737}
d27bf6fa 1738
bfc04aec
BP
1739static int map_err_sym_to_channel(int err_sym, int sym_size)
1740{
1741 if (sym_size == 4)
1742 switch (err_sym) {
1743 case 0x20:
1744 case 0x21:
1745 return 0;
1746 break;
1747 case 0x22:
1748 case 0x23:
1749 return 1;
1750 break;
1751 default:
1752 return err_sym >> 4;
1753 break;
1754 }
1755 /* x8 symbols */
1756 else
1757 switch (err_sym) {
1758 /* imaginary bits not in a DIMM */
1759 case 0x10:
1760 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1761 err_sym);
1762 return -1;
1763 break;
1764
1765 case 0x11:
1766 return 0;
1767 break;
1768 case 0x12:
1769 return 1;
1770 break;
1771 default:
1772 return err_sym >> 3;
1773 break;
1774 }
1775 return -1;
1776}
1777
1778static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1779{
1780 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1781 int err_sym = -1;
1782
a3b7db09 1783 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1784 err_sym = decode_syndrome(syndrome, x8_vectors,
1785 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1786 pvt->ecc_sym_sz);
1787 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1788 err_sym = decode_syndrome(syndrome, x4_vectors,
1789 ARRAY_SIZE(x4_vectors),
a3b7db09 1790 pvt->ecc_sym_sz);
ad6a32e9 1791 else {
a3b7db09 1792 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1793 return err_sym;
bfc04aec 1794 }
ad6a32e9 1795
a3b7db09 1796 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1797}
1798
d27bf6fa
DT
1799/*
1800 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1801 * ADDRESS and process.
1802 */
f192c7b1 1803static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1804{
1805 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1806 u64 sys_addr;
f192c7b1 1807 u16 syndrome;
d27bf6fa
DT
1808
1809 /* Ensure that the Error Address is VALID */
f192c7b1 1810 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1811 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1812 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1813 return;
1814 }
1815
70046624 1816 sys_addr = get_error_address(m);
f192c7b1 1817 syndrome = extract_syndrome(m->status);
d27bf6fa 1818
24f9a7fe 1819 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1820
f192c7b1 1821 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1822}
1823
1824/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1825static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1826{
1f6bcee7 1827 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1828 int csrow;
44e9e2ee 1829 u64 sys_addr;
d27bf6fa 1830 u32 page, offset;
d27bf6fa
DT
1831
1832 log_mci = mci;
1833
f192c7b1 1834 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1835 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1836 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1837 return;
1838 }
1839
70046624 1840 sys_addr = get_error_address(m);
d27bf6fa
DT
1841
1842 /*
1843 * Find out which node the error address belongs to. This may be
1844 * different from the node that detected the error.
1845 */
44e9e2ee 1846 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1847 if (!src_mci) {
24f9a7fe
BP
1848 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1849 (unsigned long)sys_addr);
d27bf6fa
DT
1850 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1851 return;
1852 }
1853
1854 log_mci = src_mci;
1855
44e9e2ee 1856 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1857 if (csrow < 0) {
24f9a7fe
BP
1858 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1859 (unsigned long)sys_addr);
d27bf6fa
DT
1860 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1861 } else {
44e9e2ee 1862 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1863 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1864 }
1865}
1866
549d042d 1867static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1868 struct mce *m)
d27bf6fa 1869{
f192c7b1
BP
1870 u16 ec = EC(m->status);
1871 u8 xec = XEC(m->status, 0x1f);
1872 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1873
b70ef010 1874 /* Bail early out if this was an 'observed' error */
5980bb9c 1875 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1876 return;
d27bf6fa 1877
ecaf5606
BP
1878 /* Do only ECC errors */
1879 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1880 return;
d27bf6fa 1881
ecaf5606 1882 if (ecc_type == 2)
f192c7b1 1883 amd64_handle_ce(mci, m);
ecaf5606 1884 else if (ecc_type == 1)
f192c7b1 1885 amd64_handle_ue(mci, m);
d27bf6fa
DT
1886}
1887
7cfd4a87 1888void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1889{
cc4d8860 1890 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1891
f192c7b1 1892 __amd64_decode_bus_error(mci, m);
d27bf6fa 1893}
d27bf6fa 1894
0ec449ee 1895/*
8d5b5d9c 1896 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1897 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1898 */
360b7f3c 1899static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1900{
0ec449ee 1901 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1902 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1903 if (!pvt->F1) {
24f9a7fe
BP
1904 amd64_err("error address map device not found: "
1905 "vendor %x device 0x%x (broken BIOS?)\n",
1906 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1907 return -ENODEV;
0ec449ee
DT
1908 }
1909
1910 /* Reserve the MISC Device */
8d5b5d9c
BP
1911 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1912 if (!pvt->F3) {
1913 pci_dev_put(pvt->F1);
1914 pvt->F1 = NULL;
0ec449ee 1915
24f9a7fe
BP
1916 amd64_err("error F3 device not found: "
1917 "vendor %x device 0x%x (broken BIOS?)\n",
1918 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1919
bbd0c1f6 1920 return -ENODEV;
0ec449ee 1921 }
8d5b5d9c
BP
1922 debugf1("F1: %s\n", pci_name(pvt->F1));
1923 debugf1("F2: %s\n", pci_name(pvt->F2));
1924 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1925
1926 return 0;
1927}
1928
360b7f3c 1929static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1930{
8d5b5d9c
BP
1931 pci_dev_put(pvt->F1);
1932 pci_dev_put(pvt->F3);
0ec449ee
DT
1933}
1934
1935/*
1936 * Retrieve the hardware registers of the memory controller (this includes the
1937 * 'Address Map' and 'Misc' device regs)
1938 */
360b7f3c 1939static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1940{
a3b7db09 1941 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1942 u64 msr_val;
ad6a32e9 1943 u32 tmp;
e761359a 1944 unsigned range;
0ec449ee
DT
1945
1946 /*
1947 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1948 * those are Read-As-Zero
1949 */
e97f8bb8
BP
1950 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1951 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1952
1953 /* check first whether TOP_MEM2 is enabled */
1954 rdmsrl(MSR_K8_SYSCFG, msr_val);
1955 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1956 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1957 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1958 } else
1959 debugf0(" TOP_MEM2 disabled.\n");
1960
5980bb9c 1961 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1962
5a5d2371 1963 read_dram_ctl_register(pvt);
0ec449ee 1964
7f19bf75
BP
1965 for (range = 0; range < DRAM_RANGES; range++) {
1966 u8 rw;
0ec449ee 1967
7f19bf75
BP
1968 /* read settings for this DRAM range */
1969 read_dram_base_limit_regs(pvt, range);
1970
1971 rw = dram_rw(pvt, range);
1972 if (!rw)
1973 continue;
1974
1975 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1976 range,
1977 get_dram_base(pvt, range),
1978 get_dram_limit(pvt, range));
1979
1980 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1981 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1982 (rw & 0x1) ? "R" : "-",
1983 (rw & 0x2) ? "W" : "-",
1984 dram_intlv_sel(pvt, range),
1985 dram_dst_node(pvt, range));
0ec449ee
DT
1986 }
1987
b2b0c605 1988 read_dct_base_mask(pvt);
0ec449ee 1989
bc21fa57 1990 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1991 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1992
8d5b5d9c 1993 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1994
cb328507
BP
1995 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1996 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1997
78da121e 1998 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1999 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2000 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2001 }
ad6a32e9 2002
a3b7db09
BP
2003 pvt->ecc_sym_sz = 4;
2004
2005 if (c->x86 >= 0x10) {
b2b0c605 2006 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2007 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2008
a3b7db09
BP
2009 /* F10h, revD and later can do x8 ECC too */
2010 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2011 pvt->ecc_sym_sz = 8;
2012 }
b2b0c605 2013 dump_misc_regs(pvt);
0ec449ee
DT
2014}
2015
2016/*
2017 * NOTE: CPU Revision Dependent code
2018 *
2019 * Input:
11c75ead 2020 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2021 * k8 private pointer to -->
2022 * DRAM Bank Address mapping register
2023 * node_id
2024 * DCL register where dual_channel_active is
2025 *
2026 * The DBAM register consists of 4 sets of 4 bits each definitions:
2027 *
2028 * Bits: CSROWs
2029 * 0-3 CSROWs 0 and 1
2030 * 4-7 CSROWs 2 and 3
2031 * 8-11 CSROWs 4 and 5
2032 * 12-15 CSROWs 6 and 7
2033 *
2034 * Values range from: 0 to 15
2035 * The meaning of the values depends on CPU revision and dual-channel state,
2036 * see relevant BKDG more info.
2037 *
2038 * The memory controller provides for total of only 8 CSROWs in its current
2039 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2040 * single channel or two (2) DIMMs in dual channel mode.
2041 *
2042 * The following code logic collapses the various tables for CSROW based on CPU
2043 * revision.
2044 *
2045 * Returns:
2046 * The number of PAGE_SIZE pages on the specified CSROW number it
2047 * encompasses
2048 *
2049 */
41d8bfab 2050static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2051{
1433eb99 2052 u32 cs_mode, nr_pages;
0ec449ee
DT
2053
2054 /*
2055 * The math on this doesn't look right on the surface because x/2*4 can
2056 * be simplified to x*2 but this expression makes use of the fact that
2057 * it is integral math where 1/2=0. This intermediate value becomes the
2058 * number of bits to shift the DBAM register to extract the proper CSROW
2059 * field.
2060 */
1433eb99 2061 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2062
41d8bfab 2063 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2064
2065 /*
2066 * If dual channel then double the memory size of single channel.
2067 * Channel count is 1 or 2
2068 */
2069 nr_pages <<= (pvt->channel_count - 1);
2070
1433eb99 2071 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2072 debugf0(" nr_pages= %u channel-count = %d\n",
2073 nr_pages, pvt->channel_count);
2074
2075 return nr_pages;
2076}
2077
2078/*
2079 * Initialize the array of csrow attribute instances, based on the values
2080 * from pci config hardware registers.
2081 */
360b7f3c 2082static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2083{
2084 struct csrow_info *csrow;
2299ef71 2085 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2086 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2087 u32 val;
6ba5dcdc 2088 int i, empty = 1;
0ec449ee 2089
a97fa68e 2090 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2091
2299ef71 2092 pvt->nbcfg = val;
0ec449ee 2093
2299ef71
BP
2094 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2095 pvt->mc_node_id, val,
a97fa68e 2096 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2097
11c75ead 2098 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2099 csrow = &mci->csrows[i];
2100
11c75ead 2101 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2102 debugf1("----CSROW %d EMPTY for node %d\n", i,
2103 pvt->mc_node_id);
2104 continue;
2105 }
2106
2107 debugf1("----CSROW %d VALID for MC node %d\n",
2108 i, pvt->mc_node_id);
2109
2110 empty = 0;
41d8bfab 2111 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2112 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2113 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2114 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2115 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2116 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2117
2118 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2119 csrow->page_mask = ~mask;
0ec449ee
DT
2120 /* 8 bytes of resolution */
2121
24f9a7fe 2122 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2123
2124 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2125 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2126 (unsigned long)input_addr_min,
2127 (unsigned long)input_addr_max);
2128 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2129 (unsigned long)sys_addr, csrow->page_mask);
2130 debugf1(" nr_pages: %u first_page: 0x%lx "
2131 "last_page: 0x%lx\n",
2132 (unsigned)csrow->nr_pages,
2133 csrow->first_page, csrow->last_page);
2134
2135 /*
2136 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2137 */
a97fa68e 2138 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2139 csrow->edac_mode =
a97fa68e 2140 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2141 EDAC_S4ECD4ED : EDAC_SECDED;
2142 else
2143 csrow->edac_mode = EDAC_NONE;
2144 }
2145
2146 return empty;
2147}
d27bf6fa 2148
f6d6ae96 2149/* get all cores on this DCT */
b487c33e 2150static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2151{
2152 int cpu;
2153
2154 for_each_online_cpu(cpu)
2155 if (amd_get_nb_id(cpu) == nid)
2156 cpumask_set_cpu(cpu, mask);
2157}
2158
2159/* check MCG_CTL on all the cpus on this node */
b487c33e 2160static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2161{
2162 cpumask_var_t mask;
50542251 2163 int cpu, nbe;
f6d6ae96
BP
2164 bool ret = false;
2165
2166 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2167 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2168 return false;
2169 }
2170
2171 get_cpus_on_this_dct_cpumask(mask, nid);
2172
f6d6ae96
BP
2173 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2174
2175 for_each_cpu(cpu, mask) {
50542251 2176 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2177 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2178
2179 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2180 cpu, reg->q,
f6d6ae96
BP
2181 (nbe ? "enabled" : "disabled"));
2182
2183 if (!nbe)
2184 goto out;
f6d6ae96
BP
2185 }
2186 ret = true;
2187
2188out:
f6d6ae96
BP
2189 free_cpumask_var(mask);
2190 return ret;
2191}
2192
2299ef71 2193static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2194{
2195 cpumask_var_t cmask;
50542251 2196 int cpu;
f6d6ae96
BP
2197
2198 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2199 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2200 return false;
2201 }
2202
ae7bb7c6 2203 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2204
f6d6ae96
BP
2205 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2206
2207 for_each_cpu(cpu, cmask) {
2208
50542251
BP
2209 struct msr *reg = per_cpu_ptr(msrs, cpu);
2210
f6d6ae96 2211 if (on) {
5980bb9c 2212 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2213 s->flags.nb_mce_enable = 1;
f6d6ae96 2214
5980bb9c 2215 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2216 } else {
2217 /*
d95cf4de 2218 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2219 */
ae7bb7c6 2220 if (!s->flags.nb_mce_enable)
5980bb9c 2221 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2222 }
f6d6ae96
BP
2223 }
2224 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2225
f6d6ae96
BP
2226 free_cpumask_var(cmask);
2227
2228 return 0;
2229}
2230
2299ef71
BP
2231static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2232 struct pci_dev *F3)
f9431992 2233{
2299ef71 2234 bool ret = true;
c9f4f26e 2235 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2236
2299ef71
BP
2237 if (toggle_ecc_err_reporting(s, nid, ON)) {
2238 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2239 return false;
2240 }
2241
c9f4f26e 2242 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2243
ae7bb7c6
BP
2244 s->old_nbctl = value & mask;
2245 s->nbctl_valid = true;
f9431992
DT
2246
2247 value |= mask;
c9f4f26e 2248 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2249
a97fa68e 2250 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2251
a97fa68e
BP
2252 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2253 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2254
a97fa68e 2255 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2256 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2257
ae7bb7c6 2258 s->flags.nb_ecc_prev = 0;
d95cf4de 2259
f9431992 2260 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2261 value |= NBCFG_ECC_ENABLE;
2262 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2263
a97fa68e 2264 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2265
a97fa68e 2266 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2267 amd64_warn("Hardware rejected DRAM ECC enable,"
2268 "check memory DIMM configuration.\n");
2299ef71 2269 ret = false;
f9431992 2270 } else {
24f9a7fe 2271 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2272 }
d95cf4de 2273 } else {
ae7bb7c6 2274 s->flags.nb_ecc_prev = 1;
f9431992 2275 }
d95cf4de 2276
a97fa68e
BP
2277 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2278 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2279
2299ef71 2280 return ret;
f9431992
DT
2281}
2282
360b7f3c
BP
2283static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2284 struct pci_dev *F3)
f9431992 2285{
c9f4f26e
BP
2286 u32 value, mask = 0x3; /* UECC/CECC enable */
2287
f9431992 2288
ae7bb7c6 2289 if (!s->nbctl_valid)
f9431992
DT
2290 return;
2291
c9f4f26e 2292 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2293 value &= ~mask;
ae7bb7c6 2294 value |= s->old_nbctl;
f9431992 2295
c9f4f26e 2296 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2297
ae7bb7c6
BP
2298 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2299 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2300 amd64_read_pci_cfg(F3, NBCFG, &value);
2301 value &= ~NBCFG_ECC_ENABLE;
2302 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2303 }
2304
2305 /* restore the NB Enable MCGCTL bit */
2299ef71 2306 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2307 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2308}
2309
2310/*
2299ef71
BP
2311 * EDAC requires that the BIOS have ECC enabled before
2312 * taking over the processing of ECC errors. A command line
2313 * option allows to force-enable hardware ECC later in
2314 * enable_ecc_error_reporting().
f9431992 2315 */
cab4d277
BP
2316static const char *ecc_msg =
2317 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2318 " Either enable ECC checking or force module loading by setting "
2319 "'ecc_enable_override'.\n"
2320 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2321
2299ef71 2322static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2323{
2324 u32 value;
2299ef71 2325 u8 ecc_en = 0;
06724535 2326 bool nb_mce_en = false;
f9431992 2327
a97fa68e 2328 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2329
a97fa68e 2330 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2331 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2332
2299ef71 2333 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2334 if (!nb_mce_en)
2299ef71
BP
2335 amd64_notice("NB MCE bank disabled, set MSR "
2336 "0x%08x[4] on node %d to enable.\n",
2337 MSR_IA32_MCG_CTL, nid);
f9431992 2338
2299ef71
BP
2339 if (!ecc_en || !nb_mce_en) {
2340 amd64_notice("%s", ecc_msg);
2341 return false;
2342 }
2343 return true;
f9431992
DT
2344}
2345
7d6034d3
DT
2346struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2347 ARRAY_SIZE(amd64_inj_attrs) +
2348 1];
2349
2350struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2351
360b7f3c 2352static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2353{
2354 unsigned int i = 0, j = 0;
2355
2356 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2357 sysfs_attrs[i] = amd64_dbg_attrs[i];
2358
a135cef7
BP
2359 if (boot_cpu_data.x86 >= 0x10)
2360 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2361 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2362
2363 sysfs_attrs[i] = terminator;
2364
2365 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2366}
2367
df71a053
BP
2368static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2369 struct amd64_family_type *fam)
7d6034d3
DT
2370{
2371 struct amd64_pvt *pvt = mci->pvt_info;
2372
2373 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2374 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2375
5980bb9c 2376 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2377 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2378
5980bb9c 2379 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2380 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2381
2382 mci->edac_cap = amd64_determine_edac_cap(pvt);
2383 mci->mod_name = EDAC_MOD_STR;
2384 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2385 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2386 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2387 mci->ctl_page_to_phys = NULL;
2388
7d6034d3
DT
2389 /* memory scrubber interface */
2390 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2391 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2392}
2393
0092b20d
BP
2394/*
2395 * returns a pointer to the family descriptor on success, NULL otherwise.
2396 */
2397static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2398{
0092b20d
BP
2399 u8 fam = boot_cpu_data.x86;
2400 struct amd64_family_type *fam_type = NULL;
2401
2402 switch (fam) {
395ae783 2403 case 0xf:
0092b20d 2404 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2405 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2406 break;
df71a053 2407
395ae783 2408 case 0x10:
0092b20d 2409 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2410 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2411 break;
2412
2413 case 0x15:
2414 fam_type = &amd64_family_types[F15_CPUS];
2415 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2416 break;
2417
2418 default:
24f9a7fe 2419 amd64_err("Unsupported family!\n");
0092b20d 2420 return NULL;
395ae783 2421 }
0092b20d 2422
b8cfa02f
BP
2423 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2424
df71a053 2425 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2426 (fam == 0xf ?
24f9a7fe
BP
2427 (pvt->ext_model >= K8_REV_F ? "revF or later "
2428 : "revE or earlier ")
2429 : ""), pvt->mc_node_id);
0092b20d 2430 return fam_type;
395ae783
BP
2431}
2432
2299ef71 2433static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2434{
2435 struct amd64_pvt *pvt = NULL;
0092b20d 2436 struct amd64_family_type *fam_type = NULL;
360b7f3c 2437 struct mem_ctl_info *mci = NULL;
7d6034d3 2438 int err = 0, ret;
360b7f3c 2439 u8 nid = get_node_id(F2);
7d6034d3
DT
2440
2441 ret = -ENOMEM;
2442 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2443 if (!pvt)
360b7f3c 2444 goto err_ret;
7d6034d3 2445
360b7f3c 2446 pvt->mc_node_id = nid;
8d5b5d9c 2447 pvt->F2 = F2;
7d6034d3 2448
395ae783 2449 ret = -EINVAL;
0092b20d
BP
2450 fam_type = amd64_per_family_init(pvt);
2451 if (!fam_type)
395ae783
BP
2452 goto err_free;
2453
7d6034d3 2454 ret = -ENODEV;
360b7f3c 2455 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2456 if (err)
2457 goto err_free;
2458
360b7f3c 2459 read_mc_regs(pvt);
7d6034d3 2460
7d6034d3
DT
2461 /*
2462 * We need to determine how many memory channels there are. Then use
2463 * that information for calculating the size of the dynamic instance
360b7f3c 2464 * tables in the 'mci' structure.
7d6034d3 2465 */
360b7f3c 2466 ret = -EINVAL;
7d6034d3
DT
2467 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2468 if (pvt->channel_count < 0)
360b7f3c 2469 goto err_siblings;
7d6034d3
DT
2470
2471 ret = -ENOMEM;
11c75ead 2472 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2473 if (!mci)
360b7f3c 2474 goto err_siblings;
7d6034d3
DT
2475
2476 mci->pvt_info = pvt;
8d5b5d9c 2477 mci->dev = &pvt->F2->dev;
7d6034d3 2478
df71a053 2479 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2480
2481 if (init_csrows(mci))
7d6034d3
DT
2482 mci->edac_cap = EDAC_FLAG_NONE;
2483
360b7f3c 2484 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2485
2486 ret = -ENODEV;
2487 if (edac_mc_add_mc(mci)) {
2488 debugf1("failed edac_mc_add_mc()\n");
2489 goto err_add_mc;
2490 }
2491
549d042d
BP
2492 /* register stuff with EDAC MCE */
2493 if (report_gart_errors)
2494 amd_report_gart_errors(true);
2495
2496 amd_register_ecc_decoder(amd64_decode_bus_error);
2497
360b7f3c
BP
2498 mcis[nid] = mci;
2499
2500 atomic_inc(&drv_instances);
2501
7d6034d3
DT
2502 return 0;
2503
2504err_add_mc:
2505 edac_mc_free(mci);
2506
360b7f3c
BP
2507err_siblings:
2508 free_mc_sibling_devs(pvt);
7d6034d3 2509
360b7f3c
BP
2510err_free:
2511 kfree(pvt);
7d6034d3 2512
360b7f3c 2513err_ret:
7d6034d3
DT
2514 return ret;
2515}
2516
2299ef71 2517static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2518 const struct pci_device_id *mc_type)
7d6034d3 2519{
ae7bb7c6 2520 u8 nid = get_node_id(pdev);
2299ef71 2521 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2522 struct ecc_settings *s;
2299ef71 2523 int ret = 0;
7d6034d3 2524
7d6034d3 2525 ret = pci_enable_device(pdev);
b8cfa02f
BP
2526 if (ret < 0) {
2527 debugf0("ret=%d\n", ret);
2528 return -EIO;
2529 }
7d6034d3 2530
ae7bb7c6
BP
2531 ret = -ENOMEM;
2532 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2533 if (!s)
2299ef71 2534 goto err_out;
ae7bb7c6
BP
2535
2536 ecc_stngs[nid] = s;
2537
2299ef71
BP
2538 if (!ecc_enabled(F3, nid)) {
2539 ret = -ENODEV;
2540
2541 if (!ecc_enable_override)
2542 goto err_enable;
2543
2544 amd64_warn("Forcing ECC on!\n");
2545
2546 if (!enable_ecc_error_reporting(s, nid, F3))
2547 goto err_enable;
2548 }
2549
2550 ret = amd64_init_one_instance(pdev);
360b7f3c 2551 if (ret < 0) {
ae7bb7c6 2552 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2553 restore_ecc_error_reporting(s, nid, F3);
2554 }
7d6034d3
DT
2555
2556 return ret;
2299ef71
BP
2557
2558err_enable:
2559 kfree(s);
2560 ecc_stngs[nid] = NULL;
2561
2562err_out:
2563 return ret;
7d6034d3
DT
2564}
2565
2566static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2567{
2568 struct mem_ctl_info *mci;
2569 struct amd64_pvt *pvt;
360b7f3c
BP
2570 u8 nid = get_node_id(pdev);
2571 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2572 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2573
2574 /* Remove from EDAC CORE tracking list */
2575 mci = edac_mc_del_mc(&pdev->dev);
2576 if (!mci)
2577 return;
2578
2579 pvt = mci->pvt_info;
2580
360b7f3c 2581 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2582
360b7f3c 2583 free_mc_sibling_devs(pvt);
7d6034d3 2584
549d042d
BP
2585 /* unregister from EDAC MCE */
2586 amd_report_gart_errors(false);
2587 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2588
360b7f3c
BP
2589 kfree(ecc_stngs[nid]);
2590 ecc_stngs[nid] = NULL;
ae7bb7c6 2591
7d6034d3 2592 /* Free the EDAC CORE resources */
8f68ed97 2593 mci->pvt_info = NULL;
360b7f3c 2594 mcis[nid] = NULL;
8f68ed97
BP
2595
2596 kfree(pvt);
7d6034d3
DT
2597 edac_mc_free(mci);
2598}
2599
2600/*
2601 * This table is part of the interface for loading drivers for PCI devices. The
2602 * PCI core identifies what devices are on a system during boot, and then
2603 * inquiry this table to see if this driver is for a given device found.
2604 */
2605static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2606 {
2607 .vendor = PCI_VENDOR_ID_AMD,
2608 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2609 .subvendor = PCI_ANY_ID,
2610 .subdevice = PCI_ANY_ID,
2611 .class = 0,
2612 .class_mask = 0,
7d6034d3
DT
2613 },
2614 {
2615 .vendor = PCI_VENDOR_ID_AMD,
2616 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2617 .subvendor = PCI_ANY_ID,
2618 .subdevice = PCI_ANY_ID,
2619 .class = 0,
2620 .class_mask = 0,
7d6034d3 2621 },
df71a053
BP
2622 {
2623 .vendor = PCI_VENDOR_ID_AMD,
2624 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2625 .subvendor = PCI_ANY_ID,
2626 .subdevice = PCI_ANY_ID,
2627 .class = 0,
2628 .class_mask = 0,
2629 },
2630
7d6034d3
DT
2631 {0, }
2632};
2633MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2634
2635static struct pci_driver amd64_pci_driver = {
2636 .name = EDAC_MOD_STR,
2299ef71 2637 .probe = amd64_probe_one_instance,
7d6034d3
DT
2638 .remove = __devexit_p(amd64_remove_one_instance),
2639 .id_table = amd64_pci_table,
2640};
2641
360b7f3c 2642static void setup_pci_device(void)
7d6034d3
DT
2643{
2644 struct mem_ctl_info *mci;
2645 struct amd64_pvt *pvt;
2646
2647 if (amd64_ctl_pci)
2648 return;
2649
cc4d8860 2650 mci = mcis[0];
7d6034d3
DT
2651 if (mci) {
2652
2653 pvt = mci->pvt_info;
2654 amd64_ctl_pci =
8d5b5d9c 2655 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2656
2657 if (!amd64_ctl_pci) {
2658 pr_warning("%s(): Unable to create PCI control\n",
2659 __func__);
2660
2661 pr_warning("%s(): PCI error report via EDAC not set\n",
2662 __func__);
2663 }
2664 }
2665}
2666
2667static int __init amd64_edac_init(void)
2668{
360b7f3c 2669 int err = -ENODEV;
7d6034d3 2670
df71a053 2671 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2672
2673 opstate_init();
2674
9653a5c7 2675 if (amd_cache_northbridges() < 0)
56b34b91 2676 goto err_ret;
7d6034d3 2677
cc4d8860 2678 err = -ENOMEM;
ae7bb7c6
BP
2679 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2680 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2681 if (!(mcis && ecc_stngs))
cc4d8860
BP
2682 goto err_ret;
2683
50542251 2684 msrs = msrs_alloc();
56b34b91 2685 if (!msrs)
360b7f3c 2686 goto err_free;
50542251 2687
7d6034d3
DT
2688 err = pci_register_driver(&amd64_pci_driver);
2689 if (err)
56b34b91 2690 goto err_pci;
7d6034d3 2691
56b34b91 2692 err = -ENODEV;
360b7f3c
BP
2693 if (!atomic_read(&drv_instances))
2694 goto err_no_instances;
7d6034d3 2695
360b7f3c
BP
2696 setup_pci_device();
2697 return 0;
7d6034d3 2698
360b7f3c 2699err_no_instances:
7d6034d3 2700 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2701
56b34b91
BP
2702err_pci:
2703 msrs_free(msrs);
2704 msrs = NULL;
cc4d8860 2705
360b7f3c
BP
2706err_free:
2707 kfree(mcis);
2708 mcis = NULL;
2709
2710 kfree(ecc_stngs);
2711 ecc_stngs = NULL;
2712
56b34b91 2713err_ret:
7d6034d3
DT
2714 return err;
2715}
2716
2717static void __exit amd64_edac_exit(void)
2718{
2719 if (amd64_ctl_pci)
2720 edac_pci_release_generic_ctl(amd64_ctl_pci);
2721
2722 pci_unregister_driver(&amd64_pci_driver);
50542251 2723
ae7bb7c6
BP
2724 kfree(ecc_stngs);
2725 ecc_stngs = NULL;
2726
cc4d8860
BP
2727 kfree(mcis);
2728 mcis = NULL;
2729
50542251
BP
2730 msrs_free(msrs);
2731 msrs = NULL;
7d6034d3
DT
2732}
2733
2734module_init(amd64_edac_init);
2735module_exit(amd64_edac_exit);
2736
2737MODULE_LICENSE("GPL");
2738MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2739 "Dave Peterson, Thayne Harbaugh");
2740MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2741 EDAC_AMD64_VERSION);
2742
2743module_param(edac_op_state, int, 0444);
2744MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");