]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Use cached extended CPU model
[mirror_ubuntu-zesty-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2bc65418
DT
18/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
3011b20d
BP
20static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
2bc65418 22
b70ef010 23/*
1433eb99
BP
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
b70ef010 26 */
1433eb99
BP
27static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
b70ef010
BP
66};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
2bc65418
DT
102/*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
120static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 u32 min_scrubrate)
122{
123 u32 scrubval;
124 int i;
125
126 /*
127 * map the configured rate (new_bw) to a value specific to the AMD64
128 * memory controller and apply to register. Search for the first
129 * bandwidth entry that is greater or equal than the setting requested
130 * and program that. If at last entry, turn off DRAM scrubbing.
131 */
132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 /*
134 * skip scrub rates which aren't recommended
135 * (see F10 BKDG, F3x58)
136 */
137 if (scrubrates[i].scrubval < min_scrubrate)
138 continue;
139
140 if (scrubrates[i].bandwidth <= new_bw)
141 break;
142
143 /*
144 * if no suitable bandwidth found, turn off DRAM scrubbing
145 * entirely by falling back to the last element in the
146 * scrubrates array.
147 */
148 }
149
150 scrubval = scrubrates[i].scrubval;
151 if (scrubval)
152 edac_printk(KERN_DEBUG, EDAC_MC,
153 "Setting scrub rate bandwidth: %u\n",
154 scrubrates[i].bandwidth);
155 else
156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157
158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159
160 return 0;
161}
162
eba042a8 163static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth)
2bc65418
DT
164{
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 min_scrubrate = 0x0;
167
168 switch (boot_cpu_data.x86) {
169 case 0xf:
170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 break;
172 case 0x10:
173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 break;
2bc65418
DT
175
176 default:
177 amd64_printk(KERN_ERR, "Unsupported family!\n");
bc571178 178 return -EINVAL;
2bc65418 179 }
eba042a8
BP
180 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, bandwidth,
181 min_scrubrate);
2bc65418
DT
182}
183
184static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
185{
186 struct amd64_pvt *pvt = mci->pvt_info;
187 u32 scrubval = 0;
6ba5dcdc 188 int status = -1, i;
2bc65418 189
6ba5dcdc 190 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
2bc65418
DT
191
192 scrubval = scrubval & 0x001F;
193
194 edac_printk(KERN_DEBUG, EDAC_MC,
195 "pci-read, sdram scrub control value: %d \n", scrubval);
196
926311fd 197 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418
DT
198 if (scrubrates[i].scrubval == scrubval) {
199 *bw = scrubrates[i].bandwidth;
200 status = 0;
201 break;
202 }
203 }
204
205 return status;
206}
207
6775763a
DT
208/* Map from a CSROW entry to the mask entry that operates on it */
209static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
210{
1433eb99 211 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
212 return csrow;
213 else
214 return csrow >> 1;
6775763a
DT
215}
216
217/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
218static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
219{
220 if (dct == 0)
221 return pvt->dcsb0[csrow];
222 else
223 return pvt->dcsb1[csrow];
224}
225
226/*
227 * Return the 'mask' address the i'th CS entry. This function is needed because
228 * there number of DCSM registers on Rev E and prior vs Rev F and later is
229 * different.
230 */
231static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
232{
233 if (dct == 0)
234 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
235 else
236 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
237}
238
239
240/*
241 * In *base and *limit, pass back the full 40-bit base and limit physical
242 * addresses for the node given by node_id. This information is obtained from
243 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
244 * base and limit addresses are of type SysAddr, as defined at the start of
245 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
246 * in the address range they represent.
247 */
248static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
249 u64 *base, u64 *limit)
250{
251 *base = pvt->dram_base[node_id];
252 *limit = pvt->dram_limit[node_id];
253}
254
255/*
256 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
257 * with node_id
258 */
259static int amd64_base_limit_match(struct amd64_pvt *pvt,
260 u64 sys_addr, int node_id)
261{
262 u64 base, limit, addr;
263
264 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
265
266 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
267 * all ones if the most significant implemented address bit is 1.
268 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
269 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
270 * Application Programming.
271 */
272 addr = sys_addr & 0x000000ffffffffffull;
273
274 return (addr >= base) && (addr <= limit);
275}
276
277/*
278 * Attempt to map a SysAddr to a node. On success, return a pointer to the
279 * mem_ctl_info structure for the node that the SysAddr maps to.
280 *
281 * On failure, return NULL.
282 */
283static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
284 u64 sys_addr)
285{
286 struct amd64_pvt *pvt;
287 int node_id;
288 u32 intlv_en, bits;
289
290 /*
291 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
292 * 3.4.4.2) registers to map the SysAddr to a node ID.
293 */
294 pvt = mci->pvt_info;
295
296 /*
297 * The value of this field should be the same for all DRAM Base
298 * registers. Therefore we arbitrarily choose to read it from the
299 * register for node 0.
300 */
301 intlv_en = pvt->dram_IntlvEn[0];
302
303 if (intlv_en == 0) {
8edc5445 304 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 305 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 306 goto found;
6775763a 307 }
8edc5445 308 goto err_no_match;
6775763a
DT
309 }
310
72f158fe
BP
311 if (unlikely((intlv_en != 0x01) &&
312 (intlv_en != 0x03) &&
313 (intlv_en != 0x07))) {
6775763a
DT
314 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
315 "IntlvEn field of DRAM Base Register for node 0: "
72f158fe 316 "this probably indicates a BIOS bug.\n", intlv_en);
6775763a
DT
317 return NULL;
318 }
319
320 bits = (((u32) sys_addr) >> 12) & intlv_en;
321
322 for (node_id = 0; ; ) {
8edc5445 323 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
324 break; /* intlv_sel field matches */
325
326 if (++node_id >= DRAM_REG_COUNT)
327 goto err_no_match;
328 }
329
330 /* sanity test for sys_addr */
331 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
332 amd64_printk(KERN_WARNING,
8edc5445
BP
333 "%s(): sys_addr 0x%llx falls outside base/limit "
334 "address range for node %d with node interleaving "
335 "enabled.\n",
336 __func__, sys_addr, node_id);
6775763a
DT
337 return NULL;
338 }
339
340found:
341 return edac_mc_find(node_id);
342
343err_no_match:
344 debugf2("sys_addr 0x%lx doesn't match any node\n",
345 (unsigned long)sys_addr);
346
347 return NULL;
348}
e2ce7255
DT
349
350/*
351 * Extract the DRAM CS base address from selected csrow register.
352 */
353static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
354{
355 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
356 pvt->dcs_shift;
357}
358
359/*
360 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
361 */
362static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
363{
364 u64 dcsm_bits, other_bits;
365 u64 mask;
366
367 /* Extract bits from DRAM CS Mask. */
368 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
369
370 other_bits = pvt->dcsm_mask;
371 other_bits = ~(other_bits << pvt->dcs_shift);
372
373 /*
374 * The extracted bits from DCSM belong in the spaces represented by
375 * the cleared bits in other_bits.
376 */
377 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
378
379 return mask;
380}
381
382/*
383 * @input_addr is an InputAddr associated with the node given by mci. Return the
384 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
385 */
386static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
387{
388 struct amd64_pvt *pvt;
389 int csrow;
390 u64 base, mask;
391
392 pvt = mci->pvt_info;
393
394 /*
395 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
396 * base/mask register pair, test the condition shown near the start of
397 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
398 */
9d858bb1 399 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
400
401 /* This DRAM chip select is disabled on this node */
402 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
403 continue;
404
405 base = base_from_dct_base(pvt, csrow);
406 mask = ~mask_from_dct_mask(pvt, csrow);
407
408 if ((input_addr & mask) == (base & mask)) {
409 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
410 (unsigned long)input_addr, csrow,
411 pvt->mc_node_id);
412
413 return csrow;
414 }
415 }
416
417 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
418 (unsigned long)input_addr, pvt->mc_node_id);
419
420 return -1;
421}
422
423/*
424 * Return the base value defined by the DRAM Base register for the node
425 * represented by mci. This function returns the full 40-bit value despite the
426 * fact that the register only stores bits 39-24 of the value. See section
427 * 3.4.4.1 (BKDG #26094, K8, revA-E)
428 */
429static inline u64 get_dram_base(struct mem_ctl_info *mci)
430{
431 struct amd64_pvt *pvt = mci->pvt_info;
432
433 return pvt->dram_base[pvt->mc_node_id];
434}
435
436/*
437 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
438 * for the node represented by mci. Info is passed back in *hole_base,
439 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
440 * info is invalid. Info may be invalid for either of the following reasons:
441 *
442 * - The revision of the node is not E or greater. In this case, the DRAM Hole
443 * Address Register does not exist.
444 *
445 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
446 * indicating that its contents are not valid.
447 *
448 * The values passed back in *hole_base, *hole_offset, and *hole_size are
449 * complete 32-bit values despite the fact that the bitfields in the DHAR
450 * only represent bits 31-24 of the base and offset values.
451 */
452int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
453 u64 *hole_offset, u64 *hole_size)
454{
455 struct amd64_pvt *pvt = mci->pvt_info;
456 u64 base;
457
458 /* only revE and later have the DRAM Hole Address Register */
1433eb99 459 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
460 debugf1(" revision %d for node %d does not support DHAR\n",
461 pvt->ext_model, pvt->mc_node_id);
462 return 1;
463 }
464
465 /* only valid for Fam10h */
466 if (boot_cpu_data.x86 == 0x10 &&
467 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
468 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
469 return 1;
470 }
471
472 if ((pvt->dhar & DHAR_VALID) == 0) {
473 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
474 pvt->mc_node_id);
475 return 1;
476 }
477
478 /* This node has Memory Hoisting */
479
480 /* +------------------+--------------------+--------------------+-----
481 * | memory | DRAM hole | relocated |
482 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
483 * | | | DRAM hole |
484 * | | | [0x100000000, |
485 * | | | (0x100000000+ |
486 * | | | (0xffffffff-x))] |
487 * +------------------+--------------------+--------------------+-----
488 *
489 * Above is a diagram of physical memory showing the DRAM hole and the
490 * relocated addresses from the DRAM hole. As shown, the DRAM hole
491 * starts at address x (the base address) and extends through address
492 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
493 * addresses in the hole so that they start at 0x100000000.
494 */
495
496 base = dhar_base(pvt->dhar);
497
498 *hole_base = base;
499 *hole_size = (0x1ull << 32) - base;
500
501 if (boot_cpu_data.x86 > 0xf)
502 *hole_offset = f10_dhar_offset(pvt->dhar);
503 else
504 *hole_offset = k8_dhar_offset(pvt->dhar);
505
506 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
507 pvt->mc_node_id, (unsigned long)*hole_base,
508 (unsigned long)*hole_offset, (unsigned long)*hole_size);
509
510 return 0;
511}
512EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
513
93c2df58
DT
514/*
515 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
516 * assumed that sys_addr maps to the node given by mci.
517 *
518 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
519 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
520 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
521 * then it is also involved in translating a SysAddr to a DramAddr. Sections
522 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
523 * These parts of the documentation are unclear. I interpret them as follows:
524 *
525 * When node n receives a SysAddr, it processes the SysAddr as follows:
526 *
527 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
528 * Limit registers for node n. If the SysAddr is not within the range
529 * specified by the base and limit values, then node n ignores the Sysaddr
530 * (since it does not map to node n). Otherwise continue to step 2 below.
531 *
532 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
533 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
534 * the range of relocated addresses (starting at 0x100000000) from the DRAM
535 * hole. If not, skip to step 3 below. Else get the value of the
536 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
537 * offset defined by this value from the SysAddr.
538 *
539 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
540 * Base register for node n. To obtain the DramAddr, subtract the base
541 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
542 */
543static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
544{
545 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
546 int ret = 0;
547
548 dram_base = get_dram_base(mci);
549
550 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
551 &hole_size);
552 if (!ret) {
553 if ((sys_addr >= (1ull << 32)) &&
554 (sys_addr < ((1ull << 32) + hole_size))) {
555 /* use DHAR to translate SysAddr to DramAddr */
556 dram_addr = sys_addr - hole_offset;
557
558 debugf2("using DHAR to translate SysAddr 0x%lx to "
559 "DramAddr 0x%lx\n",
560 (unsigned long)sys_addr,
561 (unsigned long)dram_addr);
562
563 return dram_addr;
564 }
565 }
566
567 /*
568 * Translate the SysAddr to a DramAddr as shown near the start of
569 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
570 * only deals with 40-bit values. Therefore we discard bits 63-40 of
571 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
572 * discard are all 1s. Otherwise the bits we discard are all 0s. See
573 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
574 * Programmer's Manual Volume 1 Application Programming.
575 */
576 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
577
578 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
579 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
580 (unsigned long)dram_addr);
581 return dram_addr;
582}
583
584/*
585 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
586 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
587 * for node interleaving.
588 */
589static int num_node_interleave_bits(unsigned intlv_en)
590{
591 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
592 int n;
593
594 BUG_ON(intlv_en > 7);
595 n = intlv_shift_table[intlv_en];
596 return n;
597}
598
599/* Translate the DramAddr given by @dram_addr to an InputAddr. */
600static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
601{
602 struct amd64_pvt *pvt;
603 int intlv_shift;
604 u64 input_addr;
605
606 pvt = mci->pvt_info;
607
608 /*
609 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * concerning translating a DramAddr to an InputAddr.
611 */
612 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
613 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
614 (dram_addr & 0xfff);
615
616 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
617 intlv_shift, (unsigned long)dram_addr,
618 (unsigned long)input_addr);
619
620 return input_addr;
621}
622
623/*
624 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
625 * assumed that @sys_addr maps to the node given by mci.
626 */
627static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
628{
629 u64 input_addr;
630
631 input_addr =
632 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
633
634 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
635 (unsigned long)sys_addr, (unsigned long)input_addr);
636
637 return input_addr;
638}
639
640
641/*
642 * @input_addr is an InputAddr associated with the node represented by mci.
643 * Translate @input_addr to a DramAddr and return the result.
644 */
645static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
646{
647 struct amd64_pvt *pvt;
648 int node_id, intlv_shift;
649 u64 bits, dram_addr;
650 u32 intlv_sel;
651
652 /*
653 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
654 * shows how to translate a DramAddr to an InputAddr. Here we reverse
655 * this procedure. When translating from a DramAddr to an InputAddr, the
656 * bits used for node interleaving are discarded. Here we recover these
657 * bits from the IntlvSel field of the DRAM Limit register (section
658 * 3.4.4.2) for the node that input_addr is associated with.
659 */
660 pvt = mci->pvt_info;
661 node_id = pvt->mc_node_id;
662 BUG_ON((node_id < 0) || (node_id > 7));
663
664 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
665
666 if (intlv_shift == 0) {
667 debugf1(" InputAddr 0x%lx translates to DramAddr of "
668 "same value\n", (unsigned long)input_addr);
669
670 return input_addr;
671 }
672
673 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
674 (input_addr & 0xfff);
675
676 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
677 dram_addr = bits + (intlv_sel << 12);
678
679 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
680 "(%d node interleave bits)\n", (unsigned long)input_addr,
681 (unsigned long)dram_addr, intlv_shift);
682
683 return dram_addr;
684}
685
686/*
687 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
688 * @dram_addr to a SysAddr.
689 */
690static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
691{
692 struct amd64_pvt *pvt = mci->pvt_info;
693 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
694 int ret = 0;
695
696 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
697 &hole_size);
698 if (!ret) {
699 if ((dram_addr >= hole_base) &&
700 (dram_addr < (hole_base + hole_size))) {
701 sys_addr = dram_addr + hole_offset;
702
703 debugf1("using DHAR to translate DramAddr 0x%lx to "
704 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
705 (unsigned long)sys_addr);
706
707 return sys_addr;
708 }
709 }
710
711 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
712 sys_addr = dram_addr + base;
713
714 /*
715 * The sys_addr we have computed up to this point is a 40-bit value
716 * because the k8 deals with 40-bit values. However, the value we are
717 * supposed to return is a full 64-bit physical address. The AMD
718 * x86-64 architecture specifies that the most significant implemented
719 * address bit through bit 63 of a physical address must be either all
720 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
721 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
722 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
723 * Programming.
724 */
725 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
726
727 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
728 pvt->mc_node_id, (unsigned long)dram_addr,
729 (unsigned long)sys_addr);
730
731 return sys_addr;
732}
733
734/*
735 * @input_addr is an InputAddr associated with the node given by mci. Translate
736 * @input_addr to a SysAddr.
737 */
738static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
739 u64 input_addr)
740{
741 return dram_addr_to_sys_addr(mci,
742 input_addr_to_dram_addr(mci, input_addr));
743}
744
745/*
746 * Find the minimum and maximum InputAddr values that map to the given @csrow.
747 * Pass back these values in *input_addr_min and *input_addr_max.
748 */
749static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
750 u64 *input_addr_min, u64 *input_addr_max)
751{
752 struct amd64_pvt *pvt;
753 u64 base, mask;
754
755 pvt = mci->pvt_info;
9d858bb1 756 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
757
758 base = base_from_dct_base(pvt, csrow);
759 mask = mask_from_dct_mask(pvt, csrow);
760
761 *input_addr_min = base & ~mask;
762 *input_addr_max = base | mask | pvt->dcs_mask_notused;
763}
764
93c2df58
DT
765/* Map the Error address to a PAGE and PAGE OFFSET. */
766static inline void error_address_to_page_and_offset(u64 error_address,
767 u32 *page, u32 *offset)
768{
769 *page = (u32) (error_address >> PAGE_SHIFT);
770 *offset = ((u32) error_address) & ~PAGE_MASK;
771}
772
773/*
774 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
775 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
776 * of a node that detected an ECC memory error. mci represents the node that
777 * the error address maps to (possibly different from the node that detected
778 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
779 * error.
780 */
781static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
782{
783 int csrow;
784
785 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
786
787 if (csrow == -1)
788 amd64_mc_printk(mci, KERN_ERR,
789 "Failed to translate InputAddr to csrow for "
790 "address 0x%lx\n", (unsigned long)sys_addr);
791 return csrow;
792}
e2ce7255 793
bfc04aec 794static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 795
ad6a32e9
BP
796static u16 extract_syndrome(struct err_regs *err)
797{
798 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
799}
800
2da11654
DT
801static void amd64_cpu_display_info(struct amd64_pvt *pvt)
802{
3ab0e7dc 803 if (boot_cpu_data.x86 == 0x10)
2da11654
DT
804 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
805 else if (boot_cpu_data.x86 == 0xf)
806 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
1433eb99 807 (pvt->ext_model >= K8_REV_F) ?
2da11654
DT
808 "Rev F or later" : "Rev E or earlier");
809 else
810 /* we'll hardly ever ever get here */
811 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
812}
813
814/*
815 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
816 * are ECC capable.
817 */
818static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
819{
820 int bit;
584fcff4 821 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 822
1433eb99 823 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
824 ? 19
825 : 17;
826
584fcff4 827 if (pvt->dclr0 & BIT(bit))
2da11654
DT
828 edac_cap = EDAC_FLAG_SECDED;
829
830 return edac_cap;
831}
832
833
8566c4df 834static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 835
68798e17
BP
836static void amd64_dump_dramcfg_low(u32 dclr, int chan)
837{
838 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
839
840 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
841 (dclr & BIT(16)) ? "un" : "",
842 (dclr & BIT(19)) ? "yes" : "no");
843
844 debugf1(" PAR/ERR parity: %s\n",
845 (dclr & BIT(8)) ? "enabled" : "disabled");
846
847 debugf1(" DCT 128bit mode width: %s\n",
848 (dclr & BIT(11)) ? "128b" : "64b");
849
850 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
851 (dclr & BIT(12)) ? "yes" : "no",
852 (dclr & BIT(13)) ? "yes" : "no",
853 (dclr & BIT(14)) ? "yes" : "no",
854 (dclr & BIT(15)) ? "yes" : "no");
855}
856
2da11654
DT
857/* Display and decode various NB registers for debug purposes. */
858static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
859{
860 int ganged;
861
68798e17
BP
862 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
863
864 debugf1(" NB two channel DRAM capable: %s\n",
865 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 866
68798e17
BP
867 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
868 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
869 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
870
871 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 872
8de1d91e 873 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 874
8de1d91e
BP
875 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
876 "offset: 0x%08x\n",
877 pvt->dhar,
878 dhar_base(pvt->dhar),
879 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
880 : f10_dhar_offset(pvt->dhar));
2da11654 881
8de1d91e
BP
882 debugf1(" DramHoleValid: %s\n",
883 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 884
8de1d91e 885 /* everything below this point is Fam10h and above */
8566c4df
BP
886 if (boot_cpu_data.x86 == 0xf) {
887 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 888 return;
8566c4df 889 }
2da11654 890
ad6a32e9
BP
891 amd64_printk(KERN_INFO, "using %s syndromes.\n",
892 ((pvt->syn_type == 8) ? "x8" : "x4"));
893
8de1d91e 894 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
895 if (!dct_ganging_enabled(pvt))
896 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
897
898 /*
899 * Determine if ganged and then dump memory sizes for first controller,
900 * and if NOT ganged dump info for 2nd controller.
901 */
902 ganged = dct_ganging_enabled(pvt);
903
8566c4df 904 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
905
906 if (!ganged)
8566c4df 907 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
908}
909
910/* Read in both of DBAM registers */
911static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
912{
6ba5dcdc 913 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
2da11654 914
6ba5dcdc
BP
915 if (boot_cpu_data.x86 >= 0x10)
916 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
2da11654
DT
917}
918
94be4bff
DT
919/*
920 * NOTE: CPU Revision Dependent code: Rev E and Rev F
921 *
922 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
923 * set the shift factor for the DCSB and DCSM values.
924 *
925 * ->dcs_mask_notused, RevE:
926 *
927 * To find the max InputAddr for the csrow, start with the base address and set
928 * all bits that are "don't care" bits in the test at the start of section
929 * 3.5.4 (p. 84).
930 *
931 * The "don't care" bits are all set bits in the mask and all bits in the gaps
932 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
933 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
934 * gaps.
935 *
936 * ->dcs_mask_notused, RevF and later:
937 *
938 * To find the max InputAddr for the csrow, start with the base address and set
939 * all bits that are "don't care" bits in the test at the start of NPT section
940 * 4.5.4 (p. 87).
941 *
942 * The "don't care" bits are all set bits in the mask and all bits in the gaps
943 * between bit ranges [36:27] and [21:13].
944 *
945 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
946 * which are all bits in the above-mentioned gaps.
947 */
948static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
949{
9d858bb1 950
1433eb99 951 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
952 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
953 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
954 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
955 pvt->dcs_shift = REV_E_DCS_SHIFT;
956 pvt->cs_count = 8;
957 pvt->num_dcsm = 8;
958 } else {
94be4bff
DT
959 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
960 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
961 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
962 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
3ab0e7dc
BP
963 pvt->cs_count = 8;
964 pvt->num_dcsm = 4;
94be4bff
DT
965 }
966}
967
968/*
969 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
970 */
971static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
972{
6ba5dcdc 973 int cs, reg;
94be4bff
DT
974
975 amd64_set_dct_base_and_mask(pvt);
976
9d858bb1 977 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 978 reg = K8_DCSB0 + (cs * 4);
6ba5dcdc 979 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
94be4bff
DT
980 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
981 cs, pvt->dcsb0[cs], reg);
982
983 /* If DCT are NOT ganged, then read in DCT1's base */
984 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
985 reg = F10_DCSB1 + (cs * 4);
6ba5dcdc
BP
986 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
987 &pvt->dcsb1[cs]))
94be4bff
DT
988 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
989 cs, pvt->dcsb1[cs], reg);
990 } else {
991 pvt->dcsb1[cs] = 0;
992 }
993 }
994
995 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 996 reg = K8_DCSM0 + (cs * 4);
6ba5dcdc 997 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
94be4bff
DT
998 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
999 cs, pvt->dcsm0[cs], reg);
1000
1001 /* If DCT are NOT ganged, then read in DCT1's mask */
1002 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1003 reg = F10_DCSM1 + (cs * 4);
6ba5dcdc
BP
1004 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1005 &pvt->dcsm1[cs]))
94be4bff
DT
1006 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1007 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 1008 } else {
94be4bff 1009 pvt->dcsm1[cs] = 0;
6ba5dcdc 1010 }
94be4bff
DT
1011 }
1012}
1013
1014static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1015{
1016 enum mem_type type;
1017
1433eb99 1018 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
1019 if (pvt->dchr0 & DDR3_MODE)
1020 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1021 else
1022 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 1023 } else {
94be4bff
DT
1024 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1025 }
1026
239642fe 1027 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
94be4bff
DT
1028
1029 return type;
1030}
1031
ddff876d
DT
1032/*
1033 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1034 * and the later RevF memory controllers (DDR vs DDR2)
1035 *
1036 * Return:
1037 * number of memory channels in operation
1038 * Pass back:
1039 * contents of the DCL0_LOW register
1040 */
1041static int k8_early_channel_count(struct amd64_pvt *pvt)
1042{
1043 int flag, err = 0;
1044
6ba5dcdc 1045 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1046 if (err)
1047 return err;
1048
9f56da0e 1049 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
1050 /* RevF (NPT) and later */
1051 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 1052 else
ddff876d
DT
1053 /* RevE and earlier */
1054 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
1055
1056 /* not used */
1057 pvt->dclr1 = 0;
1058
1059 return (flag) ? 2 : 1;
1060}
1061
1062/* extract the ERROR ADDRESS for the K8 CPUs */
1063static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1064 struct err_regs *info)
ddff876d
DT
1065{
1066 return (((u64) (info->nbeah & 0xff)) << 32) +
1067 (info->nbeal & ~0x03);
1068}
1069
1070/*
1071 * Read the Base and Limit registers for K8 based Memory controllers; extract
1072 * fields from the 'raw' reg into separate data fields
1073 *
1074 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1075 */
1076static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1077{
1078 u32 low;
1079 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1080
6ba5dcdc 1081 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1082
1083 /* Extract parts into separate data entries */
4997811e 1084 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1085 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1086 pvt->dram_rw_en[dram] = (low & 0x3);
1087
6ba5dcdc 1088 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1089
1090 /*
1091 * Extract parts into separate data entries. Limit is the HIGHEST memory
1092 * location of the region, so lower 24 bits need to be all ones
1093 */
4997811e 1094 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1095 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1096 pvt->dram_DstNode[dram] = (low & 0x7);
1097}
1098
1099static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1100 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1101{
1102 struct mem_ctl_info *src_mci;
ddff876d
DT
1103 int channel, csrow;
1104 u32 page, offset;
ad6a32e9 1105 u16 syndrome;
ddff876d 1106
ad6a32e9 1107 syndrome = extract_syndrome(err_info);
ddff876d
DT
1108
1109 /* CHIPKILL enabled */
ad6a32e9 1110 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1111 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1112 if (channel < 0) {
1113 /*
1114 * Syndrome didn't map, so we don't know which of the
1115 * 2 DIMMs is in error. So we need to ID 'both' of them
1116 * as suspect.
1117 */
1118 amd64_mc_printk(mci, KERN_WARNING,
ad6a32e9
BP
1119 "unknown syndrome 0x%04x - possible "
1120 "error reporting race\n", syndrome);
ddff876d
DT
1121 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1122 return;
1123 }
1124 } else {
1125 /*
1126 * non-chipkill ecc mode
1127 *
1128 * The k8 documentation is unclear about how to determine the
1129 * channel number when using non-chipkill memory. This method
1130 * was obtained from email communication with someone at AMD.
1131 * (Wish the email was placed in this comment - norsk)
1132 */
44e9e2ee 1133 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1134 }
1135
1136 /*
1137 * Find out which node the error address belongs to. This may be
1138 * different from the node that detected the error.
1139 */
44e9e2ee 1140 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1141 if (!src_mci) {
ddff876d
DT
1142 amd64_mc_printk(mci, KERN_ERR,
1143 "failed to map error address 0x%lx to a node\n",
44e9e2ee 1144 (unsigned long)sys_addr);
ddff876d
DT
1145 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1146 return;
1147 }
1148
44e9e2ee
BP
1149 /* Now map the sys_addr to a CSROW */
1150 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1151 if (csrow < 0) {
1152 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1153 } else {
44e9e2ee 1154 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1155
1156 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1157 channel, EDAC_MOD_STR);
1158 }
1159}
1160
1433eb99 1161static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1162{
1433eb99 1163 int *dbam_map;
ddff876d 1164
1433eb99
BP
1165 if (pvt->ext_model >= K8_REV_F)
1166 dbam_map = ddr2_dbam;
1167 else if (pvt->ext_model >= K8_REV_D)
1168 dbam_map = ddr2_dbam_revD;
1169 else
1170 dbam_map = ddr2_dbam_revCG;
ddff876d 1171
1433eb99 1172 return dbam_map[cs_mode];
ddff876d
DT
1173}
1174
1afd3c98
DT
1175/*
1176 * Get the number of DCT channels in use.
1177 *
1178 * Return:
1179 * number of Memory Channels in operation
1180 * Pass back:
1181 * contents of the DCL0_LOW register
1182 */
1183static int f10_early_channel_count(struct amd64_pvt *pvt)
1184{
57a30854 1185 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1186 int i, j, channels = 0;
1afd3c98
DT
1187 u32 dbam;
1188
1afd3c98
DT
1189 /* If we are in 128 bit mode, then we are using 2 channels */
1190 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1191 channels = 2;
1192 return channels;
1193 }
1194
1195 /*
d16149e8
BP
1196 * Need to check if in unganged mode: In such, there are 2 channels,
1197 * but they are not in 128 bit mode and thus the above 'dclr0' status
1198 * bit will be OFF.
1afd3c98
DT
1199 *
1200 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1201 * their CSEnable bit on. If so, then SINGLE DIMM case.
1202 */
d16149e8 1203 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1204
1afd3c98
DT
1205 /*
1206 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1207 * is more than just one DIMM present in unganged mode. Need to check
1208 * both controllers since DIMMs can be placed in either one.
1209 */
57a30854 1210 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
6ba5dcdc 1211 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1afd3c98
DT
1212 goto err_reg;
1213
57a30854
WW
1214 for (j = 0; j < 4; j++) {
1215 if (DBAM_DIMM(j, dbam) > 0) {
1216 channels++;
1217 break;
1218 }
1219 }
1afd3c98
DT
1220 }
1221
d16149e8
BP
1222 if (channels > 2)
1223 channels = 2;
1224
37da0450 1225 debugf0("MCT channel count: %d\n", channels);
1afd3c98
DT
1226
1227 return channels;
1228
1229err_reg:
1230 return -1;
1231
1232}
1233
1433eb99 1234static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1235{
1433eb99
BP
1236 int *dbam_map;
1237
1238 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1239 dbam_map = ddr3_dbam;
1240 else
1241 dbam_map = ddr2_dbam;
1242
1243 return dbam_map[cs_mode];
1afd3c98
DT
1244}
1245
1246/* Enable extended configuration access via 0xCF8 feature */
1247static void amd64_setup(struct amd64_pvt *pvt)
1248{
1249 u32 reg;
1250
6ba5dcdc 1251 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1252
1253 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1254 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1255 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1256}
1257
1258/* Restore the extended configuration access via 0xCF8 feature */
1259static void amd64_teardown(struct amd64_pvt *pvt)
1260{
1261 u32 reg;
1262
6ba5dcdc 1263 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1264
1265 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1266 if (pvt->flags.cf8_extcfg)
1267 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1268 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1269}
1270
1271static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1272 struct err_regs *info)
1afd3c98
DT
1273{
1274 return (((u64) (info->nbeah & 0xffff)) << 32) +
1275 (info->nbeal & ~0x01);
1276}
1277
1278/*
1279 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1280 * fields from the 'raw' reg into separate data fields.
1281 *
1282 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1283 */
1284static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1285{
1286 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1287
1288 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1289 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1290
1291 /* read the 'raw' DRAM BASE Address register */
6ba5dcdc 1292 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1afd3c98
DT
1293
1294 /* Read from the ECS data register */
6ba5dcdc 1295 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1afd3c98
DT
1296
1297 /* Extract parts into separate data entries */
1298 pvt->dram_rw_en[dram] = (low_base & 0x3);
1299
1300 if (pvt->dram_rw_en[dram] == 0)
1301 return;
1302
1303 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1304
66216a7a 1305 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1306 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1307
1308 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1309 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1310
1311 /* read the 'raw' LIMIT registers */
6ba5dcdc 1312 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1afd3c98
DT
1313
1314 /* Read from the ECS data register for the HIGH portion */
6ba5dcdc 1315 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1afd3c98 1316
1afd3c98
DT
1317 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1318 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1319
1320 /*
1321 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1322 * memory location of the region, so low 24 bits need to be all ones.
1323 */
66216a7a 1324 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1325 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1326 0x00FFFFFF;
1afd3c98 1327}
6163b5d4
DT
1328
1329static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1330{
6163b5d4 1331
6ba5dcdc
BP
1332 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1333 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1334 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1335 "High range addresses at: 0x%x\n",
1336 pvt->dram_ctl_select_low,
1337 dct_sel_baseaddr(pvt));
1338
1339 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1340 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1341 (dct_dram_enabled(pvt) ? "yes" : "no"));
1342
1343 if (!dct_ganging_enabled(pvt))
1344 debugf0(" Address range split per DCT: %s\n",
1345 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1346
1347 debugf0(" DCT data interleave for ECC: %s, "
1348 "DRAM cleared since last warm reset: %s\n",
1349 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1350 (dct_memory_cleared(pvt) ? "yes" : "no"));
1351
1352 debugf0(" DCT channel interleave: %s, "
1353 "DCT interleave bits selector: 0x%x\n",
1354 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1355 dct_sel_interleave_addr(pvt));
1356 }
1357
6ba5dcdc
BP
1358 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1359 &pvt->dram_ctl_select_high);
6163b5d4
DT
1360}
1361
f71d0a05
DT
1362/*
1363 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1364 * Interleaving Modes.
1365 */
6163b5d4
DT
1366static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1367 int hi_range_sel, u32 intlv_en)
1368{
1369 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1370
1371 if (dct_ganging_enabled(pvt))
1372 cs = 0;
1373 else if (hi_range_sel)
1374 cs = dct_sel_high;
1375 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1376 /*
1377 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1378 */
6163b5d4
DT
1379 if (dct_sel_interleave_addr(pvt) == 0)
1380 cs = sys_addr >> 6 & 1;
1381 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1382 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1383
1384 if (dct_sel_interleave_addr(pvt) & 1)
1385 cs = (sys_addr >> 9 & 1) ^ temp;
1386 else
1387 cs = (sys_addr >> 6 & 1) ^ temp;
1388 } else if (intlv_en & 4)
1389 cs = sys_addr >> 15 & 1;
1390 else if (intlv_en & 2)
1391 cs = sys_addr >> 14 & 1;
1392 else if (intlv_en & 1)
1393 cs = sys_addr >> 13 & 1;
1394 else
1395 cs = sys_addr >> 12 & 1;
1396 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1397 cs = ~dct_sel_high & 1;
1398 else
1399 cs = 0;
1400
1401 return cs;
1402}
1403
1404static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1405{
1406 if (intlv_en == 1)
1407 return 1;
1408 else if (intlv_en == 3)
1409 return 2;
1410 else if (intlv_en == 7)
1411 return 3;
1412
1413 return 0;
1414}
1415
f71d0a05
DT
1416/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1417static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1418 u32 dct_sel_base_addr,
1419 u64 dct_sel_base_off,
f71d0a05 1420 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1421 u64 dram_base)
1422{
1423 u64 chan_off;
1424
1425 if (hi_range_sel) {
9975a5f2 1426 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1427 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1428 chan_off = hole_off << 16;
1429 else
1430 chan_off = dct_sel_base_off;
1431 } else {
f71d0a05 1432 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1433 chan_off = hole_off << 16;
1434 else
1435 chan_off = dram_base & 0xFFFFF8000000ULL;
1436 }
1437
1438 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1439 (chan_off & 0x0000FFFFFF800000ULL);
1440}
1441
1442/* Hack for the time being - Can we get this from BIOS?? */
1443#define CH0SPARE_RANK 0
1444#define CH1SPARE_RANK 1
1445
1446/*
1447 * checks if the csrow passed in is marked as SPARED, if so returns the new
1448 * spare row
1449 */
1450static inline int f10_process_possible_spare(int csrow,
1451 u32 cs, struct amd64_pvt *pvt)
1452{
1453 u32 swap_done;
1454 u32 bad_dram_cs;
1455
1456 /* Depending on channel, isolate respective SPARING info */
1457 if (cs) {
1458 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1459 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1460 if (swap_done && (csrow == bad_dram_cs))
1461 csrow = CH1SPARE_RANK;
1462 } else {
1463 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1464 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1465 if (swap_done && (csrow == bad_dram_cs))
1466 csrow = CH0SPARE_RANK;
1467 }
1468 return csrow;
1469}
1470
1471/*
1472 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1473 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1474 *
1475 * Return:
1476 * -EINVAL: NOT FOUND
1477 * 0..csrow = Chip-Select Row
1478 */
1479static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1480{
1481 struct mem_ctl_info *mci;
1482 struct amd64_pvt *pvt;
1483 u32 cs_base, cs_mask;
1484 int cs_found = -EINVAL;
1485 int csrow;
1486
1487 mci = mci_lookup[nid];
1488 if (!mci)
1489 return cs_found;
1490
1491 pvt = mci->pvt_info;
1492
1493 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1494
9d858bb1 1495 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1496
1497 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1498 if (!(cs_base & K8_DCSB_CS_ENABLE))
1499 continue;
1500
1501 /*
1502 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1503 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1504 * of the actual address.
1505 */
1506 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1507
1508 /*
1509 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1510 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1511 */
1512 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1513
1514 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1515 csrow, cs_base, cs_mask);
1516
1517 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1518
1519 debugf1(" Final CSMask=0x%x\n", cs_mask);
1520 debugf1(" (InputAddr & ~CSMask)=0x%x "
1521 "(CSBase & ~CSMask)=0x%x\n",
1522 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1523
1524 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1525 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1526
1527 debugf1(" MATCH csrow=%d\n", cs_found);
1528 break;
1529 }
1530 }
1531 return cs_found;
1532}
1533
f71d0a05
DT
1534/* For a given @dram_range, check if @sys_addr falls within it. */
1535static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1536 u64 sys_addr, int *nid, int *chan_sel)
1537{
1538 int node_id, cs_found = -EINVAL, high_range = 0;
1539 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1540 u32 hole_valid, tmp, dct_sel_base, channel;
1541 u64 dram_base, chan_addr, dct_sel_base_off;
1542
1543 dram_base = pvt->dram_base[dram_range];
1544 intlv_en = pvt->dram_IntlvEn[dram_range];
1545
1546 node_id = pvt->dram_DstNode[dram_range];
1547 intlv_sel = pvt->dram_IntlvSel[dram_range];
1548
1549 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1550 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1551
1552 /*
1553 * This assumes that one node's DHAR is the same as all the other
1554 * nodes' DHAR.
1555 */
1556 hole_off = (pvt->dhar & 0x0000FF80);
1557 hole_valid = (pvt->dhar & 0x1);
1558 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1559
1560 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1561 hole_off, hole_valid, intlv_sel);
1562
e726f3c3 1563 if (intlv_en &&
f71d0a05
DT
1564 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1565 return -EINVAL;
1566
1567 dct_sel_base = dct_sel_baseaddr(pvt);
1568
1569 /*
1570 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1571 * select between DCT0 and DCT1.
1572 */
1573 if (dct_high_range_enabled(pvt) &&
1574 !dct_ganging_enabled(pvt) &&
1575 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1576 high_range = 1;
1577
1578 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1579
1580 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1581 dct_sel_base_off, hole_valid,
1582 hole_off, dram_base);
1583
1584 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1585
1586 /* remove Node ID (in case of memory interleaving) */
1587 tmp = chan_addr & 0xFC0;
1588
1589 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1590
1591 /* remove channel interleave and hash */
1592 if (dct_interleave_enabled(pvt) &&
1593 !dct_high_range_enabled(pvt) &&
1594 !dct_ganging_enabled(pvt)) {
1595 if (dct_sel_interleave_addr(pvt) != 1)
1596 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1597 else {
1598 tmp = chan_addr & 0xFC0;
1599 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1600 | tmp;
1601 }
1602 }
1603
1604 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1605 chan_addr, (u32)(chan_addr >> 8));
1606
1607 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1608
1609 if (cs_found >= 0) {
1610 *nid = node_id;
1611 *chan_sel = channel;
1612 }
1613 return cs_found;
1614}
1615
1616static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1617 int *node, int *chan_sel)
1618{
1619 int dram_range, cs_found = -EINVAL;
1620 u64 dram_base, dram_limit;
1621
1622 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1623
1624 if (!pvt->dram_rw_en[dram_range])
1625 continue;
1626
1627 dram_base = pvt->dram_base[dram_range];
1628 dram_limit = pvt->dram_limit[dram_range];
1629
1630 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1631
1632 cs_found = f10_match_to_this_node(pvt, dram_range,
1633 sys_addr, node,
1634 chan_sel);
1635 if (cs_found >= 0)
1636 break;
1637 }
1638 }
1639 return cs_found;
1640}
1641
1642/*
bdc30a0c
BP
1643 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1644 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1645 *
bdc30a0c
BP
1646 * The @sys_addr is usually an error address received from the hardware
1647 * (MCX_ADDR).
f71d0a05
DT
1648 */
1649static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1650 struct err_regs *err_info,
f71d0a05
DT
1651 u64 sys_addr)
1652{
1653 struct amd64_pvt *pvt = mci->pvt_info;
1654 u32 page, offset;
f71d0a05 1655 int nid, csrow, chan = 0;
ad6a32e9 1656 u16 syndrome;
f71d0a05
DT
1657
1658 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1659
bdc30a0c
BP
1660 if (csrow < 0) {
1661 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1662 return;
1663 }
1664
1665 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1666
ad6a32e9 1667 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1668
1669 /*
1670 * We need the syndromes for channel detection only when we're
1671 * ganged. Otherwise @chan should already contain the channel at
1672 * this point.
1673 */
962b70a1 1674 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1675 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1676
bdc30a0c
BP
1677 if (chan >= 0)
1678 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1679 EDAC_MOD_STR);
1680 else
f71d0a05 1681 /*
bdc30a0c 1682 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1683 */
bdc30a0c 1684 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1685 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1686 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1687}
1688
f71d0a05 1689/*
8566c4df 1690 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1691 * CSROWs as well
1692 */
8566c4df 1693static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1694{
603adaf6 1695 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1696 u32 dbam;
1697 u32 *dcsb;
1698
8566c4df 1699 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1700 if (pvt->dclr0 & F10_WIDTH_128)
1701 factor = 1;
1702
8566c4df 1703 /* K8 families < revF not supported yet */
1433eb99 1704 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1705 return;
1706 else
1707 WARN_ON(ctrl != 0);
1708 }
1709
1710 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1711 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1712
1713 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1714 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1715
8566c4df
BP
1716 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1717
f71d0a05
DT
1718 /* Dump memory sizes for DIMM and its CSROWs */
1719 for (dimm = 0; dimm < 4; dimm++) {
1720
1721 size0 = 0;
1722 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1723 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1724
1725 size1 = 0;
1726 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1727 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1728
8566c4df 1729 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
603adaf6
BP
1730 dimm * 2, size0 << factor,
1731 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1732 }
1733}
1734
4d37607a
DT
1735static struct amd64_family_type amd64_family_types[] = {
1736 [K8_CPUS] = {
1737 .ctl_name = "RevF",
1738 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1739 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1740 .ops = {
1433eb99
BP
1741 .early_channel_count = k8_early_channel_count,
1742 .get_error_address = k8_get_error_address,
1743 .read_dram_base_limit = k8_read_dram_base_limit,
1744 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1745 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1746 }
1747 },
1748 [F10_CPUS] = {
1749 .ctl_name = "Family 10h",
1750 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1751 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1752 .ops = {
1433eb99
BP
1753 .early_channel_count = f10_early_channel_count,
1754 .get_error_address = f10_get_error_address,
1755 .read_dram_base_limit = f10_read_dram_base_limit,
1756 .read_dram_ctl_register = f10_read_dram_ctl_register,
1757 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1758 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1759 }
1760 },
4d37607a
DT
1761};
1762
1763static struct pci_dev *pci_get_related_function(unsigned int vendor,
1764 unsigned int device,
1765 struct pci_dev *related)
1766{
1767 struct pci_dev *dev = NULL;
1768
1769 dev = pci_get_device(vendor, device, dev);
1770 while (dev) {
1771 if ((dev->bus->number == related->bus->number) &&
1772 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1773 break;
1774 dev = pci_get_device(vendor, device, dev);
1775 }
1776
1777 return dev;
1778}
1779
b1289d6f 1780/*
bfc04aec
BP
1781 * These are tables of eigenvectors (one per line) which can be used for the
1782 * construction of the syndrome tables. The modified syndrome search algorithm
1783 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1784 *
bfc04aec 1785 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1786 */
bfc04aec
BP
1787static u16 x4_vectors[] = {
1788 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1789 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1790 0x0001, 0x0002, 0x0004, 0x0008,
1791 0x1013, 0x3032, 0x4044, 0x8088,
1792 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1793 0x4857, 0xc4fe, 0x13cc, 0x3288,
1794 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1795 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1796 0x15c1, 0x2a42, 0x89ac, 0x4758,
1797 0x2b03, 0x1602, 0x4f0c, 0xca08,
1798 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1799 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1800 0x2b87, 0x164e, 0x642c, 0xdc18,
1801 0x40b9, 0x80de, 0x1094, 0x20e8,
1802 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1803 0x11c1, 0x2242, 0x84ac, 0x4c58,
1804 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1805 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1806 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1807 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1808 0x16b3, 0x3d62, 0x4f34, 0x8518,
1809 0x1e2f, 0x391a, 0x5cac, 0xf858,
1810 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1811 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1812 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1813 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1814 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1815 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1816 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1817 0x185d, 0x2ca6, 0x7914, 0x9e28,
1818 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1819 0x4199, 0x82ee, 0x19f4, 0x2e58,
1820 0x4807, 0xc40e, 0x130c, 0x3208,
1821 0x1905, 0x2e0a, 0x5804, 0xac08,
1822 0x213f, 0x132a, 0xadfc, 0x5ba8,
1823 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1824};
1825
bfc04aec
BP
1826static u16 x8_vectors[] = {
1827 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1828 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1829 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1830 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1831 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1832 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1833 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1834 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1835 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1836 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1837 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1838 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1839 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1840 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1841 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1842 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1843 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1844 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1845 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1846};
1847
1848static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1849 int v_dim)
b1289d6f 1850{
bfc04aec
BP
1851 unsigned int i, err_sym;
1852
1853 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1854 u16 s = syndrome;
1855 int v_idx = err_sym * v_dim;
1856 int v_end = (err_sym + 1) * v_dim;
1857
1858 /* walk over all 16 bits of the syndrome */
1859 for (i = 1; i < (1U << 16); i <<= 1) {
1860
1861 /* if bit is set in that eigenvector... */
1862 if (v_idx < v_end && vectors[v_idx] & i) {
1863 u16 ev_comp = vectors[v_idx++];
1864
1865 /* ... and bit set in the modified syndrome, */
1866 if (s & i) {
1867 /* remove it. */
1868 s ^= ev_comp;
4d37607a 1869
bfc04aec
BP
1870 if (!s)
1871 return err_sym;
1872 }
b1289d6f 1873
bfc04aec
BP
1874 } else if (s & i)
1875 /* can't get to zero, move to next symbol */
1876 break;
1877 }
b1289d6f
DT
1878 }
1879
1880 debugf0("syndrome(%x) not found\n", syndrome);
1881 return -1;
1882}
d27bf6fa 1883
bfc04aec
BP
1884static int map_err_sym_to_channel(int err_sym, int sym_size)
1885{
1886 if (sym_size == 4)
1887 switch (err_sym) {
1888 case 0x20:
1889 case 0x21:
1890 return 0;
1891 break;
1892 case 0x22:
1893 case 0x23:
1894 return 1;
1895 break;
1896 default:
1897 return err_sym >> 4;
1898 break;
1899 }
1900 /* x8 symbols */
1901 else
1902 switch (err_sym) {
1903 /* imaginary bits not in a DIMM */
1904 case 0x10:
1905 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1906 err_sym);
1907 return -1;
1908 break;
1909
1910 case 0x11:
1911 return 0;
1912 break;
1913 case 0x12:
1914 return 1;
1915 break;
1916 default:
1917 return err_sym >> 3;
1918 break;
1919 }
1920 return -1;
1921}
1922
1923static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1924{
1925 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1926 int err_sym = -1;
1927
1928 if (pvt->syn_type == 8)
1929 err_sym = decode_syndrome(syndrome, x8_vectors,
1930 ARRAY_SIZE(x8_vectors),
1931 pvt->syn_type);
1932 else if (pvt->syn_type == 4)
1933 err_sym = decode_syndrome(syndrome, x4_vectors,
1934 ARRAY_SIZE(x4_vectors),
1935 pvt->syn_type);
1936 else {
1937 amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1938 __func__, pvt->syn_type);
1939 return err_sym;
bfc04aec 1940 }
ad6a32e9
BP
1941
1942 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1943}
1944
d27bf6fa
DT
1945/*
1946 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1947 * ADDRESS and process.
1948 */
1949static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1950 struct err_regs *info)
d27bf6fa
DT
1951{
1952 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1953 u64 sys_addr;
d27bf6fa
DT
1954
1955 /* Ensure that the Error Address is VALID */
1956 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1957 amd64_mc_printk(mci, KERN_ERR,
1958 "HW has no ERROR_ADDRESS available\n");
1959 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1960 return;
1961 }
1962
1f6bcee7 1963 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1964
1965 amd64_mc_printk(mci, KERN_ERR,
44e9e2ee 1966 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1967
44e9e2ee 1968 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1969}
1970
1971/* Handle any Un-correctable Errors (UEs) */
1972static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1973 struct err_regs *info)
d27bf6fa 1974{
1f6bcee7
BP
1975 struct amd64_pvt *pvt = mci->pvt_info;
1976 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1977 int csrow;
44e9e2ee 1978 u64 sys_addr;
d27bf6fa 1979 u32 page, offset;
d27bf6fa
DT
1980
1981 log_mci = mci;
1982
1983 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1984 amd64_mc_printk(mci, KERN_CRIT,
1985 "HW has no ERROR_ADDRESS available\n");
1986 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1987 return;
1988 }
1989
1f6bcee7 1990 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1991
1992 /*
1993 * Find out which node the error address belongs to. This may be
1994 * different from the node that detected the error.
1995 */
44e9e2ee 1996 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa
DT
1997 if (!src_mci) {
1998 amd64_mc_printk(mci, KERN_CRIT,
1999 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
44e9e2ee 2000 (unsigned long)sys_addr);
d27bf6fa
DT
2001 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2002 return;
2003 }
2004
2005 log_mci = src_mci;
2006
44e9e2ee 2007 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa
DT
2008 if (csrow < 0) {
2009 amd64_mc_printk(mci, KERN_CRIT,
2010 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
44e9e2ee 2011 (unsigned long)sys_addr);
d27bf6fa
DT
2012 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2013 } else {
44e9e2ee 2014 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
2015 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2016 }
2017}
2018
549d042d 2019static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 2020 struct err_regs *info)
d27bf6fa 2021{
b70ef010
BP
2022 u32 ec = ERROR_CODE(info->nbsl);
2023 u32 xec = EXT_ERROR_CODE(info->nbsl);
17adea01 2024 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 2025
b70ef010
BP
2026 /* Bail early out if this was an 'observed' error */
2027 if (PP(ec) == K8_NBSL_PP_OBS)
2028 return;
d27bf6fa 2029
ecaf5606
BP
2030 /* Do only ECC errors */
2031 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2032 return;
d27bf6fa 2033
ecaf5606 2034 if (ecc_type == 2)
d27bf6fa 2035 amd64_handle_ce(mci, info);
ecaf5606 2036 else if (ecc_type == 1)
d27bf6fa 2037 amd64_handle_ue(mci, info);
d27bf6fa
DT
2038}
2039
7cfd4a87 2040void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 2041{
549d042d 2042 struct mem_ctl_info *mci = mci_lookup[node_id];
7cfd4a87 2043 struct err_regs regs;
d27bf6fa 2044
7cfd4a87
BP
2045 regs.nbsl = (u32) m->status;
2046 regs.nbsh = (u32)(m->status >> 32);
2047 regs.nbeal = (u32) m->addr;
2048 regs.nbeah = (u32)(m->addr >> 32);
2049 regs.nbcfg = nbcfg;
2050
2051 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 2052
d27bf6fa
DT
2053 /*
2054 * Check the UE bit of the NB status high register, if set generate some
2055 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2056 * If it was a GART error, skip that process.
549d042d
BP
2057 *
2058 * FIXME: this should go somewhere else, if at all.
d27bf6fa 2059 */
7cfd4a87 2060 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 2061 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 2062
d27bf6fa 2063}
d27bf6fa 2064
0ec449ee
DT
2065/*
2066 * Input:
2067 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2068 * 2) AMD Family index value
2069 *
2070 * Ouput:
2071 * Upon return of 0, the following filled in:
2072 *
2073 * struct pvt->addr_f1_ctl
2074 * struct pvt->misc_f3_ctl
2075 *
2076 * Filled in with related device funcitions of 'dram_f2_ctl'
2077 * These devices are "reserved" via the pci_get_device()
2078 *
2079 * Upon return of 1 (error status):
2080 *
2081 * Nothing reserved
2082 */
2083static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2084{
2085 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2086
2087 /* Reserve the ADDRESS MAP Device */
2088 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2089 amd64_dev->addr_f1_ctl,
2090 pvt->dram_f2_ctl);
2091
2092 if (!pvt->addr_f1_ctl) {
2093 amd64_printk(KERN_ERR, "error address map device not found: "
2094 "vendor %x device 0x%x (broken BIOS?)\n",
2095 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2096 return 1;
2097 }
2098
2099 /* Reserve the MISC Device */
2100 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2101 amd64_dev->misc_f3_ctl,
2102 pvt->dram_f2_ctl);
2103
2104 if (!pvt->misc_f3_ctl) {
2105 pci_dev_put(pvt->addr_f1_ctl);
2106 pvt->addr_f1_ctl = NULL;
2107
2108 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2109 "vendor %x device 0x%x (broken BIOS?)\n",
2110 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2111 return 1;
2112 }
2113
2114 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2115 pci_name(pvt->addr_f1_ctl));
2116 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2117 pci_name(pvt->dram_f2_ctl));
2118 debugf1(" Misc device PCI Bus ID:\t%s\n",
2119 pci_name(pvt->misc_f3_ctl));
2120
2121 return 0;
2122}
2123
2124static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2125{
2126 pci_dev_put(pvt->addr_f1_ctl);
2127 pci_dev_put(pvt->misc_f3_ctl);
2128}
2129
2130/*
2131 * Retrieve the hardware registers of the memory controller (this includes the
2132 * 'Address Map' and 'Misc' device regs)
2133 */
2134static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2135{
2136 u64 msr_val;
ad6a32e9 2137 u32 tmp;
6ba5dcdc 2138 int dram;
0ec449ee
DT
2139
2140 /*
2141 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2142 * those are Read-As-Zero
2143 */
e97f8bb8
BP
2144 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2145 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2146
2147 /* check first whether TOP_MEM2 is enabled */
2148 rdmsrl(MSR_K8_SYSCFG, msr_val);
2149 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2150 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2151 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2152 } else
2153 debugf0(" TOP_MEM2 disabled.\n");
2154
2155 amd64_cpu_display_info(pvt);
2156
6ba5dcdc 2157 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2158
2159 if (pvt->ops->read_dram_ctl_register)
2160 pvt->ops->read_dram_ctl_register(pvt);
2161
2162 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2163 /*
2164 * Call CPU specific READ function to get the DRAM Base and
2165 * Limit values from the DCT.
2166 */
2167 pvt->ops->read_dram_base_limit(pvt, dram);
2168
2169 /*
2170 * Only print out debug info on rows with both R and W Enabled.
2171 * Normal processing, compiler should optimize this whole 'if'
2172 * debug output block away.
2173 */
2174 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2175 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2176 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2177 dram,
e97f8bb8
BP
2178 pvt->dram_base[dram],
2179 pvt->dram_limit[dram]);
2180
0ec449ee
DT
2181 debugf1(" IntlvEn=%s %s %s "
2182 "IntlvSel=%d DstNode=%d\n",
2183 pvt->dram_IntlvEn[dram] ?
2184 "Enabled" : "Disabled",
2185 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2186 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2187 pvt->dram_IntlvSel[dram],
2188 pvt->dram_DstNode[dram]);
2189 }
2190 }
2191
2192 amd64_read_dct_base_mask(pvt);
2193
6ba5dcdc 2194 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2195 amd64_read_dbam_reg(pvt);
2196
6ba5dcdc
BP
2197 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2198 F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2199
6ba5dcdc
BP
2200 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2201 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2202
ad6a32e9
BP
2203 if (boot_cpu_data.x86 >= 0x10) {
2204 if (!dct_ganging_enabled(pvt)) {
2205 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2206 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2207 }
2208 amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2209 }
ad6a32e9
BP
2210
2211 if (boot_cpu_data.x86 == 0x10 &&
2212 boot_cpu_data.x86_model > 7 &&
2213 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2214 tmp & BIT(25))
2215 pvt->syn_type = 8;
2216 else
2217 pvt->syn_type = 4;
2218
0ec449ee 2219 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2220}
2221
2222/*
2223 * NOTE: CPU Revision Dependent code
2224 *
2225 * Input:
9d858bb1 2226 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2227 * k8 private pointer to -->
2228 * DRAM Bank Address mapping register
2229 * node_id
2230 * DCL register where dual_channel_active is
2231 *
2232 * The DBAM register consists of 4 sets of 4 bits each definitions:
2233 *
2234 * Bits: CSROWs
2235 * 0-3 CSROWs 0 and 1
2236 * 4-7 CSROWs 2 and 3
2237 * 8-11 CSROWs 4 and 5
2238 * 12-15 CSROWs 6 and 7
2239 *
2240 * Values range from: 0 to 15
2241 * The meaning of the values depends on CPU revision and dual-channel state,
2242 * see relevant BKDG more info.
2243 *
2244 * The memory controller provides for total of only 8 CSROWs in its current
2245 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2246 * single channel or two (2) DIMMs in dual channel mode.
2247 *
2248 * The following code logic collapses the various tables for CSROW based on CPU
2249 * revision.
2250 *
2251 * Returns:
2252 * The number of PAGE_SIZE pages on the specified CSROW number it
2253 * encompasses
2254 *
2255 */
2256static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2257{
1433eb99 2258 u32 cs_mode, nr_pages;
0ec449ee
DT
2259
2260 /*
2261 * The math on this doesn't look right on the surface because x/2*4 can
2262 * be simplified to x*2 but this expression makes use of the fact that
2263 * it is integral math where 1/2=0. This intermediate value becomes the
2264 * number of bits to shift the DBAM register to extract the proper CSROW
2265 * field.
2266 */
1433eb99 2267 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2268
1433eb99 2269 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2270
2271 /*
2272 * If dual channel then double the memory size of single channel.
2273 * Channel count is 1 or 2
2274 */
2275 nr_pages <<= (pvt->channel_count - 1);
2276
1433eb99 2277 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2278 debugf0(" nr_pages= %u channel-count = %d\n",
2279 nr_pages, pvt->channel_count);
2280
2281 return nr_pages;
2282}
2283
2284/*
2285 * Initialize the array of csrow attribute instances, based on the values
2286 * from pci config hardware registers.
2287 */
2288static int amd64_init_csrows(struct mem_ctl_info *mci)
2289{
2290 struct csrow_info *csrow;
2291 struct amd64_pvt *pvt;
2292 u64 input_addr_min, input_addr_max, sys_addr;
6ba5dcdc 2293 int i, empty = 1;
0ec449ee
DT
2294
2295 pvt = mci->pvt_info;
2296
6ba5dcdc 2297 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
0ec449ee
DT
2298
2299 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2300 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2301 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2302 );
2303
9d858bb1 2304 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2305 csrow = &mci->csrows[i];
2306
2307 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2308 debugf1("----CSROW %d EMPTY for node %d\n", i,
2309 pvt->mc_node_id);
2310 continue;
2311 }
2312
2313 debugf1("----CSROW %d VALID for MC node %d\n",
2314 i, pvt->mc_node_id);
2315
2316 empty = 0;
2317 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2318 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2319 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2320 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2321 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2322 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2323 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2324 /* 8 bytes of resolution */
2325
2326 csrow->mtype = amd64_determine_memory_type(pvt);
2327
2328 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2329 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2330 (unsigned long)input_addr_min,
2331 (unsigned long)input_addr_max);
2332 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2333 (unsigned long)sys_addr, csrow->page_mask);
2334 debugf1(" nr_pages: %u first_page: 0x%lx "
2335 "last_page: 0x%lx\n",
2336 (unsigned)csrow->nr_pages,
2337 csrow->first_page, csrow->last_page);
2338
2339 /*
2340 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2341 */
2342 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2343 csrow->edac_mode =
2344 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2345 EDAC_S4ECD4ED : EDAC_SECDED;
2346 else
2347 csrow->edac_mode = EDAC_NONE;
2348 }
2349
2350 return empty;
2351}
d27bf6fa 2352
f6d6ae96
BP
2353/* get all cores on this DCT */
2354static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2355{
2356 int cpu;
2357
2358 for_each_online_cpu(cpu)
2359 if (amd_get_nb_id(cpu) == nid)
2360 cpumask_set_cpu(cpu, mask);
2361}
2362
2363/* check MCG_CTL on all the cpus on this node */
2364static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2365{
2366 cpumask_var_t mask;
50542251 2367 int cpu, nbe;
f6d6ae96
BP
2368 bool ret = false;
2369
2370 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2371 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2372 __func__);
2373 return false;
2374 }
2375
2376 get_cpus_on_this_dct_cpumask(mask, nid);
2377
f6d6ae96
BP
2378 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2379
2380 for_each_cpu(cpu, mask) {
50542251
BP
2381 struct msr *reg = per_cpu_ptr(msrs, cpu);
2382 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2383
2384 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2385 cpu, reg->q,
f6d6ae96
BP
2386 (nbe ? "enabled" : "disabled"));
2387
2388 if (!nbe)
2389 goto out;
f6d6ae96
BP
2390 }
2391 ret = true;
2392
2393out:
f6d6ae96
BP
2394 free_cpumask_var(mask);
2395 return ret;
2396}
2397
2398static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2399{
2400 cpumask_var_t cmask;
50542251 2401 int cpu;
f6d6ae96
BP
2402
2403 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2404 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2405 __func__);
2406 return false;
2407 }
2408
2409 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2410
f6d6ae96
BP
2411 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2412
2413 for_each_cpu(cpu, cmask) {
2414
50542251
BP
2415 struct msr *reg = per_cpu_ptr(msrs, cpu);
2416
f6d6ae96 2417 if (on) {
50542251 2418 if (reg->l & K8_MSR_MCGCTL_NBE)
d95cf4de 2419 pvt->flags.nb_mce_enable = 1;
f6d6ae96 2420
50542251 2421 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2422 } else {
2423 /*
d95cf4de 2424 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2425 */
d95cf4de 2426 if (!pvt->flags.nb_mce_enable)
50542251 2427 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2428 }
f6d6ae96
BP
2429 }
2430 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2431
f6d6ae96
BP
2432 free_cpumask_var(cmask);
2433
2434 return 0;
2435}
2436
f9431992
DT
2437static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2438{
2439 struct amd64_pvt *pvt = mci->pvt_info;
f6d6ae96 2440 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2441
6ba5dcdc 2442 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2443
2444 /* turn on UECCn and CECCEn bits */
2445 pvt->old_nbctl = value & mask;
2446 pvt->nbctl_mcgctl_saved = 1;
2447
2448 value |= mask;
2449 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2450
f6d6ae96
BP
2451 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2452 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2453 "MCGCTL!\n");
f9431992 2454
6ba5dcdc 2455 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2456
2457 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2458 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2459 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2460
2461 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2462 amd64_printk(KERN_WARNING,
2463 "This node reports that DRAM ECC is "
2464 "currently Disabled; ENABLING now\n");
2465
d95cf4de
BP
2466 pvt->flags.nb_ecc_prev = 0;
2467
f9431992
DT
2468 /* Attempt to turn on DRAM ECC Enable */
2469 value |= K8_NBCFG_ECC_ENABLE;
2470 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2471
6ba5dcdc 2472 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2473
2474 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2475 amd64_printk(KERN_WARNING,
2476 "Hardware rejects Enabling DRAM ECC checking\n"
2477 "Check memory DIMM configuration\n");
2478 } else {
2479 amd64_printk(KERN_DEBUG,
2480 "Hardware accepted DRAM ECC Enable\n");
2481 }
d95cf4de
BP
2482 } else {
2483 pvt->flags.nb_ecc_prev = 1;
f9431992 2484 }
d95cf4de 2485
f9431992
DT
2486 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2487 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2488 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2489
2490 pvt->ctl_error_info.nbcfg = value;
2491}
2492
2493static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2494{
f6d6ae96 2495 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992
DT
2496
2497 if (!pvt->nbctl_mcgctl_saved)
2498 return;
2499
6ba5dcdc 2500 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2501 value &= ~mask;
2502 value |= pvt->old_nbctl;
2503
f9431992
DT
2504 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2505
d95cf4de
BP
2506 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2507 if (!pvt->flags.nb_ecc_prev) {
2508 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2509 value &= ~K8_NBCFG_ECC_ENABLE;
2510 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2511 }
2512
2513 /* restore the NB Enable MCGCTL bit */
f6d6ae96 2514 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
d95cf4de 2515 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
f9431992
DT
2516}
2517
2518/*
2519 * EDAC requires that the BIOS have ECC enabled before taking over the
2520 * processing of ECC errors. This is because the BIOS can properly initialize
2521 * the memory system completely. A command line option allows to force-enable
2522 * hardware ECC later in amd64_enable_ecc_error_reporting().
2523 */
cab4d277
BP
2524static const char *ecc_msg =
2525 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2526 " Either enable ECC checking or force module loading by setting "
2527 "'ecc_enable_override'.\n"
2528 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2529
f9431992
DT
2530static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2531{
2532 u32 value;
06724535
BP
2533 u8 ecc_enabled = 0;
2534 bool nb_mce_en = false;
f9431992 2535
6ba5dcdc 2536 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2537
2538 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
be3468e8 2539 if (!ecc_enabled)
cab4d277 2540 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
be3468e8
BP
2541 "is currently disabled, set F3x%x[22] (%s).\n",
2542 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2543 else
2544 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
f9431992 2545
06724535
BP
2546 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2547 if (!nb_mce_en)
cab4d277 2548 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
be3468e8
BP
2549 "0x%08x[4] on node %d to enable.\n",
2550 MSR_IA32_MCG_CTL, pvt->mc_node_id);
f9431992 2551
06724535 2552 if (!ecc_enabled || !nb_mce_en) {
f9431992 2553 if (!ecc_enable_override) {
cab4d277 2554 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
be3468e8 2555 return -ENODEV;
d95cf4de
BP
2556 } else {
2557 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
be3468e8 2558 }
43f5e687 2559 }
f9431992 2560
be3468e8 2561 return 0;
f9431992
DT
2562}
2563
7d6034d3
DT
2564struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2565 ARRAY_SIZE(amd64_inj_attrs) +
2566 1];
2567
2568struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2569
2570static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2571{
2572 unsigned int i = 0, j = 0;
2573
2574 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2575 sysfs_attrs[i] = amd64_dbg_attrs[i];
2576
2577 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2578 sysfs_attrs[i] = amd64_inj_attrs[j];
2579
2580 sysfs_attrs[i] = terminator;
2581
2582 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2583}
2584
2585static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2586{
2587 struct amd64_pvt *pvt = mci->pvt_info;
2588
2589 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2590 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2591
2592 if (pvt->nbcap & K8_NBCAP_SECDED)
2593 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2594
2595 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2596 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2597
2598 mci->edac_cap = amd64_determine_edac_cap(pvt);
2599 mci->mod_name = EDAC_MOD_STR;
2600 mci->mod_ver = EDAC_AMD64_VERSION;
2601 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2602 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2603 mci->ctl_page_to_phys = NULL;
2604
7d6034d3
DT
2605 /* memory scrubber interface */
2606 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2607 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2608}
2609
2610/*
2611 * Init stuff for this DRAM Controller device.
2612 *
2613 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2614 * Space feature MUST be enabled on ALL Processors prior to actually reading
2615 * from the ECS registers. Since the loading of the module can occur on any
2616 * 'core', and cores don't 'see' all the other processors ECS data when the
2617 * others are NOT enabled. Our solution is to first enable ECS access in this
2618 * routine on all processors, gather some data in a amd64_pvt structure and
2619 * later come back in a finish-setup function to perform that final
2620 * initialization. See also amd64_init_2nd_stage() for that.
2621 */
2622static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2623 int mc_type_index)
2624{
2625 struct amd64_pvt *pvt = NULL;
2626 int err = 0, ret;
2627
2628 ret = -ENOMEM;
2629 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2630 if (!pvt)
2631 goto err_exit;
2632
37da0450 2633 pvt->mc_node_id = get_node_id(dram_f2_ctl);
7d6034d3
DT
2634
2635 pvt->dram_f2_ctl = dram_f2_ctl;
2636 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2637 pvt->mc_type_index = mc_type_index;
2638 pvt->ops = family_ops(mc_type_index);
7d6034d3
DT
2639
2640 /*
2641 * We have the dram_f2_ctl device as an argument, now go reserve its
2642 * sibling devices from the PCI system.
2643 */
2644 ret = -ENODEV;
2645 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2646 if (err)
2647 goto err_free;
2648
2649 ret = -EINVAL;
2650 err = amd64_check_ecc_enabled(pvt);
2651 if (err)
2652 goto err_put;
2653
2654 /*
2655 * Key operation here: setup of HW prior to performing ops on it. Some
2656 * setup is required to access ECS data. After this is performed, the
2657 * 'teardown' function must be called upon error and normal exit paths.
2658 */
2659 if (boot_cpu_data.x86 >= 0x10)
2660 amd64_setup(pvt);
2661
2662 /*
2663 * Save the pointer to the private data for use in 2nd initialization
2664 * stage
2665 */
2666 pvt_lookup[pvt->mc_node_id] = pvt;
2667
2668 return 0;
2669
2670err_put:
2671 amd64_free_mc_sibling_devices(pvt);
2672
2673err_free:
2674 kfree(pvt);
2675
2676err_exit:
2677 return ret;
2678}
2679
2680/*
2681 * This is the finishing stage of the init code. Needs to be performed after all
2682 * MCs' hardware have been prepped for accessing extended config space.
2683 */
2684static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2685{
2686 int node_id = pvt->mc_node_id;
2687 struct mem_ctl_info *mci;
18ba54ac 2688 int ret = -ENODEV;
7d6034d3
DT
2689
2690 amd64_read_mc_registers(pvt);
2691
7d6034d3
DT
2692 /*
2693 * We need to determine how many memory channels there are. Then use
2694 * that information for calculating the size of the dynamic instance
2695 * tables in the 'mci' structure
2696 */
2697 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2698 if (pvt->channel_count < 0)
2699 goto err_exit;
2700
2701 ret = -ENOMEM;
9d858bb1 2702 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
7d6034d3
DT
2703 if (!mci)
2704 goto err_exit;
2705
2706 mci->pvt_info = pvt;
2707
2708 mci->dev = &pvt->dram_f2_ctl->dev;
2709 amd64_setup_mci_misc_attributes(mci);
2710
2711 if (amd64_init_csrows(mci))
2712 mci->edac_cap = EDAC_FLAG_NONE;
2713
2714 amd64_enable_ecc_error_reporting(mci);
2715 amd64_set_mc_sysfs_attributes(mci);
2716
2717 ret = -ENODEV;
2718 if (edac_mc_add_mc(mci)) {
2719 debugf1("failed edac_mc_add_mc()\n");
2720 goto err_add_mc;
2721 }
2722
2723 mci_lookup[node_id] = mci;
2724 pvt_lookup[node_id] = NULL;
549d042d
BP
2725
2726 /* register stuff with EDAC MCE */
2727 if (report_gart_errors)
2728 amd_report_gart_errors(true);
2729
2730 amd_register_ecc_decoder(amd64_decode_bus_error);
2731
7d6034d3
DT
2732 return 0;
2733
2734err_add_mc:
2735 edac_mc_free(mci);
2736
2737err_exit:
2738 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2739
2740 amd64_restore_ecc_error_reporting(pvt);
2741
2742 if (boot_cpu_data.x86 > 0xf)
2743 amd64_teardown(pvt);
2744
2745 amd64_free_mc_sibling_devices(pvt);
2746
2747 kfree(pvt_lookup[pvt->mc_node_id]);
2748 pvt_lookup[node_id] = NULL;
2749
2750 return ret;
2751}
2752
2753
2754static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2755 const struct pci_device_id *mc_type)
2756{
2757 int ret = 0;
2758
37da0450 2759 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
7d6034d3
DT
2760 get_amd_family_name(mc_type->driver_data));
2761
2762 ret = pci_enable_device(pdev);
2763 if (ret < 0)
2764 ret = -EIO;
2765 else
2766 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2767
2768 if (ret < 0)
2769 debugf0("ret=%d\n", ret);
2770
2771 return ret;
2772}
2773
2774static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2775{
2776 struct mem_ctl_info *mci;
2777 struct amd64_pvt *pvt;
2778
2779 /* Remove from EDAC CORE tracking list */
2780 mci = edac_mc_del_mc(&pdev->dev);
2781 if (!mci)
2782 return;
2783
2784 pvt = mci->pvt_info;
2785
2786 amd64_restore_ecc_error_reporting(pvt);
2787
2788 if (boot_cpu_data.x86 > 0xf)
2789 amd64_teardown(pvt);
2790
2791 amd64_free_mc_sibling_devices(pvt);
2792
549d042d
BP
2793 /* unregister from EDAC MCE */
2794 amd_report_gart_errors(false);
2795 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2796
7d6034d3 2797 /* Free the EDAC CORE resources */
8f68ed97
BP
2798 mci->pvt_info = NULL;
2799 mci_lookup[pvt->mc_node_id] = NULL;
2800
2801 kfree(pvt);
7d6034d3
DT
2802 edac_mc_free(mci);
2803}
2804
2805/*
2806 * This table is part of the interface for loading drivers for PCI devices. The
2807 * PCI core identifies what devices are on a system during boot, and then
2808 * inquiry this table to see if this driver is for a given device found.
2809 */
2810static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2811 {
2812 .vendor = PCI_VENDOR_ID_AMD,
2813 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2814 .subvendor = PCI_ANY_ID,
2815 .subdevice = PCI_ANY_ID,
2816 .class = 0,
2817 .class_mask = 0,
2818 .driver_data = K8_CPUS
2819 },
2820 {
2821 .vendor = PCI_VENDOR_ID_AMD,
2822 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2823 .subvendor = PCI_ANY_ID,
2824 .subdevice = PCI_ANY_ID,
2825 .class = 0,
2826 .class_mask = 0,
2827 .driver_data = F10_CPUS
2828 },
7d6034d3
DT
2829 {0, }
2830};
2831MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2832
2833static struct pci_driver amd64_pci_driver = {
2834 .name = EDAC_MOD_STR,
2835 .probe = amd64_init_one_instance,
2836 .remove = __devexit_p(amd64_remove_one_instance),
2837 .id_table = amd64_pci_table,
2838};
2839
2840static void amd64_setup_pci_device(void)
2841{
2842 struct mem_ctl_info *mci;
2843 struct amd64_pvt *pvt;
2844
2845 if (amd64_ctl_pci)
2846 return;
2847
2848 mci = mci_lookup[0];
2849 if (mci) {
2850
2851 pvt = mci->pvt_info;
2852 amd64_ctl_pci =
2853 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2854 EDAC_MOD_STR);
2855
2856 if (!amd64_ctl_pci) {
2857 pr_warning("%s(): Unable to create PCI control\n",
2858 __func__);
2859
2860 pr_warning("%s(): PCI error report via EDAC not set\n",
2861 __func__);
2862 }
2863 }
2864}
2865
2866static int __init amd64_edac_init(void)
2867{
2868 int nb, err = -ENODEV;
56b34b91 2869 bool load_ok = false;
7d6034d3
DT
2870
2871 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2872
2873 opstate_init();
2874
9653a5c7 2875 if (amd_cache_northbridges() < 0)
56b34b91 2876 goto err_ret;
7d6034d3 2877
50542251 2878 msrs = msrs_alloc();
56b34b91
BP
2879 if (!msrs)
2880 goto err_ret;
50542251 2881
7d6034d3
DT
2882 err = pci_register_driver(&amd64_pci_driver);
2883 if (err)
56b34b91 2884 goto err_pci;
7d6034d3
DT
2885
2886 /*
2887 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2888 * amd64_pvt structs. These will be used in the 2nd stage init function
2889 * to finish initialization of the MC instances.
2890 */
56b34b91 2891 err = -ENODEV;
9653a5c7 2892 for (nb = 0; nb < amd_nb_num(); nb++) {
7d6034d3
DT
2893 if (!pvt_lookup[nb])
2894 continue;
2895
2896 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2897 if (err)
37da0450 2898 goto err_2nd_stage;
7d6034d3 2899
56b34b91
BP
2900 load_ok = true;
2901 }
7d6034d3 2902
56b34b91
BP
2903 if (load_ok) {
2904 amd64_setup_pci_device();
2905 return 0;
2906 }
7d6034d3 2907
37da0450 2908err_2nd_stage:
7d6034d3 2909 pci_unregister_driver(&amd64_pci_driver);
56b34b91
BP
2910err_pci:
2911 msrs_free(msrs);
2912 msrs = NULL;
2913err_ret:
7d6034d3
DT
2914 return err;
2915}
2916
2917static void __exit amd64_edac_exit(void)
2918{
2919 if (amd64_ctl_pci)
2920 edac_pci_release_generic_ctl(amd64_ctl_pci);
2921
2922 pci_unregister_driver(&amd64_pci_driver);
50542251
BP
2923
2924 msrs_free(msrs);
2925 msrs = NULL;
7d6034d3
DT
2926}
2927
2928module_init(amd64_edac_init);
2929module_exit(amd64_edac_exit);
2930
2931MODULE_LICENSE("GPL");
2932MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2933 "Dave Peterson, Thayne Harbaugh");
2934MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2935 EDAC_AMD64_VERSION);
2936
2937module_param(edac_op_state, int, 0444);
2938MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");