]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Fix node id signedness
[mirror_ubuntu-zesty-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
117static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119{
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134}
135
2bc65418
DT
136/*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150/*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
395ae783 154static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
155{
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
395ae783 170 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
2bc65418 184
5980bb9c 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 186
39094443
BP
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
2bc65418
DT
190 return 0;
191}
192
395ae783 193static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
194{
195 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 196 u32 min_scrubrate = 0x5;
2bc65418 197
87b3e0e6
BP
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
202}
203
39094443 204static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
205{
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
39094443 208 int i, retval = -EINVAL;
2bc65418 209
5980bb9c 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
211
212 scrubval = scrubval & 0x001F;
213
24f9a7fe 214 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 215
926311fd 216 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 217 if (scrubrates[i].scrubval == scrubval) {
39094443 218 retval = scrubrates[i].bandwidth;
2bc65418
DT
219 break;
220 }
221 }
39094443 222 return retval;
2bc65418
DT
223}
224
6775763a 225/*
7f19bf75
BP
226 * returns true if the SysAddr given by sys_addr matches the
227 * DRAM base/limit associated with node_id
6775763a 228 */
b487c33e
BP
229static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
230 unsigned nid)
6775763a 231{
7f19bf75 232 u64 addr;
6775763a
DT
233
234 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
235 * all ones if the most significant implemented address bit is 1.
236 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
237 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
238 * Application Programming.
239 */
240 addr = sys_addr & 0x000000ffffffffffull;
241
7f19bf75
BP
242 return ((addr >= get_dram_base(pvt, nid)) &&
243 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
244}
245
246/*
247 * Attempt to map a SysAddr to a node. On success, return a pointer to the
248 * mem_ctl_info structure for the node that the SysAddr maps to.
249 *
250 * On failure, return NULL.
251 */
252static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
253 u64 sys_addr)
254{
255 struct amd64_pvt *pvt;
b487c33e 256 unsigned node_id;
6775763a
DT
257 u32 intlv_en, bits;
258
259 /*
260 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
261 * 3.4.4.2) registers to map the SysAddr to a node ID.
262 */
263 pvt = mci->pvt_info;
264
265 /*
266 * The value of this field should be the same for all DRAM Base
267 * registers. Therefore we arbitrarily choose to read it from the
268 * register for node 0.
269 */
7f19bf75 270 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
271
272 if (intlv_en == 0) {
7f19bf75 273 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 274 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 275 goto found;
6775763a 276 }
8edc5445 277 goto err_no_match;
6775763a
DT
278 }
279
72f158fe
BP
280 if (unlikely((intlv_en != 0x01) &&
281 (intlv_en != 0x03) &&
282 (intlv_en != 0x07))) {
24f9a7fe 283 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
284 return NULL;
285 }
286
287 bits = (((u32) sys_addr) >> 12) & intlv_en;
288
289 for (node_id = 0; ; ) {
7f19bf75 290 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
291 break; /* intlv_sel field matches */
292
7f19bf75 293 if (++node_id >= DRAM_RANGES)
6775763a
DT
294 goto err_no_match;
295 }
296
297 /* sanity test for sys_addr */
298 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
299 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
300 "range for node %d with node interleaving enabled.\n",
301 __func__, sys_addr, node_id);
6775763a
DT
302 return NULL;
303 }
304
305found:
b487c33e 306 return edac_mc_find((int)node_id);
6775763a
DT
307
308err_no_match:
309 debugf2("sys_addr 0x%lx doesn't match any node\n",
310 (unsigned long)sys_addr);
311
312 return NULL;
313}
e2ce7255
DT
314
315/*
11c75ead
BP
316 * compute the CS base address of the @csrow on the DRAM controller @dct.
317 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 318 */
11c75ead
BP
319static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
320 u64 *base, u64 *mask)
e2ce7255 321{
11c75ead
BP
322 u64 csbase, csmask, base_bits, mask_bits;
323 u8 addr_shift;
e2ce7255 324
11c75ead
BP
325 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
326 csbase = pvt->csels[dct].csbases[csrow];
327 csmask = pvt->csels[dct].csmasks[csrow];
328 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
329 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
330 addr_shift = 4;
331 } else {
332 csbase = pvt->csels[dct].csbases[csrow];
333 csmask = pvt->csels[dct].csmasks[csrow >> 1];
334 addr_shift = 8;
e2ce7255 335
11c75ead
BP
336 if (boot_cpu_data.x86 == 0x15)
337 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
338 else
339 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
340 }
e2ce7255 341
11c75ead 342 *base = (csbase & base_bits) << addr_shift;
e2ce7255 343
11c75ead
BP
344 *mask = ~0ULL;
345 /* poke holes for the csmask */
346 *mask &= ~(mask_bits << addr_shift);
347 /* OR them in */
348 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
349}
350
11c75ead
BP
351#define for_each_chip_select(i, dct, pvt) \
352 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
353
614ec9d8
BP
354#define chip_select_base(i, dct, pvt) \
355 pvt->csels[dct].csbases[i]
356
11c75ead
BP
357#define for_each_chip_select_mask(i, dct, pvt) \
358 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
359
e2ce7255
DT
360/*
361 * @input_addr is an InputAddr associated with the node given by mci. Return the
362 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
363 */
364static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
365{
366 struct amd64_pvt *pvt;
367 int csrow;
368 u64 base, mask;
369
370 pvt = mci->pvt_info;
371
11c75ead
BP
372 for_each_chip_select(csrow, 0, pvt) {
373 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
374 continue;
375
11c75ead
BP
376 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
377
378 mask = ~mask;
e2ce7255
DT
379
380 if ((input_addr & mask) == (base & mask)) {
381 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
382 (unsigned long)input_addr, csrow,
383 pvt->mc_node_id);
384
385 return csrow;
386 }
387 }
e2ce7255
DT
388 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
389 (unsigned long)input_addr, pvt->mc_node_id);
390
391 return -1;
392}
393
e2ce7255
DT
394/*
395 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
396 * for the node represented by mci. Info is passed back in *hole_base,
397 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
398 * info is invalid. Info may be invalid for either of the following reasons:
399 *
400 * - The revision of the node is not E or greater. In this case, the DRAM Hole
401 * Address Register does not exist.
402 *
403 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
404 * indicating that its contents are not valid.
405 *
406 * The values passed back in *hole_base, *hole_offset, and *hole_size are
407 * complete 32-bit values despite the fact that the bitfields in the DHAR
408 * only represent bits 31-24 of the base and offset values.
409 */
410int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
411 u64 *hole_offset, u64 *hole_size)
412{
413 struct amd64_pvt *pvt = mci->pvt_info;
414 u64 base;
415
416 /* only revE and later have the DRAM Hole Address Register */
1433eb99 417 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
418 debugf1(" revision %d for node %d does not support DHAR\n",
419 pvt->ext_model, pvt->mc_node_id);
420 return 1;
421 }
422
bc21fa57 423 /* valid for Fam10h and above */
c8e518d5 424 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
425 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
426 return 1;
427 }
428
c8e518d5 429 if (!dhar_valid(pvt)) {
e2ce7255
DT
430 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
431 pvt->mc_node_id);
432 return 1;
433 }
434
435 /* This node has Memory Hoisting */
436
437 /* +------------------+--------------------+--------------------+-----
438 * | memory | DRAM hole | relocated |
439 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
440 * | | | DRAM hole |
441 * | | | [0x100000000, |
442 * | | | (0x100000000+ |
443 * | | | (0xffffffff-x))] |
444 * +------------------+--------------------+--------------------+-----
445 *
446 * Above is a diagram of physical memory showing the DRAM hole and the
447 * relocated addresses from the DRAM hole. As shown, the DRAM hole
448 * starts at address x (the base address) and extends through address
449 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
450 * addresses in the hole so that they start at 0x100000000.
451 */
452
bc21fa57 453 base = dhar_base(pvt);
e2ce7255
DT
454
455 *hole_base = base;
456 *hole_size = (0x1ull << 32) - base;
457
458 if (boot_cpu_data.x86 > 0xf)
bc21fa57 459 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 460 else
bc21fa57 461 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
462
463 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
464 pvt->mc_node_id, (unsigned long)*hole_base,
465 (unsigned long)*hole_offset, (unsigned long)*hole_size);
466
467 return 0;
468}
469EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
470
93c2df58
DT
471/*
472 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
473 * assumed that sys_addr maps to the node given by mci.
474 *
475 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
476 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
477 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
478 * then it is also involved in translating a SysAddr to a DramAddr. Sections
479 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
480 * These parts of the documentation are unclear. I interpret them as follows:
481 *
482 * When node n receives a SysAddr, it processes the SysAddr as follows:
483 *
484 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
485 * Limit registers for node n. If the SysAddr is not within the range
486 * specified by the base and limit values, then node n ignores the Sysaddr
487 * (since it does not map to node n). Otherwise continue to step 2 below.
488 *
489 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
490 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
491 * the range of relocated addresses (starting at 0x100000000) from the DRAM
492 * hole. If not, skip to step 3 below. Else get the value of the
493 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
494 * offset defined by this value from the SysAddr.
495 *
496 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
497 * Base register for node n. To obtain the DramAddr, subtract the base
498 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
499 */
500static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
501{
7f19bf75 502 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
503 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
504 int ret = 0;
505
7f19bf75 506 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
507
508 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
509 &hole_size);
510 if (!ret) {
511 if ((sys_addr >= (1ull << 32)) &&
512 (sys_addr < ((1ull << 32) + hole_size))) {
513 /* use DHAR to translate SysAddr to DramAddr */
514 dram_addr = sys_addr - hole_offset;
515
516 debugf2("using DHAR to translate SysAddr 0x%lx to "
517 "DramAddr 0x%lx\n",
518 (unsigned long)sys_addr,
519 (unsigned long)dram_addr);
520
521 return dram_addr;
522 }
523 }
524
525 /*
526 * Translate the SysAddr to a DramAddr as shown near the start of
527 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
528 * only deals with 40-bit values. Therefore we discard bits 63-40 of
529 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
530 * discard are all 1s. Otherwise the bits we discard are all 0s. See
531 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
532 * Programmer's Manual Volume 1 Application Programming.
533 */
f678b8cc 534 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
535
536 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
537 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
538 (unsigned long)dram_addr);
539 return dram_addr;
540}
541
542/*
543 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
544 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
545 * for node interleaving.
546 */
547static int num_node_interleave_bits(unsigned intlv_en)
548{
549 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
550 int n;
551
552 BUG_ON(intlv_en > 7);
553 n = intlv_shift_table[intlv_en];
554 return n;
555}
556
557/* Translate the DramAddr given by @dram_addr to an InputAddr. */
558static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
559{
560 struct amd64_pvt *pvt;
561 int intlv_shift;
562 u64 input_addr;
563
564 pvt = mci->pvt_info;
565
566 /*
567 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
568 * concerning translating a DramAddr to an InputAddr.
569 */
7f19bf75 570 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
571 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
572 (dram_addr & 0xfff);
93c2df58
DT
573
574 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
575 intlv_shift, (unsigned long)dram_addr,
576 (unsigned long)input_addr);
577
578 return input_addr;
579}
580
581/*
582 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
583 * assumed that @sys_addr maps to the node given by mci.
584 */
585static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
586{
587 u64 input_addr;
588
589 input_addr =
590 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
591
592 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
593 (unsigned long)sys_addr, (unsigned long)input_addr);
594
595 return input_addr;
596}
597
598
599/*
600 * @input_addr is an InputAddr associated with the node represented by mci.
601 * Translate @input_addr to a DramAddr and return the result.
602 */
603static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
604{
605 struct amd64_pvt *pvt;
b487c33e 606 unsigned node_id, intlv_shift;
93c2df58
DT
607 u64 bits, dram_addr;
608 u32 intlv_sel;
609
610 /*
611 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
612 * shows how to translate a DramAddr to an InputAddr. Here we reverse
613 * this procedure. When translating from a DramAddr to an InputAddr, the
614 * bits used for node interleaving are discarded. Here we recover these
615 * bits from the IntlvSel field of the DRAM Limit register (section
616 * 3.4.4.2) for the node that input_addr is associated with.
617 */
618 pvt = mci->pvt_info;
619 node_id = pvt->mc_node_id;
b487c33e
BP
620
621 BUG_ON(node_id > 7);
93c2df58 622
7f19bf75 623 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
624
625 if (intlv_shift == 0) {
626 debugf1(" InputAddr 0x%lx translates to DramAddr of "
627 "same value\n", (unsigned long)input_addr);
628
629 return input_addr;
630 }
631
f678b8cc
BP
632 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
633 (input_addr & 0xfff);
93c2df58 634
7f19bf75 635 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
636 dram_addr = bits + (intlv_sel << 12);
637
638 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
639 "(%d node interleave bits)\n", (unsigned long)input_addr,
640 (unsigned long)dram_addr, intlv_shift);
641
642 return dram_addr;
643}
644
645/*
646 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
647 * @dram_addr to a SysAddr.
648 */
649static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
650{
651 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 652 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
653 int ret = 0;
654
655 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
656 &hole_size);
657 if (!ret) {
658 if ((dram_addr >= hole_base) &&
659 (dram_addr < (hole_base + hole_size))) {
660 sys_addr = dram_addr + hole_offset;
661
662 debugf1("using DHAR to translate DramAddr 0x%lx to "
663 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
664 (unsigned long)sys_addr);
665
666 return sys_addr;
667 }
668 }
669
7f19bf75 670 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
671 sys_addr = dram_addr + base;
672
673 /*
674 * The sys_addr we have computed up to this point is a 40-bit value
675 * because the k8 deals with 40-bit values. However, the value we are
676 * supposed to return is a full 64-bit physical address. The AMD
677 * x86-64 architecture specifies that the most significant implemented
678 * address bit through bit 63 of a physical address must be either all
679 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
680 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
681 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
682 * Programming.
683 */
684 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
685
686 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
687 pvt->mc_node_id, (unsigned long)dram_addr,
688 (unsigned long)sys_addr);
689
690 return sys_addr;
691}
692
693/*
694 * @input_addr is an InputAddr associated with the node given by mci. Translate
695 * @input_addr to a SysAddr.
696 */
697static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
698 u64 input_addr)
699{
700 return dram_addr_to_sys_addr(mci,
701 input_addr_to_dram_addr(mci, input_addr));
702}
703
704/*
705 * Find the minimum and maximum InputAddr values that map to the given @csrow.
706 * Pass back these values in *input_addr_min and *input_addr_max.
707 */
708static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
709 u64 *input_addr_min, u64 *input_addr_max)
710{
711 struct amd64_pvt *pvt;
712 u64 base, mask;
713
714 pvt = mci->pvt_info;
11c75ead 715 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 716
11c75ead 717 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
718
719 *input_addr_min = base & ~mask;
11c75ead 720 *input_addr_max = base | mask;
93c2df58
DT
721}
722
93c2df58
DT
723/* Map the Error address to a PAGE and PAGE OFFSET. */
724static inline void error_address_to_page_and_offset(u64 error_address,
725 u32 *page, u32 *offset)
726{
727 *page = (u32) (error_address >> PAGE_SHIFT);
728 *offset = ((u32) error_address) & ~PAGE_MASK;
729}
730
731/*
732 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
733 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
734 * of a node that detected an ECC memory error. mci represents the node that
735 * the error address maps to (possibly different from the node that detected
736 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
737 * error.
738 */
739static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
740{
741 int csrow;
742
743 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
744
745 if (csrow == -1)
24f9a7fe
BP
746 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
747 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
748 return csrow;
749}
e2ce7255 750
bfc04aec 751static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 752
2da11654
DT
753/*
754 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
755 * are ECC capable.
756 */
757static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
758{
cb328507 759 u8 bit;
584fcff4 760 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 761
1433eb99 762 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
763 ? 19
764 : 17;
765
584fcff4 766 if (pvt->dclr0 & BIT(bit))
2da11654
DT
767 edac_cap = EDAC_FLAG_SECDED;
768
769 return edac_cap;
770}
771
772
8566c4df 773static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 774
68798e17
BP
775static void amd64_dump_dramcfg_low(u32 dclr, int chan)
776{
777 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
778
779 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
780 (dclr & BIT(16)) ? "un" : "",
781 (dclr & BIT(19)) ? "yes" : "no");
782
783 debugf1(" PAR/ERR parity: %s\n",
784 (dclr & BIT(8)) ? "enabled" : "disabled");
785
cb328507
BP
786 if (boot_cpu_data.x86 == 0x10)
787 debugf1(" DCT 128bit mode width: %s\n",
788 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
789
790 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
791 (dclr & BIT(12)) ? "yes" : "no",
792 (dclr & BIT(13)) ? "yes" : "no",
793 (dclr & BIT(14)) ? "yes" : "no",
794 (dclr & BIT(15)) ? "yes" : "no");
795}
796
2da11654 797/* Display and decode various NB registers for debug purposes. */
b2b0c605 798static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 799{
68798e17
BP
800 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
801
802 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 803 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 804
68798e17 805 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
806 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
807 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
808
809 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 810
8de1d91e 811 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 812
8de1d91e
BP
813 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
814 "offset: 0x%08x\n",
bc21fa57
BP
815 pvt->dhar, dhar_base(pvt),
816 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
817 : f10_dhar_offset(pvt));
2da11654 818
c8e518d5 819 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 820
4d796364
BP
821 amd64_debug_display_dimm_sizes(0, pvt);
822
8de1d91e 823 /* everything below this point is Fam10h and above */
4d796364 824 if (boot_cpu_data.x86 == 0xf)
2da11654 825 return;
4d796364
BP
826
827 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 828
a3b7db09 829 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 830
8de1d91e 831 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
832 if (!dct_ganging_enabled(pvt))
833 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
834}
835
94be4bff 836/*
11c75ead 837 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 838 */
11c75ead 839static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 840{
1433eb99 841 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
842 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
843 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 844 } else {
11c75ead
BP
845 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
846 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
847 }
848}
849
850/*
11c75ead 851 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 852 */
b2b0c605 853static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 854{
11c75ead 855 int cs;
94be4bff 856
11c75ead 857 prep_chip_selects(pvt);
94be4bff 858
11c75ead
BP
859 for_each_chip_select(cs, 0, pvt) {
860 u32 reg0 = DCSB0 + (cs * 4);
861 u32 reg1 = DCSB1 + (cs * 4);
862 u32 *base0 = &pvt->csels[0].csbases[cs];
863 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 864
11c75ead 865 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 866 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 867 cs, *base0, reg0);
94be4bff 868
11c75ead
BP
869 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
870 continue;
b2b0c605 871
11c75ead
BP
872 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
873 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
874 cs, *base1, reg1);
94be4bff
DT
875 }
876
11c75ead
BP
877 for_each_chip_select_mask(cs, 0, pvt) {
878 u32 reg0 = DCSM0 + (cs * 4);
879 u32 reg1 = DCSM1 + (cs * 4);
880 u32 *mask0 = &pvt->csels[0].csmasks[cs];
881 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 882
11c75ead 883 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 884 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 885 cs, *mask0, reg0);
94be4bff 886
11c75ead
BP
887 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
888 continue;
b2b0c605 889
11c75ead
BP
890 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
891 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
892 cs, *mask1, reg1);
94be4bff
DT
893 }
894}
895
24f9a7fe 896static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
897{
898 enum mem_type type;
899
cb328507
BP
900 /* F15h supports only DDR3 */
901 if (boot_cpu_data.x86 >= 0x15)
902 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
903 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
904 if (pvt->dchr0 & DDR3_MODE)
905 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
906 else
907 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 908 } else {
94be4bff
DT
909 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
910 }
911
24f9a7fe 912 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
913
914 return type;
915}
916
cb328507 917/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
918static int k8_early_channel_count(struct amd64_pvt *pvt)
919{
cb328507 920 int flag;
ddff876d 921
9f56da0e 922 if (pvt->ext_model >= K8_REV_F)
ddff876d 923 /* RevF (NPT) and later */
41d8bfab 924 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 925 else
ddff876d
DT
926 /* RevE and earlier */
927 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
928
929 /* not used */
930 pvt->dclr1 = 0;
931
932 return (flag) ? 2 : 1;
933}
934
70046624
BP
935/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
936static u64 get_error_address(struct mce *m)
ddff876d 937{
70046624
BP
938 u8 start_bit = 1;
939 u8 end_bit = 47;
940
941 if (boot_cpu_data.x86 == 0xf) {
942 start_bit = 3;
943 end_bit = 39;
944 }
945
946 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
947}
948
7f19bf75 949static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 950{
7f19bf75 951 u32 off = range << 3;
ddff876d 952
7f19bf75
BP
953 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
954 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 955
7f19bf75
BP
956 if (boot_cpu_data.x86 == 0xf)
957 return;
ddff876d 958
7f19bf75
BP
959 if (!dram_rw(pvt, range))
960 return;
ddff876d 961
7f19bf75
BP
962 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
963 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
964}
965
f192c7b1
BP
966static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
967 u16 syndrome)
ddff876d
DT
968{
969 struct mem_ctl_info *src_mci;
f192c7b1 970 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
971 int channel, csrow;
972 u32 page, offset;
ddff876d
DT
973
974 /* CHIPKILL enabled */
f192c7b1 975 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 976 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
977 if (channel < 0) {
978 /*
979 * Syndrome didn't map, so we don't know which of the
980 * 2 DIMMs is in error. So we need to ID 'both' of them
981 * as suspect.
982 */
24f9a7fe
BP
983 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
984 "error reporting race\n", syndrome);
ddff876d
DT
985 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
986 return;
987 }
988 } else {
989 /*
990 * non-chipkill ecc mode
991 *
992 * The k8 documentation is unclear about how to determine the
993 * channel number when using non-chipkill memory. This method
994 * was obtained from email communication with someone at AMD.
995 * (Wish the email was placed in this comment - norsk)
996 */
44e9e2ee 997 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
998 }
999
1000 /*
1001 * Find out which node the error address belongs to. This may be
1002 * different from the node that detected the error.
1003 */
44e9e2ee 1004 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1005 if (!src_mci) {
24f9a7fe 1006 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1007 (unsigned long)sys_addr);
ddff876d
DT
1008 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1009 return;
1010 }
1011
44e9e2ee
BP
1012 /* Now map the sys_addr to a CSROW */
1013 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1014 if (csrow < 0) {
1015 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1016 } else {
44e9e2ee 1017 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1018
1019 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1020 channel, EDAC_MOD_STR);
1021 }
1022}
1023
41d8bfab 1024static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1025{
41d8bfab 1026 unsigned shift = 0;
ddff876d 1027
41d8bfab
BP
1028 if (i <= 2)
1029 shift = i;
1030 else if (!(i & 0x1))
1031 shift = i >> 1;
1433eb99 1032 else
41d8bfab 1033 shift = (i + 1) >> 1;
ddff876d 1034
41d8bfab
BP
1035 return 128 << (shift + !!dct_width);
1036}
1037
1038static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1039 unsigned cs_mode)
1040{
1041 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1042
1043 if (pvt->ext_model >= K8_REV_F) {
1044 WARN_ON(cs_mode > 11);
1045 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1046 }
1047 else if (pvt->ext_model >= K8_REV_D) {
1048 WARN_ON(cs_mode > 10);
1049
1050 if (cs_mode == 3 || cs_mode == 8)
1051 return 32 << (cs_mode - 1);
1052 else
1053 return 32 << cs_mode;
1054 }
1055 else {
1056 WARN_ON(cs_mode > 6);
1057 return 32 << cs_mode;
1058 }
ddff876d
DT
1059}
1060
1afd3c98
DT
1061/*
1062 * Get the number of DCT channels in use.
1063 *
1064 * Return:
1065 * number of Memory Channels in operation
1066 * Pass back:
1067 * contents of the DCL0_LOW register
1068 */
7d20d14d 1069static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1070{
6ba5dcdc 1071 int i, j, channels = 0;
1afd3c98 1072
7d20d14d 1073 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1074 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1075 return 2;
1afd3c98
DT
1076
1077 /*
d16149e8
BP
1078 * Need to check if in unganged mode: In such, there are 2 channels,
1079 * but they are not in 128 bit mode and thus the above 'dclr0' status
1080 * bit will be OFF.
1afd3c98
DT
1081 *
1082 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1083 * their CSEnable bit on. If so, then SINGLE DIMM case.
1084 */
d16149e8 1085 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1086
1afd3c98
DT
1087 /*
1088 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1089 * is more than just one DIMM present in unganged mode. Need to check
1090 * both controllers since DIMMs can be placed in either one.
1091 */
525a1b20
BP
1092 for (i = 0; i < 2; i++) {
1093 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1094
57a30854
WW
1095 for (j = 0; j < 4; j++) {
1096 if (DBAM_DIMM(j, dbam) > 0) {
1097 channels++;
1098 break;
1099 }
1100 }
1afd3c98
DT
1101 }
1102
d16149e8
BP
1103 if (channels > 2)
1104 channels = 2;
1105
24f9a7fe 1106 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1107
1108 return channels;
1afd3c98
DT
1109}
1110
41d8bfab 1111static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1112{
41d8bfab
BP
1113 unsigned shift = 0;
1114 int cs_size = 0;
1115
1116 if (i == 0 || i == 3 || i == 4)
1117 cs_size = -1;
1118 else if (i <= 2)
1119 shift = i;
1120 else if (i == 12)
1121 shift = 7;
1122 else if (!(i & 0x1))
1123 shift = i >> 1;
1124 else
1125 shift = (i + 1) >> 1;
1126
1127 if (cs_size != -1)
1128 cs_size = (128 * (1 << !!dct_width)) << shift;
1129
1130 return cs_size;
1131}
1132
1133static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1134 unsigned cs_mode)
1135{
1136 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1137
1138 WARN_ON(cs_mode > 11);
1433eb99
BP
1139
1140 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1141 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1142 else
41d8bfab
BP
1143 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1144}
1145
1146/*
1147 * F15h supports only 64bit DCT interfaces
1148 */
1149static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1150 unsigned cs_mode)
1151{
1152 WARN_ON(cs_mode > 12);
1433eb99 1153
41d8bfab 1154 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1155}
1156
5a5d2371 1157static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1158{
6163b5d4 1159
5a5d2371
BP
1160 if (boot_cpu_data.x86 == 0xf)
1161 return;
1162
78da121e
BP
1163 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1164 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1165 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1166
5a5d2371
BP
1167 debugf0(" DCTs operate in %s mode.\n",
1168 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1169
1170 if (!dct_ganging_enabled(pvt))
1171 debugf0(" Address range split per DCT: %s\n",
1172 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1173
78da121e 1174 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1175 "DRAM cleared since last warm reset: %s\n",
1176 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1177 (dct_memory_cleared(pvt) ? "yes" : "no"));
1178
78da121e
BP
1179 debugf0(" channel interleave: %s, "
1180 "interleave bits selector: 0x%x\n",
72381bd5 1181 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1182 dct_sel_interleave_addr(pvt));
1183 }
1184
78da121e 1185 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1186}
1187
f71d0a05 1188/*
229a7a11 1189 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1190 * Interleaving Modes.
1191 */
b15f0fca 1192static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1193 bool hi_range_sel, u8 intlv_en)
6163b5d4 1194{
78da121e 1195 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1196
1197 if (dct_ganging_enabled(pvt))
229a7a11 1198 return 0;
6163b5d4 1199
229a7a11
BP
1200 if (hi_range_sel)
1201 return dct_sel_high;
6163b5d4 1202
229a7a11
BP
1203 /*
1204 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1205 */
1206 if (dct_interleave_enabled(pvt)) {
1207 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1208
1209 /* return DCT select function: 0=DCT0, 1=DCT1 */
1210 if (!intlv_addr)
1211 return sys_addr >> 6 & 1;
1212
1213 if (intlv_addr & 0x2) {
1214 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1215 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1216
1217 return ((sys_addr >> shift) & 1) ^ temp;
1218 }
1219
1220 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1221 }
1222
1223 if (dct_high_range_enabled(pvt))
1224 return ~dct_sel_high & 1;
6163b5d4
DT
1225
1226 return 0;
1227}
1228
c8e518d5 1229/* Convert the sys_addr to the normalized DCT address */
b15f0fca 1230static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
c8e518d5
BP
1231 u64 sys_addr, bool hi_rng,
1232 u32 dct_sel_base_addr)
6163b5d4
DT
1233{
1234 u64 chan_off;
c8e518d5
BP
1235 u64 dram_base = get_dram_base(pvt, range);
1236 u64 hole_off = f10_dhar_offset(pvt);
1237 u32 hole_valid = dhar_valid(pvt);
1238 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1239
c8e518d5
BP
1240 if (hi_rng) {
1241 /*
1242 * if
1243 * base address of high range is below 4Gb
1244 * (bits [47:27] at [31:11])
1245 * DRAM address space on this DCT is hoisted above 4Gb &&
1246 * sys_addr > 4Gb
1247 *
1248 * remove hole offset from sys_addr
1249 * else
1250 * remove high range offset from sys_addr
1251 */
1252 if ((!(dct_sel_base_addr >> 16) ||
1253 dct_sel_base_addr < dhar_base(pvt)) &&
1254 hole_valid &&
1255 (sys_addr >= BIT_64(32)))
bc21fa57 1256 chan_off = hole_off;
6163b5d4
DT
1257 else
1258 chan_off = dct_sel_base_off;
1259 } else {
c8e518d5
BP
1260 /*
1261 * if
1262 * we have a valid hole &&
1263 * sys_addr > 4Gb
1264 *
1265 * remove hole
1266 * else
1267 * remove dram base to normalize to DCT address
1268 */
1269 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1270 chan_off = hole_off;
6163b5d4 1271 else
c8e518d5 1272 chan_off = dram_base;
6163b5d4
DT
1273 }
1274
c8e518d5 1275 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1276}
1277
6163b5d4
DT
1278/*
1279 * checks if the csrow passed in is marked as SPARED, if so returns the new
1280 * spare row
1281 */
11c75ead 1282static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1283{
614ec9d8
BP
1284 int tmp_cs;
1285
1286 if (online_spare_swap_done(pvt, dct) &&
1287 csrow == online_spare_bad_dramcs(pvt, dct)) {
1288
1289 for_each_chip_select(tmp_cs, dct, pvt) {
1290 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1291 csrow = tmp_cs;
1292 break;
1293 }
1294 }
6163b5d4
DT
1295 }
1296 return csrow;
1297}
1298
1299/*
1300 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1301 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1302 *
1303 * Return:
1304 * -EINVAL: NOT FOUND
1305 * 0..csrow = Chip-Select Row
1306 */
b15f0fca 1307static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1308{
1309 struct mem_ctl_info *mci;
1310 struct amd64_pvt *pvt;
11c75ead 1311 u64 cs_base, cs_mask;
6163b5d4
DT
1312 int cs_found = -EINVAL;
1313 int csrow;
1314
cc4d8860 1315 mci = mcis[nid];
6163b5d4
DT
1316 if (!mci)
1317 return cs_found;
1318
1319 pvt = mci->pvt_info;
1320
11c75ead 1321 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1322
11c75ead
BP
1323 for_each_chip_select(csrow, dct, pvt) {
1324 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1325 continue;
1326
11c75ead 1327 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1328
11c75ead
BP
1329 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1330 csrow, cs_base, cs_mask);
6163b5d4 1331
11c75ead 1332 cs_mask = ~cs_mask;
6163b5d4 1333
11c75ead
BP
1334 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1335 "(CSBase & ~CSMask)=0x%llx\n",
1336 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1337
11c75ead
BP
1338 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1339 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1340
1341 debugf1(" MATCH csrow=%d\n", cs_found);
1342 break;
1343 }
1344 }
1345 return cs_found;
1346}
1347
95b0ef55
BP
1348/*
1349 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1350 * swapped with a region located at the bottom of memory so that the GPU can use
1351 * the interleaved region and thus two channels.
1352 */
b15f0fca 1353static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1354{
1355 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1356
1357 if (boot_cpu_data.x86 == 0x10) {
1358 /* only revC3 and revE have that feature */
1359 if (boot_cpu_data.x86_model < 4 ||
1360 (boot_cpu_data.x86_model < 0xa &&
1361 boot_cpu_data.x86_mask < 3))
1362 return sys_addr;
1363 }
1364
1365 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1366
1367 if (!(swap_reg & 0x1))
1368 return sys_addr;
1369
1370 swap_base = (swap_reg >> 3) & 0x7f;
1371 swap_limit = (swap_reg >> 11) & 0x7f;
1372 rgn_size = (swap_reg >> 20) & 0x7f;
1373 tmp_addr = sys_addr >> 27;
1374
1375 if (!(sys_addr >> 34) &&
1376 (((tmp_addr >= swap_base) &&
1377 (tmp_addr <= swap_limit)) ||
1378 (tmp_addr < rgn_size)))
1379 return sys_addr ^ (u64)swap_base << 27;
1380
1381 return sys_addr;
1382}
1383
f71d0a05 1384/* For a given @dram_range, check if @sys_addr falls within it. */
b15f0fca 1385static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1386 u64 sys_addr, int *nid, int *chan_sel)
1387{
229a7a11 1388 int cs_found = -EINVAL;
c8e518d5 1389 u64 chan_addr;
5d4b58e8 1390 u32 dct_sel_base;
11c75ead 1391 u8 channel;
229a7a11 1392 bool high_range = false;
f71d0a05 1393
7f19bf75 1394 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1395 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1396 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1397
c8e518d5
BP
1398 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1399 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1400
355fba60
BP
1401 if (dhar_valid(pvt) &&
1402 dhar_base(pvt) <= sys_addr &&
1403 sys_addr < BIT_64(32)) {
1404 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1405 sys_addr);
1406 return -EINVAL;
1407 }
1408
e726f3c3 1409 if (intlv_en &&
355fba60
BP
1410 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1411 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1412 intlv_en, intlv_sel);
f71d0a05 1413 return -EINVAL;
355fba60 1414 }
f71d0a05 1415
b15f0fca 1416 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1417
f71d0a05
DT
1418 dct_sel_base = dct_sel_baseaddr(pvt);
1419
1420 /*
1421 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1422 * select between DCT0 and DCT1.
1423 */
1424 if (dct_high_range_enabled(pvt) &&
1425 !dct_ganging_enabled(pvt) &&
1426 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1427 high_range = true;
f71d0a05 1428
b15f0fca 1429 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1430
b15f0fca 1431 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1432 high_range, dct_sel_base);
f71d0a05 1433
e2f79dbd
BP
1434 /* Remove node interleaving, see F1x120 */
1435 if (intlv_en)
1436 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1437 (chan_addr & 0xfff);
f71d0a05 1438
5d4b58e8 1439 /* remove channel interleave */
f71d0a05
DT
1440 if (dct_interleave_enabled(pvt) &&
1441 !dct_high_range_enabled(pvt) &&
1442 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1443
1444 if (dct_sel_interleave_addr(pvt) != 1) {
1445 if (dct_sel_interleave_addr(pvt) == 0x3)
1446 /* hash 9 */
1447 chan_addr = ((chan_addr >> 10) << 9) |
1448 (chan_addr & 0x1ff);
1449 else
1450 /* A[6] or hash 6 */
1451 chan_addr = ((chan_addr >> 7) << 6) |
1452 (chan_addr & 0x3f);
1453 } else
1454 /* A[12] */
1455 chan_addr = ((chan_addr >> 13) << 12) |
1456 (chan_addr & 0xfff);
f71d0a05
DT
1457 }
1458
5d4b58e8 1459 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1460
b15f0fca 1461 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1462
1463 if (cs_found >= 0) {
1464 *nid = node_id;
1465 *chan_sel = channel;
1466 }
1467 return cs_found;
1468}
1469
b15f0fca 1470static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1471 int *node, int *chan_sel)
1472{
7f19bf75 1473 int range, cs_found = -EINVAL;
f71d0a05 1474
7f19bf75 1475 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1476
7f19bf75 1477 if (!dram_rw(pvt, range))
f71d0a05
DT
1478 continue;
1479
7f19bf75
BP
1480 if ((get_dram_base(pvt, range) <= sys_addr) &&
1481 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1482
b15f0fca 1483 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1484 sys_addr, node,
1485 chan_sel);
1486 if (cs_found >= 0)
1487 break;
1488 }
1489 }
1490 return cs_found;
1491}
1492
1493/*
bdc30a0c
BP
1494 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1495 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1496 *
bdc30a0c
BP
1497 * The @sys_addr is usually an error address received from the hardware
1498 * (MCX_ADDR).
f71d0a05 1499 */
b15f0fca 1500static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1501 u16 syndrome)
f71d0a05
DT
1502{
1503 struct amd64_pvt *pvt = mci->pvt_info;
1504 u32 page, offset;
f71d0a05
DT
1505 int nid, csrow, chan = 0;
1506
b15f0fca 1507 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1508
bdc30a0c
BP
1509 if (csrow < 0) {
1510 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1511 return;
1512 }
1513
1514 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1515
bdc30a0c
BP
1516 /*
1517 * We need the syndromes for channel detection only when we're
1518 * ganged. Otherwise @chan should already contain the channel at
1519 * this point.
1520 */
a97fa68e 1521 if (dct_ganging_enabled(pvt))
bdc30a0c 1522 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1523
bdc30a0c
BP
1524 if (chan >= 0)
1525 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1526 EDAC_MOD_STR);
1527 else
f71d0a05 1528 /*
bdc30a0c 1529 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1530 */
bdc30a0c 1531 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1532 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1533 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1534}
1535
f71d0a05 1536/*
8566c4df 1537 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1538 * CSROWs
f71d0a05 1539 */
8566c4df 1540static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1541{
603adaf6 1542 int dimm, size0, size1, factor = 0;
525a1b20
BP
1543 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1544 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1545
8566c4df 1546 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1547 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1548 factor = 1;
1549
8566c4df 1550 /* K8 families < revF not supported yet */
1433eb99 1551 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1552 return;
1553 else
1554 WARN_ON(ctrl != 0);
1555 }
1556
4d796364 1557 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1558 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1559 : pvt->csels[0].csbases;
f71d0a05 1560
4d796364 1561 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1562
8566c4df
BP
1563 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1564
f71d0a05
DT
1565 /* Dump memory sizes for DIMM and its CSROWs */
1566 for (dimm = 0; dimm < 4; dimm++) {
1567
1568 size0 = 0;
11c75ead 1569 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1570 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1571 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1572
1573 size1 = 0;
11c75ead 1574 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1575 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1576 DBAM_DIMM(dimm, dbam));
f71d0a05 1577
24f9a7fe
BP
1578 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1579 dimm * 2, size0 << factor,
1580 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1581 }
1582}
1583
4d37607a
DT
1584static struct amd64_family_type amd64_family_types[] = {
1585 [K8_CPUS] = {
0092b20d 1586 .ctl_name = "K8",
8d5b5d9c
BP
1587 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1588 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1589 .ops = {
1433eb99 1590 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1591 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1592 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1593 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1594 }
1595 },
1596 [F10_CPUS] = {
0092b20d 1597 .ctl_name = "F10h",
8d5b5d9c
BP
1598 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1599 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1600 .ops = {
7d20d14d 1601 .early_channel_count = f1x_early_channel_count,
b15f0fca 1602 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1603 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1604 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1605 }
1606 },
1607 [F15_CPUS] = {
1608 .ctl_name = "F15h",
df71a053
BP
1609 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1610 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1611 .ops = {
7d20d14d 1612 .early_channel_count = f1x_early_channel_count,
b15f0fca 1613 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1614 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1615 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1616 }
1617 },
4d37607a
DT
1618};
1619
1620static struct pci_dev *pci_get_related_function(unsigned int vendor,
1621 unsigned int device,
1622 struct pci_dev *related)
1623{
1624 struct pci_dev *dev = NULL;
1625
1626 dev = pci_get_device(vendor, device, dev);
1627 while (dev) {
1628 if ((dev->bus->number == related->bus->number) &&
1629 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1630 break;
1631 dev = pci_get_device(vendor, device, dev);
1632 }
1633
1634 return dev;
1635}
1636
b1289d6f 1637/*
bfc04aec
BP
1638 * These are tables of eigenvectors (one per line) which can be used for the
1639 * construction of the syndrome tables. The modified syndrome search algorithm
1640 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1641 *
bfc04aec 1642 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1643 */
bfc04aec
BP
1644static u16 x4_vectors[] = {
1645 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1646 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1647 0x0001, 0x0002, 0x0004, 0x0008,
1648 0x1013, 0x3032, 0x4044, 0x8088,
1649 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1650 0x4857, 0xc4fe, 0x13cc, 0x3288,
1651 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1652 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1653 0x15c1, 0x2a42, 0x89ac, 0x4758,
1654 0x2b03, 0x1602, 0x4f0c, 0xca08,
1655 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1656 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1657 0x2b87, 0x164e, 0x642c, 0xdc18,
1658 0x40b9, 0x80de, 0x1094, 0x20e8,
1659 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1660 0x11c1, 0x2242, 0x84ac, 0x4c58,
1661 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1662 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1663 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1664 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1665 0x16b3, 0x3d62, 0x4f34, 0x8518,
1666 0x1e2f, 0x391a, 0x5cac, 0xf858,
1667 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1668 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1669 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1670 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1671 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1672 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1673 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1674 0x185d, 0x2ca6, 0x7914, 0x9e28,
1675 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1676 0x4199, 0x82ee, 0x19f4, 0x2e58,
1677 0x4807, 0xc40e, 0x130c, 0x3208,
1678 0x1905, 0x2e0a, 0x5804, 0xac08,
1679 0x213f, 0x132a, 0xadfc, 0x5ba8,
1680 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1681};
1682
bfc04aec
BP
1683static u16 x8_vectors[] = {
1684 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1685 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1686 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1687 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1688 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1689 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1690 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1691 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1692 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1693 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1694 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1695 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1696 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1697 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1698 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1699 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1700 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1701 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1702 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1703};
1704
1705static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1706 int v_dim)
b1289d6f 1707{
bfc04aec
BP
1708 unsigned int i, err_sym;
1709
1710 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1711 u16 s = syndrome;
1712 int v_idx = err_sym * v_dim;
1713 int v_end = (err_sym + 1) * v_dim;
1714
1715 /* walk over all 16 bits of the syndrome */
1716 for (i = 1; i < (1U << 16); i <<= 1) {
1717
1718 /* if bit is set in that eigenvector... */
1719 if (v_idx < v_end && vectors[v_idx] & i) {
1720 u16 ev_comp = vectors[v_idx++];
1721
1722 /* ... and bit set in the modified syndrome, */
1723 if (s & i) {
1724 /* remove it. */
1725 s ^= ev_comp;
4d37607a 1726
bfc04aec
BP
1727 if (!s)
1728 return err_sym;
1729 }
b1289d6f 1730
bfc04aec
BP
1731 } else if (s & i)
1732 /* can't get to zero, move to next symbol */
1733 break;
1734 }
b1289d6f
DT
1735 }
1736
1737 debugf0("syndrome(%x) not found\n", syndrome);
1738 return -1;
1739}
d27bf6fa 1740
bfc04aec
BP
1741static int map_err_sym_to_channel(int err_sym, int sym_size)
1742{
1743 if (sym_size == 4)
1744 switch (err_sym) {
1745 case 0x20:
1746 case 0x21:
1747 return 0;
1748 break;
1749 case 0x22:
1750 case 0x23:
1751 return 1;
1752 break;
1753 default:
1754 return err_sym >> 4;
1755 break;
1756 }
1757 /* x8 symbols */
1758 else
1759 switch (err_sym) {
1760 /* imaginary bits not in a DIMM */
1761 case 0x10:
1762 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1763 err_sym);
1764 return -1;
1765 break;
1766
1767 case 0x11:
1768 return 0;
1769 break;
1770 case 0x12:
1771 return 1;
1772 break;
1773 default:
1774 return err_sym >> 3;
1775 break;
1776 }
1777 return -1;
1778}
1779
1780static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1781{
1782 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1783 int err_sym = -1;
1784
a3b7db09 1785 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1786 err_sym = decode_syndrome(syndrome, x8_vectors,
1787 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1788 pvt->ecc_sym_sz);
1789 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1790 err_sym = decode_syndrome(syndrome, x4_vectors,
1791 ARRAY_SIZE(x4_vectors),
a3b7db09 1792 pvt->ecc_sym_sz);
ad6a32e9 1793 else {
a3b7db09 1794 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1795 return err_sym;
bfc04aec 1796 }
ad6a32e9 1797
a3b7db09 1798 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1799}
1800
d27bf6fa
DT
1801/*
1802 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1803 * ADDRESS and process.
1804 */
f192c7b1 1805static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1806{
1807 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1808 u64 sys_addr;
f192c7b1 1809 u16 syndrome;
d27bf6fa
DT
1810
1811 /* Ensure that the Error Address is VALID */
f192c7b1 1812 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1813 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1814 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1815 return;
1816 }
1817
70046624 1818 sys_addr = get_error_address(m);
f192c7b1 1819 syndrome = extract_syndrome(m->status);
d27bf6fa 1820
24f9a7fe 1821 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1822
f192c7b1 1823 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1824}
1825
1826/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1827static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1828{
1f6bcee7 1829 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1830 int csrow;
44e9e2ee 1831 u64 sys_addr;
d27bf6fa 1832 u32 page, offset;
d27bf6fa
DT
1833
1834 log_mci = mci;
1835
f192c7b1 1836 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1837 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1838 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1839 return;
1840 }
1841
70046624 1842 sys_addr = get_error_address(m);
d27bf6fa
DT
1843
1844 /*
1845 * Find out which node the error address belongs to. This may be
1846 * different from the node that detected the error.
1847 */
44e9e2ee 1848 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1849 if (!src_mci) {
24f9a7fe
BP
1850 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1851 (unsigned long)sys_addr);
d27bf6fa
DT
1852 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1853 return;
1854 }
1855
1856 log_mci = src_mci;
1857
44e9e2ee 1858 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1859 if (csrow < 0) {
24f9a7fe
BP
1860 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1861 (unsigned long)sys_addr);
d27bf6fa
DT
1862 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1863 } else {
44e9e2ee 1864 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1865 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1866 }
1867}
1868
549d042d 1869static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1870 struct mce *m)
d27bf6fa 1871{
f192c7b1
BP
1872 u16 ec = EC(m->status);
1873 u8 xec = XEC(m->status, 0x1f);
1874 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1875
b70ef010 1876 /* Bail early out if this was an 'observed' error */
5980bb9c 1877 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1878 return;
d27bf6fa 1879
ecaf5606
BP
1880 /* Do only ECC errors */
1881 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1882 return;
d27bf6fa 1883
ecaf5606 1884 if (ecc_type == 2)
f192c7b1 1885 amd64_handle_ce(mci, m);
ecaf5606 1886 else if (ecc_type == 1)
f192c7b1 1887 amd64_handle_ue(mci, m);
d27bf6fa
DT
1888}
1889
7cfd4a87 1890void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1891{
cc4d8860 1892 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1893
f192c7b1 1894 __amd64_decode_bus_error(mci, m);
d27bf6fa 1895}
d27bf6fa 1896
0ec449ee 1897/*
8d5b5d9c 1898 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1899 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1900 */
360b7f3c 1901static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1902{
0ec449ee 1903 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1904 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1905 if (!pvt->F1) {
24f9a7fe
BP
1906 amd64_err("error address map device not found: "
1907 "vendor %x device 0x%x (broken BIOS?)\n",
1908 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1909 return -ENODEV;
0ec449ee
DT
1910 }
1911
1912 /* Reserve the MISC Device */
8d5b5d9c
BP
1913 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1914 if (!pvt->F3) {
1915 pci_dev_put(pvt->F1);
1916 pvt->F1 = NULL;
0ec449ee 1917
24f9a7fe
BP
1918 amd64_err("error F3 device not found: "
1919 "vendor %x device 0x%x (broken BIOS?)\n",
1920 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1921
bbd0c1f6 1922 return -ENODEV;
0ec449ee 1923 }
8d5b5d9c
BP
1924 debugf1("F1: %s\n", pci_name(pvt->F1));
1925 debugf1("F2: %s\n", pci_name(pvt->F2));
1926 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1927
1928 return 0;
1929}
1930
360b7f3c 1931static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1932{
8d5b5d9c
BP
1933 pci_dev_put(pvt->F1);
1934 pci_dev_put(pvt->F3);
0ec449ee
DT
1935}
1936
1937/*
1938 * Retrieve the hardware registers of the memory controller (this includes the
1939 * 'Address Map' and 'Misc' device regs)
1940 */
360b7f3c 1941static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1942{
a3b7db09 1943 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1944 u64 msr_val;
ad6a32e9 1945 u32 tmp;
7f19bf75 1946 int range;
0ec449ee
DT
1947
1948 /*
1949 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1950 * those are Read-As-Zero
1951 */
e97f8bb8
BP
1952 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1953 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1954
1955 /* check first whether TOP_MEM2 is enabled */
1956 rdmsrl(MSR_K8_SYSCFG, msr_val);
1957 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1958 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1959 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1960 } else
1961 debugf0(" TOP_MEM2 disabled.\n");
1962
5980bb9c 1963 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1964
5a5d2371 1965 read_dram_ctl_register(pvt);
0ec449ee 1966
7f19bf75
BP
1967 for (range = 0; range < DRAM_RANGES; range++) {
1968 u8 rw;
0ec449ee 1969
7f19bf75
BP
1970 /* read settings for this DRAM range */
1971 read_dram_base_limit_regs(pvt, range);
1972
1973 rw = dram_rw(pvt, range);
1974 if (!rw)
1975 continue;
1976
1977 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1978 range,
1979 get_dram_base(pvt, range),
1980 get_dram_limit(pvt, range));
1981
1982 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1983 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1984 (rw & 0x1) ? "R" : "-",
1985 (rw & 0x2) ? "W" : "-",
1986 dram_intlv_sel(pvt, range),
1987 dram_dst_node(pvt, range));
0ec449ee
DT
1988 }
1989
b2b0c605 1990 read_dct_base_mask(pvt);
0ec449ee 1991
bc21fa57 1992 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1993 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1994
8d5b5d9c 1995 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1996
cb328507
BP
1997 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1998 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1999
78da121e 2000 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2001 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2002 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2003 }
ad6a32e9 2004
a3b7db09
BP
2005 pvt->ecc_sym_sz = 4;
2006
2007 if (c->x86 >= 0x10) {
b2b0c605 2008 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2009 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2010
a3b7db09
BP
2011 /* F10h, revD and later can do x8 ECC too */
2012 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2013 pvt->ecc_sym_sz = 8;
2014 }
b2b0c605 2015 dump_misc_regs(pvt);
0ec449ee
DT
2016}
2017
2018/*
2019 * NOTE: CPU Revision Dependent code
2020 *
2021 * Input:
11c75ead 2022 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2023 * k8 private pointer to -->
2024 * DRAM Bank Address mapping register
2025 * node_id
2026 * DCL register where dual_channel_active is
2027 *
2028 * The DBAM register consists of 4 sets of 4 bits each definitions:
2029 *
2030 * Bits: CSROWs
2031 * 0-3 CSROWs 0 and 1
2032 * 4-7 CSROWs 2 and 3
2033 * 8-11 CSROWs 4 and 5
2034 * 12-15 CSROWs 6 and 7
2035 *
2036 * Values range from: 0 to 15
2037 * The meaning of the values depends on CPU revision and dual-channel state,
2038 * see relevant BKDG more info.
2039 *
2040 * The memory controller provides for total of only 8 CSROWs in its current
2041 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2042 * single channel or two (2) DIMMs in dual channel mode.
2043 *
2044 * The following code logic collapses the various tables for CSROW based on CPU
2045 * revision.
2046 *
2047 * Returns:
2048 * The number of PAGE_SIZE pages on the specified CSROW number it
2049 * encompasses
2050 *
2051 */
41d8bfab 2052static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2053{
1433eb99 2054 u32 cs_mode, nr_pages;
0ec449ee
DT
2055
2056 /*
2057 * The math on this doesn't look right on the surface because x/2*4 can
2058 * be simplified to x*2 but this expression makes use of the fact that
2059 * it is integral math where 1/2=0. This intermediate value becomes the
2060 * number of bits to shift the DBAM register to extract the proper CSROW
2061 * field.
2062 */
1433eb99 2063 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2064
41d8bfab 2065 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2066
2067 /*
2068 * If dual channel then double the memory size of single channel.
2069 * Channel count is 1 or 2
2070 */
2071 nr_pages <<= (pvt->channel_count - 1);
2072
1433eb99 2073 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2074 debugf0(" nr_pages= %u channel-count = %d\n",
2075 nr_pages, pvt->channel_count);
2076
2077 return nr_pages;
2078}
2079
2080/*
2081 * Initialize the array of csrow attribute instances, based on the values
2082 * from pci config hardware registers.
2083 */
360b7f3c 2084static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2085{
2086 struct csrow_info *csrow;
2299ef71 2087 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2088 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2089 u32 val;
6ba5dcdc 2090 int i, empty = 1;
0ec449ee 2091
a97fa68e 2092 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2093
2299ef71 2094 pvt->nbcfg = val;
0ec449ee 2095
2299ef71
BP
2096 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2097 pvt->mc_node_id, val,
a97fa68e 2098 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2099
11c75ead 2100 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2101 csrow = &mci->csrows[i];
2102
11c75ead 2103 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2104 debugf1("----CSROW %d EMPTY for node %d\n", i,
2105 pvt->mc_node_id);
2106 continue;
2107 }
2108
2109 debugf1("----CSROW %d VALID for MC node %d\n",
2110 i, pvt->mc_node_id);
2111
2112 empty = 0;
41d8bfab 2113 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2114 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2115 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2116 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2117 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2118 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2119
2120 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2121 csrow->page_mask = ~mask;
0ec449ee
DT
2122 /* 8 bytes of resolution */
2123
24f9a7fe 2124 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2125
2126 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2127 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2128 (unsigned long)input_addr_min,
2129 (unsigned long)input_addr_max);
2130 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2131 (unsigned long)sys_addr, csrow->page_mask);
2132 debugf1(" nr_pages: %u first_page: 0x%lx "
2133 "last_page: 0x%lx\n",
2134 (unsigned)csrow->nr_pages,
2135 csrow->first_page, csrow->last_page);
2136
2137 /*
2138 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2139 */
a97fa68e 2140 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2141 csrow->edac_mode =
a97fa68e 2142 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2143 EDAC_S4ECD4ED : EDAC_SECDED;
2144 else
2145 csrow->edac_mode = EDAC_NONE;
2146 }
2147
2148 return empty;
2149}
d27bf6fa 2150
f6d6ae96 2151/* get all cores on this DCT */
b487c33e 2152static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2153{
2154 int cpu;
2155
2156 for_each_online_cpu(cpu)
2157 if (amd_get_nb_id(cpu) == nid)
2158 cpumask_set_cpu(cpu, mask);
2159}
2160
2161/* check MCG_CTL on all the cpus on this node */
b487c33e 2162static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2163{
2164 cpumask_var_t mask;
50542251 2165 int cpu, nbe;
f6d6ae96
BP
2166 bool ret = false;
2167
2168 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2169 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2170 return false;
2171 }
2172
2173 get_cpus_on_this_dct_cpumask(mask, nid);
2174
f6d6ae96
BP
2175 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2176
2177 for_each_cpu(cpu, mask) {
50542251 2178 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2179 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2180
2181 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2182 cpu, reg->q,
f6d6ae96
BP
2183 (nbe ? "enabled" : "disabled"));
2184
2185 if (!nbe)
2186 goto out;
f6d6ae96
BP
2187 }
2188 ret = true;
2189
2190out:
f6d6ae96
BP
2191 free_cpumask_var(mask);
2192 return ret;
2193}
2194
2299ef71 2195static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2196{
2197 cpumask_var_t cmask;
50542251 2198 int cpu;
f6d6ae96
BP
2199
2200 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2201 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2202 return false;
2203 }
2204
ae7bb7c6 2205 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2206
f6d6ae96
BP
2207 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2208
2209 for_each_cpu(cpu, cmask) {
2210
50542251
BP
2211 struct msr *reg = per_cpu_ptr(msrs, cpu);
2212
f6d6ae96 2213 if (on) {
5980bb9c 2214 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2215 s->flags.nb_mce_enable = 1;
f6d6ae96 2216
5980bb9c 2217 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2218 } else {
2219 /*
d95cf4de 2220 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2221 */
ae7bb7c6 2222 if (!s->flags.nb_mce_enable)
5980bb9c 2223 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2224 }
f6d6ae96
BP
2225 }
2226 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2227
f6d6ae96
BP
2228 free_cpumask_var(cmask);
2229
2230 return 0;
2231}
2232
2299ef71
BP
2233static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2234 struct pci_dev *F3)
f9431992 2235{
2299ef71 2236 bool ret = true;
c9f4f26e 2237 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2238
2299ef71
BP
2239 if (toggle_ecc_err_reporting(s, nid, ON)) {
2240 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2241 return false;
2242 }
2243
c9f4f26e 2244 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2245
ae7bb7c6
BP
2246 s->old_nbctl = value & mask;
2247 s->nbctl_valid = true;
f9431992
DT
2248
2249 value |= mask;
c9f4f26e 2250 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2251
a97fa68e 2252 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2253
a97fa68e
BP
2254 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2255 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2256
a97fa68e 2257 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2258 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2259
ae7bb7c6 2260 s->flags.nb_ecc_prev = 0;
d95cf4de 2261
f9431992 2262 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2263 value |= NBCFG_ECC_ENABLE;
2264 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2265
a97fa68e 2266 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2267
a97fa68e 2268 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2269 amd64_warn("Hardware rejected DRAM ECC enable,"
2270 "check memory DIMM configuration.\n");
2299ef71 2271 ret = false;
f9431992 2272 } else {
24f9a7fe 2273 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2274 }
d95cf4de 2275 } else {
ae7bb7c6 2276 s->flags.nb_ecc_prev = 1;
f9431992 2277 }
d95cf4de 2278
a97fa68e
BP
2279 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2280 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2281
2299ef71 2282 return ret;
f9431992
DT
2283}
2284
360b7f3c
BP
2285static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2286 struct pci_dev *F3)
f9431992 2287{
c9f4f26e
BP
2288 u32 value, mask = 0x3; /* UECC/CECC enable */
2289
f9431992 2290
ae7bb7c6 2291 if (!s->nbctl_valid)
f9431992
DT
2292 return;
2293
c9f4f26e 2294 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2295 value &= ~mask;
ae7bb7c6 2296 value |= s->old_nbctl;
f9431992 2297
c9f4f26e 2298 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2299
ae7bb7c6
BP
2300 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2301 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2302 amd64_read_pci_cfg(F3, NBCFG, &value);
2303 value &= ~NBCFG_ECC_ENABLE;
2304 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2305 }
2306
2307 /* restore the NB Enable MCGCTL bit */
2299ef71 2308 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2309 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2310}
2311
2312/*
2299ef71
BP
2313 * EDAC requires that the BIOS have ECC enabled before
2314 * taking over the processing of ECC errors. A command line
2315 * option allows to force-enable hardware ECC later in
2316 * enable_ecc_error_reporting().
f9431992 2317 */
cab4d277
BP
2318static const char *ecc_msg =
2319 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2320 " Either enable ECC checking or force module loading by setting "
2321 "'ecc_enable_override'.\n"
2322 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2323
2299ef71 2324static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2325{
2326 u32 value;
2299ef71 2327 u8 ecc_en = 0;
06724535 2328 bool nb_mce_en = false;
f9431992 2329
a97fa68e 2330 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2331
a97fa68e 2332 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2333 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2334
2299ef71 2335 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2336 if (!nb_mce_en)
2299ef71
BP
2337 amd64_notice("NB MCE bank disabled, set MSR "
2338 "0x%08x[4] on node %d to enable.\n",
2339 MSR_IA32_MCG_CTL, nid);
f9431992 2340
2299ef71
BP
2341 if (!ecc_en || !nb_mce_en) {
2342 amd64_notice("%s", ecc_msg);
2343 return false;
2344 }
2345 return true;
f9431992
DT
2346}
2347
7d6034d3
DT
2348struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2349 ARRAY_SIZE(amd64_inj_attrs) +
2350 1];
2351
2352struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2353
360b7f3c 2354static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2355{
2356 unsigned int i = 0, j = 0;
2357
2358 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2359 sysfs_attrs[i] = amd64_dbg_attrs[i];
2360
a135cef7
BP
2361 if (boot_cpu_data.x86 >= 0x10)
2362 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2363 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2364
2365 sysfs_attrs[i] = terminator;
2366
2367 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2368}
2369
df71a053
BP
2370static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2371 struct amd64_family_type *fam)
7d6034d3
DT
2372{
2373 struct amd64_pvt *pvt = mci->pvt_info;
2374
2375 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2376 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2377
5980bb9c 2378 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2379 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2380
5980bb9c 2381 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2382 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2383
2384 mci->edac_cap = amd64_determine_edac_cap(pvt);
2385 mci->mod_name = EDAC_MOD_STR;
2386 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2387 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2388 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2389 mci->ctl_page_to_phys = NULL;
2390
7d6034d3
DT
2391 /* memory scrubber interface */
2392 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2393 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2394}
2395
0092b20d
BP
2396/*
2397 * returns a pointer to the family descriptor on success, NULL otherwise.
2398 */
2399static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2400{
0092b20d
BP
2401 u8 fam = boot_cpu_data.x86;
2402 struct amd64_family_type *fam_type = NULL;
2403
2404 switch (fam) {
395ae783 2405 case 0xf:
0092b20d 2406 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2407 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2408 break;
df71a053 2409
395ae783 2410 case 0x10:
0092b20d 2411 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2412 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2413 break;
2414
2415 case 0x15:
2416 fam_type = &amd64_family_types[F15_CPUS];
2417 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2418 break;
2419
2420 default:
24f9a7fe 2421 amd64_err("Unsupported family!\n");
0092b20d 2422 return NULL;
395ae783 2423 }
0092b20d 2424
b8cfa02f
BP
2425 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2426
df71a053 2427 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2428 (fam == 0xf ?
24f9a7fe
BP
2429 (pvt->ext_model >= K8_REV_F ? "revF or later "
2430 : "revE or earlier ")
2431 : ""), pvt->mc_node_id);
0092b20d 2432 return fam_type;
395ae783
BP
2433}
2434
2299ef71 2435static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2436{
2437 struct amd64_pvt *pvt = NULL;
0092b20d 2438 struct amd64_family_type *fam_type = NULL;
360b7f3c 2439 struct mem_ctl_info *mci = NULL;
7d6034d3 2440 int err = 0, ret;
360b7f3c 2441 u8 nid = get_node_id(F2);
7d6034d3
DT
2442
2443 ret = -ENOMEM;
2444 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2445 if (!pvt)
360b7f3c 2446 goto err_ret;
7d6034d3 2447
360b7f3c 2448 pvt->mc_node_id = nid;
8d5b5d9c 2449 pvt->F2 = F2;
7d6034d3 2450
395ae783 2451 ret = -EINVAL;
0092b20d
BP
2452 fam_type = amd64_per_family_init(pvt);
2453 if (!fam_type)
395ae783
BP
2454 goto err_free;
2455
7d6034d3 2456 ret = -ENODEV;
360b7f3c 2457 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2458 if (err)
2459 goto err_free;
2460
360b7f3c 2461 read_mc_regs(pvt);
7d6034d3 2462
7d6034d3
DT
2463 /*
2464 * We need to determine how many memory channels there are. Then use
2465 * that information for calculating the size of the dynamic instance
360b7f3c 2466 * tables in the 'mci' structure.
7d6034d3 2467 */
360b7f3c 2468 ret = -EINVAL;
7d6034d3
DT
2469 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2470 if (pvt->channel_count < 0)
360b7f3c 2471 goto err_siblings;
7d6034d3
DT
2472
2473 ret = -ENOMEM;
11c75ead 2474 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2475 if (!mci)
360b7f3c 2476 goto err_siblings;
7d6034d3
DT
2477
2478 mci->pvt_info = pvt;
8d5b5d9c 2479 mci->dev = &pvt->F2->dev;
7d6034d3 2480
df71a053 2481 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2482
2483 if (init_csrows(mci))
7d6034d3
DT
2484 mci->edac_cap = EDAC_FLAG_NONE;
2485
360b7f3c 2486 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2487
2488 ret = -ENODEV;
2489 if (edac_mc_add_mc(mci)) {
2490 debugf1("failed edac_mc_add_mc()\n");
2491 goto err_add_mc;
2492 }
2493
549d042d
BP
2494 /* register stuff with EDAC MCE */
2495 if (report_gart_errors)
2496 amd_report_gart_errors(true);
2497
2498 amd_register_ecc_decoder(amd64_decode_bus_error);
2499
360b7f3c
BP
2500 mcis[nid] = mci;
2501
2502 atomic_inc(&drv_instances);
2503
7d6034d3
DT
2504 return 0;
2505
2506err_add_mc:
2507 edac_mc_free(mci);
2508
360b7f3c
BP
2509err_siblings:
2510 free_mc_sibling_devs(pvt);
7d6034d3 2511
360b7f3c
BP
2512err_free:
2513 kfree(pvt);
7d6034d3 2514
360b7f3c 2515err_ret:
7d6034d3
DT
2516 return ret;
2517}
2518
2299ef71 2519static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2520 const struct pci_device_id *mc_type)
7d6034d3 2521{
ae7bb7c6 2522 u8 nid = get_node_id(pdev);
2299ef71 2523 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2524 struct ecc_settings *s;
2299ef71 2525 int ret = 0;
7d6034d3 2526
7d6034d3 2527 ret = pci_enable_device(pdev);
b8cfa02f
BP
2528 if (ret < 0) {
2529 debugf0("ret=%d\n", ret);
2530 return -EIO;
2531 }
7d6034d3 2532
ae7bb7c6
BP
2533 ret = -ENOMEM;
2534 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2535 if (!s)
2299ef71 2536 goto err_out;
ae7bb7c6
BP
2537
2538 ecc_stngs[nid] = s;
2539
2299ef71
BP
2540 if (!ecc_enabled(F3, nid)) {
2541 ret = -ENODEV;
2542
2543 if (!ecc_enable_override)
2544 goto err_enable;
2545
2546 amd64_warn("Forcing ECC on!\n");
2547
2548 if (!enable_ecc_error_reporting(s, nid, F3))
2549 goto err_enable;
2550 }
2551
2552 ret = amd64_init_one_instance(pdev);
360b7f3c 2553 if (ret < 0) {
ae7bb7c6 2554 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2555 restore_ecc_error_reporting(s, nid, F3);
2556 }
7d6034d3
DT
2557
2558 return ret;
2299ef71
BP
2559
2560err_enable:
2561 kfree(s);
2562 ecc_stngs[nid] = NULL;
2563
2564err_out:
2565 return ret;
7d6034d3
DT
2566}
2567
2568static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2569{
2570 struct mem_ctl_info *mci;
2571 struct amd64_pvt *pvt;
360b7f3c
BP
2572 u8 nid = get_node_id(pdev);
2573 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2574 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2575
2576 /* Remove from EDAC CORE tracking list */
2577 mci = edac_mc_del_mc(&pdev->dev);
2578 if (!mci)
2579 return;
2580
2581 pvt = mci->pvt_info;
2582
360b7f3c 2583 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2584
360b7f3c 2585 free_mc_sibling_devs(pvt);
7d6034d3 2586
549d042d
BP
2587 /* unregister from EDAC MCE */
2588 amd_report_gart_errors(false);
2589 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2590
360b7f3c
BP
2591 kfree(ecc_stngs[nid]);
2592 ecc_stngs[nid] = NULL;
ae7bb7c6 2593
7d6034d3 2594 /* Free the EDAC CORE resources */
8f68ed97 2595 mci->pvt_info = NULL;
360b7f3c 2596 mcis[nid] = NULL;
8f68ed97
BP
2597
2598 kfree(pvt);
7d6034d3
DT
2599 edac_mc_free(mci);
2600}
2601
2602/*
2603 * This table is part of the interface for loading drivers for PCI devices. The
2604 * PCI core identifies what devices are on a system during boot, and then
2605 * inquiry this table to see if this driver is for a given device found.
2606 */
2607static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2608 {
2609 .vendor = PCI_VENDOR_ID_AMD,
2610 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2611 .subvendor = PCI_ANY_ID,
2612 .subdevice = PCI_ANY_ID,
2613 .class = 0,
2614 .class_mask = 0,
7d6034d3
DT
2615 },
2616 {
2617 .vendor = PCI_VENDOR_ID_AMD,
2618 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2619 .subvendor = PCI_ANY_ID,
2620 .subdevice = PCI_ANY_ID,
2621 .class = 0,
2622 .class_mask = 0,
7d6034d3 2623 },
df71a053
BP
2624 {
2625 .vendor = PCI_VENDOR_ID_AMD,
2626 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2627 .subvendor = PCI_ANY_ID,
2628 .subdevice = PCI_ANY_ID,
2629 .class = 0,
2630 .class_mask = 0,
2631 },
2632
7d6034d3
DT
2633 {0, }
2634};
2635MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2636
2637static struct pci_driver amd64_pci_driver = {
2638 .name = EDAC_MOD_STR,
2299ef71 2639 .probe = amd64_probe_one_instance,
7d6034d3
DT
2640 .remove = __devexit_p(amd64_remove_one_instance),
2641 .id_table = amd64_pci_table,
2642};
2643
360b7f3c 2644static void setup_pci_device(void)
7d6034d3
DT
2645{
2646 struct mem_ctl_info *mci;
2647 struct amd64_pvt *pvt;
2648
2649 if (amd64_ctl_pci)
2650 return;
2651
cc4d8860 2652 mci = mcis[0];
7d6034d3
DT
2653 if (mci) {
2654
2655 pvt = mci->pvt_info;
2656 amd64_ctl_pci =
8d5b5d9c 2657 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2658
2659 if (!amd64_ctl_pci) {
2660 pr_warning("%s(): Unable to create PCI control\n",
2661 __func__);
2662
2663 pr_warning("%s(): PCI error report via EDAC not set\n",
2664 __func__);
2665 }
2666 }
2667}
2668
2669static int __init amd64_edac_init(void)
2670{
360b7f3c 2671 int err = -ENODEV;
7d6034d3 2672
df71a053 2673 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2674
2675 opstate_init();
2676
9653a5c7 2677 if (amd_cache_northbridges() < 0)
56b34b91 2678 goto err_ret;
7d6034d3 2679
cc4d8860 2680 err = -ENOMEM;
ae7bb7c6
BP
2681 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2682 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2683 if (!(mcis && ecc_stngs))
cc4d8860
BP
2684 goto err_ret;
2685
50542251 2686 msrs = msrs_alloc();
56b34b91 2687 if (!msrs)
360b7f3c 2688 goto err_free;
50542251 2689
7d6034d3
DT
2690 err = pci_register_driver(&amd64_pci_driver);
2691 if (err)
56b34b91 2692 goto err_pci;
7d6034d3 2693
56b34b91 2694 err = -ENODEV;
360b7f3c
BP
2695 if (!atomic_read(&drv_instances))
2696 goto err_no_instances;
7d6034d3 2697
360b7f3c
BP
2698 setup_pci_device();
2699 return 0;
7d6034d3 2700
360b7f3c 2701err_no_instances:
7d6034d3 2702 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2703
56b34b91
BP
2704err_pci:
2705 msrs_free(msrs);
2706 msrs = NULL;
cc4d8860 2707
360b7f3c
BP
2708err_free:
2709 kfree(mcis);
2710 mcis = NULL;
2711
2712 kfree(ecc_stngs);
2713 ecc_stngs = NULL;
2714
56b34b91 2715err_ret:
7d6034d3
DT
2716 return err;
2717}
2718
2719static void __exit amd64_edac_exit(void)
2720{
2721 if (amd64_ctl_pci)
2722 edac_pci_release_generic_ctl(amd64_ctl_pci);
2723
2724 pci_unregister_driver(&amd64_pci_driver);
50542251 2725
ae7bb7c6
BP
2726 kfree(ecc_stngs);
2727 ecc_stngs = NULL;
2728
cc4d8860
BP
2729 kfree(mcis);
2730 mcis = NULL;
2731
50542251
BP
2732 msrs_free(msrs);
2733 msrs = NULL;
7d6034d3
DT
2734}
2735
2736module_init(amd64_edac_init);
2737module_exit(amd64_edac_exit);
2738
2739MODULE_LICENSE("GPL");
2740MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2741 "Dave Peterson, Thayne Harbaugh");
2742MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2743 EDAC_AMD64_VERSION);
2744
2745module_param(edac_op_state, int, 0444);
2746MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");