]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/edac/amd64_edac.c
Merge branches 'acpi-scan', 'acpi-utils' and 'acpi-pm'
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418 3
d1ea71cd 4static struct edac_pci_ctl_info *pci_ctl;
2bc65418
DT
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
c7e5301a 34static const struct scrubrate {
39094443
BP
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
7981a28f
AG
89/*
90 * Select DCT to which PCI cfg accesses are routed
91 */
92static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
93{
94 u32 reg = 0;
95
96 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
97 reg &= (pvt->model == 0x30) ? ~3 : ~1;
98 reg |= dct;
99 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
100}
101
b2b0c605
BP
102/*
103 *
104 * Depending on the family, F2 DCT reads need special handling:
105 *
7981a28f 106 * K8: has a single DCT only and no address offsets >= 0x100
b2b0c605
BP
107 *
108 * F10h: each DCT has its own set of regs
109 * DCT0 -> F2x040..
110 * DCT1 -> F2x140..
111 *
94c1acf2 112 * F16h: has only 1 DCT
7981a28f
AG
113 *
114 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
b2b0c605 115 */
7981a28f
AG
116static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
117 int offset, u32 *val)
b2b0c605 118{
7981a28f
AG
119 switch (pvt->fam) {
120 case 0xf:
121 if (dct || offset >= 0x100)
122 return -EINVAL;
123 break;
b2b0c605 124
7981a28f
AG
125 case 0x10:
126 if (dct) {
127 /*
128 * Note: If ganging is enabled, barring the regs
129 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
130 * return 0. (cf. Section 2.8.1 F10h BKDG)
131 */
132 if (dct_ganging_enabled(pvt))
133 return 0;
b2b0c605 134
7981a28f
AG
135 offset += 0x100;
136 }
137 break;
73ba8593 138
7981a28f
AG
139 case 0x15:
140 /*
141 * F15h: F2x1xx addresses do not map explicitly to DCT1.
142 * We should select which DCT we access using F1x10C[DctCfgSel]
143 */
144 dct = (dct && pvt->model == 0x30) ? 3 : dct;
145 f15h_select_dct(pvt, dct);
146 break;
73ba8593 147
7981a28f
AG
148 case 0x16:
149 if (dct)
150 return -EINVAL;
151 break;
b2b0c605 152
7981a28f
AG
153 default:
154 break;
b2b0c605 155 }
7981a28f 156 return amd64_read_pci_cfg(pvt->F2, offset, val);
b2b0c605
BP
157}
158
2bc65418
DT
159/*
160 * Memory scrubber control interface. For K8, memory scrubbing is handled by
161 * hardware and can involve L2 cache, dcache as well as the main memory. With
162 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
163 * functionality.
164 *
165 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
166 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
167 * bytes/sec for the setting.
168 *
169 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
170 * other archs, we might not have access to the caches directly.
171 */
172
173/*
174 * scan the scrub rate mapping table for a close or matching bandwidth value to
175 * issue. If requested is too big, then use last maximum value found.
176 */
d1ea71cd 177static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
178{
179 u32 scrubval;
180 int i;
181
182 /*
183 * map the configured rate (new_bw) to a value specific to the AMD64
184 * memory controller and apply to register. Search for the first
185 * bandwidth entry that is greater or equal than the setting requested
186 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
187 *
188 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
189 * by falling back to the last element in scrubrates[].
2bc65418 190 */
168bfeef 191 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
192 /*
193 * skip scrub rates which aren't recommended
194 * (see F10 BKDG, F3x58)
195 */
395ae783 196 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
197 continue;
198
199 if (scrubrates[i].bandwidth <= new_bw)
200 break;
2bc65418
DT
201 }
202
203 scrubval = scrubrates[i].scrubval;
2bc65418 204
5980bb9c 205 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 206
39094443
BP
207 if (scrubval)
208 return scrubrates[i].bandwidth;
209
2bc65418
DT
210 return 0;
211}
212
d1ea71cd 213static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
214{
215 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 216 u32 min_scrubrate = 0x5;
2bc65418 217
a4b4bedc 218 if (pvt->fam == 0xf)
87b3e0e6
BP
219 min_scrubrate = 0x0;
220
3f0aba4f
BP
221 /* Erratum #505 */
222 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
223 f15h_select_dct(pvt, 0);
224
d1ea71cd 225 return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
226}
227
d1ea71cd 228static int get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
229{
230 struct amd64_pvt *pvt = mci->pvt_info;
231 u32 scrubval = 0;
39094443 232 int i, retval = -EINVAL;
2bc65418 233
3f0aba4f
BP
234 /* Erratum #505 */
235 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
236 f15h_select_dct(pvt, 0);
237
5980bb9c 238 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
239
240 scrubval = scrubval & 0x001F;
241
926311fd 242 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 243 if (scrubrates[i].scrubval == scrubval) {
39094443 244 retval = scrubrates[i].bandwidth;
2bc65418
DT
245 break;
246 }
247 }
39094443 248 return retval;
2bc65418
DT
249}
250
6775763a 251/*
7f19bf75
BP
252 * returns true if the SysAddr given by sys_addr matches the
253 * DRAM base/limit associated with node_id
6775763a 254 */
d1ea71cd 255static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
6775763a 256{
7f19bf75 257 u64 addr;
6775763a
DT
258
259 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
260 * all ones if the most significant implemented address bit is 1.
261 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
262 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
263 * Application Programming.
264 */
265 addr = sys_addr & 0x000000ffffffffffull;
266
7f19bf75
BP
267 return ((addr >= get_dram_base(pvt, nid)) &&
268 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
269}
270
271/*
272 * Attempt to map a SysAddr to a node. On success, return a pointer to the
273 * mem_ctl_info structure for the node that the SysAddr maps to.
274 *
275 * On failure, return NULL.
276 */
277static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
278 u64 sys_addr)
279{
280 struct amd64_pvt *pvt;
c7e5301a 281 u8 node_id;
6775763a
DT
282 u32 intlv_en, bits;
283
284 /*
285 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
286 * 3.4.4.2) registers to map the SysAddr to a node ID.
287 */
288 pvt = mci->pvt_info;
289
290 /*
291 * The value of this field should be the same for all DRAM Base
292 * registers. Therefore we arbitrarily choose to read it from the
293 * register for node 0.
294 */
7f19bf75 295 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
296
297 if (intlv_en == 0) {
7f19bf75 298 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
d1ea71cd 299 if (base_limit_match(pvt, sys_addr, node_id))
8edc5445 300 goto found;
6775763a 301 }
8edc5445 302 goto err_no_match;
6775763a
DT
303 }
304
72f158fe
BP
305 if (unlikely((intlv_en != 0x01) &&
306 (intlv_en != 0x03) &&
307 (intlv_en != 0x07))) {
24f9a7fe 308 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
309 return NULL;
310 }
311
312 bits = (((u32) sys_addr) >> 12) & intlv_en;
313
314 for (node_id = 0; ; ) {
7f19bf75 315 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
316 break; /* intlv_sel field matches */
317
7f19bf75 318 if (++node_id >= DRAM_RANGES)
6775763a
DT
319 goto err_no_match;
320 }
321
322 /* sanity test for sys_addr */
d1ea71cd 323 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
324 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
325 "range for node %d with node interleaving enabled.\n",
326 __func__, sys_addr, node_id);
6775763a
DT
327 return NULL;
328 }
329
330found:
b487c33e 331 return edac_mc_find((int)node_id);
6775763a
DT
332
333err_no_match:
956b9ba1
JP
334 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
335 (unsigned long)sys_addr);
6775763a
DT
336
337 return NULL;
338}
e2ce7255
DT
339
340/*
11c75ead
BP
341 * compute the CS base address of the @csrow on the DRAM controller @dct.
342 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 343 */
11c75ead
BP
344static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
345 u64 *base, u64 *mask)
e2ce7255 346{
11c75ead
BP
347 u64 csbase, csmask, base_bits, mask_bits;
348 u8 addr_shift;
e2ce7255 349
18b94f66 350 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
351 csbase = pvt->csels[dct].csbases[csrow];
352 csmask = pvt->csels[dct].csmasks[csrow];
10ef6b0d
CG
353 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
354 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
11c75ead 355 addr_shift = 4;
94c1acf2
AG
356
357 /*
18b94f66
AG
358 * F16h and F15h, models 30h and later need two addr_shift values:
359 * 8 for high and 6 for low (cf. F16h BKDG).
360 */
361 } else if (pvt->fam == 0x16 ||
362 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
94c1acf2
AG
363 csbase = pvt->csels[dct].csbases[csrow];
364 csmask = pvt->csels[dct].csmasks[csrow >> 1];
365
10ef6b0d
CG
366 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
367 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
368
369 *mask = ~0ULL;
370 /* poke holes for the csmask */
10ef6b0d
CG
371 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
372 (GENMASK_ULL(30, 19) << 8));
94c1acf2 373
10ef6b0d
CG
374 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
375 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
376
377 return;
11c75ead
BP
378 } else {
379 csbase = pvt->csels[dct].csbases[csrow];
380 csmask = pvt->csels[dct].csmasks[csrow >> 1];
381 addr_shift = 8;
e2ce7255 382
a4b4bedc 383 if (pvt->fam == 0x15)
10ef6b0d
CG
384 base_bits = mask_bits =
385 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
11c75ead 386 else
10ef6b0d
CG
387 base_bits = mask_bits =
388 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
11c75ead 389 }
e2ce7255 390
11c75ead 391 *base = (csbase & base_bits) << addr_shift;
e2ce7255 392
11c75ead
BP
393 *mask = ~0ULL;
394 /* poke holes for the csmask */
395 *mask &= ~(mask_bits << addr_shift);
396 /* OR them in */
397 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
398}
399
11c75ead
BP
400#define for_each_chip_select(i, dct, pvt) \
401 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
402
614ec9d8
BP
403#define chip_select_base(i, dct, pvt) \
404 pvt->csels[dct].csbases[i]
405
11c75ead
BP
406#define for_each_chip_select_mask(i, dct, pvt) \
407 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
408
e2ce7255
DT
409/*
410 * @input_addr is an InputAddr associated with the node given by mci. Return the
411 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
412 */
413static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
414{
415 struct amd64_pvt *pvt;
416 int csrow;
417 u64 base, mask;
418
419 pvt = mci->pvt_info;
420
11c75ead
BP
421 for_each_chip_select(csrow, 0, pvt) {
422 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
423 continue;
424
11c75ead
BP
425 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
426
427 mask = ~mask;
e2ce7255
DT
428
429 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
430 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
431 (unsigned long)input_addr, csrow,
432 pvt->mc_node_id);
e2ce7255
DT
433
434 return csrow;
435 }
436 }
956b9ba1
JP
437 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
438 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
439
440 return -1;
441}
442
e2ce7255
DT
443/*
444 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
445 * for the node represented by mci. Info is passed back in *hole_base,
446 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
447 * info is invalid. Info may be invalid for either of the following reasons:
448 *
449 * - The revision of the node is not E or greater. In this case, the DRAM Hole
450 * Address Register does not exist.
451 *
452 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
453 * indicating that its contents are not valid.
454 *
455 * The values passed back in *hole_base, *hole_offset, and *hole_size are
456 * complete 32-bit values despite the fact that the bitfields in the DHAR
457 * only represent bits 31-24 of the base and offset values.
458 */
459int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
460 u64 *hole_offset, u64 *hole_size)
461{
462 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
463
464 /* only revE and later have the DRAM Hole Address Register */
a4b4bedc 465 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
466 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
467 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
468 return 1;
469 }
470
bc21fa57 471 /* valid for Fam10h and above */
a4b4bedc 472 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 473 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
474 return 1;
475 }
476
c8e518d5 477 if (!dhar_valid(pvt)) {
956b9ba1
JP
478 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
479 pvt->mc_node_id);
e2ce7255
DT
480 return 1;
481 }
482
483 /* This node has Memory Hoisting */
484
485 /* +------------------+--------------------+--------------------+-----
486 * | memory | DRAM hole | relocated |
487 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
488 * | | | DRAM hole |
489 * | | | [0x100000000, |
490 * | | | (0x100000000+ |
491 * | | | (0xffffffff-x))] |
492 * +------------------+--------------------+--------------------+-----
493 *
494 * Above is a diagram of physical memory showing the DRAM hole and the
495 * relocated addresses from the DRAM hole. As shown, the DRAM hole
496 * starts at address x (the base address) and extends through address
497 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
498 * addresses in the hole so that they start at 0x100000000.
499 */
500
1f31677e
BP
501 *hole_base = dhar_base(pvt);
502 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255 503
a4b4bedc
BP
504 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
505 : k8_dhar_offset(pvt);
e2ce7255 506
956b9ba1
JP
507 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
508 pvt->mc_node_id, (unsigned long)*hole_base,
509 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
510
511 return 0;
512}
513EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
514
93c2df58
DT
515/*
516 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
517 * assumed that sys_addr maps to the node given by mci.
518 *
519 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
520 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
521 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
522 * then it is also involved in translating a SysAddr to a DramAddr. Sections
523 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
524 * These parts of the documentation are unclear. I interpret them as follows:
525 *
526 * When node n receives a SysAddr, it processes the SysAddr as follows:
527 *
528 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
529 * Limit registers for node n. If the SysAddr is not within the range
530 * specified by the base and limit values, then node n ignores the Sysaddr
531 * (since it does not map to node n). Otherwise continue to step 2 below.
532 *
533 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
534 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
535 * the range of relocated addresses (starting at 0x100000000) from the DRAM
536 * hole. If not, skip to step 3 below. Else get the value of the
537 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
538 * offset defined by this value from the SysAddr.
539 *
540 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
541 * Base register for node n. To obtain the DramAddr, subtract the base
542 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
543 */
544static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
545{
7f19bf75 546 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 547 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 548 int ret;
93c2df58 549
7f19bf75 550 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
551
552 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
553 &hole_size);
554 if (!ret) {
1f31677e
BP
555 if ((sys_addr >= (1ULL << 32)) &&
556 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
557 /* use DHAR to translate SysAddr to DramAddr */
558 dram_addr = sys_addr - hole_offset;
559
956b9ba1
JP
560 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
561 (unsigned long)sys_addr,
562 (unsigned long)dram_addr);
93c2df58
DT
563
564 return dram_addr;
565 }
566 }
567
568 /*
569 * Translate the SysAddr to a DramAddr as shown near the start of
570 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
571 * only deals with 40-bit values. Therefore we discard bits 63-40 of
572 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
573 * discard are all 1s. Otherwise the bits we discard are all 0s. See
574 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
575 * Programmer's Manual Volume 1 Application Programming.
576 */
10ef6b0d 577 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
93c2df58 578
956b9ba1
JP
579 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
580 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
581 return dram_addr;
582}
583
584/*
585 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
586 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
587 * for node interleaving.
588 */
589static int num_node_interleave_bits(unsigned intlv_en)
590{
591 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
592 int n;
593
594 BUG_ON(intlv_en > 7);
595 n = intlv_shift_table[intlv_en];
596 return n;
597}
598
599/* Translate the DramAddr given by @dram_addr to an InputAddr. */
600static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
601{
602 struct amd64_pvt *pvt;
603 int intlv_shift;
604 u64 input_addr;
605
606 pvt = mci->pvt_info;
607
608 /*
609 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * concerning translating a DramAddr to an InputAddr.
611 */
7f19bf75 612 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
10ef6b0d 613 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
f678b8cc 614 (dram_addr & 0xfff);
93c2df58 615
956b9ba1
JP
616 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
617 intlv_shift, (unsigned long)dram_addr,
618 (unsigned long)input_addr);
93c2df58
DT
619
620 return input_addr;
621}
622
623/*
624 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
625 * assumed that @sys_addr maps to the node given by mci.
626 */
627static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
628{
629 u64 input_addr;
630
631 input_addr =
632 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
633
956b9ba1
JP
634 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
635 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
636
637 return input_addr;
638}
639
93c2df58
DT
640/* Map the Error address to a PAGE and PAGE OFFSET. */
641static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 642 struct err_info *err)
93c2df58 643{
33ca0643
BP
644 err->page = (u32) (error_address >> PAGE_SHIFT);
645 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
646}
647
648/*
649 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
650 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
651 * of a node that detected an ECC memory error. mci represents the node that
652 * the error address maps to (possibly different from the node that detected
653 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
654 * error.
655 */
656static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
657{
658 int csrow;
659
660 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
661
662 if (csrow == -1)
24f9a7fe
BP
663 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
664 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
665 return csrow;
666}
e2ce7255 667
bfc04aec 668static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 669
2da11654
DT
670/*
671 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
672 * are ECC capable.
673 */
d1ea71cd 674static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
2da11654 675{
cb328507 676 u8 bit;
1f6189ed 677 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 678
a4b4bedc 679 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
680 ? 19
681 : 17;
682
584fcff4 683 if (pvt->dclr0 & BIT(bit))
2da11654
DT
684 edac_cap = EDAC_FLAG_SECDED;
685
686 return edac_cap;
687}
688
d1ea71cd 689static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 690
d1ea71cd 691static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
68798e17 692{
956b9ba1 693 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 694
a597d2a5
AG
695 if (pvt->dram_type == MEM_LRDDR3) {
696 u32 dcsm = pvt->csels[chan].csmasks[0];
697 /*
698 * It's assumed all LRDIMMs in a DCT are going to be of
699 * same 'type' until proven otherwise. So, use a cs
700 * value of '0' here to get dcsm value.
701 */
702 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
703 }
704
705 edac_dbg(1, "All DIMMs support ECC:%s\n",
706 (dclr & BIT(19)) ? "yes" : "no");
707
68798e17 708
956b9ba1
JP
709 edac_dbg(1, " PAR/ERR parity: %s\n",
710 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 711
a4b4bedc 712 if (pvt->fam == 0x10)
956b9ba1
JP
713 edac_dbg(1, " DCT 128bit mode width: %s\n",
714 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 715
956b9ba1
JP
716 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
717 (dclr & BIT(12)) ? "yes" : "no",
718 (dclr & BIT(13)) ? "yes" : "no",
719 (dclr & BIT(14)) ? "yes" : "no",
720 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
721}
722
2da11654 723/* Display and decode various NB registers for debug purposes. */
b2b0c605 724static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 725{
956b9ba1 726 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 727
956b9ba1
JP
728 edac_dbg(1, " NB two channel DRAM capable: %s\n",
729 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 730
956b9ba1
JP
731 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
732 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
733 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17 734
d1ea71cd 735 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
2da11654 736
956b9ba1 737 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 738
956b9ba1
JP
739 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
740 pvt->dhar, dhar_base(pvt),
a4b4bedc
BP
741 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
742 : f10_dhar_offset(pvt));
2da11654 743
956b9ba1 744 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 745
d1ea71cd 746 debug_display_dimm_sizes(pvt, 0);
4d796364 747
8de1d91e 748 /* everything below this point is Fam10h and above */
a4b4bedc 749 if (pvt->fam == 0xf)
2da11654 750 return;
4d796364 751
d1ea71cd 752 debug_display_dimm_sizes(pvt, 1);
2da11654 753
a3b7db09 754 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 755
8de1d91e 756 /* Only if NOT ganged does dclr1 have valid info */
68798e17 757 if (!dct_ganging_enabled(pvt))
d1ea71cd 758 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
2da11654
DT
759}
760
94be4bff 761/*
18b94f66 762 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 763 */
11c75ead 764static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 765{
18b94f66 766 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
767 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
768 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
a597d2a5 769 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
18b94f66
AG
770 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
771 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
9d858bb1 772 } else {
11c75ead
BP
773 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
774 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
775 }
776}
777
778/*
11c75ead 779 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 780 */
b2b0c605 781static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 782{
11c75ead 783 int cs;
94be4bff 784
11c75ead 785 prep_chip_selects(pvt);
94be4bff 786
11c75ead 787 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
788 int reg0 = DCSB0 + (cs * 4);
789 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
790 u32 *base0 = &pvt->csels[0].csbases[cs];
791 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 792
7981a28f 793 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
956b9ba1
JP
794 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
795 cs, *base0, reg0);
94be4bff 796
7981a28f 797 if (pvt->fam == 0xf)
11c75ead 798 continue;
b2b0c605 799
7981a28f 800 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
956b9ba1 801 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
7981a28f
AG
802 cs, *base1, (pvt->fam == 0x10) ? reg1
803 : reg0);
94be4bff
DT
804 }
805
11c75ead 806 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
807 int reg0 = DCSM0 + (cs * 4);
808 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
809 u32 *mask0 = &pvt->csels[0].csmasks[cs];
810 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 811
7981a28f 812 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
956b9ba1
JP
813 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
814 cs, *mask0, reg0);
94be4bff 815
7981a28f 816 if (pvt->fam == 0xf)
11c75ead 817 continue;
b2b0c605 818
7981a28f 819 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
956b9ba1 820 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
7981a28f
AG
821 cs, *mask1, (pvt->fam == 0x10) ? reg1
822 : reg0);
94be4bff
DT
823 }
824}
825
a597d2a5 826static void determine_memory_type(struct amd64_pvt *pvt)
94be4bff 827{
a597d2a5 828 u32 dram_ctrl, dcsm;
94be4bff 829
a597d2a5
AG
830 switch (pvt->fam) {
831 case 0xf:
832 if (pvt->ext_model >= K8_REV_F)
833 goto ddr3;
834
835 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
836 return;
837
838 case 0x10:
6b4c0bde 839 if (pvt->dchr0 & DDR3_MODE)
a597d2a5
AG
840 goto ddr3;
841
842 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
843 return;
844
845 case 0x15:
846 if (pvt->model < 0x60)
847 goto ddr3;
848
849 /*
850 * Model 0x60h needs special handling:
851 *
852 * We use a Chip Select value of '0' to obtain dcsm.
853 * Theoretically, it is possible to populate LRDIMMs of different
854 * 'Rank' value on a DCT. But this is not the common case. So,
855 * it's reasonable to assume all DIMMs are going to be of same
856 * 'type' until proven otherwise.
857 */
858 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
859 dcsm = pvt->csels[0].csmasks[0];
860
861 if (((dram_ctrl >> 8) & 0x7) == 0x2)
862 pvt->dram_type = MEM_DDR4;
863 else if (pvt->dclr0 & BIT(16))
864 pvt->dram_type = MEM_DDR3;
865 else if (dcsm & 0x3)
866 pvt->dram_type = MEM_LRDDR3;
6b4c0bde 867 else
a597d2a5 868 pvt->dram_type = MEM_RDDR3;
94be4bff 869
a597d2a5
AG
870 return;
871
872 case 0x16:
873 goto ddr3;
874
875 default:
876 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
877 pvt->dram_type = MEM_EMPTY;
878 }
879 return;
94be4bff 880
a597d2a5
AG
881ddr3:
882 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
94be4bff
DT
883}
884
cb328507 885/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
886static int k8_early_channel_count(struct amd64_pvt *pvt)
887{
cb328507 888 int flag;
ddff876d 889
9f56da0e 890 if (pvt->ext_model >= K8_REV_F)
ddff876d 891 /* RevF (NPT) and later */
41d8bfab 892 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 893 else
ddff876d
DT
894 /* RevE and earlier */
895 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
896
897 /* not used */
898 pvt->dclr1 = 0;
899
900 return (flag) ? 2 : 1;
901}
902
70046624 903/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
a4b4bedc 904static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
ddff876d 905{
c1ae6830 906 u64 addr;
70046624
BP
907 u8 start_bit = 1;
908 u8 end_bit = 47;
909
a4b4bedc 910 if (pvt->fam == 0xf) {
70046624
BP
911 start_bit = 3;
912 end_bit = 39;
913 }
914
10ef6b0d 915 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
c1ae6830
BP
916
917 /*
918 * Erratum 637 workaround
919 */
a4b4bedc 920 if (pvt->fam == 0x15) {
c1ae6830
BP
921 struct amd64_pvt *pvt;
922 u64 cc6_base, tmp_addr;
923 u32 tmp;
8b84c8df
DB
924 u16 mce_nid;
925 u8 intlv_en;
c1ae6830 926
10ef6b0d 927 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
c1ae6830
BP
928 return addr;
929
930 mce_nid = amd_get_nb_id(m->extcpu);
931 pvt = mcis[mce_nid]->pvt_info;
932
933 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
934 intlv_en = tmp >> 21 & 0x7;
935
936 /* add [47:27] + 3 trailing bits */
10ef6b0d 937 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
c1ae6830
BP
938
939 /* reverse and add DramIntlvEn */
940 cc6_base |= intlv_en ^ 0x7;
941
942 /* pin at [47:24] */
943 cc6_base <<= 24;
944
945 if (!intlv_en)
10ef6b0d 946 return cc6_base | (addr & GENMASK_ULL(23, 0));
c1ae6830
BP
947
948 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
949
950 /* faster log2 */
10ef6b0d 951 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
c1ae6830
BP
952
953 /* OR DramIntlvSel into bits [14:12] */
10ef6b0d 954 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
c1ae6830
BP
955
956 /* add remaining [11:0] bits from original MC4_ADDR */
10ef6b0d 957 tmp_addr |= addr & GENMASK_ULL(11, 0);
c1ae6830
BP
958
959 return cc6_base | tmp_addr;
960 }
961
962 return addr;
ddff876d
DT
963}
964
e2c0bffe
DB
965static struct pci_dev *pci_get_related_function(unsigned int vendor,
966 unsigned int device,
967 struct pci_dev *related)
968{
969 struct pci_dev *dev = NULL;
970
971 while ((dev = pci_get_device(vendor, device, dev))) {
972 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
973 (dev->bus->number == related->bus->number) &&
974 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
975 break;
976 }
977
978 return dev;
979}
980
7f19bf75 981static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 982{
e2c0bffe 983 struct amd_northbridge *nb;
18b94f66
AG
984 struct pci_dev *f1 = NULL;
985 unsigned int pci_func;
71d2a32e 986 int off = range << 3;
e2c0bffe 987 u32 llim;
ddff876d 988
7f19bf75
BP
989 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
990 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 991
18b94f66 992 if (pvt->fam == 0xf)
7f19bf75 993 return;
ddff876d 994
7f19bf75
BP
995 if (!dram_rw(pvt, range))
996 return;
ddff876d 997
7f19bf75
BP
998 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
999 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 1000
e2c0bffe 1001 /* F15h: factor in CC6 save area by reading dst node's limit reg */
18b94f66 1002 if (pvt->fam != 0x15)
e2c0bffe 1003 return;
f08e457c 1004
e2c0bffe
DB
1005 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1006 if (WARN_ON(!nb))
1007 return;
f08e457c 1008
a597d2a5
AG
1009 if (pvt->model == 0x60)
1010 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1011 else if (pvt->model == 0x30)
1012 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1013 else
1014 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
18b94f66
AG
1015
1016 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
e2c0bffe
DB
1017 if (WARN_ON(!f1))
1018 return;
f08e457c 1019
e2c0bffe 1020 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 1021
10ef6b0d 1022 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
f08e457c 1023
e2c0bffe
DB
1024 /* {[39:27],111b} */
1025 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 1026
10ef6b0d 1027 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
f08e457c 1028
e2c0bffe
DB
1029 /* [47:40] */
1030 pvt->ranges[range].lim.hi |= llim >> 13;
1031
1032 pci_dev_put(f1);
ddff876d
DT
1033}
1034
f192c7b1 1035static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1036 struct err_info *err)
ddff876d 1037{
f192c7b1 1038 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 1039
33ca0643 1040 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
1041
1042 /*
1043 * Find out which node the error address belongs to. This may be
1044 * different from the node that detected the error.
1045 */
33ca0643
BP
1046 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1047 if (!err->src_mci) {
ab5a503c
MCC
1048 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1049 (unsigned long)sys_addr);
33ca0643 1050 err->err_code = ERR_NODE;
ab5a503c
MCC
1051 return;
1052 }
1053
1054 /* Now map the sys_addr to a CSROW */
33ca0643
BP
1055 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1056 if (err->csrow < 0) {
1057 err->err_code = ERR_CSROW;
ab5a503c
MCC
1058 return;
1059 }
1060
ddff876d 1061 /* CHIPKILL enabled */
f192c7b1 1062 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
1063 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1064 if (err->channel < 0) {
ddff876d
DT
1065 /*
1066 * Syndrome didn't map, so we don't know which of the
1067 * 2 DIMMs is in error. So we need to ID 'both' of them
1068 * as suspect.
1069 */
33ca0643 1070 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1071 "possible error reporting race\n",
33ca0643
BP
1072 err->syndrome);
1073 err->err_code = ERR_CHANNEL;
ddff876d
DT
1074 return;
1075 }
1076 } else {
1077 /*
1078 * non-chipkill ecc mode
1079 *
1080 * The k8 documentation is unclear about how to determine the
1081 * channel number when using non-chipkill memory. This method
1082 * was obtained from email communication with someone at AMD.
1083 * (Wish the email was placed in this comment - norsk)
1084 */
33ca0643 1085 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1086 }
ddff876d
DT
1087}
1088
41d8bfab 1089static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1090{
41d8bfab 1091 unsigned shift = 0;
ddff876d 1092
41d8bfab
BP
1093 if (i <= 2)
1094 shift = i;
1095 else if (!(i & 0x1))
1096 shift = i >> 1;
1433eb99 1097 else
41d8bfab 1098 shift = (i + 1) >> 1;
ddff876d 1099
41d8bfab
BP
1100 return 128 << (shift + !!dct_width);
1101}
1102
1103static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1104 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1105{
1106 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1107
1108 if (pvt->ext_model >= K8_REV_F) {
1109 WARN_ON(cs_mode > 11);
1110 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1111 }
1112 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1113 unsigned diff;
41d8bfab
BP
1114 WARN_ON(cs_mode > 10);
1115
11b0a314
BP
1116 /*
1117 * the below calculation, besides trying to win an obfuscated C
1118 * contest, maps cs_mode values to DIMM chip select sizes. The
1119 * mappings are:
1120 *
1121 * cs_mode CS size (mb)
1122 * ======= ============
1123 * 0 32
1124 * 1 64
1125 * 2 128
1126 * 3 128
1127 * 4 256
1128 * 5 512
1129 * 6 256
1130 * 7 512
1131 * 8 1024
1132 * 9 1024
1133 * 10 2048
1134 *
1135 * Basically, it calculates a value with which to shift the
1136 * smallest CS size of 32MB.
1137 *
1138 * ddr[23]_cs_size have a similar purpose.
1139 */
1140 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1141
1142 return 32 << (cs_mode - diff);
41d8bfab
BP
1143 }
1144 else {
1145 WARN_ON(cs_mode > 6);
1146 return 32 << cs_mode;
1147 }
ddff876d
DT
1148}
1149
1afd3c98
DT
1150/*
1151 * Get the number of DCT channels in use.
1152 *
1153 * Return:
1154 * number of Memory Channels in operation
1155 * Pass back:
1156 * contents of the DCL0_LOW register
1157 */
7d20d14d 1158static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1159{
6ba5dcdc 1160 int i, j, channels = 0;
1afd3c98 1161
7d20d14d 1162 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
a4b4bedc 1163 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1164 return 2;
1afd3c98
DT
1165
1166 /*
d16149e8
BP
1167 * Need to check if in unganged mode: In such, there are 2 channels,
1168 * but they are not in 128 bit mode and thus the above 'dclr0' status
1169 * bit will be OFF.
1afd3c98
DT
1170 *
1171 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1172 * their CSEnable bit on. If so, then SINGLE DIMM case.
1173 */
956b9ba1 1174 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1175
1afd3c98
DT
1176 /*
1177 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1178 * is more than just one DIMM present in unganged mode. Need to check
1179 * both controllers since DIMMs can be placed in either one.
1180 */
525a1b20
BP
1181 for (i = 0; i < 2; i++) {
1182 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1183
57a30854
WW
1184 for (j = 0; j < 4; j++) {
1185 if (DBAM_DIMM(j, dbam) > 0) {
1186 channels++;
1187 break;
1188 }
1189 }
1afd3c98
DT
1190 }
1191
d16149e8
BP
1192 if (channels > 2)
1193 channels = 2;
1194
24f9a7fe 1195 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1196
1197 return channels;
1afd3c98
DT
1198}
1199
41d8bfab 1200static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1201{
41d8bfab
BP
1202 unsigned shift = 0;
1203 int cs_size = 0;
1204
1205 if (i == 0 || i == 3 || i == 4)
1206 cs_size = -1;
1207 else if (i <= 2)
1208 shift = i;
1209 else if (i == 12)
1210 shift = 7;
1211 else if (!(i & 0x1))
1212 shift = i >> 1;
1213 else
1214 shift = (i + 1) >> 1;
1215
1216 if (cs_size != -1)
1217 cs_size = (128 * (1 << !!dct_width)) << shift;
1218
1219 return cs_size;
1220}
1221
a597d2a5
AG
1222static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1223{
1224 unsigned shift = 0;
1225 int cs_size = 0;
1226
1227 if (i < 4 || i == 6)
1228 cs_size = -1;
1229 else if (i == 12)
1230 shift = 7;
1231 else if (!(i & 0x1))
1232 shift = i >> 1;
1233 else
1234 shift = (i + 1) >> 1;
1235
1236 if (cs_size != -1)
1237 cs_size = rank_multiply * (128 << shift);
1238
1239 return cs_size;
1240}
1241
1242static int ddr4_cs_size(unsigned i)
1243{
1244 int cs_size = 0;
1245
1246 if (i == 0)
1247 cs_size = -1;
1248 else if (i == 1)
1249 cs_size = 1024;
1250 else
1251 /* Min cs_size = 1G */
1252 cs_size = 1024 * (1 << (i >> 1));
1253
1254 return cs_size;
1255}
1256
41d8bfab 1257static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1258 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1259{
1260 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1261
1262 WARN_ON(cs_mode > 11);
1433eb99
BP
1263
1264 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1265 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1266 else
41d8bfab
BP
1267 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1268}
1269
1270/*
1271 * F15h supports only 64bit DCT interfaces
1272 */
1273static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1274 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1275{
1276 WARN_ON(cs_mode > 12);
1433eb99 1277
41d8bfab 1278 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1279}
1280
a597d2a5
AG
1281/* F15h M60h supports DDR4 mapping as well.. */
1282static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1283 unsigned cs_mode, int cs_mask_nr)
1284{
1285 int cs_size;
1286 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1287
1288 WARN_ON(cs_mode > 12);
1289
1290 if (pvt->dram_type == MEM_DDR4) {
1291 if (cs_mode > 9)
1292 return -1;
1293
1294 cs_size = ddr4_cs_size(cs_mode);
1295 } else if (pvt->dram_type == MEM_LRDDR3) {
1296 unsigned rank_multiply = dcsm & 0xf;
1297
1298 if (rank_multiply == 3)
1299 rank_multiply = 4;
1300 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1301 } else {
1302 /* Minimum cs size is 512mb for F15hM60h*/
1303 if (cs_mode == 0x1)
1304 return -1;
1305
1306 cs_size = ddr3_cs_size(cs_mode, false);
1307 }
1308
1309 return cs_size;
1310}
1311
94c1acf2 1312/*
18b94f66 1313 * F16h and F15h model 30h have only limited cs_modes.
94c1acf2
AG
1314 */
1315static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1316 unsigned cs_mode, int cs_mask_nr)
94c1acf2
AG
1317{
1318 WARN_ON(cs_mode > 12);
1319
1320 if (cs_mode == 6 || cs_mode == 8 ||
1321 cs_mode == 9 || cs_mode == 12)
1322 return -1;
1323 else
1324 return ddr3_cs_size(cs_mode, false);
1325}
1326
5a5d2371 1327static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1328{
6163b5d4 1329
a4b4bedc 1330 if (pvt->fam == 0xf)
5a5d2371
BP
1331 return;
1332
7981a28f 1333 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1334 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1335 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1336
956b9ba1
JP
1337 edac_dbg(0, " DCTs operate in %s mode\n",
1338 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1339
1340 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1341 edac_dbg(0, " Address range split per DCT: %s\n",
1342 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1343
956b9ba1
JP
1344 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1345 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1346 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1347
956b9ba1
JP
1348 edac_dbg(0, " channel interleave: %s, "
1349 "interleave bits selector: 0x%x\n",
1350 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1351 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1352 }
1353
7981a28f 1354 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1355}
1356
18b94f66
AG
1357/*
1358 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1359 * 2.10.12 Memory Interleaving Modes).
1360 */
1361static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1362 u8 intlv_en, int num_dcts_intlv,
1363 u32 dct_sel)
1364{
1365 u8 channel = 0;
1366 u8 select;
1367
1368 if (!(intlv_en))
1369 return (u8)(dct_sel);
1370
1371 if (num_dcts_intlv == 2) {
1372 select = (sys_addr >> 8) & 0x3;
1373 channel = select ? 0x3 : 0;
9d0e8d83
AG
1374 } else if (num_dcts_intlv == 4) {
1375 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1376 switch (intlv_addr) {
1377 case 0x4:
1378 channel = (sys_addr >> 8) & 0x3;
1379 break;
1380 case 0x5:
1381 channel = (sys_addr >> 9) & 0x3;
1382 break;
1383 }
1384 }
18b94f66
AG
1385 return channel;
1386}
1387
f71d0a05 1388/*
229a7a11 1389 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1390 * Interleaving Modes.
1391 */
b15f0fca 1392static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1393 bool hi_range_sel, u8 intlv_en)
6163b5d4 1394{
151fa71c 1395 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1396
1397 if (dct_ganging_enabled(pvt))
229a7a11 1398 return 0;
6163b5d4 1399
229a7a11
BP
1400 if (hi_range_sel)
1401 return dct_sel_high;
6163b5d4 1402
229a7a11
BP
1403 /*
1404 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1405 */
1406 if (dct_interleave_enabled(pvt)) {
1407 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1408
1409 /* return DCT select function: 0=DCT0, 1=DCT1 */
1410 if (!intlv_addr)
1411 return sys_addr >> 6 & 1;
1412
1413 if (intlv_addr & 0x2) {
1414 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1415 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1416
1417 return ((sys_addr >> shift) & 1) ^ temp;
1418 }
1419
1420 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1421 }
1422
1423 if (dct_high_range_enabled(pvt))
1424 return ~dct_sel_high & 1;
6163b5d4
DT
1425
1426 return 0;
1427}
1428
c8e518d5 1429/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1430static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1431 u64 sys_addr, bool hi_rng,
1432 u32 dct_sel_base_addr)
6163b5d4
DT
1433{
1434 u64 chan_off;
c8e518d5
BP
1435 u64 dram_base = get_dram_base(pvt, range);
1436 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1437 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1438
c8e518d5
BP
1439 if (hi_rng) {
1440 /*
1441 * if
1442 * base address of high range is below 4Gb
1443 * (bits [47:27] at [31:11])
1444 * DRAM address space on this DCT is hoisted above 4Gb &&
1445 * sys_addr > 4Gb
1446 *
1447 * remove hole offset from sys_addr
1448 * else
1449 * remove high range offset from sys_addr
1450 */
1451 if ((!(dct_sel_base_addr >> 16) ||
1452 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1453 dhar_valid(pvt) &&
c8e518d5 1454 (sys_addr >= BIT_64(32)))
bc21fa57 1455 chan_off = hole_off;
6163b5d4
DT
1456 else
1457 chan_off = dct_sel_base_off;
1458 } else {
c8e518d5
BP
1459 /*
1460 * if
1461 * we have a valid hole &&
1462 * sys_addr > 4Gb
1463 *
1464 * remove hole
1465 * else
1466 * remove dram base to normalize to DCT address
1467 */
972ea17a 1468 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1469 chan_off = hole_off;
6163b5d4 1470 else
c8e518d5 1471 chan_off = dram_base;
6163b5d4
DT
1472 }
1473
10ef6b0d 1474 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
6163b5d4
DT
1475}
1476
6163b5d4
DT
1477/*
1478 * checks if the csrow passed in is marked as SPARED, if so returns the new
1479 * spare row
1480 */
11c75ead 1481static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1482{
614ec9d8
BP
1483 int tmp_cs;
1484
1485 if (online_spare_swap_done(pvt, dct) &&
1486 csrow == online_spare_bad_dramcs(pvt, dct)) {
1487
1488 for_each_chip_select(tmp_cs, dct, pvt) {
1489 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1490 csrow = tmp_cs;
1491 break;
1492 }
1493 }
6163b5d4
DT
1494 }
1495 return csrow;
1496}
1497
1498/*
1499 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1500 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1501 *
1502 * Return:
1503 * -EINVAL: NOT FOUND
1504 * 0..csrow = Chip-Select Row
1505 */
c7e5301a 1506static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1507{
1508 struct mem_ctl_info *mci;
1509 struct amd64_pvt *pvt;
11c75ead 1510 u64 cs_base, cs_mask;
6163b5d4
DT
1511 int cs_found = -EINVAL;
1512 int csrow;
1513
cc4d8860 1514 mci = mcis[nid];
6163b5d4
DT
1515 if (!mci)
1516 return cs_found;
1517
1518 pvt = mci->pvt_info;
1519
956b9ba1 1520 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1521
11c75ead
BP
1522 for_each_chip_select(csrow, dct, pvt) {
1523 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1524 continue;
1525
11c75ead 1526 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1527
956b9ba1
JP
1528 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1529 csrow, cs_base, cs_mask);
6163b5d4 1530
11c75ead 1531 cs_mask = ~cs_mask;
6163b5d4 1532
956b9ba1
JP
1533 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1534 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1535
11c75ead 1536 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
18b94f66
AG
1537 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1538 cs_found = csrow;
1539 break;
1540 }
11c75ead 1541 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1542
956b9ba1 1543 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1544 break;
1545 }
1546 }
1547 return cs_found;
1548}
1549
95b0ef55
BP
1550/*
1551 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1552 * swapped with a region located at the bottom of memory so that the GPU can use
1553 * the interleaved region and thus two channels.
1554 */
b15f0fca 1555static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1556{
1557 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1558
a4b4bedc 1559 if (pvt->fam == 0x10) {
95b0ef55 1560 /* only revC3 and revE have that feature */
a4b4bedc 1561 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
95b0ef55
BP
1562 return sys_addr;
1563 }
1564
7981a28f 1565 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
95b0ef55
BP
1566
1567 if (!(swap_reg & 0x1))
1568 return sys_addr;
1569
1570 swap_base = (swap_reg >> 3) & 0x7f;
1571 swap_limit = (swap_reg >> 11) & 0x7f;
1572 rgn_size = (swap_reg >> 20) & 0x7f;
1573 tmp_addr = sys_addr >> 27;
1574
1575 if (!(sys_addr >> 34) &&
1576 (((tmp_addr >= swap_base) &&
1577 (tmp_addr <= swap_limit)) ||
1578 (tmp_addr < rgn_size)))
1579 return sys_addr ^ (u64)swap_base << 27;
1580
1581 return sys_addr;
1582}
1583
f71d0a05 1584/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1585static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1586 u64 sys_addr, int *chan_sel)
f71d0a05 1587{
229a7a11 1588 int cs_found = -EINVAL;
c8e518d5 1589 u64 chan_addr;
5d4b58e8 1590 u32 dct_sel_base;
11c75ead 1591 u8 channel;
229a7a11 1592 bool high_range = false;
f71d0a05 1593
7f19bf75 1594 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1595 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1596 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1597
956b9ba1
JP
1598 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1599 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1600
355fba60
BP
1601 if (dhar_valid(pvt) &&
1602 dhar_base(pvt) <= sys_addr &&
1603 sys_addr < BIT_64(32)) {
1604 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1605 sys_addr);
1606 return -EINVAL;
1607 }
1608
f030ddfb 1609 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1610 return -EINVAL;
1611
b15f0fca 1612 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1613
f71d0a05
DT
1614 dct_sel_base = dct_sel_baseaddr(pvt);
1615
1616 /*
1617 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1618 * select between DCT0 and DCT1.
1619 */
1620 if (dct_high_range_enabled(pvt) &&
1621 !dct_ganging_enabled(pvt) &&
1622 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1623 high_range = true;
f71d0a05 1624
b15f0fca 1625 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1626
b15f0fca 1627 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1628 high_range, dct_sel_base);
f71d0a05 1629
e2f79dbd
BP
1630 /* Remove node interleaving, see F1x120 */
1631 if (intlv_en)
1632 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1633 (chan_addr & 0xfff);
f71d0a05 1634
5d4b58e8 1635 /* remove channel interleave */
f71d0a05
DT
1636 if (dct_interleave_enabled(pvt) &&
1637 !dct_high_range_enabled(pvt) &&
1638 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1639
1640 if (dct_sel_interleave_addr(pvt) != 1) {
1641 if (dct_sel_interleave_addr(pvt) == 0x3)
1642 /* hash 9 */
1643 chan_addr = ((chan_addr >> 10) << 9) |
1644 (chan_addr & 0x1ff);
1645 else
1646 /* A[6] or hash 6 */
1647 chan_addr = ((chan_addr >> 7) << 6) |
1648 (chan_addr & 0x3f);
1649 } else
1650 /* A[12] */
1651 chan_addr = ((chan_addr >> 13) << 12) |
1652 (chan_addr & 0xfff);
f71d0a05
DT
1653 }
1654
956b9ba1 1655 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1656
b15f0fca 1657 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1658
33ca0643 1659 if (cs_found >= 0)
f71d0a05 1660 *chan_sel = channel;
33ca0643 1661
f71d0a05
DT
1662 return cs_found;
1663}
1664
18b94f66
AG
1665static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1666 u64 sys_addr, int *chan_sel)
1667{
1668 int cs_found = -EINVAL;
1669 int num_dcts_intlv = 0;
1670 u64 chan_addr, chan_offset;
1671 u64 dct_base, dct_limit;
1672 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1673 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1674
1675 u64 dhar_offset = f10_dhar_offset(pvt);
1676 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1677 u8 node_id = dram_dst_node(pvt, range);
1678 u8 intlv_en = dram_intlv_en(pvt, range);
1679
1680 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1681 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1682
1683 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1684 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1685
1686 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1687 range, sys_addr, get_dram_limit(pvt, range));
1688
1689 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1690 !(get_dram_limit(pvt, range) >= sys_addr))
1691 return -EINVAL;
1692
1693 if (dhar_valid(pvt) &&
1694 dhar_base(pvt) <= sys_addr &&
1695 sys_addr < BIT_64(32)) {
1696 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1697 sys_addr);
1698 return -EINVAL;
1699 }
1700
1701 /* Verify sys_addr is within DCT Range. */
4fc06b31
AG
1702 dct_base = (u64) dct_sel_baseaddr(pvt);
1703 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
18b94f66
AG
1704
1705 if (!(dct_cont_base_reg & BIT(0)) &&
4fc06b31
AG
1706 !(dct_base <= (sys_addr >> 27) &&
1707 dct_limit >= (sys_addr >> 27)))
18b94f66
AG
1708 return -EINVAL;
1709
1710 /* Verify number of dct's that participate in channel interleaving. */
1711 num_dcts_intlv = (int) hweight8(intlv_en);
1712
1713 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1714 return -EINVAL;
1715
1716 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1717 num_dcts_intlv, dct_sel);
1718
1719 /* Verify we stay within the MAX number of channels allowed */
7f3f5240 1720 if (channel > 3)
18b94f66
AG
1721 return -EINVAL;
1722
1723 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1724
1725 /* Get normalized DCT addr */
1726 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1727 chan_offset = dhar_offset;
1728 else
4fc06b31 1729 chan_offset = dct_base << 27;
18b94f66
AG
1730
1731 chan_addr = sys_addr - chan_offset;
1732
1733 /* remove channel interleave */
1734 if (num_dcts_intlv == 2) {
1735 if (intlv_addr == 0x4)
1736 chan_addr = ((chan_addr >> 9) << 8) |
1737 (chan_addr & 0xff);
1738 else if (intlv_addr == 0x5)
1739 chan_addr = ((chan_addr >> 10) << 9) |
1740 (chan_addr & 0x1ff);
1741 else
1742 return -EINVAL;
1743
1744 } else if (num_dcts_intlv == 4) {
1745 if (intlv_addr == 0x4)
1746 chan_addr = ((chan_addr >> 10) << 8) |
1747 (chan_addr & 0xff);
1748 else if (intlv_addr == 0x5)
1749 chan_addr = ((chan_addr >> 11) << 9) |
1750 (chan_addr & 0x1ff);
1751 else
1752 return -EINVAL;
1753 }
1754
1755 if (dct_offset_en) {
1756 amd64_read_pci_cfg(pvt->F1,
1757 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1758 &tmp);
4fc06b31 1759 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
18b94f66
AG
1760 }
1761
1762 f15h_select_dct(pvt, channel);
1763
1764 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1765
1766 /*
1767 * Find Chip select:
1768 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1769 * there is support for 4 DCT's, but only 2 are currently functional.
1770 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1771 * pvt->csels[1]. So we need to use '1' here to get correct info.
1772 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1773 */
1774 alias_channel = (channel == 3) ? 1 : channel;
1775
1776 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1777
1778 if (cs_found >= 0)
1779 *chan_sel = alias_channel;
1780
1781 return cs_found;
1782}
1783
1784static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1785 u64 sys_addr,
1786 int *chan_sel)
f71d0a05 1787{
e761359a
BP
1788 int cs_found = -EINVAL;
1789 unsigned range;
f71d0a05 1790
7f19bf75 1791 for (range = 0; range < DRAM_RANGES; range++) {
7f19bf75 1792 if (!dram_rw(pvt, range))
f71d0a05
DT
1793 continue;
1794
18b94f66
AG
1795 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1796 cs_found = f15_m30h_match_to_this_node(pvt, range,
1797 sys_addr,
1798 chan_sel);
f71d0a05 1799
18b94f66
AG
1800 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1801 (get_dram_limit(pvt, range) >= sys_addr)) {
b15f0fca 1802 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1803 sys_addr, chan_sel);
f71d0a05
DT
1804 if (cs_found >= 0)
1805 break;
1806 }
1807 }
1808 return cs_found;
1809}
1810
1811/*
bdc30a0c
BP
1812 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1813 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1814 *
bdc30a0c
BP
1815 * The @sys_addr is usually an error address received from the hardware
1816 * (MCX_ADDR).
f71d0a05 1817 */
b15f0fca 1818static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1819 struct err_info *err)
f71d0a05
DT
1820{
1821 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1822
33ca0643 1823 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1824
33ca0643
BP
1825 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1826 if (err->csrow < 0) {
1827 err->err_code = ERR_CSROW;
bdc30a0c
BP
1828 return;
1829 }
1830
bdc30a0c
BP
1831 /*
1832 * We need the syndromes for channel detection only when we're
1833 * ganged. Otherwise @chan should already contain the channel at
1834 * this point.
1835 */
a97fa68e 1836 if (dct_ganging_enabled(pvt))
33ca0643 1837 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1838}
1839
f71d0a05 1840/*
8566c4df 1841 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1842 * CSROWs
f71d0a05 1843 */
d1ea71cd 1844static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1845{
bb89f5a0 1846 int dimm, size0, size1;
525a1b20
BP
1847 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1848 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1849
a4b4bedc 1850 if (pvt->fam == 0xf) {
8566c4df 1851 /* K8 families < revF not supported yet */
1433eb99 1852 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1853 return;
1854 else
1855 WARN_ON(ctrl != 0);
1856 }
1857
7981a28f
AG
1858 if (pvt->fam == 0x10) {
1859 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
1860 : pvt->dbam0;
1861 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
1862 pvt->csels[1].csbases :
1863 pvt->csels[0].csbases;
1864 } else if (ctrl) {
1865 dbam = pvt->dbam0;
1866 dcsb = pvt->csels[1].csbases;
1867 }
956b9ba1
JP
1868 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1869 ctrl, dbam);
f71d0a05 1870
8566c4df
BP
1871 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1872
f71d0a05
DT
1873 /* Dump memory sizes for DIMM and its CSROWs */
1874 for (dimm = 0; dimm < 4; dimm++) {
1875
1876 size0 = 0;
11c75ead 1877 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
a597d2a5
AG
1878 /* For f15m60h, need multiplier for LRDIMM cs_size
1879 * calculation. We pass 'dimm' value to the dbam_to_cs
1880 * mapper so we can find the multiplier from the
1881 * corresponding DCSM.
1882 */
41d8bfab 1883 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
1884 DBAM_DIMM(dimm, dbam),
1885 dimm);
f71d0a05
DT
1886
1887 size1 = 0;
11c75ead 1888 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab 1889 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
1890 DBAM_DIMM(dimm, dbam),
1891 dimm);
f71d0a05 1892
24f9a7fe 1893 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1894 dimm * 2, size0,
1895 dimm * 2 + 1, size1);
f71d0a05
DT
1896 }
1897}
1898
d1ea71cd 1899static struct amd64_family_type family_types[] = {
4d37607a 1900 [K8_CPUS] = {
0092b20d 1901 .ctl_name = "K8",
8d5b5d9c
BP
1902 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1903 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1904 .ops = {
1433eb99 1905 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1906 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1907 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1908 }
1909 },
1910 [F10_CPUS] = {
0092b20d 1911 .ctl_name = "F10h",
8d5b5d9c
BP
1912 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1913 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1914 .ops = {
7d20d14d 1915 .early_channel_count = f1x_early_channel_count,
b15f0fca 1916 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1917 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1918 }
1919 },
1920 [F15_CPUS] = {
1921 .ctl_name = "F15h",
df71a053
BP
1922 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1923 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1924 .ops = {
7d20d14d 1925 .early_channel_count = f1x_early_channel_count,
b15f0fca 1926 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1927 .dbam_to_cs = f15_dbam_to_chip_select,
4d37607a
DT
1928 }
1929 },
18b94f66
AG
1930 [F15_M30H_CPUS] = {
1931 .ctl_name = "F15h_M30h",
1932 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1933 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
1934 .ops = {
1935 .early_channel_count = f1x_early_channel_count,
1936 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1937 .dbam_to_cs = f16_dbam_to_chip_select,
18b94f66
AG
1938 }
1939 },
a597d2a5
AG
1940 [F15_M60H_CPUS] = {
1941 .ctl_name = "F15h_M60h",
1942 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
1943 .f3_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F3,
1944 .ops = {
1945 .early_channel_count = f1x_early_channel_count,
1946 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1947 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
1948 }
1949 },
94c1acf2
AG
1950 [F16_CPUS] = {
1951 .ctl_name = "F16h",
1952 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1953 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1954 .ops = {
1955 .early_channel_count = f1x_early_channel_count,
1956 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1957 .dbam_to_cs = f16_dbam_to_chip_select,
94c1acf2
AG
1958 }
1959 },
85a8885b
AG
1960 [F16_M30H_CPUS] = {
1961 .ctl_name = "F16h_M30h",
1962 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
1963 .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
1964 .ops = {
1965 .early_channel_count = f1x_early_channel_count,
1966 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1967 .dbam_to_cs = f16_dbam_to_chip_select,
85a8885b
AG
1968 }
1969 },
4d37607a
DT
1970};
1971
b1289d6f 1972/*
bfc04aec
BP
1973 * These are tables of eigenvectors (one per line) which can be used for the
1974 * construction of the syndrome tables. The modified syndrome search algorithm
1975 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1976 *
bfc04aec 1977 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1978 */
c7e5301a 1979static const u16 x4_vectors[] = {
bfc04aec
BP
1980 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1981 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1982 0x0001, 0x0002, 0x0004, 0x0008,
1983 0x1013, 0x3032, 0x4044, 0x8088,
1984 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1985 0x4857, 0xc4fe, 0x13cc, 0x3288,
1986 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1987 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1988 0x15c1, 0x2a42, 0x89ac, 0x4758,
1989 0x2b03, 0x1602, 0x4f0c, 0xca08,
1990 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1991 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1992 0x2b87, 0x164e, 0x642c, 0xdc18,
1993 0x40b9, 0x80de, 0x1094, 0x20e8,
1994 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1995 0x11c1, 0x2242, 0x84ac, 0x4c58,
1996 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1997 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1998 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1999 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2000 0x16b3, 0x3d62, 0x4f34, 0x8518,
2001 0x1e2f, 0x391a, 0x5cac, 0xf858,
2002 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2003 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2004 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2005 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2006 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2007 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2008 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2009 0x185d, 0x2ca6, 0x7914, 0x9e28,
2010 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2011 0x4199, 0x82ee, 0x19f4, 0x2e58,
2012 0x4807, 0xc40e, 0x130c, 0x3208,
2013 0x1905, 0x2e0a, 0x5804, 0xac08,
2014 0x213f, 0x132a, 0xadfc, 0x5ba8,
2015 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
2016};
2017
c7e5301a 2018static const u16 x8_vectors[] = {
bfc04aec
BP
2019 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2020 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2021 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2022 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2023 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2024 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2025 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2026 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2027 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2028 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2029 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2030 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2031 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2032 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2033 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2034 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2035 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2036 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2037 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2038};
2039
c7e5301a 2040static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 2041 unsigned v_dim)
b1289d6f 2042{
bfc04aec
BP
2043 unsigned int i, err_sym;
2044
2045 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2046 u16 s = syndrome;
d34a6ecd
BP
2047 unsigned v_idx = err_sym * v_dim;
2048 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
2049
2050 /* walk over all 16 bits of the syndrome */
2051 for (i = 1; i < (1U << 16); i <<= 1) {
2052
2053 /* if bit is set in that eigenvector... */
2054 if (v_idx < v_end && vectors[v_idx] & i) {
2055 u16 ev_comp = vectors[v_idx++];
2056
2057 /* ... and bit set in the modified syndrome, */
2058 if (s & i) {
2059 /* remove it. */
2060 s ^= ev_comp;
4d37607a 2061
bfc04aec
BP
2062 if (!s)
2063 return err_sym;
2064 }
b1289d6f 2065
bfc04aec
BP
2066 } else if (s & i)
2067 /* can't get to zero, move to next symbol */
2068 break;
2069 }
b1289d6f
DT
2070 }
2071
956b9ba1 2072 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
2073 return -1;
2074}
d27bf6fa 2075
bfc04aec
BP
2076static int map_err_sym_to_channel(int err_sym, int sym_size)
2077{
2078 if (sym_size == 4)
2079 switch (err_sym) {
2080 case 0x20:
2081 case 0x21:
2082 return 0;
2083 break;
2084 case 0x22:
2085 case 0x23:
2086 return 1;
2087 break;
2088 default:
2089 return err_sym >> 4;
2090 break;
2091 }
2092 /* x8 symbols */
2093 else
2094 switch (err_sym) {
2095 /* imaginary bits not in a DIMM */
2096 case 0x10:
2097 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2098 err_sym);
2099 return -1;
2100 break;
2101
2102 case 0x11:
2103 return 0;
2104 break;
2105 case 0x12:
2106 return 1;
2107 break;
2108 default:
2109 return err_sym >> 3;
2110 break;
2111 }
2112 return -1;
2113}
2114
2115static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2116{
2117 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
2118 int err_sym = -1;
2119
a3b7db09 2120 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
2121 err_sym = decode_syndrome(syndrome, x8_vectors,
2122 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
2123 pvt->ecc_sym_sz);
2124 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
2125 err_sym = decode_syndrome(syndrome, x4_vectors,
2126 ARRAY_SIZE(x4_vectors),
a3b7db09 2127 pvt->ecc_sym_sz);
ad6a32e9 2128 else {
a3b7db09 2129 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 2130 return err_sym;
bfc04aec 2131 }
ad6a32e9 2132
a3b7db09 2133 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
2134}
2135
33ca0643
BP
2136static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
2137 u8 ecc_type)
d27bf6fa 2138{
33ca0643
BP
2139 enum hw_event_mc_err_type err_type;
2140 const char *string;
d27bf6fa 2141
33ca0643
BP
2142 if (ecc_type == 2)
2143 err_type = HW_EVENT_ERR_CORRECTED;
2144 else if (ecc_type == 1)
2145 err_type = HW_EVENT_ERR_UNCORRECTED;
2146 else {
2147 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
2148 return;
2149 }
2150
33ca0643
BP
2151 switch (err->err_code) {
2152 case DECODE_OK:
2153 string = "";
2154 break;
2155 case ERR_NODE:
2156 string = "Failed to map error addr to a node";
2157 break;
2158 case ERR_CSROW:
2159 string = "Failed to map error addr to a csrow";
2160 break;
2161 case ERR_CHANNEL:
2162 string = "unknown syndrome - possible error reporting race";
2163 break;
2164 default:
2165 string = "WTF error";
2166 break;
d27bf6fa 2167 }
33ca0643
BP
2168
2169 edac_mc_handle_error(err_type, mci, 1,
2170 err->page, err->offset, err->syndrome,
2171 err->csrow, err->channel, -1,
2172 string, "");
d27bf6fa
DT
2173}
2174
df781d03 2175static inline void decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2176{
df781d03 2177 struct mem_ctl_info *mci = mcis[node_id];
33ca0643 2178 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 2179 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
2180 u8 xec = XEC(m->status, 0x1f);
2181 u16 ec = EC(m->status);
33ca0643
BP
2182 u64 sys_addr;
2183 struct err_info err;
d27bf6fa 2184
66fed2d4 2185 /* Bail out early if this was an 'observed' error */
5980bb9c 2186 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2187 return;
d27bf6fa 2188
ecaf5606
BP
2189 /* Do only ECC errors */
2190 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2191 return;
d27bf6fa 2192
33ca0643
BP
2193 memset(&err, 0, sizeof(err));
2194
a4b4bedc 2195 sys_addr = get_error_address(pvt, m);
33ca0643 2196
ecaf5606 2197 if (ecc_type == 2)
33ca0643
BP
2198 err.syndrome = extract_syndrome(m->status);
2199
2200 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2201
2202 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
2203}
2204
0ec449ee 2205/*
8d5b5d9c 2206 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2207 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2208 */
360b7f3c 2209static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2210{
0ec449ee 2211 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2212 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2213 if (!pvt->F1) {
24f9a7fe
BP
2214 amd64_err("error address map device not found: "
2215 "vendor %x device 0x%x (broken BIOS?)\n",
2216 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2217 return -ENODEV;
0ec449ee
DT
2218 }
2219
2220 /* Reserve the MISC Device */
8d5b5d9c
BP
2221 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2222 if (!pvt->F3) {
2223 pci_dev_put(pvt->F1);
2224 pvt->F1 = NULL;
0ec449ee 2225
24f9a7fe
BP
2226 amd64_err("error F3 device not found: "
2227 "vendor %x device 0x%x (broken BIOS?)\n",
2228 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2229
bbd0c1f6 2230 return -ENODEV;
0ec449ee 2231 }
956b9ba1
JP
2232 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2233 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2234 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2235
2236 return 0;
2237}
2238
360b7f3c 2239static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2240{
8d5b5d9c
BP
2241 pci_dev_put(pvt->F1);
2242 pci_dev_put(pvt->F3);
0ec449ee
DT
2243}
2244
2245/*
2246 * Retrieve the hardware registers of the memory controller (this includes the
2247 * 'Address Map' and 'Misc' device regs)
2248 */
360b7f3c 2249static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2250{
a4b4bedc 2251 unsigned range;
0ec449ee 2252 u64 msr_val;
ad6a32e9 2253 u32 tmp;
0ec449ee
DT
2254
2255 /*
2256 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2257 * those are Read-As-Zero
2258 */
e97f8bb8 2259 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2260 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2261
2262 /* check first whether TOP_MEM2 is enabled */
2263 rdmsrl(MSR_K8_SYSCFG, msr_val);
2264 if (msr_val & (1U << 21)) {
e97f8bb8 2265 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2266 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2267 } else
956b9ba1 2268 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2269
5980bb9c 2270 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2271
5a5d2371 2272 read_dram_ctl_register(pvt);
0ec449ee 2273
7f19bf75
BP
2274 for (range = 0; range < DRAM_RANGES; range++) {
2275 u8 rw;
0ec449ee 2276
7f19bf75
BP
2277 /* read settings for this DRAM range */
2278 read_dram_base_limit_regs(pvt, range);
2279
2280 rw = dram_rw(pvt, range);
2281 if (!rw)
2282 continue;
2283
956b9ba1
JP
2284 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2285 range,
2286 get_dram_base(pvt, range),
2287 get_dram_limit(pvt, range));
7f19bf75 2288
956b9ba1
JP
2289 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2290 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2291 (rw & 0x1) ? "R" : "-",
2292 (rw & 0x2) ? "W" : "-",
2293 dram_intlv_sel(pvt, range),
2294 dram_dst_node(pvt, range));
0ec449ee
DT
2295 }
2296
b2b0c605 2297 read_dct_base_mask(pvt);
0ec449ee 2298
bc21fa57 2299 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
7981a28f 2300 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
0ec449ee 2301
8d5b5d9c 2302 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2303
7981a28f
AG
2304 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2305 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
0ec449ee 2306
78da121e 2307 if (!dct_ganging_enabled(pvt)) {
7981a28f
AG
2308 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2309 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
0ec449ee 2310 }
ad6a32e9 2311
a3b7db09 2312 pvt->ecc_sym_sz = 4;
a597d2a5
AG
2313 determine_memory_type(pvt);
2314 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
a3b7db09 2315
a4b4bedc 2316 if (pvt->fam >= 0x10) {
b2b0c605 2317 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
7981a28f 2318 /* F16h has only DCT0, so no need to read dbam1 */
a4b4bedc 2319 if (pvt->fam != 0x16)
7981a28f 2320 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
ad6a32e9 2321
a3b7db09 2322 /* F10h, revD and later can do x8 ECC too */
a4b4bedc 2323 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
a3b7db09
BP
2324 pvt->ecc_sym_sz = 8;
2325 }
b2b0c605 2326 dump_misc_regs(pvt);
0ec449ee
DT
2327}
2328
2329/*
2330 * NOTE: CPU Revision Dependent code
2331 *
2332 * Input:
11c75ead 2333 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2334 * k8 private pointer to -->
2335 * DRAM Bank Address mapping register
2336 * node_id
2337 * DCL register where dual_channel_active is
2338 *
2339 * The DBAM register consists of 4 sets of 4 bits each definitions:
2340 *
2341 * Bits: CSROWs
2342 * 0-3 CSROWs 0 and 1
2343 * 4-7 CSROWs 2 and 3
2344 * 8-11 CSROWs 4 and 5
2345 * 12-15 CSROWs 6 and 7
2346 *
2347 * Values range from: 0 to 15
2348 * The meaning of the values depends on CPU revision and dual-channel state,
2349 * see relevant BKDG more info.
2350 *
2351 * The memory controller provides for total of only 8 CSROWs in its current
2352 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2353 * single channel or two (2) DIMMs in dual channel mode.
2354 *
2355 * The following code logic collapses the various tables for CSROW based on CPU
2356 * revision.
2357 *
2358 * Returns:
2359 * The number of PAGE_SIZE pages on the specified CSROW number it
2360 * encompasses
2361 *
2362 */
d1ea71cd 2363static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2364{
1433eb99 2365 u32 cs_mode, nr_pages;
f92cae45 2366 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2367
10de6497 2368
0ec449ee
DT
2369 /*
2370 * The math on this doesn't look right on the surface because x/2*4 can
2371 * be simplified to x*2 but this expression makes use of the fact that
2372 * it is integral math where 1/2=0. This intermediate value becomes the
2373 * number of bits to shift the DBAM register to extract the proper CSROW
2374 * field.
2375 */
0a5dfc31 2376 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2377
a597d2a5
AG
2378 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
2379 << (20 - PAGE_SHIFT);
0ec449ee 2380
10de6497
BP
2381 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2382 csrow_nr, dct, cs_mode);
2383 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2384
2385 return nr_pages;
2386}
2387
2388/*
2389 * Initialize the array of csrow attribute instances, based on the values
2390 * from pci config hardware registers.
2391 */
360b7f3c 2392static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2393{
10de6497 2394 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2395 struct csrow_info *csrow;
de3910eb 2396 struct dimm_info *dimm;
084a4fcc 2397 enum edac_type edac_mode;
10de6497 2398 int i, j, empty = 1;
a895bf8b 2399 int nr_pages = 0;
10de6497 2400 u32 val;
0ec449ee 2401
a97fa68e 2402 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2403
2299ef71 2404 pvt->nbcfg = val;
0ec449ee 2405
956b9ba1
JP
2406 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2407 pvt->mc_node_id, val,
2408 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2409
10de6497
BP
2410 /*
2411 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2412 */
11c75ead 2413 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2414 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2415 bool row_dct1 = false;
0ec449ee 2416
a4b4bedc 2417 if (pvt->fam != 0xf)
10de6497
BP
2418 row_dct1 = !!csrow_enabled(i, 1, pvt);
2419
2420 if (!row_dct0 && !row_dct1)
0ec449ee 2421 continue;
0ec449ee 2422
10de6497 2423 csrow = mci->csrows[i];
0ec449ee 2424 empty = 0;
10de6497
BP
2425
2426 edac_dbg(1, "MC node: %d, csrow: %d\n",
2427 pvt->mc_node_id, i);
2428
1eef1282 2429 if (row_dct0) {
d1ea71cd 2430 nr_pages = get_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2431 csrow->channels[0]->dimm->nr_pages = nr_pages;
2432 }
11c75ead 2433
10de6497 2434 /* K8 has only one DCT */
a4b4bedc 2435 if (pvt->fam != 0xf && row_dct1) {
d1ea71cd 2436 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
1eef1282
MCC
2437
2438 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2439 nr_pages += row_dct1_pages;
2440 }
0ec449ee 2441
10de6497 2442 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2443
2444 /*
2445 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2446 */
a97fa68e 2447 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2448 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2449 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2450 else
084a4fcc
MCC
2451 edac_mode = EDAC_NONE;
2452
2453 for (j = 0; j < pvt->channel_count; j++) {
de3910eb 2454 dimm = csrow->channels[j]->dimm;
a597d2a5 2455 dimm->mtype = pvt->dram_type;
de3910eb 2456 dimm->edac_mode = edac_mode;
084a4fcc 2457 }
0ec449ee
DT
2458 }
2459
2460 return empty;
2461}
d27bf6fa 2462
f6d6ae96 2463/* get all cores on this DCT */
8b84c8df 2464static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2465{
2466 int cpu;
2467
2468 for_each_online_cpu(cpu)
2469 if (amd_get_nb_id(cpu) == nid)
2470 cpumask_set_cpu(cpu, mask);
2471}
2472
2473/* check MCG_CTL on all the cpus on this node */
d1ea71cd 2474static bool nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2475{
2476 cpumask_var_t mask;
50542251 2477 int cpu, nbe;
f6d6ae96
BP
2478 bool ret = false;
2479
2480 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2481 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2482 return false;
2483 }
2484
2485 get_cpus_on_this_dct_cpumask(mask, nid);
2486
f6d6ae96
BP
2487 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2488
2489 for_each_cpu(cpu, mask) {
50542251 2490 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2491 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2492
956b9ba1
JP
2493 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2494 cpu, reg->q,
2495 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2496
2497 if (!nbe)
2498 goto out;
f6d6ae96
BP
2499 }
2500 ret = true;
2501
2502out:
f6d6ae96
BP
2503 free_cpumask_var(mask);
2504 return ret;
2505}
2506
c7e5301a 2507static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2508{
2509 cpumask_var_t cmask;
50542251 2510 int cpu;
f6d6ae96
BP
2511
2512 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2513 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2514 return false;
2515 }
2516
ae7bb7c6 2517 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2518
f6d6ae96
BP
2519 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2520
2521 for_each_cpu(cpu, cmask) {
2522
50542251
BP
2523 struct msr *reg = per_cpu_ptr(msrs, cpu);
2524
f6d6ae96 2525 if (on) {
5980bb9c 2526 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2527 s->flags.nb_mce_enable = 1;
f6d6ae96 2528
5980bb9c 2529 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2530 } else {
2531 /*
d95cf4de 2532 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2533 */
ae7bb7c6 2534 if (!s->flags.nb_mce_enable)
5980bb9c 2535 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2536 }
f6d6ae96
BP
2537 }
2538 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2539
f6d6ae96
BP
2540 free_cpumask_var(cmask);
2541
2542 return 0;
2543}
2544
c7e5301a 2545static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2546 struct pci_dev *F3)
f9431992 2547{
2299ef71 2548 bool ret = true;
c9f4f26e 2549 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2550
2299ef71
BP
2551 if (toggle_ecc_err_reporting(s, nid, ON)) {
2552 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2553 return false;
2554 }
2555
c9f4f26e 2556 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2557
ae7bb7c6
BP
2558 s->old_nbctl = value & mask;
2559 s->nbctl_valid = true;
f9431992
DT
2560
2561 value |= mask;
c9f4f26e 2562 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2563
a97fa68e 2564 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2565
956b9ba1
JP
2566 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2567 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2568
a97fa68e 2569 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2570 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2571
ae7bb7c6 2572 s->flags.nb_ecc_prev = 0;
d95cf4de 2573
f9431992 2574 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2575 value |= NBCFG_ECC_ENABLE;
2576 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2577
a97fa68e 2578 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2579
a97fa68e 2580 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2581 amd64_warn("Hardware rejected DRAM ECC enable,"
2582 "check memory DIMM configuration.\n");
2299ef71 2583 ret = false;
f9431992 2584 } else {
24f9a7fe 2585 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2586 }
d95cf4de 2587 } else {
ae7bb7c6 2588 s->flags.nb_ecc_prev = 1;
f9431992 2589 }
d95cf4de 2590
956b9ba1
JP
2591 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2592 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2593
2299ef71 2594 return ret;
f9431992
DT
2595}
2596
c7e5301a 2597static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2598 struct pci_dev *F3)
f9431992 2599{
c9f4f26e
BP
2600 u32 value, mask = 0x3; /* UECC/CECC enable */
2601
f9431992 2602
ae7bb7c6 2603 if (!s->nbctl_valid)
f9431992
DT
2604 return;
2605
c9f4f26e 2606 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2607 value &= ~mask;
ae7bb7c6 2608 value |= s->old_nbctl;
f9431992 2609
c9f4f26e 2610 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2611
ae7bb7c6
BP
2612 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2613 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2614 amd64_read_pci_cfg(F3, NBCFG, &value);
2615 value &= ~NBCFG_ECC_ENABLE;
2616 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2617 }
2618
2619 /* restore the NB Enable MCGCTL bit */
2299ef71 2620 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2621 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2622}
2623
2624/*
2299ef71
BP
2625 * EDAC requires that the BIOS have ECC enabled before
2626 * taking over the processing of ECC errors. A command line
2627 * option allows to force-enable hardware ECC later in
2628 * enable_ecc_error_reporting().
f9431992 2629 */
cab4d277
BP
2630static const char *ecc_msg =
2631 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2632 " Either enable ECC checking or force module loading by setting "
2633 "'ecc_enable_override'.\n"
2634 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2635
c7e5301a 2636static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2637{
2638 u32 value;
2299ef71 2639 u8 ecc_en = 0;
06724535 2640 bool nb_mce_en = false;
f9431992 2641
a97fa68e 2642 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2643
a97fa68e 2644 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2645 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2646
d1ea71cd 2647 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
06724535 2648 if (!nb_mce_en)
2299ef71
BP
2649 amd64_notice("NB MCE bank disabled, set MSR "
2650 "0x%08x[4] on node %d to enable.\n",
2651 MSR_IA32_MCG_CTL, nid);
f9431992 2652
2299ef71
BP
2653 if (!ecc_en || !nb_mce_en) {
2654 amd64_notice("%s", ecc_msg);
2655 return false;
2656 }
2657 return true;
f9431992
DT
2658}
2659
c5608759 2660static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2661{
a4b4bedc 2662 struct amd64_pvt *pvt = mci->pvt_info;
c5608759 2663 int rc;
7d6034d3 2664
c5608759
MCC
2665 rc = amd64_create_sysfs_dbg_files(mci);
2666 if (rc < 0)
2667 return rc;
7d6034d3 2668
a4b4bedc 2669 if (pvt->fam >= 0x10) {
c5608759
MCC
2670 rc = amd64_create_sysfs_inject_files(mci);
2671 if (rc < 0)
2672 return rc;
2673 }
2674
2675 return 0;
2676}
7d6034d3 2677
c5608759
MCC
2678static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2679{
a4b4bedc
BP
2680 struct amd64_pvt *pvt = mci->pvt_info;
2681
c5608759 2682 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2683
a4b4bedc 2684 if (pvt->fam >= 0x10)
c5608759 2685 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2686}
2687
df71a053
BP
2688static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2689 struct amd64_family_type *fam)
7d6034d3
DT
2690{
2691 struct amd64_pvt *pvt = mci->pvt_info;
2692
2693 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2694 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2695
5980bb9c 2696 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2697 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2698
5980bb9c 2699 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2700 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2701
d1ea71cd 2702 mci->edac_cap = determine_edac_cap(pvt);
7d6034d3
DT
2703 mci->mod_name = EDAC_MOD_STR;
2704 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2705 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2706 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2707 mci->ctl_page_to_phys = NULL;
2708
7d6034d3 2709 /* memory scrubber interface */
d1ea71cd
BP
2710 mci->set_sdram_scrub_rate = set_scrub_rate;
2711 mci->get_sdram_scrub_rate = get_scrub_rate;
7d6034d3
DT
2712}
2713
0092b20d
BP
2714/*
2715 * returns a pointer to the family descriptor on success, NULL otherwise.
2716 */
d1ea71cd 2717static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
395ae783 2718{
0092b20d
BP
2719 struct amd64_family_type *fam_type = NULL;
2720
18b94f66 2721 pvt->ext_model = boot_cpu_data.x86_model >> 4;
a4b4bedc 2722 pvt->stepping = boot_cpu_data.x86_mask;
18b94f66
AG
2723 pvt->model = boot_cpu_data.x86_model;
2724 pvt->fam = boot_cpu_data.x86;
2725
2726 switch (pvt->fam) {
395ae783 2727 case 0xf:
d1ea71cd
BP
2728 fam_type = &family_types[K8_CPUS];
2729 pvt->ops = &family_types[K8_CPUS].ops;
395ae783 2730 break;
df71a053 2731
395ae783 2732 case 0x10:
d1ea71cd
BP
2733 fam_type = &family_types[F10_CPUS];
2734 pvt->ops = &family_types[F10_CPUS].ops;
df71a053
BP
2735 break;
2736
2737 case 0x15:
18b94f66 2738 if (pvt->model == 0x30) {
d1ea71cd
BP
2739 fam_type = &family_types[F15_M30H_CPUS];
2740 pvt->ops = &family_types[F15_M30H_CPUS].ops;
18b94f66 2741 break;
a597d2a5
AG
2742 } else if (pvt->model == 0x60) {
2743 fam_type = &family_types[F15_M60H_CPUS];
2744 pvt->ops = &family_types[F15_M60H_CPUS].ops;
2745 break;
18b94f66
AG
2746 }
2747
d1ea71cd
BP
2748 fam_type = &family_types[F15_CPUS];
2749 pvt->ops = &family_types[F15_CPUS].ops;
395ae783
BP
2750 break;
2751
94c1acf2 2752 case 0x16:
85a8885b
AG
2753 if (pvt->model == 0x30) {
2754 fam_type = &family_types[F16_M30H_CPUS];
2755 pvt->ops = &family_types[F16_M30H_CPUS].ops;
2756 break;
2757 }
d1ea71cd
BP
2758 fam_type = &family_types[F16_CPUS];
2759 pvt->ops = &family_types[F16_CPUS].ops;
94c1acf2
AG
2760 break;
2761
395ae783 2762 default:
24f9a7fe 2763 amd64_err("Unsupported family!\n");
0092b20d 2764 return NULL;
395ae783 2765 }
0092b20d 2766
df71a053 2767 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
18b94f66 2768 (pvt->fam == 0xf ?
24f9a7fe
BP
2769 (pvt->ext_model >= K8_REV_F ? "revF or later "
2770 : "revE or earlier ")
2771 : ""), pvt->mc_node_id);
0092b20d 2772 return fam_type;
395ae783
BP
2773}
2774
d1ea71cd 2775static int init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2776{
2777 struct amd64_pvt *pvt = NULL;
0092b20d 2778 struct amd64_family_type *fam_type = NULL;
360b7f3c 2779 struct mem_ctl_info *mci = NULL;
ab5a503c 2780 struct edac_mc_layer layers[2];
7d6034d3 2781 int err = 0, ret;
772c3ff3 2782 u16 nid = amd_get_node_id(F2);
7d6034d3
DT
2783
2784 ret = -ENOMEM;
2785 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2786 if (!pvt)
360b7f3c 2787 goto err_ret;
7d6034d3 2788
360b7f3c 2789 pvt->mc_node_id = nid;
8d5b5d9c 2790 pvt->F2 = F2;
7d6034d3 2791
395ae783 2792 ret = -EINVAL;
d1ea71cd 2793 fam_type = per_family_init(pvt);
0092b20d 2794 if (!fam_type)
395ae783
BP
2795 goto err_free;
2796
7d6034d3 2797 ret = -ENODEV;
360b7f3c 2798 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2799 if (err)
2800 goto err_free;
2801
360b7f3c 2802 read_mc_regs(pvt);
7d6034d3 2803
7d6034d3
DT
2804 /*
2805 * We need to determine how many memory channels there are. Then use
2806 * that information for calculating the size of the dynamic instance
360b7f3c 2807 * tables in the 'mci' structure.
7d6034d3 2808 */
360b7f3c 2809 ret = -EINVAL;
7d6034d3
DT
2810 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2811 if (pvt->channel_count < 0)
360b7f3c 2812 goto err_siblings;
7d6034d3
DT
2813
2814 ret = -ENOMEM;
ab5a503c
MCC
2815 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2816 layers[0].size = pvt->csels[0].b_cnt;
2817 layers[0].is_virt_csrow = true;
2818 layers[1].type = EDAC_MC_LAYER_CHANNEL;
f0a56c48
BP
2819
2820 /*
2821 * Always allocate two channels since we can have setups with DIMMs on
2822 * only one channel. Also, this simplifies handling later for the price
2823 * of a couple of KBs tops.
2824 */
2825 layers[1].size = 2;
ab5a503c 2826 layers[1].is_virt_csrow = false;
f0a56c48 2827
ca0907b9 2828 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2829 if (!mci)
360b7f3c 2830 goto err_siblings;
7d6034d3
DT
2831
2832 mci->pvt_info = pvt;
fd687502 2833 mci->pdev = &pvt->F2->dev;
7d6034d3 2834
df71a053 2835 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2836
2837 if (init_csrows(mci))
7d6034d3
DT
2838 mci->edac_cap = EDAC_FLAG_NONE;
2839
7d6034d3
DT
2840 ret = -ENODEV;
2841 if (edac_mc_add_mc(mci)) {
956b9ba1 2842 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2843 goto err_add_mc;
2844 }
c5608759 2845 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2846 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2847 goto err_add_sysfs;
2848 }
7d6034d3 2849
549d042d
BP
2850 /* register stuff with EDAC MCE */
2851 if (report_gart_errors)
2852 amd_report_gart_errors(true);
2853
df781d03 2854 amd_register_ecc_decoder(decode_bus_error);
549d042d 2855
360b7f3c
BP
2856 mcis[nid] = mci;
2857
2858 atomic_inc(&drv_instances);
2859
7d6034d3
DT
2860 return 0;
2861
c5608759
MCC
2862err_add_sysfs:
2863 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2864err_add_mc:
2865 edac_mc_free(mci);
2866
360b7f3c
BP
2867err_siblings:
2868 free_mc_sibling_devs(pvt);
7d6034d3 2869
360b7f3c
BP
2870err_free:
2871 kfree(pvt);
7d6034d3 2872
360b7f3c 2873err_ret:
7d6034d3
DT
2874 return ret;
2875}
2876
d1ea71cd
BP
2877static int probe_one_instance(struct pci_dev *pdev,
2878 const struct pci_device_id *mc_type)
7d6034d3 2879{
772c3ff3 2880 u16 nid = amd_get_node_id(pdev);
2299ef71 2881 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2882 struct ecc_settings *s;
2299ef71 2883 int ret = 0;
7d6034d3 2884
7d6034d3 2885 ret = pci_enable_device(pdev);
b8cfa02f 2886 if (ret < 0) {
956b9ba1 2887 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2888 return -EIO;
2889 }
7d6034d3 2890
ae7bb7c6
BP
2891 ret = -ENOMEM;
2892 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2893 if (!s)
2299ef71 2894 goto err_out;
ae7bb7c6
BP
2895
2896 ecc_stngs[nid] = s;
2897
2299ef71
BP
2898 if (!ecc_enabled(F3, nid)) {
2899 ret = -ENODEV;
2900
2901 if (!ecc_enable_override)
2902 goto err_enable;
2903
2904 amd64_warn("Forcing ECC on!\n");
2905
2906 if (!enable_ecc_error_reporting(s, nid, F3))
2907 goto err_enable;
2908 }
2909
d1ea71cd 2910 ret = init_one_instance(pdev);
360b7f3c 2911 if (ret < 0) {
ae7bb7c6 2912 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2913 restore_ecc_error_reporting(s, nid, F3);
2914 }
7d6034d3
DT
2915
2916 return ret;
2299ef71
BP
2917
2918err_enable:
2919 kfree(s);
2920 ecc_stngs[nid] = NULL;
2921
2922err_out:
2923 return ret;
7d6034d3
DT
2924}
2925
d1ea71cd 2926static void remove_one_instance(struct pci_dev *pdev)
7d6034d3
DT
2927{
2928 struct mem_ctl_info *mci;
2929 struct amd64_pvt *pvt;
772c3ff3 2930 u16 nid = amd_get_node_id(pdev);
360b7f3c
BP
2931 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2932 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2933
c5608759 2934 mci = find_mci_by_dev(&pdev->dev);
a4b4bedc
BP
2935 WARN_ON(!mci);
2936
c5608759 2937 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2938 /* Remove from EDAC CORE tracking list */
2939 mci = edac_mc_del_mc(&pdev->dev);
2940 if (!mci)
2941 return;
2942
2943 pvt = mci->pvt_info;
2944
360b7f3c 2945 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2946
360b7f3c 2947 free_mc_sibling_devs(pvt);
7d6034d3 2948
549d042d
BP
2949 /* unregister from EDAC MCE */
2950 amd_report_gart_errors(false);
df781d03 2951 amd_unregister_ecc_decoder(decode_bus_error);
549d042d 2952
360b7f3c
BP
2953 kfree(ecc_stngs[nid]);
2954 ecc_stngs[nid] = NULL;
ae7bb7c6 2955
7d6034d3 2956 /* Free the EDAC CORE resources */
8f68ed97 2957 mci->pvt_info = NULL;
360b7f3c 2958 mcis[nid] = NULL;
8f68ed97
BP
2959
2960 kfree(pvt);
7d6034d3
DT
2961 edac_mc_free(mci);
2962}
2963
2964/*
2965 * This table is part of the interface for loading drivers for PCI devices. The
2966 * PCI core identifies what devices are on a system during boot, and then
2967 * inquiry this table to see if this driver is for a given device found.
2968 */
ba935f40 2969static const struct pci_device_id amd64_pci_table[] = {
a597d2a5
AG
2970 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL) },
2971 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_DRAM) },
2972 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F2) },
2973 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2) },
2974 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2) },
2975 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F2) },
2976 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2) },
7d6034d3
DT
2977 {0, }
2978};
2979MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2980
2981static struct pci_driver amd64_pci_driver = {
2982 .name = EDAC_MOD_STR,
d1ea71cd
BP
2983 .probe = probe_one_instance,
2984 .remove = remove_one_instance,
7d6034d3
DT
2985 .id_table = amd64_pci_table,
2986};
2987
360b7f3c 2988static void setup_pci_device(void)
7d6034d3
DT
2989{
2990 struct mem_ctl_info *mci;
2991 struct amd64_pvt *pvt;
2992
d1ea71cd 2993 if (pci_ctl)
7d6034d3
DT
2994 return;
2995
cc4d8860 2996 mci = mcis[0];
d1ea71cd
BP
2997 if (!mci)
2998 return;
7d6034d3 2999
d1ea71cd
BP
3000 pvt = mci->pvt_info;
3001 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3002 if (!pci_ctl) {
3003 pr_warn("%s(): Unable to create PCI control\n", __func__);
3004 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
7d6034d3
DT
3005 }
3006}
3007
3008static int __init amd64_edac_init(void)
3009{
360b7f3c 3010 int err = -ENODEV;
7d6034d3 3011
df71a053 3012 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
3013
3014 opstate_init();
3015
9653a5c7 3016 if (amd_cache_northbridges() < 0)
56b34b91 3017 goto err_ret;
7d6034d3 3018
cc4d8860 3019 err = -ENOMEM;
ae7bb7c6
BP
3020 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
3021 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 3022 if (!(mcis && ecc_stngs))
a9f0fbe2 3023 goto err_free;
cc4d8860 3024
50542251 3025 msrs = msrs_alloc();
56b34b91 3026 if (!msrs)
360b7f3c 3027 goto err_free;
50542251 3028
7d6034d3
DT
3029 err = pci_register_driver(&amd64_pci_driver);
3030 if (err)
56b34b91 3031 goto err_pci;
7d6034d3 3032
56b34b91 3033 err = -ENODEV;
360b7f3c
BP
3034 if (!atomic_read(&drv_instances))
3035 goto err_no_instances;
7d6034d3 3036
360b7f3c 3037 setup_pci_device();
f5b10c45
TP
3038
3039#ifdef CONFIG_X86_32
3040 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3041#endif
3042
360b7f3c 3043 return 0;
7d6034d3 3044
360b7f3c 3045err_no_instances:
7d6034d3 3046 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 3047
56b34b91
BP
3048err_pci:
3049 msrs_free(msrs);
3050 msrs = NULL;
cc4d8860 3051
360b7f3c
BP
3052err_free:
3053 kfree(mcis);
3054 mcis = NULL;
3055
3056 kfree(ecc_stngs);
3057 ecc_stngs = NULL;
3058
56b34b91 3059err_ret:
7d6034d3
DT
3060 return err;
3061}
3062
3063static void __exit amd64_edac_exit(void)
3064{
d1ea71cd
BP
3065 if (pci_ctl)
3066 edac_pci_release_generic_ctl(pci_ctl);
7d6034d3
DT
3067
3068 pci_unregister_driver(&amd64_pci_driver);
50542251 3069
ae7bb7c6
BP
3070 kfree(ecc_stngs);
3071 ecc_stngs = NULL;
3072
cc4d8860
BP
3073 kfree(mcis);
3074 mcis = NULL;
3075
50542251
BP
3076 msrs_free(msrs);
3077 msrs = NULL;
7d6034d3
DT
3078}
3079
3080module_init(amd64_edac_init);
3081module_exit(amd64_edac_exit);
3082
3083MODULE_LICENSE("GPL");
3084MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3085 "Dave Peterson, Thayne Harbaugh");
3086MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3087 EDAC_AMD64_VERSION);
3088
3089module_param(edac_op_state, int, 0444);
3090MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");