]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/edac/amd64_edac.h
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.h
CommitLineData
cfe40fdb
DT
1/*
2 * AMD64 class Memory Controller kernel module
3 *
4 * Copyright (c) 2009 SoftwareBitMaker.
5 * Copyright (c) 2009 Advanced Micro Devices, Inc.
6 *
7 * This file may be distributed under the terms of the
8 * GNU General Public License.
9 *
10 * Originally Written by Thayne Harbaugh
11 *
12 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
13 * - K8 CPU Revision D and greater support
14 *
15 * Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
16 * - Module largely rewritten, with new (and hopefully correct)
17 * code for dealing with node and chip select interleaving,
18 * various code cleanup, and bug fixes
19 * - Added support for memory hoisting using DRAM hole address
20 * register
21 *
22 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
23 * -K8 Rev (1207) revision support added, required Revision
24 * specific mini-driver code to support Rev F as well as
25 * prior revisions
26 *
27 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
28 * -Family 10h revision support added. New PCI Device IDs,
29 * indicating new changes. Actual registers modified
30 * were slight, less than the Rev E to Rev F transition
31 * but changing the PCI Device ID was the proper thing to
32 * do, as it provides for almost automactic family
33 * detection. The mods to Rev F required more family
34 * information detection.
35 *
43aff26c 36 * Changes/Fixes by Borislav Petkov <bp@alien8.de>:
cfe40fdb
DT
37 * - misc fixes and code cleanups
38 *
39 * This module is based on the following documents
40 * (available from http://www.amd.com/):
41 *
42 * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
43 * Opteron Processors
44 * AMD publication #: 26094
45 *` Revision: 3.26
46 *
47 * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
48 * Processors
49 * AMD publication #: 32559
50 * Revision: 3.00
51 * Issue Date: May 2006
52 *
53 * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
54 * Processors
55 * AMD publication #: 31116
56 * Revision: 3.00
57 * Issue Date: September 07, 2007
58 *
59 * Sections in the first 2 documents are no longer in sync with each other.
60 * The Family 10h BKDG was totally re-written from scratch with a new
61 * presentation model.
62 * Therefore, comments that refer to a Document section might be off.
63 */
64
65#include <linux/module.h>
66#include <linux/ctype.h>
67#include <linux/init.h>
68#include <linux/pci.h>
69#include <linux/pci_ids.h>
70#include <linux/slab.h>
71#include <linux/mmzone.h>
72#include <linux/edac.h>
f9431992 73#include <asm/msr.h>
cfe40fdb 74#include "edac_core.h"
47ca08a4 75#include "mce_amd.h"
cfe40fdb 76
24f9a7fe
BP
77#define amd64_debug(fmt, arg...) \
78 edac_printk(KERN_DEBUG, "amd64", fmt, ##arg)
cfe40fdb 79
24f9a7fe
BP
80#define amd64_info(fmt, arg...) \
81 edac_printk(KERN_INFO, "amd64", fmt, ##arg)
82
83#define amd64_notice(fmt, arg...) \
84 edac_printk(KERN_NOTICE, "amd64", fmt, ##arg)
85
86#define amd64_warn(fmt, arg...) \
87 edac_printk(KERN_WARNING, "amd64", fmt, ##arg)
88
89#define amd64_err(fmt, arg...) \
90 edac_printk(KERN_ERR, "amd64", fmt, ##arg)
91
92#define amd64_mc_warn(mci, fmt, arg...) \
93 edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
94
95#define amd64_mc_err(mci, fmt, arg...) \
96 edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
cfe40fdb
DT
97
98/*
99 * Throughout the comments in this code, the following terms are used:
100 *
101 * SysAddr, DramAddr, and InputAddr
102 *
103 * These terms come directly from the amd64 documentation
104 * (AMD publication #26094). They are defined as follows:
105 *
106 * SysAddr:
107 * This is a physical address generated by a CPU core or a device
108 * doing DMA. If generated by a CPU core, a SysAddr is the result of
109 * a virtual to physical address translation by the CPU core's address
110 * translation mechanism (MMU).
111 *
112 * DramAddr:
113 * A DramAddr is derived from a SysAddr by subtracting an offset that
114 * depends on which node the SysAddr maps to and whether the SysAddr
115 * is within a range affected by memory hoisting. The DRAM Base
116 * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
117 * determine which node a SysAddr maps to.
118 *
119 * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
120 * is within the range of addresses specified by this register, then
121 * a value x from the DHAR is subtracted from the SysAddr to produce a
122 * DramAddr. Here, x represents the base address for the node that
123 * the SysAddr maps to plus an offset due to memory hoisting. See
124 * section 3.4.8 and the comments in amd64_get_dram_hole_info() and
125 * sys_addr_to_dram_addr() below for more information.
126 *
127 * If the SysAddr is not affected by the DHAR then a value y is
128 * subtracted from the SysAddr to produce a DramAddr. Here, y is the
129 * base address for the node that the SysAddr maps to. See section
130 * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
131 * information.
132 *
133 * InputAddr:
134 * A DramAddr is translated to an InputAddr before being passed to the
135 * memory controller for the node that the DramAddr is associated
136 * with. The memory controller then maps the InputAddr to a csrow.
137 * If node interleaving is not in use, then the InputAddr has the same
138 * value as the DramAddr. Otherwise, the InputAddr is produced by
139 * discarding the bits used for node interleaving from the DramAddr.
140 * See section 3.4.4 for more information.
141 *
142 * The memory controller for a given node uses its DRAM CS Base and
143 * DRAM CS Mask registers to map an InputAddr to a csrow. See
144 * sections 3.5.4 and 3.5.5 for more information.
145 */
146
df71a053 147#define EDAC_AMD64_VERSION "3.4.0"
cfe40fdb
DT
148#define EDAC_MOD_STR "amd64_edac"
149
150/* Extended Model from CPUID, for CPU Revision numbers */
1433eb99
BP
151#define K8_REV_D 1
152#define K8_REV_E 2
153#define K8_REV_F 4
cfe40fdb
DT
154
155/* Hardware limit on ChipSelect rows per MC and processors per system */
7f19bf75
BP
156#define NUM_CHIPSELECTS 8
157#define DRAM_RANGES 8
cfe40fdb 158
f6d6ae96
BP
159#define ON true
160#define OFF false
cfe40fdb 161
11c75ead
BP
162/*
163 * Create a contiguous bitmask starting at bit position @lo and ending at
164 * position @hi. For example
165 *
166 * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000.
167 */
168#define GENMASK(lo, hi) (((1ULL << ((hi) - (lo) + 1)) - 1) << (lo))
169
cfe40fdb
DT
170/*
171 * PCI-defined configuration space registers
172 */
df71a053
BP
173#define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601
174#define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602
94c1acf2
AG
175#define PCI_DEVICE_ID_AMD_16H_NB_F1 0x1531
176#define PCI_DEVICE_ID_AMD_16H_NB_F2 0x1532
cfe40fdb
DT
177
178/*
179 * Function 1 - Address Map
180 */
7f19bf75
BP
181#define DRAM_BASE_LO 0x40
182#define DRAM_LIMIT_LO 0x44
183
151fa71c
BP
184#define dram_intlv_en(pvt, i) ((u8)((pvt->ranges[i].base.lo >> 8) & 0x7))
185#define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3))
186#define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
187#define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7))
7f19bf75 188
bc21fa57 189#define DHAR 0xf0
c8e518d5
BP
190#define dhar_valid(pvt) ((pvt)->dhar & BIT(0))
191#define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1))
192#define dhar_base(pvt) ((pvt)->dhar & 0xff000000)
193#define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16)
cfe40fdb 194
cfe40fdb 195 /* NOTE: Extra mask bit vs K8 */
c8e518d5 196#define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16)
cfe40fdb 197
b2b0c605 198#define DCT_CFG_SEL 0x10C
cfe40fdb 199
c1ae6830 200#define DRAM_LOCAL_NODE_BASE 0x120
f08e457c
BP
201#define DRAM_LOCAL_NODE_LIM 0x124
202
7f19bf75
BP
203#define DRAM_BASE_HI 0x140
204#define DRAM_LIMIT_HI 0x144
cfe40fdb
DT
205
206
207/*
208 * Function 2 - DRAM controller
209 */
11c75ead
BP
210#define DCSB0 0x40
211#define DCSB1 0x140
212#define DCSB_CS_ENABLE BIT(0)
cfe40fdb 213
11c75ead
BP
214#define DCSM0 0x60
215#define DCSM1 0x160
cfe40fdb 216
11c75ead 217#define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)
cfe40fdb
DT
218
219#define DBAM0 0x80
220#define DBAM1 0x180
221
222/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
0a5dfc31 223#define DBAM_DIMM(i, reg) ((((reg) >> (4*(i)))) & 0xF)
cfe40fdb
DT
224
225#define DBAM_MAX_VALUE 11
226
cb328507
BP
227#define DCLR0 0x90
228#define DCLR1 0x190
cfe40fdb 229#define REVE_WIDTH_128 BIT(16)
41d8bfab 230#define WIDTH_128 BIT(11)
cfe40fdb 231
cb328507
BP
232#define DCHR0 0x94
233#define DCHR1 0x194
1433eb99 234#define DDR3_MODE BIT(8)
cfe40fdb 235
78da121e
BP
236#define DCT_SEL_LO 0x110
237#define dct_sel_baseaddr(pvt) ((pvt)->dct_sel_lo & 0xFFFFF800)
238#define dct_sel_interleave_addr(pvt) (((pvt)->dct_sel_lo >> 6) & 0x3)
239#define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0))
240#define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2))
cb328507 241
78da121e 242#define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
cb328507 243
78da121e 244#define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5))
78da121e 245#define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10))
cfe40fdb 246
95b0ef55
BP
247#define SWAP_INTLV_REG 0x10c
248
78da121e 249#define DCT_SEL_HI 0x114
cfe40fdb 250
cfe40fdb
DT
251/*
252 * Function 3 - Misc Control
253 */
c9f4f26e 254#define NBCTL 0x40
cfe40fdb 255
a97fa68e
BP
256#define NBCFG 0x44
257#define NBCFG_CHIPKILL BIT(23)
258#define NBCFG_ECC_ENABLE BIT(22)
cfe40fdb 259
5980bb9c 260/* F3x48: NBSL */
cfe40fdb 261#define F10_NBSL_EXT_ERR_ECC 0x8
5980bb9c 262#define NBSL_PP_OBS 0x2
cfe40fdb 263
5980bb9c 264#define SCRCTRL 0x58
cfe40fdb
DT
265
266#define F10_ONLINE_SPARE 0xB0
614ec9d8
BP
267#define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
268#define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
cfe40fdb
DT
269
270#define F10_NB_ARRAY_ADDR 0xB8
6e71a870 271#define F10_NB_ARRAY_DRAM BIT(31)
cfe40fdb
DT
272
273/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
6e71a870 274#define SET_NB_ARRAY_ADDR(section) (((section) & 0x3) << 1)
cfe40fdb
DT
275
276#define F10_NB_ARRAY_DATA 0xBC
66fed2d4 277#define F10_NB_ARR_ECC_WR_REQ BIT(17)
6e71a870
BP
278#define SET_NB_DRAM_INJECTION_WRITE(inj) \
279 (BIT(((inj.word) & 0xF) + 20) | \
66fed2d4 280 F10_NB_ARR_ECC_WR_REQ | inj.bit_map)
6e71a870
BP
281#define SET_NB_DRAM_INJECTION_READ(inj) \
282 (BIT(((inj.word) & 0xF) + 20) | \
283 BIT(16) | inj.bit_map)
284
cfe40fdb 285
5980bb9c
BP
286#define NBCAP 0xE8
287#define NBCAP_CHIPKILL BIT(4)
288#define NBCAP_SECDED BIT(3)
289#define NBCAP_DCT_DUAL BIT(0)
cfe40fdb 290
ad6a32e9
BP
291#define EXT_NB_MCA_CFG 0x180
292
f6d6ae96 293/* MSRs */
5980bb9c 294#define MSR_MCGCTL_NBE BIT(4)
cfe40fdb 295
b2b0c605 296enum amd_families {
cfe40fdb
DT
297 K8_CPUS = 0,
298 F10_CPUS,
b2b0c605 299 F15_CPUS,
94c1acf2 300 F16_CPUS,
b2b0c605 301 NUM_FAMILIES,
cfe40fdb
DT
302};
303
cfe40fdb
DT
304/* Error injection control structure */
305struct error_injection {
66fed2d4
BP
306 u32 section;
307 u32 word;
308 u32 bit_map;
cfe40fdb
DT
309};
310
7f19bf75
BP
311/* low and high part of PCI config space regs */
312struct reg_pair {
313 u32 lo, hi;
314};
315
316/*
317 * See F1x[1, 0][7C:40] DRAM Base/Limit Registers
318 */
319struct dram_range {
320 struct reg_pair base;
321 struct reg_pair lim;
322};
323
11c75ead
BP
324/* A DCT chip selects collection */
325struct chip_select {
326 u32 csbases[NUM_CHIPSELECTS];
327 u8 b_cnt;
328
329 u32 csmasks[NUM_CHIPSELECTS];
330 u8 m_cnt;
331};
332
cfe40fdb 333struct amd64_pvt {
b8cfa02f
BP
334 struct low_ops *ops;
335
cfe40fdb 336 /* pci_device handles which we utilize */
8d5b5d9c 337 struct pci_dev *F1, *F2, *F3;
cfe40fdb 338
c7e5301a 339 u16 mc_node_id; /* MC index of this MC node */
cfe40fdb 340 int ext_model; /* extended model value of this node */
cfe40fdb
DT
341 int channel_count;
342
343 /* Raw registers */
344 u32 dclr0; /* DRAM Configuration Low DCT0 reg */
345 u32 dclr1; /* DRAM Configuration Low DCT1 reg */
346 u32 dchr0; /* DRAM Configuration High DCT0 reg */
347 u32 dchr1; /* DRAM Configuration High DCT1 reg */
348 u32 nbcap; /* North Bridge Capabilities */
349 u32 nbcfg; /* F10 North Bridge Configuration */
350 u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
351 u32 dhar; /* DRAM Hoist reg */
352 u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
353 u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
354
11c75ead
BP
355 /* one for each DCT */
356 struct chip_select csels[2];
cfe40fdb 357
7f19bf75
BP
358 /* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
359 struct dram_range ranges[DRAM_RANGES];
cfe40fdb 360
cfe40fdb
DT
361 u64 top_mem; /* top of memory below 4GB */
362 u64 top_mem2; /* top of memory above 4GB */
363
78da121e
BP
364 u32 dct_sel_lo; /* DRAM Controller Select Low */
365 u32 dct_sel_hi; /* DRAM Controller Select High */
b2b0c605 366 u32 online_spare; /* On-Line spare Reg */
cfe40fdb 367
ad6a32e9 368 /* x4 or x8 syndromes in use */
a3b7db09 369 u8 ecc_sym_sz;
ad6a32e9 370
cfe40fdb
DT
371 /* place to store error injection parameters prior to issue */
372 struct error_injection injection;
ae7bb7c6
BP
373};
374
33ca0643
BP
375enum err_codes {
376 DECODE_OK = 0,
377 ERR_NODE = -1,
378 ERR_CSROW = -2,
379 ERR_CHANNEL = -3,
380};
381
382struct err_info {
383 int err_code;
384 struct mem_ctl_info *src_mci;
385 int csrow;
386 int channel;
387 u16 syndrome;
388 u32 page;
389 u32 offset;
390};
391
c7e5301a 392static inline u64 get_dram_base(struct amd64_pvt *pvt, u8 i)
7f19bf75
BP
393{
394 u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
395
396 if (boot_cpu_data.x86 == 0xf)
397 return addr;
398
399 return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
400}
401
c7e5301a 402static inline u64 get_dram_limit(struct amd64_pvt *pvt, u8 i)
7f19bf75
BP
403{
404 u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
405
406 if (boot_cpu_data.x86 == 0xf)
407 return lim;
408
409 return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
410}
411
f192c7b1
BP
412static inline u16 extract_syndrome(u64 status)
413{
414 return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
415}
416
ae7bb7c6
BP
417/*
418 * per-node ECC settings descriptor
419 */
420struct ecc_settings {
421 u32 old_nbctl;
422 bool nbctl_valid;
423
cfe40fdb 424 struct flags {
d95cf4de
BP
425 unsigned long nb_mce_enable:1;
426 unsigned long nb_ecc_prev:1;
cfe40fdb
DT
427 } flags;
428};
429
7d6034d3 430#ifdef CONFIG_EDAC_DEBUG
c5608759
MCC
431int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci);
432void amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci);
433
7d6034d3 434#else
c5608759
MCC
435static inline int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci)
436{
437 return 0;
438}
439static void inline amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci)
440{
441}
7d6034d3
DT
442#endif
443
444#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
c5608759
MCC
445int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci);
446void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci);
447
7d6034d3 448#else
c5608759
MCC
449static inline int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci)
450{
451 return 0;
452}
453static inline void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci)
454{
455}
7d6034d3
DT
456#endif
457
cfe40fdb
DT
458/*
459 * Each of the PCI Device IDs types have their own set of hardware accessor
460 * functions and per device encoding/decoding logic.
461 */
462struct low_ops {
1433eb99 463 int (*early_channel_count) (struct amd64_pvt *pvt);
f192c7b1 464 void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 465 struct err_info *);
41d8bfab 466 int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct, unsigned cs_mode);
b2b0c605
BP
467 int (*read_dct_pci_cfg) (struct amd64_pvt *pvt, int offset,
468 u32 *val, const char *func);
cfe40fdb
DT
469};
470
471struct amd64_family_type {
472 const char *ctl_name;
8d5b5d9c 473 u16 f1_id, f3_id;
cfe40fdb
DT
474 struct low_ops ops;
475};
476
66fed2d4
BP
477int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
478 u32 *val, const char *func);
b2b0c605
BP
479int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
480 u32 val, const char *func);
6ba5dcdc 481
b2b0c605
BP
482#define amd64_read_pci_cfg(pdev, offset, val) \
483 __amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
6ba5dcdc 484
b2b0c605
BP
485#define amd64_write_pci_cfg(pdev, offset, val) \
486 __amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
6ba5dcdc 487
b2b0c605
BP
488#define amd64_read_dct_pci_cfg(pvt, offset, val) \
489 pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__)
6ba5dcdc 490
cfe40fdb
DT
491int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
492 u64 *hole_offset, u64 *hole_size);
c5608759
MCC
493
494#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
66fed2d4
BP
495
496/* Injection helpers */
497static inline void disable_caches(void *dummy)
498{
499 write_cr0(read_cr0() | X86_CR0_CD);
500 wbinvd();
501}
502
503static inline void enable_caches(void *dummy)
504{
505 write_cr0(read_cr0() & ~X86_CR0_CD);
506}