]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/edac/edac_mc.c
EDAC: Balance workqueue setup and teardown
[mirror_ubuntu-hirsute-kernel.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
20bcb7a8 33#include "edac_core.h"
7c9281d7 34#include "edac_module.h"
53f2d028
MCC
35#include <ras/ras_event.h>
36
b01aec9b
BP
37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
38#include <asm/edac.h>
39#else
40#define edac_atomic_scrub(va, size) do { } while (0)
41#endif
42
da9bb1d2 43/* lock to memory controller's control array */
63b7df91 44static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 45static LIST_HEAD(mc_devices);
da9bb1d2 46
80cc7d87
MCC
47/*
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
50 */
51static void const *edac_mc_owner;
52
88d84ac9
BP
53static struct bus_type mc_bus[EDAC_MAX_MCS];
54
6e84d359
MCC
55unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 unsigned len)
57{
58 struct mem_ctl_info *mci = dimm->mci;
59 int i, n, count = 0;
60 char *p = buf;
61
62 for (i = 0; i < mci->n_layers; i++) {
63 n = snprintf(p, len, "%s %d ",
64 edac_layer_name[mci->layers[i].type],
65 dimm->location[i]);
66 p += n;
67 len -= n;
68 count += n;
69 if (!len)
70 break;
71 }
72
73 return count;
74}
75
da9bb1d2
AC
76#ifdef CONFIG_EDAC_DEBUG
77
a4b4be3f 78static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 79{
6e84d359
MCC
80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
81 edac_dbg(4, " channel = %p\n", chan);
82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
84}
85
6e84d359 86static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 87{
6e84d359
MCC
88 char location[80];
89
90 edac_dimm_info_location(dimm, location, sizeof(location));
91
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
9713faec 93 dimm->mci->csbased ? "rank" : "dimm",
6e84d359
MCC
94 number, location, dimm->csrow, dimm->cschannel);
95 edac_dbg(4, " dimm = %p\n", dimm);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
100}
101
2da1c119 102static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 103{
6e84d359
MCC
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 edac_dbg(4, " csrow = %p\n", csrow);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
112}
113
2da1c119 114static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 115{
956b9ba1
JP
116 edac_dbg(3, "\tmci = %p\n", mci);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci->nr_csrows, mci->csrows);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci->tot_dimms, mci->dimms);
125 edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci->mod_name, mci->ctl_name);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
129}
130
24f9a7fe
BP
131#endif /* CONFIG_EDAC_DEBUG */
132
f4ce6eca 133const char * const edac_mem_types[] = {
4cfc3a40
BP
134 [MEM_EMPTY] = "Empty csrow",
135 [MEM_RESERVED] = "Reserved csrow type",
136 [MEM_UNKNOWN] = "Unknown csrow type",
137 [MEM_FPM] = "Fast page mode RAM",
138 [MEM_EDO] = "Extended data out RAM",
139 [MEM_BEDO] = "Burst Extended data out RAM",
140 [MEM_SDR] = "Single data rate SDRAM",
141 [MEM_RDR] = "Registered single data rate SDRAM",
142 [MEM_DDR] = "Double data rate SDRAM",
143 [MEM_RDDR] = "Registered Double data rate SDRAM",
144 [MEM_RMBS] = "Rambus DRAM",
145 [MEM_DDR2] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2] = "Fully buffered DDR2",
147 [MEM_RDDR2] = "Registered DDR2 RAM",
148 [MEM_XDR] = "Rambus XDR",
149 [MEM_DDR3] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3] = "Registered DDR3 RAM",
151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4] = "Registered DDR4 RAM",
239642fe
BP
154};
155EXPORT_SYMBOL_GPL(edac_mem_types);
156
93e4fe64
MCC
157/**
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
163 *
164 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
165 * down to either a no-op or the addition of a constant to the value of '*p'.
166 *
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
171 *
172 * At return, the pointer 'p' will be incremented to be used on a next call
173 * to this function.
da9bb1d2 174 */
93e4fe64 175void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
176{
177 unsigned align, r;
93e4fe64 178 void *ptr = *p;
da9bb1d2 179
93e4fe64
MCC
180 *p += size * n_elems;
181
182 /*
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
190 */
191 if (size > sizeof(long))
192 align = sizeof(long long);
193 else if (size > sizeof(int))
194 align = sizeof(long);
195 else if (size > sizeof(short))
196 align = sizeof(int);
197 else if (size > sizeof(char))
198 align = sizeof(short);
199 else
079708b9 200 return (char *)ptr;
da9bb1d2 201
8447c4d1 202 r = (unsigned long)p % align;
da9bb1d2
AC
203
204 if (r == 0)
079708b9 205 return (char *)ptr;
da9bb1d2 206
93e4fe64
MCC
207 *p += align - r;
208
7391c6dc 209 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
210}
211
faa2ad09
SR
212static void _edac_mc_free(struct mem_ctl_info *mci)
213{
214 int i, chn, row;
215 struct csrow_info *csr;
216 const unsigned int tot_dimms = mci->tot_dimms;
217 const unsigned int tot_channels = mci->num_cschannel;
218 const unsigned int tot_csrows = mci->nr_csrows;
219
220 if (mci->dimms) {
221 for (i = 0; i < tot_dimms; i++)
222 kfree(mci->dimms[i]);
223 kfree(mci->dimms);
224 }
225 if (mci->csrows) {
226 for (row = 0; row < tot_csrows; row++) {
227 csr = mci->csrows[row];
228 if (csr) {
229 if (csr->channels) {
230 for (chn = 0; chn < tot_channels; chn++)
231 kfree(csr->channels[chn]);
232 kfree(csr->channels);
233 }
234 kfree(csr);
235 }
236 }
237 kfree(mci->csrows);
238 }
239 kfree(mci);
240}
241
da9bb1d2 242/**
4275be63
MCC
243 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
244 * @mc_num: Memory controller number
245 * @n_layers: Number of MC hierarchy layers
246 * layers: Describes each layer as seen by the Memory Controller
247 * @size_pvt: size of private storage needed
248 *
da9bb1d2
AC
249 *
250 * Everything is kmalloc'ed as one big chunk - more efficient.
251 * Only can be used if all structures have the same lifetime - otherwise
252 * you have to allocate and initialize your own structures.
253 *
254 * Use edac_mc_free() to free mc structures allocated by this function.
255 *
4275be63
MCC
256 * NOTE: drivers handle multi-rank memories in different ways: in some
257 * drivers, one multi-rank memory stick is mapped as one entry, while, in
258 * others, a single multi-rank memory stick would be mapped into several
259 * entries. Currently, this function will allocate multiple struct dimm_info
260 * on such scenarios, as grouping the multiple ranks require drivers change.
261 *
da9bb1d2 262 * Returns:
ca0907b9
MCC
263 * On failure: NULL
264 * On success: struct mem_ctl_info pointer
da9bb1d2 265 */
ca0907b9
MCC
266struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
267 unsigned n_layers,
268 struct edac_mc_layer *layers,
269 unsigned sz_pvt)
da9bb1d2
AC
270{
271 struct mem_ctl_info *mci;
4275be63 272 struct edac_mc_layer *layer;
de3910eb
MCC
273 struct csrow_info *csr;
274 struct rank_info *chan;
a7d7d2e1 275 struct dimm_info *dimm;
4275be63
MCC
276 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
277 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
278 unsigned size, tot_dimms = 1, count = 1;
279 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 280 void *pvt, *p, *ptr = NULL;
de3910eb 281 int i, j, row, chn, n, len, off;
4275be63
MCC
282 bool per_rank = false;
283
284 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
285 /*
286 * Calculate the total amount of dimms and csrows/cschannels while
287 * in the old API emulation mode
288 */
289 for (i = 0; i < n_layers; i++) {
290 tot_dimms *= layers[i].size;
291 if (layers[i].is_virt_csrow)
292 tot_csrows *= layers[i].size;
293 else
294 tot_channels *= layers[i].size;
295
296 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
297 per_rank = true;
298 }
da9bb1d2
AC
299
300 /* Figure out the offsets of the various items from the start of an mc
301 * structure. We want the alignment of each item to be at least as
302 * stringent as what the compiler would provide if we could simply
303 * hardcode everything into a single struct.
304 */
93e4fe64 305 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 306 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
307 for (i = 0; i < n_layers; i++) {
308 count *= layers[i].size;
956b9ba1 309 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
310 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
311 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
312 tot_errcount += 2 * count;
313 }
314
956b9ba1 315 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 316 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 317 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 318
956b9ba1
JP
319 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
320 size,
321 tot_dimms,
322 per_rank ? "ranks" : "dimms",
323 tot_csrows * tot_channels);
de3910eb 324
8096cfaf
DT
325 mci = kzalloc(size, GFP_KERNEL);
326 if (mci == NULL)
da9bb1d2
AC
327 return NULL;
328
329 /* Adjust pointers so they point within the memory we just allocated
330 * rather than an imaginary chunk of memory located at address 0.
331 */
4275be63 332 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
333 for (i = 0; i < n_layers; i++) {
334 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
335 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
336 }
079708b9 337 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 338
b8f6f975 339 /* setup index and various internal pointers */
4275be63 340 mci->mc_idx = mc_num;
4275be63 341 mci->tot_dimms = tot_dimms;
da9bb1d2 342 mci->pvt_info = pvt;
4275be63
MCC
343 mci->n_layers = n_layers;
344 mci->layers = layer;
345 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
346 mci->nr_csrows = tot_csrows;
347 mci->num_cschannel = tot_channels;
9713faec 348 mci->csbased = per_rank;
da9bb1d2 349
a7d7d2e1 350 /*
de3910eb 351 * Alocate and fill the csrow/channels structs
a7d7d2e1 352 */
d3d09e18 353 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
354 if (!mci->csrows)
355 goto error;
4275be63 356 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
357 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
358 if (!csr)
359 goto error;
360 mci->csrows[row] = csr;
4275be63
MCC
361 csr->csrow_idx = row;
362 csr->mci = mci;
363 csr->nr_channels = tot_channels;
d3d09e18 364 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
365 GFP_KERNEL);
366 if (!csr->channels)
367 goto error;
4275be63
MCC
368
369 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
370 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
371 if (!chan)
372 goto error;
373 csr->channels[chn] = chan;
da9bb1d2 374 chan->chan_idx = chn;
4275be63
MCC
375 chan->csrow = csr;
376 }
377 }
378
379 /*
de3910eb 380 * Allocate and fill the dimm structs
4275be63 381 */
d3d09e18 382 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
383 if (!mci->dimms)
384 goto error;
385
4275be63
MCC
386 memset(&pos, 0, sizeof(pos));
387 row = 0;
388 chn = 0;
4275be63 389 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
390 chan = mci->csrows[row]->channels[chn];
391 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
392 if (off < 0 || off >= tot_dimms) {
393 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
394 goto error;
395 }
4275be63 396
de3910eb 397 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
398 if (!dimm)
399 goto error;
de3910eb 400 mci->dimms[off] = dimm;
4275be63 401 dimm->mci = mci;
4275be63 402
5926ff50
MCC
403 /*
404 * Copy DIMM location and initialize it.
405 */
406 len = sizeof(dimm->label);
407 p = dimm->label;
408 n = snprintf(p, len, "mc#%u", mc_num);
409 p += n;
410 len -= n;
411 for (j = 0; j < n_layers; j++) {
412 n = snprintf(p, len, "%s#%u",
413 edac_layer_name[layers[j].type],
414 pos[j]);
415 p += n;
416 len -= n;
4275be63
MCC
417 dimm->location[j] = pos[j];
418
5926ff50
MCC
419 if (len <= 0)
420 break;
421 }
422
4275be63
MCC
423 /* Link it to the csrows old API data */
424 chan->dimm = dimm;
425 dimm->csrow = row;
426 dimm->cschannel = chn;
427
428 /* Increment csrow location */
24bef66e 429 if (layers[0].is_virt_csrow) {
4275be63 430 chn++;
24bef66e
MCC
431 if (chn == tot_channels) {
432 chn = 0;
433 row++;
434 }
435 } else {
436 row++;
437 if (row == tot_csrows) {
438 row = 0;
439 chn++;
440 }
4275be63 441 }
a7d7d2e1 442
4275be63
MCC
443 /* Increment dimm location */
444 for (j = n_layers - 1; j >= 0; j--) {
445 pos[j]++;
446 if (pos[j] < layers[j].size)
447 break;
448 pos[j] = 0;
da9bb1d2
AC
449 }
450 }
451
81d87cb1 452 mci->op_state = OP_ALLOC;
8096cfaf 453
da9bb1d2 454 return mci;
de3910eb
MCC
455
456error:
faa2ad09 457 _edac_mc_free(mci);
de3910eb
MCC
458
459 return NULL;
4275be63 460}
9110540f 461EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 462
da9bb1d2 463/**
8096cfaf
DT
464 * edac_mc_free
465 * 'Free' a previously allocated 'mci' structure
da9bb1d2 466 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
467 */
468void edac_mc_free(struct mem_ctl_info *mci)
469{
956b9ba1 470 edac_dbg(1, "\n");
bbc560ae 471
faa2ad09
SR
472 /* If we're not yet registered with sysfs free only what was allocated
473 * in edac_mc_alloc().
474 */
475 if (!device_is_registered(&mci->dev)) {
476 _edac_mc_free(mci);
477 return;
478 }
479
de3910eb 480 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 481 edac_unregister_sysfs(mci);
da9bb1d2 482}
9110540f 483EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 484
bce19683 485
939747bd 486/**
bce19683
DT
487 * find_mci_by_dev
488 *
489 * scan list of controllers looking for the one that manages
490 * the 'dev' device
939747bd 491 * @dev: pointer to a struct device related with the MCI
bce19683 492 */
939747bd 493struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
494{
495 struct mem_ctl_info *mci;
496 struct list_head *item;
497
956b9ba1 498 edac_dbg(3, "\n");
da9bb1d2
AC
499
500 list_for_each(item, &mc_devices) {
501 mci = list_entry(item, struct mem_ctl_info, link);
502
fd687502 503 if (mci->pdev == dev)
da9bb1d2
AC
504 return mci;
505 }
506
507 return NULL;
508}
939747bd 509EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 510
81d87cb1
DJ
511/*
512 * handler for EDAC to check if NMI type handler has asserted interrupt
513 */
514static int edac_mc_assert_error_check_and_clear(void)
515{
66ee2f94 516 int old_state;
81d87cb1 517
079708b9 518 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
519 return 1;
520
66ee2f94
DJ
521 old_state = edac_err_assert;
522 edac_err_assert = 0;
81d87cb1 523
66ee2f94 524 return old_state;
81d87cb1
DJ
525}
526
527/*
528 * edac_mc_workq_function
529 * performs the operation scheduled by a workq request
530 */
81d87cb1
DJ
531static void edac_mc_workq_function(struct work_struct *work_req)
532{
fbeb4384 533 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 534 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
535
536 mutex_lock(&mem_ctls_mutex);
537
bf52fa4a
DT
538 /* if this control struct has movd to offline state, we are done */
539 if (mci->op_state == OP_OFFLINE) {
540 mutex_unlock(&mem_ctls_mutex);
541 return;
542 }
543
81d87cb1
DJ
544 /* Only poll controllers that are running polled and have a check */
545 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
546 mci->edac_check(mci);
547
81d87cb1
DJ
548 mutex_unlock(&mem_ctls_mutex);
549
550 /* Reschedule */
c4cf3b45 551 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
552}
553
554/*
555 * edac_mc_workq_setup
556 * initialize a workq item for this mci
557 * passing in the new delay period in msec
bf52fa4a
DT
558 *
559 * locking model:
560 *
561 * called with the mem_ctls_mutex held
81d87cb1 562 */
c4cf3b45 563static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
81d87cb1 564{
956b9ba1 565 edac_dbg(0, "\n");
81d87cb1 566
bf52fa4a
DT
567 /* if this instance is not in the POLL state, then simply return */
568 if (mci->op_state != OP_RUNNING_POLL)
569 return;
570
c4cf3b45 571 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
cb6ef42e 572
c4cf3b45 573 edac_queue_work(&mci->work, msecs_to_jiffies(msec));
81d87cb1
DJ
574}
575
576/*
577 * edac_mc_workq_teardown
578 * stop the workq processing on this mci
bf52fa4a
DT
579 *
580 * locking model:
581 *
582 * called WITHOUT lock held
81d87cb1 583 */
bf52fa4a 584static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
81d87cb1 585{
c4cf3b45 586 edac_stop_work(&mci->work);
81d87cb1
DJ
587}
588
589/*
bce19683
DT
590 * edac_mc_reset_delay_period(unsigned long value)
591 *
592 * user space has updated our poll period value, need to
593 * reset our workq delays
81d87cb1 594 */
9da21b15 595void edac_mc_reset_delay_period(unsigned long value)
81d87cb1 596{
bce19683
DT
597 struct mem_ctl_info *mci;
598 struct list_head *item;
599
600 mutex_lock(&mem_ctls_mutex);
601
bce19683
DT
602 list_for_each(item, &mc_devices) {
603 mci = list_entry(item, struct mem_ctl_info, link);
604
c4cf3b45 605 edac_mod_work(&mci->work, value);
bce19683 606 }
81d87cb1
DJ
607 mutex_unlock(&mem_ctls_mutex);
608}
609
bce19683
DT
610
611
2d7bbb91
DT
612/* Return 0 on success, 1 on failure.
613 * Before calling this function, caller must
614 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
615 *
616 * locking model:
617 *
618 * called with the mem_ctls_mutex lock held
2d7bbb91 619 */
079708b9 620static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
621{
622 struct list_head *item, *insert_before;
623 struct mem_ctl_info *p;
da9bb1d2 624
2d7bbb91 625 insert_before = &mc_devices;
da9bb1d2 626
fd687502 627 p = find_mci_by_dev(mci->pdev);
bf52fa4a 628 if (unlikely(p != NULL))
2d7bbb91 629 goto fail0;
da9bb1d2 630
2d7bbb91
DT
631 list_for_each(item, &mc_devices) {
632 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 633
2d7bbb91
DT
634 if (p->mc_idx >= mci->mc_idx) {
635 if (unlikely(p->mc_idx == mci->mc_idx))
636 goto fail1;
da9bb1d2 637
2d7bbb91
DT
638 insert_before = item;
639 break;
da9bb1d2 640 }
da9bb1d2
AC
641 }
642
643 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 644 atomic_inc(&edac_handlers);
da9bb1d2 645 return 0;
2d7bbb91 646
052dfb45 647fail0:
2d7bbb91 648 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 649 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 650 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
651 return 1;
652
052dfb45 653fail1:
2d7bbb91 654 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
655 "bug in low-level driver: attempt to assign\n"
656 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 657 return 1;
da9bb1d2
AC
658}
659
80cc7d87 660static int del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 661{
80cc7d87 662 int handlers = atomic_dec_return(&edac_handlers);
a1d03fcc 663 list_del_rcu(&mci->link);
e2e77098
LJ
664
665 /* these are for safe removal of devices from global list while
666 * NMI handlers may be traversing list
667 */
668 synchronize_rcu();
669 INIT_LIST_HEAD(&mci->link);
80cc7d87
MCC
670
671 return handlers;
a1d03fcc
DP
672}
673
5da0831c
DT
674/**
675 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
676 *
677 * If found, return a pointer to the structure.
678 * Else return NULL.
679 *
680 * Caller must hold mem_ctls_mutex.
681 */
079708b9 682struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
683{
684 struct list_head *item;
685 struct mem_ctl_info *mci;
686
687 list_for_each(item, &mc_devices) {
688 mci = list_entry(item, struct mem_ctl_info, link);
689
690 if (mci->mc_idx >= idx) {
691 if (mci->mc_idx == idx)
692 return mci;
693
694 break;
695 }
696 }
697
698 return NULL;
699}
700EXPORT_SYMBOL(edac_mc_find);
701
da9bb1d2 702/**
4e8d230d
TI
703 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
704 * global list and create sysfs entries associated with mci structure
da9bb1d2 705 * @mci: pointer to the mci structure to be added to the list
4e8d230d 706 * @groups: optional attribute groups for the driver-specific sysfs entries
da9bb1d2
AC
707 *
708 * Return:
709 * 0 Success
710 * !0 Failure
711 */
712
713/* FIXME - should a warning be printed if no error detection? correction? */
4e8d230d
TI
714int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
715 const struct attribute_group **groups)
da9bb1d2 716{
80cc7d87 717 int ret = -EINVAL;
956b9ba1 718 edac_dbg(0, "\n");
b8f6f975 719
88d84ac9
BP
720 if (mci->mc_idx >= EDAC_MAX_MCS) {
721 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
722 return -ENODEV;
723 }
724
da9bb1d2
AC
725#ifdef CONFIG_EDAC_DEBUG
726 if (edac_debug_level >= 3)
727 edac_mc_dump_mci(mci);
e7ecd891 728
da9bb1d2
AC
729 if (edac_debug_level >= 4) {
730 int i;
731
732 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
733 struct csrow_info *csrow = mci->csrows[i];
734 u32 nr_pages = 0;
da9bb1d2 735 int j;
e7ecd891 736
6e84d359
MCC
737 for (j = 0; j < csrow->nr_channels; j++)
738 nr_pages += csrow->channels[j]->dimm->nr_pages;
739 if (!nr_pages)
740 continue;
741 edac_mc_dump_csrow(csrow);
742 for (j = 0; j < csrow->nr_channels; j++)
743 if (csrow->channels[j]->dimm->nr_pages)
744 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 745 }
4275be63 746 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
747 if (mci->dimms[i]->nr_pages)
748 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
749 }
750#endif
63b7df91 751 mutex_lock(&mem_ctls_mutex);
da9bb1d2 752
80cc7d87
MCC
753 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
754 ret = -EPERM;
755 goto fail0;
756 }
757
da9bb1d2 758 if (add_mc_to_global_list(mci))
028a7b6d 759 goto fail0;
da9bb1d2
AC
760
761 /* set load time so that error rate can be tracked */
762 mci->start_time = jiffies;
763
88d84ac9
BP
764 mci->bus = &mc_bus[mci->mc_idx];
765
4e8d230d 766 if (edac_create_sysfs_mci_device(mci, groups)) {
9794f33d 767 edac_mc_printk(mci, KERN_WARNING,
052dfb45 768 "failed to create sysfs device\n");
9794f33d 769 goto fail1;
770 }
da9bb1d2 771
81d87cb1 772 /* If there IS a check routine, then we are running POLLED */
09667606 773 if (mci->edac_check) {
81d87cb1
DJ
774 /* This instance is NOW RUNNING */
775 mci->op_state = OP_RUNNING_POLL;
776
c4cf3b45 777 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
81d87cb1
DJ
778 } else {
779 mci->op_state = OP_RUNNING_INTERRUPT;
780 }
781
da9bb1d2 782 /* Report action taken */
7270a608
RR
783 edac_mc_printk(mci, KERN_INFO,
784 "Giving out device to module %s controller %s: DEV %s (%s)\n",
785 mci->mod_name, mci->ctl_name, mci->dev_name,
786 edac_op_state_to_string(mci->op_state));
da9bb1d2 787
80cc7d87
MCC
788 edac_mc_owner = mci->mod_name;
789
63b7df91 790 mutex_unlock(&mem_ctls_mutex);
028a7b6d 791 return 0;
da9bb1d2 792
052dfb45 793fail1:
028a7b6d
DP
794 del_mc_from_global_list(mci);
795
052dfb45 796fail0:
63b7df91 797 mutex_unlock(&mem_ctls_mutex);
80cc7d87 798 return ret;
da9bb1d2 799}
4e8d230d 800EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
da9bb1d2 801
da9bb1d2 802/**
472678eb
DP
803 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
804 * remove mci structure from global list
37f04581 805 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 806 *
18dbc337 807 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 808 */
079708b9 809struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 810{
18dbc337 811 struct mem_ctl_info *mci;
da9bb1d2 812
956b9ba1 813 edac_dbg(0, "\n");
bf52fa4a 814
63b7df91 815 mutex_lock(&mem_ctls_mutex);
18dbc337 816
bf52fa4a
DT
817 /* find the requested mci struct in the global list */
818 mci = find_mci_by_dev(dev);
819 if (mci == NULL) {
63b7df91 820 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
821 return NULL;
822 }
823
09667606
BP
824 /* mark MCI offline: */
825 mci->op_state = OP_OFFLINE;
826
80cc7d87
MCC
827 if (!del_mc_from_global_list(mci))
828 edac_mc_owner = NULL;
bf52fa4a 829
09667606 830 mutex_unlock(&mem_ctls_mutex);
bb31b312 831
09667606
BP
832 if (mci->edac_check)
833 edac_mc_workq_teardown(mci);
bb31b312
BP
834
835 /* remove from sysfs */
bf52fa4a
DT
836 edac_remove_sysfs_mci_device(mci);
837
537fba28 838 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 839 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 840 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 841
18dbc337 842 return mci;
da9bb1d2 843}
9110540f 844EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 845
2da1c119
AB
846static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
847 u32 size)
da9bb1d2
AC
848{
849 struct page *pg;
850 void *virt_addr;
851 unsigned long flags = 0;
852
956b9ba1 853 edac_dbg(3, "\n");
da9bb1d2
AC
854
855 /* ECC error page was not in our memory. Ignore it. */
079708b9 856 if (!pfn_valid(page))
da9bb1d2
AC
857 return;
858
859 /* Find the actual page structure then map it and fix */
860 pg = pfn_to_page(page);
861
862 if (PageHighMem(pg))
863 local_irq_save(flags);
864
4e5df7ca 865 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
866
867 /* Perform architecture specific atomic scrub operation */
b01aec9b 868 edac_atomic_scrub(virt_addr + offset, size);
da9bb1d2
AC
869
870 /* Unmap and complete */
4e5df7ca 871 kunmap_atomic(virt_addr);
da9bb1d2
AC
872
873 if (PageHighMem(pg))
874 local_irq_restore(flags);
875}
876
da9bb1d2 877/* FIXME - should return -1 */
e7ecd891 878int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 879{
de3910eb 880 struct csrow_info **csrows = mci->csrows;
a895bf8b 881 int row, i, j, n;
da9bb1d2 882
956b9ba1 883 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
884 row = -1;
885
886 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 887 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
888 n = 0;
889 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 890 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
891 n += dimm->nr_pages;
892 }
893 if (n == 0)
da9bb1d2
AC
894 continue;
895
956b9ba1
JP
896 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
897 mci->mc_idx,
898 csrow->first_page, page, csrow->last_page,
899 csrow->page_mask);
da9bb1d2
AC
900
901 if ((page >= csrow->first_page) &&
902 (page <= csrow->last_page) &&
903 ((page & csrow->page_mask) ==
904 (csrow->first_page & csrow->page_mask))) {
905 row = i;
906 break;
907 }
908 }
909
910 if (row == -1)
537fba28 911 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
912 "could not look up page error address %lx\n",
913 (unsigned long)page);
da9bb1d2
AC
914
915 return row;
916}
9110540f 917EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 918
4275be63
MCC
919const char *edac_layer_name[] = {
920 [EDAC_MC_LAYER_BRANCH] = "branch",
921 [EDAC_MC_LAYER_CHANNEL] = "channel",
922 [EDAC_MC_LAYER_SLOT] = "slot",
923 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 924 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
925};
926EXPORT_SYMBOL_GPL(edac_layer_name);
927
928static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
929 bool enable_per_layer_report,
930 const int pos[EDAC_MAX_LAYERS],
931 const u16 count)
da9bb1d2 932{
4275be63 933 int i, index = 0;
da9bb1d2 934
9eb07a7f 935 mci->ce_mc += count;
da9bb1d2 936
4275be63 937 if (!enable_per_layer_report) {
9eb07a7f 938 mci->ce_noinfo_count += count;
da9bb1d2
AC
939 return;
940 }
e7ecd891 941
4275be63
MCC
942 for (i = 0; i < mci->n_layers; i++) {
943 if (pos[i] < 0)
944 break;
945 index += pos[i];
9eb07a7f 946 mci->ce_per_layer[i][index] += count;
4275be63
MCC
947
948 if (i < mci->n_layers - 1)
949 index *= mci->layers[i + 1].size;
950 }
951}
952
953static void edac_inc_ue_error(struct mem_ctl_info *mci,
954 bool enable_per_layer_report,
9eb07a7f
MCC
955 const int pos[EDAC_MAX_LAYERS],
956 const u16 count)
4275be63
MCC
957{
958 int i, index = 0;
959
9eb07a7f 960 mci->ue_mc += count;
4275be63
MCC
961
962 if (!enable_per_layer_report) {
9eb07a7f 963 mci->ce_noinfo_count += count;
da9bb1d2
AC
964 return;
965 }
966
4275be63
MCC
967 for (i = 0; i < mci->n_layers; i++) {
968 if (pos[i] < 0)
969 break;
970 index += pos[i];
9eb07a7f 971 mci->ue_per_layer[i][index] += count;
a7d7d2e1 972
4275be63
MCC
973 if (i < mci->n_layers - 1)
974 index *= mci->layers[i + 1].size;
975 }
976}
da9bb1d2 977
4275be63 978static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 979 const u16 error_count,
4275be63
MCC
980 const int pos[EDAC_MAX_LAYERS],
981 const char *msg,
982 const char *location,
983 const char *label,
984 const char *detail,
985 const char *other_detail,
986 const bool enable_per_layer_report,
987 const unsigned long page_frame_number,
988 const unsigned long offset_in_page,
53f2d028 989 long grain)
4275be63
MCC
990{
991 unsigned long remapped_page;
f430d570
BP
992 char *msg_aux = "";
993
994 if (*msg)
995 msg_aux = " ";
4275be63
MCC
996
997 if (edac_mc_get_log_ce()) {
998 if (other_detail && *other_detail)
999 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1000 "%d CE %s%son %s (%s %s - %s)\n",
1001 error_count, msg, msg_aux, label,
1002 location, detail, other_detail);
4275be63
MCC
1003 else
1004 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1005 "%d CE %s%son %s (%s %s)\n",
1006 error_count, msg, msg_aux, label,
1007 location, detail);
4275be63 1008 }
9eb07a7f 1009 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2 1010
aa2064d7 1011 if (mci->scrub_mode == SCRUB_SW_SRC) {
da9bb1d2 1012 /*
4275be63
MCC
1013 * Some memory controllers (called MCs below) can remap
1014 * memory so that it is still available at a different
1015 * address when PCI devices map into memory.
1016 * MC's that can't do this, lose the memory where PCI
1017 * devices are mapped. This mapping is MC-dependent
1018 * and so we call back into the MC driver for it to
1019 * map the MC page to a physical (CPU) page which can
1020 * then be mapped to a virtual page - which can then
1021 * be scrubbed.
1022 */
da9bb1d2 1023 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
1024 mci->ctl_page_to_phys(mci, page_frame_number) :
1025 page_frame_number;
da9bb1d2 1026
4275be63
MCC
1027 edac_mc_scrub_block(remapped_page,
1028 offset_in_page, grain);
da9bb1d2
AC
1029 }
1030}
1031
4275be63 1032static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1033 const u16 error_count,
4275be63
MCC
1034 const int pos[EDAC_MAX_LAYERS],
1035 const char *msg,
1036 const char *location,
1037 const char *label,
1038 const char *detail,
1039 const char *other_detail,
1040 const bool enable_per_layer_report)
da9bb1d2 1041{
f430d570
BP
1042 char *msg_aux = "";
1043
1044 if (*msg)
1045 msg_aux = " ";
1046
4275be63
MCC
1047 if (edac_mc_get_log_ue()) {
1048 if (other_detail && *other_detail)
1049 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1050 "%d UE %s%son %s (%s %s - %s)\n",
1051 error_count, msg, msg_aux, label,
1052 location, detail, other_detail);
4275be63
MCC
1053 else
1054 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1055 "%d UE %s%son %s (%s %s)\n",
1056 error_count, msg, msg_aux, label,
1057 location, detail);
4275be63 1058 }
e7ecd891 1059
4275be63
MCC
1060 if (edac_mc_get_panic_on_ue()) {
1061 if (other_detail && *other_detail)
f430d570
BP
1062 panic("UE %s%son %s (%s%s - %s)\n",
1063 msg, msg_aux, label, location, detail, other_detail);
4275be63 1064 else
f430d570
BP
1065 panic("UE %s%son %s (%s%s)\n",
1066 msg, msg_aux, label, location, detail);
4275be63
MCC
1067 }
1068
9eb07a7f 1069 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1070}
1071
e7e24830
MCC
1072/**
1073 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1074 * anything to discover the error location
1075 *
1076 * @type: severity of the error (CE/UE/Fatal)
1077 * @mci: a struct mem_ctl_info pointer
1078 * @e: error description
1079 *
1080 * This raw function is used internally by edac_mc_handle_error(). It should
1081 * only be called directly when the hardware error come directly from BIOS,
1082 * like in the case of APEI GHES driver.
1083 */
1084void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1085 struct mem_ctl_info *mci,
1086 struct edac_raw_error_desc *e)
1087{
1088 char detail[80];
1089 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1090
1091 /* Memory type dependent details about the error */
1092 if (type == HW_EVENT_ERR_CORRECTED) {
1093 snprintf(detail, sizeof(detail),
1094 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1095 e->page_frame_number, e->offset_in_page,
1096 e->grain, e->syndrome);
1097 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1098 detail, e->other_detail, e->enable_per_layer_report,
1099 e->page_frame_number, e->offset_in_page, e->grain);
1100 } else {
1101 snprintf(detail, sizeof(detail),
1102 "page:0x%lx offset:0x%lx grain:%ld",
1103 e->page_frame_number, e->offset_in_page, e->grain);
1104
1105 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1106 detail, e->other_detail, e->enable_per_layer_report);
1107 }
1108
1109
1110}
1111EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
53f2d028
MCC
1112
1113/**
1114 * edac_mc_handle_error - reports a memory event to userspace
1115 *
1116 * @type: severity of the error (CE/UE/Fatal)
1117 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1118 * @error_count: Number of errors of the same type
53f2d028
MCC
1119 * @page_frame_number: mem page where the error occurred
1120 * @offset_in_page: offset of the error inside the page
1121 * @syndrome: ECC syndrome
1122 * @top_layer: Memory layer[0] position
1123 * @mid_layer: Memory layer[1] position
1124 * @low_layer: Memory layer[2] position
1125 * @msg: Message meaningful to the end users that
1126 * explains the event
1127 * @other_detail: Technical details about the event that
1128 * may help hardware manufacturers and
1129 * EDAC developers to analyse the event
53f2d028 1130 */
4275be63
MCC
1131void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1132 struct mem_ctl_info *mci,
9eb07a7f 1133 const u16 error_count,
4275be63
MCC
1134 const unsigned long page_frame_number,
1135 const unsigned long offset_in_page,
1136 const unsigned long syndrome,
53f2d028
MCC
1137 const int top_layer,
1138 const int mid_layer,
1139 const int low_layer,
4275be63 1140 const char *msg,
03f7eae8 1141 const char *other_detail)
da9bb1d2 1142{
4275be63
MCC
1143 char *p;
1144 int row = -1, chan = -1;
53f2d028 1145 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
c7ef7645 1146 int i, n_labels = 0;
53f2d028 1147 u8 grain_bits;
c7ef7645 1148 struct edac_raw_error_desc *e = &mci->error_desc;
da9bb1d2 1149
956b9ba1 1150 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1151
c7ef7645
MCC
1152 /* Fills the error report buffer */
1153 memset(e, 0, sizeof (*e));
1154 e->error_count = error_count;
1155 e->top_layer = top_layer;
1156 e->mid_layer = mid_layer;
1157 e->low_layer = low_layer;
1158 e->page_frame_number = page_frame_number;
1159 e->offset_in_page = offset_in_page;
1160 e->syndrome = syndrome;
1161 e->msg = msg;
1162 e->other_detail = other_detail;
1163
4275be63
MCC
1164 /*
1165 * Check if the event report is consistent and if the memory
1166 * location is known. If it is known, enable_per_layer_report will be
1167 * true, the DIMM(s) label info will be filled and the per-layer
1168 * error counters will be incremented.
1169 */
1170 for (i = 0; i < mci->n_layers; i++) {
1171 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1172
1173 edac_mc_printk(mci, KERN_ERR,
1174 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1175 edac_layer_name[mci->layers[i].type],
1176 pos[i], mci->layers[i].size);
1177 /*
1178 * Instead of just returning it, let's use what's
1179 * known about the error. The increment routines and
1180 * the DIMM filter logic will do the right thing by
1181 * pointing the likely damaged DIMMs.
1182 */
1183 pos[i] = -1;
1184 }
1185 if (pos[i] >= 0)
c7ef7645 1186 e->enable_per_layer_report = true;
da9bb1d2
AC
1187 }
1188
4275be63
MCC
1189 /*
1190 * Get the dimm label/grain that applies to the match criteria.
1191 * As the error algorithm may not be able to point to just one memory
1192 * stick, the logic here will get all possible labels that could
1193 * pottentially be affected by the error.
1194 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1195 * to have only the MC channel and the MC dimm (also called "branch")
1196 * but the channel is not known, as the memory is arranged in pairs,
1197 * where each memory belongs to a separate channel within the same
1198 * branch.
1199 */
c7ef7645 1200 p = e->label;
4275be63 1201 *p = '\0';
4da1b7bf 1202
4275be63 1203 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1204 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1205
53f2d028 1206 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1207 continue;
53f2d028 1208 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1209 continue;
53f2d028 1210 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1211 continue;
da9bb1d2 1212
4275be63 1213 /* get the max grain, over the error match range */
c7ef7645
MCC
1214 if (dimm->grain > e->grain)
1215 e->grain = dimm->grain;
9794f33d 1216
4275be63
MCC
1217 /*
1218 * If the error is memory-controller wide, there's no need to
1219 * seek for the affected DIMMs because the whole
1220 * channel/memory controller/... may be affected.
1221 * Also, don't show errors for empty DIMM slots.
1222 */
c7ef7645
MCC
1223 if (e->enable_per_layer_report && dimm->nr_pages) {
1224 if (n_labels >= EDAC_MAX_LABELS) {
1225 e->enable_per_layer_report = false;
1226 break;
1227 }
1228 n_labels++;
1229 if (p != e->label) {
4275be63
MCC
1230 strcpy(p, OTHER_LABEL);
1231 p += strlen(OTHER_LABEL);
1232 }
1233 strcpy(p, dimm->label);
1234 p += strlen(p);
1235 *p = '\0';
1236
1237 /*
1238 * get csrow/channel of the DIMM, in order to allow
1239 * incrementing the compat API counters
1240 */
956b9ba1 1241 edac_dbg(4, "%s csrows map: (%d,%d)\n",
9713faec 1242 mci->csbased ? "rank" : "dimm",
956b9ba1 1243 dimm->csrow, dimm->cschannel);
4275be63
MCC
1244 if (row == -1)
1245 row = dimm->csrow;
1246 else if (row >= 0 && row != dimm->csrow)
1247 row = -2;
1248
1249 if (chan == -1)
1250 chan = dimm->cschannel;
1251 else if (chan >= 0 && chan != dimm->cschannel)
1252 chan = -2;
1253 }
9794f33d 1254 }
1255
c7ef7645
MCC
1256 if (!e->enable_per_layer_report) {
1257 strcpy(e->label, "any memory");
4275be63 1258 } else {
956b9ba1 1259 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
c7ef7645
MCC
1260 if (p == e->label)
1261 strcpy(e->label, "unknown memory");
4275be63
MCC
1262 if (type == HW_EVENT_ERR_CORRECTED) {
1263 if (row >= 0) {
9eb07a7f 1264 mci->csrows[row]->ce_count += error_count;
4275be63 1265 if (chan >= 0)
9eb07a7f 1266 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1267 }
1268 } else
1269 if (row >= 0)
9eb07a7f 1270 mci->csrows[row]->ue_count += error_count;
9794f33d 1271 }
1272
4275be63 1273 /* Fill the RAM location data */
c7ef7645 1274 p = e->location;
4da1b7bf 1275
4275be63
MCC
1276 for (i = 0; i < mci->n_layers; i++) {
1277 if (pos[i] < 0)
1278 continue;
9794f33d 1279
4275be63
MCC
1280 p += sprintf(p, "%s:%d ",
1281 edac_layer_name[mci->layers[i].type],
1282 pos[i]);
9794f33d 1283 }
c7ef7645 1284 if (p > e->location)
53f2d028
MCC
1285 *(p - 1) = '\0';
1286
1287 /* Report the error via the trace interface */
c7ef7645
MCC
1288 grain_bits = fls_long(e->grain) + 1;
1289 trace_mc_event(type, e->msg, e->label, e->error_count,
1290 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
990995ba 1291 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
e7e24830 1292 grain_bits, e->syndrome, e->other_detail);
a7d7d2e1 1293
e7e24830 1294 edac_raw_mc_handle_error(type, mci, e);
9794f33d 1295}
4275be63 1296EXPORT_SYMBOL_GPL(edac_mc_handle_error);