]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/edac/edac_mc.c
EDAC, sb_edac: Add support for systems with segmented PCI buses
[mirror_ubuntu-hirsute-kernel.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
7c0f6ba6 31#include <linux/uaccess.h>
da9bb1d2 32#include <asm/page.h>
78d88e8a 33#include "edac_mc.h"
7c9281d7 34#include "edac_module.h"
53f2d028
MCC
35#include <ras/ras_event.h>
36
b01aec9b
BP
37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
38#include <asm/edac.h>
39#else
40#define edac_atomic_scrub(va, size) do { } while (0)
41#endif
42
8c22b4fe
BP
43int edac_op_state = EDAC_OPSTATE_INVAL;
44EXPORT_SYMBOL_GPL(edac_op_state);
45
fee27d7d
BP
46static int edac_report = EDAC_REPORTING_ENABLED;
47
da9bb1d2 48/* lock to memory controller's control array */
63b7df91 49static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 50static LIST_HEAD(mc_devices);
da9bb1d2 51
80cc7d87
MCC
52/*
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
55 */
3877c7d1 56static const char *edac_mc_owner;
80cc7d87 57
88d84ac9
BP
58static struct bus_type mc_bus[EDAC_MAX_MCS];
59
bffc7dec 60int edac_get_report_status(void)
fee27d7d
BP
61{
62 return edac_report;
63}
bffc7dec 64EXPORT_SYMBOL_GPL(edac_get_report_status);
fee27d7d 65
bffc7dec 66void edac_set_report_status(int new)
fee27d7d
BP
67{
68 if (new == EDAC_REPORTING_ENABLED ||
69 new == EDAC_REPORTING_DISABLED ||
70 new == EDAC_REPORTING_FORCE)
71 edac_report = new;
72}
bffc7dec 73EXPORT_SYMBOL_GPL(edac_set_report_status);
fee27d7d
BP
74
75static int edac_report_set(const char *str, const struct kernel_param *kp)
76{
77 if (!str)
78 return -EINVAL;
79
80 if (!strncmp(str, "on", 2))
81 edac_report = EDAC_REPORTING_ENABLED;
82 else if (!strncmp(str, "off", 3))
83 edac_report = EDAC_REPORTING_DISABLED;
84 else if (!strncmp(str, "force", 5))
85 edac_report = EDAC_REPORTING_FORCE;
86
87 return 0;
88}
89
90static int edac_report_get(char *buffer, const struct kernel_param *kp)
91{
92 int ret = 0;
93
94 switch (edac_report) {
95 case EDAC_REPORTING_ENABLED:
96 ret = sprintf(buffer, "on");
97 break;
98 case EDAC_REPORTING_DISABLED:
99 ret = sprintf(buffer, "off");
100 break;
101 case EDAC_REPORTING_FORCE:
102 ret = sprintf(buffer, "force");
103 break;
104 default:
105 ret = -EINVAL;
106 break;
107 }
108
109 return ret;
110}
111
112static const struct kernel_param_ops edac_report_ops = {
113 .set = edac_report_set,
114 .get = edac_report_get,
115};
116
117module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118
6e84d359
MCC
119unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120 unsigned len)
121{
122 struct mem_ctl_info *mci = dimm->mci;
123 int i, n, count = 0;
124 char *p = buf;
125
126 for (i = 0; i < mci->n_layers; i++) {
127 n = snprintf(p, len, "%s %d ",
128 edac_layer_name[mci->layers[i].type],
129 dimm->location[i]);
130 p += n;
131 len -= n;
132 count += n;
133 if (!len)
134 break;
135 }
136
137 return count;
138}
139
da9bb1d2
AC
140#ifdef CONFIG_EDAC_DEBUG
141
a4b4be3f 142static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 143{
6e84d359
MCC
144 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
145 edac_dbg(4, " channel = %p\n", chan);
146 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
147 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
148}
149
6e84d359 150static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 151{
6e84d359
MCC
152 char location[80];
153
154 edac_dimm_info_location(dimm, location, sizeof(location));
155
156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
9713faec 157 dimm->mci->csbased ? "rank" : "dimm",
6e84d359
MCC
158 number, location, dimm->csrow, dimm->cschannel);
159 edac_dbg(4, " dimm = %p\n", dimm);
160 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
164}
165
2da1c119 166static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 167{
6e84d359
MCC
168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169 edac_dbg(4, " csrow = %p\n", csrow);
170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
174 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
175 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
176}
177
2da1c119 178static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 179{
956b9ba1
JP
180 edac_dbg(3, "\tmci = %p\n", mci);
181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 mci->nr_csrows, mci->csrows);
187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 mci->tot_dimms, mci->dimms);
189 edac_dbg(3, "\tdev = %p\n", mci->pdev);
190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 mci->mod_name, mci->ctl_name);
192 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
193}
194
24f9a7fe
BP
195#endif /* CONFIG_EDAC_DEBUG */
196
f4ce6eca 197const char * const edac_mem_types[] = {
d6dd77eb
TL
198 [MEM_EMPTY] = "Empty",
199 [MEM_RESERVED] = "Reserved",
200 [MEM_UNKNOWN] = "Unknown",
201 [MEM_FPM] = "FPM",
202 [MEM_EDO] = "EDO",
203 [MEM_BEDO] = "BEDO",
204 [MEM_SDR] = "Unbuffered-SDR",
205 [MEM_RDR] = "Registered-SDR",
206 [MEM_DDR] = "Unbuffered-DDR",
207 [MEM_RDDR] = "Registered-DDR",
208 [MEM_RMBS] = "RMBS",
209 [MEM_DDR2] = "Unbuffered-DDR2",
210 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
211 [MEM_RDDR2] = "Registered-DDR2",
212 [MEM_XDR] = "XDR",
213 [MEM_DDR3] = "Unbuffered-DDR3",
214 [MEM_RDDR3] = "Registered-DDR3",
215 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
216 [MEM_DDR4] = "Unbuffered-DDR4",
001f8613
TL
217 [MEM_RDDR4] = "Registered-DDR4",
218 [MEM_NVDIMM] = "Non-volatile-RAM",
239642fe
BP
219};
220EXPORT_SYMBOL_GPL(edac_mem_types);
221
93e4fe64
MCC
222/**
223 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
224 * @p: pointer to a pointer with the memory offset to be used. At
225 * return, this will be incremented to point to the next offset
226 * @size: Size of the data structure to be reserved
227 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
228 *
229 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
230 * down to either a no-op or the addition of a constant to the value of '*p'.
231 *
232 * The 'p' pointer is absolutely needed to keep the proper advancing
233 * further in memory to the proper offsets when allocating the struct along
234 * with its embedded structs, as edac_device_alloc_ctl_info() does it
235 * above, for example.
236 *
237 * At return, the pointer 'p' will be incremented to be used on a next call
238 * to this function.
da9bb1d2 239 */
93e4fe64 240void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
241{
242 unsigned align, r;
93e4fe64 243 void *ptr = *p;
da9bb1d2 244
93e4fe64
MCC
245 *p += size * n_elems;
246
247 /*
248 * 'p' can possibly be an unaligned item X such that sizeof(X) is
249 * 'size'. Adjust 'p' so that its alignment is at least as
250 * stringent as what the compiler would provide for X and return
251 * the aligned result.
252 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
253 * stringent alignment that the compiler will ever provide by default.
254 * As far as I know, this is a reasonable assumption.
255 */
256 if (size > sizeof(long))
257 align = sizeof(long long);
258 else if (size > sizeof(int))
259 align = sizeof(long);
260 else if (size > sizeof(short))
261 align = sizeof(int);
262 else if (size > sizeof(char))
263 align = sizeof(short);
264 else
079708b9 265 return (char *)ptr;
da9bb1d2 266
8447c4d1 267 r = (unsigned long)p % align;
da9bb1d2
AC
268
269 if (r == 0)
079708b9 270 return (char *)ptr;
da9bb1d2 271
93e4fe64
MCC
272 *p += align - r;
273
7391c6dc 274 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
275}
276
faa2ad09
SR
277static void _edac_mc_free(struct mem_ctl_info *mci)
278{
279 int i, chn, row;
280 struct csrow_info *csr;
281 const unsigned int tot_dimms = mci->tot_dimms;
282 const unsigned int tot_channels = mci->num_cschannel;
283 const unsigned int tot_csrows = mci->nr_csrows;
284
285 if (mci->dimms) {
286 for (i = 0; i < tot_dimms; i++)
287 kfree(mci->dimms[i]);
288 kfree(mci->dimms);
289 }
290 if (mci->csrows) {
291 for (row = 0; row < tot_csrows; row++) {
292 csr = mci->csrows[row];
293 if (csr) {
294 if (csr->channels) {
295 for (chn = 0; chn < tot_channels; chn++)
296 kfree(csr->channels[chn]);
297 kfree(csr->channels);
298 }
299 kfree(csr);
300 }
301 }
302 kfree(mci->csrows);
303 }
304 kfree(mci);
305}
306
ca0907b9
MCC
307struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
308 unsigned n_layers,
309 struct edac_mc_layer *layers,
310 unsigned sz_pvt)
da9bb1d2
AC
311{
312 struct mem_ctl_info *mci;
4275be63 313 struct edac_mc_layer *layer;
de3910eb
MCC
314 struct csrow_info *csr;
315 struct rank_info *chan;
a7d7d2e1 316 struct dimm_info *dimm;
4275be63
MCC
317 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
318 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
319 unsigned size, tot_dimms = 1, count = 1;
320 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 321 void *pvt, *p, *ptr = NULL;
de3910eb 322 int i, j, row, chn, n, len, off;
4275be63
MCC
323 bool per_rank = false;
324
325 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
326 /*
327 * Calculate the total amount of dimms and csrows/cschannels while
328 * in the old API emulation mode
329 */
330 for (i = 0; i < n_layers; i++) {
331 tot_dimms *= layers[i].size;
332 if (layers[i].is_virt_csrow)
333 tot_csrows *= layers[i].size;
334 else
335 tot_channels *= layers[i].size;
336
337 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
338 per_rank = true;
339 }
da9bb1d2
AC
340
341 /* Figure out the offsets of the various items from the start of an mc
342 * structure. We want the alignment of each item to be at least as
343 * stringent as what the compiler would provide if we could simply
344 * hardcode everything into a single struct.
345 */
93e4fe64 346 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 347 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
348 for (i = 0; i < n_layers; i++) {
349 count *= layers[i].size;
956b9ba1 350 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
351 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353 tot_errcount += 2 * count;
354 }
355
956b9ba1 356 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 357 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 358 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 359
956b9ba1
JP
360 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
361 size,
362 tot_dimms,
363 per_rank ? "ranks" : "dimms",
364 tot_csrows * tot_channels);
de3910eb 365
8096cfaf
DT
366 mci = kzalloc(size, GFP_KERNEL);
367 if (mci == NULL)
da9bb1d2
AC
368 return NULL;
369
370 /* Adjust pointers so they point within the memory we just allocated
371 * rather than an imaginary chunk of memory located at address 0.
372 */
4275be63 373 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
374 for (i = 0; i < n_layers; i++) {
375 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
376 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
377 }
079708b9 378 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 379
b8f6f975 380 /* setup index and various internal pointers */
4275be63 381 mci->mc_idx = mc_num;
4275be63 382 mci->tot_dimms = tot_dimms;
da9bb1d2 383 mci->pvt_info = pvt;
4275be63
MCC
384 mci->n_layers = n_layers;
385 mci->layers = layer;
386 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
387 mci->nr_csrows = tot_csrows;
388 mci->num_cschannel = tot_channels;
9713faec 389 mci->csbased = per_rank;
da9bb1d2 390
a7d7d2e1 391 /*
de3910eb 392 * Alocate and fill the csrow/channels structs
a7d7d2e1 393 */
d3d09e18 394 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
395 if (!mci->csrows)
396 goto error;
4275be63 397 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
398 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
399 if (!csr)
400 goto error;
401 mci->csrows[row] = csr;
4275be63
MCC
402 csr->csrow_idx = row;
403 csr->mci = mci;
404 csr->nr_channels = tot_channels;
d3d09e18 405 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
406 GFP_KERNEL);
407 if (!csr->channels)
408 goto error;
4275be63
MCC
409
410 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
411 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
412 if (!chan)
413 goto error;
414 csr->channels[chn] = chan;
da9bb1d2 415 chan->chan_idx = chn;
4275be63
MCC
416 chan->csrow = csr;
417 }
418 }
419
420 /*
de3910eb 421 * Allocate and fill the dimm structs
4275be63 422 */
d3d09e18 423 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
424 if (!mci->dimms)
425 goto error;
426
4275be63
MCC
427 memset(&pos, 0, sizeof(pos));
428 row = 0;
429 chn = 0;
4275be63 430 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
431 chan = mci->csrows[row]->channels[chn];
432 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
433 if (off < 0 || off >= tot_dimms) {
434 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
435 goto error;
436 }
4275be63 437
de3910eb 438 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
439 if (!dimm)
440 goto error;
de3910eb 441 mci->dimms[off] = dimm;
4275be63 442 dimm->mci = mci;
4275be63 443
5926ff50
MCC
444 /*
445 * Copy DIMM location and initialize it.
446 */
447 len = sizeof(dimm->label);
448 p = dimm->label;
449 n = snprintf(p, len, "mc#%u", mc_num);
450 p += n;
451 len -= n;
452 for (j = 0; j < n_layers; j++) {
453 n = snprintf(p, len, "%s#%u",
454 edac_layer_name[layers[j].type],
455 pos[j]);
456 p += n;
457 len -= n;
4275be63
MCC
458 dimm->location[j] = pos[j];
459
5926ff50
MCC
460 if (len <= 0)
461 break;
462 }
463
4275be63
MCC
464 /* Link it to the csrows old API data */
465 chan->dimm = dimm;
466 dimm->csrow = row;
467 dimm->cschannel = chn;
468
469 /* Increment csrow location */
24bef66e 470 if (layers[0].is_virt_csrow) {
4275be63 471 chn++;
24bef66e
MCC
472 if (chn == tot_channels) {
473 chn = 0;
474 row++;
475 }
476 } else {
477 row++;
478 if (row == tot_csrows) {
479 row = 0;
480 chn++;
481 }
4275be63 482 }
a7d7d2e1 483
4275be63
MCC
484 /* Increment dimm location */
485 for (j = n_layers - 1; j >= 0; j--) {
486 pos[j]++;
487 if (pos[j] < layers[j].size)
488 break;
489 pos[j] = 0;
da9bb1d2
AC
490 }
491 }
492
81d87cb1 493 mci->op_state = OP_ALLOC;
8096cfaf 494
da9bb1d2 495 return mci;
de3910eb
MCC
496
497error:
faa2ad09 498 _edac_mc_free(mci);
de3910eb
MCC
499
500 return NULL;
4275be63 501}
9110540f 502EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 503
da9bb1d2
AC
504void edac_mc_free(struct mem_ctl_info *mci)
505{
956b9ba1 506 edac_dbg(1, "\n");
bbc560ae 507
faa2ad09
SR
508 /* If we're not yet registered with sysfs free only what was allocated
509 * in edac_mc_alloc().
510 */
511 if (!device_is_registered(&mci->dev)) {
512 _edac_mc_free(mci);
513 return;
514 }
515
de3910eb 516 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 517 edac_unregister_sysfs(mci);
da9bb1d2 518}
9110540f 519EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 520
d7fc9d77
YG
521bool edac_has_mcs(void)
522{
523 bool ret;
524
525 mutex_lock(&mem_ctls_mutex);
526
527 ret = list_empty(&mc_devices);
528
529 mutex_unlock(&mem_ctls_mutex);
530
531 return !ret;
532}
533EXPORT_SYMBOL_GPL(edac_has_mcs);
534
c73e8833
BP
535/* Caller must hold mem_ctls_mutex */
536static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
da9bb1d2
AC
537{
538 struct mem_ctl_info *mci;
539 struct list_head *item;
540
956b9ba1 541 edac_dbg(3, "\n");
da9bb1d2
AC
542
543 list_for_each(item, &mc_devices) {
544 mci = list_entry(item, struct mem_ctl_info, link);
545
fd687502 546 if (mci->pdev == dev)
da9bb1d2
AC
547 return mci;
548 }
549
550 return NULL;
551}
c73e8833
BP
552
553/**
554 * find_mci_by_dev
555 *
556 * scan list of controllers looking for the one that manages
557 * the 'dev' device
558 * @dev: pointer to a struct device related with the MCI
559 */
560struct mem_ctl_info *find_mci_by_dev(struct device *dev)
561{
562 struct mem_ctl_info *ret;
563
564 mutex_lock(&mem_ctls_mutex);
565 ret = __find_mci_by_dev(dev);
566 mutex_unlock(&mem_ctls_mutex);
567
568 return ret;
569}
939747bd 570EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 571
81d87cb1
DJ
572/*
573 * edac_mc_workq_function
574 * performs the operation scheduled by a workq request
575 */
81d87cb1
DJ
576static void edac_mc_workq_function(struct work_struct *work_req)
577{
fbeb4384 578 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 579 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
580
581 mutex_lock(&mem_ctls_mutex);
582
06e912d4 583 if (mci->op_state != OP_RUNNING_POLL) {
bf52fa4a
DT
584 mutex_unlock(&mem_ctls_mutex);
585 return;
586 }
587
d3116a08 588 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
589 mci->edac_check(mci);
590
81d87cb1
DJ
591 mutex_unlock(&mem_ctls_mutex);
592
06e912d4 593 /* Queue ourselves again. */
c4cf3b45 594 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
595}
596
81d87cb1 597/*
bce19683
DT
598 * edac_mc_reset_delay_period(unsigned long value)
599 *
600 * user space has updated our poll period value, need to
601 * reset our workq delays
81d87cb1 602 */
9da21b15 603void edac_mc_reset_delay_period(unsigned long value)
81d87cb1 604{
bce19683
DT
605 struct mem_ctl_info *mci;
606 struct list_head *item;
607
608 mutex_lock(&mem_ctls_mutex);
609
bce19683
DT
610 list_for_each(item, &mc_devices) {
611 mci = list_entry(item, struct mem_ctl_info, link);
612
fbedcaf4
NK
613 if (mci->op_state == OP_RUNNING_POLL)
614 edac_mod_work(&mci->work, value);
bce19683 615 }
81d87cb1
DJ
616 mutex_unlock(&mem_ctls_mutex);
617}
618
bce19683
DT
619
620
2d7bbb91
DT
621/* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
624 *
625 * locking model:
626 *
627 * called with the mem_ctls_mutex lock held
2d7bbb91 628 */
079708b9 629static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
630{
631 struct list_head *item, *insert_before;
632 struct mem_ctl_info *p;
da9bb1d2 633
2d7bbb91 634 insert_before = &mc_devices;
da9bb1d2 635
c73e8833 636 p = __find_mci_by_dev(mci->pdev);
bf52fa4a 637 if (unlikely(p != NULL))
2d7bbb91 638 goto fail0;
da9bb1d2 639
2d7bbb91
DT
640 list_for_each(item, &mc_devices) {
641 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 642
2d7bbb91
DT
643 if (p->mc_idx >= mci->mc_idx) {
644 if (unlikely(p->mc_idx == mci->mc_idx))
645 goto fail1;
da9bb1d2 646
2d7bbb91
DT
647 insert_before = item;
648 break;
da9bb1d2 649 }
da9bb1d2
AC
650 }
651
652 list_add_tail_rcu(&mci->link, insert_before);
653 return 0;
2d7bbb91 654
052dfb45 655fail0:
2d7bbb91 656 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 657 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 658 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
659 return 1;
660
052dfb45 661fail1:
2d7bbb91 662 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
663 "bug in low-level driver: attempt to assign\n"
664 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 665 return 1;
da9bb1d2
AC
666}
667
80cc7d87 668static int del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc
DP
669{
670 list_del_rcu(&mci->link);
e2e77098
LJ
671
672 /* these are for safe removal of devices from global list while
673 * NMI handlers may be traversing list
674 */
675 synchronize_rcu();
676 INIT_LIST_HEAD(&mci->link);
80cc7d87 677
97bb6c17 678 return list_empty(&mc_devices);
a1d03fcc
DP
679}
680
079708b9 681struct mem_ctl_info *edac_mc_find(int idx)
5da0831c 682{
c73e8833 683 struct mem_ctl_info *mci = NULL;
5da0831c 684 struct list_head *item;
c73e8833
BP
685
686 mutex_lock(&mem_ctls_mutex);
5da0831c
DT
687
688 list_for_each(item, &mc_devices) {
689 mci = list_entry(item, struct mem_ctl_info, link);
690
691 if (mci->mc_idx >= idx) {
c73e8833
BP
692 if (mci->mc_idx == idx) {
693 goto unlock;
694 }
5da0831c
DT
695 break;
696 }
697 }
698
c73e8833
BP
699unlock:
700 mutex_unlock(&mem_ctls_mutex);
701 return mci;
5da0831c
DT
702}
703EXPORT_SYMBOL(edac_mc_find);
704
3877c7d1
TK
705const char *edac_get_owner(void)
706{
707 return edac_mc_owner;
708}
709EXPORT_SYMBOL_GPL(edac_get_owner);
da9bb1d2
AC
710
711/* FIXME - should a warning be printed if no error detection? correction? */
4e8d230d
TI
712int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
713 const struct attribute_group **groups)
da9bb1d2 714{
80cc7d87 715 int ret = -EINVAL;
956b9ba1 716 edac_dbg(0, "\n");
b8f6f975 717
88d84ac9
BP
718 if (mci->mc_idx >= EDAC_MAX_MCS) {
719 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
720 return -ENODEV;
721 }
722
da9bb1d2
AC
723#ifdef CONFIG_EDAC_DEBUG
724 if (edac_debug_level >= 3)
725 edac_mc_dump_mci(mci);
e7ecd891 726
da9bb1d2
AC
727 if (edac_debug_level >= 4) {
728 int i;
729
730 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
731 struct csrow_info *csrow = mci->csrows[i];
732 u32 nr_pages = 0;
da9bb1d2 733 int j;
e7ecd891 734
6e84d359
MCC
735 for (j = 0; j < csrow->nr_channels; j++)
736 nr_pages += csrow->channels[j]->dimm->nr_pages;
737 if (!nr_pages)
738 continue;
739 edac_mc_dump_csrow(csrow);
740 for (j = 0; j < csrow->nr_channels; j++)
741 if (csrow->channels[j]->dimm->nr_pages)
742 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 743 }
4275be63 744 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
745 if (mci->dimms[i]->nr_pages)
746 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
747 }
748#endif
63b7df91 749 mutex_lock(&mem_ctls_mutex);
da9bb1d2 750
80cc7d87
MCC
751 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
752 ret = -EPERM;
753 goto fail0;
754 }
755
da9bb1d2 756 if (add_mc_to_global_list(mci))
028a7b6d 757 goto fail0;
da9bb1d2
AC
758
759 /* set load time so that error rate can be tracked */
760 mci->start_time = jiffies;
761
88d84ac9
BP
762 mci->bus = &mc_bus[mci->mc_idx];
763
4e8d230d 764 if (edac_create_sysfs_mci_device(mci, groups)) {
9794f33d 765 edac_mc_printk(mci, KERN_WARNING,
052dfb45 766 "failed to create sysfs device\n");
9794f33d 767 goto fail1;
768 }
da9bb1d2 769
09667606 770 if (mci->edac_check) {
81d87cb1
DJ
771 mci->op_state = OP_RUNNING_POLL;
772
626a7a4d
BP
773 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
774 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
775
81d87cb1
DJ
776 } else {
777 mci->op_state = OP_RUNNING_INTERRUPT;
778 }
779
da9bb1d2 780 /* Report action taken */
7270a608
RR
781 edac_mc_printk(mci, KERN_INFO,
782 "Giving out device to module %s controller %s: DEV %s (%s)\n",
783 mci->mod_name, mci->ctl_name, mci->dev_name,
784 edac_op_state_to_string(mci->op_state));
da9bb1d2 785
80cc7d87
MCC
786 edac_mc_owner = mci->mod_name;
787
63b7df91 788 mutex_unlock(&mem_ctls_mutex);
028a7b6d 789 return 0;
da9bb1d2 790
052dfb45 791fail1:
028a7b6d
DP
792 del_mc_from_global_list(mci);
793
052dfb45 794fail0:
63b7df91 795 mutex_unlock(&mem_ctls_mutex);
80cc7d87 796 return ret;
da9bb1d2 797}
4e8d230d 798EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
da9bb1d2 799
079708b9 800struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 801{
18dbc337 802 struct mem_ctl_info *mci;
da9bb1d2 803
956b9ba1 804 edac_dbg(0, "\n");
bf52fa4a 805
63b7df91 806 mutex_lock(&mem_ctls_mutex);
18dbc337 807
bf52fa4a 808 /* find the requested mci struct in the global list */
c73e8833 809 mci = __find_mci_by_dev(dev);
bf52fa4a 810 if (mci == NULL) {
63b7df91 811 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
812 return NULL;
813 }
814
09667606
BP
815 /* mark MCI offline: */
816 mci->op_state = OP_OFFLINE;
817
97bb6c17 818 if (del_mc_from_global_list(mci))
80cc7d87 819 edac_mc_owner = NULL;
bf52fa4a 820
09667606 821 mutex_unlock(&mem_ctls_mutex);
bb31b312 822
09667606 823 if (mci->edac_check)
626a7a4d 824 edac_stop_work(&mci->work);
bb31b312
BP
825
826 /* remove from sysfs */
bf52fa4a
DT
827 edac_remove_sysfs_mci_device(mci);
828
537fba28 829 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 830 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 831 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 832
18dbc337 833 return mci;
da9bb1d2 834}
9110540f 835EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 836
2da1c119
AB
837static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
838 u32 size)
da9bb1d2
AC
839{
840 struct page *pg;
841 void *virt_addr;
842 unsigned long flags = 0;
843
956b9ba1 844 edac_dbg(3, "\n");
da9bb1d2
AC
845
846 /* ECC error page was not in our memory. Ignore it. */
079708b9 847 if (!pfn_valid(page))
da9bb1d2
AC
848 return;
849
850 /* Find the actual page structure then map it and fix */
851 pg = pfn_to_page(page);
852
853 if (PageHighMem(pg))
854 local_irq_save(flags);
855
4e5df7ca 856 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
857
858 /* Perform architecture specific atomic scrub operation */
b01aec9b 859 edac_atomic_scrub(virt_addr + offset, size);
da9bb1d2
AC
860
861 /* Unmap and complete */
4e5df7ca 862 kunmap_atomic(virt_addr);
da9bb1d2
AC
863
864 if (PageHighMem(pg))
865 local_irq_restore(flags);
866}
867
da9bb1d2 868/* FIXME - should return -1 */
e7ecd891 869int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 870{
de3910eb 871 struct csrow_info **csrows = mci->csrows;
a895bf8b 872 int row, i, j, n;
da9bb1d2 873
956b9ba1 874 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
875 row = -1;
876
877 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 878 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
879 n = 0;
880 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 881 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
882 n += dimm->nr_pages;
883 }
884 if (n == 0)
da9bb1d2
AC
885 continue;
886
956b9ba1
JP
887 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
888 mci->mc_idx,
889 csrow->first_page, page, csrow->last_page,
890 csrow->page_mask);
da9bb1d2
AC
891
892 if ((page >= csrow->first_page) &&
893 (page <= csrow->last_page) &&
894 ((page & csrow->page_mask) ==
895 (csrow->first_page & csrow->page_mask))) {
896 row = i;
897 break;
898 }
899 }
900
901 if (row == -1)
537fba28 902 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
903 "could not look up page error address %lx\n",
904 (unsigned long)page);
da9bb1d2
AC
905
906 return row;
907}
9110540f 908EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 909
4275be63
MCC
910const char *edac_layer_name[] = {
911 [EDAC_MC_LAYER_BRANCH] = "branch",
912 [EDAC_MC_LAYER_CHANNEL] = "channel",
913 [EDAC_MC_LAYER_SLOT] = "slot",
914 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 915 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
916};
917EXPORT_SYMBOL_GPL(edac_layer_name);
918
919static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
920 bool enable_per_layer_report,
921 const int pos[EDAC_MAX_LAYERS],
922 const u16 count)
da9bb1d2 923{
4275be63 924 int i, index = 0;
da9bb1d2 925
9eb07a7f 926 mci->ce_mc += count;
da9bb1d2 927
4275be63 928 if (!enable_per_layer_report) {
9eb07a7f 929 mci->ce_noinfo_count += count;
da9bb1d2
AC
930 return;
931 }
e7ecd891 932
4275be63
MCC
933 for (i = 0; i < mci->n_layers; i++) {
934 if (pos[i] < 0)
935 break;
936 index += pos[i];
9eb07a7f 937 mci->ce_per_layer[i][index] += count;
4275be63
MCC
938
939 if (i < mci->n_layers - 1)
940 index *= mci->layers[i + 1].size;
941 }
942}
943
944static void edac_inc_ue_error(struct mem_ctl_info *mci,
945 bool enable_per_layer_report,
9eb07a7f
MCC
946 const int pos[EDAC_MAX_LAYERS],
947 const u16 count)
4275be63
MCC
948{
949 int i, index = 0;
950
9eb07a7f 951 mci->ue_mc += count;
4275be63
MCC
952
953 if (!enable_per_layer_report) {
993f88f1 954 mci->ue_noinfo_count += count;
da9bb1d2
AC
955 return;
956 }
957
4275be63
MCC
958 for (i = 0; i < mci->n_layers; i++) {
959 if (pos[i] < 0)
960 break;
961 index += pos[i];
9eb07a7f 962 mci->ue_per_layer[i][index] += count;
a7d7d2e1 963
4275be63
MCC
964 if (i < mci->n_layers - 1)
965 index *= mci->layers[i + 1].size;
966 }
967}
da9bb1d2 968
4275be63 969static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 970 const u16 error_count,
4275be63
MCC
971 const int pos[EDAC_MAX_LAYERS],
972 const char *msg,
973 const char *location,
974 const char *label,
975 const char *detail,
976 const char *other_detail,
977 const bool enable_per_layer_report,
978 const unsigned long page_frame_number,
979 const unsigned long offset_in_page,
53f2d028 980 long grain)
4275be63
MCC
981{
982 unsigned long remapped_page;
f430d570
BP
983 char *msg_aux = "";
984
985 if (*msg)
986 msg_aux = " ";
4275be63
MCC
987
988 if (edac_mc_get_log_ce()) {
989 if (other_detail && *other_detail)
990 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
991 "%d CE %s%son %s (%s %s - %s)\n",
992 error_count, msg, msg_aux, label,
993 location, detail, other_detail);
4275be63
MCC
994 else
995 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
996 "%d CE %s%son %s (%s %s)\n",
997 error_count, msg, msg_aux, label,
998 location, detail);
4275be63 999 }
9eb07a7f 1000 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2 1001
aa2064d7 1002 if (mci->scrub_mode == SCRUB_SW_SRC) {
da9bb1d2 1003 /*
4275be63
MCC
1004 * Some memory controllers (called MCs below) can remap
1005 * memory so that it is still available at a different
1006 * address when PCI devices map into memory.
1007 * MC's that can't do this, lose the memory where PCI
1008 * devices are mapped. This mapping is MC-dependent
1009 * and so we call back into the MC driver for it to
1010 * map the MC page to a physical (CPU) page which can
1011 * then be mapped to a virtual page - which can then
1012 * be scrubbed.
1013 */
da9bb1d2 1014 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
1015 mci->ctl_page_to_phys(mci, page_frame_number) :
1016 page_frame_number;
da9bb1d2 1017
4275be63
MCC
1018 edac_mc_scrub_block(remapped_page,
1019 offset_in_page, grain);
da9bb1d2
AC
1020 }
1021}
1022
4275be63 1023static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1024 const u16 error_count,
4275be63
MCC
1025 const int pos[EDAC_MAX_LAYERS],
1026 const char *msg,
1027 const char *location,
1028 const char *label,
1029 const char *detail,
1030 const char *other_detail,
1031 const bool enable_per_layer_report)
da9bb1d2 1032{
f430d570
BP
1033 char *msg_aux = "";
1034
1035 if (*msg)
1036 msg_aux = " ";
1037
4275be63
MCC
1038 if (edac_mc_get_log_ue()) {
1039 if (other_detail && *other_detail)
1040 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1041 "%d UE %s%son %s (%s %s - %s)\n",
1042 error_count, msg, msg_aux, label,
1043 location, detail, other_detail);
4275be63
MCC
1044 else
1045 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1046 "%d UE %s%son %s (%s %s)\n",
1047 error_count, msg, msg_aux, label,
1048 location, detail);
4275be63 1049 }
e7ecd891 1050
4275be63
MCC
1051 if (edac_mc_get_panic_on_ue()) {
1052 if (other_detail && *other_detail)
f430d570
BP
1053 panic("UE %s%son %s (%s%s - %s)\n",
1054 msg, msg_aux, label, location, detail, other_detail);
4275be63 1055 else
f430d570
BP
1056 panic("UE %s%son %s (%s%s)\n",
1057 msg, msg_aux, label, location, detail);
4275be63
MCC
1058 }
1059
9eb07a7f 1060 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1061}
1062
e7e24830
MCC
1063void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1064 struct mem_ctl_info *mci,
1065 struct edac_raw_error_desc *e)
1066{
1067 char detail[80];
1068 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1069
1070 /* Memory type dependent details about the error */
1071 if (type == HW_EVENT_ERR_CORRECTED) {
1072 snprintf(detail, sizeof(detail),
1073 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1074 e->page_frame_number, e->offset_in_page,
1075 e->grain, e->syndrome);
1076 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1077 detail, e->other_detail, e->enable_per_layer_report,
1078 e->page_frame_number, e->offset_in_page, e->grain);
1079 } else {
1080 snprintf(detail, sizeof(detail),
1081 "page:0x%lx offset:0x%lx grain:%ld",
1082 e->page_frame_number, e->offset_in_page, e->grain);
1083
1084 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1085 detail, e->other_detail, e->enable_per_layer_report);
1086 }
1087
1088
1089}
1090EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
53f2d028 1091
4275be63
MCC
1092void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1093 struct mem_ctl_info *mci,
9eb07a7f 1094 const u16 error_count,
4275be63
MCC
1095 const unsigned long page_frame_number,
1096 const unsigned long offset_in_page,
1097 const unsigned long syndrome,
53f2d028
MCC
1098 const int top_layer,
1099 const int mid_layer,
1100 const int low_layer,
4275be63 1101 const char *msg,
03f7eae8 1102 const char *other_detail)
da9bb1d2 1103{
4275be63
MCC
1104 char *p;
1105 int row = -1, chan = -1;
53f2d028 1106 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
c7ef7645 1107 int i, n_labels = 0;
53f2d028 1108 u8 grain_bits;
c7ef7645 1109 struct edac_raw_error_desc *e = &mci->error_desc;
da9bb1d2 1110
956b9ba1 1111 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1112
c7ef7645
MCC
1113 /* Fills the error report buffer */
1114 memset(e, 0, sizeof (*e));
1115 e->error_count = error_count;
1116 e->top_layer = top_layer;
1117 e->mid_layer = mid_layer;
1118 e->low_layer = low_layer;
1119 e->page_frame_number = page_frame_number;
1120 e->offset_in_page = offset_in_page;
1121 e->syndrome = syndrome;
1122 e->msg = msg;
1123 e->other_detail = other_detail;
1124
4275be63
MCC
1125 /*
1126 * Check if the event report is consistent and if the memory
1127 * location is known. If it is known, enable_per_layer_report will be
1128 * true, the DIMM(s) label info will be filled and the per-layer
1129 * error counters will be incremented.
1130 */
1131 for (i = 0; i < mci->n_layers; i++) {
1132 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1133
1134 edac_mc_printk(mci, KERN_ERR,
1135 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1136 edac_layer_name[mci->layers[i].type],
1137 pos[i], mci->layers[i].size);
1138 /*
1139 * Instead of just returning it, let's use what's
1140 * known about the error. The increment routines and
1141 * the DIMM filter logic will do the right thing by
1142 * pointing the likely damaged DIMMs.
1143 */
1144 pos[i] = -1;
1145 }
1146 if (pos[i] >= 0)
c7ef7645 1147 e->enable_per_layer_report = true;
da9bb1d2
AC
1148 }
1149
4275be63
MCC
1150 /*
1151 * Get the dimm label/grain that applies to the match criteria.
1152 * As the error algorithm may not be able to point to just one memory
1153 * stick, the logic here will get all possible labels that could
1154 * pottentially be affected by the error.
1155 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1156 * to have only the MC channel and the MC dimm (also called "branch")
1157 * but the channel is not known, as the memory is arranged in pairs,
1158 * where each memory belongs to a separate channel within the same
1159 * branch.
1160 */
c7ef7645 1161 p = e->label;
4275be63 1162 *p = '\0';
4da1b7bf 1163
4275be63 1164 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1165 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1166
53f2d028 1167 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1168 continue;
53f2d028 1169 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1170 continue;
53f2d028 1171 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1172 continue;
da9bb1d2 1173
4275be63 1174 /* get the max grain, over the error match range */
c7ef7645
MCC
1175 if (dimm->grain > e->grain)
1176 e->grain = dimm->grain;
9794f33d 1177
4275be63
MCC
1178 /*
1179 * If the error is memory-controller wide, there's no need to
1180 * seek for the affected DIMMs because the whole
1181 * channel/memory controller/... may be affected.
1182 * Also, don't show errors for empty DIMM slots.
1183 */
c7ef7645
MCC
1184 if (e->enable_per_layer_report && dimm->nr_pages) {
1185 if (n_labels >= EDAC_MAX_LABELS) {
1186 e->enable_per_layer_report = false;
1187 break;
1188 }
1189 n_labels++;
1190 if (p != e->label) {
4275be63
MCC
1191 strcpy(p, OTHER_LABEL);
1192 p += strlen(OTHER_LABEL);
1193 }
1194 strcpy(p, dimm->label);
1195 p += strlen(p);
1196 *p = '\0';
1197
1198 /*
1199 * get csrow/channel of the DIMM, in order to allow
1200 * incrementing the compat API counters
1201 */
956b9ba1 1202 edac_dbg(4, "%s csrows map: (%d,%d)\n",
9713faec 1203 mci->csbased ? "rank" : "dimm",
956b9ba1 1204 dimm->csrow, dimm->cschannel);
4275be63
MCC
1205 if (row == -1)
1206 row = dimm->csrow;
1207 else if (row >= 0 && row != dimm->csrow)
1208 row = -2;
1209
1210 if (chan == -1)
1211 chan = dimm->cschannel;
1212 else if (chan >= 0 && chan != dimm->cschannel)
1213 chan = -2;
1214 }
9794f33d 1215 }
1216
c7ef7645
MCC
1217 if (!e->enable_per_layer_report) {
1218 strcpy(e->label, "any memory");
4275be63 1219 } else {
956b9ba1 1220 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
c7ef7645
MCC
1221 if (p == e->label)
1222 strcpy(e->label, "unknown memory");
4275be63
MCC
1223 if (type == HW_EVENT_ERR_CORRECTED) {
1224 if (row >= 0) {
9eb07a7f 1225 mci->csrows[row]->ce_count += error_count;
4275be63 1226 if (chan >= 0)
9eb07a7f 1227 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1228 }
1229 } else
1230 if (row >= 0)
9eb07a7f 1231 mci->csrows[row]->ue_count += error_count;
9794f33d 1232 }
1233
4275be63 1234 /* Fill the RAM location data */
c7ef7645 1235 p = e->location;
4da1b7bf 1236
4275be63
MCC
1237 for (i = 0; i < mci->n_layers; i++) {
1238 if (pos[i] < 0)
1239 continue;
9794f33d 1240
4275be63
MCC
1241 p += sprintf(p, "%s:%d ",
1242 edac_layer_name[mci->layers[i].type],
1243 pos[i]);
9794f33d 1244 }
c7ef7645 1245 if (p > e->location)
53f2d028
MCC
1246 *(p - 1) = '\0';
1247
1248 /* Report the error via the trace interface */
c7ef7645 1249 grain_bits = fls_long(e->grain) + 1;
be1d1629
BP
1250
1251 if (IS_ENABLED(CONFIG_RAS))
1252 trace_mc_event(type, e->msg, e->label, e->error_count,
1253 mci->mc_idx, e->top_layer, e->mid_layer,
1254 e->low_layer,
1255 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1256 grain_bits, e->syndrome, e->other_detail);
a7d7d2e1 1257
e7e24830 1258 edac_raw_mc_handle_error(type, mci, e);
9794f33d 1259}
4275be63 1260EXPORT_SYMBOL_GPL(edac_mc_handle_error);