]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/edac/edac_mc.c
[PATCH] EDAC: Kconfig dependency changes
[mirror_ubuntu-artful-kernel.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
3 * (C) 2005 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15
16#include <linux/config.h>
da9bb1d2
AC
17#include <linux/module.h>
18#include <linux/proc_fs.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/smp.h>
22#include <linux/init.h>
23#include <linux/sysctl.h>
24#include <linux/highmem.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/spinlock.h>
29#include <linux/list.h>
30#include <linux/sysdev.h>
31#include <linux/ctype.h>
f2fe42ab 32#include <linux/kthread.h>
da9bb1d2
AC
33
34#include <asm/uaccess.h>
35#include <asm/page.h>
36#include <asm/edac.h>
37
38#include "edac_mc.h"
39
537fba28 40#define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
da9bb1d2 41
ceb2ca9c
DP
42/* For now, disable the EDAC sysfs code. The sysfs interface that EDAC
43 * presents to user space needs more thought, and is likely to change
44 * substantially.
45 */
46#define DISABLE_EDAC_SYSFS
47
da9bb1d2
AC
48#ifdef CONFIG_EDAC_DEBUG
49/* Values of 0 to 4 will generate output */
50int edac_debug_level = 1;
51EXPORT_SYMBOL(edac_debug_level);
52#endif
53
54/* EDAC Controls, setable by module parameter, and sysfs */
55static int log_ue = 1;
56static int log_ce = 1;
ceb2ca9c 57static int panic_on_ue;
da9bb1d2
AC
58static int poll_msec = 1000;
59
60static int check_pci_parity = 0; /* default YES check PCI parity */
61static int panic_on_pci_parity; /* default no panic on PCI Parity */
62static atomic_t pci_parity_count = ATOMIC_INIT(0);
63
64/* lock to memory controller's control array */
65static DECLARE_MUTEX(mem_ctls_mutex);
66static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
67
f2fe42ab
DP
68static struct task_struct *edac_thread;
69
da9bb1d2
AC
70/* Structure of the whitelist and blacklist arrays */
71struct edac_pci_device_list {
72 unsigned int vendor; /* Vendor ID */
73 unsigned int device; /* Deviice ID */
74};
75
76
77#define MAX_LISTED_PCI_DEVICES 32
78
79/* List of PCI devices (vendor-id:device-id) that should be skipped */
80static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
81static int pci_blacklist_count;
82
83/* List of PCI devices (vendor-id:device-id) that should be scanned */
84static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
85static int pci_whitelist_count ;
86
87/* START sysfs data and methods */
88
ceb2ca9c
DP
89#ifndef DISABLE_EDAC_SYSFS
90
da9bb1d2
AC
91static const char *mem_types[] = {
92 [MEM_EMPTY] = "Empty",
93 [MEM_RESERVED] = "Reserved",
94 [MEM_UNKNOWN] = "Unknown",
95 [MEM_FPM] = "FPM",
96 [MEM_EDO] = "EDO",
97 [MEM_BEDO] = "BEDO",
98 [MEM_SDR] = "Unbuffered-SDR",
99 [MEM_RDR] = "Registered-SDR",
100 [MEM_DDR] = "Unbuffered-DDR",
101 [MEM_RDDR] = "Registered-DDR",
102 [MEM_RMBS] = "RMBS"
103};
104
105static const char *dev_types[] = {
106 [DEV_UNKNOWN] = "Unknown",
107 [DEV_X1] = "x1",
108 [DEV_X2] = "x2",
109 [DEV_X4] = "x4",
110 [DEV_X8] = "x8",
111 [DEV_X16] = "x16",
112 [DEV_X32] = "x32",
113 [DEV_X64] = "x64"
114};
115
116static const char *edac_caps[] = {
117 [EDAC_UNKNOWN] = "Unknown",
118 [EDAC_NONE] = "None",
119 [EDAC_RESERVED] = "Reserved",
120 [EDAC_PARITY] = "PARITY",
121 [EDAC_EC] = "EC",
122 [EDAC_SECDED] = "SECDED",
123 [EDAC_S2ECD2ED] = "S2ECD2ED",
124 [EDAC_S4ECD4ED] = "S4ECD4ED",
125 [EDAC_S8ECD8ED] = "S8ECD8ED",
126 [EDAC_S16ECD16ED] = "S16ECD16ED"
127};
128
129
130/* sysfs object: /sys/devices/system/edac */
131static struct sysdev_class edac_class = {
132 set_kset_name("edac"),
133};
134
135/* sysfs objects:
136 * /sys/devices/system/edac/mc
137 * /sys/devices/system/edac/pci
138 */
139static struct kobject edac_memctrl_kobj;
140static struct kobject edac_pci_kobj;
141
472678eb
DP
142/* We use these to wait for the reference counts on edac_memctrl_kobj and
143 * edac_pci_kobj to reach 0.
144 */
145static struct completion edac_memctrl_kobj_complete;
146static struct completion edac_pci_kobj_complete;
147
da9bb1d2
AC
148/*
149 * /sys/devices/system/edac/mc;
150 * data structures and methods
151 */
4136cabf 152#if 0
da9bb1d2
AC
153static ssize_t memctrl_string_show(void *ptr, char *buffer)
154{
155 char *value = (char*) ptr;
156 return sprintf(buffer, "%s\n", value);
157}
4136cabf 158#endif
da9bb1d2
AC
159
160static ssize_t memctrl_int_show(void *ptr, char *buffer)
161{
162 int *value = (int*) ptr;
163 return sprintf(buffer, "%d\n", *value);
164}
165
166static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
167{
168 int *value = (int*) ptr;
169
170 if (isdigit(*buffer))
171 *value = simple_strtoul(buffer, NULL, 0);
172
173 return count;
174}
175
176struct memctrl_dev_attribute {
177 struct attribute attr;
178 void *value;
179 ssize_t (*show)(void *,char *);
180 ssize_t (*store)(void *, const char *, size_t);
181};
182
183/* Set of show/store abstract level functions for memory control object */
184static ssize_t
185memctrl_dev_show(struct kobject *kobj, struct attribute *attr, char *buffer)
186{
187 struct memctrl_dev_attribute *memctrl_dev;
188 memctrl_dev = (struct memctrl_dev_attribute*)attr;
189
190 if (memctrl_dev->show)
191 return memctrl_dev->show(memctrl_dev->value, buffer);
192 return -EIO;
193}
194
195static ssize_t
196memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
197 const char *buffer, size_t count)
198{
199 struct memctrl_dev_attribute *memctrl_dev;
200 memctrl_dev = (struct memctrl_dev_attribute*)attr;
201
202 if (memctrl_dev->store)
203 return memctrl_dev->store(memctrl_dev->value, buffer, count);
204 return -EIO;
205}
206
207static struct sysfs_ops memctrlfs_ops = {
208 .show = memctrl_dev_show,
209 .store = memctrl_dev_store
210};
211
212#define MEMCTRL_ATTR(_name,_mode,_show,_store) \
213struct memctrl_dev_attribute attr_##_name = { \
214 .attr = {.name = __stringify(_name), .mode = _mode }, \
215 .value = &_name, \
216 .show = _show, \
217 .store = _store, \
218};
219
220#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \
221struct memctrl_dev_attribute attr_##_name = { \
222 .attr = {.name = __stringify(_name), .mode = _mode }, \
223 .value = _data, \
224 .show = _show, \
225 .store = _store, \
226};
227
228/* cwrow<id> attribute f*/
4136cabf 229#if 0
da9bb1d2 230MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
4136cabf 231#endif
da9bb1d2
AC
232
233/* csrow<id> control files */
234MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
235MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
236MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
237MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
238
239
240/* Base Attributes of the memory ECC object */
241static struct memctrl_dev_attribute *memctrl_attr[] = {
242 &attr_panic_on_ue,
243 &attr_log_ue,
244 &attr_log_ce,
245 &attr_poll_msec,
da9bb1d2
AC
246 NULL,
247};
248
249/* Main MC kobject release() function */
250static void edac_memctrl_master_release(struct kobject *kobj)
251{
537fba28 252 debugf1("%s()\n", __func__);
472678eb 253 complete(&edac_memctrl_kobj_complete);
da9bb1d2
AC
254}
255
256static struct kobj_type ktype_memctrl = {
257 .release = edac_memctrl_master_release,
258 .sysfs_ops = &memctrlfs_ops,
259 .default_attrs = (struct attribute **) memctrl_attr,
260};
261
ceb2ca9c 262#endif /* DISABLE_EDAC_SYSFS */
da9bb1d2
AC
263
264/* Initialize the main sysfs entries for edac:
265 * /sys/devices/system/edac
266 *
267 * and children
268 *
269 * Return: 0 SUCCESS
270 * !0 FAILURE
271 */
272static int edac_sysfs_memctrl_setup(void)
ceb2ca9c
DP
273#ifdef DISABLE_EDAC_SYSFS
274{
275 return 0;
276}
277#else
da9bb1d2
AC
278{
279 int err=0;
280
537fba28 281 debugf1("%s()\n", __func__);
da9bb1d2
AC
282
283 /* create the /sys/devices/system/edac directory */
284 err = sysdev_class_register(&edac_class);
285 if (!err) {
286 /* Init the MC's kobject */
287 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
da9bb1d2
AC
288 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
289 edac_memctrl_kobj.ktype = &ktype_memctrl;
290
291 /* generate sysfs "..../edac/mc" */
292 err = kobject_set_name(&edac_memctrl_kobj,"mc");
293 if (!err) {
294 /* FIXME: maybe new sysdev_create_subdir() */
295 err = kobject_register(&edac_memctrl_kobj);
296 if (err) {
297 debugf1("Failed to register '.../edac/mc'\n");
298 } else {
299 debugf1("Registered '.../edac/mc' kobject\n");
300 }
301 }
302 } else {
537fba28 303 debugf1("%s() error=%d\n", __func__, err);
da9bb1d2
AC
304 }
305
306 return err;
307}
ceb2ca9c 308#endif /* DISABLE_EDAC_SYSFS */
da9bb1d2
AC
309
310/*
311 * MC teardown:
312 * the '..../edac/mc' kobject followed by '..../edac' itself
313 */
314static void edac_sysfs_memctrl_teardown(void)
315{
ceb2ca9c 316#ifndef DISABLE_EDAC_SYSFS
da9bb1d2
AC
317 debugf0("MC: " __FILE__ ": %s()\n", __func__);
318
472678eb
DP
319 /* Unregister the MC's kobject and wait for reference count to reach
320 * 0.
321 */
322 init_completion(&edac_memctrl_kobj_complete);
da9bb1d2 323 kobject_unregister(&edac_memctrl_kobj);
472678eb 324 wait_for_completion(&edac_memctrl_kobj_complete);
da9bb1d2 325
da9bb1d2
AC
326 /* Unregister the 'edac' object */
327 sysdev_class_unregister(&edac_class);
ceb2ca9c 328#endif /* DISABLE_EDAC_SYSFS */
da9bb1d2
AC
329}
330
ceb2ca9c
DP
331#ifndef DISABLE_EDAC_SYSFS
332
da9bb1d2
AC
333/*
334 * /sys/devices/system/edac/pci;
335 * data structures and methods
336 */
337
338struct list_control {
339 struct edac_pci_device_list *list;
340 int *count;
341};
342
4136cabf
AV
343
344#if 0
da9bb1d2
AC
345/* Output the list as: vendor_id:device:id<,vendor_id:device_id> */
346static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
347{
348 struct list_control *listctl;
349 struct edac_pci_device_list *list;
350 char *p = buffer;
351 int len=0;
352 int i;
353
354 listctl = ptr;
355 list = listctl->list;
356
357 for (i = 0; i < *(listctl->count); i++, list++ ) {
358 if (len > 0)
359 len += snprintf(p + len, (PAGE_SIZE-len), ",");
360
361 len += snprintf(p + len,
362 (PAGE_SIZE-len),
363 "%x:%x",
364 list->vendor,list->device);
365 }
366
367 len += snprintf(p + len,(PAGE_SIZE-len), "\n");
368
369 return (ssize_t) len;
370}
371
372/**
373 *
374 * Scan string from **s to **e looking for one 'vendor:device' tuple
375 * where each field is a hex value
376 *
377 * return 0 if an entry is NOT found
378 * return 1 if an entry is found
379 * fill in *vendor_id and *device_id with values found
380 *
381 * In both cases, make sure *s has been moved forward toward *e
382 */
383static int parse_one_device(const char **s,const char **e,
384 unsigned int *vendor_id, unsigned int *device_id)
385{
386 const char *runner, *p;
387
388 /* if null byte, we are done */
389 if (!**s) {
390 (*s)++; /* keep *s moving */
391 return 0;
392 }
393
394 /* skip over newlines & whitespace */
395 if ((**s == '\n') || isspace(**s)) {
396 (*s)++;
397 return 0;
398 }
399
400 if (!isxdigit(**s)) {
401 (*s)++;
402 return 0;
403 }
404
405 /* parse vendor_id */
406 runner = *s;
407 while (runner < *e) {
408 /* scan for vendor:device delimiter */
409 if (*runner == ':') {
410 *vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
411 runner = p + 1;
412 break;
413 }
414 runner++;
415 }
416
417 if (!isxdigit(*runner)) {
418 *s = ++runner;
419 return 0;
420 }
421
422 /* parse device_id */
423 if (runner < *e) {
424 *device_id = simple_strtol((char*)runner, (char**)&p, 16);
425 runner = p;
426 }
427
428 *s = runner;
429
430 return 1;
431}
432
433static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
434 size_t count)
435{
436 struct list_control *listctl;
437 struct edac_pci_device_list *list;
438 unsigned int vendor_id, device_id;
439 const char *s, *e;
440 int *index;
441
442 s = (char*)buffer;
443 e = s + count;
444
445 listctl = ptr;
446 list = listctl->list;
447 index = listctl->count;
448
449 *index = 0;
450 while (*index < MAX_LISTED_PCI_DEVICES) {
451
452 if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
453 list[ *index ].vendor = vendor_id;
454 list[ *index ].device = device_id;
455 (*index)++;
456 }
457
458 /* check for all data consume */
459 if (s >= e)
460 break;
461 }
462
463 return count;
464}
465
4136cabf 466#endif
da9bb1d2
AC
467static ssize_t edac_pci_int_show(void *ptr, char *buffer)
468{
469 int *value = ptr;
470 return sprintf(buffer,"%d\n",*value);
471}
472
473static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
474{
475 int *value = ptr;
476
477 if (isdigit(*buffer))
478 *value = simple_strtoul(buffer,NULL,0);
479
480 return count;
481}
482
483struct edac_pci_dev_attribute {
484 struct attribute attr;
485 void *value;
486 ssize_t (*show)(void *,char *);
487 ssize_t (*store)(void *, const char *,size_t);
488};
489
490/* Set of show/store abstract level functions for PCI Parity object */
491static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
492 char *buffer)
493{
494 struct edac_pci_dev_attribute *edac_pci_dev;
495 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
496
497 if (edac_pci_dev->show)
498 return edac_pci_dev->show(edac_pci_dev->value, buffer);
499 return -EIO;
500}
501
502static ssize_t edac_pci_dev_store(struct kobject *kobj, struct attribute *attr,
503 const char *buffer, size_t count)
504{
505 struct edac_pci_dev_attribute *edac_pci_dev;
506 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
507
508 if (edac_pci_dev->show)
509 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
510 return -EIO;
511}
512
513static struct sysfs_ops edac_pci_sysfs_ops = {
514 .show = edac_pci_dev_show,
515 .store = edac_pci_dev_store
516};
517
518
519#define EDAC_PCI_ATTR(_name,_mode,_show,_store) \
520struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
521 .attr = {.name = __stringify(_name), .mode = _mode }, \
522 .value = &_name, \
523 .show = _show, \
524 .store = _store, \
525};
526
527#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \
528struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
529 .attr = {.name = __stringify(_name), .mode = _mode }, \
530 .value = _data, \
531 .show = _show, \
532 .store = _store, \
533};
534
4136cabf 535#if 0
da9bb1d2
AC
536static struct list_control pci_whitelist_control = {
537 .list = pci_whitelist,
538 .count = &pci_whitelist_count
539};
540
541static struct list_control pci_blacklist_control = {
542 .list = pci_blacklist,
543 .count = &pci_blacklist_count
544};
545
546/* whitelist attribute */
547EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
548 &pci_whitelist_control,
549 S_IRUGO|S_IWUSR,
550 edac_pci_list_string_show,
551 edac_pci_list_string_store);
552
553EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
554 &pci_blacklist_control,
555 S_IRUGO|S_IWUSR,
556 edac_pci_list_string_show,
557 edac_pci_list_string_store);
4136cabf 558#endif
da9bb1d2
AC
559
560/* PCI Parity control files */
561EDAC_PCI_ATTR(check_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
562EDAC_PCI_ATTR(panic_on_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
563EDAC_PCI_ATTR(pci_parity_count,S_IRUGO,edac_pci_int_show,NULL);
564
565/* Base Attributes of the memory ECC object */
566static struct edac_pci_dev_attribute *edac_pci_attr[] = {
567 &edac_pci_attr_check_pci_parity,
568 &edac_pci_attr_panic_on_pci_parity,
569 &edac_pci_attr_pci_parity_count,
da9bb1d2
AC
570 NULL,
571};
572
573/* No memory to release */
574static void edac_pci_release(struct kobject *kobj)
575{
537fba28 576 debugf1("%s()\n", __func__);
472678eb 577 complete(&edac_pci_kobj_complete);
da9bb1d2
AC
578}
579
580static struct kobj_type ktype_edac_pci = {
581 .release = edac_pci_release,
582 .sysfs_ops = &edac_pci_sysfs_ops,
583 .default_attrs = (struct attribute **) edac_pci_attr,
584};
585
ceb2ca9c
DP
586#endif /* DISABLE_EDAC_SYSFS */
587
da9bb1d2
AC
588/**
589 * edac_sysfs_pci_setup()
590 *
591 */
592static int edac_sysfs_pci_setup(void)
ceb2ca9c
DP
593#ifdef DISABLE_EDAC_SYSFS
594{
595 return 0;
596}
597#else
da9bb1d2
AC
598{
599 int err;
600
537fba28 601 debugf1("%s()\n", __func__);
da9bb1d2
AC
602
603 memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
da9bb1d2
AC
604 edac_pci_kobj.parent = &edac_class.kset.kobj;
605 edac_pci_kobj.ktype = &ktype_edac_pci;
606
607 err = kobject_set_name(&edac_pci_kobj, "pci");
608 if (!err) {
609 /* Instanstiate the csrow object */
610 /* FIXME: maybe new sysdev_create_subdir() */
611 err = kobject_register(&edac_pci_kobj);
612 if (err)
613 debugf1("Failed to register '.../edac/pci'\n");
614 else
615 debugf1("Registered '.../edac/pci' kobject\n");
616 }
617 return err;
618}
ceb2ca9c 619#endif /* DISABLE_EDAC_SYSFS */
da9bb1d2
AC
620
621static void edac_sysfs_pci_teardown(void)
622{
ceb2ca9c 623#ifndef DISABLE_EDAC_SYSFS
537fba28 624 debugf0("%s()\n", __func__);
472678eb 625 init_completion(&edac_pci_kobj_complete);
da9bb1d2 626 kobject_unregister(&edac_pci_kobj);
472678eb 627 wait_for_completion(&edac_pci_kobj_complete);
ceb2ca9c 628#endif
da9bb1d2
AC
629}
630
ceb2ca9c
DP
631#ifndef DISABLE_EDAC_SYSFS
632
da9bb1d2
AC
633/* EDAC sysfs CSROW data structures and methods */
634
635/* Set of more detailed csrow<id> attribute show/store functions */
636static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
637{
638 ssize_t size = 0;
639
640 if (csrow->nr_channels > 0) {
641 size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
642 csrow->channels[0].label);
643 }
644 return size;
645}
646
647static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
648{
649 ssize_t size = 0;
650
651 if (csrow->nr_channels > 0) {
652 size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
653 csrow->channels[1].label);
654 }
655 return size;
656}
657
658static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
659 const char *data, size_t size)
660{
661 ssize_t max_size = 0;
662
663 if (csrow->nr_channels > 0) {
664 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
665 strncpy(csrow->channels[0].label, data, max_size);
666 csrow->channels[0].label[max_size] = '\0';
667 }
668 return size;
669}
670
671static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
672 const char *data, size_t size)
673{
674 ssize_t max_size = 0;
675
676 if (csrow->nr_channels > 1) {
677 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
678 strncpy(csrow->channels[1].label, data, max_size);
679 csrow->channels[1].label[max_size] = '\0';
680 }
681 return max_size;
682}
683
684static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
685{
686 return sprintf(data,"%u\n", csrow->ue_count);
687}
688
689static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
690{
691 return sprintf(data,"%u\n", csrow->ce_count);
692}
693
694static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
695{
696 ssize_t size = 0;
697
698 if (csrow->nr_channels > 0) {
699 size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
700 }
701 return size;
702}
703
704static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
705{
706 ssize_t size = 0;
707
708 if (csrow->nr_channels > 1) {
709 size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
710 }
711 return size;
712}
713
714static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
715{
716 return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
717}
718
719static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
720{
721 return sprintf(data,"%s\n", mem_types[csrow->mtype]);
722}
723
724static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
725{
726 return sprintf(data,"%s\n", dev_types[csrow->dtype]);
727}
728
729static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
730{
731 return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
732}
733
734struct csrowdev_attribute {
735 struct attribute attr;
736 ssize_t (*show)(struct csrow_info *,char *);
737 ssize_t (*store)(struct csrow_info *, const char *,size_t);
738};
739
740#define to_csrow(k) container_of(k, struct csrow_info, kobj)
741#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
742
743/* Set of show/store higher level functions for csrow objects */
744static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
745 char *buffer)
746{
747 struct csrow_info *csrow = to_csrow(kobj);
748 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
749
750 if (csrowdev_attr->show)
751 return csrowdev_attr->show(csrow, buffer);
752 return -EIO;
753}
754
755static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
756 const char *buffer, size_t count)
757{
758 struct csrow_info *csrow = to_csrow(kobj);
759 struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
760
761 if (csrowdev_attr->store)
762 return csrowdev_attr->store(csrow, buffer, count);
763 return -EIO;
764}
765
766static struct sysfs_ops csrowfs_ops = {
767 .show = csrowdev_show,
768 .store = csrowdev_store
769};
770
771#define CSROWDEV_ATTR(_name,_mode,_show,_store) \
772struct csrowdev_attribute attr_##_name = { \
773 .attr = {.name = __stringify(_name), .mode = _mode }, \
774 .show = _show, \
775 .store = _store, \
776};
777
778/* cwrow<id>/attribute files */
779CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
780CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
781CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
782CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
783CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
784CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
785CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
786CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
787
788/* control/attribute files */
789CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
790 csrow_ch0_dimm_label_show,
791 csrow_ch0_dimm_label_store);
792CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
793 csrow_ch1_dimm_label_show,
794 csrow_ch1_dimm_label_store);
795
796
797/* Attributes of the CSROW<id> object */
798static struct csrowdev_attribute *csrow_attr[] = {
799 &attr_dev_type,
800 &attr_mem_type,
801 &attr_edac_mode,
802 &attr_size_mb,
803 &attr_ue_count,
804 &attr_ce_count,
805 &attr_ch0_ce_count,
806 &attr_ch1_ce_count,
807 &attr_ch0_dimm_label,
808 &attr_ch1_dimm_label,
809 NULL,
810};
811
812
813/* No memory to release */
814static void edac_csrow_instance_release(struct kobject *kobj)
815{
472678eb
DP
816 struct csrow_info *cs;
817
537fba28 818 debugf1("%s()\n", __func__);
472678eb
DP
819 cs = container_of(kobj, struct csrow_info, kobj);
820 complete(&cs->kobj_complete);
da9bb1d2
AC
821}
822
823static struct kobj_type ktype_csrow = {
824 .release = edac_csrow_instance_release,
825 .sysfs_ops = &csrowfs_ops,
826 .default_attrs = (struct attribute **) csrow_attr,
827};
828
829/* Create a CSROW object under specifed edac_mc_device */
830static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
831 struct csrow_info *csrow, int index )
832{
833 int err = 0;
834
537fba28 835 debugf0("%s()\n", __func__);
da9bb1d2
AC
836
837 memset(&csrow->kobj, 0, sizeof(csrow->kobj));
838
839 /* generate ..../edac/mc/mc<id>/csrow<index> */
840
da9bb1d2
AC
841 csrow->kobj.parent = edac_mci_kobj;
842 csrow->kobj.ktype = &ktype_csrow;
843
844 /* name this instance of csrow<id> */
845 err = kobject_set_name(&csrow->kobj,"csrow%d",index);
846 if (!err) {
847 /* Instanstiate the csrow object */
848 err = kobject_register(&csrow->kobj);
849 if (err)
850 debugf0("Failed to register CSROW%d\n",index);
851 else
852 debugf0("Registered CSROW%d\n",index);
853 }
854
855 return err;
856}
857
858/* sysfs data structures and methods for the MCI kobjects */
859
860static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
861 const char *data, size_t count )
862{
863 int row, chan;
864
865 mci->ue_noinfo_count = 0;
866 mci->ce_noinfo_count = 0;
867 mci->ue_count = 0;
868 mci->ce_count = 0;
869 for (row = 0; row < mci->nr_csrows; row++) {
870 struct csrow_info *ri = &mci->csrows[row];
871
872 ri->ue_count = 0;
873 ri->ce_count = 0;
874 for (chan = 0; chan < ri->nr_channels; chan++)
875 ri->channels[chan].ce_count = 0;
876 }
877 mci->start_time = jiffies;
878
879 return count;
880}
881
882static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
883{
884 return sprintf(data,"%d\n", mci->ue_count);
885}
886
887static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
888{
889 return sprintf(data,"%d\n", mci->ce_count);
890}
891
892static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
893{
894 return sprintf(data,"%d\n", mci->ce_noinfo_count);
895}
896
897static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
898{
899 return sprintf(data,"%d\n", mci->ue_noinfo_count);
900}
901
902static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
903{
904 return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
905}
906
907static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
908{
909 return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
910}
911
912static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
913{
914 return sprintf(data,"%s\n", mci->ctl_name);
915}
916
917static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
918{
919 char *p = buf;
920 int bit_idx;
921
922 for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
923 if ((edac_cap >> bit_idx) & 0x1)
924 p += sprintf(p, "%s ", edac_caps[bit_idx]);
925 }
926
927 return p - buf;
928}
929
930static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
931{
932 char *p = data;
933
934 p += mci_output_edac_cap(p,mci->edac_ctl_cap);
935 p += sprintf(p, "\n");
936
937 return p - data;
938}
939
940static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
941 char *data)
942{
943 char *p = data;
944
945 p += mci_output_edac_cap(p,mci->edac_cap);
946 p += sprintf(p, "\n");
947
948 return p - data;
949}
950
951static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
952{
953 char *p = buf;
954 int bit_idx;
955
956 for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
957 if ((mtype_cap >> bit_idx) & 0x1)
958 p += sprintf(p, "%s ", mem_types[bit_idx]);
959 }
960
961 return p - buf;
962}
963
964static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci, char *data)
965{
966 char *p = data;
967
968 p += mci_output_mtype_cap(p,mci->mtype_cap);
969 p += sprintf(p, "\n");
970
971 return p - data;
972}
973
974static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
975{
976 int total_pages, csrow_idx;
977
978 for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
979 csrow_idx++) {
980 struct csrow_info *csrow = &mci->csrows[csrow_idx];
981
982 if (!csrow->nr_pages)
983 continue;
984 total_pages += csrow->nr_pages;
985 }
986
987 return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
988}
989
990struct mcidev_attribute {
991 struct attribute attr;
992 ssize_t (*show)(struct mem_ctl_info *,char *);
993 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
994};
995
996#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
997#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
998
999static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1000 char *buffer)
1001{
1002 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1003 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1004
1005 if (mcidev_attr->show)
1006 return mcidev_attr->show(mem_ctl_info, buffer);
1007 return -EIO;
1008}
1009
1010static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1011 const char *buffer, size_t count)
1012{
1013 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1014 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1015
1016 if (mcidev_attr->store)
1017 return mcidev_attr->store(mem_ctl_info, buffer, count);
1018 return -EIO;
1019}
1020
1021static struct sysfs_ops mci_ops = {
1022 .show = mcidev_show,
1023 .store = mcidev_store
1024};
1025
1026#define MCIDEV_ATTR(_name,_mode,_show,_store) \
1027struct mcidev_attribute mci_attr_##_name = { \
1028 .attr = {.name = __stringify(_name), .mode = _mode }, \
1029 .show = _show, \
1030 .store = _store, \
1031};
1032
1033/* Control file */
1034MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1035
1036/* Attribute files */
1037MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1038MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1039MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1040MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1041MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1042MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1043MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1044MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1045MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1046MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1047 mci_edac_current_capability_show,NULL);
1048MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1049 mci_supported_mem_type_show,NULL);
1050
1051
1052static struct mcidev_attribute *mci_attr[] = {
1053 &mci_attr_reset_counters,
1054 &mci_attr_module_name,
1055 &mci_attr_mc_name,
1056 &mci_attr_edac_capability,
1057 &mci_attr_edac_current_capability,
1058 &mci_attr_supported_mem_type,
1059 &mci_attr_size_mb,
1060 &mci_attr_seconds_since_reset,
1061 &mci_attr_ue_noinfo_count,
1062 &mci_attr_ce_noinfo_count,
1063 &mci_attr_ue_count,
1064 &mci_attr_ce_count,
1065 NULL
1066};
1067
1068
1069/*
1070 * Release of a MC controlling instance
1071 */
1072static void edac_mci_instance_release(struct kobject *kobj)
1073{
1074 struct mem_ctl_info *mci;
da9bb1d2 1075
472678eb
DP
1076 mci = to_mci(kobj);
1077 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1078 complete(&mci->kobj_complete);
da9bb1d2
AC
1079}
1080
1081static struct kobj_type ktype_mci = {
1082 .release = edac_mci_instance_release,
1083 .sysfs_ops = &mci_ops,
1084 .default_attrs = (struct attribute **) mci_attr,
1085};
1086
ceb2ca9c
DP
1087#endif /* DISABLE_EDAC_SYSFS */
1088
da9bb1d2
AC
1089#define EDAC_DEVICE_SYMLINK "device"
1090
1091/*
1092 * Create a new Memory Controller kobject instance,
1093 * mc<id> under the 'mc' directory
1094 *
1095 * Return:
1096 * 0 Success
1097 * !0 Failure
1098 */
1099static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
ceb2ca9c
DP
1100#ifdef DISABLE_EDAC_SYSFS
1101{
1102 return 0;
1103}
1104#else
da9bb1d2
AC
1105{
1106 int i;
1107 int err;
1108 struct csrow_info *csrow;
1109 struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1110
537fba28 1111 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
da9bb1d2
AC
1112
1113 memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
da9bb1d2
AC
1114
1115 /* set the name of the mc<id> object */
1116 err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1117 if (err)
1118 return err;
1119
1120 /* link to our parent the '..../edac/mc' object */
1121 edac_mci_kobj->parent = &edac_memctrl_kobj;
1122 edac_mci_kobj->ktype = &ktype_mci;
1123
1124 /* register the mc<id> kobject */
1125 err = kobject_register(edac_mci_kobj);
1126 if (err)
1127 return err;
1128
1129 /* create a symlink for the device */
1130 err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj,
1131 EDAC_DEVICE_SYMLINK);
6e5a8748
DP
1132 if (err)
1133 goto fail0;
da9bb1d2
AC
1134
1135 /* Make directories for each CSROW object
1136 * under the mc<id> kobject
1137 */
1138 for (i = 0; i < mci->nr_csrows; i++) {
1139
1140 csrow = &mci->csrows[i];
1141
1142 /* Only expose populated CSROWs */
1143 if (csrow->nr_pages > 0) {
1144 err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1145 if (err)
6e5a8748 1146 goto fail1;
da9bb1d2
AC
1147 }
1148 }
1149
da9bb1d2
AC
1150 return 0;
1151
1152
1153 /* CSROW error: backout what has already been registered, */
6e5a8748 1154fail1:
da9bb1d2 1155 for ( i--; i >= 0; i--) {
472678eb
DP
1156 if (csrow->nr_pages > 0) {
1157 init_completion(&csrow->kobj_complete);
da9bb1d2 1158 kobject_unregister(&mci->csrows[i].kobj);
472678eb
DP
1159 wait_for_completion(&csrow->kobj_complete);
1160 }
da9bb1d2
AC
1161 }
1162
6e5a8748 1163fail0:
472678eb 1164 init_completion(&mci->kobj_complete);
da9bb1d2 1165 kobject_unregister(edac_mci_kobj);
472678eb 1166 wait_for_completion(&mci->kobj_complete);
da9bb1d2
AC
1167
1168 return err;
1169}
ceb2ca9c 1170#endif /* DISABLE_EDAC_SYSFS */
da9bb1d2
AC
1171
1172/*
1173 * remove a Memory Controller instance
1174 */
1175static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1176{
ceb2ca9c 1177#ifndef DISABLE_EDAC_SYSFS
da9bb1d2
AC
1178 int i;
1179
537fba28 1180 debugf0("%s()\n", __func__);
da9bb1d2
AC
1181
1182 /* remove all csrow kobjects */
1183 for (i = 0; i < mci->nr_csrows; i++) {
472678eb
DP
1184 if (mci->csrows[i].nr_pages > 0) {
1185 init_completion(&mci->csrows[i].kobj_complete);
da9bb1d2 1186 kobject_unregister(&mci->csrows[i].kobj);
472678eb
DP
1187 wait_for_completion(&mci->csrows[i].kobj_complete);
1188 }
da9bb1d2
AC
1189 }
1190
1191 sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
472678eb 1192 init_completion(&mci->kobj_complete);
da9bb1d2 1193 kobject_unregister(&mci->edac_mci_kobj);
472678eb 1194 wait_for_completion(&mci->kobj_complete);
ceb2ca9c 1195#endif /* DISABLE_EDAC_SYSFS */
da9bb1d2
AC
1196}
1197
1198/* END OF sysfs data and methods */
1199
1200#ifdef CONFIG_EDAC_DEBUG
1201
1202EXPORT_SYMBOL(edac_mc_dump_channel);
1203
1204void edac_mc_dump_channel(struct channel_info *chan)
1205{
1206 debugf4("\tchannel = %p\n", chan);
1207 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1208 debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1209 debugf4("\tchannel->label = '%s'\n", chan->label);
1210 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1211}
1212
1213
1214EXPORT_SYMBOL(edac_mc_dump_csrow);
1215
1216void edac_mc_dump_csrow(struct csrow_info *csrow)
1217{
1218 debugf4("\tcsrow = %p\n", csrow);
1219 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1220 debugf4("\tcsrow->first_page = 0x%lx\n",
1221 csrow->first_page);
1222 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1223 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1224 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1225 debugf4("\tcsrow->nr_channels = %d\n",
1226 csrow->nr_channels);
1227 debugf4("\tcsrow->channels = %p\n", csrow->channels);
1228 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1229}
1230
1231
1232EXPORT_SYMBOL(edac_mc_dump_mci);
1233
1234void edac_mc_dump_mci(struct mem_ctl_info *mci)
1235{
1236 debugf3("\tmci = %p\n", mci);
1237 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1238 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1239 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1240 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1241 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1242 mci->nr_csrows, mci->csrows);
1243 debugf3("\tpdev = %p\n", mci->pdev);
1244 debugf3("\tmod_name:ctl_name = %s:%s\n",
1245 mci->mod_name, mci->ctl_name);
1246 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1247}
1248
1249
1250#endif /* CONFIG_EDAC_DEBUG */
1251
1252/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1253 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1254 * compiler would provide for X and return the aligned result.
1255 *
1256 * If 'size' is a constant, the compiler will optimize this whole function
1257 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1258 */
1259static inline char * align_ptr (void *ptr, unsigned size)
1260{
1261 unsigned align, r;
1262
1263 /* Here we assume that the alignment of a "long long" is the most
1264 * stringent alignment that the compiler will ever provide by default.
1265 * As far as I know, this is a reasonable assumption.
1266 */
1267 if (size > sizeof(long))
1268 align = sizeof(long long);
1269 else if (size > sizeof(int))
1270 align = sizeof(long);
1271 else if (size > sizeof(short))
1272 align = sizeof(int);
1273 else if (size > sizeof(char))
1274 align = sizeof(short);
1275 else
1276 return (char *) ptr;
1277
1278 r = size % align;
1279
1280 if (r == 0)
1281 return (char *) ptr;
1282
1283 return (char *) (((unsigned long) ptr) + align - r);
1284}
1285
1286
1287EXPORT_SYMBOL(edac_mc_alloc);
1288
1289/**
1290 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1291 * @size_pvt: size of private storage needed
1292 * @nr_csrows: Number of CWROWS needed for this MC
1293 * @nr_chans: Number of channels for the MC
1294 *
1295 * Everything is kmalloc'ed as one big chunk - more efficient.
1296 * Only can be used if all structures have the same lifetime - otherwise
1297 * you have to allocate and initialize your own structures.
1298 *
1299 * Use edac_mc_free() to free mc structures allocated by this function.
1300 *
1301 * Returns:
1302 * NULL allocation failed
1303 * struct mem_ctl_info pointer
1304 */
1305struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1306 unsigned nr_chans)
1307{
1308 struct mem_ctl_info *mci;
1309 struct csrow_info *csi, *csrow;
1310 struct channel_info *chi, *chp, *chan;
1311 void *pvt;
1312 unsigned size;
1313 int row, chn;
1314
1315 /* Figure out the offsets of the various items from the start of an mc
1316 * structure. We want the alignment of each item to be at least as
1317 * stringent as what the compiler would provide if we could simply
1318 * hardcode everything into a single struct.
1319 */
1320 mci = (struct mem_ctl_info *) 0;
1321 csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1322 chi = (struct channel_info *)
1323 align_ptr(&csi[nr_csrows], sizeof(*chi));
1324 pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1325 size = ((unsigned long) pvt) + sz_pvt;
1326
1327 if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1328 return NULL;
1329
1330 /* Adjust pointers so they point within the memory we just allocated
1331 * rather than an imaginary chunk of memory located at address 0.
1332 */
1333 csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1334 chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1335 pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1336
1337 memset(mci, 0, size); /* clear all fields */
1338
1339 mci->csrows = csi;
1340 mci->pvt_info = pvt;
1341 mci->nr_csrows = nr_csrows;
1342
1343 for (row = 0; row < nr_csrows; row++) {
1344 csrow = &csi[row];
1345 csrow->csrow_idx = row;
1346 csrow->mci = mci;
1347 csrow->nr_channels = nr_chans;
1348 chp = &chi[row * nr_chans];
1349 csrow->channels = chp;
1350
1351 for (chn = 0; chn < nr_chans; chn++) {
1352 chan = &chp[chn];
1353 chan->chan_idx = chn;
1354 chan->csrow = csrow;
1355 }
1356 }
1357
1358 return mci;
1359}
1360
1361
1362EXPORT_SYMBOL(edac_mc_free);
1363
1364/**
1365 * edac_mc_free: Free a previously allocated 'mci' structure
1366 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
1367 */
1368void edac_mc_free(struct mem_ctl_info *mci)
1369{
472678eb 1370 kfree(mci);
da9bb1d2
AC
1371}
1372
18dbc337 1373static struct mem_ctl_info *find_mci_by_pdev(struct pci_dev *pdev)
da9bb1d2
AC
1374{
1375 struct mem_ctl_info *mci;
1376 struct list_head *item;
1377
537fba28 1378 debugf3("%s()\n", __func__);
da9bb1d2
AC
1379
1380 list_for_each(item, &mc_devices) {
1381 mci = list_entry(item, struct mem_ctl_info, link);
1382
1383 if (mci->pdev == pdev)
1384 return mci;
1385 }
1386
1387 return NULL;
1388}
1389
1390static int add_mc_to_global_list (struct mem_ctl_info *mci)
1391{
1392 struct list_head *item, *insert_before;
1393 struct mem_ctl_info *p;
1394 int i;
1395
1396 if (list_empty(&mc_devices)) {
1397 mci->mc_idx = 0;
1398 insert_before = &mc_devices;
1399 } else {
18dbc337 1400 if (find_mci_by_pdev(mci->pdev)) {
537fba28
DP
1401 edac_printk(KERN_WARNING, EDAC_MC,
1402 "%s (%s) %s %s already assigned %d\n",
1403 mci->pdev->dev.bus_id,
1404 pci_name(mci->pdev), mci->mod_name,
1405 mci->ctl_name, mci->mc_idx);
da9bb1d2
AC
1406 return 1;
1407 }
1408
1409 insert_before = NULL;
1410 i = 0;
1411
1412 list_for_each(item, &mc_devices) {
1413 p = list_entry(item, struct mem_ctl_info, link);
1414
1415 if (p->mc_idx != i) {
1416 insert_before = item;
1417 break;
1418 }
1419
1420 i++;
1421 }
1422
1423 mci->mc_idx = i;
1424
1425 if (insert_before == NULL)
1426 insert_before = &mc_devices;
1427 }
1428
1429 list_add_tail_rcu(&mci->link, insert_before);
1430 return 0;
1431}
1432
1433
a1d03fcc
DP
1434static void complete_mc_list_del (struct rcu_head *head)
1435{
1436 struct mem_ctl_info *mci;
1437
1438 mci = container_of(head, struct mem_ctl_info, rcu);
1439 INIT_LIST_HEAD(&mci->link);
1440 complete(&mci->complete);
1441}
1442
1443
1444static void del_mc_from_global_list (struct mem_ctl_info *mci)
1445{
1446 list_del_rcu(&mci->link);
1447 init_completion(&mci->complete);
1448 call_rcu(&mci->rcu, complete_mc_list_del);
1449 wait_for_completion(&mci->complete);
1450}
1451
da9bb1d2
AC
1452
1453EXPORT_SYMBOL(edac_mc_add_mc);
1454
1455/**
472678eb
DP
1456 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1457 * create sysfs entries associated with mci structure
da9bb1d2
AC
1458 * @mci: pointer to the mci structure to be added to the list
1459 *
1460 * Return:
1461 * 0 Success
1462 * !0 Failure
1463 */
1464
1465/* FIXME - should a warning be printed if no error detection? correction? */
1466int edac_mc_add_mc(struct mem_ctl_info *mci)
1467{
537fba28 1468 debugf0("%s()\n", __func__);
da9bb1d2
AC
1469#ifdef CONFIG_EDAC_DEBUG
1470 if (edac_debug_level >= 3)
1471 edac_mc_dump_mci(mci);
1472 if (edac_debug_level >= 4) {
1473 int i;
1474
1475 for (i = 0; i < mci->nr_csrows; i++) {
1476 int j;
1477 edac_mc_dump_csrow(&mci->csrows[i]);
1478 for (j = 0; j < mci->csrows[i].nr_channels; j++)
1479 edac_mc_dump_channel(&mci->csrows[i].
1480 channels[j]);
1481 }
1482 }
1483#endif
1484 down(&mem_ctls_mutex);
1485
1486 if (add_mc_to_global_list(mci))
028a7b6d 1487 goto fail0;
da9bb1d2
AC
1488
1489 /* set load time so that error rate can be tracked */
1490 mci->start_time = jiffies;
1491
1492 if (edac_create_sysfs_mci_device(mci)) {
537fba28
DP
1493 edac_mc_printk(mci, KERN_WARNING,
1494 "failed to create sysfs device\n");
028a7b6d 1495 goto fail1;
da9bb1d2
AC
1496 }
1497
1498 /* Report action taken */
537fba28
DP
1499 edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n",
1500 mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
da9bb1d2 1501
028a7b6d
DP
1502 up(&mem_ctls_mutex);
1503 return 0;
da9bb1d2 1504
028a7b6d
DP
1505fail1:
1506 del_mc_from_global_list(mci);
1507
1508fail0:
da9bb1d2 1509 up(&mem_ctls_mutex);
028a7b6d 1510 return 1;
da9bb1d2
AC
1511}
1512
1513
da9bb1d2
AC
1514EXPORT_SYMBOL(edac_mc_del_mc);
1515
1516/**
472678eb
DP
1517 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1518 * remove mci structure from global list
18dbc337 1519 * @pdev: Pointer to 'struct pci_dev' representing mci structure to remove.
da9bb1d2 1520 *
18dbc337 1521 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 1522 */
18dbc337 1523struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev)
da9bb1d2 1524{
18dbc337 1525 struct mem_ctl_info *mci;
da9bb1d2 1526
18dbc337 1527 debugf0("MC: %s()\n", __func__);
da9bb1d2 1528 down(&mem_ctls_mutex);
18dbc337
DP
1529
1530 if ((mci = find_mci_by_pdev(pdev)) == NULL) {
1531 up(&mem_ctls_mutex);
1532 return NULL;
1533 }
1534
1535 edac_remove_sysfs_mci_device(mci);
da9bb1d2 1536 del_mc_from_global_list(mci);
18dbc337 1537 up(&mem_ctls_mutex);
537fba28
DP
1538 edac_printk(KERN_INFO, EDAC_MC,
1539 "Removed device %d for %s %s: PCI %s\n", mci->mc_idx,
1540 mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
18dbc337 1541 return mci;
da9bb1d2
AC
1542}
1543
1544
1545EXPORT_SYMBOL(edac_mc_scrub_block);
1546
1547void edac_mc_scrub_block(unsigned long page, unsigned long offset,
1548 u32 size)
1549{
1550 struct page *pg;
1551 void *virt_addr;
1552 unsigned long flags = 0;
1553
537fba28 1554 debugf3("%s()\n", __func__);
da9bb1d2
AC
1555
1556 /* ECC error page was not in our memory. Ignore it. */
1557 if(!pfn_valid(page))
1558 return;
1559
1560 /* Find the actual page structure then map it and fix */
1561 pg = pfn_to_page(page);
1562
1563 if (PageHighMem(pg))
1564 local_irq_save(flags);
1565
1566 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1567
1568 /* Perform architecture specific atomic scrub operation */
1569 atomic_scrub(virt_addr + offset, size);
1570
1571 /* Unmap and complete */
1572 kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1573
1574 if (PageHighMem(pg))
1575 local_irq_restore(flags);
1576}
1577
1578
1579/* FIXME - should return -1 */
1580EXPORT_SYMBOL(edac_mc_find_csrow_by_page);
1581
1582int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
1583 unsigned long page)
1584{
1585 struct csrow_info *csrows = mci->csrows;
1586 int row, i;
1587
537fba28 1588 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
da9bb1d2
AC
1589 row = -1;
1590
1591 for (i = 0; i < mci->nr_csrows; i++) {
1592 struct csrow_info *csrow = &csrows[i];
1593
1594 if (csrow->nr_pages == 0)
1595 continue;
1596
537fba28
DP
1597 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1598 "mask(0x%lx)\n", mci->mc_idx, __func__,
1599 csrow->first_page, page, csrow->last_page,
1600 csrow->page_mask);
da9bb1d2
AC
1601
1602 if ((page >= csrow->first_page) &&
1603 (page <= csrow->last_page) &&
1604 ((page & csrow->page_mask) ==
1605 (csrow->first_page & csrow->page_mask))) {
1606 row = i;
1607 break;
1608 }
1609 }
1610
1611 if (row == -1)
537fba28
DP
1612 edac_mc_printk(mci, KERN_ERR,
1613 "could not look up page error address %lx\n",
1614 (unsigned long) page);
da9bb1d2
AC
1615
1616 return row;
1617}
1618
1619
1620EXPORT_SYMBOL(edac_mc_handle_ce);
1621
1622/* FIXME - setable log (warning/emerg) levels */
1623/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1624void edac_mc_handle_ce(struct mem_ctl_info *mci,
1625 unsigned long page_frame_number,
1626 unsigned long offset_in_page,
1627 unsigned long syndrome, int row, int channel,
1628 const char *msg)
1629{
1630 unsigned long remapped_page;
1631
537fba28 1632 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
da9bb1d2
AC
1633
1634 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1635 if (row >= mci->nr_csrows || row < 0) {
1636 /* something is wrong */
537fba28
DP
1637 edac_mc_printk(mci, KERN_ERR,
1638 "INTERNAL ERROR: row out of range "
1639 "(%d >= %d)\n", row, mci->nr_csrows);
da9bb1d2
AC
1640 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1641 return;
1642 }
1643 if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1644 /* something is wrong */
537fba28
DP
1645 edac_mc_printk(mci, KERN_ERR,
1646 "INTERNAL ERROR: channel out of range "
1647 "(%d >= %d)\n", channel,
1648 mci->csrows[row].nr_channels);
da9bb1d2
AC
1649 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1650 return;
1651 }
1652
1653 if (log_ce)
1654 /* FIXME - put in DIMM location */
537fba28
DP
1655 edac_mc_printk(mci, KERN_WARNING,
1656 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1657 "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1658 page_frame_number, offset_in_page,
1659 mci->csrows[row].grain, syndrome, row, channel,
1660 mci->csrows[row].channels[channel].label, msg);
da9bb1d2
AC
1661
1662 mci->ce_count++;
1663 mci->csrows[row].ce_count++;
1664 mci->csrows[row].channels[channel].ce_count++;
1665
1666 if (mci->scrub_mode & SCRUB_SW_SRC) {
1667 /*
1668 * Some MC's can remap memory so that it is still available
1669 * at a different address when PCI devices map into memory.
1670 * MC's that can't do this lose the memory where PCI devices
1671 * are mapped. This mapping is MC dependant and so we call
1672 * back into the MC driver for it to map the MC page to
1673 * a physical (CPU) page which can then be mapped to a virtual
1674 * page - which can then be scrubbed.
1675 */
1676 remapped_page = mci->ctl_page_to_phys ?
1677 mci->ctl_page_to_phys(mci, page_frame_number) :
1678 page_frame_number;
1679
1680 edac_mc_scrub_block(remapped_page, offset_in_page,
1681 mci->csrows[row].grain);
1682 }
1683}
1684
1685
1686EXPORT_SYMBOL(edac_mc_handle_ce_no_info);
1687
1688void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
1689 const char *msg)
1690{
1691 if (log_ce)
537fba28
DP
1692 edac_mc_printk(mci, KERN_WARNING,
1693 "CE - no information available: %s\n", msg);
da9bb1d2
AC
1694 mci->ce_noinfo_count++;
1695 mci->ce_count++;
1696}
1697
1698
1699EXPORT_SYMBOL(edac_mc_handle_ue);
1700
1701void edac_mc_handle_ue(struct mem_ctl_info *mci,
1702 unsigned long page_frame_number,
1703 unsigned long offset_in_page, int row,
1704 const char *msg)
1705{
1706 int len = EDAC_MC_LABEL_LEN * 4;
1707 char labels[len + 1];
1708 char *pos = labels;
1709 int chan;
1710 int chars;
1711
537fba28 1712 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
da9bb1d2
AC
1713
1714 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1715 if (row >= mci->nr_csrows || row < 0) {
1716 /* something is wrong */
537fba28
DP
1717 edac_mc_printk(mci, KERN_ERR,
1718 "INTERNAL ERROR: row out of range "
1719 "(%d >= %d)\n", row, mci->nr_csrows);
da9bb1d2
AC
1720 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1721 return;
1722 }
1723
1724 chars = snprintf(pos, len + 1, "%s",
1725 mci->csrows[row].channels[0].label);
1726 len -= chars;
1727 pos += chars;
1728 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1729 chan++) {
1730 chars = snprintf(pos, len + 1, ":%s",
1731 mci->csrows[row].channels[chan].label);
1732 len -= chars;
1733 pos += chars;
1734 }
1735
1736 if (log_ue)
537fba28
DP
1737 edac_mc_printk(mci, KERN_EMERG,
1738 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1739 "labels \"%s\": %s\n", page_frame_number,
1740 offset_in_page, mci->csrows[row].grain, row, labels,
1741 msg);
da9bb1d2
AC
1742
1743 if (panic_on_ue)
1744 panic
1745 ("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, row %d,"
1746 " labels \"%s\": %s\n", mci->mc_idx,
1747 page_frame_number, offset_in_page,
1748 mci->csrows[row].grain, row, labels, msg);
1749
1750 mci->ue_count++;
1751 mci->csrows[row].ue_count++;
1752}
1753
1754
1755EXPORT_SYMBOL(edac_mc_handle_ue_no_info);
1756
1757void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
1758 const char *msg)
1759{
1760 if (panic_on_ue)
1761 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1762
1763 if (log_ue)
537fba28
DP
1764 edac_mc_printk(mci, KERN_WARNING,
1765 "UE - no information available: %s\n", msg);
da9bb1d2
AC
1766 mci->ue_noinfo_count++;
1767 mci->ue_count++;
1768}
1769
1770
1771#ifdef CONFIG_PCI
1772
1773static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
1774{
1775 int where;
1776 u16 status;
1777
1778 where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
1779 pci_read_config_word(dev, where, &status);
1780
1781 /* If we get back 0xFFFF then we must suspect that the card has been pulled but
1782 the Linux PCI layer has not yet finished cleaning up. We don't want to report
1783 on such devices */
1784
1785 if (status == 0xFFFF) {
1786 u32 sanity;
1787 pci_read_config_dword(dev, 0, &sanity);
1788 if (sanity == 0xFFFFFFFF)
1789 return 0;
1790 }
1791 status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1792 PCI_STATUS_PARITY;
1793
1794 if (status)
1795 /* reset only the bits we are interested in */
1796 pci_write_config_word(dev, where, status);
1797
1798 return status;
1799}
1800
1801typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
1802
1803/* Clear any PCI parity errors logged by this device. */
1804static void edac_pci_dev_parity_clear( struct pci_dev *dev )
1805{
1806 u8 header_type;
1807
1808 get_pci_parity_status(dev, 0);
1809
1810 /* read the device TYPE, looking for bridges */
1811 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1812
1813 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
1814 get_pci_parity_status(dev, 1);
1815}
1816
1817/*
1818 * PCI Parity polling
1819 *
1820 */
1821static void edac_pci_dev_parity_test(struct pci_dev *dev)
1822{
1823 u16 status;
1824 u8 header_type;
1825
1826 /* read the STATUS register on this device
1827 */
1828 status = get_pci_parity_status(dev, 0);
1829
1830 debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
1831
1832 /* check the status reg for errors */
1833 if (status) {
1834 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
537fba28 1835 edac_printk(KERN_CRIT, EDAC_PCI,
da9bb1d2 1836 "Signaled System Error on %s\n",
537fba28 1837 pci_name(dev));
da9bb1d2
AC
1838
1839 if (status & (PCI_STATUS_PARITY)) {
537fba28 1840 edac_printk(KERN_CRIT, EDAC_PCI,
da9bb1d2 1841 "Master Data Parity Error on %s\n",
537fba28 1842 pci_name(dev));
da9bb1d2
AC
1843
1844 atomic_inc(&pci_parity_count);
1845 }
1846
1847 if (status & (PCI_STATUS_DETECTED_PARITY)) {
537fba28 1848 edac_printk(KERN_CRIT, EDAC_PCI,
da9bb1d2 1849 "Detected Parity Error on %s\n",
537fba28 1850 pci_name(dev));
da9bb1d2
AC
1851
1852 atomic_inc(&pci_parity_count);
1853 }
1854 }
1855
1856 /* read the device TYPE, looking for bridges */
1857 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1858
1859 debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
1860
1861 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1862 /* On bridges, need to examine secondary status register */
1863 status = get_pci_parity_status(dev, 1);
1864
1865 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
1866 status, dev->dev.bus_id );
1867
1868 /* check the secondary status reg for errors */
1869 if (status) {
1870 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
537fba28 1871 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
da9bb1d2 1872 "Signaled System Error on %s\n",
537fba28 1873 pci_name(dev));
da9bb1d2
AC
1874
1875 if (status & (PCI_STATUS_PARITY)) {
537fba28
DP
1876 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1877 "Master Data Parity Error on "
1878 "%s\n", pci_name(dev));
da9bb1d2
AC
1879
1880 atomic_inc(&pci_parity_count);
1881 }
1882
1883 if (status & (PCI_STATUS_DETECTED_PARITY)) {
537fba28 1884 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
da9bb1d2 1885 "Detected Parity Error on %s\n",
537fba28 1886 pci_name(dev));
da9bb1d2
AC
1887
1888 atomic_inc(&pci_parity_count);
1889 }
1890 }
1891 }
1892}
1893
1894/*
1895 * check_dev_on_list: Scan for a PCI device on a white/black list
1896 * @list: an EDAC &edac_pci_device_list white/black list pointer
1897 * @free_index: index of next free entry on the list
1898 * @pci_dev: PCI Device pointer
1899 *
1900 * see if list contains the device.
1901 *
1902 * Returns: 0 not found
1903 * 1 found on list
1904 */
1905static int check_dev_on_list(struct edac_pci_device_list *list, int free_index,
1906 struct pci_dev *dev)
1907{
1908 int i;
1909 int rc = 0; /* Assume not found */
1910 unsigned short vendor=dev->vendor;
1911 unsigned short device=dev->device;
1912
1913 /* Scan the list, looking for a vendor/device match
1914 */
1915 for (i = 0; i < free_index; i++, list++ ) {
1916 if ( (list->vendor == vendor ) &&
1917 (list->device == device )) {
1918 rc = 1;
1919 break;
1920 }
1921 }
1922
1923 return rc;
1924}
1925
1926/*
1927 * pci_dev parity list iterator
1928 * Scan the PCI device list for one iteration, looking for SERRORs
1929 * Master Parity ERRORS or Parity ERRORs on primary or secondary devices
1930 */
1931static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
1932{
1933 struct pci_dev *dev=NULL;
1934
1935 /* request for kernel access to the next PCI device, if any,
1936 * and while we are looking at it have its reference count
1937 * bumped until we are done with it
1938 */
1939 while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1940
1941 /* if whitelist exists then it has priority, so only scan those
1942 * devices on the whitelist
1943 */
1944 if (pci_whitelist_count > 0 ) {
1945 if (check_dev_on_list(pci_whitelist,
1946 pci_whitelist_count, dev))
1947 fn(dev);
1948 } else {
1949 /*
1950 * if no whitelist, then check if this devices is
1951 * blacklisted
1952 */
1953 if (!check_dev_on_list(pci_blacklist,
1954 pci_blacklist_count, dev))
1955 fn(dev);
1956 }
1957 }
1958}
1959
1960static void do_pci_parity_check(void)
1961{
1962 unsigned long flags;
1963 int before_count;
1964
537fba28 1965 debugf3("%s()\n", __func__);
da9bb1d2
AC
1966
1967 if (!check_pci_parity)
1968 return;
1969
1970 before_count = atomic_read(&pci_parity_count);
1971
1972 /* scan all PCI devices looking for a Parity Error on devices and
1973 * bridges
1974 */
1975 local_irq_save(flags);
1976 edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
1977 local_irq_restore(flags);
1978
1979 /* Only if operator has selected panic on PCI Error */
1980 if (panic_on_pci_parity) {
1981 /* If the count is different 'after' from 'before' */
1982 if (before_count != atomic_read(&pci_parity_count))
1983 panic("EDAC: PCI Parity Error");
1984 }
1985}
1986
1987
1988static inline void clear_pci_parity_errors(void)
1989{
1990 /* Clear any PCI bus parity errors that devices initially have logged
1991 * in their registers.
1992 */
1993 edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
1994}
1995
1996
1997#else /* CONFIG_PCI */
1998
1999
2000static inline void do_pci_parity_check(void)
2001{
2002 /* no-op */
2003}
2004
2005
2006static inline void clear_pci_parity_errors(void)
2007{
2008 /* no-op */
2009}
2010
2011
2012#endif /* CONFIG_PCI */
2013
2014/*
2015 * Iterate over all MC instances and check for ECC, et al, errors
2016 */
2017static inline void check_mc_devices (void)
2018{
da9bb1d2
AC
2019 struct list_head *item;
2020 struct mem_ctl_info *mci;
2021
537fba28 2022 debugf3("%s()\n", __func__);
da9bb1d2 2023
18dbc337 2024 down(&mem_ctls_mutex);
da9bb1d2
AC
2025
2026 list_for_each(item, &mc_devices) {
2027 mci = list_entry(item, struct mem_ctl_info, link);
2028
2029 if (mci->edac_check != NULL)
2030 mci->edac_check(mci);
2031 }
2032
18dbc337 2033 up(&mem_ctls_mutex);
da9bb1d2
AC
2034}
2035
2036
2037/*
2038 * Check MC status every poll_msec.
2039 * Check PCI status every poll_msec as well.
2040 *
2041 * This where the work gets done for edac.
2042 *
2043 * SMP safe, doesn't use NMI, and auto-rate-limits.
2044 */
2045static void do_edac_check(void)
2046{
537fba28 2047 debugf3("%s()\n", __func__);
da9bb1d2 2048 check_mc_devices();
da9bb1d2
AC
2049 do_pci_parity_check();
2050}
2051
da9bb1d2
AC
2052static int edac_kernel_thread(void *arg)
2053{
f2fe42ab
DP
2054 while (!kthread_should_stop()) {
2055 do_edac_check();
da9bb1d2
AC
2056
2057 /* goto sleep for the interval */
f2fe42ab 2058 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
da9bb1d2
AC
2059 try_to_freeze();
2060 }
2061
da9bb1d2
AC
2062 return 0;
2063}
2064
2065/*
2066 * edac_mc_init
2067 * module initialization entry point
2068 */
2069static int __init edac_mc_init(void)
2070{
537fba28 2071 edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
da9bb1d2
AC
2072
2073 /*
2074 * Harvest and clear any boot/initialization PCI parity errors
2075 *
2076 * FIXME: This only clears errors logged by devices present at time of
2077 * module initialization. We should also do an initial clear
2078 * of each newly hotplugged device.
2079 */
2080 clear_pci_parity_errors();
2081
da9bb1d2
AC
2082 /* Create the MC sysfs entires */
2083 if (edac_sysfs_memctrl_setup()) {
537fba28
DP
2084 edac_printk(KERN_ERR, EDAC_MC,
2085 "Error initializing sysfs code\n");
da9bb1d2
AC
2086 return -ENODEV;
2087 }
2088
2089 /* Create the PCI parity sysfs entries */
2090 if (edac_sysfs_pci_setup()) {
2091 edac_sysfs_memctrl_teardown();
537fba28
DP
2092 edac_printk(KERN_ERR, EDAC_MC,
2093 "EDAC PCI: Error initializing sysfs code\n");
da9bb1d2
AC
2094 return -ENODEV;
2095 }
2096
da9bb1d2 2097 /* create our kernel thread */
f2fe42ab
DP
2098 edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2099 if (IS_ERR(edac_thread)) {
da9bb1d2
AC
2100 /* remove the sysfs entries */
2101 edac_sysfs_memctrl_teardown();
2102 edac_sysfs_pci_teardown();
f2fe42ab 2103 return PTR_ERR(edac_thread);
da9bb1d2
AC
2104 }
2105
da9bb1d2
AC
2106 return 0;
2107}
2108
2109
2110/*
2111 * edac_mc_exit()
2112 * module exit/termination functioni
2113 */
2114static void __exit edac_mc_exit(void)
2115{
537fba28 2116 debugf0("%s()\n", __func__);
da9bb1d2 2117
f2fe42ab 2118 kthread_stop(edac_thread);
da9bb1d2
AC
2119
2120 /* tear down the sysfs device */
2121 edac_sysfs_memctrl_teardown();
2122 edac_sysfs_pci_teardown();
2123}
2124
2125
2126
2127
2128module_init(edac_mc_init);
2129module_exit(edac_mc_exit);
2130
2131MODULE_LICENSE("GPL");
2132MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2133 "Based on.work by Dan Hollis et al");
2134MODULE_DESCRIPTION("Core library routines for MC reporting");
2135
2136module_param(panic_on_ue, int, 0644);
2137MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2138module_param(check_pci_parity, int, 0644);
2139MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2140module_param(panic_on_pci_parity, int, 0644);
2141MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2142module_param(log_ue, int, 0644);
2143MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2144module_param(log_ce, int, 0644);
2145MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2146module_param(poll_msec, int, 0644);
2147MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2148#ifdef CONFIG_EDAC_DEBUG
2149module_param(edac_debug_level, int, 0644);
2150MODULE_PARM_DESC(edac_debug_level, "Debug level");
2151#endif