]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/edac/edac_mc.c
EDAC: Remove useless assignment of error type
[mirror_ubuntu-hirsute-kernel.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
20bcb7a8 34#include "edac_core.h"
7c9281d7 35#include "edac_module.h"
da9bb1d2 36
53f2d028
MCC
37#define CREATE_TRACE_POINTS
38#define TRACE_INCLUDE_PATH ../../include/ras
39#include <ras/ras_event.h>
40
da9bb1d2 41/* lock to memory controller's control array */
63b7df91 42static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 43static LIST_HEAD(mc_devices);
da9bb1d2 44
6e84d359
MCC
45unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47{
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64}
65
da9bb1d2
AC
66#ifdef CONFIG_EDAC_DEBUG
67
a4b4be3f 68static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 69{
6e84d359
MCC
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
74}
75
6e84d359 76static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 77{
6e84d359
MCC
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
90}
91
2da1c119 92static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 93{
6e84d359
MCC
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
102}
103
2da1c119 104static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 105{
956b9ba1
JP
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
119}
120
24f9a7fe
BP
121#endif /* CONFIG_EDAC_DEBUG */
122
239642fe
BP
123/*
124 * keep those in sync with the enum mem_type
125 */
126const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144};
145EXPORT_SYMBOL_GPL(edac_mem_types);
146
93e4fe64
MCC
147/**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
da9bb1d2 164 */
93e4fe64 165void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
166{
167 unsigned align, r;
93e4fe64 168 void *ptr = *p;
da9bb1d2 169
93e4fe64
MCC
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
079708b9 190 return (char *)ptr;
da9bb1d2 191
8447c4d1 192 r = (unsigned long)p % align;
da9bb1d2
AC
193
194 if (r == 0)
079708b9 195 return (char *)ptr;
da9bb1d2 196
93e4fe64
MCC
197 *p += align - r;
198
7391c6dc 199 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
200}
201
faa2ad09
SR
202static void _edac_mc_free(struct mem_ctl_info *mci)
203{
204 int i, chn, row;
205 struct csrow_info *csr;
206 const unsigned int tot_dimms = mci->tot_dimms;
207 const unsigned int tot_channels = mci->num_cschannel;
208 const unsigned int tot_csrows = mci->nr_csrows;
209
210 if (mci->dimms) {
211 for (i = 0; i < tot_dimms; i++)
212 kfree(mci->dimms[i]);
213 kfree(mci->dimms);
214 }
215 if (mci->csrows) {
216 for (row = 0; row < tot_csrows; row++) {
217 csr = mci->csrows[row];
218 if (csr) {
219 if (csr->channels) {
220 for (chn = 0; chn < tot_channels; chn++)
221 kfree(csr->channels[chn]);
222 kfree(csr->channels);
223 }
224 kfree(csr);
225 }
226 }
227 kfree(mci->csrows);
228 }
229 kfree(mci);
230}
231
da9bb1d2 232/**
4275be63
MCC
233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
234 * @mc_num: Memory controller number
235 * @n_layers: Number of MC hierarchy layers
236 * layers: Describes each layer as seen by the Memory Controller
237 * @size_pvt: size of private storage needed
238 *
da9bb1d2
AC
239 *
240 * Everything is kmalloc'ed as one big chunk - more efficient.
241 * Only can be used if all structures have the same lifetime - otherwise
242 * you have to allocate and initialize your own structures.
243 *
244 * Use edac_mc_free() to free mc structures allocated by this function.
245 *
4275be63
MCC
246 * NOTE: drivers handle multi-rank memories in different ways: in some
247 * drivers, one multi-rank memory stick is mapped as one entry, while, in
248 * others, a single multi-rank memory stick would be mapped into several
249 * entries. Currently, this function will allocate multiple struct dimm_info
250 * on such scenarios, as grouping the multiple ranks require drivers change.
251 *
da9bb1d2 252 * Returns:
ca0907b9
MCC
253 * On failure: NULL
254 * On success: struct mem_ctl_info pointer
da9bb1d2 255 */
ca0907b9
MCC
256struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
257 unsigned n_layers,
258 struct edac_mc_layer *layers,
259 unsigned sz_pvt)
da9bb1d2
AC
260{
261 struct mem_ctl_info *mci;
4275be63 262 struct edac_mc_layer *layer;
de3910eb
MCC
263 struct csrow_info *csr;
264 struct rank_info *chan;
a7d7d2e1 265 struct dimm_info *dimm;
4275be63
MCC
266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
267 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
268 unsigned size, tot_dimms = 1, count = 1;
269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 270 void *pvt, *p, *ptr = NULL;
de3910eb 271 int i, j, row, chn, n, len, off;
4275be63
MCC
272 bool per_rank = false;
273
274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
275 /*
276 * Calculate the total amount of dimms and csrows/cschannels while
277 * in the old API emulation mode
278 */
279 for (i = 0; i < n_layers; i++) {
280 tot_dimms *= layers[i].size;
281 if (layers[i].is_virt_csrow)
282 tot_csrows *= layers[i].size;
283 else
284 tot_channels *= layers[i].size;
285
286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
287 per_rank = true;
288 }
da9bb1d2
AC
289
290 /* Figure out the offsets of the various items from the start of an mc
291 * structure. We want the alignment of each item to be at least as
292 * stringent as what the compiler would provide if we could simply
293 * hardcode everything into a single struct.
294 */
93e4fe64 295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
297 for (i = 0; i < n_layers; i++) {
298 count *= layers[i].size;
956b9ba1 299 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
302 tot_errcount += 2 * count;
303 }
304
956b9ba1 305 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 306 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 307 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 308
956b9ba1
JP
309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
310 size,
311 tot_dimms,
312 per_rank ? "ranks" : "dimms",
313 tot_csrows * tot_channels);
de3910eb 314
8096cfaf
DT
315 mci = kzalloc(size, GFP_KERNEL);
316 if (mci == NULL)
da9bb1d2
AC
317 return NULL;
318
319 /* Adjust pointers so they point within the memory we just allocated
320 * rather than an imaginary chunk of memory located at address 0.
321 */
4275be63 322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
323 for (i = 0; i < n_layers; i++) {
324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
326 }
079708b9 327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 328
b8f6f975 329 /* setup index and various internal pointers */
4275be63 330 mci->mc_idx = mc_num;
4275be63 331 mci->tot_dimms = tot_dimms;
da9bb1d2 332 mci->pvt_info = pvt;
4275be63
MCC
333 mci->n_layers = n_layers;
334 mci->layers = layer;
335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
336 mci->nr_csrows = tot_csrows;
337 mci->num_cschannel = tot_channels;
338 mci->mem_is_per_rank = per_rank;
da9bb1d2 339
a7d7d2e1 340 /*
de3910eb 341 * Alocate and fill the csrow/channels structs
a7d7d2e1 342 */
de3910eb
MCC
343 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
344 if (!mci->csrows)
345 goto error;
4275be63 346 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
348 if (!csr)
349 goto error;
350 mci->csrows[row] = csr;
4275be63
MCC
351 csr->csrow_idx = row;
352 csr->mci = mci;
353 csr->nr_channels = tot_channels;
de3910eb
MCC
354 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
355 GFP_KERNEL);
356 if (!csr->channels)
357 goto error;
4275be63
MCC
358
359 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
361 if (!chan)
362 goto error;
363 csr->channels[chn] = chan;
da9bb1d2 364 chan->chan_idx = chn;
4275be63
MCC
365 chan->csrow = csr;
366 }
367 }
368
369 /*
de3910eb 370 * Allocate and fill the dimm structs
4275be63 371 */
de3910eb
MCC
372 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
373 if (!mci->dimms)
374 goto error;
375
4275be63
MCC
376 memset(&pos, 0, sizeof(pos));
377 row = 0;
378 chn = 0;
4275be63 379 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
380 chan = mci->csrows[row]->channels[chn];
381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
382 if (off < 0 || off >= tot_dimms) {
383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
384 goto error;
385 }
4275be63 386
de3910eb 387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
388 if (!dimm)
389 goto error;
de3910eb 390 mci->dimms[off] = dimm;
4275be63 391 dimm->mci = mci;
4275be63 392
5926ff50
MCC
393 /*
394 * Copy DIMM location and initialize it.
395 */
396 len = sizeof(dimm->label);
397 p = dimm->label;
398 n = snprintf(p, len, "mc#%u", mc_num);
399 p += n;
400 len -= n;
401 for (j = 0; j < n_layers; j++) {
402 n = snprintf(p, len, "%s#%u",
403 edac_layer_name[layers[j].type],
404 pos[j]);
405 p += n;
406 len -= n;
4275be63
MCC
407 dimm->location[j] = pos[j];
408
5926ff50
MCC
409 if (len <= 0)
410 break;
411 }
412
4275be63
MCC
413 /* Link it to the csrows old API data */
414 chan->dimm = dimm;
415 dimm->csrow = row;
416 dimm->cschannel = chn;
417
418 /* Increment csrow location */
419 row++;
420 if (row == tot_csrows) {
421 row = 0;
422 chn++;
423 }
a7d7d2e1 424
4275be63
MCC
425 /* Increment dimm location */
426 for (j = n_layers - 1; j >= 0; j--) {
427 pos[j]++;
428 if (pos[j] < layers[j].size)
429 break;
430 pos[j] = 0;
da9bb1d2
AC
431 }
432 }
433
81d87cb1 434 mci->op_state = OP_ALLOC;
8096cfaf
DT
435
436 /* at this point, the root kobj is valid, and in order to
437 * 'free' the object, then the function:
438 * edac_mc_unregister_sysfs_main_kobj() must be called
439 * which will perform kobj unregistration and the actual free
440 * will occur during the kobject callback operation
441 */
53f2d028 442
da9bb1d2 443 return mci;
de3910eb
MCC
444
445error:
faa2ad09 446 _edac_mc_free(mci);
de3910eb
MCC
447
448 return NULL;
4275be63 449}
9110540f 450EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 451
da9bb1d2 452/**
8096cfaf
DT
453 * edac_mc_free
454 * 'Free' a previously allocated 'mci' structure
da9bb1d2 455 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
456 */
457void edac_mc_free(struct mem_ctl_info *mci)
458{
956b9ba1 459 edac_dbg(1, "\n");
bbc560ae 460
faa2ad09
SR
461 /* If we're not yet registered with sysfs free only what was allocated
462 * in edac_mc_alloc().
463 */
464 if (!device_is_registered(&mci->dev)) {
465 _edac_mc_free(mci);
466 return;
467 }
468
de3910eb 469 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 470 edac_unregister_sysfs(mci);
da9bb1d2 471}
9110540f 472EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 473
bce19683 474
939747bd 475/**
bce19683
DT
476 * find_mci_by_dev
477 *
478 * scan list of controllers looking for the one that manages
479 * the 'dev' device
939747bd 480 * @dev: pointer to a struct device related with the MCI
bce19683 481 */
939747bd 482struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
483{
484 struct mem_ctl_info *mci;
485 struct list_head *item;
486
956b9ba1 487 edac_dbg(3, "\n");
da9bb1d2
AC
488
489 list_for_each(item, &mc_devices) {
490 mci = list_entry(item, struct mem_ctl_info, link);
491
fd687502 492 if (mci->pdev == dev)
da9bb1d2
AC
493 return mci;
494 }
495
496 return NULL;
497}
939747bd 498EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 499
81d87cb1
DJ
500/*
501 * handler for EDAC to check if NMI type handler has asserted interrupt
502 */
503static int edac_mc_assert_error_check_and_clear(void)
504{
66ee2f94 505 int old_state;
81d87cb1 506
079708b9 507 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
508 return 1;
509
66ee2f94
DJ
510 old_state = edac_err_assert;
511 edac_err_assert = 0;
81d87cb1 512
66ee2f94 513 return old_state;
81d87cb1
DJ
514}
515
516/*
517 * edac_mc_workq_function
518 * performs the operation scheduled by a workq request
519 */
81d87cb1
DJ
520static void edac_mc_workq_function(struct work_struct *work_req)
521{
fbeb4384 522 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 523 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
524
525 mutex_lock(&mem_ctls_mutex);
526
bf52fa4a
DT
527 /* if this control struct has movd to offline state, we are done */
528 if (mci->op_state == OP_OFFLINE) {
529 mutex_unlock(&mem_ctls_mutex);
530 return;
531 }
532
81d87cb1
DJ
533 /* Only poll controllers that are running polled and have a check */
534 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
535 mci->edac_check(mci);
536
81d87cb1
DJ
537 mutex_unlock(&mem_ctls_mutex);
538
539 /* Reschedule */
4de78c68 540 queue_delayed_work(edac_workqueue, &mci->work,
052dfb45 541 msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
542}
543
544/*
545 * edac_mc_workq_setup
546 * initialize a workq item for this mci
547 * passing in the new delay period in msec
bf52fa4a
DT
548 *
549 * locking model:
550 *
551 * called with the mem_ctls_mutex held
81d87cb1 552 */
bf52fa4a 553static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
81d87cb1 554{
956b9ba1 555 edac_dbg(0, "\n");
81d87cb1 556
bf52fa4a
DT
557 /* if this instance is not in the POLL state, then simply return */
558 if (mci->op_state != OP_RUNNING_POLL)
559 return;
560
81d87cb1 561 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
41f63c53 562 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
81d87cb1
DJ
563}
564
565/*
566 * edac_mc_workq_teardown
567 * stop the workq processing on this mci
bf52fa4a
DT
568 *
569 * locking model:
570 *
571 * called WITHOUT lock held
81d87cb1 572 */
bf52fa4a 573static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
81d87cb1
DJ
574{
575 int status;
576
00740c58
BP
577 if (mci->op_state != OP_RUNNING_POLL)
578 return;
579
bce19683
DT
580 status = cancel_delayed_work(&mci->work);
581 if (status == 0) {
956b9ba1 582 edac_dbg(0, "not canceled, flush the queue\n");
bf52fa4a 583
bce19683
DT
584 /* workq instance might be running, wait for it */
585 flush_workqueue(edac_workqueue);
81d87cb1
DJ
586 }
587}
588
589/*
bce19683
DT
590 * edac_mc_reset_delay_period(unsigned long value)
591 *
592 * user space has updated our poll period value, need to
593 * reset our workq delays
81d87cb1 594 */
bce19683 595void edac_mc_reset_delay_period(int value)
81d87cb1 596{
bce19683
DT
597 struct mem_ctl_info *mci;
598 struct list_head *item;
599
600 mutex_lock(&mem_ctls_mutex);
601
bce19683
DT
602 list_for_each(item, &mc_devices) {
603 mci = list_entry(item, struct mem_ctl_info, link);
604
605 edac_mc_workq_setup(mci, (unsigned long) value);
606 }
81d87cb1
DJ
607
608 mutex_unlock(&mem_ctls_mutex);
609}
610
bce19683
DT
611
612
2d7bbb91
DT
613/* Return 0 on success, 1 on failure.
614 * Before calling this function, caller must
615 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
616 *
617 * locking model:
618 *
619 * called with the mem_ctls_mutex lock held
2d7bbb91 620 */
079708b9 621static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
622{
623 struct list_head *item, *insert_before;
624 struct mem_ctl_info *p;
da9bb1d2 625
2d7bbb91 626 insert_before = &mc_devices;
da9bb1d2 627
fd687502 628 p = find_mci_by_dev(mci->pdev);
bf52fa4a 629 if (unlikely(p != NULL))
2d7bbb91 630 goto fail0;
da9bb1d2 631
2d7bbb91
DT
632 list_for_each(item, &mc_devices) {
633 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 634
2d7bbb91
DT
635 if (p->mc_idx >= mci->mc_idx) {
636 if (unlikely(p->mc_idx == mci->mc_idx))
637 goto fail1;
da9bb1d2 638
2d7bbb91
DT
639 insert_before = item;
640 break;
da9bb1d2 641 }
da9bb1d2
AC
642 }
643
644 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 645 atomic_inc(&edac_handlers);
da9bb1d2 646 return 0;
2d7bbb91 647
052dfb45 648fail0:
2d7bbb91 649 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 650 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 651 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
652 return 1;
653
052dfb45 654fail1:
2d7bbb91 655 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
656 "bug in low-level driver: attempt to assign\n"
657 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 658 return 1;
da9bb1d2
AC
659}
660
e7ecd891 661static void del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 662{
c0d12172 663 atomic_dec(&edac_handlers);
a1d03fcc 664 list_del_rcu(&mci->link);
e2e77098
LJ
665
666 /* these are for safe removal of devices from global list while
667 * NMI handlers may be traversing list
668 */
669 synchronize_rcu();
670 INIT_LIST_HEAD(&mci->link);
a1d03fcc
DP
671}
672
5da0831c
DT
673/**
674 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
675 *
676 * If found, return a pointer to the structure.
677 * Else return NULL.
678 *
679 * Caller must hold mem_ctls_mutex.
680 */
079708b9 681struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
682{
683 struct list_head *item;
684 struct mem_ctl_info *mci;
685
686 list_for_each(item, &mc_devices) {
687 mci = list_entry(item, struct mem_ctl_info, link);
688
689 if (mci->mc_idx >= idx) {
690 if (mci->mc_idx == idx)
691 return mci;
692
693 break;
694 }
695 }
696
697 return NULL;
698}
699EXPORT_SYMBOL(edac_mc_find);
700
da9bb1d2 701/**
472678eb
DP
702 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
703 * create sysfs entries associated with mci structure
da9bb1d2
AC
704 * @mci: pointer to the mci structure to be added to the list
705 *
706 * Return:
707 * 0 Success
708 * !0 Failure
709 */
710
711/* FIXME - should a warning be printed if no error detection? correction? */
b8f6f975 712int edac_mc_add_mc(struct mem_ctl_info *mci)
da9bb1d2 713{
956b9ba1 714 edac_dbg(0, "\n");
b8f6f975 715
da9bb1d2
AC
716#ifdef CONFIG_EDAC_DEBUG
717 if (edac_debug_level >= 3)
718 edac_mc_dump_mci(mci);
e7ecd891 719
da9bb1d2
AC
720 if (edac_debug_level >= 4) {
721 int i;
722
723 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
724 struct csrow_info *csrow = mci->csrows[i];
725 u32 nr_pages = 0;
da9bb1d2 726 int j;
e7ecd891 727
6e84d359
MCC
728 for (j = 0; j < csrow->nr_channels; j++)
729 nr_pages += csrow->channels[j]->dimm->nr_pages;
730 if (!nr_pages)
731 continue;
732 edac_mc_dump_csrow(csrow);
733 for (j = 0; j < csrow->nr_channels; j++)
734 if (csrow->channels[j]->dimm->nr_pages)
735 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 736 }
4275be63 737 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
738 if (mci->dimms[i]->nr_pages)
739 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
740 }
741#endif
63b7df91 742 mutex_lock(&mem_ctls_mutex);
da9bb1d2
AC
743
744 if (add_mc_to_global_list(mci))
028a7b6d 745 goto fail0;
da9bb1d2
AC
746
747 /* set load time so that error rate can be tracked */
748 mci->start_time = jiffies;
749
9794f33d 750 if (edac_create_sysfs_mci_device(mci)) {
751 edac_mc_printk(mci, KERN_WARNING,
052dfb45 752 "failed to create sysfs device\n");
9794f33d 753 goto fail1;
754 }
da9bb1d2 755
81d87cb1
DJ
756 /* If there IS a check routine, then we are running POLLED */
757 if (mci->edac_check != NULL) {
758 /* This instance is NOW RUNNING */
759 mci->op_state = OP_RUNNING_POLL;
760
761 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
762 } else {
763 mci->op_state = OP_RUNNING_INTERRUPT;
764 }
765
da9bb1d2 766 /* Report action taken */
bf52fa4a 767 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
17aa7e03 768 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
da9bb1d2 769
63b7df91 770 mutex_unlock(&mem_ctls_mutex);
028a7b6d 771 return 0;
da9bb1d2 772
052dfb45 773fail1:
028a7b6d
DP
774 del_mc_from_global_list(mci);
775
052dfb45 776fail0:
63b7df91 777 mutex_unlock(&mem_ctls_mutex);
028a7b6d 778 return 1;
da9bb1d2 779}
9110540f 780EXPORT_SYMBOL_GPL(edac_mc_add_mc);
da9bb1d2 781
da9bb1d2 782/**
472678eb
DP
783 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
784 * remove mci structure from global list
37f04581 785 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 786 *
18dbc337 787 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 788 */
079708b9 789struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 790{
18dbc337 791 struct mem_ctl_info *mci;
da9bb1d2 792
956b9ba1 793 edac_dbg(0, "\n");
bf52fa4a 794
63b7df91 795 mutex_lock(&mem_ctls_mutex);
18dbc337 796
bf52fa4a
DT
797 /* find the requested mci struct in the global list */
798 mci = find_mci_by_dev(dev);
799 if (mci == NULL) {
63b7df91 800 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
801 return NULL;
802 }
803
da9bb1d2 804 del_mc_from_global_list(mci);
63b7df91 805 mutex_unlock(&mem_ctls_mutex);
bf52fa4a 806
bb31b312 807 /* flush workq processes */
bf52fa4a 808 edac_mc_workq_teardown(mci);
bb31b312
BP
809
810 /* marking MCI offline */
811 mci->op_state = OP_OFFLINE;
812
813 /* remove from sysfs */
bf52fa4a
DT
814 edac_remove_sysfs_mci_device(mci);
815
537fba28 816 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 817 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 818 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 819
18dbc337 820 return mci;
da9bb1d2 821}
9110540f 822EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 823
2da1c119
AB
824static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
825 u32 size)
da9bb1d2
AC
826{
827 struct page *pg;
828 void *virt_addr;
829 unsigned long flags = 0;
830
956b9ba1 831 edac_dbg(3, "\n");
da9bb1d2
AC
832
833 /* ECC error page was not in our memory. Ignore it. */
079708b9 834 if (!pfn_valid(page))
da9bb1d2
AC
835 return;
836
837 /* Find the actual page structure then map it and fix */
838 pg = pfn_to_page(page);
839
840 if (PageHighMem(pg))
841 local_irq_save(flags);
842
4e5df7ca 843 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
844
845 /* Perform architecture specific atomic scrub operation */
846 atomic_scrub(virt_addr + offset, size);
847
848 /* Unmap and complete */
4e5df7ca 849 kunmap_atomic(virt_addr);
da9bb1d2
AC
850
851 if (PageHighMem(pg))
852 local_irq_restore(flags);
853}
854
da9bb1d2 855/* FIXME - should return -1 */
e7ecd891 856int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 857{
de3910eb 858 struct csrow_info **csrows = mci->csrows;
a895bf8b 859 int row, i, j, n;
da9bb1d2 860
956b9ba1 861 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
862 row = -1;
863
864 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 865 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
866 n = 0;
867 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 868 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
869 n += dimm->nr_pages;
870 }
871 if (n == 0)
da9bb1d2
AC
872 continue;
873
956b9ba1
JP
874 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
875 mci->mc_idx,
876 csrow->first_page, page, csrow->last_page,
877 csrow->page_mask);
da9bb1d2
AC
878
879 if ((page >= csrow->first_page) &&
880 (page <= csrow->last_page) &&
881 ((page & csrow->page_mask) ==
882 (csrow->first_page & csrow->page_mask))) {
883 row = i;
884 break;
885 }
886 }
887
888 if (row == -1)
537fba28 889 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
890 "could not look up page error address %lx\n",
891 (unsigned long)page);
da9bb1d2
AC
892
893 return row;
894}
9110540f 895EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 896
4275be63
MCC
897const char *edac_layer_name[] = {
898 [EDAC_MC_LAYER_BRANCH] = "branch",
899 [EDAC_MC_LAYER_CHANNEL] = "channel",
900 [EDAC_MC_LAYER_SLOT] = "slot",
901 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
902};
903EXPORT_SYMBOL_GPL(edac_layer_name);
904
905static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
906 bool enable_per_layer_report,
907 const int pos[EDAC_MAX_LAYERS],
908 const u16 count)
da9bb1d2 909{
4275be63 910 int i, index = 0;
da9bb1d2 911
9eb07a7f 912 mci->ce_mc += count;
da9bb1d2 913
4275be63 914 if (!enable_per_layer_report) {
9eb07a7f 915 mci->ce_noinfo_count += count;
da9bb1d2
AC
916 return;
917 }
e7ecd891 918
4275be63
MCC
919 for (i = 0; i < mci->n_layers; i++) {
920 if (pos[i] < 0)
921 break;
922 index += pos[i];
9eb07a7f 923 mci->ce_per_layer[i][index] += count;
4275be63
MCC
924
925 if (i < mci->n_layers - 1)
926 index *= mci->layers[i + 1].size;
927 }
928}
929
930static void edac_inc_ue_error(struct mem_ctl_info *mci,
931 bool enable_per_layer_report,
9eb07a7f
MCC
932 const int pos[EDAC_MAX_LAYERS],
933 const u16 count)
4275be63
MCC
934{
935 int i, index = 0;
936
9eb07a7f 937 mci->ue_mc += count;
4275be63
MCC
938
939 if (!enable_per_layer_report) {
9eb07a7f 940 mci->ce_noinfo_count += count;
da9bb1d2
AC
941 return;
942 }
943
4275be63
MCC
944 for (i = 0; i < mci->n_layers; i++) {
945 if (pos[i] < 0)
946 break;
947 index += pos[i];
9eb07a7f 948 mci->ue_per_layer[i][index] += count;
a7d7d2e1 949
4275be63
MCC
950 if (i < mci->n_layers - 1)
951 index *= mci->layers[i + 1].size;
952 }
953}
da9bb1d2 954
4275be63 955static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 956 const u16 error_count,
4275be63
MCC
957 const int pos[EDAC_MAX_LAYERS],
958 const char *msg,
959 const char *location,
960 const char *label,
961 const char *detail,
962 const char *other_detail,
963 const bool enable_per_layer_report,
964 const unsigned long page_frame_number,
965 const unsigned long offset_in_page,
53f2d028 966 long grain)
4275be63
MCC
967{
968 unsigned long remapped_page;
969
970 if (edac_mc_get_log_ce()) {
971 if (other_detail && *other_detail)
972 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
973 "%d CE %s on %s (%s %s - %s)\n",
974 error_count,
4275be63
MCC
975 msg, label, location,
976 detail, other_detail);
977 else
978 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
979 "%d CE %s on %s (%s %s)\n",
980 error_count,
4275be63
MCC
981 msg, label, location,
982 detail);
983 }
9eb07a7f 984 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
985
986 if (mci->scrub_mode & SCRUB_SW_SRC) {
987 /*
4275be63
MCC
988 * Some memory controllers (called MCs below) can remap
989 * memory so that it is still available at a different
990 * address when PCI devices map into memory.
991 * MC's that can't do this, lose the memory where PCI
992 * devices are mapped. This mapping is MC-dependent
993 * and so we call back into the MC driver for it to
994 * map the MC page to a physical (CPU) page which can
995 * then be mapped to a virtual page - which can then
996 * be scrubbed.
997 */
da9bb1d2 998 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
999 mci->ctl_page_to_phys(mci, page_frame_number) :
1000 page_frame_number;
da9bb1d2 1001
4275be63
MCC
1002 edac_mc_scrub_block(remapped_page,
1003 offset_in_page, grain);
da9bb1d2
AC
1004 }
1005}
1006
4275be63 1007static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1008 const u16 error_count,
4275be63
MCC
1009 const int pos[EDAC_MAX_LAYERS],
1010 const char *msg,
1011 const char *location,
1012 const char *label,
1013 const char *detail,
1014 const char *other_detail,
1015 const bool enable_per_layer_report)
da9bb1d2 1016{
4275be63
MCC
1017 if (edac_mc_get_log_ue()) {
1018 if (other_detail && *other_detail)
1019 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
1020 "%d UE %s on %s (%s %s - %s)\n",
1021 error_count,
4275be63
MCC
1022 msg, label, location, detail,
1023 other_detail);
1024 else
1025 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
1026 "%d UE %s on %s (%s %s)\n",
1027 error_count,
4275be63
MCC
1028 msg, label, location, detail);
1029 }
e7ecd891 1030
4275be63
MCC
1031 if (edac_mc_get_panic_on_ue()) {
1032 if (other_detail && *other_detail)
1033 panic("UE %s on %s (%s%s - %s)\n",
1034 msg, label, location, detail, other_detail);
1035 else
1036 panic("UE %s on %s (%s%s)\n",
1037 msg, label, location, detail);
1038 }
1039
9eb07a7f 1040 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1041}
1042
4275be63 1043#define OTHER_LABEL " or "
53f2d028
MCC
1044
1045/**
1046 * edac_mc_handle_error - reports a memory event to userspace
1047 *
1048 * @type: severity of the error (CE/UE/Fatal)
1049 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1050 * @error_count: Number of errors of the same type
53f2d028
MCC
1051 * @page_frame_number: mem page where the error occurred
1052 * @offset_in_page: offset of the error inside the page
1053 * @syndrome: ECC syndrome
1054 * @top_layer: Memory layer[0] position
1055 * @mid_layer: Memory layer[1] position
1056 * @low_layer: Memory layer[2] position
1057 * @msg: Message meaningful to the end users that
1058 * explains the event
1059 * @other_detail: Technical details about the event that
1060 * may help hardware manufacturers and
1061 * EDAC developers to analyse the event
53f2d028 1062 */
4275be63
MCC
1063void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1064 struct mem_ctl_info *mci,
9eb07a7f 1065 const u16 error_count,
4275be63
MCC
1066 const unsigned long page_frame_number,
1067 const unsigned long offset_in_page,
1068 const unsigned long syndrome,
53f2d028
MCC
1069 const int top_layer,
1070 const int mid_layer,
1071 const int low_layer,
4275be63 1072 const char *msg,
03f7eae8 1073 const char *other_detail)
da9bb1d2 1074{
4275be63
MCC
1075 /* FIXME: too much for stack: move it to some pre-alocated area */
1076 char detail[80], location[80];
1077 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1078 char *p;
1079 int row = -1, chan = -1;
53f2d028 1080 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
4275be63 1081 int i;
53f2d028 1082 long grain;
4275be63 1083 bool enable_per_layer_report = false;
53f2d028 1084 u8 grain_bits;
da9bb1d2 1085
956b9ba1 1086 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1087
4275be63
MCC
1088 /*
1089 * Check if the event report is consistent and if the memory
1090 * location is known. If it is known, enable_per_layer_report will be
1091 * true, the DIMM(s) label info will be filled and the per-layer
1092 * error counters will be incremented.
1093 */
1094 for (i = 0; i < mci->n_layers; i++) {
1095 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1096
1097 edac_mc_printk(mci, KERN_ERR,
1098 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1099 edac_layer_name[mci->layers[i].type],
1100 pos[i], mci->layers[i].size);
1101 /*
1102 * Instead of just returning it, let's use what's
1103 * known about the error. The increment routines and
1104 * the DIMM filter logic will do the right thing by
1105 * pointing the likely damaged DIMMs.
1106 */
1107 pos[i] = -1;
1108 }
1109 if (pos[i] >= 0)
1110 enable_per_layer_report = true;
da9bb1d2
AC
1111 }
1112
4275be63
MCC
1113 /*
1114 * Get the dimm label/grain that applies to the match criteria.
1115 * As the error algorithm may not be able to point to just one memory
1116 * stick, the logic here will get all possible labels that could
1117 * pottentially be affected by the error.
1118 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1119 * to have only the MC channel and the MC dimm (also called "branch")
1120 * but the channel is not known, as the memory is arranged in pairs,
1121 * where each memory belongs to a separate channel within the same
1122 * branch.
1123 */
1124 grain = 0;
1125 p = label;
1126 *p = '\0';
4da1b7bf 1127
4275be63 1128 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1129 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1130
53f2d028 1131 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1132 continue;
53f2d028 1133 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1134 continue;
53f2d028 1135 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1136 continue;
da9bb1d2 1137
4275be63
MCC
1138 /* get the max grain, over the error match range */
1139 if (dimm->grain > grain)
1140 grain = dimm->grain;
9794f33d 1141
4275be63
MCC
1142 /*
1143 * If the error is memory-controller wide, there's no need to
1144 * seek for the affected DIMMs because the whole
1145 * channel/memory controller/... may be affected.
1146 * Also, don't show errors for empty DIMM slots.
1147 */
1148 if (enable_per_layer_report && dimm->nr_pages) {
1149 if (p != label) {
1150 strcpy(p, OTHER_LABEL);
1151 p += strlen(OTHER_LABEL);
1152 }
1153 strcpy(p, dimm->label);
1154 p += strlen(p);
1155 *p = '\0';
1156
1157 /*
1158 * get csrow/channel of the DIMM, in order to allow
1159 * incrementing the compat API counters
1160 */
956b9ba1
JP
1161 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1162 mci->mem_is_per_rank ? "rank" : "dimm",
1163 dimm->csrow, dimm->cschannel);
4275be63
MCC
1164 if (row == -1)
1165 row = dimm->csrow;
1166 else if (row >= 0 && row != dimm->csrow)
1167 row = -2;
1168
1169 if (chan == -1)
1170 chan = dimm->cschannel;
1171 else if (chan >= 0 && chan != dimm->cschannel)
1172 chan = -2;
1173 }
9794f33d 1174 }
1175
4275be63
MCC
1176 if (!enable_per_layer_report) {
1177 strcpy(label, "any memory");
1178 } else {
956b9ba1 1179 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
4275be63
MCC
1180 if (p == label)
1181 strcpy(label, "unknown memory");
1182 if (type == HW_EVENT_ERR_CORRECTED) {
1183 if (row >= 0) {
9eb07a7f 1184 mci->csrows[row]->ce_count += error_count;
4275be63 1185 if (chan >= 0)
9eb07a7f 1186 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1187 }
1188 } else
1189 if (row >= 0)
9eb07a7f 1190 mci->csrows[row]->ue_count += error_count;
9794f33d 1191 }
1192
4275be63
MCC
1193 /* Fill the RAM location data */
1194 p = location;
4da1b7bf 1195
4275be63
MCC
1196 for (i = 0; i < mci->n_layers; i++) {
1197 if (pos[i] < 0)
1198 continue;
9794f33d 1199
4275be63
MCC
1200 p += sprintf(p, "%s:%d ",
1201 edac_layer_name[mci->layers[i].type],
1202 pos[i]);
9794f33d 1203 }
53f2d028
MCC
1204 if (p > location)
1205 *(p - 1) = '\0';
1206
1207 /* Report the error via the trace interface */
53f2d028
MCC
1208 grain_bits = fls_long(grain) + 1;
1209 trace_mc_event(type, msg, label, error_count,
1210 mci->mc_idx, top_layer, mid_layer, low_layer,
1211 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1212 grain_bits, syndrome, other_detail);
a7d7d2e1 1213
4275be63
MCC
1214 /* Memory type dependent details about the error */
1215 if (type == HW_EVENT_ERR_CORRECTED) {
1216 snprintf(detail, sizeof(detail),
53f2d028 1217 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
4275be63
MCC
1218 page_frame_number, offset_in_page,
1219 grain, syndrome);
9eb07a7f
MCC
1220 edac_ce_error(mci, error_count, pos, msg, location, label,
1221 detail, other_detail, enable_per_layer_report,
4275be63
MCC
1222 page_frame_number, offset_in_page, grain);
1223 } else {
1224 snprintf(detail, sizeof(detail),
53f2d028 1225 "page:0x%lx offset:0x%lx grain:%ld",
4275be63 1226 page_frame_number, offset_in_page, grain);
9794f33d 1227
9eb07a7f
MCC
1228 edac_ue_error(mci, error_count, pos, msg, location, label,
1229 detail, other_detail, enable_per_layer_report);
4275be63 1230 }
9794f33d 1231}
4275be63 1232EXPORT_SYMBOL_GPL(edac_mc_handle_error);