]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/edac/edac_mc.c
EDAC: Kill workqueue setup/teardown functions
[mirror_ubuntu-hirsute-kernel.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
20bcb7a8 33#include "edac_core.h"
7c9281d7 34#include "edac_module.h"
53f2d028
MCC
35#include <ras/ras_event.h>
36
b01aec9b
BP
37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
38#include <asm/edac.h>
39#else
40#define edac_atomic_scrub(va, size) do { } while (0)
41#endif
42
da9bb1d2 43/* lock to memory controller's control array */
63b7df91 44static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 45static LIST_HEAD(mc_devices);
da9bb1d2 46
80cc7d87
MCC
47/*
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
50 */
51static void const *edac_mc_owner;
52
88d84ac9
BP
53static struct bus_type mc_bus[EDAC_MAX_MCS];
54
6e84d359
MCC
55unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 unsigned len)
57{
58 struct mem_ctl_info *mci = dimm->mci;
59 int i, n, count = 0;
60 char *p = buf;
61
62 for (i = 0; i < mci->n_layers; i++) {
63 n = snprintf(p, len, "%s %d ",
64 edac_layer_name[mci->layers[i].type],
65 dimm->location[i]);
66 p += n;
67 len -= n;
68 count += n;
69 if (!len)
70 break;
71 }
72
73 return count;
74}
75
da9bb1d2
AC
76#ifdef CONFIG_EDAC_DEBUG
77
a4b4be3f 78static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 79{
6e84d359
MCC
80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
81 edac_dbg(4, " channel = %p\n", chan);
82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
84}
85
6e84d359 86static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 87{
6e84d359
MCC
88 char location[80];
89
90 edac_dimm_info_location(dimm, location, sizeof(location));
91
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
9713faec 93 dimm->mci->csbased ? "rank" : "dimm",
6e84d359
MCC
94 number, location, dimm->csrow, dimm->cschannel);
95 edac_dbg(4, " dimm = %p\n", dimm);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
100}
101
2da1c119 102static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 103{
6e84d359
MCC
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 edac_dbg(4, " csrow = %p\n", csrow);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
112}
113
2da1c119 114static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 115{
956b9ba1
JP
116 edac_dbg(3, "\tmci = %p\n", mci);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci->nr_csrows, mci->csrows);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci->tot_dimms, mci->dimms);
125 edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci->mod_name, mci->ctl_name);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
129}
130
24f9a7fe
BP
131#endif /* CONFIG_EDAC_DEBUG */
132
f4ce6eca 133const char * const edac_mem_types[] = {
4cfc3a40
BP
134 [MEM_EMPTY] = "Empty csrow",
135 [MEM_RESERVED] = "Reserved csrow type",
136 [MEM_UNKNOWN] = "Unknown csrow type",
137 [MEM_FPM] = "Fast page mode RAM",
138 [MEM_EDO] = "Extended data out RAM",
139 [MEM_BEDO] = "Burst Extended data out RAM",
140 [MEM_SDR] = "Single data rate SDRAM",
141 [MEM_RDR] = "Registered single data rate SDRAM",
142 [MEM_DDR] = "Double data rate SDRAM",
143 [MEM_RDDR] = "Registered Double data rate SDRAM",
144 [MEM_RMBS] = "Rambus DRAM",
145 [MEM_DDR2] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2] = "Fully buffered DDR2",
147 [MEM_RDDR2] = "Registered DDR2 RAM",
148 [MEM_XDR] = "Rambus XDR",
149 [MEM_DDR3] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3] = "Registered DDR3 RAM",
151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4] = "Registered DDR4 RAM",
239642fe
BP
154};
155EXPORT_SYMBOL_GPL(edac_mem_types);
156
93e4fe64
MCC
157/**
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
163 *
164 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
165 * down to either a no-op or the addition of a constant to the value of '*p'.
166 *
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
171 *
172 * At return, the pointer 'p' will be incremented to be used on a next call
173 * to this function.
da9bb1d2 174 */
93e4fe64 175void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
176{
177 unsigned align, r;
93e4fe64 178 void *ptr = *p;
da9bb1d2 179
93e4fe64
MCC
180 *p += size * n_elems;
181
182 /*
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
190 */
191 if (size > sizeof(long))
192 align = sizeof(long long);
193 else if (size > sizeof(int))
194 align = sizeof(long);
195 else if (size > sizeof(short))
196 align = sizeof(int);
197 else if (size > sizeof(char))
198 align = sizeof(short);
199 else
079708b9 200 return (char *)ptr;
da9bb1d2 201
8447c4d1 202 r = (unsigned long)p % align;
da9bb1d2
AC
203
204 if (r == 0)
079708b9 205 return (char *)ptr;
da9bb1d2 206
93e4fe64
MCC
207 *p += align - r;
208
7391c6dc 209 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
210}
211
faa2ad09
SR
212static void _edac_mc_free(struct mem_ctl_info *mci)
213{
214 int i, chn, row;
215 struct csrow_info *csr;
216 const unsigned int tot_dimms = mci->tot_dimms;
217 const unsigned int tot_channels = mci->num_cschannel;
218 const unsigned int tot_csrows = mci->nr_csrows;
219
220 if (mci->dimms) {
221 for (i = 0; i < tot_dimms; i++)
222 kfree(mci->dimms[i]);
223 kfree(mci->dimms);
224 }
225 if (mci->csrows) {
226 for (row = 0; row < tot_csrows; row++) {
227 csr = mci->csrows[row];
228 if (csr) {
229 if (csr->channels) {
230 for (chn = 0; chn < tot_channels; chn++)
231 kfree(csr->channels[chn]);
232 kfree(csr->channels);
233 }
234 kfree(csr);
235 }
236 }
237 kfree(mci->csrows);
238 }
239 kfree(mci);
240}
241
da9bb1d2 242/**
4275be63
MCC
243 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
244 * @mc_num: Memory controller number
245 * @n_layers: Number of MC hierarchy layers
246 * layers: Describes each layer as seen by the Memory Controller
247 * @size_pvt: size of private storage needed
248 *
da9bb1d2
AC
249 *
250 * Everything is kmalloc'ed as one big chunk - more efficient.
251 * Only can be used if all structures have the same lifetime - otherwise
252 * you have to allocate and initialize your own structures.
253 *
254 * Use edac_mc_free() to free mc structures allocated by this function.
255 *
4275be63
MCC
256 * NOTE: drivers handle multi-rank memories in different ways: in some
257 * drivers, one multi-rank memory stick is mapped as one entry, while, in
258 * others, a single multi-rank memory stick would be mapped into several
259 * entries. Currently, this function will allocate multiple struct dimm_info
260 * on such scenarios, as grouping the multiple ranks require drivers change.
261 *
da9bb1d2 262 * Returns:
ca0907b9
MCC
263 * On failure: NULL
264 * On success: struct mem_ctl_info pointer
da9bb1d2 265 */
ca0907b9
MCC
266struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
267 unsigned n_layers,
268 struct edac_mc_layer *layers,
269 unsigned sz_pvt)
da9bb1d2
AC
270{
271 struct mem_ctl_info *mci;
4275be63 272 struct edac_mc_layer *layer;
de3910eb
MCC
273 struct csrow_info *csr;
274 struct rank_info *chan;
a7d7d2e1 275 struct dimm_info *dimm;
4275be63
MCC
276 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
277 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
278 unsigned size, tot_dimms = 1, count = 1;
279 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 280 void *pvt, *p, *ptr = NULL;
de3910eb 281 int i, j, row, chn, n, len, off;
4275be63
MCC
282 bool per_rank = false;
283
284 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
285 /*
286 * Calculate the total amount of dimms and csrows/cschannels while
287 * in the old API emulation mode
288 */
289 for (i = 0; i < n_layers; i++) {
290 tot_dimms *= layers[i].size;
291 if (layers[i].is_virt_csrow)
292 tot_csrows *= layers[i].size;
293 else
294 tot_channels *= layers[i].size;
295
296 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
297 per_rank = true;
298 }
da9bb1d2
AC
299
300 /* Figure out the offsets of the various items from the start of an mc
301 * structure. We want the alignment of each item to be at least as
302 * stringent as what the compiler would provide if we could simply
303 * hardcode everything into a single struct.
304 */
93e4fe64 305 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 306 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
307 for (i = 0; i < n_layers; i++) {
308 count *= layers[i].size;
956b9ba1 309 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
310 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
311 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
312 tot_errcount += 2 * count;
313 }
314
956b9ba1 315 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 316 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 317 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 318
956b9ba1
JP
319 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
320 size,
321 tot_dimms,
322 per_rank ? "ranks" : "dimms",
323 tot_csrows * tot_channels);
de3910eb 324
8096cfaf
DT
325 mci = kzalloc(size, GFP_KERNEL);
326 if (mci == NULL)
da9bb1d2
AC
327 return NULL;
328
329 /* Adjust pointers so they point within the memory we just allocated
330 * rather than an imaginary chunk of memory located at address 0.
331 */
4275be63 332 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
333 for (i = 0; i < n_layers; i++) {
334 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
335 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
336 }
079708b9 337 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 338
b8f6f975 339 /* setup index and various internal pointers */
4275be63 340 mci->mc_idx = mc_num;
4275be63 341 mci->tot_dimms = tot_dimms;
da9bb1d2 342 mci->pvt_info = pvt;
4275be63
MCC
343 mci->n_layers = n_layers;
344 mci->layers = layer;
345 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
346 mci->nr_csrows = tot_csrows;
347 mci->num_cschannel = tot_channels;
9713faec 348 mci->csbased = per_rank;
da9bb1d2 349
a7d7d2e1 350 /*
de3910eb 351 * Alocate and fill the csrow/channels structs
a7d7d2e1 352 */
d3d09e18 353 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
354 if (!mci->csrows)
355 goto error;
4275be63 356 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
357 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
358 if (!csr)
359 goto error;
360 mci->csrows[row] = csr;
4275be63
MCC
361 csr->csrow_idx = row;
362 csr->mci = mci;
363 csr->nr_channels = tot_channels;
d3d09e18 364 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
365 GFP_KERNEL);
366 if (!csr->channels)
367 goto error;
4275be63
MCC
368
369 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
370 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
371 if (!chan)
372 goto error;
373 csr->channels[chn] = chan;
da9bb1d2 374 chan->chan_idx = chn;
4275be63
MCC
375 chan->csrow = csr;
376 }
377 }
378
379 /*
de3910eb 380 * Allocate and fill the dimm structs
4275be63 381 */
d3d09e18 382 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
383 if (!mci->dimms)
384 goto error;
385
4275be63
MCC
386 memset(&pos, 0, sizeof(pos));
387 row = 0;
388 chn = 0;
4275be63 389 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
390 chan = mci->csrows[row]->channels[chn];
391 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
392 if (off < 0 || off >= tot_dimms) {
393 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
394 goto error;
395 }
4275be63 396
de3910eb 397 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
398 if (!dimm)
399 goto error;
de3910eb 400 mci->dimms[off] = dimm;
4275be63 401 dimm->mci = mci;
4275be63 402
5926ff50
MCC
403 /*
404 * Copy DIMM location and initialize it.
405 */
406 len = sizeof(dimm->label);
407 p = dimm->label;
408 n = snprintf(p, len, "mc#%u", mc_num);
409 p += n;
410 len -= n;
411 for (j = 0; j < n_layers; j++) {
412 n = snprintf(p, len, "%s#%u",
413 edac_layer_name[layers[j].type],
414 pos[j]);
415 p += n;
416 len -= n;
4275be63
MCC
417 dimm->location[j] = pos[j];
418
5926ff50
MCC
419 if (len <= 0)
420 break;
421 }
422
4275be63
MCC
423 /* Link it to the csrows old API data */
424 chan->dimm = dimm;
425 dimm->csrow = row;
426 dimm->cschannel = chn;
427
428 /* Increment csrow location */
24bef66e 429 if (layers[0].is_virt_csrow) {
4275be63 430 chn++;
24bef66e
MCC
431 if (chn == tot_channels) {
432 chn = 0;
433 row++;
434 }
435 } else {
436 row++;
437 if (row == tot_csrows) {
438 row = 0;
439 chn++;
440 }
4275be63 441 }
a7d7d2e1 442
4275be63
MCC
443 /* Increment dimm location */
444 for (j = n_layers - 1; j >= 0; j--) {
445 pos[j]++;
446 if (pos[j] < layers[j].size)
447 break;
448 pos[j] = 0;
da9bb1d2
AC
449 }
450 }
451
81d87cb1 452 mci->op_state = OP_ALLOC;
8096cfaf 453
da9bb1d2 454 return mci;
de3910eb
MCC
455
456error:
faa2ad09 457 _edac_mc_free(mci);
de3910eb
MCC
458
459 return NULL;
4275be63 460}
9110540f 461EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 462
da9bb1d2 463/**
8096cfaf
DT
464 * edac_mc_free
465 * 'Free' a previously allocated 'mci' structure
da9bb1d2 466 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
467 */
468void edac_mc_free(struct mem_ctl_info *mci)
469{
956b9ba1 470 edac_dbg(1, "\n");
bbc560ae 471
faa2ad09
SR
472 /* If we're not yet registered with sysfs free only what was allocated
473 * in edac_mc_alloc().
474 */
475 if (!device_is_registered(&mci->dev)) {
476 _edac_mc_free(mci);
477 return;
478 }
479
de3910eb 480 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 481 edac_unregister_sysfs(mci);
da9bb1d2 482}
9110540f 483EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 484
bce19683 485
939747bd 486/**
bce19683
DT
487 * find_mci_by_dev
488 *
489 * scan list of controllers looking for the one that manages
490 * the 'dev' device
939747bd 491 * @dev: pointer to a struct device related with the MCI
bce19683 492 */
939747bd 493struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
494{
495 struct mem_ctl_info *mci;
496 struct list_head *item;
497
956b9ba1 498 edac_dbg(3, "\n");
da9bb1d2
AC
499
500 list_for_each(item, &mc_devices) {
501 mci = list_entry(item, struct mem_ctl_info, link);
502
fd687502 503 if (mci->pdev == dev)
da9bb1d2
AC
504 return mci;
505 }
506
507 return NULL;
508}
939747bd 509EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 510
81d87cb1
DJ
511/*
512 * handler for EDAC to check if NMI type handler has asserted interrupt
513 */
514static int edac_mc_assert_error_check_and_clear(void)
515{
66ee2f94 516 int old_state;
81d87cb1 517
079708b9 518 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
519 return 1;
520
66ee2f94
DJ
521 old_state = edac_err_assert;
522 edac_err_assert = 0;
81d87cb1 523
66ee2f94 524 return old_state;
81d87cb1
DJ
525}
526
527/*
528 * edac_mc_workq_function
529 * performs the operation scheduled by a workq request
530 */
81d87cb1
DJ
531static void edac_mc_workq_function(struct work_struct *work_req)
532{
fbeb4384 533 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 534 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
535
536 mutex_lock(&mem_ctls_mutex);
537
bf52fa4a
DT
538 /* if this control struct has movd to offline state, we are done */
539 if (mci->op_state == OP_OFFLINE) {
540 mutex_unlock(&mem_ctls_mutex);
541 return;
542 }
543
81d87cb1
DJ
544 /* Only poll controllers that are running polled and have a check */
545 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
546 mci->edac_check(mci);
547
81d87cb1
DJ
548 mutex_unlock(&mem_ctls_mutex);
549
550 /* Reschedule */
c4cf3b45 551 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
552}
553
81d87cb1 554/*
bce19683
DT
555 * edac_mc_reset_delay_period(unsigned long value)
556 *
557 * user space has updated our poll period value, need to
558 * reset our workq delays
81d87cb1 559 */
9da21b15 560void edac_mc_reset_delay_period(unsigned long value)
81d87cb1 561{
bce19683
DT
562 struct mem_ctl_info *mci;
563 struct list_head *item;
564
565 mutex_lock(&mem_ctls_mutex);
566
bce19683
DT
567 list_for_each(item, &mc_devices) {
568 mci = list_entry(item, struct mem_ctl_info, link);
569
c4cf3b45 570 edac_mod_work(&mci->work, value);
bce19683 571 }
81d87cb1
DJ
572 mutex_unlock(&mem_ctls_mutex);
573}
574
bce19683
DT
575
576
2d7bbb91
DT
577/* Return 0 on success, 1 on failure.
578 * Before calling this function, caller must
579 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
580 *
581 * locking model:
582 *
583 * called with the mem_ctls_mutex lock held
2d7bbb91 584 */
079708b9 585static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
586{
587 struct list_head *item, *insert_before;
588 struct mem_ctl_info *p;
da9bb1d2 589
2d7bbb91 590 insert_before = &mc_devices;
da9bb1d2 591
fd687502 592 p = find_mci_by_dev(mci->pdev);
bf52fa4a 593 if (unlikely(p != NULL))
2d7bbb91 594 goto fail0;
da9bb1d2 595
2d7bbb91
DT
596 list_for_each(item, &mc_devices) {
597 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 598
2d7bbb91
DT
599 if (p->mc_idx >= mci->mc_idx) {
600 if (unlikely(p->mc_idx == mci->mc_idx))
601 goto fail1;
da9bb1d2 602
2d7bbb91
DT
603 insert_before = item;
604 break;
da9bb1d2 605 }
da9bb1d2
AC
606 }
607
608 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 609 atomic_inc(&edac_handlers);
da9bb1d2 610 return 0;
2d7bbb91 611
052dfb45 612fail0:
2d7bbb91 613 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 614 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 615 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
616 return 1;
617
052dfb45 618fail1:
2d7bbb91 619 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
620 "bug in low-level driver: attempt to assign\n"
621 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 622 return 1;
da9bb1d2
AC
623}
624
80cc7d87 625static int del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 626{
80cc7d87 627 int handlers = atomic_dec_return(&edac_handlers);
a1d03fcc 628 list_del_rcu(&mci->link);
e2e77098
LJ
629
630 /* these are for safe removal of devices from global list while
631 * NMI handlers may be traversing list
632 */
633 synchronize_rcu();
634 INIT_LIST_HEAD(&mci->link);
80cc7d87
MCC
635
636 return handlers;
a1d03fcc
DP
637}
638
5da0831c
DT
639/**
640 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
641 *
642 * If found, return a pointer to the structure.
643 * Else return NULL.
644 *
645 * Caller must hold mem_ctls_mutex.
646 */
079708b9 647struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
648{
649 struct list_head *item;
650 struct mem_ctl_info *mci;
651
652 list_for_each(item, &mc_devices) {
653 mci = list_entry(item, struct mem_ctl_info, link);
654
655 if (mci->mc_idx >= idx) {
656 if (mci->mc_idx == idx)
657 return mci;
658
659 break;
660 }
661 }
662
663 return NULL;
664}
665EXPORT_SYMBOL(edac_mc_find);
666
da9bb1d2 667/**
4e8d230d
TI
668 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
669 * global list and create sysfs entries associated with mci structure
da9bb1d2 670 * @mci: pointer to the mci structure to be added to the list
4e8d230d 671 * @groups: optional attribute groups for the driver-specific sysfs entries
da9bb1d2
AC
672 *
673 * Return:
674 * 0 Success
675 * !0 Failure
676 */
677
678/* FIXME - should a warning be printed if no error detection? correction? */
4e8d230d
TI
679int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
680 const struct attribute_group **groups)
da9bb1d2 681{
80cc7d87 682 int ret = -EINVAL;
956b9ba1 683 edac_dbg(0, "\n");
b8f6f975 684
88d84ac9
BP
685 if (mci->mc_idx >= EDAC_MAX_MCS) {
686 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
687 return -ENODEV;
688 }
689
da9bb1d2
AC
690#ifdef CONFIG_EDAC_DEBUG
691 if (edac_debug_level >= 3)
692 edac_mc_dump_mci(mci);
e7ecd891 693
da9bb1d2
AC
694 if (edac_debug_level >= 4) {
695 int i;
696
697 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
698 struct csrow_info *csrow = mci->csrows[i];
699 u32 nr_pages = 0;
da9bb1d2 700 int j;
e7ecd891 701
6e84d359
MCC
702 for (j = 0; j < csrow->nr_channels; j++)
703 nr_pages += csrow->channels[j]->dimm->nr_pages;
704 if (!nr_pages)
705 continue;
706 edac_mc_dump_csrow(csrow);
707 for (j = 0; j < csrow->nr_channels; j++)
708 if (csrow->channels[j]->dimm->nr_pages)
709 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 710 }
4275be63 711 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
712 if (mci->dimms[i]->nr_pages)
713 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
714 }
715#endif
63b7df91 716 mutex_lock(&mem_ctls_mutex);
da9bb1d2 717
80cc7d87
MCC
718 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
719 ret = -EPERM;
720 goto fail0;
721 }
722
da9bb1d2 723 if (add_mc_to_global_list(mci))
028a7b6d 724 goto fail0;
da9bb1d2
AC
725
726 /* set load time so that error rate can be tracked */
727 mci->start_time = jiffies;
728
88d84ac9
BP
729 mci->bus = &mc_bus[mci->mc_idx];
730
4e8d230d 731 if (edac_create_sysfs_mci_device(mci, groups)) {
9794f33d 732 edac_mc_printk(mci, KERN_WARNING,
052dfb45 733 "failed to create sysfs device\n");
9794f33d 734 goto fail1;
735 }
da9bb1d2 736
09667606 737 if (mci->edac_check) {
81d87cb1
DJ
738 mci->op_state = OP_RUNNING_POLL;
739
626a7a4d
BP
740 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
741 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
742
81d87cb1
DJ
743 } else {
744 mci->op_state = OP_RUNNING_INTERRUPT;
745 }
746
da9bb1d2 747 /* Report action taken */
7270a608
RR
748 edac_mc_printk(mci, KERN_INFO,
749 "Giving out device to module %s controller %s: DEV %s (%s)\n",
750 mci->mod_name, mci->ctl_name, mci->dev_name,
751 edac_op_state_to_string(mci->op_state));
da9bb1d2 752
80cc7d87
MCC
753 edac_mc_owner = mci->mod_name;
754
63b7df91 755 mutex_unlock(&mem_ctls_mutex);
028a7b6d 756 return 0;
da9bb1d2 757
052dfb45 758fail1:
028a7b6d
DP
759 del_mc_from_global_list(mci);
760
052dfb45 761fail0:
63b7df91 762 mutex_unlock(&mem_ctls_mutex);
80cc7d87 763 return ret;
da9bb1d2 764}
4e8d230d 765EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
da9bb1d2 766
da9bb1d2 767/**
472678eb
DP
768 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
769 * remove mci structure from global list
37f04581 770 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 771 *
18dbc337 772 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 773 */
079708b9 774struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 775{
18dbc337 776 struct mem_ctl_info *mci;
da9bb1d2 777
956b9ba1 778 edac_dbg(0, "\n");
bf52fa4a 779
63b7df91 780 mutex_lock(&mem_ctls_mutex);
18dbc337 781
bf52fa4a
DT
782 /* find the requested mci struct in the global list */
783 mci = find_mci_by_dev(dev);
784 if (mci == NULL) {
63b7df91 785 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
786 return NULL;
787 }
788
09667606
BP
789 /* mark MCI offline: */
790 mci->op_state = OP_OFFLINE;
791
80cc7d87
MCC
792 if (!del_mc_from_global_list(mci))
793 edac_mc_owner = NULL;
bf52fa4a 794
09667606 795 mutex_unlock(&mem_ctls_mutex);
bb31b312 796
09667606 797 if (mci->edac_check)
626a7a4d 798 edac_stop_work(&mci->work);
bb31b312
BP
799
800 /* remove from sysfs */
bf52fa4a
DT
801 edac_remove_sysfs_mci_device(mci);
802
537fba28 803 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 804 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 805 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 806
18dbc337 807 return mci;
da9bb1d2 808}
9110540f 809EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 810
2da1c119
AB
811static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
812 u32 size)
da9bb1d2
AC
813{
814 struct page *pg;
815 void *virt_addr;
816 unsigned long flags = 0;
817
956b9ba1 818 edac_dbg(3, "\n");
da9bb1d2
AC
819
820 /* ECC error page was not in our memory. Ignore it. */
079708b9 821 if (!pfn_valid(page))
da9bb1d2
AC
822 return;
823
824 /* Find the actual page structure then map it and fix */
825 pg = pfn_to_page(page);
826
827 if (PageHighMem(pg))
828 local_irq_save(flags);
829
4e5df7ca 830 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
831
832 /* Perform architecture specific atomic scrub operation */
b01aec9b 833 edac_atomic_scrub(virt_addr + offset, size);
da9bb1d2
AC
834
835 /* Unmap and complete */
4e5df7ca 836 kunmap_atomic(virt_addr);
da9bb1d2
AC
837
838 if (PageHighMem(pg))
839 local_irq_restore(flags);
840}
841
da9bb1d2 842/* FIXME - should return -1 */
e7ecd891 843int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 844{
de3910eb 845 struct csrow_info **csrows = mci->csrows;
a895bf8b 846 int row, i, j, n;
da9bb1d2 847
956b9ba1 848 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
849 row = -1;
850
851 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 852 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
853 n = 0;
854 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 855 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
856 n += dimm->nr_pages;
857 }
858 if (n == 0)
da9bb1d2
AC
859 continue;
860
956b9ba1
JP
861 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
862 mci->mc_idx,
863 csrow->first_page, page, csrow->last_page,
864 csrow->page_mask);
da9bb1d2
AC
865
866 if ((page >= csrow->first_page) &&
867 (page <= csrow->last_page) &&
868 ((page & csrow->page_mask) ==
869 (csrow->first_page & csrow->page_mask))) {
870 row = i;
871 break;
872 }
873 }
874
875 if (row == -1)
537fba28 876 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
877 "could not look up page error address %lx\n",
878 (unsigned long)page);
da9bb1d2
AC
879
880 return row;
881}
9110540f 882EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 883
4275be63
MCC
884const char *edac_layer_name[] = {
885 [EDAC_MC_LAYER_BRANCH] = "branch",
886 [EDAC_MC_LAYER_CHANNEL] = "channel",
887 [EDAC_MC_LAYER_SLOT] = "slot",
888 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 889 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
890};
891EXPORT_SYMBOL_GPL(edac_layer_name);
892
893static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
894 bool enable_per_layer_report,
895 const int pos[EDAC_MAX_LAYERS],
896 const u16 count)
da9bb1d2 897{
4275be63 898 int i, index = 0;
da9bb1d2 899
9eb07a7f 900 mci->ce_mc += count;
da9bb1d2 901
4275be63 902 if (!enable_per_layer_report) {
9eb07a7f 903 mci->ce_noinfo_count += count;
da9bb1d2
AC
904 return;
905 }
e7ecd891 906
4275be63
MCC
907 for (i = 0; i < mci->n_layers; i++) {
908 if (pos[i] < 0)
909 break;
910 index += pos[i];
9eb07a7f 911 mci->ce_per_layer[i][index] += count;
4275be63
MCC
912
913 if (i < mci->n_layers - 1)
914 index *= mci->layers[i + 1].size;
915 }
916}
917
918static void edac_inc_ue_error(struct mem_ctl_info *mci,
919 bool enable_per_layer_report,
9eb07a7f
MCC
920 const int pos[EDAC_MAX_LAYERS],
921 const u16 count)
4275be63
MCC
922{
923 int i, index = 0;
924
9eb07a7f 925 mci->ue_mc += count;
4275be63
MCC
926
927 if (!enable_per_layer_report) {
9eb07a7f 928 mci->ce_noinfo_count += count;
da9bb1d2
AC
929 return;
930 }
931
4275be63
MCC
932 for (i = 0; i < mci->n_layers; i++) {
933 if (pos[i] < 0)
934 break;
935 index += pos[i];
9eb07a7f 936 mci->ue_per_layer[i][index] += count;
a7d7d2e1 937
4275be63
MCC
938 if (i < mci->n_layers - 1)
939 index *= mci->layers[i + 1].size;
940 }
941}
da9bb1d2 942
4275be63 943static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 944 const u16 error_count,
4275be63
MCC
945 const int pos[EDAC_MAX_LAYERS],
946 const char *msg,
947 const char *location,
948 const char *label,
949 const char *detail,
950 const char *other_detail,
951 const bool enable_per_layer_report,
952 const unsigned long page_frame_number,
953 const unsigned long offset_in_page,
53f2d028 954 long grain)
4275be63
MCC
955{
956 unsigned long remapped_page;
f430d570
BP
957 char *msg_aux = "";
958
959 if (*msg)
960 msg_aux = " ";
4275be63
MCC
961
962 if (edac_mc_get_log_ce()) {
963 if (other_detail && *other_detail)
964 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
965 "%d CE %s%son %s (%s %s - %s)\n",
966 error_count, msg, msg_aux, label,
967 location, detail, other_detail);
4275be63
MCC
968 else
969 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
970 "%d CE %s%son %s (%s %s)\n",
971 error_count, msg, msg_aux, label,
972 location, detail);
4275be63 973 }
9eb07a7f 974 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2 975
aa2064d7 976 if (mci->scrub_mode == SCRUB_SW_SRC) {
da9bb1d2 977 /*
4275be63
MCC
978 * Some memory controllers (called MCs below) can remap
979 * memory so that it is still available at a different
980 * address when PCI devices map into memory.
981 * MC's that can't do this, lose the memory where PCI
982 * devices are mapped. This mapping is MC-dependent
983 * and so we call back into the MC driver for it to
984 * map the MC page to a physical (CPU) page which can
985 * then be mapped to a virtual page - which can then
986 * be scrubbed.
987 */
da9bb1d2 988 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
989 mci->ctl_page_to_phys(mci, page_frame_number) :
990 page_frame_number;
da9bb1d2 991
4275be63
MCC
992 edac_mc_scrub_block(remapped_page,
993 offset_in_page, grain);
da9bb1d2
AC
994 }
995}
996
4275be63 997static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 998 const u16 error_count,
4275be63
MCC
999 const int pos[EDAC_MAX_LAYERS],
1000 const char *msg,
1001 const char *location,
1002 const char *label,
1003 const char *detail,
1004 const char *other_detail,
1005 const bool enable_per_layer_report)
da9bb1d2 1006{
f430d570
BP
1007 char *msg_aux = "";
1008
1009 if (*msg)
1010 msg_aux = " ";
1011
4275be63
MCC
1012 if (edac_mc_get_log_ue()) {
1013 if (other_detail && *other_detail)
1014 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1015 "%d UE %s%son %s (%s %s - %s)\n",
1016 error_count, msg, msg_aux, label,
1017 location, detail, other_detail);
4275be63
MCC
1018 else
1019 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1020 "%d UE %s%son %s (%s %s)\n",
1021 error_count, msg, msg_aux, label,
1022 location, detail);
4275be63 1023 }
e7ecd891 1024
4275be63
MCC
1025 if (edac_mc_get_panic_on_ue()) {
1026 if (other_detail && *other_detail)
f430d570
BP
1027 panic("UE %s%son %s (%s%s - %s)\n",
1028 msg, msg_aux, label, location, detail, other_detail);
4275be63 1029 else
f430d570
BP
1030 panic("UE %s%son %s (%s%s)\n",
1031 msg, msg_aux, label, location, detail);
4275be63
MCC
1032 }
1033
9eb07a7f 1034 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1035}
1036
e7e24830
MCC
1037/**
1038 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1039 * anything to discover the error location
1040 *
1041 * @type: severity of the error (CE/UE/Fatal)
1042 * @mci: a struct mem_ctl_info pointer
1043 * @e: error description
1044 *
1045 * This raw function is used internally by edac_mc_handle_error(). It should
1046 * only be called directly when the hardware error come directly from BIOS,
1047 * like in the case of APEI GHES driver.
1048 */
1049void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1050 struct mem_ctl_info *mci,
1051 struct edac_raw_error_desc *e)
1052{
1053 char detail[80];
1054 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1055
1056 /* Memory type dependent details about the error */
1057 if (type == HW_EVENT_ERR_CORRECTED) {
1058 snprintf(detail, sizeof(detail),
1059 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1060 e->page_frame_number, e->offset_in_page,
1061 e->grain, e->syndrome);
1062 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1063 detail, e->other_detail, e->enable_per_layer_report,
1064 e->page_frame_number, e->offset_in_page, e->grain);
1065 } else {
1066 snprintf(detail, sizeof(detail),
1067 "page:0x%lx offset:0x%lx grain:%ld",
1068 e->page_frame_number, e->offset_in_page, e->grain);
1069
1070 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1071 detail, e->other_detail, e->enable_per_layer_report);
1072 }
1073
1074
1075}
1076EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
53f2d028
MCC
1077
1078/**
1079 * edac_mc_handle_error - reports a memory event to userspace
1080 *
1081 * @type: severity of the error (CE/UE/Fatal)
1082 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1083 * @error_count: Number of errors of the same type
53f2d028
MCC
1084 * @page_frame_number: mem page where the error occurred
1085 * @offset_in_page: offset of the error inside the page
1086 * @syndrome: ECC syndrome
1087 * @top_layer: Memory layer[0] position
1088 * @mid_layer: Memory layer[1] position
1089 * @low_layer: Memory layer[2] position
1090 * @msg: Message meaningful to the end users that
1091 * explains the event
1092 * @other_detail: Technical details about the event that
1093 * may help hardware manufacturers and
1094 * EDAC developers to analyse the event
53f2d028 1095 */
4275be63
MCC
1096void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1097 struct mem_ctl_info *mci,
9eb07a7f 1098 const u16 error_count,
4275be63
MCC
1099 const unsigned long page_frame_number,
1100 const unsigned long offset_in_page,
1101 const unsigned long syndrome,
53f2d028
MCC
1102 const int top_layer,
1103 const int mid_layer,
1104 const int low_layer,
4275be63 1105 const char *msg,
03f7eae8 1106 const char *other_detail)
da9bb1d2 1107{
4275be63
MCC
1108 char *p;
1109 int row = -1, chan = -1;
53f2d028 1110 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
c7ef7645 1111 int i, n_labels = 0;
53f2d028 1112 u8 grain_bits;
c7ef7645 1113 struct edac_raw_error_desc *e = &mci->error_desc;
da9bb1d2 1114
956b9ba1 1115 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1116
c7ef7645
MCC
1117 /* Fills the error report buffer */
1118 memset(e, 0, sizeof (*e));
1119 e->error_count = error_count;
1120 e->top_layer = top_layer;
1121 e->mid_layer = mid_layer;
1122 e->low_layer = low_layer;
1123 e->page_frame_number = page_frame_number;
1124 e->offset_in_page = offset_in_page;
1125 e->syndrome = syndrome;
1126 e->msg = msg;
1127 e->other_detail = other_detail;
1128
4275be63
MCC
1129 /*
1130 * Check if the event report is consistent and if the memory
1131 * location is known. If it is known, enable_per_layer_report will be
1132 * true, the DIMM(s) label info will be filled and the per-layer
1133 * error counters will be incremented.
1134 */
1135 for (i = 0; i < mci->n_layers; i++) {
1136 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1137
1138 edac_mc_printk(mci, KERN_ERR,
1139 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1140 edac_layer_name[mci->layers[i].type],
1141 pos[i], mci->layers[i].size);
1142 /*
1143 * Instead of just returning it, let's use what's
1144 * known about the error. The increment routines and
1145 * the DIMM filter logic will do the right thing by
1146 * pointing the likely damaged DIMMs.
1147 */
1148 pos[i] = -1;
1149 }
1150 if (pos[i] >= 0)
c7ef7645 1151 e->enable_per_layer_report = true;
da9bb1d2
AC
1152 }
1153
4275be63
MCC
1154 /*
1155 * Get the dimm label/grain that applies to the match criteria.
1156 * As the error algorithm may not be able to point to just one memory
1157 * stick, the logic here will get all possible labels that could
1158 * pottentially be affected by the error.
1159 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1160 * to have only the MC channel and the MC dimm (also called "branch")
1161 * but the channel is not known, as the memory is arranged in pairs,
1162 * where each memory belongs to a separate channel within the same
1163 * branch.
1164 */
c7ef7645 1165 p = e->label;
4275be63 1166 *p = '\0';
4da1b7bf 1167
4275be63 1168 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1169 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1170
53f2d028 1171 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1172 continue;
53f2d028 1173 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1174 continue;
53f2d028 1175 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1176 continue;
da9bb1d2 1177
4275be63 1178 /* get the max grain, over the error match range */
c7ef7645
MCC
1179 if (dimm->grain > e->grain)
1180 e->grain = dimm->grain;
9794f33d 1181
4275be63
MCC
1182 /*
1183 * If the error is memory-controller wide, there's no need to
1184 * seek for the affected DIMMs because the whole
1185 * channel/memory controller/... may be affected.
1186 * Also, don't show errors for empty DIMM slots.
1187 */
c7ef7645
MCC
1188 if (e->enable_per_layer_report && dimm->nr_pages) {
1189 if (n_labels >= EDAC_MAX_LABELS) {
1190 e->enable_per_layer_report = false;
1191 break;
1192 }
1193 n_labels++;
1194 if (p != e->label) {
4275be63
MCC
1195 strcpy(p, OTHER_LABEL);
1196 p += strlen(OTHER_LABEL);
1197 }
1198 strcpy(p, dimm->label);
1199 p += strlen(p);
1200 *p = '\0';
1201
1202 /*
1203 * get csrow/channel of the DIMM, in order to allow
1204 * incrementing the compat API counters
1205 */
956b9ba1 1206 edac_dbg(4, "%s csrows map: (%d,%d)\n",
9713faec 1207 mci->csbased ? "rank" : "dimm",
956b9ba1 1208 dimm->csrow, dimm->cschannel);
4275be63
MCC
1209 if (row == -1)
1210 row = dimm->csrow;
1211 else if (row >= 0 && row != dimm->csrow)
1212 row = -2;
1213
1214 if (chan == -1)
1215 chan = dimm->cschannel;
1216 else if (chan >= 0 && chan != dimm->cschannel)
1217 chan = -2;
1218 }
9794f33d 1219 }
1220
c7ef7645
MCC
1221 if (!e->enable_per_layer_report) {
1222 strcpy(e->label, "any memory");
4275be63 1223 } else {
956b9ba1 1224 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
c7ef7645
MCC
1225 if (p == e->label)
1226 strcpy(e->label, "unknown memory");
4275be63
MCC
1227 if (type == HW_EVENT_ERR_CORRECTED) {
1228 if (row >= 0) {
9eb07a7f 1229 mci->csrows[row]->ce_count += error_count;
4275be63 1230 if (chan >= 0)
9eb07a7f 1231 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1232 }
1233 } else
1234 if (row >= 0)
9eb07a7f 1235 mci->csrows[row]->ue_count += error_count;
9794f33d 1236 }
1237
4275be63 1238 /* Fill the RAM location data */
c7ef7645 1239 p = e->location;
4da1b7bf 1240
4275be63
MCC
1241 for (i = 0; i < mci->n_layers; i++) {
1242 if (pos[i] < 0)
1243 continue;
9794f33d 1244
4275be63
MCC
1245 p += sprintf(p, "%s:%d ",
1246 edac_layer_name[mci->layers[i].type],
1247 pos[i]);
9794f33d 1248 }
c7ef7645 1249 if (p > e->location)
53f2d028
MCC
1250 *(p - 1) = '\0';
1251
1252 /* Report the error via the trace interface */
c7ef7645
MCC
1253 grain_bits = fls_long(e->grain) + 1;
1254 trace_mc_event(type, e->msg, e->label, e->error_count,
1255 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
990995ba 1256 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
e7e24830 1257 grain_bits, e->syndrome, e->other_detail);
a7d7d2e1 1258
e7e24830 1259 edac_raw_mc_handle_error(type, mci, e);
9794f33d 1260}
4275be63 1261EXPORT_SYMBOL_GPL(edac_mc_handle_error);