]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/edac/edac_mc.c
edac: remove proc_name from mci structure
[mirror_ubuntu-hirsute-kernel.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
20bcb7a8 34#include "edac_core.h"
7c9281d7 35#include "edac_module.h"
da9bb1d2 36
53f2d028
MCC
37#define CREATE_TRACE_POINTS
38#define TRACE_INCLUDE_PATH ../../include/ras
39#include <ras/ras_event.h>
40
da9bb1d2 41/* lock to memory controller's control array */
63b7df91 42static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 43static LIST_HEAD(mc_devices);
da9bb1d2 44
6e84d359
MCC
45unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47{
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64}
65
da9bb1d2
AC
66#ifdef CONFIG_EDAC_DEBUG
67
a4b4be3f 68static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 69{
6e84d359
MCC
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
74}
75
6e84d359 76static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 77{
6e84d359
MCC
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
90}
91
2da1c119 92static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 93{
6e84d359
MCC
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
102}
103
2da1c119 104static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 105{
956b9ba1
JP
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
119}
120
24f9a7fe
BP
121#endif /* CONFIG_EDAC_DEBUG */
122
239642fe
BP
123/*
124 * keep those in sync with the enum mem_type
125 */
126const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144};
145EXPORT_SYMBOL_GPL(edac_mem_types);
146
93e4fe64
MCC
147/**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
da9bb1d2 164 */
93e4fe64 165void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
166{
167 unsigned align, r;
93e4fe64 168 void *ptr = *p;
da9bb1d2 169
93e4fe64
MCC
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
079708b9 190 return (char *)ptr;
da9bb1d2 191
8447c4d1 192 r = (unsigned long)p % align;
da9bb1d2
AC
193
194 if (r == 0)
079708b9 195 return (char *)ptr;
da9bb1d2 196
93e4fe64
MCC
197 *p += align - r;
198
7391c6dc 199 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
200}
201
faa2ad09
SR
202static void _edac_mc_free(struct mem_ctl_info *mci)
203{
204 int i, chn, row;
205 struct csrow_info *csr;
206 const unsigned int tot_dimms = mci->tot_dimms;
207 const unsigned int tot_channels = mci->num_cschannel;
208 const unsigned int tot_csrows = mci->nr_csrows;
209
210 if (mci->dimms) {
211 for (i = 0; i < tot_dimms; i++)
212 kfree(mci->dimms[i]);
213 kfree(mci->dimms);
214 }
215 if (mci->csrows) {
216 for (row = 0; row < tot_csrows; row++) {
217 csr = mci->csrows[row];
218 if (csr) {
219 if (csr->channels) {
220 for (chn = 0; chn < tot_channels; chn++)
221 kfree(csr->channels[chn]);
222 kfree(csr->channels);
223 }
224 kfree(csr);
225 }
226 }
227 kfree(mci->csrows);
228 }
229 kfree(mci);
230}
231
da9bb1d2 232/**
4275be63
MCC
233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
234 * @mc_num: Memory controller number
235 * @n_layers: Number of MC hierarchy layers
236 * layers: Describes each layer as seen by the Memory Controller
237 * @size_pvt: size of private storage needed
238 *
da9bb1d2
AC
239 *
240 * Everything is kmalloc'ed as one big chunk - more efficient.
241 * Only can be used if all structures have the same lifetime - otherwise
242 * you have to allocate and initialize your own structures.
243 *
244 * Use edac_mc_free() to free mc structures allocated by this function.
245 *
4275be63
MCC
246 * NOTE: drivers handle multi-rank memories in different ways: in some
247 * drivers, one multi-rank memory stick is mapped as one entry, while, in
248 * others, a single multi-rank memory stick would be mapped into several
249 * entries. Currently, this function will allocate multiple struct dimm_info
250 * on such scenarios, as grouping the multiple ranks require drivers change.
251 *
da9bb1d2 252 * Returns:
ca0907b9
MCC
253 * On failure: NULL
254 * On success: struct mem_ctl_info pointer
da9bb1d2 255 */
ca0907b9
MCC
256struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
257 unsigned n_layers,
258 struct edac_mc_layer *layers,
259 unsigned sz_pvt)
da9bb1d2
AC
260{
261 struct mem_ctl_info *mci;
4275be63 262 struct edac_mc_layer *layer;
de3910eb
MCC
263 struct csrow_info *csr;
264 struct rank_info *chan;
a7d7d2e1 265 struct dimm_info *dimm;
4275be63
MCC
266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
267 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
268 unsigned size, tot_dimms = 1, count = 1;
269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 270 void *pvt, *p, *ptr = NULL;
de3910eb 271 int i, j, row, chn, n, len, off;
4275be63
MCC
272 bool per_rank = false;
273
274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
275 /*
276 * Calculate the total amount of dimms and csrows/cschannels while
277 * in the old API emulation mode
278 */
279 for (i = 0; i < n_layers; i++) {
280 tot_dimms *= layers[i].size;
281 if (layers[i].is_virt_csrow)
282 tot_csrows *= layers[i].size;
283 else
284 tot_channels *= layers[i].size;
285
286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
287 per_rank = true;
288 }
da9bb1d2
AC
289
290 /* Figure out the offsets of the various items from the start of an mc
291 * structure. We want the alignment of each item to be at least as
292 * stringent as what the compiler would provide if we could simply
293 * hardcode everything into a single struct.
294 */
93e4fe64 295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
297 for (i = 0; i < n_layers; i++) {
298 count *= layers[i].size;
956b9ba1 299 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
302 tot_errcount += 2 * count;
303 }
304
956b9ba1 305 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 306 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 307 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 308
956b9ba1
JP
309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
310 size,
311 tot_dimms,
312 per_rank ? "ranks" : "dimms",
313 tot_csrows * tot_channels);
de3910eb 314
8096cfaf
DT
315 mci = kzalloc(size, GFP_KERNEL);
316 if (mci == NULL)
da9bb1d2
AC
317 return NULL;
318
319 /* Adjust pointers so they point within the memory we just allocated
320 * rather than an imaginary chunk of memory located at address 0.
321 */
4275be63 322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
323 for (i = 0; i < n_layers; i++) {
324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
326 }
079708b9 327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 328
b8f6f975 329 /* setup index and various internal pointers */
4275be63 330 mci->mc_idx = mc_num;
4275be63 331 mci->tot_dimms = tot_dimms;
da9bb1d2 332 mci->pvt_info = pvt;
4275be63
MCC
333 mci->n_layers = n_layers;
334 mci->layers = layer;
335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
336 mci->nr_csrows = tot_csrows;
337 mci->num_cschannel = tot_channels;
338 mci->mem_is_per_rank = per_rank;
da9bb1d2 339
a7d7d2e1 340 /*
de3910eb 341 * Alocate and fill the csrow/channels structs
a7d7d2e1 342 */
d3d09e18 343 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
344 if (!mci->csrows)
345 goto error;
4275be63 346 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
348 if (!csr)
349 goto error;
350 mci->csrows[row] = csr;
4275be63
MCC
351 csr->csrow_idx = row;
352 csr->mci = mci;
353 csr->nr_channels = tot_channels;
d3d09e18 354 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
355 GFP_KERNEL);
356 if (!csr->channels)
357 goto error;
4275be63
MCC
358
359 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
361 if (!chan)
362 goto error;
363 csr->channels[chn] = chan;
da9bb1d2 364 chan->chan_idx = chn;
4275be63
MCC
365 chan->csrow = csr;
366 }
367 }
368
369 /*
de3910eb 370 * Allocate and fill the dimm structs
4275be63 371 */
d3d09e18 372 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
373 if (!mci->dimms)
374 goto error;
375
4275be63
MCC
376 memset(&pos, 0, sizeof(pos));
377 row = 0;
378 chn = 0;
4275be63 379 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
380 chan = mci->csrows[row]->channels[chn];
381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
382 if (off < 0 || off >= tot_dimms) {
383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
384 goto error;
385 }
4275be63 386
de3910eb 387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
388 if (!dimm)
389 goto error;
de3910eb 390 mci->dimms[off] = dimm;
4275be63 391 dimm->mci = mci;
4275be63 392
5926ff50
MCC
393 /*
394 * Copy DIMM location and initialize it.
395 */
396 len = sizeof(dimm->label);
397 p = dimm->label;
398 n = snprintf(p, len, "mc#%u", mc_num);
399 p += n;
400 len -= n;
401 for (j = 0; j < n_layers; j++) {
402 n = snprintf(p, len, "%s#%u",
403 edac_layer_name[layers[j].type],
404 pos[j]);
405 p += n;
406 len -= n;
4275be63
MCC
407 dimm->location[j] = pos[j];
408
5926ff50
MCC
409 if (len <= 0)
410 break;
411 }
412
4275be63
MCC
413 /* Link it to the csrows old API data */
414 chan->dimm = dimm;
415 dimm->csrow = row;
416 dimm->cschannel = chn;
417
418 /* Increment csrow location */
24bef66e 419 if (layers[0].is_virt_csrow) {
4275be63 420 chn++;
24bef66e
MCC
421 if (chn == tot_channels) {
422 chn = 0;
423 row++;
424 }
425 } else {
426 row++;
427 if (row == tot_csrows) {
428 row = 0;
429 chn++;
430 }
4275be63 431 }
a7d7d2e1 432
4275be63
MCC
433 /* Increment dimm location */
434 for (j = n_layers - 1; j >= 0; j--) {
435 pos[j]++;
436 if (pos[j] < layers[j].size)
437 break;
438 pos[j] = 0;
da9bb1d2
AC
439 }
440 }
441
81d87cb1 442 mci->op_state = OP_ALLOC;
8096cfaf 443
da9bb1d2 444 return mci;
de3910eb
MCC
445
446error:
faa2ad09 447 _edac_mc_free(mci);
de3910eb
MCC
448
449 return NULL;
4275be63 450}
9110540f 451EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 452
da9bb1d2 453/**
8096cfaf
DT
454 * edac_mc_free
455 * 'Free' a previously allocated 'mci' structure
da9bb1d2 456 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
457 */
458void edac_mc_free(struct mem_ctl_info *mci)
459{
956b9ba1 460 edac_dbg(1, "\n");
bbc560ae 461
faa2ad09
SR
462 /* If we're not yet registered with sysfs free only what was allocated
463 * in edac_mc_alloc().
464 */
465 if (!device_is_registered(&mci->dev)) {
466 _edac_mc_free(mci);
467 return;
468 }
469
de3910eb 470 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 471 edac_unregister_sysfs(mci);
da9bb1d2 472}
9110540f 473EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 474
bce19683 475
939747bd 476/**
bce19683
DT
477 * find_mci_by_dev
478 *
479 * scan list of controllers looking for the one that manages
480 * the 'dev' device
939747bd 481 * @dev: pointer to a struct device related with the MCI
bce19683 482 */
939747bd 483struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
484{
485 struct mem_ctl_info *mci;
486 struct list_head *item;
487
956b9ba1 488 edac_dbg(3, "\n");
da9bb1d2
AC
489
490 list_for_each(item, &mc_devices) {
491 mci = list_entry(item, struct mem_ctl_info, link);
492
fd687502 493 if (mci->pdev == dev)
da9bb1d2
AC
494 return mci;
495 }
496
497 return NULL;
498}
939747bd 499EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 500
81d87cb1
DJ
501/*
502 * handler for EDAC to check if NMI type handler has asserted interrupt
503 */
504static int edac_mc_assert_error_check_and_clear(void)
505{
66ee2f94 506 int old_state;
81d87cb1 507
079708b9 508 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
509 return 1;
510
66ee2f94
DJ
511 old_state = edac_err_assert;
512 edac_err_assert = 0;
81d87cb1 513
66ee2f94 514 return old_state;
81d87cb1
DJ
515}
516
517/*
518 * edac_mc_workq_function
519 * performs the operation scheduled by a workq request
520 */
81d87cb1
DJ
521static void edac_mc_workq_function(struct work_struct *work_req)
522{
fbeb4384 523 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 524 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
525
526 mutex_lock(&mem_ctls_mutex);
527
bf52fa4a
DT
528 /* if this control struct has movd to offline state, we are done */
529 if (mci->op_state == OP_OFFLINE) {
530 mutex_unlock(&mem_ctls_mutex);
531 return;
532 }
533
81d87cb1
DJ
534 /* Only poll controllers that are running polled and have a check */
535 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
536 mci->edac_check(mci);
537
81d87cb1
DJ
538 mutex_unlock(&mem_ctls_mutex);
539
540 /* Reschedule */
4de78c68 541 queue_delayed_work(edac_workqueue, &mci->work,
052dfb45 542 msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
543}
544
545/*
546 * edac_mc_workq_setup
547 * initialize a workq item for this mci
548 * passing in the new delay period in msec
bf52fa4a
DT
549 *
550 * locking model:
551 *
552 * called with the mem_ctls_mutex held
81d87cb1 553 */
bf52fa4a 554static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
81d87cb1 555{
956b9ba1 556 edac_dbg(0, "\n");
81d87cb1 557
bf52fa4a
DT
558 /* if this instance is not in the POLL state, then simply return */
559 if (mci->op_state != OP_RUNNING_POLL)
560 return;
561
81d87cb1 562 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
41f63c53 563 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
81d87cb1
DJ
564}
565
566/*
567 * edac_mc_workq_teardown
568 * stop the workq processing on this mci
bf52fa4a
DT
569 *
570 * locking model:
571 *
572 * called WITHOUT lock held
81d87cb1 573 */
bf52fa4a 574static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
81d87cb1
DJ
575{
576 int status;
577
00740c58
BP
578 if (mci->op_state != OP_RUNNING_POLL)
579 return;
580
bce19683
DT
581 status = cancel_delayed_work(&mci->work);
582 if (status == 0) {
956b9ba1 583 edac_dbg(0, "not canceled, flush the queue\n");
bf52fa4a 584
bce19683
DT
585 /* workq instance might be running, wait for it */
586 flush_workqueue(edac_workqueue);
81d87cb1
DJ
587 }
588}
589
590/*
bce19683
DT
591 * edac_mc_reset_delay_period(unsigned long value)
592 *
593 * user space has updated our poll period value, need to
594 * reset our workq delays
81d87cb1 595 */
bce19683 596void edac_mc_reset_delay_period(int value)
81d87cb1 597{
bce19683
DT
598 struct mem_ctl_info *mci;
599 struct list_head *item;
600
601 mutex_lock(&mem_ctls_mutex);
602
bce19683
DT
603 list_for_each(item, &mc_devices) {
604 mci = list_entry(item, struct mem_ctl_info, link);
605
606 edac_mc_workq_setup(mci, (unsigned long) value);
607 }
81d87cb1
DJ
608
609 mutex_unlock(&mem_ctls_mutex);
610}
611
bce19683
DT
612
613
2d7bbb91
DT
614/* Return 0 on success, 1 on failure.
615 * Before calling this function, caller must
616 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
617 *
618 * locking model:
619 *
620 * called with the mem_ctls_mutex lock held
2d7bbb91 621 */
079708b9 622static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
623{
624 struct list_head *item, *insert_before;
625 struct mem_ctl_info *p;
da9bb1d2 626
2d7bbb91 627 insert_before = &mc_devices;
da9bb1d2 628
fd687502 629 p = find_mci_by_dev(mci->pdev);
bf52fa4a 630 if (unlikely(p != NULL))
2d7bbb91 631 goto fail0;
da9bb1d2 632
2d7bbb91
DT
633 list_for_each(item, &mc_devices) {
634 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 635
2d7bbb91
DT
636 if (p->mc_idx >= mci->mc_idx) {
637 if (unlikely(p->mc_idx == mci->mc_idx))
638 goto fail1;
da9bb1d2 639
2d7bbb91
DT
640 insert_before = item;
641 break;
da9bb1d2 642 }
da9bb1d2
AC
643 }
644
645 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 646 atomic_inc(&edac_handlers);
da9bb1d2 647 return 0;
2d7bbb91 648
052dfb45 649fail0:
2d7bbb91 650 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 651 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 652 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
653 return 1;
654
052dfb45 655fail1:
2d7bbb91 656 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
657 "bug in low-level driver: attempt to assign\n"
658 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 659 return 1;
da9bb1d2
AC
660}
661
e7ecd891 662static void del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 663{
c0d12172 664 atomic_dec(&edac_handlers);
a1d03fcc 665 list_del_rcu(&mci->link);
e2e77098
LJ
666
667 /* these are for safe removal of devices from global list while
668 * NMI handlers may be traversing list
669 */
670 synchronize_rcu();
671 INIT_LIST_HEAD(&mci->link);
a1d03fcc
DP
672}
673
5da0831c
DT
674/**
675 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
676 *
677 * If found, return a pointer to the structure.
678 * Else return NULL.
679 *
680 * Caller must hold mem_ctls_mutex.
681 */
079708b9 682struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
683{
684 struct list_head *item;
685 struct mem_ctl_info *mci;
686
687 list_for_each(item, &mc_devices) {
688 mci = list_entry(item, struct mem_ctl_info, link);
689
690 if (mci->mc_idx >= idx) {
691 if (mci->mc_idx == idx)
692 return mci;
693
694 break;
695 }
696 }
697
698 return NULL;
699}
700EXPORT_SYMBOL(edac_mc_find);
701
da9bb1d2 702/**
472678eb
DP
703 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
704 * create sysfs entries associated with mci structure
da9bb1d2
AC
705 * @mci: pointer to the mci structure to be added to the list
706 *
707 * Return:
708 * 0 Success
709 * !0 Failure
710 */
711
712/* FIXME - should a warning be printed if no error detection? correction? */
b8f6f975 713int edac_mc_add_mc(struct mem_ctl_info *mci)
da9bb1d2 714{
956b9ba1 715 edac_dbg(0, "\n");
b8f6f975 716
da9bb1d2
AC
717#ifdef CONFIG_EDAC_DEBUG
718 if (edac_debug_level >= 3)
719 edac_mc_dump_mci(mci);
e7ecd891 720
da9bb1d2
AC
721 if (edac_debug_level >= 4) {
722 int i;
723
724 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
725 struct csrow_info *csrow = mci->csrows[i];
726 u32 nr_pages = 0;
da9bb1d2 727 int j;
e7ecd891 728
6e84d359
MCC
729 for (j = 0; j < csrow->nr_channels; j++)
730 nr_pages += csrow->channels[j]->dimm->nr_pages;
731 if (!nr_pages)
732 continue;
733 edac_mc_dump_csrow(csrow);
734 for (j = 0; j < csrow->nr_channels; j++)
735 if (csrow->channels[j]->dimm->nr_pages)
736 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 737 }
4275be63 738 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
739 if (mci->dimms[i]->nr_pages)
740 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
741 }
742#endif
63b7df91 743 mutex_lock(&mem_ctls_mutex);
da9bb1d2
AC
744
745 if (add_mc_to_global_list(mci))
028a7b6d 746 goto fail0;
da9bb1d2
AC
747
748 /* set load time so that error rate can be tracked */
749 mci->start_time = jiffies;
750
9794f33d 751 if (edac_create_sysfs_mci_device(mci)) {
752 edac_mc_printk(mci, KERN_WARNING,
052dfb45 753 "failed to create sysfs device\n");
9794f33d 754 goto fail1;
755 }
da9bb1d2 756
81d87cb1
DJ
757 /* If there IS a check routine, then we are running POLLED */
758 if (mci->edac_check != NULL) {
759 /* This instance is NOW RUNNING */
760 mci->op_state = OP_RUNNING_POLL;
761
762 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
763 } else {
764 mci->op_state = OP_RUNNING_INTERRUPT;
765 }
766
da9bb1d2 767 /* Report action taken */
bf52fa4a 768 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
17aa7e03 769 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
da9bb1d2 770
63b7df91 771 mutex_unlock(&mem_ctls_mutex);
028a7b6d 772 return 0;
da9bb1d2 773
052dfb45 774fail1:
028a7b6d
DP
775 del_mc_from_global_list(mci);
776
052dfb45 777fail0:
63b7df91 778 mutex_unlock(&mem_ctls_mutex);
028a7b6d 779 return 1;
da9bb1d2 780}
9110540f 781EXPORT_SYMBOL_GPL(edac_mc_add_mc);
da9bb1d2 782
da9bb1d2 783/**
472678eb
DP
784 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
785 * remove mci structure from global list
37f04581 786 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 787 *
18dbc337 788 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 789 */
079708b9 790struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 791{
18dbc337 792 struct mem_ctl_info *mci;
da9bb1d2 793
956b9ba1 794 edac_dbg(0, "\n");
bf52fa4a 795
63b7df91 796 mutex_lock(&mem_ctls_mutex);
18dbc337 797
bf52fa4a
DT
798 /* find the requested mci struct in the global list */
799 mci = find_mci_by_dev(dev);
800 if (mci == NULL) {
63b7df91 801 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
802 return NULL;
803 }
804
da9bb1d2 805 del_mc_from_global_list(mci);
63b7df91 806 mutex_unlock(&mem_ctls_mutex);
bf52fa4a 807
bb31b312 808 /* flush workq processes */
bf52fa4a 809 edac_mc_workq_teardown(mci);
bb31b312
BP
810
811 /* marking MCI offline */
812 mci->op_state = OP_OFFLINE;
813
814 /* remove from sysfs */
bf52fa4a
DT
815 edac_remove_sysfs_mci_device(mci);
816
537fba28 817 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 818 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 819 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 820
18dbc337 821 return mci;
da9bb1d2 822}
9110540f 823EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 824
2da1c119
AB
825static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
826 u32 size)
da9bb1d2
AC
827{
828 struct page *pg;
829 void *virt_addr;
830 unsigned long flags = 0;
831
956b9ba1 832 edac_dbg(3, "\n");
da9bb1d2
AC
833
834 /* ECC error page was not in our memory. Ignore it. */
079708b9 835 if (!pfn_valid(page))
da9bb1d2
AC
836 return;
837
838 /* Find the actual page structure then map it and fix */
839 pg = pfn_to_page(page);
840
841 if (PageHighMem(pg))
842 local_irq_save(flags);
843
4e5df7ca 844 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
845
846 /* Perform architecture specific atomic scrub operation */
847 atomic_scrub(virt_addr + offset, size);
848
849 /* Unmap and complete */
4e5df7ca 850 kunmap_atomic(virt_addr);
da9bb1d2
AC
851
852 if (PageHighMem(pg))
853 local_irq_restore(flags);
854}
855
da9bb1d2 856/* FIXME - should return -1 */
e7ecd891 857int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 858{
de3910eb 859 struct csrow_info **csrows = mci->csrows;
a895bf8b 860 int row, i, j, n;
da9bb1d2 861
956b9ba1 862 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
863 row = -1;
864
865 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 866 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
867 n = 0;
868 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 869 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
870 n += dimm->nr_pages;
871 }
872 if (n == 0)
da9bb1d2
AC
873 continue;
874
956b9ba1
JP
875 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
876 mci->mc_idx,
877 csrow->first_page, page, csrow->last_page,
878 csrow->page_mask);
da9bb1d2
AC
879
880 if ((page >= csrow->first_page) &&
881 (page <= csrow->last_page) &&
882 ((page & csrow->page_mask) ==
883 (csrow->first_page & csrow->page_mask))) {
884 row = i;
885 break;
886 }
887 }
888
889 if (row == -1)
537fba28 890 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
891 "could not look up page error address %lx\n",
892 (unsigned long)page);
da9bb1d2
AC
893
894 return row;
895}
9110540f 896EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 897
4275be63
MCC
898const char *edac_layer_name[] = {
899 [EDAC_MC_LAYER_BRANCH] = "branch",
900 [EDAC_MC_LAYER_CHANNEL] = "channel",
901 [EDAC_MC_LAYER_SLOT] = "slot",
902 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 903 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
904};
905EXPORT_SYMBOL_GPL(edac_layer_name);
906
907static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
908 bool enable_per_layer_report,
909 const int pos[EDAC_MAX_LAYERS],
910 const u16 count)
da9bb1d2 911{
4275be63 912 int i, index = 0;
da9bb1d2 913
9eb07a7f 914 mci->ce_mc += count;
da9bb1d2 915
4275be63 916 if (!enable_per_layer_report) {
9eb07a7f 917 mci->ce_noinfo_count += count;
da9bb1d2
AC
918 return;
919 }
e7ecd891 920
4275be63
MCC
921 for (i = 0; i < mci->n_layers; i++) {
922 if (pos[i] < 0)
923 break;
924 index += pos[i];
9eb07a7f 925 mci->ce_per_layer[i][index] += count;
4275be63
MCC
926
927 if (i < mci->n_layers - 1)
928 index *= mci->layers[i + 1].size;
929 }
930}
931
932static void edac_inc_ue_error(struct mem_ctl_info *mci,
933 bool enable_per_layer_report,
9eb07a7f
MCC
934 const int pos[EDAC_MAX_LAYERS],
935 const u16 count)
4275be63
MCC
936{
937 int i, index = 0;
938
9eb07a7f 939 mci->ue_mc += count;
4275be63
MCC
940
941 if (!enable_per_layer_report) {
9eb07a7f 942 mci->ce_noinfo_count += count;
da9bb1d2
AC
943 return;
944 }
945
4275be63
MCC
946 for (i = 0; i < mci->n_layers; i++) {
947 if (pos[i] < 0)
948 break;
949 index += pos[i];
9eb07a7f 950 mci->ue_per_layer[i][index] += count;
a7d7d2e1 951
4275be63
MCC
952 if (i < mci->n_layers - 1)
953 index *= mci->layers[i + 1].size;
954 }
955}
da9bb1d2 956
4275be63 957static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 958 const u16 error_count,
4275be63
MCC
959 const int pos[EDAC_MAX_LAYERS],
960 const char *msg,
961 const char *location,
962 const char *label,
963 const char *detail,
964 const char *other_detail,
965 const bool enable_per_layer_report,
966 const unsigned long page_frame_number,
967 const unsigned long offset_in_page,
53f2d028 968 long grain)
4275be63
MCC
969{
970 unsigned long remapped_page;
f430d570
BP
971 char *msg_aux = "";
972
973 if (*msg)
974 msg_aux = " ";
4275be63
MCC
975
976 if (edac_mc_get_log_ce()) {
977 if (other_detail && *other_detail)
978 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
979 "%d CE %s%son %s (%s %s - %s)\n",
980 error_count, msg, msg_aux, label,
981 location, detail, other_detail);
4275be63
MCC
982 else
983 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
984 "%d CE %s%son %s (%s %s)\n",
985 error_count, msg, msg_aux, label,
986 location, detail);
4275be63 987 }
9eb07a7f 988 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
989
990 if (mci->scrub_mode & SCRUB_SW_SRC) {
991 /*
4275be63
MCC
992 * Some memory controllers (called MCs below) can remap
993 * memory so that it is still available at a different
994 * address when PCI devices map into memory.
995 * MC's that can't do this, lose the memory where PCI
996 * devices are mapped. This mapping is MC-dependent
997 * and so we call back into the MC driver for it to
998 * map the MC page to a physical (CPU) page which can
999 * then be mapped to a virtual page - which can then
1000 * be scrubbed.
1001 */
da9bb1d2 1002 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
1003 mci->ctl_page_to_phys(mci, page_frame_number) :
1004 page_frame_number;
da9bb1d2 1005
4275be63
MCC
1006 edac_mc_scrub_block(remapped_page,
1007 offset_in_page, grain);
da9bb1d2
AC
1008 }
1009}
1010
4275be63 1011static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1012 const u16 error_count,
4275be63
MCC
1013 const int pos[EDAC_MAX_LAYERS],
1014 const char *msg,
1015 const char *location,
1016 const char *label,
1017 const char *detail,
1018 const char *other_detail,
1019 const bool enable_per_layer_report)
da9bb1d2 1020{
f430d570
BP
1021 char *msg_aux = "";
1022
1023 if (*msg)
1024 msg_aux = " ";
1025
4275be63
MCC
1026 if (edac_mc_get_log_ue()) {
1027 if (other_detail && *other_detail)
1028 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1029 "%d UE %s%son %s (%s %s - %s)\n",
1030 error_count, msg, msg_aux, label,
1031 location, detail, other_detail);
4275be63
MCC
1032 else
1033 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1034 "%d UE %s%son %s (%s %s)\n",
1035 error_count, msg, msg_aux, label,
1036 location, detail);
4275be63 1037 }
e7ecd891 1038
4275be63
MCC
1039 if (edac_mc_get_panic_on_ue()) {
1040 if (other_detail && *other_detail)
f430d570
BP
1041 panic("UE %s%son %s (%s%s - %s)\n",
1042 msg, msg_aux, label, location, detail, other_detail);
4275be63 1043 else
f430d570
BP
1044 panic("UE %s%son %s (%s%s)\n",
1045 msg, msg_aux, label, location, detail);
4275be63
MCC
1046 }
1047
9eb07a7f 1048 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1049}
1050
4275be63 1051#define OTHER_LABEL " or "
53f2d028
MCC
1052
1053/**
1054 * edac_mc_handle_error - reports a memory event to userspace
1055 *
1056 * @type: severity of the error (CE/UE/Fatal)
1057 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1058 * @error_count: Number of errors of the same type
53f2d028
MCC
1059 * @page_frame_number: mem page where the error occurred
1060 * @offset_in_page: offset of the error inside the page
1061 * @syndrome: ECC syndrome
1062 * @top_layer: Memory layer[0] position
1063 * @mid_layer: Memory layer[1] position
1064 * @low_layer: Memory layer[2] position
1065 * @msg: Message meaningful to the end users that
1066 * explains the event
1067 * @other_detail: Technical details about the event that
1068 * may help hardware manufacturers and
1069 * EDAC developers to analyse the event
53f2d028 1070 */
4275be63
MCC
1071void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1072 struct mem_ctl_info *mci,
9eb07a7f 1073 const u16 error_count,
4275be63
MCC
1074 const unsigned long page_frame_number,
1075 const unsigned long offset_in_page,
1076 const unsigned long syndrome,
53f2d028
MCC
1077 const int top_layer,
1078 const int mid_layer,
1079 const int low_layer,
4275be63 1080 const char *msg,
03f7eae8 1081 const char *other_detail)
da9bb1d2 1082{
4275be63
MCC
1083 /* FIXME: too much for stack: move it to some pre-alocated area */
1084 char detail[80], location[80];
1085 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1086 char *p;
1087 int row = -1, chan = -1;
53f2d028 1088 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
4275be63 1089 int i;
53f2d028 1090 long grain;
4275be63 1091 bool enable_per_layer_report = false;
53f2d028 1092 u8 grain_bits;
da9bb1d2 1093
956b9ba1 1094 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1095
4275be63
MCC
1096 /*
1097 * Check if the event report is consistent and if the memory
1098 * location is known. If it is known, enable_per_layer_report will be
1099 * true, the DIMM(s) label info will be filled and the per-layer
1100 * error counters will be incremented.
1101 */
1102 for (i = 0; i < mci->n_layers; i++) {
1103 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1104
1105 edac_mc_printk(mci, KERN_ERR,
1106 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1107 edac_layer_name[mci->layers[i].type],
1108 pos[i], mci->layers[i].size);
1109 /*
1110 * Instead of just returning it, let's use what's
1111 * known about the error. The increment routines and
1112 * the DIMM filter logic will do the right thing by
1113 * pointing the likely damaged DIMMs.
1114 */
1115 pos[i] = -1;
1116 }
1117 if (pos[i] >= 0)
1118 enable_per_layer_report = true;
da9bb1d2
AC
1119 }
1120
4275be63
MCC
1121 /*
1122 * Get the dimm label/grain that applies to the match criteria.
1123 * As the error algorithm may not be able to point to just one memory
1124 * stick, the logic here will get all possible labels that could
1125 * pottentially be affected by the error.
1126 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1127 * to have only the MC channel and the MC dimm (also called "branch")
1128 * but the channel is not known, as the memory is arranged in pairs,
1129 * where each memory belongs to a separate channel within the same
1130 * branch.
1131 */
1132 grain = 0;
1133 p = label;
1134 *p = '\0';
4da1b7bf 1135
4275be63 1136 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1137 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1138
53f2d028 1139 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1140 continue;
53f2d028 1141 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1142 continue;
53f2d028 1143 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1144 continue;
da9bb1d2 1145
4275be63
MCC
1146 /* get the max grain, over the error match range */
1147 if (dimm->grain > grain)
1148 grain = dimm->grain;
9794f33d 1149
4275be63
MCC
1150 /*
1151 * If the error is memory-controller wide, there's no need to
1152 * seek for the affected DIMMs because the whole
1153 * channel/memory controller/... may be affected.
1154 * Also, don't show errors for empty DIMM slots.
1155 */
1156 if (enable_per_layer_report && dimm->nr_pages) {
1157 if (p != label) {
1158 strcpy(p, OTHER_LABEL);
1159 p += strlen(OTHER_LABEL);
1160 }
1161 strcpy(p, dimm->label);
1162 p += strlen(p);
1163 *p = '\0';
1164
1165 /*
1166 * get csrow/channel of the DIMM, in order to allow
1167 * incrementing the compat API counters
1168 */
956b9ba1
JP
1169 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1170 mci->mem_is_per_rank ? "rank" : "dimm",
1171 dimm->csrow, dimm->cschannel);
4275be63
MCC
1172 if (row == -1)
1173 row = dimm->csrow;
1174 else if (row >= 0 && row != dimm->csrow)
1175 row = -2;
1176
1177 if (chan == -1)
1178 chan = dimm->cschannel;
1179 else if (chan >= 0 && chan != dimm->cschannel)
1180 chan = -2;
1181 }
9794f33d 1182 }
1183
4275be63
MCC
1184 if (!enable_per_layer_report) {
1185 strcpy(label, "any memory");
1186 } else {
956b9ba1 1187 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
4275be63
MCC
1188 if (p == label)
1189 strcpy(label, "unknown memory");
1190 if (type == HW_EVENT_ERR_CORRECTED) {
1191 if (row >= 0) {
9eb07a7f 1192 mci->csrows[row]->ce_count += error_count;
4275be63 1193 if (chan >= 0)
9eb07a7f 1194 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1195 }
1196 } else
1197 if (row >= 0)
9eb07a7f 1198 mci->csrows[row]->ue_count += error_count;
9794f33d 1199 }
1200
4275be63
MCC
1201 /* Fill the RAM location data */
1202 p = location;
4da1b7bf 1203
4275be63
MCC
1204 for (i = 0; i < mci->n_layers; i++) {
1205 if (pos[i] < 0)
1206 continue;
9794f33d 1207
4275be63
MCC
1208 p += sprintf(p, "%s:%d ",
1209 edac_layer_name[mci->layers[i].type],
1210 pos[i]);
9794f33d 1211 }
53f2d028
MCC
1212 if (p > location)
1213 *(p - 1) = '\0';
1214
1215 /* Report the error via the trace interface */
53f2d028
MCC
1216 grain_bits = fls_long(grain) + 1;
1217 trace_mc_event(type, msg, label, error_count,
1218 mci->mc_idx, top_layer, mid_layer, low_layer,
1219 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1220 grain_bits, syndrome, other_detail);
a7d7d2e1 1221
4275be63
MCC
1222 /* Memory type dependent details about the error */
1223 if (type == HW_EVENT_ERR_CORRECTED) {
1224 snprintf(detail, sizeof(detail),
53f2d028 1225 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
4275be63
MCC
1226 page_frame_number, offset_in_page,
1227 grain, syndrome);
9eb07a7f
MCC
1228 edac_ce_error(mci, error_count, pos, msg, location, label,
1229 detail, other_detail, enable_per_layer_report,
4275be63
MCC
1230 page_frame_number, offset_in_page, grain);
1231 } else {
1232 snprintf(detail, sizeof(detail),
53f2d028 1233 "page:0x%lx offset:0x%lx grain:%ld",
4275be63 1234 page_frame_number, offset_in_page, grain);
9794f33d 1235
9eb07a7f
MCC
1236 edac_ue_error(mci, error_count, pos, msg, location, label,
1237 detail, other_detail, enable_per_layer_report);
4275be63 1238 }
9794f33d 1239}
4275be63 1240EXPORT_SYMBOL_GPL(edac_mc_handle_error);