]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/edac/edac_mc.c
EDAC: Remove edac_err_assert
[mirror_ubuntu-artful-kernel.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
7c0f6ba6 31#include <linux/uaccess.h>
da9bb1d2 32#include <asm/page.h>
78d88e8a 33#include "edac_mc.h"
7c9281d7 34#include "edac_module.h"
53f2d028
MCC
35#include <ras/ras_event.h>
36
b01aec9b
BP
37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
38#include <asm/edac.h>
39#else
40#define edac_atomic_scrub(va, size) do { } while (0)
41#endif
42
da9bb1d2 43/* lock to memory controller's control array */
63b7df91 44static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 45static LIST_HEAD(mc_devices);
da9bb1d2 46
80cc7d87
MCC
47/*
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
50 */
51static void const *edac_mc_owner;
52
88d84ac9
BP
53static struct bus_type mc_bus[EDAC_MAX_MCS];
54
6e84d359
MCC
55unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 unsigned len)
57{
58 struct mem_ctl_info *mci = dimm->mci;
59 int i, n, count = 0;
60 char *p = buf;
61
62 for (i = 0; i < mci->n_layers; i++) {
63 n = snprintf(p, len, "%s %d ",
64 edac_layer_name[mci->layers[i].type],
65 dimm->location[i]);
66 p += n;
67 len -= n;
68 count += n;
69 if (!len)
70 break;
71 }
72
73 return count;
74}
75
da9bb1d2
AC
76#ifdef CONFIG_EDAC_DEBUG
77
a4b4be3f 78static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 79{
6e84d359
MCC
80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
81 edac_dbg(4, " channel = %p\n", chan);
82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
84}
85
6e84d359 86static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 87{
6e84d359
MCC
88 char location[80];
89
90 edac_dimm_info_location(dimm, location, sizeof(location));
91
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
9713faec 93 dimm->mci->csbased ? "rank" : "dimm",
6e84d359
MCC
94 number, location, dimm->csrow, dimm->cschannel);
95 edac_dbg(4, " dimm = %p\n", dimm);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
100}
101
2da1c119 102static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 103{
6e84d359
MCC
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 edac_dbg(4, " csrow = %p\n", csrow);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
112}
113
2da1c119 114static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 115{
956b9ba1
JP
116 edac_dbg(3, "\tmci = %p\n", mci);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci->nr_csrows, mci->csrows);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci->tot_dimms, mci->dimms);
125 edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci->mod_name, mci->ctl_name);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
129}
130
24f9a7fe
BP
131#endif /* CONFIG_EDAC_DEBUG */
132
f4ce6eca 133const char * const edac_mem_types[] = {
4cfc3a40
BP
134 [MEM_EMPTY] = "Empty csrow",
135 [MEM_RESERVED] = "Reserved csrow type",
136 [MEM_UNKNOWN] = "Unknown csrow type",
137 [MEM_FPM] = "Fast page mode RAM",
138 [MEM_EDO] = "Extended data out RAM",
139 [MEM_BEDO] = "Burst Extended data out RAM",
140 [MEM_SDR] = "Single data rate SDRAM",
141 [MEM_RDR] = "Registered single data rate SDRAM",
142 [MEM_DDR] = "Double data rate SDRAM",
143 [MEM_RDDR] = "Registered Double data rate SDRAM",
144 [MEM_RMBS] = "Rambus DRAM",
145 [MEM_DDR2] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2] = "Fully buffered DDR2",
147 [MEM_RDDR2] = "Registered DDR2 RAM",
148 [MEM_XDR] = "Rambus XDR",
149 [MEM_DDR3] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3] = "Registered DDR3 RAM",
151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4] = "Registered DDR4 RAM",
239642fe
BP
154};
155EXPORT_SYMBOL_GPL(edac_mem_types);
156
93e4fe64
MCC
157/**
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
163 *
164 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
165 * down to either a no-op or the addition of a constant to the value of '*p'.
166 *
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
171 *
172 * At return, the pointer 'p' will be incremented to be used on a next call
173 * to this function.
da9bb1d2 174 */
93e4fe64 175void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
176{
177 unsigned align, r;
93e4fe64 178 void *ptr = *p;
da9bb1d2 179
93e4fe64
MCC
180 *p += size * n_elems;
181
182 /*
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
190 */
191 if (size > sizeof(long))
192 align = sizeof(long long);
193 else if (size > sizeof(int))
194 align = sizeof(long);
195 else if (size > sizeof(short))
196 align = sizeof(int);
197 else if (size > sizeof(char))
198 align = sizeof(short);
199 else
079708b9 200 return (char *)ptr;
da9bb1d2 201
8447c4d1 202 r = (unsigned long)p % align;
da9bb1d2
AC
203
204 if (r == 0)
079708b9 205 return (char *)ptr;
da9bb1d2 206
93e4fe64
MCC
207 *p += align - r;
208
7391c6dc 209 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
210}
211
faa2ad09
SR
212static void _edac_mc_free(struct mem_ctl_info *mci)
213{
214 int i, chn, row;
215 struct csrow_info *csr;
216 const unsigned int tot_dimms = mci->tot_dimms;
217 const unsigned int tot_channels = mci->num_cschannel;
218 const unsigned int tot_csrows = mci->nr_csrows;
219
220 if (mci->dimms) {
221 for (i = 0; i < tot_dimms; i++)
222 kfree(mci->dimms[i]);
223 kfree(mci->dimms);
224 }
225 if (mci->csrows) {
226 for (row = 0; row < tot_csrows; row++) {
227 csr = mci->csrows[row];
228 if (csr) {
229 if (csr->channels) {
230 for (chn = 0; chn < tot_channels; chn++)
231 kfree(csr->channels[chn]);
232 kfree(csr->channels);
233 }
234 kfree(csr);
235 }
236 }
237 kfree(mci->csrows);
238 }
239 kfree(mci);
240}
241
ca0907b9
MCC
242struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243 unsigned n_layers,
244 struct edac_mc_layer *layers,
245 unsigned sz_pvt)
da9bb1d2
AC
246{
247 struct mem_ctl_info *mci;
4275be63 248 struct edac_mc_layer *layer;
de3910eb
MCC
249 struct csrow_info *csr;
250 struct rank_info *chan;
a7d7d2e1 251 struct dimm_info *dimm;
4275be63
MCC
252 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
254 unsigned size, tot_dimms = 1, count = 1;
255 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 256 void *pvt, *p, *ptr = NULL;
de3910eb 257 int i, j, row, chn, n, len, off;
4275be63
MCC
258 bool per_rank = false;
259
260 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
261 /*
262 * Calculate the total amount of dimms and csrows/cschannels while
263 * in the old API emulation mode
264 */
265 for (i = 0; i < n_layers; i++) {
266 tot_dimms *= layers[i].size;
267 if (layers[i].is_virt_csrow)
268 tot_csrows *= layers[i].size;
269 else
270 tot_channels *= layers[i].size;
271
272 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273 per_rank = true;
274 }
da9bb1d2
AC
275
276 /* Figure out the offsets of the various items from the start of an mc
277 * structure. We want the alignment of each item to be at least as
278 * stringent as what the compiler would provide if we could simply
279 * hardcode everything into a single struct.
280 */
93e4fe64 281 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 282 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
283 for (i = 0; i < n_layers; i++) {
284 count *= layers[i].size;
956b9ba1 285 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
286 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288 tot_errcount += 2 * count;
289 }
290
956b9ba1 291 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 292 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 293 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 294
956b9ba1
JP
295 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296 size,
297 tot_dimms,
298 per_rank ? "ranks" : "dimms",
299 tot_csrows * tot_channels);
de3910eb 300
8096cfaf
DT
301 mci = kzalloc(size, GFP_KERNEL);
302 if (mci == NULL)
da9bb1d2
AC
303 return NULL;
304
305 /* Adjust pointers so they point within the memory we just allocated
306 * rather than an imaginary chunk of memory located at address 0.
307 */
4275be63 308 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
309 for (i = 0; i < n_layers; i++) {
310 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
312 }
079708b9 313 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 314
b8f6f975 315 /* setup index and various internal pointers */
4275be63 316 mci->mc_idx = mc_num;
4275be63 317 mci->tot_dimms = tot_dimms;
da9bb1d2 318 mci->pvt_info = pvt;
4275be63
MCC
319 mci->n_layers = n_layers;
320 mci->layers = layer;
321 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322 mci->nr_csrows = tot_csrows;
323 mci->num_cschannel = tot_channels;
9713faec 324 mci->csbased = per_rank;
da9bb1d2 325
a7d7d2e1 326 /*
de3910eb 327 * Alocate and fill the csrow/channels structs
a7d7d2e1 328 */
d3d09e18 329 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
330 if (!mci->csrows)
331 goto error;
4275be63 332 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
333 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334 if (!csr)
335 goto error;
336 mci->csrows[row] = csr;
4275be63
MCC
337 csr->csrow_idx = row;
338 csr->mci = mci;
339 csr->nr_channels = tot_channels;
d3d09e18 340 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
341 GFP_KERNEL);
342 if (!csr->channels)
343 goto error;
4275be63
MCC
344
345 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
346 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347 if (!chan)
348 goto error;
349 csr->channels[chn] = chan;
da9bb1d2 350 chan->chan_idx = chn;
4275be63
MCC
351 chan->csrow = csr;
352 }
353 }
354
355 /*
de3910eb 356 * Allocate and fill the dimm structs
4275be63 357 */
d3d09e18 358 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
359 if (!mci->dimms)
360 goto error;
361
4275be63
MCC
362 memset(&pos, 0, sizeof(pos));
363 row = 0;
364 chn = 0;
4275be63 365 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
366 chan = mci->csrows[row]->channels[chn];
367 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368 if (off < 0 || off >= tot_dimms) {
369 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370 goto error;
371 }
4275be63 372
de3910eb 373 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
374 if (!dimm)
375 goto error;
de3910eb 376 mci->dimms[off] = dimm;
4275be63 377 dimm->mci = mci;
4275be63 378
5926ff50
MCC
379 /*
380 * Copy DIMM location and initialize it.
381 */
382 len = sizeof(dimm->label);
383 p = dimm->label;
384 n = snprintf(p, len, "mc#%u", mc_num);
385 p += n;
386 len -= n;
387 for (j = 0; j < n_layers; j++) {
388 n = snprintf(p, len, "%s#%u",
389 edac_layer_name[layers[j].type],
390 pos[j]);
391 p += n;
392 len -= n;
4275be63
MCC
393 dimm->location[j] = pos[j];
394
5926ff50
MCC
395 if (len <= 0)
396 break;
397 }
398
4275be63
MCC
399 /* Link it to the csrows old API data */
400 chan->dimm = dimm;
401 dimm->csrow = row;
402 dimm->cschannel = chn;
403
404 /* Increment csrow location */
24bef66e 405 if (layers[0].is_virt_csrow) {
4275be63 406 chn++;
24bef66e
MCC
407 if (chn == tot_channels) {
408 chn = 0;
409 row++;
410 }
411 } else {
412 row++;
413 if (row == tot_csrows) {
414 row = 0;
415 chn++;
416 }
4275be63 417 }
a7d7d2e1 418
4275be63
MCC
419 /* Increment dimm location */
420 for (j = n_layers - 1; j >= 0; j--) {
421 pos[j]++;
422 if (pos[j] < layers[j].size)
423 break;
424 pos[j] = 0;
da9bb1d2
AC
425 }
426 }
427
81d87cb1 428 mci->op_state = OP_ALLOC;
8096cfaf 429
da9bb1d2 430 return mci;
de3910eb
MCC
431
432error:
faa2ad09 433 _edac_mc_free(mci);
de3910eb
MCC
434
435 return NULL;
4275be63 436}
9110540f 437EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 438
da9bb1d2
AC
439void edac_mc_free(struct mem_ctl_info *mci)
440{
956b9ba1 441 edac_dbg(1, "\n");
bbc560ae 442
faa2ad09
SR
443 /* If we're not yet registered with sysfs free only what was allocated
444 * in edac_mc_alloc().
445 */
446 if (!device_is_registered(&mci->dev)) {
447 _edac_mc_free(mci);
448 return;
449 }
450
de3910eb 451 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 452 edac_unregister_sysfs(mci);
da9bb1d2 453}
9110540f 454EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 455
d7fc9d77
YG
456bool edac_has_mcs(void)
457{
458 bool ret;
459
460 mutex_lock(&mem_ctls_mutex);
461
462 ret = list_empty(&mc_devices);
463
464 mutex_unlock(&mem_ctls_mutex);
465
466 return !ret;
467}
468EXPORT_SYMBOL_GPL(edac_has_mcs);
469
c73e8833
BP
470/* Caller must hold mem_ctls_mutex */
471static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
da9bb1d2
AC
472{
473 struct mem_ctl_info *mci;
474 struct list_head *item;
475
956b9ba1 476 edac_dbg(3, "\n");
da9bb1d2
AC
477
478 list_for_each(item, &mc_devices) {
479 mci = list_entry(item, struct mem_ctl_info, link);
480
fd687502 481 if (mci->pdev == dev)
da9bb1d2
AC
482 return mci;
483 }
484
485 return NULL;
486}
c73e8833
BP
487
488/**
489 * find_mci_by_dev
490 *
491 * scan list of controllers looking for the one that manages
492 * the 'dev' device
493 * @dev: pointer to a struct device related with the MCI
494 */
495struct mem_ctl_info *find_mci_by_dev(struct device *dev)
496{
497 struct mem_ctl_info *ret;
498
499 mutex_lock(&mem_ctls_mutex);
500 ret = __find_mci_by_dev(dev);
501 mutex_unlock(&mem_ctls_mutex);
502
503 return ret;
504}
939747bd 505EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 506
81d87cb1
DJ
507/*
508 * edac_mc_workq_function
509 * performs the operation scheduled by a workq request
510 */
81d87cb1
DJ
511static void edac_mc_workq_function(struct work_struct *work_req)
512{
fbeb4384 513 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 514 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
515
516 mutex_lock(&mem_ctls_mutex);
517
06e912d4 518 if (mci->op_state != OP_RUNNING_POLL) {
bf52fa4a
DT
519 mutex_unlock(&mem_ctls_mutex);
520 return;
521 }
522
d3116a08 523 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
524 mci->edac_check(mci);
525
81d87cb1
DJ
526 mutex_unlock(&mem_ctls_mutex);
527
06e912d4 528 /* Queue ourselves again. */
c4cf3b45 529 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
530}
531
81d87cb1 532/*
bce19683
DT
533 * edac_mc_reset_delay_period(unsigned long value)
534 *
535 * user space has updated our poll period value, need to
536 * reset our workq delays
81d87cb1 537 */
9da21b15 538void edac_mc_reset_delay_period(unsigned long value)
81d87cb1 539{
bce19683
DT
540 struct mem_ctl_info *mci;
541 struct list_head *item;
542
543 mutex_lock(&mem_ctls_mutex);
544
bce19683
DT
545 list_for_each(item, &mc_devices) {
546 mci = list_entry(item, struct mem_ctl_info, link);
547
fbedcaf4
NK
548 if (mci->op_state == OP_RUNNING_POLL)
549 edac_mod_work(&mci->work, value);
bce19683 550 }
81d87cb1
DJ
551 mutex_unlock(&mem_ctls_mutex);
552}
553
bce19683
DT
554
555
2d7bbb91
DT
556/* Return 0 on success, 1 on failure.
557 * Before calling this function, caller must
558 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
559 *
560 * locking model:
561 *
562 * called with the mem_ctls_mutex lock held
2d7bbb91 563 */
079708b9 564static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
565{
566 struct list_head *item, *insert_before;
567 struct mem_ctl_info *p;
da9bb1d2 568
2d7bbb91 569 insert_before = &mc_devices;
da9bb1d2 570
c73e8833 571 p = __find_mci_by_dev(mci->pdev);
bf52fa4a 572 if (unlikely(p != NULL))
2d7bbb91 573 goto fail0;
da9bb1d2 574
2d7bbb91
DT
575 list_for_each(item, &mc_devices) {
576 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 577
2d7bbb91
DT
578 if (p->mc_idx >= mci->mc_idx) {
579 if (unlikely(p->mc_idx == mci->mc_idx))
580 goto fail1;
da9bb1d2 581
2d7bbb91
DT
582 insert_before = item;
583 break;
da9bb1d2 584 }
da9bb1d2
AC
585 }
586
587 list_add_tail_rcu(&mci->link, insert_before);
588 return 0;
2d7bbb91 589
052dfb45 590fail0:
2d7bbb91 591 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 592 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 593 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
594 return 1;
595
052dfb45 596fail1:
2d7bbb91 597 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
598 "bug in low-level driver: attempt to assign\n"
599 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 600 return 1;
da9bb1d2
AC
601}
602
80cc7d87 603static int del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc
DP
604{
605 list_del_rcu(&mci->link);
e2e77098
LJ
606
607 /* these are for safe removal of devices from global list while
608 * NMI handlers may be traversing list
609 */
610 synchronize_rcu();
611 INIT_LIST_HEAD(&mci->link);
80cc7d87 612
97bb6c17 613 return list_empty(&mc_devices);
a1d03fcc
DP
614}
615
079708b9 616struct mem_ctl_info *edac_mc_find(int idx)
5da0831c 617{
c73e8833 618 struct mem_ctl_info *mci = NULL;
5da0831c 619 struct list_head *item;
c73e8833
BP
620
621 mutex_lock(&mem_ctls_mutex);
5da0831c
DT
622
623 list_for_each(item, &mc_devices) {
624 mci = list_entry(item, struct mem_ctl_info, link);
625
626 if (mci->mc_idx >= idx) {
c73e8833
BP
627 if (mci->mc_idx == idx) {
628 goto unlock;
629 }
5da0831c
DT
630 break;
631 }
632 }
633
c73e8833
BP
634unlock:
635 mutex_unlock(&mem_ctls_mutex);
636 return mci;
5da0831c
DT
637}
638EXPORT_SYMBOL(edac_mc_find);
639
da9bb1d2
AC
640
641/* FIXME - should a warning be printed if no error detection? correction? */
4e8d230d
TI
642int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
643 const struct attribute_group **groups)
da9bb1d2 644{
80cc7d87 645 int ret = -EINVAL;
956b9ba1 646 edac_dbg(0, "\n");
b8f6f975 647
88d84ac9
BP
648 if (mci->mc_idx >= EDAC_MAX_MCS) {
649 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
650 return -ENODEV;
651 }
652
da9bb1d2
AC
653#ifdef CONFIG_EDAC_DEBUG
654 if (edac_debug_level >= 3)
655 edac_mc_dump_mci(mci);
e7ecd891 656
da9bb1d2
AC
657 if (edac_debug_level >= 4) {
658 int i;
659
660 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
661 struct csrow_info *csrow = mci->csrows[i];
662 u32 nr_pages = 0;
da9bb1d2 663 int j;
e7ecd891 664
6e84d359
MCC
665 for (j = 0; j < csrow->nr_channels; j++)
666 nr_pages += csrow->channels[j]->dimm->nr_pages;
667 if (!nr_pages)
668 continue;
669 edac_mc_dump_csrow(csrow);
670 for (j = 0; j < csrow->nr_channels; j++)
671 if (csrow->channels[j]->dimm->nr_pages)
672 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 673 }
4275be63 674 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
675 if (mci->dimms[i]->nr_pages)
676 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
677 }
678#endif
63b7df91 679 mutex_lock(&mem_ctls_mutex);
da9bb1d2 680
80cc7d87
MCC
681 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
682 ret = -EPERM;
683 goto fail0;
684 }
685
da9bb1d2 686 if (add_mc_to_global_list(mci))
028a7b6d 687 goto fail0;
da9bb1d2
AC
688
689 /* set load time so that error rate can be tracked */
690 mci->start_time = jiffies;
691
88d84ac9
BP
692 mci->bus = &mc_bus[mci->mc_idx];
693
4e8d230d 694 if (edac_create_sysfs_mci_device(mci, groups)) {
9794f33d 695 edac_mc_printk(mci, KERN_WARNING,
052dfb45 696 "failed to create sysfs device\n");
9794f33d 697 goto fail1;
698 }
da9bb1d2 699
09667606 700 if (mci->edac_check) {
81d87cb1
DJ
701 mci->op_state = OP_RUNNING_POLL;
702
626a7a4d
BP
703 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
704 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
705
81d87cb1
DJ
706 } else {
707 mci->op_state = OP_RUNNING_INTERRUPT;
708 }
709
da9bb1d2 710 /* Report action taken */
7270a608
RR
711 edac_mc_printk(mci, KERN_INFO,
712 "Giving out device to module %s controller %s: DEV %s (%s)\n",
713 mci->mod_name, mci->ctl_name, mci->dev_name,
714 edac_op_state_to_string(mci->op_state));
da9bb1d2 715
80cc7d87
MCC
716 edac_mc_owner = mci->mod_name;
717
63b7df91 718 mutex_unlock(&mem_ctls_mutex);
028a7b6d 719 return 0;
da9bb1d2 720
052dfb45 721fail1:
028a7b6d
DP
722 del_mc_from_global_list(mci);
723
052dfb45 724fail0:
63b7df91 725 mutex_unlock(&mem_ctls_mutex);
80cc7d87 726 return ret;
da9bb1d2 727}
4e8d230d 728EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
da9bb1d2 729
079708b9 730struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 731{
18dbc337 732 struct mem_ctl_info *mci;
da9bb1d2 733
956b9ba1 734 edac_dbg(0, "\n");
bf52fa4a 735
63b7df91 736 mutex_lock(&mem_ctls_mutex);
18dbc337 737
bf52fa4a 738 /* find the requested mci struct in the global list */
c73e8833 739 mci = __find_mci_by_dev(dev);
bf52fa4a 740 if (mci == NULL) {
63b7df91 741 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
742 return NULL;
743 }
744
09667606
BP
745 /* mark MCI offline: */
746 mci->op_state = OP_OFFLINE;
747
97bb6c17 748 if (del_mc_from_global_list(mci))
80cc7d87 749 edac_mc_owner = NULL;
bf52fa4a 750
09667606 751 mutex_unlock(&mem_ctls_mutex);
bb31b312 752
09667606 753 if (mci->edac_check)
626a7a4d 754 edac_stop_work(&mci->work);
bb31b312
BP
755
756 /* remove from sysfs */
bf52fa4a
DT
757 edac_remove_sysfs_mci_device(mci);
758
537fba28 759 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 760 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 761 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 762
18dbc337 763 return mci;
da9bb1d2 764}
9110540f 765EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 766
2da1c119
AB
767static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
768 u32 size)
da9bb1d2
AC
769{
770 struct page *pg;
771 void *virt_addr;
772 unsigned long flags = 0;
773
956b9ba1 774 edac_dbg(3, "\n");
da9bb1d2
AC
775
776 /* ECC error page was not in our memory. Ignore it. */
079708b9 777 if (!pfn_valid(page))
da9bb1d2
AC
778 return;
779
780 /* Find the actual page structure then map it and fix */
781 pg = pfn_to_page(page);
782
783 if (PageHighMem(pg))
784 local_irq_save(flags);
785
4e5df7ca 786 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
787
788 /* Perform architecture specific atomic scrub operation */
b01aec9b 789 edac_atomic_scrub(virt_addr + offset, size);
da9bb1d2
AC
790
791 /* Unmap and complete */
4e5df7ca 792 kunmap_atomic(virt_addr);
da9bb1d2
AC
793
794 if (PageHighMem(pg))
795 local_irq_restore(flags);
796}
797
da9bb1d2 798/* FIXME - should return -1 */
e7ecd891 799int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 800{
de3910eb 801 struct csrow_info **csrows = mci->csrows;
a895bf8b 802 int row, i, j, n;
da9bb1d2 803
956b9ba1 804 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
805 row = -1;
806
807 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 808 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
809 n = 0;
810 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 811 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
812 n += dimm->nr_pages;
813 }
814 if (n == 0)
da9bb1d2
AC
815 continue;
816
956b9ba1
JP
817 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
818 mci->mc_idx,
819 csrow->first_page, page, csrow->last_page,
820 csrow->page_mask);
da9bb1d2
AC
821
822 if ((page >= csrow->first_page) &&
823 (page <= csrow->last_page) &&
824 ((page & csrow->page_mask) ==
825 (csrow->first_page & csrow->page_mask))) {
826 row = i;
827 break;
828 }
829 }
830
831 if (row == -1)
537fba28 832 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
833 "could not look up page error address %lx\n",
834 (unsigned long)page);
da9bb1d2
AC
835
836 return row;
837}
9110540f 838EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 839
4275be63
MCC
840const char *edac_layer_name[] = {
841 [EDAC_MC_LAYER_BRANCH] = "branch",
842 [EDAC_MC_LAYER_CHANNEL] = "channel",
843 [EDAC_MC_LAYER_SLOT] = "slot",
844 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 845 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
846};
847EXPORT_SYMBOL_GPL(edac_layer_name);
848
849static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
850 bool enable_per_layer_report,
851 const int pos[EDAC_MAX_LAYERS],
852 const u16 count)
da9bb1d2 853{
4275be63 854 int i, index = 0;
da9bb1d2 855
9eb07a7f 856 mci->ce_mc += count;
da9bb1d2 857
4275be63 858 if (!enable_per_layer_report) {
9eb07a7f 859 mci->ce_noinfo_count += count;
da9bb1d2
AC
860 return;
861 }
e7ecd891 862
4275be63
MCC
863 for (i = 0; i < mci->n_layers; i++) {
864 if (pos[i] < 0)
865 break;
866 index += pos[i];
9eb07a7f 867 mci->ce_per_layer[i][index] += count;
4275be63
MCC
868
869 if (i < mci->n_layers - 1)
870 index *= mci->layers[i + 1].size;
871 }
872}
873
874static void edac_inc_ue_error(struct mem_ctl_info *mci,
875 bool enable_per_layer_report,
9eb07a7f
MCC
876 const int pos[EDAC_MAX_LAYERS],
877 const u16 count)
4275be63
MCC
878{
879 int i, index = 0;
880
9eb07a7f 881 mci->ue_mc += count;
4275be63
MCC
882
883 if (!enable_per_layer_report) {
993f88f1 884 mci->ue_noinfo_count += count;
da9bb1d2
AC
885 return;
886 }
887
4275be63
MCC
888 for (i = 0; i < mci->n_layers; i++) {
889 if (pos[i] < 0)
890 break;
891 index += pos[i];
9eb07a7f 892 mci->ue_per_layer[i][index] += count;
a7d7d2e1 893
4275be63
MCC
894 if (i < mci->n_layers - 1)
895 index *= mci->layers[i + 1].size;
896 }
897}
da9bb1d2 898
4275be63 899static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 900 const u16 error_count,
4275be63
MCC
901 const int pos[EDAC_MAX_LAYERS],
902 const char *msg,
903 const char *location,
904 const char *label,
905 const char *detail,
906 const char *other_detail,
907 const bool enable_per_layer_report,
908 const unsigned long page_frame_number,
909 const unsigned long offset_in_page,
53f2d028 910 long grain)
4275be63
MCC
911{
912 unsigned long remapped_page;
f430d570
BP
913 char *msg_aux = "";
914
915 if (*msg)
916 msg_aux = " ";
4275be63
MCC
917
918 if (edac_mc_get_log_ce()) {
919 if (other_detail && *other_detail)
920 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
921 "%d CE %s%son %s (%s %s - %s)\n",
922 error_count, msg, msg_aux, label,
923 location, detail, other_detail);
4275be63
MCC
924 else
925 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
926 "%d CE %s%son %s (%s %s)\n",
927 error_count, msg, msg_aux, label,
928 location, detail);
4275be63 929 }
9eb07a7f 930 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2 931
aa2064d7 932 if (mci->scrub_mode == SCRUB_SW_SRC) {
da9bb1d2 933 /*
4275be63
MCC
934 * Some memory controllers (called MCs below) can remap
935 * memory so that it is still available at a different
936 * address when PCI devices map into memory.
937 * MC's that can't do this, lose the memory where PCI
938 * devices are mapped. This mapping is MC-dependent
939 * and so we call back into the MC driver for it to
940 * map the MC page to a physical (CPU) page which can
941 * then be mapped to a virtual page - which can then
942 * be scrubbed.
943 */
da9bb1d2 944 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
945 mci->ctl_page_to_phys(mci, page_frame_number) :
946 page_frame_number;
da9bb1d2 947
4275be63
MCC
948 edac_mc_scrub_block(remapped_page,
949 offset_in_page, grain);
da9bb1d2
AC
950 }
951}
952
4275be63 953static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 954 const u16 error_count,
4275be63
MCC
955 const int pos[EDAC_MAX_LAYERS],
956 const char *msg,
957 const char *location,
958 const char *label,
959 const char *detail,
960 const char *other_detail,
961 const bool enable_per_layer_report)
da9bb1d2 962{
f430d570
BP
963 char *msg_aux = "";
964
965 if (*msg)
966 msg_aux = " ";
967
4275be63
MCC
968 if (edac_mc_get_log_ue()) {
969 if (other_detail && *other_detail)
970 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
971 "%d UE %s%son %s (%s %s - %s)\n",
972 error_count, msg, msg_aux, label,
973 location, detail, other_detail);
4275be63
MCC
974 else
975 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
976 "%d UE %s%son %s (%s %s)\n",
977 error_count, msg, msg_aux, label,
978 location, detail);
4275be63 979 }
e7ecd891 980
4275be63
MCC
981 if (edac_mc_get_panic_on_ue()) {
982 if (other_detail && *other_detail)
f430d570
BP
983 panic("UE %s%son %s (%s%s - %s)\n",
984 msg, msg_aux, label, location, detail, other_detail);
4275be63 985 else
f430d570
BP
986 panic("UE %s%son %s (%s%s)\n",
987 msg, msg_aux, label, location, detail);
4275be63
MCC
988 }
989
9eb07a7f 990 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
991}
992
e7e24830
MCC
993void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
994 struct mem_ctl_info *mci,
995 struct edac_raw_error_desc *e)
996{
997 char detail[80];
998 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
999
1000 /* Memory type dependent details about the error */
1001 if (type == HW_EVENT_ERR_CORRECTED) {
1002 snprintf(detail, sizeof(detail),
1003 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1004 e->page_frame_number, e->offset_in_page,
1005 e->grain, e->syndrome);
1006 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1007 detail, e->other_detail, e->enable_per_layer_report,
1008 e->page_frame_number, e->offset_in_page, e->grain);
1009 } else {
1010 snprintf(detail, sizeof(detail),
1011 "page:0x%lx offset:0x%lx grain:%ld",
1012 e->page_frame_number, e->offset_in_page, e->grain);
1013
1014 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1015 detail, e->other_detail, e->enable_per_layer_report);
1016 }
1017
1018
1019}
1020EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
53f2d028 1021
4275be63
MCC
1022void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1023 struct mem_ctl_info *mci,
9eb07a7f 1024 const u16 error_count,
4275be63
MCC
1025 const unsigned long page_frame_number,
1026 const unsigned long offset_in_page,
1027 const unsigned long syndrome,
53f2d028
MCC
1028 const int top_layer,
1029 const int mid_layer,
1030 const int low_layer,
4275be63 1031 const char *msg,
03f7eae8 1032 const char *other_detail)
da9bb1d2 1033{
4275be63
MCC
1034 char *p;
1035 int row = -1, chan = -1;
53f2d028 1036 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
c7ef7645 1037 int i, n_labels = 0;
53f2d028 1038 u8 grain_bits;
c7ef7645 1039 struct edac_raw_error_desc *e = &mci->error_desc;
da9bb1d2 1040
956b9ba1 1041 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1042
c7ef7645
MCC
1043 /* Fills the error report buffer */
1044 memset(e, 0, sizeof (*e));
1045 e->error_count = error_count;
1046 e->top_layer = top_layer;
1047 e->mid_layer = mid_layer;
1048 e->low_layer = low_layer;
1049 e->page_frame_number = page_frame_number;
1050 e->offset_in_page = offset_in_page;
1051 e->syndrome = syndrome;
1052 e->msg = msg;
1053 e->other_detail = other_detail;
1054
4275be63
MCC
1055 /*
1056 * Check if the event report is consistent and if the memory
1057 * location is known. If it is known, enable_per_layer_report will be
1058 * true, the DIMM(s) label info will be filled and the per-layer
1059 * error counters will be incremented.
1060 */
1061 for (i = 0; i < mci->n_layers; i++) {
1062 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1063
1064 edac_mc_printk(mci, KERN_ERR,
1065 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1066 edac_layer_name[mci->layers[i].type],
1067 pos[i], mci->layers[i].size);
1068 /*
1069 * Instead of just returning it, let's use what's
1070 * known about the error. The increment routines and
1071 * the DIMM filter logic will do the right thing by
1072 * pointing the likely damaged DIMMs.
1073 */
1074 pos[i] = -1;
1075 }
1076 if (pos[i] >= 0)
c7ef7645 1077 e->enable_per_layer_report = true;
da9bb1d2
AC
1078 }
1079
4275be63
MCC
1080 /*
1081 * Get the dimm label/grain that applies to the match criteria.
1082 * As the error algorithm may not be able to point to just one memory
1083 * stick, the logic here will get all possible labels that could
1084 * pottentially be affected by the error.
1085 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1086 * to have only the MC channel and the MC dimm (also called "branch")
1087 * but the channel is not known, as the memory is arranged in pairs,
1088 * where each memory belongs to a separate channel within the same
1089 * branch.
1090 */
c7ef7645 1091 p = e->label;
4275be63 1092 *p = '\0';
4da1b7bf 1093
4275be63 1094 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1095 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1096
53f2d028 1097 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1098 continue;
53f2d028 1099 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1100 continue;
53f2d028 1101 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1102 continue;
da9bb1d2 1103
4275be63 1104 /* get the max grain, over the error match range */
c7ef7645
MCC
1105 if (dimm->grain > e->grain)
1106 e->grain = dimm->grain;
9794f33d 1107
4275be63
MCC
1108 /*
1109 * If the error is memory-controller wide, there's no need to
1110 * seek for the affected DIMMs because the whole
1111 * channel/memory controller/... may be affected.
1112 * Also, don't show errors for empty DIMM slots.
1113 */
c7ef7645
MCC
1114 if (e->enable_per_layer_report && dimm->nr_pages) {
1115 if (n_labels >= EDAC_MAX_LABELS) {
1116 e->enable_per_layer_report = false;
1117 break;
1118 }
1119 n_labels++;
1120 if (p != e->label) {
4275be63
MCC
1121 strcpy(p, OTHER_LABEL);
1122 p += strlen(OTHER_LABEL);
1123 }
1124 strcpy(p, dimm->label);
1125 p += strlen(p);
1126 *p = '\0';
1127
1128 /*
1129 * get csrow/channel of the DIMM, in order to allow
1130 * incrementing the compat API counters
1131 */
956b9ba1 1132 edac_dbg(4, "%s csrows map: (%d,%d)\n",
9713faec 1133 mci->csbased ? "rank" : "dimm",
956b9ba1 1134 dimm->csrow, dimm->cschannel);
4275be63
MCC
1135 if (row == -1)
1136 row = dimm->csrow;
1137 else if (row >= 0 && row != dimm->csrow)
1138 row = -2;
1139
1140 if (chan == -1)
1141 chan = dimm->cschannel;
1142 else if (chan >= 0 && chan != dimm->cschannel)
1143 chan = -2;
1144 }
9794f33d 1145 }
1146
c7ef7645
MCC
1147 if (!e->enable_per_layer_report) {
1148 strcpy(e->label, "any memory");
4275be63 1149 } else {
956b9ba1 1150 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
c7ef7645
MCC
1151 if (p == e->label)
1152 strcpy(e->label, "unknown memory");
4275be63
MCC
1153 if (type == HW_EVENT_ERR_CORRECTED) {
1154 if (row >= 0) {
9eb07a7f 1155 mci->csrows[row]->ce_count += error_count;
4275be63 1156 if (chan >= 0)
9eb07a7f 1157 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1158 }
1159 } else
1160 if (row >= 0)
9eb07a7f 1161 mci->csrows[row]->ue_count += error_count;
9794f33d 1162 }
1163
4275be63 1164 /* Fill the RAM location data */
c7ef7645 1165 p = e->location;
4da1b7bf 1166
4275be63
MCC
1167 for (i = 0; i < mci->n_layers; i++) {
1168 if (pos[i] < 0)
1169 continue;
9794f33d 1170
4275be63
MCC
1171 p += sprintf(p, "%s:%d ",
1172 edac_layer_name[mci->layers[i].type],
1173 pos[i]);
9794f33d 1174 }
c7ef7645 1175 if (p > e->location)
53f2d028
MCC
1176 *(p - 1) = '\0';
1177
1178 /* Report the error via the trace interface */
c7ef7645
MCC
1179 grain_bits = fls_long(e->grain) + 1;
1180 trace_mc_event(type, e->msg, e->label, e->error_count,
1181 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
990995ba 1182 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
e7e24830 1183 grain_bits, e->syndrome, e->other_detail);
a7d7d2e1 1184
e7e24830 1185 edac_raw_mc_handle_error(type, mci, e);
9794f33d 1186}
4275be63 1187EXPORT_SYMBOL_GPL(edac_mc_handle_error);