]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/firewire/fw-ohci.c
firewire: Rework async receive DMA.
[mirror_ubuntu-zesty-kernel.git] / drivers / firewire / fw-ohci.c
CommitLineData
ed568912
KH
1/* -*- c-basic-offset: 8 -*-
2 *
3 * fw-ohci.c - Driver for OHCI 1394 boards
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/poll.h>
cf3e72fd
AM
28#include <linux/dma-mapping.h>
29
ed568912
KH
30#include <asm/uaccess.h>
31#include <asm/semaphore.h>
32
33#include "fw-transaction.h"
34#include "fw-ohci.h"
35
36#define descriptor_output_more 0
37#define descriptor_output_last (1 << 12)
38#define descriptor_input_more (2 << 12)
39#define descriptor_input_last (3 << 12)
40#define descriptor_status (1 << 11)
41#define descriptor_key_immediate (2 << 8)
42#define descriptor_ping (1 << 7)
43#define descriptor_yy (1 << 6)
44#define descriptor_no_irq (0 << 4)
45#define descriptor_irq_error (1 << 4)
46#define descriptor_irq_always (3 << 4)
47#define descriptor_branch_always (3 << 2)
48
49struct descriptor {
50 __le16 req_count;
51 __le16 control;
52 __le32 data_address;
53 __le32 branch_address;
54 __le16 res_count;
55 __le16 transfer_status;
56} __attribute__((aligned(16)));
57
32b46093 58struct ar_buffer {
ed568912 59 struct descriptor descriptor;
32b46093
KH
60 struct ar_buffer *next;
61 __le32 data[0];
62};
ed568912 63
32b46093
KH
64struct ar_context {
65 struct fw_ohci *ohci;
66 struct ar_buffer *current_buffer;
67 struct ar_buffer *last_buffer;
68 void *pointer;
ed568912
KH
69 u32 command_ptr;
70 u32 control_set;
71 u32 control_clear;
ed568912
KH
72 struct tasklet_struct tasklet;
73};
74
75struct at_context {
76 struct fw_ohci *ohci;
77 dma_addr_t descriptor_bus;
78 dma_addr_t buffer_bus;
79
80 struct list_head list;
81
82 struct {
83 struct descriptor more;
84 __le32 header[4];
85 struct descriptor last;
86 } d;
87
88 u32 command_ptr;
89 u32 control_set;
90 u32 control_clear;
91
92 struct tasklet_struct tasklet;
93};
94
95#define it_header_sy(v) ((v) << 0)
96#define it_header_tcode(v) ((v) << 4)
97#define it_header_channel(v) ((v) << 8)
98#define it_header_tag(v) ((v) << 14)
99#define it_header_speed(v) ((v) << 16)
100#define it_header_data_length(v) ((v) << 16)
101
102struct iso_context {
103 struct fw_iso_context base;
104 struct tasklet_struct tasklet;
105 u32 control_set;
106 u32 control_clear;
107 u32 command_ptr;
108 u32 context_match;
109
110 struct descriptor *buffer;
111 dma_addr_t buffer_bus;
112 struct descriptor *head_descriptor;
113 struct descriptor *tail_descriptor;
114 struct descriptor *tail_descriptor_last;
115 struct descriptor *prev_descriptor;
116};
117
118#define CONFIG_ROM_SIZE 1024
119
120struct fw_ohci {
121 struct fw_card card;
122
123 __iomem char *registers;
124 dma_addr_t self_id_bus;
125 __le32 *self_id_cpu;
126 struct tasklet_struct bus_reset_tasklet;
e636fe25 127 int node_id;
ed568912
KH
128 int generation;
129 int request_generation;
130
131 /* Spinlock for accessing fw_ohci data. Never call out of
132 * this driver with this lock held. */
133 spinlock_t lock;
134 u32 self_id_buffer[512];
135
136 /* Config rom buffers */
137 __be32 *config_rom;
138 dma_addr_t config_rom_bus;
139 __be32 *next_config_rom;
140 dma_addr_t next_config_rom_bus;
141 u32 next_header;
142
143 struct ar_context ar_request_ctx;
144 struct ar_context ar_response_ctx;
145 struct at_context at_request_ctx;
146 struct at_context at_response_ctx;
147
148 u32 it_context_mask;
149 struct iso_context *it_context_list;
150 u32 ir_context_mask;
151 struct iso_context *ir_context_list;
152};
153
95688e97 154static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
155{
156 return container_of(card, struct fw_ohci, card);
157}
158
159#define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
160
161#define CONTEXT_RUN 0x8000
162#define CONTEXT_WAKE 0x1000
163#define CONTEXT_DEAD 0x0800
164#define CONTEXT_ACTIVE 0x0400
165
166#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
167#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
168#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
169
170#define FW_OHCI_MAJOR 240
171#define OHCI1394_REGISTER_SIZE 0x800
172#define OHCI_LOOP_COUNT 500
173#define OHCI1394_PCI_HCI_Control 0x40
174#define SELF_ID_BUF_SIZE 0x800
32b46093 175#define OHCI_TCODE_PHY_PACKET 0x0e
0edeefd9 176
ed568912
KH
177static char ohci_driver_name[] = KBUILD_MODNAME;
178
95688e97 179static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
180{
181 writel(data, ohci->registers + offset);
182}
183
95688e97 184static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
185{
186 return readl(ohci->registers + offset);
187}
188
95688e97 189static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
190{
191 /* Do a dummy read to flush writes. */
192 reg_read(ohci, OHCI1394_Version);
193}
194
195static int
196ohci_update_phy_reg(struct fw_card *card, int addr,
197 int clear_bits, int set_bits)
198{
199 struct fw_ohci *ohci = fw_ohci(card);
200 u32 val, old;
201
202 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
203 msleep(2);
204 val = reg_read(ohci, OHCI1394_PhyControl);
205 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
206 fw_error("failed to set phy reg bits.\n");
207 return -EBUSY;
208 }
209
210 old = OHCI1394_PhyControl_ReadData(val);
211 old = (old & ~clear_bits) | set_bits;
212 reg_write(ohci, OHCI1394_PhyControl,
213 OHCI1394_PhyControl_Write(addr, old));
214
215 return 0;
216}
217
32b46093 218static int ar_context_add_page(struct ar_context *ctx)
ed568912 219{
32b46093
KH
220 struct device *dev = ctx->ohci->card.device;
221 struct ar_buffer *ab;
222 dma_addr_t ab_bus;
223 size_t offset;
224
225 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
226 if (ab == NULL)
227 return -ENOMEM;
228
229 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
230 if (dma_mapping_error(ab_bus)) {
231 free_page((unsigned long) ab);
232 return -ENOMEM;
233 }
234
235 memset(&ab->descriptor, 0, sizeof ab->descriptor);
236 ab->descriptor.control = cpu_to_le16(descriptor_input_more |
237 descriptor_status |
238 descriptor_branch_always);
239 offset = offsetof(struct ar_buffer, data);
240 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
241 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
242 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
243 ab->descriptor.branch_address = 0;
244
245 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
246
247 ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
248 ctx->last_buffer->next = ab;
249 ctx->last_buffer = ab;
250
251 reg_write(ctx->ohci, ctx->control_set, CONTEXT_WAKE);
ed568912 252 flush_writes(ctx->ohci);
32b46093
KH
253
254 return 0;
ed568912
KH
255}
256
32b46093 257static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 258{
ed568912 259 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
260 struct fw_packet p;
261 u32 status, length, tcode;
2639a6fb 262
32b46093
KH
263 p.header[0] = le32_to_cpu(buffer[0]);
264 p.header[1] = le32_to_cpu(buffer[1]);
265 p.header[2] = le32_to_cpu(buffer[2]);
2639a6fb
KH
266
267 tcode = (p.header[0] >> 4) & 0x0f;
268 switch (tcode) {
269 case TCODE_WRITE_QUADLET_REQUEST:
270 case TCODE_READ_QUADLET_RESPONSE:
32b46093 271 p.header[3] = (__force __u32) buffer[3];
2639a6fb 272 p.header_length = 16;
32b46093 273 p.payload_length = 0;
2639a6fb
KH
274 break;
275
2639a6fb 276 case TCODE_READ_BLOCK_REQUEST :
32b46093
KH
277 p.header[3] = le32_to_cpu(buffer[3]);
278 p.header_length = 16;
279 p.payload_length = 0;
280 break;
281
282 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
283 case TCODE_READ_BLOCK_RESPONSE:
284 case TCODE_LOCK_REQUEST:
285 case TCODE_LOCK_RESPONSE:
32b46093 286 p.header[3] = le32_to_cpu(buffer[3]);
2639a6fb 287 p.header_length = 16;
32b46093 288 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
289 break;
290
291 case TCODE_WRITE_RESPONSE:
292 case TCODE_READ_QUADLET_REQUEST:
32b46093 293 case OHCI_TCODE_PHY_PACKET:
2639a6fb 294 p.header_length = 12;
32b46093 295 p.payload_length = 0;
2639a6fb
KH
296 break;
297 }
ed568912 298
32b46093
KH
299 p.payload = (void *) buffer + p.header_length;
300
301 /* FIXME: What to do about evt_* errors? */
302 length = (p.header_length + p.payload_length + 3) / 4;
303 status = le32_to_cpu(buffer[length]);
304
305 p.ack = ((status >> 16) & 0x1f) - 16;
306 p.speed = (status >> 21) & 0x7;
307 p.timestamp = status & 0xffff;
308 p.generation = ohci->request_generation;
ed568912
KH
309
310 /* The OHCI bus reset handler synthesizes a phy packet with
311 * the new generation number when a bus reset happens (see
312 * section 8.4.2.3). This helps us determine when a request
313 * was received and make sure we send the response in the same
314 * generation. We only need this for requests; for responses
315 * we use the unique tlabel for finding the matching
316 * request. */
317
2639a6fb 318 if (p.ack + 16 == 0x09)
32b46093 319 ohci->request_generation = (buffer[2] >> 16) & 0xff;
ed568912 320 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 321 fw_core_handle_request(&ohci->card, &p);
ed568912 322 else
2639a6fb 323 fw_core_handle_response(&ohci->card, &p);
ed568912 324
32b46093
KH
325 return buffer + length + 1;
326}
ed568912 327
32b46093
KH
328static void ar_context_tasklet(unsigned long data)
329{
330 struct ar_context *ctx = (struct ar_context *)data;
331 struct fw_ohci *ohci = ctx->ohci;
332 struct ar_buffer *ab;
333 struct descriptor *d;
334 void *buffer, *end;
335
336 ab = ctx->current_buffer;
337 d = &ab->descriptor;
338
339 if (d->res_count == 0) {
340 size_t size, rest, offset;
341
342 /* This descriptor is finished and we may have a
343 * packet split across this and the next buffer. We
344 * reuse the page for reassembling the split packet. */
345
346 offset = offsetof(struct ar_buffer, data);
347 dma_unmap_single(ohci->card.device,
348 ab->descriptor.data_address - offset,
349 PAGE_SIZE, DMA_BIDIRECTIONAL);
350
351 buffer = ab;
352 ab = ab->next;
353 d = &ab->descriptor;
354 size = buffer + PAGE_SIZE - ctx->pointer;
355 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
356 memmove(buffer, ctx->pointer, size);
357 memcpy(buffer + size, ab->data, rest);
358 ctx->current_buffer = ab;
359 ctx->pointer = (void *) ab->data + rest;
360 end = buffer + size + rest;
361
362 while (buffer < end)
363 buffer = handle_ar_packet(ctx, buffer);
364
365 free_page((unsigned long)buffer);
366 ar_context_add_page(ctx);
367 } else {
368 buffer = ctx->pointer;
369 ctx->pointer = end =
370 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
371
372 while (buffer < end)
373 buffer = handle_ar_packet(ctx, buffer);
374 }
ed568912
KH
375}
376
377static int
378ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
379{
32b46093 380 struct ar_buffer ab;
ed568912
KH
381
382 ctx->control_set = control_set;
383 ctx->control_clear = control_set + 4;
384 ctx->command_ptr = control_set + 12;
385 ctx->ohci = ohci;
32b46093 386 ctx->last_buffer = &ab;
ed568912
KH
387 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
388
32b46093
KH
389 ar_context_add_page(ctx);
390 ar_context_add_page(ctx);
391 ctx->current_buffer = ab.next;
392 ctx->pointer = ctx->current_buffer->data;
393
394 reg_write(ctx->ohci, ctx->command_ptr, ab.descriptor.branch_address);
395 reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
396 flush_writes(ctx->ohci);
ed568912
KH
397
398 return 0;
399}
400
401static void
402do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
403{
404 struct fw_packet *p, *next;
405
406 list_for_each_entry_safe(p, next, list, link)
2639a6fb 407 p->callback(p, &ohci->card, p->ack);
ed568912
KH
408}
409
410static void
411complete_transmission(struct fw_packet *packet,
2639a6fb 412 int ack, struct list_head *list)
ed568912
KH
413{
414 list_move_tail(&packet->link, list);
2639a6fb 415 packet->ack = ack;
ed568912
KH
416}
417
418/* This function prepares the first packet in the context queue for
419 * transmission. Must always be called with the ochi->lock held to
420 * ensure proper generation handling and locking around packet queue
421 * manipulation. */
422static void
423at_context_setup_packet(struct at_context *ctx, struct list_head *list)
424{
425 struct fw_packet *packet;
426 struct fw_ohci *ohci = ctx->ohci;
427 int z, tcode;
428
429 packet = fw_packet(ctx->list.next);
430
431 memset(&ctx->d, 0, sizeof ctx->d);
432 if (packet->payload_length > 0) {
433 packet->payload_bus = dma_map_single(ohci->card.device,
434 packet->payload,
435 packet->payload_length,
436 DMA_TO_DEVICE);
437 if (packet->payload_bus == 0) {
e5f49c3b 438 complete_transmission(packet, RCODE_SEND_ERROR, list);
ed568912
KH
439 return;
440 }
441
442 ctx->d.more.control =
443 cpu_to_le16(descriptor_output_more |
444 descriptor_key_immediate);
445 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
446 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
447 ctx->d.last.control =
448 cpu_to_le16(descriptor_output_last |
449 descriptor_irq_always |
450 descriptor_branch_always);
451 ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
452 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
453 z = 3;
454 } else {
455 ctx->d.more.control =
456 cpu_to_le16(descriptor_output_last |
457 descriptor_key_immediate |
458 descriptor_irq_always |
459 descriptor_branch_always);
460 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
461 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
462 z = 2;
463 }
464
465 /* The DMA format for asyncronous link packets is different
466 * from the IEEE1394 layout, so shift the fields around
467 * accordingly. If header_length is 8, it's a PHY packet, to
468 * which we need to prepend an extra quadlet. */
469 if (packet->header_length > 8) {
470 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
471 (packet->speed << 16));
472 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
473 (packet->header[0] & 0xffff0000));
474 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
475
476 tcode = (packet->header[0] >> 4) & 0x0f;
477 if (TCODE_IS_BLOCK_PACKET(tcode))
478 ctx->d.header[3] = cpu_to_le32(packet->header[3]);
479 else
480 ctx->d.header[3] = packet->header[3];
481 } else {
482 ctx->d.header[0] =
483 cpu_to_le32((OHCI1394_phy_tcode << 4) |
484 (packet->speed << 16));
485 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
486 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
487 ctx->d.more.req_count = cpu_to_le16(12);
488 }
489
490 /* FIXME: Document how the locking works. */
491 if (ohci->generation == packet->generation) {
492 reg_write(ctx->ohci, ctx->command_ptr,
493 ctx->descriptor_bus | z);
494 reg_write(ctx->ohci, ctx->control_set,
495 CONTEXT_RUN | CONTEXT_WAKE);
496 } else {
497 /* We dont return error codes from this function; all
498 * transmission errors are reported through the
499 * callback. */
e5f49c3b 500 complete_transmission(packet, RCODE_GENERATION, list);
ed568912
KH
501 }
502}
503
504static void at_context_stop(struct at_context *ctx)
505{
506 u32 reg;
507
508 reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
509
510 reg = reg_read(ctx->ohci, ctx->control_set);
511 if (reg & CONTEXT_ACTIVE)
512 fw_notify("Tried to stop context, but it is still active "
513 "(0x%08x).\n", reg);
514}
515
516static void at_context_tasklet(unsigned long data)
517{
518 struct at_context *ctx = (struct at_context *)data;
519 struct fw_ohci *ohci = ctx->ohci;
520 struct fw_packet *packet;
521 LIST_HEAD(list);
522 unsigned long flags;
523 int evt;
524
525 spin_lock_irqsave(&ohci->lock, flags);
526
527 packet = fw_packet(ctx->list.next);
528
529 at_context_stop(ctx);
530
531 if (packet->payload_length > 0) {
532 dma_unmap_single(ohci->card.device, packet->payload_bus,
533 packet->payload_length, DMA_TO_DEVICE);
534 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
535 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
536 }
537 else {
538 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
539 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
540 }
541
542 if (evt < 16) {
543 switch (evt) {
544 case OHCI1394_evt_timeout:
545 /* Async response transmit timed out. */
e5f49c3b 546 complete_transmission(packet, RCODE_CANCELLED, &list);
ed568912
KH
547 break;
548
549 case OHCI1394_evt_flushed:
550 /* The packet was flushed should give same
551 * error as when we try to use a stale
552 * generation count. */
e5f49c3b
KH
553 complete_transmission(packet,
554 RCODE_GENERATION, &list);
ed568912
KH
555 break;
556
557 case OHCI1394_evt_missing_ack:
e5f49c3b
KH
558 /* Using a valid (current) generation count,
559 * but the node is not on the bus or not
560 * sending acks. */
561 complete_transmission(packet, RCODE_NO_ACK, &list);
ed568912
KH
562 break;
563
564 default:
e5f49c3b 565 complete_transmission(packet, RCODE_SEND_ERROR, &list);
ed568912
KH
566 break;
567 }
568 } else
569 complete_transmission(packet, evt - 16, &list);
570
571 /* If more packets are queued, set up the next one. */
572 if (!list_empty(&ctx->list))
573 at_context_setup_packet(ctx, &list);
574
575 spin_unlock_irqrestore(&ohci->lock, flags);
576
577 do_packet_callbacks(ohci, &list);
578}
579
580static int
581at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
582{
583 INIT_LIST_HEAD(&ctx->list);
584
585 ctx->descriptor_bus =
586 dma_map_single(ohci->card.device, &ctx->d,
587 sizeof ctx->d, DMA_TO_DEVICE);
588 if (ctx->descriptor_bus == 0)
589 return -ENOMEM;
590
591 ctx->control_set = control_set;
592 ctx->control_clear = control_set + 4;
593 ctx->command_ptr = control_set + 12;
594 ctx->ohci = ohci;
595
596 tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
597
598 return 0;
599}
600
e636fe25 601#define header_get_destination(q) (((q) >> 16) & 0xffff)
93c4cceb
KH
602#define header_get_tcode(q) (((q) >> 4) & 0x0f)
603#define header_get_offset_high(q) (((q) >> 0) & 0xffff)
604#define header_get_data_length(q) (((q) >> 16) & 0xffff)
605#define header_get_extended_tcode(q) (((q) >> 0) & 0xffff)
606
607static void
608handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
609{
610 struct fw_packet response;
611 int tcode, length, i;
612
613 tcode = header_get_tcode(packet->header[0]);
614 if (TCODE_IS_BLOCK_PACKET(tcode))
615 length = header_get_data_length(packet->header[3]);
616 else
617 length = 4;
618
619 i = csr - CSR_CONFIG_ROM;
620 if (i + length > CONFIG_ROM_SIZE) {
621 fw_fill_response(&response, packet->header,
622 RCODE_ADDRESS_ERROR, NULL, 0);
623 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
624 fw_fill_response(&response, packet->header,
625 RCODE_TYPE_ERROR, NULL, 0);
626 } else {
627 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
628 (void *) ohci->config_rom + i, length);
629 }
630
631 fw_core_handle_response(&ohci->card, &response);
632}
633
634static void
635handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
636{
637 struct fw_packet response;
638 int tcode, length, ext_tcode, sel;
639 __be32 *payload, lock_old;
640 u32 lock_arg, lock_data;
641
642 tcode = header_get_tcode(packet->header[0]);
643 length = header_get_data_length(packet->header[3]);
644 payload = packet->payload;
645 ext_tcode = header_get_extended_tcode(packet->header[3]);
646
647 if (tcode == TCODE_LOCK_REQUEST &&
648 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
649 lock_arg = be32_to_cpu(payload[0]);
650 lock_data = be32_to_cpu(payload[1]);
651 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
652 lock_arg = 0;
653 lock_data = 0;
654 } else {
655 fw_fill_response(&response, packet->header,
656 RCODE_TYPE_ERROR, NULL, 0);
657 goto out;
658 }
659
660 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
661 reg_write(ohci, OHCI1394_CSRData, lock_data);
662 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
663 reg_write(ohci, OHCI1394_CSRControl, sel);
664
665 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
666 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
667 else
668 fw_notify("swap not done yet\n");
669
670 fw_fill_response(&response, packet->header,
671 RCODE_COMPLETE, &lock_old, sizeof lock_old);
672 out:
673 fw_core_handle_response(&ohci->card, &response);
674}
675
676static void
677handle_local_request(struct at_context *ctx, struct fw_packet *packet)
678{
679 u64 offset;
680 u32 csr;
681
682 packet->ack = ACK_PENDING;
683 packet->callback(packet, &ctx->ohci->card, packet->ack);
684
685 offset =
686 ((unsigned long long)
687 header_get_offset_high(packet->header[1]) << 32) |
688 packet->header[2];
689 csr = offset - CSR_REGISTER_BASE;
690
691 /* Handle config rom reads. */
692 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
693 handle_local_rom(ctx->ohci, packet, csr);
694 else switch (csr) {
695 case CSR_BUS_MANAGER_ID:
696 case CSR_BANDWIDTH_AVAILABLE:
697 case CSR_CHANNELS_AVAILABLE_HI:
698 case CSR_CHANNELS_AVAILABLE_LO:
699 handle_local_lock(ctx->ohci, packet, csr);
700 break;
701 default:
702 if (ctx == &ctx->ohci->at_request_ctx)
703 fw_core_handle_request(&ctx->ohci->card, packet);
704 else
705 fw_core_handle_response(&ctx->ohci->card, packet);
706 break;
707 }
708}
e636fe25 709
ed568912
KH
710static void
711at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
712{
713 LIST_HEAD(list);
714 unsigned long flags;
ed568912
KH
715
716 spin_lock_irqsave(&ctx->ohci->lock, flags);
717
e636fe25
KH
718 if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
719 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
720 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
721 handle_local_request(ctx, packet);
722 return;
e636fe25 723 }
ed568912 724
93c4cceb
KH
725 list_add_tail(&packet->link, &ctx->list);
726 if (ctx->list.next == &packet->link)
727 at_context_setup_packet(ctx, &list);
728
ed568912
KH
729 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
730
731 do_packet_callbacks(ctx->ohci, &list);
732}
733
734static void bus_reset_tasklet(unsigned long data)
735{
736 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 737 int self_id_count, i, j, reg;
ed568912
KH
738 int generation, new_generation;
739 unsigned long flags;
740
741 reg = reg_read(ohci, OHCI1394_NodeID);
742 if (!(reg & OHCI1394_NodeID_idValid)) {
743 fw_error("node ID not valid, new bus reset in progress\n");
744 return;
745 }
e636fe25 746 ohci->node_id = reg & 0xffff;
ed568912
KH
747
748 /* The count in the SelfIDCount register is the number of
749 * bytes in the self ID receive buffer. Since we also receive
750 * the inverted quadlets and a header quadlet, we shift one
751 * bit extra to get the actual number of self IDs. */
752
753 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
754 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
755
756 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
757 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
758 fw_error("inconsistent self IDs\n");
759 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
760 }
761
762 /* Check the consistency of the self IDs we just read. The
763 * problem we face is that a new bus reset can start while we
764 * read out the self IDs from the DMA buffer. If this happens,
765 * the DMA buffer will be overwritten with new self IDs and we
766 * will read out inconsistent data. The OHCI specification
767 * (section 11.2) recommends a technique similar to
768 * linux/seqlock.h, where we remember the generation of the
769 * self IDs in the buffer before reading them out and compare
770 * it to the current generation after reading them out. If
771 * the two generations match we know we have a consistent set
772 * of self IDs. */
773
774 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
775 if (new_generation != generation) {
776 fw_notify("recursive bus reset detected, "
777 "discarding self ids\n");
778 return;
779 }
780
781 /* FIXME: Document how the locking works. */
782 spin_lock_irqsave(&ohci->lock, flags);
783
784 ohci->generation = generation;
785 at_context_stop(&ohci->at_request_ctx);
786 at_context_stop(&ohci->at_response_ctx);
787 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
788
789 /* This next bit is unrelated to the AT context stuff but we
790 * have to do it under the spinlock also. If a new config rom
791 * was set up before this reset, the old one is now no longer
792 * in use and we can free it. Update the config rom pointers
793 * to point to the current config rom and clear the
794 * next_config_rom pointer so a new udpate can take place. */
795
796 if (ohci->next_config_rom != NULL) {
797 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
798 ohci->config_rom, ohci->config_rom_bus);
799 ohci->config_rom = ohci->next_config_rom;
800 ohci->config_rom_bus = ohci->next_config_rom_bus;
801 ohci->next_config_rom = NULL;
802
803 /* Restore config_rom image and manually update
804 * config_rom registers. Writing the header quadlet
805 * will indicate that the config rom is ready, so we
806 * do that last. */
807 reg_write(ohci, OHCI1394_BusOptions,
808 be32_to_cpu(ohci->config_rom[2]));
809 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
810 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
811 }
812
813 spin_unlock_irqrestore(&ohci->lock, flags);
814
e636fe25 815 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
816 self_id_count, ohci->self_id_buffer);
817}
818
819static irqreturn_t irq_handler(int irq, void *data)
820{
821 struct fw_ohci *ohci = data;
822 u32 event, iso_event;
823 int i;
824
825 event = reg_read(ohci, OHCI1394_IntEventClear);
826
827 if (!event)
828 return IRQ_NONE;
829
830 reg_write(ohci, OHCI1394_IntEventClear, event);
831
832 if (event & OHCI1394_selfIDComplete)
833 tasklet_schedule(&ohci->bus_reset_tasklet);
834
835 if (event & OHCI1394_RQPkt)
836 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
837
838 if (event & OHCI1394_RSPkt)
839 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
840
841 if (event & OHCI1394_reqTxComplete)
842 tasklet_schedule(&ohci->at_request_ctx.tasklet);
843
844 if (event & OHCI1394_respTxComplete)
845 tasklet_schedule(&ohci->at_response_ctx.tasklet);
846
847 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
848 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
849
850 while (iso_event) {
851 i = ffs(iso_event) - 1;
852 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
853 iso_event &= ~(1 << i);
854 }
855
856 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
857 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
858
859 while (iso_event) {
860 i = ffs(iso_event) - 1;
861 tasklet_schedule(&ohci->it_context_list[i].tasklet);
862 iso_event &= ~(1 << i);
863 }
864
865 return IRQ_HANDLED;
866}
867
868static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
869{
870 struct fw_ohci *ohci = fw_ohci(card);
871 struct pci_dev *dev = to_pci_dev(card->device);
872
873 /* When the link is not yet enabled, the atomic config rom
874 * update mechanism described below in ohci_set_config_rom()
875 * is not active. We have to update ConfigRomHeader and
876 * BusOptions manually, and the write to ConfigROMmap takes
877 * effect immediately. We tie this to the enabling of the
878 * link, so we have a valid config rom before enabling - the
879 * OHCI requires that ConfigROMhdr and BusOptions have valid
880 * values before enabling.
881 *
882 * However, when the ConfigROMmap is written, some controllers
883 * always read back quadlets 0 and 2 from the config rom to
884 * the ConfigRomHeader and BusOptions registers on bus reset.
885 * They shouldn't do that in this initial case where the link
886 * isn't enabled. This means we have to use the same
887 * workaround here, setting the bus header to 0 and then write
888 * the right values in the bus reset tasklet.
889 */
890
891 ohci->next_config_rom =
892 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
893 &ohci->next_config_rom_bus, GFP_KERNEL);
894 if (ohci->next_config_rom == NULL)
895 return -ENOMEM;
896
897 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
898 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
899
900 ohci->next_header = config_rom[0];
901 ohci->next_config_rom[0] = 0;
902 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
903 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
904 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
905
906 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
907
908 if (request_irq(dev->irq, irq_handler,
909 SA_SHIRQ, ohci_driver_name, ohci)) {
910 fw_error("Failed to allocate shared interrupt %d.\n",
911 dev->irq);
912 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
913 ohci->config_rom, ohci->config_rom_bus);
914 return -EIO;
915 }
916
917 reg_write(ohci, OHCI1394_HCControlSet,
918 OHCI1394_HCControl_linkEnable |
919 OHCI1394_HCControl_BIBimageValid);
920 flush_writes(ohci);
921
922 /* We are ready to go, initiate bus reset to finish the
923 * initialization. */
924
925 fw_core_initiate_bus_reset(&ohci->card, 1);
926
927 return 0;
928}
929
930static int
931ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
932{
933 struct fw_ohci *ohci;
934 unsigned long flags;
935 int retval = 0;
936 __be32 *next_config_rom;
937 dma_addr_t next_config_rom_bus;
938
939 ohci = fw_ohci(card);
940
941 /* When the OHCI controller is enabled, the config rom update
942 * mechanism is a bit tricky, but easy enough to use. See
943 * section 5.5.6 in the OHCI specification.
944 *
945 * The OHCI controller caches the new config rom address in a
946 * shadow register (ConfigROMmapNext) and needs a bus reset
947 * for the changes to take place. When the bus reset is
948 * detected, the controller loads the new values for the
949 * ConfigRomHeader and BusOptions registers from the specified
950 * config rom and loads ConfigROMmap from the ConfigROMmapNext
951 * shadow register. All automatically and atomically.
952 *
953 * Now, there's a twist to this story. The automatic load of
954 * ConfigRomHeader and BusOptions doesn't honor the
955 * noByteSwapData bit, so with a be32 config rom, the
956 * controller will load be32 values in to these registers
957 * during the atomic update, even on litte endian
958 * architectures. The workaround we use is to put a 0 in the
959 * header quadlet; 0 is endian agnostic and means that the
960 * config rom isn't ready yet. In the bus reset tasklet we
961 * then set up the real values for the two registers.
962 *
963 * We use ohci->lock to avoid racing with the code that sets
964 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
965 */
966
967 next_config_rom =
968 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
969 &next_config_rom_bus, GFP_KERNEL);
970 if (next_config_rom == NULL)
971 return -ENOMEM;
972
973 spin_lock_irqsave(&ohci->lock, flags);
974
975 if (ohci->next_config_rom == NULL) {
976 ohci->next_config_rom = next_config_rom;
977 ohci->next_config_rom_bus = next_config_rom_bus;
978
979 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
980 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
981 length * 4);
982
983 ohci->next_header = config_rom[0];
984 ohci->next_config_rom[0] = 0;
985
986 reg_write(ohci, OHCI1394_ConfigROMmap,
987 ohci->next_config_rom_bus);
988 } else {
989 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
990 next_config_rom, next_config_rom_bus);
991 retval = -EBUSY;
992 }
993
994 spin_unlock_irqrestore(&ohci->lock, flags);
995
996 /* Now initiate a bus reset to have the changes take
997 * effect. We clean up the old config rom memory and DMA
998 * mappings in the bus reset tasklet, since the OHCI
999 * controller could need to access it before the bus reset
1000 * takes effect. */
1001 if (retval == 0)
1002 fw_core_initiate_bus_reset(&ohci->card, 1);
1003
1004 return retval;
1005}
1006
1007static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1008{
1009 struct fw_ohci *ohci = fw_ohci(card);
1010
1011 at_context_transmit(&ohci->at_request_ctx, packet);
1012}
1013
1014static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1015{
1016 struct fw_ohci *ohci = fw_ohci(card);
1017
1018 at_context_transmit(&ohci->at_response_ctx, packet);
1019}
1020
1021static int
1022ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1023{
1024 struct fw_ohci *ohci = fw_ohci(card);
1025 unsigned long flags;
907293d7 1026 int n, retval = 0;
ed568912 1027
907293d7
SR
1028 /* FIXME: Make sure this bitmask is cleared when we clear the busReset
1029 * interrupt bit. Clear physReqResourceAllBuses on bus reset. */
ed568912
KH
1030
1031 spin_lock_irqsave(&ohci->lock, flags);
1032
1033 if (ohci->generation != generation) {
1034 retval = -ESTALE;
1035 goto out;
1036 }
1037
907293d7
SR
1038 /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1039 * enabled for _all_ nodes on remote buses. */
1040
1041 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1042 if (n < 32)
1043 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1044 else
1045 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1046
ed568912 1047 flush_writes(ohci);
ed568912 1048 out:
6cad95fe 1049 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912
KH
1050 return retval;
1051}
1052
1053static void ir_context_tasklet(unsigned long data)
1054{
1055 struct iso_context *ctx = (struct iso_context *)data;
1056
1057 (void)ctx;
1058}
1059
1060#define ISO_BUFFER_SIZE (64 * 1024)
1061
1062static void flush_iso_context(struct iso_context *ctx)
1063{
1064 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1065 struct descriptor *d, *last;
1066 u32 address;
1067 int z;
1068
1069 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
1070 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1071
1072 d = ctx->tail_descriptor;
1073 last = ctx->tail_descriptor_last;
1074
1075 while (last->branch_address != 0 && last->transfer_status != 0) {
1076 address = le32_to_cpu(last->branch_address);
1077 z = address & 0xf;
1078 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
1079
1080 if (z == 2)
1081 last = d;
1082 else
1083 last = d + z - 1;
1084
1085 if (le16_to_cpu(last->control) & descriptor_irq_always)
1086 ctx->base.callback(&ctx->base,
1087 0, le16_to_cpu(last->res_count),
1088 ctx->base.callback_data);
1089 }
1090
1091 ctx->tail_descriptor = d;
1092 ctx->tail_descriptor_last = last;
1093}
1094
1095static void it_context_tasklet(unsigned long data)
1096{
1097 struct iso_context *ctx = (struct iso_context *)data;
1098
1099 flush_iso_context(ctx);
1100}
1101
1102static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1103 int type)
1104{
1105 struct fw_ohci *ohci = fw_ohci(card);
1106 struct iso_context *ctx, *list;
1107 void (*tasklet) (unsigned long data);
1108 u32 *mask;
1109 unsigned long flags;
1110 int index;
1111
1112 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1113 mask = &ohci->it_context_mask;
1114 list = ohci->it_context_list;
1115 tasklet = it_context_tasklet;
1116 } else {
1117 mask = &ohci->ir_context_mask;
1118 list = ohci->ir_context_list;
1119 tasklet = ir_context_tasklet;
1120 }
1121
1122 spin_lock_irqsave(&ohci->lock, flags);
1123 index = ffs(*mask) - 1;
1124 if (index >= 0)
1125 *mask &= ~(1 << index);
1126 spin_unlock_irqrestore(&ohci->lock, flags);
1127
1128 if (index < 0)
1129 return ERR_PTR(-EBUSY);
1130
1131 ctx = &list[index];
1132 memset(ctx, 0, sizeof *ctx);
1133 tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
1134
1135 ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
1136 if (ctx->buffer == NULL) {
1137 spin_lock_irqsave(&ohci->lock, flags);
1138 *mask |= 1 << index;
1139 spin_unlock_irqrestore(&ohci->lock, flags);
1140 return ERR_PTR(-ENOMEM);
1141 }
1142
1143 ctx->buffer_bus =
1144 dma_map_single(card->device, ctx->buffer,
1145 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1146
1147 ctx->head_descriptor = ctx->buffer;
1148 ctx->prev_descriptor = ctx->buffer;
1149 ctx->tail_descriptor = ctx->buffer;
1150 ctx->tail_descriptor_last = ctx->buffer;
1151
1152 /* We put a dummy descriptor in the buffer that has a NULL
1153 * branch address and looks like it's been sent. That way we
1154 * have a descriptor to append DMA programs to. Also, the
1155 * ring buffer invariant is that it always has at least one
1156 * element so that head == tail means buffer full. */
1157
1158 memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
5e20c282
SR
1159 ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
1160 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
ed568912
KH
1161 ctx->head_descriptor++;
1162
1163 return &ctx->base;
1164}
1165
1166static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
1167{
1168 struct iso_context *ctx = (struct iso_context *)base;
1169 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1170 u32 cycle_match = 0;
1171 int index;
1172
1173 index = ctx - ohci->it_context_list;
1174 if (cycle > 0)
1175 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
1176 (cycle & 0x7fff) << 16;
1177
1178 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1179 reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
1180 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
1181 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1182 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
1183 CONTEXT_RUN | cycle_match);
1184 flush_writes(ohci);
1185
1186 return 0;
1187}
1188
1189static void ohci_free_iso_context(struct fw_iso_context *base)
1190{
1191 struct fw_ohci *ohci = fw_ohci(base->card);
1192 struct iso_context *ctx = (struct iso_context *)base;
1193 unsigned long flags;
1194 int index;
1195
1196 flush_iso_context(ctx);
1197
1198 spin_lock_irqsave(&ohci->lock, flags);
1199
1200 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1201 index = ctx - ohci->it_context_list;
1202 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1203 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1204 ohci->it_context_mask |= 1 << index;
1205 } else {
1206 index = ctx - ohci->ir_context_list;
1207 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1208 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1209 ohci->ir_context_mask |= 1 << index;
1210 }
1211 flush_writes(ohci);
1212
1213 dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1214 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1215
1216 spin_unlock_irqrestore(&ohci->lock, flags);
1217}
1218
1219static int
1220ohci_queue_iso(struct fw_iso_context *base,
1221 struct fw_iso_packet *packet, void *payload)
1222{
1223 struct iso_context *ctx = (struct iso_context *)base;
1224 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1225 struct descriptor *d, *end, *last, *tail, *pd;
1226 struct fw_iso_packet *p;
1227 __le32 *header;
1228 dma_addr_t d_bus;
1229 u32 z, header_z, payload_z, irq;
1230 u32 payload_index, payload_end_index, next_page_index;
1231 int index, page, end_page, i, length, offset;
1232
1233 /* FIXME: Cycle lost behavior should be configurable: lose
1234 * packet, retransmit or terminate.. */
1235
1236 p = packet;
1237 payload_index = payload - ctx->base.buffer;
1238 d = ctx->head_descriptor;
1239 tail = ctx->tail_descriptor;
1240 end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1241
1242 if (p->skip)
1243 z = 1;
1244 else
1245 z = 2;
1246 if (p->header_length > 0)
1247 z++;
1248
1249 /* Determine the first page the payload isn't contained in. */
1250 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1251 if (p->payload_length > 0)
1252 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1253 else
1254 payload_z = 0;
1255
1256 z += payload_z;
1257
1258 /* Get header size in number of descriptors. */
1259 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1260
1261 if (d + z + header_z <= tail) {
1262 goto has_space;
1263 } else if (d > tail && d + z + header_z <= end) {
1264 goto has_space;
1265 } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1266 d = ctx->buffer;
1267 goto has_space;
1268 }
1269
1270 /* No space in buffer */
1271 return -1;
1272
1273 has_space:
1274 memset(d, 0, (z + header_z) * sizeof *d);
1275 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1276
1277 if (!p->skip) {
1278 d[0].control = cpu_to_le16(descriptor_key_immediate);
1279 d[0].req_count = cpu_to_le16(8);
1280
1281 header = (__le32 *) &d[1];
1282 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1283 it_header_tag(p->tag) |
1284 it_header_tcode(TCODE_STREAM_DATA) |
1285 it_header_channel(ctx->base.channel) |
1286 it_header_speed(ctx->base.speed));
1287 header[1] =
1288 cpu_to_le32(it_header_data_length(p->header_length +
1289 p->payload_length));
1290 }
1291
1292 if (p->header_length > 0) {
1293 d[2].req_count = cpu_to_le16(p->header_length);
1294 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1295 memcpy(&d[z], p->header, p->header_length);
1296 }
1297
1298 pd = d + z - payload_z;
1299 payload_end_index = payload_index + p->payload_length;
1300 for (i = 0; i < payload_z; i++) {
1301 page = payload_index >> PAGE_SHIFT;
1302 offset = payload_index & ~PAGE_MASK;
1303 next_page_index = (page + 1) << PAGE_SHIFT;
1304 length =
1305 min(next_page_index, payload_end_index) - payload_index;
1306 pd[i].req_count = cpu_to_le16(length);
1307 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1308
1309 payload_index += length;
1310 }
1311
1312 if (z == 2)
1313 last = d;
1314 else
1315 last = d + z - 1;
1316
1317 if (p->interrupt)
1318 irq = descriptor_irq_always;
1319 else
1320 irq = descriptor_no_irq;
1321
1322 last->control = cpu_to_le16(descriptor_output_last |
1323 descriptor_status |
1324 descriptor_branch_always |
1325 irq);
1326
1327 dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1328 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1329
1330 ctx->head_descriptor = d + z + header_z;
1331 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1332 ctx->prev_descriptor = last;
1333
1334 index = ctx - ohci->it_context_list;
1335 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1336 flush_writes(ohci);
1337
1338 return 0;
1339}
1340
21ebcd12 1341static const struct fw_card_driver ohci_driver = {
ed568912
KH
1342 .name = ohci_driver_name,
1343 .enable = ohci_enable,
1344 .update_phy_reg = ohci_update_phy_reg,
1345 .set_config_rom = ohci_set_config_rom,
1346 .send_request = ohci_send_request,
1347 .send_response = ohci_send_response,
1348 .enable_phys_dma = ohci_enable_phys_dma,
1349
1350 .allocate_iso_context = ohci_allocate_iso_context,
1351 .free_iso_context = ohci_free_iso_context,
1352 .queue_iso = ohci_queue_iso,
5af4e5ea 1353 .send_iso = ohci_send_iso,
ed568912
KH
1354};
1355
1356static int software_reset(struct fw_ohci *ohci)
1357{
1358 int i;
1359
1360 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1361
1362 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1363 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1364 OHCI1394_HCControl_softReset) == 0)
1365 return 0;
1366 msleep(1);
1367 }
1368
1369 return -EBUSY;
1370}
1371
1372/* ---------- pci subsystem interface ---------- */
1373
1374enum {
1375 CLEANUP_SELF_ID,
1376 CLEANUP_REGISTERS,
1377 CLEANUP_IOMEM,
1378 CLEANUP_DISABLE,
1379 CLEANUP_PUT_CARD,
1380};
1381
1382static int cleanup(struct fw_ohci *ohci, int stage, int code)
1383{
1384 struct pci_dev *dev = to_pci_dev(ohci->card.device);
1385
1386 switch (stage) {
1387 case CLEANUP_SELF_ID:
1388 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1389 ohci->self_id_cpu, ohci->self_id_bus);
1390 case CLEANUP_REGISTERS:
1391 kfree(ohci->it_context_list);
1392 kfree(ohci->ir_context_list);
1393 pci_iounmap(dev, ohci->registers);
1394 case CLEANUP_IOMEM:
1395 pci_release_region(dev, 0);
1396 case CLEANUP_DISABLE:
1397 pci_disable_device(dev);
1398 case CLEANUP_PUT_CARD:
1399 fw_card_put(&ohci->card);
1400 }
1401
1402 return code;
1403}
1404
1405static int __devinit
1406pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1407{
1408 struct fw_ohci *ohci;
1409 u32 bus_options, max_receive, link_speed;
1410 u64 guid;
1411 int error_code;
1412 size_t size;
1413
1414 ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1415 if (ohci == NULL) {
1416 fw_error("Could not malloc fw_ohci data.\n");
1417 return -ENOMEM;
1418 }
1419
1420 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1421
1422 if (pci_enable_device(dev)) {
1423 fw_error("Failed to enable OHCI hardware.\n");
1424 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1425 }
1426
1427 pci_set_master(dev);
1428 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1429 pci_set_drvdata(dev, ohci);
1430
1431 spin_lock_init(&ohci->lock);
1432
1433 tasklet_init(&ohci->bus_reset_tasklet,
1434 bus_reset_tasklet, (unsigned long)ohci);
1435
1436 if (pci_request_region(dev, 0, ohci_driver_name)) {
1437 fw_error("MMIO resource unavailable\n");
1438 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1439 }
1440
1441 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1442 if (ohci->registers == NULL) {
1443 fw_error("Failed to remap registers\n");
1444 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1445 }
1446
1447 if (software_reset(ohci)) {
1448 fw_error("Failed to reset ohci card.\n");
1449 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1450 }
1451
1452 /* Now enable LPS, which we need in order to start accessing
1453 * most of the registers. In fact, on some cards (ALI M5251),
1454 * accessing registers in the SClk domain without LPS enabled
1455 * will lock up the machine. Wait 50msec to make sure we have
1456 * full link enabled. */
1457 reg_write(ohci, OHCI1394_HCControlSet,
1458 OHCI1394_HCControl_LPS |
1459 OHCI1394_HCControl_postedWriteEnable);
1460 flush_writes(ohci);
1461 msleep(50);
1462
1463 reg_write(ohci, OHCI1394_HCControlClear,
1464 OHCI1394_HCControl_noByteSwapData);
1465
1466 reg_write(ohci, OHCI1394_LinkControlSet,
1467 OHCI1394_LinkControl_rcvSelfID |
1468 OHCI1394_LinkControl_cycleTimerEnable |
1469 OHCI1394_LinkControl_cycleMaster);
1470
1471 ar_context_init(&ohci->ar_request_ctx, ohci,
1472 OHCI1394_AsReqRcvContextControlSet);
1473
1474 ar_context_init(&ohci->ar_response_ctx, ohci,
1475 OHCI1394_AsRspRcvContextControlSet);
1476
1477 at_context_init(&ohci->at_request_ctx, ohci,
1478 OHCI1394_AsReqTrContextControlSet);
1479
1480 at_context_init(&ohci->at_response_ctx, ohci,
1481 OHCI1394_AsRspTrContextControlSet);
1482
1483 reg_write(ohci, OHCI1394_ATRetries,
1484 OHCI1394_MAX_AT_REQ_RETRIES |
1485 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1486 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1487
1488 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1489 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1490 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1491 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1492 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1493
1494 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1495 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1496 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1497 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1498 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1499
1500 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1501 fw_error("Out of memory for it/ir contexts.\n");
1502 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1503 }
1504
1505 /* self-id dma buffer allocation */
1506 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1507 SELF_ID_BUF_SIZE,
1508 &ohci->self_id_bus,
1509 GFP_KERNEL);
1510 if (ohci->self_id_cpu == NULL) {
1511 fw_error("Out of memory for self ID buffer.\n");
1512 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1513 }
1514
1515 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1516 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1517 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1518 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1519 reg_write(ohci, OHCI1394_IntMaskSet,
1520 OHCI1394_selfIDComplete |
1521 OHCI1394_RQPkt | OHCI1394_RSPkt |
1522 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1523 OHCI1394_isochRx | OHCI1394_isochTx |
1524 OHCI1394_masterIntEnable);
1525
1526 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1527 max_receive = (bus_options >> 12) & 0xf;
1528 link_speed = bus_options & 0x7;
1529 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1530 reg_read(ohci, OHCI1394_GUIDLo);
1531
1532 error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1533 if (error_code < 0)
1534 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1535
1536 fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1537
1538 return 0;
1539}
1540
1541static void pci_remove(struct pci_dev *dev)
1542{
1543 struct fw_ohci *ohci;
1544
1545 ohci = pci_get_drvdata(dev);
1546 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1547 fw_core_remove_card(&ohci->card);
1548
1549 /* FIXME: Fail all pending packets here, now that the upper
1550 * layers can't queue any more. */
1551
1552 software_reset(ohci);
1553 free_irq(dev->irq, ohci);
1554 cleanup(ohci, CLEANUP_SELF_ID, 0);
1555
1556 fw_notify("Removed fw-ohci device.\n");
1557}
1558
1559static struct pci_device_id pci_table[] = {
1560 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1561 { }
1562};
1563
1564MODULE_DEVICE_TABLE(pci, pci_table);
1565
1566static struct pci_driver fw_ohci_pci_driver = {
1567 .name = ohci_driver_name,
1568 .id_table = pci_table,
1569 .probe = pci_probe,
1570 .remove = pci_remove,
1571};
1572
1573MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1574MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1575MODULE_LICENSE("GPL");
1576
1577static int __init fw_ohci_init(void)
1578{
1579 return pci_register_driver(&fw_ohci_pci_driver);
1580}
1581
1582static void __exit fw_ohci_cleanup(void)
1583{
1584 pci_unregister_driver(&fw_ohci_pci_driver);
1585}
1586
1587module_init(fw_ohci_init);
1588module_exit(fw_ohci_cleanup);