]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/firewire/fw-ohci.c
firewire: Rename 'send_iso' to 'start_iso'.
[mirror_ubuntu-artful-kernel.git] / drivers / firewire / fw-ohci.c
CommitLineData
ed568912
KH
1/* -*- c-basic-offset: 8 -*-
2 *
3 * fw-ohci.c - Driver for OHCI 1394 boards
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/poll.h>
cf3e72fd
AM
28#include <linux/dma-mapping.h>
29
ed568912
KH
30#include <asm/uaccess.h>
31#include <asm/semaphore.h>
32
33#include "fw-transaction.h"
34#include "fw-ohci.h"
35
36#define descriptor_output_more 0
37#define descriptor_output_last (1 << 12)
38#define descriptor_input_more (2 << 12)
39#define descriptor_input_last (3 << 12)
40#define descriptor_status (1 << 11)
41#define descriptor_key_immediate (2 << 8)
42#define descriptor_ping (1 << 7)
43#define descriptor_yy (1 << 6)
44#define descriptor_no_irq (0 << 4)
45#define descriptor_irq_error (1 << 4)
46#define descriptor_irq_always (3 << 4)
47#define descriptor_branch_always (3 << 2)
295e3feb 48#define descriptor_wait (3 << 0)
ed568912
KH
49
50struct descriptor {
51 __le16 req_count;
52 __le16 control;
53 __le32 data_address;
54 __le32 branch_address;
55 __le16 res_count;
56 __le16 transfer_status;
57} __attribute__((aligned(16)));
58
295e3feb
KH
59struct db_descriptor {
60 __le16 first_size;
61 __le16 control;
62 __le16 second_req_count;
63 __le16 first_req_count;
64 __le32 branch_address;
65 __le16 second_res_count;
66 __le16 first_res_count;
67 __le32 reserved0;
68 __le32 first_buffer;
69 __le32 second_buffer;
70 __le32 reserved1;
71} __attribute__((aligned(16)));
72
72e318e0
KH
73#define control_set(regs) (regs)
74#define control_clear(regs) ((regs) + 4)
75#define command_ptr(regs) ((regs) + 12)
76#define context_match(regs) ((regs) + 16)
77
32b46093 78struct ar_buffer {
ed568912 79 struct descriptor descriptor;
32b46093
KH
80 struct ar_buffer *next;
81 __le32 data[0];
82};
ed568912 83
32b46093
KH
84struct ar_context {
85 struct fw_ohci *ohci;
86 struct ar_buffer *current_buffer;
87 struct ar_buffer *last_buffer;
88 void *pointer;
72e318e0 89 u32 regs;
ed568912
KH
90 struct tasklet_struct tasklet;
91};
92
30200739
KH
93struct context;
94
95typedef int (*descriptor_callback_t)(struct context *ctx,
96 struct descriptor *d,
97 struct descriptor *last);
98struct context {
99 struct fw_ohci *ohci;
100 u32 regs;
101
102 struct descriptor *buffer;
103 dma_addr_t buffer_bus;
104 size_t buffer_size;
105 struct descriptor *head_descriptor;
106 struct descriptor *tail_descriptor;
107 struct descriptor *tail_descriptor_last;
108 struct descriptor *prev_descriptor;
109
110 descriptor_callback_t callback;
111
112 struct tasklet_struct tasklet;
113};
114
115
116
ed568912
KH
117struct at_context {
118 struct fw_ohci *ohci;
119 dma_addr_t descriptor_bus;
120 dma_addr_t buffer_bus;
730c32f5 121 struct fw_packet *current_packet;
ed568912
KH
122
123 struct list_head list;
124
125 struct {
126 struct descriptor more;
127 __le32 header[4];
128 struct descriptor last;
129 } d;
130
72e318e0 131 u32 regs;
ed568912
KH
132
133 struct tasklet_struct tasklet;
134};
135
136#define it_header_sy(v) ((v) << 0)
137#define it_header_tcode(v) ((v) << 4)
138#define it_header_channel(v) ((v) << 8)
139#define it_header_tag(v) ((v) << 14)
140#define it_header_speed(v) ((v) << 16)
141#define it_header_data_length(v) ((v) << 16)
142
143struct iso_context {
144 struct fw_iso_context base;
30200739 145 struct context context;
ed568912
KH
146};
147
148#define CONFIG_ROM_SIZE 1024
149
150struct fw_ohci {
151 struct fw_card card;
152
153 __iomem char *registers;
154 dma_addr_t self_id_bus;
155 __le32 *self_id_cpu;
156 struct tasklet_struct bus_reset_tasklet;
e636fe25 157 int node_id;
ed568912
KH
158 int generation;
159 int request_generation;
160
161 /* Spinlock for accessing fw_ohci data. Never call out of
162 * this driver with this lock held. */
163 spinlock_t lock;
164 u32 self_id_buffer[512];
165
166 /* Config rom buffers */
167 __be32 *config_rom;
168 dma_addr_t config_rom_bus;
169 __be32 *next_config_rom;
170 dma_addr_t next_config_rom_bus;
171 u32 next_header;
172
173 struct ar_context ar_request_ctx;
174 struct ar_context ar_response_ctx;
175 struct at_context at_request_ctx;
176 struct at_context at_response_ctx;
177
178 u32 it_context_mask;
179 struct iso_context *it_context_list;
180 u32 ir_context_mask;
181 struct iso_context *ir_context_list;
182};
183
95688e97 184static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
185{
186 return container_of(card, struct fw_ohci, card);
187}
188
295e3feb
KH
189#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
190#define IR_CONTEXT_BUFFER_FILL 0x80000000
191#define IR_CONTEXT_ISOCH_HEADER 0x40000000
192#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
193#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
194#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
ed568912
KH
195
196#define CONTEXT_RUN 0x8000
197#define CONTEXT_WAKE 0x1000
198#define CONTEXT_DEAD 0x0800
199#define CONTEXT_ACTIVE 0x0400
200
201#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
202#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
203#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
204
205#define FW_OHCI_MAJOR 240
206#define OHCI1394_REGISTER_SIZE 0x800
207#define OHCI_LOOP_COUNT 500
208#define OHCI1394_PCI_HCI_Control 0x40
209#define SELF_ID_BUF_SIZE 0x800
32b46093 210#define OHCI_TCODE_PHY_PACKET 0x0e
0edeefd9 211
ed568912
KH
212static char ohci_driver_name[] = KBUILD_MODNAME;
213
95688e97 214static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
215{
216 writel(data, ohci->registers + offset);
217}
218
95688e97 219static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
220{
221 return readl(ohci->registers + offset);
222}
223
95688e97 224static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
225{
226 /* Do a dummy read to flush writes. */
227 reg_read(ohci, OHCI1394_Version);
228}
229
230static int
231ohci_update_phy_reg(struct fw_card *card, int addr,
232 int clear_bits, int set_bits)
233{
234 struct fw_ohci *ohci = fw_ohci(card);
235 u32 val, old;
236
237 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
238 msleep(2);
239 val = reg_read(ohci, OHCI1394_PhyControl);
240 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
241 fw_error("failed to set phy reg bits.\n");
242 return -EBUSY;
243 }
244
245 old = OHCI1394_PhyControl_ReadData(val);
246 old = (old & ~clear_bits) | set_bits;
247 reg_write(ohci, OHCI1394_PhyControl,
248 OHCI1394_PhyControl_Write(addr, old));
249
250 return 0;
251}
252
32b46093 253static int ar_context_add_page(struct ar_context *ctx)
ed568912 254{
32b46093
KH
255 struct device *dev = ctx->ohci->card.device;
256 struct ar_buffer *ab;
257 dma_addr_t ab_bus;
258 size_t offset;
259
260 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
261 if (ab == NULL)
262 return -ENOMEM;
263
264 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
265 if (dma_mapping_error(ab_bus)) {
266 free_page((unsigned long) ab);
267 return -ENOMEM;
268 }
269
270 memset(&ab->descriptor, 0, sizeof ab->descriptor);
271 ab->descriptor.control = cpu_to_le16(descriptor_input_more |
272 descriptor_status |
273 descriptor_branch_always);
274 offset = offsetof(struct ar_buffer, data);
275 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
276 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
277 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
278 ab->descriptor.branch_address = 0;
279
280 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
281
282 ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
283 ctx->last_buffer->next = ab;
284 ctx->last_buffer = ab;
285
72e318e0 286 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
ed568912 287 flush_writes(ctx->ohci);
32b46093
KH
288
289 return 0;
ed568912
KH
290}
291
32b46093 292static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 293{
ed568912 294 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
295 struct fw_packet p;
296 u32 status, length, tcode;
2639a6fb 297
32b46093
KH
298 p.header[0] = le32_to_cpu(buffer[0]);
299 p.header[1] = le32_to_cpu(buffer[1]);
300 p.header[2] = le32_to_cpu(buffer[2]);
2639a6fb
KH
301
302 tcode = (p.header[0] >> 4) & 0x0f;
303 switch (tcode) {
304 case TCODE_WRITE_QUADLET_REQUEST:
305 case TCODE_READ_QUADLET_RESPONSE:
32b46093 306 p.header[3] = (__force __u32) buffer[3];
2639a6fb 307 p.header_length = 16;
32b46093 308 p.payload_length = 0;
2639a6fb
KH
309 break;
310
2639a6fb 311 case TCODE_READ_BLOCK_REQUEST :
32b46093
KH
312 p.header[3] = le32_to_cpu(buffer[3]);
313 p.header_length = 16;
314 p.payload_length = 0;
315 break;
316
317 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
318 case TCODE_READ_BLOCK_RESPONSE:
319 case TCODE_LOCK_REQUEST:
320 case TCODE_LOCK_RESPONSE:
32b46093 321 p.header[3] = le32_to_cpu(buffer[3]);
2639a6fb 322 p.header_length = 16;
32b46093 323 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
324 break;
325
326 case TCODE_WRITE_RESPONSE:
327 case TCODE_READ_QUADLET_REQUEST:
32b46093 328 case OHCI_TCODE_PHY_PACKET:
2639a6fb 329 p.header_length = 12;
32b46093 330 p.payload_length = 0;
2639a6fb
KH
331 break;
332 }
ed568912 333
32b46093
KH
334 p.payload = (void *) buffer + p.header_length;
335
336 /* FIXME: What to do about evt_* errors? */
337 length = (p.header_length + p.payload_length + 3) / 4;
338 status = le32_to_cpu(buffer[length]);
339
340 p.ack = ((status >> 16) & 0x1f) - 16;
341 p.speed = (status >> 21) & 0x7;
342 p.timestamp = status & 0xffff;
343 p.generation = ohci->request_generation;
ed568912
KH
344
345 /* The OHCI bus reset handler synthesizes a phy packet with
346 * the new generation number when a bus reset happens (see
347 * section 8.4.2.3). This helps us determine when a request
348 * was received and make sure we send the response in the same
349 * generation. We only need this for requests; for responses
350 * we use the unique tlabel for finding the matching
351 * request. */
352
2639a6fb 353 if (p.ack + 16 == 0x09)
32b46093 354 ohci->request_generation = (buffer[2] >> 16) & 0xff;
ed568912 355 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 356 fw_core_handle_request(&ohci->card, &p);
ed568912 357 else
2639a6fb 358 fw_core_handle_response(&ohci->card, &p);
ed568912 359
32b46093
KH
360 return buffer + length + 1;
361}
ed568912 362
32b46093
KH
363static void ar_context_tasklet(unsigned long data)
364{
365 struct ar_context *ctx = (struct ar_context *)data;
366 struct fw_ohci *ohci = ctx->ohci;
367 struct ar_buffer *ab;
368 struct descriptor *d;
369 void *buffer, *end;
370
371 ab = ctx->current_buffer;
372 d = &ab->descriptor;
373
374 if (d->res_count == 0) {
375 size_t size, rest, offset;
376
377 /* This descriptor is finished and we may have a
378 * packet split across this and the next buffer. We
379 * reuse the page for reassembling the split packet. */
380
381 offset = offsetof(struct ar_buffer, data);
382 dma_unmap_single(ohci->card.device,
383 ab->descriptor.data_address - offset,
384 PAGE_SIZE, DMA_BIDIRECTIONAL);
385
386 buffer = ab;
387 ab = ab->next;
388 d = &ab->descriptor;
389 size = buffer + PAGE_SIZE - ctx->pointer;
390 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
391 memmove(buffer, ctx->pointer, size);
392 memcpy(buffer + size, ab->data, rest);
393 ctx->current_buffer = ab;
394 ctx->pointer = (void *) ab->data + rest;
395 end = buffer + size + rest;
396
397 while (buffer < end)
398 buffer = handle_ar_packet(ctx, buffer);
399
400 free_page((unsigned long)buffer);
401 ar_context_add_page(ctx);
402 } else {
403 buffer = ctx->pointer;
404 ctx->pointer = end =
405 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
406
407 while (buffer < end)
408 buffer = handle_ar_packet(ctx, buffer);
409 }
ed568912
KH
410}
411
412static int
72e318e0 413ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912 414{
32b46093 415 struct ar_buffer ab;
ed568912 416
72e318e0
KH
417 ctx->regs = regs;
418 ctx->ohci = ohci;
419 ctx->last_buffer = &ab;
ed568912
KH
420 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
421
32b46093
KH
422 ar_context_add_page(ctx);
423 ar_context_add_page(ctx);
424 ctx->current_buffer = ab.next;
425 ctx->pointer = ctx->current_buffer->data;
426
72e318e0
KH
427 reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
428 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
32b46093 429 flush_writes(ctx->ohci);
ed568912
KH
430
431 return 0;
432}
30200739
KH
433
434static void context_tasklet(unsigned long data)
435{
436 struct context *ctx = (struct context *) data;
437 struct fw_ohci *ohci = ctx->ohci;
438 struct descriptor *d, *last;
439 u32 address;
440 int z;
441
442 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
443 ctx->buffer_size, DMA_TO_DEVICE);
444
445 d = ctx->tail_descriptor;
446 last = ctx->tail_descriptor_last;
447
448 while (last->branch_address != 0) {
449 address = le32_to_cpu(last->branch_address);
450 z = address & 0xf;
451 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
452 last = (z == 2) ? d : d + z - 1;
453
454 if (!ctx->callback(ctx, d, last))
455 break;
456
457 ctx->tail_descriptor = d;
458 ctx->tail_descriptor_last = last;
459 }
460}
461
462static int
463context_init(struct context *ctx, struct fw_ohci *ohci,
464 size_t buffer_size, u32 regs,
465 descriptor_callback_t callback)
466{
467 ctx->ohci = ohci;
468 ctx->regs = regs;
469 ctx->buffer_size = buffer_size;
470 ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
471 if (ctx->buffer == NULL)
472 return -ENOMEM;
473
474 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
475 ctx->callback = callback;
476
477 ctx->buffer_bus =
478 dma_map_single(ohci->card.device, ctx->buffer,
479 buffer_size, DMA_TO_DEVICE);
480 if (dma_mapping_error(ctx->buffer_bus)) {
481 kfree(ctx->buffer);
482 return -ENOMEM;
483 }
484
485 ctx->head_descriptor = ctx->buffer;
486 ctx->prev_descriptor = ctx->buffer;
487 ctx->tail_descriptor = ctx->buffer;
488 ctx->tail_descriptor_last = ctx->buffer;
489
490 /* We put a dummy descriptor in the buffer that has a NULL
491 * branch address and looks like it's been sent. That way we
492 * have a descriptor to append DMA programs to. Also, the
493 * ring buffer invariant is that it always has at least one
494 * element so that head == tail means buffer full. */
495
496 memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
497 ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
498 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
499 ctx->head_descriptor++;
500
501 return 0;
502}
503
504 static void
505context_release(struct context *ctx)
506{
507 struct fw_card *card = &ctx->ohci->card;
508
509 dma_unmap_single(card->device, ctx->buffer_bus,
510 ctx->buffer_size, DMA_TO_DEVICE);
511 kfree(ctx->buffer);
512}
513
514static struct descriptor *
515context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
516{
517 struct descriptor *d, *tail, *end;
518
519 d = ctx->head_descriptor;
520 tail = ctx->tail_descriptor;
521 end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);
522
523 if (d + z <= tail) {
524 goto has_space;
525 } else if (d > tail && d + z <= end) {
526 goto has_space;
527 } else if (d > tail && ctx->buffer + z <= tail) {
528 d = ctx->buffer;
529 goto has_space;
530 }
531
532 return NULL;
533
534 has_space:
535 memset(d, 0, z * sizeof *d);
536 *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
537
538 return d;
539}
540
295e3feb 541static void context_run(struct context *ctx, u32 extra)
30200739
KH
542{
543 struct fw_ohci *ohci = ctx->ohci;
544
545 reg_write(ohci, command_ptr(ctx->regs),
546 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
547 reg_write(ohci, control_clear(ctx->regs), ~0);
295e3feb 548 reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
30200739
KH
549 flush_writes(ohci);
550}
551
552static void context_append(struct context *ctx,
553 struct descriptor *d, int z, int extra)
554{
555 dma_addr_t d_bus;
556
557 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
558
559 ctx->head_descriptor = d + z + extra;
560 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
561 ctx->prev_descriptor = z == 2 ? d : d + z - 1;
562
563 dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
564 ctx->buffer_size, DMA_TO_DEVICE);
565
566 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
567 flush_writes(ctx->ohci);
568}
569
570static void context_stop(struct context *ctx)
571{
572 u32 reg;
573
574 reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
575
576 reg = reg_read(ctx->ohci, control_set(ctx->regs));
577 if (reg & CONTEXT_ACTIVE)
578 fw_notify("Tried to stop context, but it is still active "
579 "(0x%08x).\n", reg);
580}
ed568912
KH
581
582static void
583do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
584{
585 struct fw_packet *p, *next;
586
587 list_for_each_entry_safe(p, next, list, link)
2639a6fb 588 p->callback(p, &ohci->card, p->ack);
ed568912
KH
589}
590
591static void
592complete_transmission(struct fw_packet *packet,
2639a6fb 593 int ack, struct list_head *list)
ed568912
KH
594{
595 list_move_tail(&packet->link, list);
2639a6fb 596 packet->ack = ack;
ed568912
KH
597}
598
599/* This function prepares the first packet in the context queue for
600 * transmission. Must always be called with the ochi->lock held to
601 * ensure proper generation handling and locking around packet queue
602 * manipulation. */
603static void
604at_context_setup_packet(struct at_context *ctx, struct list_head *list)
605{
606 struct fw_packet *packet;
607 struct fw_ohci *ohci = ctx->ohci;
608 int z, tcode;
609
610 packet = fw_packet(ctx->list.next);
611
612 memset(&ctx->d, 0, sizeof ctx->d);
613 if (packet->payload_length > 0) {
614 packet->payload_bus = dma_map_single(ohci->card.device,
615 packet->payload,
616 packet->payload_length,
617 DMA_TO_DEVICE);
82eff9db 618 if (dma_mapping_error(packet->payload_bus)) {
e5f49c3b 619 complete_transmission(packet, RCODE_SEND_ERROR, list);
ed568912
KH
620 return;
621 }
622
623 ctx->d.more.control =
624 cpu_to_le16(descriptor_output_more |
625 descriptor_key_immediate);
626 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
627 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
628 ctx->d.last.control =
629 cpu_to_le16(descriptor_output_last |
630 descriptor_irq_always |
631 descriptor_branch_always);
632 ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
633 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
634 z = 3;
635 } else {
636 ctx->d.more.control =
637 cpu_to_le16(descriptor_output_last |
638 descriptor_key_immediate |
639 descriptor_irq_always |
640 descriptor_branch_always);
641 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
642 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
643 z = 2;
644 }
645
646 /* The DMA format for asyncronous link packets is different
647 * from the IEEE1394 layout, so shift the fields around
648 * accordingly. If header_length is 8, it's a PHY packet, to
649 * which we need to prepend an extra quadlet. */
650 if (packet->header_length > 8) {
651 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
652 (packet->speed << 16));
653 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
654 (packet->header[0] & 0xffff0000));
655 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
656
657 tcode = (packet->header[0] >> 4) & 0x0f;
658 if (TCODE_IS_BLOCK_PACKET(tcode))
659 ctx->d.header[3] = cpu_to_le32(packet->header[3]);
660 else
661 ctx->d.header[3] = packet->header[3];
662 } else {
663 ctx->d.header[0] =
664 cpu_to_le32((OHCI1394_phy_tcode << 4) |
665 (packet->speed << 16));
666 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
667 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
668 ctx->d.more.req_count = cpu_to_le16(12);
669 }
670
671 /* FIXME: Document how the locking works. */
672 if (ohci->generation == packet->generation) {
72e318e0 673 reg_write(ctx->ohci, command_ptr(ctx->regs),
ed568912 674 ctx->descriptor_bus | z);
72e318e0 675 reg_write(ctx->ohci, control_set(ctx->regs),
ed568912 676 CONTEXT_RUN | CONTEXT_WAKE);
730c32f5 677 ctx->current_packet = packet;
ed568912
KH
678 } else {
679 /* We dont return error codes from this function; all
680 * transmission errors are reported through the
681 * callback. */
e5f49c3b 682 complete_transmission(packet, RCODE_GENERATION, list);
ed568912
KH
683 }
684}
685
686static void at_context_stop(struct at_context *ctx)
687{
688 u32 reg;
689
72e318e0 690 reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
ed568912 691
72e318e0 692 reg = reg_read(ctx->ohci, control_set(ctx->regs));
ed568912
KH
693 if (reg & CONTEXT_ACTIVE)
694 fw_notify("Tried to stop context, but it is still active "
695 "(0x%08x).\n", reg);
696}
697
698static void at_context_tasklet(unsigned long data)
699{
700 struct at_context *ctx = (struct at_context *)data;
701 struct fw_ohci *ohci = ctx->ohci;
702 struct fw_packet *packet;
703 LIST_HEAD(list);
704 unsigned long flags;
705 int evt;
706
707 spin_lock_irqsave(&ohci->lock, flags);
708
709 packet = fw_packet(ctx->list.next);
710
711 at_context_stop(ctx);
712
730c32f5
KH
713 /* If the head of the list isn't the packet that just got
714 * transmitted, the packet got cancelled before we finished
715 * transmitting it. */
716 if (ctx->current_packet != packet)
717 goto skip_to_next;
718
ed568912
KH
719 if (packet->payload_length > 0) {
720 dma_unmap_single(ohci->card.device, packet->payload_bus,
721 packet->payload_length, DMA_TO_DEVICE);
722 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
723 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
724 }
725 else {
726 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
727 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
728 }
729
730 if (evt < 16) {
731 switch (evt) {
732 case OHCI1394_evt_timeout:
733 /* Async response transmit timed out. */
e5f49c3b 734 complete_transmission(packet, RCODE_CANCELLED, &list);
ed568912
KH
735 break;
736
737 case OHCI1394_evt_flushed:
738 /* The packet was flushed should give same
739 * error as when we try to use a stale
740 * generation count. */
e5f49c3b
KH
741 complete_transmission(packet,
742 RCODE_GENERATION, &list);
ed568912
KH
743 break;
744
745 case OHCI1394_evt_missing_ack:
e5f49c3b
KH
746 /* Using a valid (current) generation count,
747 * but the node is not on the bus or not
748 * sending acks. */
749 complete_transmission(packet, RCODE_NO_ACK, &list);
ed568912
KH
750 break;
751
752 default:
e5f49c3b 753 complete_transmission(packet, RCODE_SEND_ERROR, &list);
ed568912
KH
754 break;
755 }
756 } else
757 complete_transmission(packet, evt - 16, &list);
758
730c32f5 759 skip_to_next:
ed568912
KH
760 /* If more packets are queued, set up the next one. */
761 if (!list_empty(&ctx->list))
762 at_context_setup_packet(ctx, &list);
763
764 spin_unlock_irqrestore(&ohci->lock, flags);
765
766 do_packet_callbacks(ohci, &list);
767}
768
769static int
72e318e0 770at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912
KH
771{
772 INIT_LIST_HEAD(&ctx->list);
773
774 ctx->descriptor_bus =
775 dma_map_single(ohci->card.device, &ctx->d,
776 sizeof ctx->d, DMA_TO_DEVICE);
82eff9db 777 if (dma_mapping_error(ctx->descriptor_bus))
ed568912
KH
778 return -ENOMEM;
779
72e318e0
KH
780 ctx->regs = regs;
781 ctx->ohci = ohci;
ed568912
KH
782
783 tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
784
785 return 0;
786}
787
e636fe25 788#define header_get_destination(q) (((q) >> 16) & 0xffff)
93c4cceb
KH
789#define header_get_tcode(q) (((q) >> 4) & 0x0f)
790#define header_get_offset_high(q) (((q) >> 0) & 0xffff)
791#define header_get_data_length(q) (((q) >> 16) & 0xffff)
792#define header_get_extended_tcode(q) (((q) >> 0) & 0xffff)
793
794static void
795handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
796{
797 struct fw_packet response;
798 int tcode, length, i;
799
800 tcode = header_get_tcode(packet->header[0]);
801 if (TCODE_IS_BLOCK_PACKET(tcode))
802 length = header_get_data_length(packet->header[3]);
803 else
804 length = 4;
805
806 i = csr - CSR_CONFIG_ROM;
807 if (i + length > CONFIG_ROM_SIZE) {
808 fw_fill_response(&response, packet->header,
809 RCODE_ADDRESS_ERROR, NULL, 0);
810 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
811 fw_fill_response(&response, packet->header,
812 RCODE_TYPE_ERROR, NULL, 0);
813 } else {
814 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
815 (void *) ohci->config_rom + i, length);
816 }
817
818 fw_core_handle_response(&ohci->card, &response);
819}
820
821static void
822handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
823{
824 struct fw_packet response;
825 int tcode, length, ext_tcode, sel;
826 __be32 *payload, lock_old;
827 u32 lock_arg, lock_data;
828
829 tcode = header_get_tcode(packet->header[0]);
830 length = header_get_data_length(packet->header[3]);
831 payload = packet->payload;
832 ext_tcode = header_get_extended_tcode(packet->header[3]);
833
834 if (tcode == TCODE_LOCK_REQUEST &&
835 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
836 lock_arg = be32_to_cpu(payload[0]);
837 lock_data = be32_to_cpu(payload[1]);
838 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
839 lock_arg = 0;
840 lock_data = 0;
841 } else {
842 fw_fill_response(&response, packet->header,
843 RCODE_TYPE_ERROR, NULL, 0);
844 goto out;
845 }
846
847 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
848 reg_write(ohci, OHCI1394_CSRData, lock_data);
849 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
850 reg_write(ohci, OHCI1394_CSRControl, sel);
851
852 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
853 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
854 else
855 fw_notify("swap not done yet\n");
856
857 fw_fill_response(&response, packet->header,
858 RCODE_COMPLETE, &lock_old, sizeof lock_old);
859 out:
860 fw_core_handle_response(&ohci->card, &response);
861}
862
863static void
864handle_local_request(struct at_context *ctx, struct fw_packet *packet)
865{
866 u64 offset;
867 u32 csr;
868
869 packet->ack = ACK_PENDING;
870 packet->callback(packet, &ctx->ohci->card, packet->ack);
871
872 offset =
873 ((unsigned long long)
874 header_get_offset_high(packet->header[1]) << 32) |
875 packet->header[2];
876 csr = offset - CSR_REGISTER_BASE;
877
878 /* Handle config rom reads. */
879 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
880 handle_local_rom(ctx->ohci, packet, csr);
881 else switch (csr) {
882 case CSR_BUS_MANAGER_ID:
883 case CSR_BANDWIDTH_AVAILABLE:
884 case CSR_CHANNELS_AVAILABLE_HI:
885 case CSR_CHANNELS_AVAILABLE_LO:
886 handle_local_lock(ctx->ohci, packet, csr);
887 break;
888 default:
889 if (ctx == &ctx->ohci->at_request_ctx)
890 fw_core_handle_request(&ctx->ohci->card, packet);
891 else
892 fw_core_handle_response(&ctx->ohci->card, packet);
893 break;
894 }
895}
e636fe25 896
ed568912
KH
897static void
898at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
899{
900 LIST_HEAD(list);
901 unsigned long flags;
ed568912
KH
902
903 spin_lock_irqsave(&ctx->ohci->lock, flags);
904
e636fe25
KH
905 if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
906 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
907 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
908 handle_local_request(ctx, packet);
909 return;
e636fe25 910 }
ed568912 911
93c4cceb
KH
912 list_add_tail(&packet->link, &ctx->list);
913 if (ctx->list.next == &packet->link)
914 at_context_setup_packet(ctx, &list);
915
ed568912
KH
916 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
917
918 do_packet_callbacks(ctx->ohci, &list);
919}
920
921static void bus_reset_tasklet(unsigned long data)
922{
923 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 924 int self_id_count, i, j, reg;
ed568912
KH
925 int generation, new_generation;
926 unsigned long flags;
927
928 reg = reg_read(ohci, OHCI1394_NodeID);
929 if (!(reg & OHCI1394_NodeID_idValid)) {
930 fw_error("node ID not valid, new bus reset in progress\n");
931 return;
932 }
e636fe25 933 ohci->node_id = reg & 0xffff;
ed568912
KH
934
935 /* The count in the SelfIDCount register is the number of
936 * bytes in the self ID receive buffer. Since we also receive
937 * the inverted quadlets and a header quadlet, we shift one
938 * bit extra to get the actual number of self IDs. */
939
940 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
941 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
942
943 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
944 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
945 fw_error("inconsistent self IDs\n");
946 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
947 }
948
949 /* Check the consistency of the self IDs we just read. The
950 * problem we face is that a new bus reset can start while we
951 * read out the self IDs from the DMA buffer. If this happens,
952 * the DMA buffer will be overwritten with new self IDs and we
953 * will read out inconsistent data. The OHCI specification
954 * (section 11.2) recommends a technique similar to
955 * linux/seqlock.h, where we remember the generation of the
956 * self IDs in the buffer before reading them out and compare
957 * it to the current generation after reading them out. If
958 * the two generations match we know we have a consistent set
959 * of self IDs. */
960
961 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
962 if (new_generation != generation) {
963 fw_notify("recursive bus reset detected, "
964 "discarding self ids\n");
965 return;
966 }
967
968 /* FIXME: Document how the locking works. */
969 spin_lock_irqsave(&ohci->lock, flags);
970
971 ohci->generation = generation;
972 at_context_stop(&ohci->at_request_ctx);
973 at_context_stop(&ohci->at_response_ctx);
974 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
975
976 /* This next bit is unrelated to the AT context stuff but we
977 * have to do it under the spinlock also. If a new config rom
978 * was set up before this reset, the old one is now no longer
979 * in use and we can free it. Update the config rom pointers
980 * to point to the current config rom and clear the
981 * next_config_rom pointer so a new udpate can take place. */
982
983 if (ohci->next_config_rom != NULL) {
984 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
985 ohci->config_rom, ohci->config_rom_bus);
986 ohci->config_rom = ohci->next_config_rom;
987 ohci->config_rom_bus = ohci->next_config_rom_bus;
988 ohci->next_config_rom = NULL;
989
990 /* Restore config_rom image and manually update
991 * config_rom registers. Writing the header quadlet
992 * will indicate that the config rom is ready, so we
993 * do that last. */
994 reg_write(ohci, OHCI1394_BusOptions,
995 be32_to_cpu(ohci->config_rom[2]));
996 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
997 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
998 }
999
1000 spin_unlock_irqrestore(&ohci->lock, flags);
1001
e636fe25 1002 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
1003 self_id_count, ohci->self_id_buffer);
1004}
1005
1006static irqreturn_t irq_handler(int irq, void *data)
1007{
1008 struct fw_ohci *ohci = data;
1009 u32 event, iso_event;
1010 int i;
1011
1012 event = reg_read(ohci, OHCI1394_IntEventClear);
1013
1014 if (!event)
1015 return IRQ_NONE;
1016
1017 reg_write(ohci, OHCI1394_IntEventClear, event);
1018
1019 if (event & OHCI1394_selfIDComplete)
1020 tasklet_schedule(&ohci->bus_reset_tasklet);
1021
1022 if (event & OHCI1394_RQPkt)
1023 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1024
1025 if (event & OHCI1394_RSPkt)
1026 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1027
1028 if (event & OHCI1394_reqTxComplete)
1029 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1030
1031 if (event & OHCI1394_respTxComplete)
1032 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1033
c889475f 1034 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
ed568912
KH
1035 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1036
1037 while (iso_event) {
1038 i = ffs(iso_event) - 1;
30200739 1039 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
ed568912
KH
1040 iso_event &= ~(1 << i);
1041 }
1042
c889475f 1043 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
ed568912
KH
1044 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1045
1046 while (iso_event) {
1047 i = ffs(iso_event) - 1;
30200739 1048 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
ed568912
KH
1049 iso_event &= ~(1 << i);
1050 }
1051
1052 return IRQ_HANDLED;
1053}
1054
1055static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1056{
1057 struct fw_ohci *ohci = fw_ohci(card);
1058 struct pci_dev *dev = to_pci_dev(card->device);
1059
1060 /* When the link is not yet enabled, the atomic config rom
1061 * update mechanism described below in ohci_set_config_rom()
1062 * is not active. We have to update ConfigRomHeader and
1063 * BusOptions manually, and the write to ConfigROMmap takes
1064 * effect immediately. We tie this to the enabling of the
1065 * link, so we have a valid config rom before enabling - the
1066 * OHCI requires that ConfigROMhdr and BusOptions have valid
1067 * values before enabling.
1068 *
1069 * However, when the ConfigROMmap is written, some controllers
1070 * always read back quadlets 0 and 2 from the config rom to
1071 * the ConfigRomHeader and BusOptions registers on bus reset.
1072 * They shouldn't do that in this initial case where the link
1073 * isn't enabled. This means we have to use the same
1074 * workaround here, setting the bus header to 0 and then write
1075 * the right values in the bus reset tasklet.
1076 */
1077
1078 ohci->next_config_rom =
1079 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1080 &ohci->next_config_rom_bus, GFP_KERNEL);
1081 if (ohci->next_config_rom == NULL)
1082 return -ENOMEM;
1083
1084 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1085 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1086
1087 ohci->next_header = config_rom[0];
1088 ohci->next_config_rom[0] = 0;
1089 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1090 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1091 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1092
1093 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1094
1095 if (request_irq(dev->irq, irq_handler,
1096 SA_SHIRQ, ohci_driver_name, ohci)) {
1097 fw_error("Failed to allocate shared interrupt %d.\n",
1098 dev->irq);
1099 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1100 ohci->config_rom, ohci->config_rom_bus);
1101 return -EIO;
1102 }
1103
1104 reg_write(ohci, OHCI1394_HCControlSet,
1105 OHCI1394_HCControl_linkEnable |
1106 OHCI1394_HCControl_BIBimageValid);
1107 flush_writes(ohci);
1108
1109 /* We are ready to go, initiate bus reset to finish the
1110 * initialization. */
1111
1112 fw_core_initiate_bus_reset(&ohci->card, 1);
1113
1114 return 0;
1115}
1116
1117static int
1118ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1119{
1120 struct fw_ohci *ohci;
1121 unsigned long flags;
1122 int retval = 0;
1123 __be32 *next_config_rom;
1124 dma_addr_t next_config_rom_bus;
1125
1126 ohci = fw_ohci(card);
1127
1128 /* When the OHCI controller is enabled, the config rom update
1129 * mechanism is a bit tricky, but easy enough to use. See
1130 * section 5.5.6 in the OHCI specification.
1131 *
1132 * The OHCI controller caches the new config rom address in a
1133 * shadow register (ConfigROMmapNext) and needs a bus reset
1134 * for the changes to take place. When the bus reset is
1135 * detected, the controller loads the new values for the
1136 * ConfigRomHeader and BusOptions registers from the specified
1137 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1138 * shadow register. All automatically and atomically.
1139 *
1140 * Now, there's a twist to this story. The automatic load of
1141 * ConfigRomHeader and BusOptions doesn't honor the
1142 * noByteSwapData bit, so with a be32 config rom, the
1143 * controller will load be32 values in to these registers
1144 * during the atomic update, even on litte endian
1145 * architectures. The workaround we use is to put a 0 in the
1146 * header quadlet; 0 is endian agnostic and means that the
1147 * config rom isn't ready yet. In the bus reset tasklet we
1148 * then set up the real values for the two registers.
1149 *
1150 * We use ohci->lock to avoid racing with the code that sets
1151 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1152 */
1153
1154 next_config_rom =
1155 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1156 &next_config_rom_bus, GFP_KERNEL);
1157 if (next_config_rom == NULL)
1158 return -ENOMEM;
1159
1160 spin_lock_irqsave(&ohci->lock, flags);
1161
1162 if (ohci->next_config_rom == NULL) {
1163 ohci->next_config_rom = next_config_rom;
1164 ohci->next_config_rom_bus = next_config_rom_bus;
1165
1166 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1167 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1168 length * 4);
1169
1170 ohci->next_header = config_rom[0];
1171 ohci->next_config_rom[0] = 0;
1172
1173 reg_write(ohci, OHCI1394_ConfigROMmap,
1174 ohci->next_config_rom_bus);
1175 } else {
1176 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1177 next_config_rom, next_config_rom_bus);
1178 retval = -EBUSY;
1179 }
1180
1181 spin_unlock_irqrestore(&ohci->lock, flags);
1182
1183 /* Now initiate a bus reset to have the changes take
1184 * effect. We clean up the old config rom memory and DMA
1185 * mappings in the bus reset tasklet, since the OHCI
1186 * controller could need to access it before the bus reset
1187 * takes effect. */
1188 if (retval == 0)
1189 fw_core_initiate_bus_reset(&ohci->card, 1);
1190
1191 return retval;
1192}
1193
1194static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1195{
1196 struct fw_ohci *ohci = fw_ohci(card);
1197
1198 at_context_transmit(&ohci->at_request_ctx, packet);
1199}
1200
1201static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1202{
1203 struct fw_ohci *ohci = fw_ohci(card);
1204
1205 at_context_transmit(&ohci->at_response_ctx, packet);
1206}
1207
730c32f5
KH
1208static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1209{
1210 struct fw_ohci *ohci = fw_ohci(card);
1211 LIST_HEAD(list);
1212 unsigned long flags;
1213
1214 spin_lock_irqsave(&ohci->lock, flags);
1215
1216 if (packet->ack == 0) {
1217 fw_notify("cancelling packet %p (header[0]=%08x)\n",
1218 packet, packet->header[0]);
1219
1220 complete_transmission(packet, RCODE_CANCELLED, &list);
1221 }
1222
1223 spin_unlock_irqrestore(&ohci->lock, flags);
1224
1225 do_packet_callbacks(ohci, &list);
1226
1227 /* Return success if we actually cancelled something. */
1228 return list_empty(&list) ? -ENOENT : 0;
1229}
1230
ed568912
KH
1231static int
1232ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1233{
1234 struct fw_ohci *ohci = fw_ohci(card);
1235 unsigned long flags;
907293d7 1236 int n, retval = 0;
ed568912 1237
907293d7
SR
1238 /* FIXME: Make sure this bitmask is cleared when we clear the busReset
1239 * interrupt bit. Clear physReqResourceAllBuses on bus reset. */
ed568912
KH
1240
1241 spin_lock_irqsave(&ohci->lock, flags);
1242
1243 if (ohci->generation != generation) {
1244 retval = -ESTALE;
1245 goto out;
1246 }
1247
907293d7
SR
1248 /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1249 * enabled for _all_ nodes on remote buses. */
1250
1251 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1252 if (n < 32)
1253 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1254 else
1255 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1256
ed568912 1257 flush_writes(ohci);
ed568912 1258 out:
6cad95fe 1259 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912
KH
1260 return retval;
1261}
1262
295e3feb
KH
1263static int handle_ir_packet(struct context *context,
1264 struct descriptor *d,
1265 struct descriptor *last)
ed568912 1266{
295e3feb
KH
1267 struct iso_context *ctx =
1268 container_of(context, struct iso_context, context);
1269 struct db_descriptor *db = (struct db_descriptor *) d;
1270
1271 if (db->first_res_count > 0 && db->second_res_count > 0)
1272 /* This descriptor isn't done yet, stop iteration. */
1273 return 0;
1274
1275 if (le16_to_cpu(db->control) & descriptor_irq_always)
1276 /* FIXME: we should pass payload address here. */
1277 ctx->base.callback(&ctx->base,
1278 0, 0,
1279 ctx->base.callback_data);
ed568912 1280
295e3feb 1281 return 1;
ed568912
KH
1282}
1283
1284#define ISO_BUFFER_SIZE (64 * 1024)
1285
30200739
KH
1286static int handle_it_packet(struct context *context,
1287 struct descriptor *d,
1288 struct descriptor *last)
ed568912 1289{
30200739
KH
1290 struct iso_context *ctx =
1291 container_of(context, struct iso_context, context);
1292
1293 if (last->transfer_status == 0)
1294 /* This descriptor isn't done yet, stop iteration. */
1295 return 0;
1296
1297 if (le16_to_cpu(last->control) & descriptor_irq_always)
1298 ctx->base.callback(&ctx->base,
1299 0, le16_to_cpu(last->res_count),
1300 ctx->base.callback_data);
1301
1302 return 1;
ed568912
KH
1303}
1304
30200739
KH
1305static struct fw_iso_context *
1306ohci_allocate_iso_context(struct fw_card *card, int type)
ed568912
KH
1307{
1308 struct fw_ohci *ohci = fw_ohci(card);
1309 struct iso_context *ctx, *list;
30200739 1310 descriptor_callback_t callback;
295e3feb 1311 u32 *mask, regs;
ed568912 1312 unsigned long flags;
30200739 1313 int index, retval;
ed568912
KH
1314
1315 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1316 mask = &ohci->it_context_mask;
1317 list = ohci->it_context_list;
30200739 1318 callback = handle_it_packet;
ed568912 1319 } else {
295e3feb
KH
1320 mask = &ohci->ir_context_mask;
1321 list = ohci->ir_context_list;
1322 callback = handle_ir_packet;
ed568912
KH
1323 }
1324
1325 spin_lock_irqsave(&ohci->lock, flags);
1326 index = ffs(*mask) - 1;
1327 if (index >= 0)
1328 *mask &= ~(1 << index);
1329 spin_unlock_irqrestore(&ohci->lock, flags);
1330
1331 if (index < 0)
1332 return ERR_PTR(-EBUSY);
1333
295e3feb
KH
1334 if (type == FW_ISO_CONTEXT_TRANSMIT)
1335 regs = OHCI1394_IsoXmitContextBase(index);
1336 else
1337 regs = OHCI1394_IsoRcvContextBase(index);
1338
ed568912
KH
1339 ctx = &list[index];
1340 memset(ctx, 0, sizeof *ctx);
30200739 1341 retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
295e3feb 1342 regs, callback);
30200739
KH
1343 if (retval < 0) {
1344 spin_lock_irqsave(&ohci->lock, flags);
1345 *mask |= 1 << index;
1346 spin_unlock_irqrestore(&ohci->lock, flags);
1347 return ERR_PTR(retval);
1348 }
ed568912
KH
1349
1350 return &ctx->base;
1351}
1352
69cdb726 1353static int ohci_start_iso(struct fw_iso_context *base, s32 cycle)
ed568912 1354{
30200739
KH
1355 struct iso_context *ctx = container_of(base, struct iso_context, base);
1356 struct fw_ohci *ohci = ctx->context.ohci;
ed568912
KH
1357 u32 cycle_match = 0;
1358 int index;
1359
295e3feb
KH
1360 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1361 index = ctx - ohci->it_context_list;
1362 if (cycle > 0)
1363 cycle_match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1364 (cycle & 0x7fff) << 16;
1365
1366 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1367 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1368 context_run(&ctx->context, cycle_match);
1369 } else {
1370 index = ctx - ohci->ir_context_list;
ed568912 1371
295e3feb
KH
1372 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1373 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1374 reg_write(ohci, context_match(ctx->context.regs),
1375 0xf0000000 | ctx->base.channel);
1376 context_run(&ctx->context, IR_CONTEXT_DUAL_BUFFER_MODE);
1377 }
ed568912
KH
1378
1379 return 0;
1380}
1381
1382static void ohci_free_iso_context(struct fw_iso_context *base)
1383{
1384 struct fw_ohci *ohci = fw_ohci(base->card);
30200739 1385 struct iso_context *ctx = container_of(base, struct iso_context, base);
ed568912
KH
1386 unsigned long flags;
1387 int index;
1388
ed568912
KH
1389 spin_lock_irqsave(&ohci->lock, flags);
1390
1391 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1392 index = ctx - ohci->it_context_list;
1393 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1394 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1395 ohci->it_context_mask |= 1 << index;
1396 } else {
1397 index = ctx - ohci->ir_context_list;
1398 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1399 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1400 ohci->ir_context_mask |= 1 << index;
1401 }
1402 flush_writes(ohci);
1403
30200739 1404 context_release(&ctx->context);
ed568912
KH
1405
1406 spin_unlock_irqrestore(&ohci->lock, flags);
1407}
1408
1409static int
295e3feb
KH
1410ohci_queue_iso_transmit(struct fw_iso_context *base,
1411 struct fw_iso_packet *packet,
1412 struct fw_iso_buffer *buffer,
1413 unsigned long payload)
ed568912 1414{
30200739
KH
1415 struct iso_context *ctx = container_of(base, struct iso_context, base);
1416 struct descriptor *d, *last, *pd;
ed568912
KH
1417 struct fw_iso_packet *p;
1418 __le32 *header;
9aad8125 1419 dma_addr_t d_bus, page_bus;
ed568912
KH
1420 u32 z, header_z, payload_z, irq;
1421 u32 payload_index, payload_end_index, next_page_index;
30200739 1422 int page, end_page, i, length, offset;
ed568912
KH
1423
1424 /* FIXME: Cycle lost behavior should be configurable: lose
1425 * packet, retransmit or terminate.. */
1426
1427 p = packet;
9aad8125 1428 payload_index = payload;
ed568912
KH
1429
1430 if (p->skip)
1431 z = 1;
1432 else
1433 z = 2;
1434 if (p->header_length > 0)
1435 z++;
1436
1437 /* Determine the first page the payload isn't contained in. */
1438 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1439 if (p->payload_length > 0)
1440 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1441 else
1442 payload_z = 0;
1443
1444 z += payload_z;
1445
1446 /* Get header size in number of descriptors. */
1447 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1448
30200739
KH
1449 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1450 if (d == NULL)
1451 return -ENOMEM;
ed568912
KH
1452
1453 if (!p->skip) {
1454 d[0].control = cpu_to_le16(descriptor_key_immediate);
1455 d[0].req_count = cpu_to_le16(8);
1456
1457 header = (__le32 *) &d[1];
1458 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1459 it_header_tag(p->tag) |
1460 it_header_tcode(TCODE_STREAM_DATA) |
1461 it_header_channel(ctx->base.channel) |
1462 it_header_speed(ctx->base.speed));
1463 header[1] =
1464 cpu_to_le32(it_header_data_length(p->header_length +
1465 p->payload_length));
1466 }
1467
1468 if (p->header_length > 0) {
1469 d[2].req_count = cpu_to_le16(p->header_length);
1470 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1471 memcpy(&d[z], p->header, p->header_length);
1472 }
1473
1474 pd = d + z - payload_z;
1475 payload_end_index = payload_index + p->payload_length;
1476 for (i = 0; i < payload_z; i++) {
1477 page = payload_index >> PAGE_SHIFT;
1478 offset = payload_index & ~PAGE_MASK;
1479 next_page_index = (page + 1) << PAGE_SHIFT;
1480 length =
1481 min(next_page_index, payload_end_index) - payload_index;
1482 pd[i].req_count = cpu_to_le16(length);
9aad8125
KH
1483
1484 page_bus = page_private(buffer->pages[page]);
1485 pd[i].data_address = cpu_to_le32(page_bus + offset);
ed568912
KH
1486
1487 payload_index += length;
1488 }
1489
ed568912
KH
1490 if (p->interrupt)
1491 irq = descriptor_irq_always;
1492 else
1493 irq = descriptor_no_irq;
1494
30200739 1495 last = z == 2 ? d : d + z - 1;
cbb59da7
KH
1496 last->control |= cpu_to_le16(descriptor_output_last |
1497 descriptor_status |
1498 descriptor_branch_always |
1499 irq);
ed568912 1500
30200739 1501 context_append(&ctx->context, d, z, header_z);
ed568912
KH
1502
1503 return 0;
1504}
1505
295e3feb
KH
1506static int
1507ohci_queue_iso_receive(struct fw_iso_context *base,
1508 struct fw_iso_packet *packet,
1509 struct fw_iso_buffer *buffer,
1510 unsigned long payload)
1511{
1512 struct iso_context *ctx = container_of(base, struct iso_context, base);
1513 struct db_descriptor *db = NULL;
1514 struct descriptor *d;
1515 struct fw_iso_packet *p;
1516 dma_addr_t d_bus, page_bus;
1517 u32 z, header_z, length, rest;
1518 int page, offset;
1519
1520 /* FIXME: Cycle lost behavior should be configurable: lose
1521 * packet, retransmit or terminate.. */
1522
1523 p = packet;
1524 z = 2;
1525
1526 /* Get header size in number of descriptors. */
1527 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1528 page = payload >> PAGE_SHIFT;
1529 offset = payload & ~PAGE_MASK;
1530 rest = p->payload_length;
1531
1532 /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1533 /* FIXME: handle descriptor_wait */
1534 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1535 while (rest > 0) {
1536 d = context_get_descriptors(&ctx->context,
1537 z + header_z, &d_bus);
1538 if (d == NULL)
1539 return -ENOMEM;
1540
1541 db = (struct db_descriptor *) d;
1542 db->control = cpu_to_le16(descriptor_status |
1543 descriptor_branch_always);
1544 db->first_size = cpu_to_le16(ctx->base.header_size);
1545 db->first_req_count = cpu_to_le16(p->header_length);
1546 db->second_req_count = cpu_to_le16(p->payload_length);
1547 db->first_res_count = cpu_to_le16(db->first_req_count);
1548 db->second_res_count = cpu_to_le16(db->second_req_count);
1549
1550 db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
1551
1552 if (offset + rest < PAGE_SIZE)
1553 length = rest;
1554 else
1555 length = PAGE_SIZE - offset;
1556
1557 page_bus = page_private(buffer->pages[page]);
1558 db->second_buffer = cpu_to_le32(page_bus + offset);
1559
1560 context_append(&ctx->context, d, z, header_z);
1561 offset = (offset + length) & ~PAGE_MASK;
1562 rest -= length;
1563 page++;
1564 }
1565
1566 if (p->interrupt)
1567 db->control |= cpu_to_le16(descriptor_irq_always);
1568
1569 return 0;
1570 }
1571
1572static int
1573ohci_queue_iso(struct fw_iso_context *base,
1574 struct fw_iso_packet *packet,
1575 struct fw_iso_buffer *buffer,
1576 unsigned long payload)
1577{
1578 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1579 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1580 else
1581 return ohci_queue_iso_receive(base, packet, buffer, payload);
1582}
1583
21ebcd12 1584static const struct fw_card_driver ohci_driver = {
ed568912
KH
1585 .name = ohci_driver_name,
1586 .enable = ohci_enable,
1587 .update_phy_reg = ohci_update_phy_reg,
1588 .set_config_rom = ohci_set_config_rom,
1589 .send_request = ohci_send_request,
1590 .send_response = ohci_send_response,
730c32f5 1591 .cancel_packet = ohci_cancel_packet,
ed568912
KH
1592 .enable_phys_dma = ohci_enable_phys_dma,
1593
1594 .allocate_iso_context = ohci_allocate_iso_context,
1595 .free_iso_context = ohci_free_iso_context,
1596 .queue_iso = ohci_queue_iso,
69cdb726 1597 .start_iso = ohci_start_iso,
ed568912
KH
1598};
1599
1600static int software_reset(struct fw_ohci *ohci)
1601{
1602 int i;
1603
1604 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1605
1606 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1607 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1608 OHCI1394_HCControl_softReset) == 0)
1609 return 0;
1610 msleep(1);
1611 }
1612
1613 return -EBUSY;
1614}
1615
1616/* ---------- pci subsystem interface ---------- */
1617
1618enum {
1619 CLEANUP_SELF_ID,
1620 CLEANUP_REGISTERS,
1621 CLEANUP_IOMEM,
1622 CLEANUP_DISABLE,
1623 CLEANUP_PUT_CARD,
1624};
1625
1626static int cleanup(struct fw_ohci *ohci, int stage, int code)
1627{
1628 struct pci_dev *dev = to_pci_dev(ohci->card.device);
1629
1630 switch (stage) {
1631 case CLEANUP_SELF_ID:
1632 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1633 ohci->self_id_cpu, ohci->self_id_bus);
1634 case CLEANUP_REGISTERS:
1635 kfree(ohci->it_context_list);
1636 kfree(ohci->ir_context_list);
1637 pci_iounmap(dev, ohci->registers);
1638 case CLEANUP_IOMEM:
1639 pci_release_region(dev, 0);
1640 case CLEANUP_DISABLE:
1641 pci_disable_device(dev);
1642 case CLEANUP_PUT_CARD:
1643 fw_card_put(&ohci->card);
1644 }
1645
1646 return code;
1647}
1648
1649static int __devinit
1650pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1651{
1652 struct fw_ohci *ohci;
1653 u32 bus_options, max_receive, link_speed;
1654 u64 guid;
1655 int error_code;
1656 size_t size;
1657
1658 ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1659 if (ohci == NULL) {
1660 fw_error("Could not malloc fw_ohci data.\n");
1661 return -ENOMEM;
1662 }
1663
1664 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1665
1666 if (pci_enable_device(dev)) {
1667 fw_error("Failed to enable OHCI hardware.\n");
1668 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1669 }
1670
1671 pci_set_master(dev);
1672 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1673 pci_set_drvdata(dev, ohci);
1674
1675 spin_lock_init(&ohci->lock);
1676
1677 tasklet_init(&ohci->bus_reset_tasklet,
1678 bus_reset_tasklet, (unsigned long)ohci);
1679
1680 if (pci_request_region(dev, 0, ohci_driver_name)) {
1681 fw_error("MMIO resource unavailable\n");
1682 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1683 }
1684
1685 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1686 if (ohci->registers == NULL) {
1687 fw_error("Failed to remap registers\n");
1688 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1689 }
1690
1691 if (software_reset(ohci)) {
1692 fw_error("Failed to reset ohci card.\n");
1693 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1694 }
1695
1696 /* Now enable LPS, which we need in order to start accessing
1697 * most of the registers. In fact, on some cards (ALI M5251),
1698 * accessing registers in the SClk domain without LPS enabled
1699 * will lock up the machine. Wait 50msec to make sure we have
1700 * full link enabled. */
1701 reg_write(ohci, OHCI1394_HCControlSet,
1702 OHCI1394_HCControl_LPS |
1703 OHCI1394_HCControl_postedWriteEnable);
1704 flush_writes(ohci);
1705 msleep(50);
1706
1707 reg_write(ohci, OHCI1394_HCControlClear,
1708 OHCI1394_HCControl_noByteSwapData);
1709
1710 reg_write(ohci, OHCI1394_LinkControlSet,
1711 OHCI1394_LinkControl_rcvSelfID |
1712 OHCI1394_LinkControl_cycleTimerEnable |
1713 OHCI1394_LinkControl_cycleMaster);
1714
1715 ar_context_init(&ohci->ar_request_ctx, ohci,
1716 OHCI1394_AsReqRcvContextControlSet);
1717
1718 ar_context_init(&ohci->ar_response_ctx, ohci,
1719 OHCI1394_AsRspRcvContextControlSet);
1720
1721 at_context_init(&ohci->at_request_ctx, ohci,
1722 OHCI1394_AsReqTrContextControlSet);
1723
1724 at_context_init(&ohci->at_response_ctx, ohci,
1725 OHCI1394_AsRspTrContextControlSet);
1726
1727 reg_write(ohci, OHCI1394_ATRetries,
1728 OHCI1394_MAX_AT_REQ_RETRIES |
1729 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1730 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1731
1732 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1733 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1734 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1735 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1736 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1737
1738 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1739 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1740 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1741 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1742 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1743
1744 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1745 fw_error("Out of memory for it/ir contexts.\n");
1746 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1747 }
1748
1749 /* self-id dma buffer allocation */
1750 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1751 SELF_ID_BUF_SIZE,
1752 &ohci->self_id_bus,
1753 GFP_KERNEL);
1754 if (ohci->self_id_cpu == NULL) {
1755 fw_error("Out of memory for self ID buffer.\n");
1756 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1757 }
1758
1759 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1760 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1761 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1762 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1763 reg_write(ohci, OHCI1394_IntMaskSet,
1764 OHCI1394_selfIDComplete |
1765 OHCI1394_RQPkt | OHCI1394_RSPkt |
1766 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1767 OHCI1394_isochRx | OHCI1394_isochTx |
1768 OHCI1394_masterIntEnable);
1769
1770 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1771 max_receive = (bus_options >> 12) & 0xf;
1772 link_speed = bus_options & 0x7;
1773 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1774 reg_read(ohci, OHCI1394_GUIDLo);
1775
1776 error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1777 if (error_code < 0)
1778 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1779
1780 fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1781
1782 return 0;
1783}
1784
1785static void pci_remove(struct pci_dev *dev)
1786{
1787 struct fw_ohci *ohci;
1788
1789 ohci = pci_get_drvdata(dev);
1790 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1791 fw_core_remove_card(&ohci->card);
1792
1793 /* FIXME: Fail all pending packets here, now that the upper
1794 * layers can't queue any more. */
1795
1796 software_reset(ohci);
1797 free_irq(dev->irq, ohci);
1798 cleanup(ohci, CLEANUP_SELF_ID, 0);
1799
1800 fw_notify("Removed fw-ohci device.\n");
1801}
1802
1803static struct pci_device_id pci_table[] = {
1804 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1805 { }
1806};
1807
1808MODULE_DEVICE_TABLE(pci, pci_table);
1809
1810static struct pci_driver fw_ohci_pci_driver = {
1811 .name = ohci_driver_name,
1812 .id_table = pci_table,
1813 .probe = pci_probe,
1814 .remove = pci_remove,
1815};
1816
1817MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1818MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1819MODULE_LICENSE("GPL");
1820
1821static int __init fw_ohci_init(void)
1822{
1823 return pci_register_driver(&fw_ohci_pci_driver);
1824}
1825
1826static void __exit fw_ohci_cleanup(void)
1827{
1828 pci_unregister_driver(&fw_ohci_pci_driver);
1829}
1830
1831module_init(fw_ohci_init);
1832module_exit(fw_ohci_cleanup);