]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/firewire/ohci.c
firewire: ohci: use common buffer for self IDs and AR descriptors
[mirror_ubuntu-bionic-kernel.git] / drivers / firewire / ohci.c
CommitLineData
c781c06d
KH
1/*
2 * Driver for OHCI 1394 controllers
ed568912 3 *
ed568912
KH
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
65b2742a 21#include <linux/bug.h>
e524f616 22#include <linux/compiler.h>
ed568912 23#include <linux/delay.h>
e8ca9702 24#include <linux/device.h>
cf3e72fd 25#include <linux/dma-mapping.h>
77c9a5da 26#include <linux/firewire.h>
e8ca9702 27#include <linux/firewire-constants.h>
a7fb60db
SR
28#include <linux/init.h>
29#include <linux/interrupt.h>
e8ca9702 30#include <linux/io.h>
a7fb60db 31#include <linux/kernel.h>
e8ca9702 32#include <linux/list.h>
faa2fb4e 33#include <linux/mm.h>
a7fb60db 34#include <linux/module.h>
ad3c0fe8 35#include <linux/moduleparam.h>
02d37bed 36#include <linux/mutex.h>
a7fb60db 37#include <linux/pci.h>
fc383796 38#include <linux/pci_ids.h>
5a0e3ad6 39#include <linux/slab.h>
c26f0234 40#include <linux/spinlock.h>
e8ca9702 41#include <linux/string.h>
e78483c5 42#include <linux/time.h>
7a39d8b8 43#include <linux/vmalloc.h>
cf3e72fd 44
e8ca9702 45#include <asm/byteorder.h>
c26f0234 46#include <asm/page.h>
ee71c2f9 47#include <asm/system.h>
ed568912 48
ea8d006b
SR
49#ifdef CONFIG_PPC_PMAC
50#include <asm/pmac_feature.h>
51#endif
52
77c9a5da
SR
53#include "core.h"
54#include "ohci.h"
ed568912 55
a77754a7
KH
56#define DESCRIPTOR_OUTPUT_MORE 0
57#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58#define DESCRIPTOR_INPUT_MORE (2 << 12)
59#define DESCRIPTOR_INPUT_LAST (3 << 12)
60#define DESCRIPTOR_STATUS (1 << 11)
61#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62#define DESCRIPTOR_PING (1 << 7)
63#define DESCRIPTOR_YY (1 << 6)
64#define DESCRIPTOR_NO_IRQ (0 << 4)
65#define DESCRIPTOR_IRQ_ERROR (1 << 4)
66#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68#define DESCRIPTOR_WAIT (3 << 0)
ed568912
KH
69
70struct descriptor {
71 __le16 req_count;
72 __le16 control;
73 __le32 data_address;
74 __le32 branch_address;
75 __le16 res_count;
76 __le16 transfer_status;
77} __attribute__((aligned(16)));
78
a77754a7
KH
79#define CONTROL_SET(regs) (regs)
80#define CONTROL_CLEAR(regs) ((regs) + 4)
81#define COMMAND_PTR(regs) ((regs) + 12)
82#define CONTEXT_MATCH(regs) ((regs) + 16)
72e318e0 83
7a39d8b8
CL
84#define AR_BUFFER_SIZE (32*1024)
85#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
86/* we need at least two pages for proper list management */
87#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
88
89#define MAX_ASYNC_PAYLOAD 4096
90#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
91#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
ed568912 92
32b46093
KH
93struct ar_context {
94 struct fw_ohci *ohci;
7a39d8b8
CL
95 struct page *pages[AR_BUFFERS];
96 void *buffer;
97 struct descriptor *descriptors;
98 dma_addr_t descriptors_bus;
32b46093 99 void *pointer;
7a39d8b8 100 unsigned int last_buffer_index;
72e318e0 101 u32 regs;
ed568912
KH
102 struct tasklet_struct tasklet;
103};
104
30200739
KH
105struct context;
106
107typedef int (*descriptor_callback_t)(struct context *ctx,
108 struct descriptor *d,
109 struct descriptor *last);
fe5ca634
DM
110
111/*
112 * A buffer that contains a block of DMA-able coherent memory used for
113 * storing a portion of a DMA descriptor program.
114 */
115struct descriptor_buffer {
116 struct list_head list;
117 dma_addr_t buffer_bus;
118 size_t buffer_size;
119 size_t used;
120 struct descriptor buffer[0];
121};
122
30200739 123struct context {
373b2edd 124 struct fw_ohci *ohci;
30200739 125 u32 regs;
fe5ca634 126 int total_allocation;
373b2edd 127
fe5ca634
DM
128 /*
129 * List of page-sized buffers for storing DMA descriptors.
130 * Head of list contains buffers in use and tail of list contains
131 * free buffers.
132 */
133 struct list_head buffer_list;
134
135 /*
136 * Pointer to a buffer inside buffer_list that contains the tail
137 * end of the current DMA program.
138 */
139 struct descriptor_buffer *buffer_tail;
140
141 /*
142 * The descriptor containing the branch address of the first
143 * descriptor that has not yet been filled by the device.
144 */
145 struct descriptor *last;
146
147 /*
148 * The last descriptor in the DMA program. It contains the branch
149 * address that must be updated upon appending a new descriptor.
150 */
151 struct descriptor *prev;
30200739
KH
152
153 descriptor_callback_t callback;
154
373b2edd 155 struct tasklet_struct tasklet;
30200739 156};
30200739 157
a77754a7
KH
158#define IT_HEADER_SY(v) ((v) << 0)
159#define IT_HEADER_TCODE(v) ((v) << 4)
160#define IT_HEADER_CHANNEL(v) ((v) << 8)
161#define IT_HEADER_TAG(v) ((v) << 14)
162#define IT_HEADER_SPEED(v) ((v) << 16)
163#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
ed568912
KH
164
165struct iso_context {
166 struct fw_iso_context base;
30200739 167 struct context context;
0642b657 168 int excess_bytes;
9b32d5f3
KH
169 void *header;
170 size_t header_length;
ed568912
KH
171};
172
173#define CONFIG_ROM_SIZE 1024
174
175struct fw_ohci {
176 struct fw_card card;
177
178 __iomem char *registers;
e636fe25 179 int node_id;
ed568912 180 int generation;
e09770db 181 int request_generation; /* for timestamping incoming requests */
4a635593 182 unsigned quirks;
a1a1132b 183 unsigned int pri_req_max;
a48777e0 184 u32 bus_time;
4ffb7a6a 185 bool is_root;
c8a94ded 186 bool csr_state_setclear_abdicate;
ed568912 187
c781c06d
KH
188 /*
189 * Spinlock for accessing fw_ohci data. Never call out of
190 * this driver with this lock held.
191 */
ed568912 192 spinlock_t lock;
ed568912 193
02d37bed
SR
194 struct mutex phy_reg_mutex;
195
ec766a79
CL
196 void *misc_buffer;
197 dma_addr_t misc_buffer_bus;
198
ed568912
KH
199 struct ar_context ar_request_ctx;
200 struct ar_context ar_response_ctx;
f319b6a0
KH
201 struct context at_request_ctx;
202 struct context at_response_ctx;
ed568912 203
872e330e 204 u32 it_context_mask; /* unoccupied IT contexts */
ed568912 205 struct iso_context *it_context_list;
872e330e
SR
206 u64 ir_context_channels; /* unoccupied channels */
207 u32 ir_context_mask; /* unoccupied IR contexts */
ed568912 208 struct iso_context *ir_context_list;
872e330e
SR
209 u64 mc_channels; /* channels in use by the multichannel IR context */
210 bool mc_allocated;
ecb1cf9c
SR
211
212 __be32 *config_rom;
213 dma_addr_t config_rom_bus;
214 __be32 *next_config_rom;
215 dma_addr_t next_config_rom_bus;
216 __be32 next_header;
217
218 __le32 *self_id_cpu;
219 dma_addr_t self_id_bus;
220 struct tasklet_struct bus_reset_tasklet;
221
222 u32 self_id_buffer[512];
ed568912
KH
223};
224
95688e97 225static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
226{
227 return container_of(card, struct fw_ohci, card);
228}
229
295e3feb
KH
230#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
231#define IR_CONTEXT_BUFFER_FILL 0x80000000
232#define IR_CONTEXT_ISOCH_HEADER 0x40000000
233#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
234#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
235#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
ed568912
KH
236
237#define CONTEXT_RUN 0x8000
238#define CONTEXT_WAKE 0x1000
239#define CONTEXT_DEAD 0x0800
240#define CONTEXT_ACTIVE 0x0400
241
8b7b6afa 242#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
ed568912
KH
243#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
244#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
245
ed568912
KH
246#define OHCI1394_REGISTER_SIZE 0x800
247#define OHCI_LOOP_COUNT 500
248#define OHCI1394_PCI_HCI_Control 0x40
249#define SELF_ID_BUF_SIZE 0x800
32b46093 250#define OHCI_TCODE_PHY_PACKET 0x0e
e364cf4e 251#define OHCI_VERSION_1_1 0x010010
0edeefd9 252
ed568912
KH
253static char ohci_driver_name[] = KBUILD_MODNAME;
254
9993e0fe 255#define PCI_DEVICE_ID_AGERE_FW643 0x5901
262444ee 256#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
8301b91b
CL
257#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
258
4a635593
SR
259#define QUIRK_CYCLE_TIMER 1
260#define QUIRK_RESET_PACKET 2
261#define QUIRK_BE_HEADERS 4
925e7a65 262#define QUIRK_NO_1394A 8
262444ee 263#define QUIRK_NO_MSI 16
4a635593
SR
264
265/* In case of multiple matches in ohci_quirks[], only the first one is used. */
266static const struct {
9993e0fe 267 unsigned short vendor, device, revision, flags;
4a635593 268} ohci_quirks[] = {
9993e0fe
SR
269 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
270 QUIRK_CYCLE_TIMER},
271
272 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
273 QUIRK_BE_HEADERS},
274
275 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
276 QUIRK_NO_MSI},
277
278 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
279 QUIRK_NO_MSI},
280
281 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
282 QUIRK_CYCLE_TIMER},
283
284 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
285 QUIRK_CYCLE_TIMER},
286
287 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
288 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
289
290 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
291 QUIRK_RESET_PACKET},
292
293 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
294 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
4a635593
SR
295};
296
3e9cc2f3
SR
297/* This overrides anything that was found in ohci_quirks[]. */
298static int param_quirks;
299module_param_named(quirks, param_quirks, int, 0644);
300MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
301 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
302 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
303 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
925e7a65 304 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
262444ee 305 ", disable MSI = " __stringify(QUIRK_NO_MSI)
3e9cc2f3
SR
306 ")");
307
a007bb85 308#define OHCI_PARAM_DEBUG_AT_AR 1
ad3c0fe8 309#define OHCI_PARAM_DEBUG_SELFIDS 2
a007bb85
SR
310#define OHCI_PARAM_DEBUG_IRQS 4
311#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
ad3c0fe8 312
5da3dac8
SR
313#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
314
ad3c0fe8
SR
315static int param_debug;
316module_param_named(debug, param_debug, int, 0644);
317MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
ad3c0fe8 318 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
a007bb85
SR
319 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
320 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
321 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
ad3c0fe8
SR
322 ", or a combination, or all = -1)");
323
324static void log_irqs(u32 evt)
325{
a007bb85
SR
326 if (likely(!(param_debug &
327 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
328 return;
329
330 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
331 !(evt & OHCI1394_busReset))
ad3c0fe8
SR
332 return;
333
a48777e0 334 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
161b96e7
SR
335 evt & OHCI1394_selfIDComplete ? " selfID" : "",
336 evt & OHCI1394_RQPkt ? " AR_req" : "",
337 evt & OHCI1394_RSPkt ? " AR_resp" : "",
338 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
339 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
340 evt & OHCI1394_isochRx ? " IR" : "",
341 evt & OHCI1394_isochTx ? " IT" : "",
342 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
343 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
a48777e0 344 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
5ed1f321 345 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
161b96e7
SR
346 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
347 evt & OHCI1394_busReset ? " busReset" : "",
348 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
349 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
350 OHCI1394_respTxComplete | OHCI1394_isochRx |
351 OHCI1394_isochTx | OHCI1394_postedWriteErr |
a48777e0
CL
352 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
353 OHCI1394_cycleInconsistent |
161b96e7 354 OHCI1394_regAccessFail | OHCI1394_busReset)
ad3c0fe8
SR
355 ? " ?" : "");
356}
357
358static const char *speed[] = {
359 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
360};
361static const char *power[] = {
362 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
363 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
364};
365static const char port[] = { '.', '-', 'p', 'c', };
366
367static char _p(u32 *s, int shift)
368{
369 return port[*s >> shift & 3];
370}
371
08ddb2f4 372static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
ad3c0fe8
SR
373{
374 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
375 return;
376
161b96e7
SR
377 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
378 self_id_count, generation, node_id);
ad3c0fe8
SR
379
380 for (; self_id_count--; ++s)
381 if ((*s & 1 << 23) == 0)
161b96e7
SR
382 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
383 "%s gc=%d %s %s%s%s\n",
384 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
385 speed[*s >> 14 & 3], *s >> 16 & 63,
386 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
387 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
ad3c0fe8 388 else
161b96e7
SR
389 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
390 *s, *s >> 24 & 63,
391 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
392 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
ad3c0fe8
SR
393}
394
395static const char *evts[] = {
396 [0x00] = "evt_no_status", [0x01] = "-reserved-",
397 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
398 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
399 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
400 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
401 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
402 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
403 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
404 [0x10] = "-reserved-", [0x11] = "ack_complete",
405 [0x12] = "ack_pending ", [0x13] = "-reserved-",
406 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
407 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
408 [0x18] = "-reserved-", [0x19] = "-reserved-",
409 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
410 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
411 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
412 [0x20] = "pending/cancelled",
413};
414static const char *tcodes[] = {
415 [0x0] = "QW req", [0x1] = "BW req",
416 [0x2] = "W resp", [0x3] = "-reserved-",
417 [0x4] = "QR req", [0x5] = "BR req",
418 [0x6] = "QR resp", [0x7] = "BR resp",
419 [0x8] = "cycle start", [0x9] = "Lk req",
420 [0xa] = "async stream packet", [0xb] = "Lk resp",
421 [0xc] = "-reserved-", [0xd] = "-reserved-",
422 [0xe] = "link internal", [0xf] = "-reserved-",
423};
ad3c0fe8
SR
424
425static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
426{
427 int tcode = header[0] >> 4 & 0xf;
428 char specific[12];
429
430 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
431 return;
432
433 if (unlikely(evt >= ARRAY_SIZE(evts)))
434 evt = 0x1f;
435
08ddb2f4 436 if (evt == OHCI1394_evt_bus_reset) {
161b96e7
SR
437 fw_notify("A%c evt_bus_reset, generation %d\n",
438 dir, (header[2] >> 16) & 0xff);
08ddb2f4
SR
439 return;
440 }
441
ad3c0fe8
SR
442 switch (tcode) {
443 case 0x0: case 0x6: case 0x8:
444 snprintf(specific, sizeof(specific), " = %08x",
445 be32_to_cpu((__force __be32)header[3]));
446 break;
447 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
448 snprintf(specific, sizeof(specific), " %x,%x",
449 header[3] >> 16, header[3] & 0xffff);
450 break;
451 default:
452 specific[0] = '\0';
453 }
454
455 switch (tcode) {
5b06db16 456 case 0xa:
161b96e7 457 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
ad3c0fe8 458 break;
5b06db16
CL
459 case 0xe:
460 fw_notify("A%c %s, PHY %08x %08x\n",
461 dir, evts[evt], header[1], header[2]);
462 break;
ad3c0fe8 463 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
161b96e7
SR
464 fw_notify("A%c spd %x tl %02x, "
465 "%04x -> %04x, %s, "
466 "%s, %04x%08x%s\n",
467 dir, speed, header[0] >> 10 & 0x3f,
468 header[1] >> 16, header[0] >> 16, evts[evt],
469 tcodes[tcode], header[1] & 0xffff, header[2], specific);
ad3c0fe8
SR
470 break;
471 default:
161b96e7
SR
472 fw_notify("A%c spd %x tl %02x, "
473 "%04x -> %04x, %s, "
474 "%s%s\n",
475 dir, speed, header[0] >> 10 & 0x3f,
476 header[1] >> 16, header[0] >> 16, evts[evt],
477 tcodes[tcode], specific);
ad3c0fe8
SR
478 }
479}
480
481#else
482
5da3dac8
SR
483#define param_debug 0
484static inline void log_irqs(u32 evt) {}
485static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
486static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
ad3c0fe8
SR
487
488#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
489
95688e97 490static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
491{
492 writel(data, ohci->registers + offset);
493}
494
95688e97 495static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
496{
497 return readl(ohci->registers + offset);
498}
499
95688e97 500static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
501{
502 /* Do a dummy read to flush writes. */
503 reg_read(ohci, OHCI1394_Version);
504}
505
35d999b1 506static int read_phy_reg(struct fw_ohci *ohci, int addr)
ed568912 507{
4a96b4fc 508 u32 val;
35d999b1 509 int i;
ed568912
KH
510
511 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
153e3979 512 for (i = 0; i < 3 + 100; i++) {
35d999b1
SR
513 val = reg_read(ohci, OHCI1394_PhyControl);
514 if (val & OHCI1394_PhyControl_ReadDone)
515 return OHCI1394_PhyControl_ReadData(val);
516
153e3979
CL
517 /*
518 * Try a few times without waiting. Sleeping is necessary
519 * only when the link/PHY interface is busy.
520 */
521 if (i >= 3)
522 msleep(1);
ed568912 523 }
35d999b1 524 fw_error("failed to read phy reg\n");
ed568912 525
35d999b1
SR
526 return -EBUSY;
527}
4a96b4fc 528
35d999b1
SR
529static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
530{
531 int i;
ed568912 532
ed568912 533 reg_write(ohci, OHCI1394_PhyControl,
35d999b1 534 OHCI1394_PhyControl_Write(addr, val));
153e3979 535 for (i = 0; i < 3 + 100; i++) {
35d999b1
SR
536 val = reg_read(ohci, OHCI1394_PhyControl);
537 if (!(val & OHCI1394_PhyControl_WritePending))
538 return 0;
ed568912 539
153e3979
CL
540 if (i >= 3)
541 msleep(1);
35d999b1
SR
542 }
543 fw_error("failed to write phy reg\n");
544
545 return -EBUSY;
4a96b4fc
CL
546}
547
02d37bed
SR
548static int update_phy_reg(struct fw_ohci *ohci, int addr,
549 int clear_bits, int set_bits)
4a96b4fc 550{
02d37bed 551 int ret = read_phy_reg(ohci, addr);
35d999b1
SR
552 if (ret < 0)
553 return ret;
4a96b4fc 554
e7014dad
CL
555 /*
556 * The interrupt status bits are cleared by writing a one bit.
557 * Avoid clearing them unless explicitly requested in set_bits.
558 */
559 if (addr == 5)
560 clear_bits |= PHY_INT_STATUS_BITS;
561
35d999b1 562 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
ed568912
KH
563}
564
35d999b1 565static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
925e7a65 566{
35d999b1 567 int ret;
925e7a65 568
02d37bed 569 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
35d999b1
SR
570 if (ret < 0)
571 return ret;
925e7a65 572
35d999b1 573 return read_phy_reg(ohci, addr);
ed568912
KH
574}
575
02d37bed
SR
576static int ohci_read_phy_reg(struct fw_card *card, int addr)
577{
578 struct fw_ohci *ohci = fw_ohci(card);
579 int ret;
580
581 mutex_lock(&ohci->phy_reg_mutex);
582 ret = read_phy_reg(ohci, addr);
583 mutex_unlock(&ohci->phy_reg_mutex);
584
585 return ret;
586}
587
588static int ohci_update_phy_reg(struct fw_card *card, int addr,
589 int clear_bits, int set_bits)
590{
591 struct fw_ohci *ohci = fw_ohci(card);
592 int ret;
593
594 mutex_lock(&ohci->phy_reg_mutex);
595 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
596 mutex_unlock(&ohci->phy_reg_mutex);
597
598 return ret;
ed568912
KH
599}
600
7a39d8b8
CL
601static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
602{
603 return page_private(ctx->pages[i]);
604}
605
606static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
ed568912 607{
7a39d8b8 608 struct descriptor *d;
32b46093 609
7a39d8b8
CL
610 d = &ctx->descriptors[index];
611 d->branch_address &= cpu_to_le32(~0xf);
612 d->res_count = cpu_to_le16(PAGE_SIZE);
613 d->transfer_status = 0;
32b46093 614
071595eb 615 wmb(); /* finish init of new descriptors before branch_address update */
7a39d8b8
CL
616 d = &ctx->descriptors[ctx->last_buffer_index];
617 d->branch_address |= cpu_to_le32(1);
618
619 ctx->last_buffer_index = index;
32b46093 620
a77754a7 621 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
ed568912 622 flush_writes(ctx->ohci);
837596a6
CL
623}
624
7a39d8b8 625static void ar_context_release(struct ar_context *ctx)
837596a6 626{
7a39d8b8 627 unsigned int i;
837596a6 628
7a39d8b8
CL
629 if (ctx->buffer)
630 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
32b46093 631
7a39d8b8
CL
632 for (i = 0; i < AR_BUFFERS; i++)
633 if (ctx->pages[i]) {
634 dma_unmap_page(ctx->ohci->card.device,
635 ar_buffer_bus(ctx, i),
636 PAGE_SIZE, DMA_FROM_DEVICE);
637 __free_page(ctx->pages[i]);
638 }
ed568912
KH
639}
640
7a39d8b8 641static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
a55709ba 642{
7a39d8b8
CL
643 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
644 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
645 flush_writes(ctx->ohci);
a55709ba 646
7a39d8b8 647 fw_error("AR error: %s; DMA stopped\n", error_msg);
a55709ba 648 }
7a39d8b8
CL
649 /* FIXME: restart? */
650}
651
652static inline unsigned int ar_next_buffer_index(unsigned int index)
653{
654 return (index + 1) % AR_BUFFERS;
655}
656
657static inline unsigned int ar_prev_buffer_index(unsigned int index)
658{
659 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
660}
661
662static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
663{
664 return ar_next_buffer_index(ctx->last_buffer_index);
665}
666
667/*
668 * We search for the buffer that contains the last AR packet DMA data written
669 * by the controller.
670 */
671static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
672 unsigned int *buffer_offset)
673{
674 unsigned int i, next_i, last = ctx->last_buffer_index;
675 __le16 res_count, next_res_count;
676
677 i = ar_first_buffer_index(ctx);
678 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
679
680 /* A buffer that is not yet completely filled must be the last one. */
681 while (i != last && res_count == 0) {
682
683 /* Peek at the next descriptor. */
684 next_i = ar_next_buffer_index(i);
685 rmb(); /* read descriptors in order */
686 next_res_count = ACCESS_ONCE(
687 ctx->descriptors[next_i].res_count);
688 /*
689 * If the next descriptor is still empty, we must stop at this
690 * descriptor.
691 */
692 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
693 /*
694 * The exception is when the DMA data for one packet is
695 * split over three buffers; in this case, the middle
696 * buffer's descriptor might be never updated by the
697 * controller and look still empty, and we have to peek
698 * at the third one.
699 */
700 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
701 next_i = ar_next_buffer_index(next_i);
702 rmb();
703 next_res_count = ACCESS_ONCE(
704 ctx->descriptors[next_i].res_count);
705 if (next_res_count != cpu_to_le16(PAGE_SIZE))
706 goto next_buffer_is_active;
707 }
708
709 break;
710 }
711
712next_buffer_is_active:
713 i = next_i;
714 res_count = next_res_count;
715 }
716
717 rmb(); /* read res_count before the DMA data */
718
719 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
720 if (*buffer_offset > PAGE_SIZE) {
721 *buffer_offset = 0;
722 ar_context_abort(ctx, "corrupted descriptor");
723 }
724
725 return i;
726}
727
728static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
729 unsigned int end_buffer_index,
730 unsigned int end_buffer_offset)
731{
732 unsigned int i;
733
734 i = ar_first_buffer_index(ctx);
735 while (i != end_buffer_index) {
736 dma_sync_single_for_cpu(ctx->ohci->card.device,
737 ar_buffer_bus(ctx, i),
738 PAGE_SIZE, DMA_FROM_DEVICE);
739 i = ar_next_buffer_index(i);
740 }
741 if (end_buffer_offset > 0)
742 dma_sync_single_for_cpu(ctx->ohci->card.device,
743 ar_buffer_bus(ctx, i),
744 end_buffer_offset, DMA_FROM_DEVICE);
a55709ba
JF
745}
746
11bf20ad
SR
747#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
748#define cond_le32_to_cpu(v) \
4a635593 749 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
11bf20ad
SR
750#else
751#define cond_le32_to_cpu(v) le32_to_cpu(v)
752#endif
753
32b46093 754static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 755{
ed568912 756 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
757 struct fw_packet p;
758 u32 status, length, tcode;
43286568 759 int evt;
2639a6fb 760
11bf20ad
SR
761 p.header[0] = cond_le32_to_cpu(buffer[0]);
762 p.header[1] = cond_le32_to_cpu(buffer[1]);
763 p.header[2] = cond_le32_to_cpu(buffer[2]);
2639a6fb
KH
764
765 tcode = (p.header[0] >> 4) & 0x0f;
766 switch (tcode) {
767 case TCODE_WRITE_QUADLET_REQUEST:
768 case TCODE_READ_QUADLET_RESPONSE:
32b46093 769 p.header[3] = (__force __u32) buffer[3];
2639a6fb 770 p.header_length = 16;
32b46093 771 p.payload_length = 0;
2639a6fb
KH
772 break;
773
2639a6fb 774 case TCODE_READ_BLOCK_REQUEST :
11bf20ad 775 p.header[3] = cond_le32_to_cpu(buffer[3]);
32b46093
KH
776 p.header_length = 16;
777 p.payload_length = 0;
778 break;
779
780 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
781 case TCODE_READ_BLOCK_RESPONSE:
782 case TCODE_LOCK_REQUEST:
783 case TCODE_LOCK_RESPONSE:
11bf20ad 784 p.header[3] = cond_le32_to_cpu(buffer[3]);
2639a6fb 785 p.header_length = 16;
32b46093 786 p.payload_length = p.header[3] >> 16;
7a39d8b8
CL
787 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
788 ar_context_abort(ctx, "invalid packet length");
789 return NULL;
790 }
2639a6fb
KH
791 break;
792
793 case TCODE_WRITE_RESPONSE:
794 case TCODE_READ_QUADLET_REQUEST:
32b46093 795 case OHCI_TCODE_PHY_PACKET:
2639a6fb 796 p.header_length = 12;
32b46093 797 p.payload_length = 0;
2639a6fb 798 break;
ccff9629
SR
799
800 default:
7a39d8b8
CL
801 ar_context_abort(ctx, "invalid tcode");
802 return NULL;
2639a6fb 803 }
ed568912 804
32b46093
KH
805 p.payload = (void *) buffer + p.header_length;
806
807 /* FIXME: What to do about evt_* errors? */
808 length = (p.header_length + p.payload_length + 3) / 4;
11bf20ad 809 status = cond_le32_to_cpu(buffer[length]);
43286568 810 evt = (status >> 16) & 0x1f;
32b46093 811
43286568 812 p.ack = evt - 16;
32b46093
KH
813 p.speed = (status >> 21) & 0x7;
814 p.timestamp = status & 0xffff;
815 p.generation = ohci->request_generation;
ed568912 816
43286568 817 log_ar_at_event('R', p.speed, p.header, evt);
ad3c0fe8 818
c781c06d 819 /*
a4dc090b
SR
820 * Several controllers, notably from NEC and VIA, forget to
821 * write ack_complete status at PHY packet reception.
822 */
823 if (evt == OHCI1394_evt_no_status &&
824 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
825 p.ack = ACK_COMPLETE;
826
827 /*
828 * The OHCI bus reset handler synthesizes a PHY packet with
ed568912
KH
829 * the new generation number when a bus reset happens (see
830 * section 8.4.2.3). This helps us determine when a request
831 * was received and make sure we send the response in the same
832 * generation. We only need this for requests; for responses
833 * we use the unique tlabel for finding the matching
c781c06d 834 * request.
d34316a4
SR
835 *
836 * Alas some chips sometimes emit bus reset packets with a
837 * wrong generation. We set the correct generation for these
838 * at a slightly incorrect time (in bus_reset_tasklet).
c781c06d 839 */
d34316a4 840 if (evt == OHCI1394_evt_bus_reset) {
4a635593 841 if (!(ohci->quirks & QUIRK_RESET_PACKET))
d34316a4
SR
842 ohci->request_generation = (p.header[2] >> 16) & 0xff;
843 } else if (ctx == &ohci->ar_request_ctx) {
2639a6fb 844 fw_core_handle_request(&ohci->card, &p);
d34316a4 845 } else {
2639a6fb 846 fw_core_handle_response(&ohci->card, &p);
d34316a4 847 }
ed568912 848
32b46093
KH
849 return buffer + length + 1;
850}
ed568912 851
7a39d8b8
CL
852static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
853{
854 void *next;
855
856 while (p < end) {
857 next = handle_ar_packet(ctx, p);
858 if (!next)
859 return p;
860 p = next;
861 }
862
863 return p;
864}
865
866static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
867{
868 unsigned int i;
869
870 i = ar_first_buffer_index(ctx);
871 while (i != end_buffer) {
872 dma_sync_single_for_device(ctx->ohci->card.device,
873 ar_buffer_bus(ctx, i),
874 PAGE_SIZE, DMA_FROM_DEVICE);
875 ar_context_link_page(ctx, i);
876 i = ar_next_buffer_index(i);
877 }
878}
879
32b46093
KH
880static void ar_context_tasklet(unsigned long data)
881{
882 struct ar_context *ctx = (struct ar_context *)data;
7a39d8b8
CL
883 unsigned int end_buffer_index, end_buffer_offset;
884 void *p, *end;
32b46093 885
7a39d8b8
CL
886 p = ctx->pointer;
887 if (!p)
888 return;
32b46093 889
7a39d8b8
CL
890 end_buffer_index = ar_search_last_active_buffer(ctx,
891 &end_buffer_offset);
892 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
893 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
32b46093 894
7a39d8b8 895 if (end_buffer_index < ar_first_buffer_index(ctx)) {
c781c06d 896 /*
7a39d8b8
CL
897 * The filled part of the overall buffer wraps around; handle
898 * all packets up to the buffer end here. If the last packet
899 * wraps around, its tail will be visible after the buffer end
900 * because the buffer start pages are mapped there again.
c781c06d 901 */
7a39d8b8
CL
902 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
903 p = handle_ar_packets(ctx, p, buffer_end);
904 if (p < buffer_end)
905 goto error;
906 /* adjust p to point back into the actual buffer */
907 p -= AR_BUFFERS * PAGE_SIZE;
908 }
32b46093 909
7a39d8b8
CL
910 p = handle_ar_packets(ctx, p, end);
911 if (p != end) {
912 if (p > end)
913 ar_context_abort(ctx, "inconsistent descriptor");
914 goto error;
915 }
32b46093 916
7a39d8b8
CL
917 ctx->pointer = p;
918 ar_recycle_buffers(ctx, end_buffer_index);
32b46093 919
7a39d8b8 920 return;
a1f805e5 921
7a39d8b8
CL
922error:
923 ctx->pointer = NULL;
ed568912
KH
924}
925
ec766a79
CL
926static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
927 unsigned int descriptors_offset, u32 regs)
ed568912 928{
7a39d8b8
CL
929 unsigned int i;
930 dma_addr_t dma_addr;
931 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
932 struct descriptor *d;
ed568912 933
72e318e0
KH
934 ctx->regs = regs;
935 ctx->ohci = ohci;
ed568912
KH
936 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
937
7a39d8b8
CL
938 for (i = 0; i < AR_BUFFERS; i++) {
939 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
940 if (!ctx->pages[i])
941 goto out_of_memory;
942 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
943 0, PAGE_SIZE, DMA_FROM_DEVICE);
944 if (dma_mapping_error(ohci->card.device, dma_addr)) {
945 __free_page(ctx->pages[i]);
946 ctx->pages[i] = NULL;
947 goto out_of_memory;
948 }
949 set_page_private(ctx->pages[i], dma_addr);
950 }
951
952 for (i = 0; i < AR_BUFFERS; i++)
953 pages[i] = ctx->pages[i];
954 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
955 pages[AR_BUFFERS + i] = ctx->pages[i];
956 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
957 -1, PAGE_KERNEL_RO);
958 if (!ctx->buffer)
959 goto out_of_memory;
960
ec766a79
CL
961 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
962 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
7a39d8b8
CL
963
964 for (i = 0; i < AR_BUFFERS; i++) {
965 d = &ctx->descriptors[i];
966 d->req_count = cpu_to_le16(PAGE_SIZE);
967 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
968 DESCRIPTOR_STATUS |
969 DESCRIPTOR_BRANCH_ALWAYS);
970 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
971 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
972 ar_next_buffer_index(i) * sizeof(struct descriptor));
973 }
32b46093 974
2aef469a 975 return 0;
7a39d8b8
CL
976
977out_of_memory:
978 ar_context_release(ctx);
979
980 return -ENOMEM;
2aef469a
KH
981}
982
983static void ar_context_run(struct ar_context *ctx)
984{
7a39d8b8
CL
985 unsigned int i;
986
987 for (i = 0; i < AR_BUFFERS; i++)
988 ar_context_link_page(ctx, i);
2aef469a 989
7a39d8b8 990 ctx->pointer = ctx->buffer;
2aef469a 991
7a39d8b8 992 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
a77754a7 993 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
32b46093 994 flush_writes(ctx->ohci);
ed568912 995}
373b2edd 996
53dca511 997static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
a186b4a6
JW
998{
999 int b, key;
1000
1001 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
1002 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
1003
1004 /* figure out which descriptor the branch address goes in */
1005 if (z == 2 && (b == 3 || key == 2))
1006 return d;
1007 else
1008 return d + z - 1;
1009}
1010
30200739
KH
1011static void context_tasklet(unsigned long data)
1012{
1013 struct context *ctx = (struct context *) data;
30200739
KH
1014 struct descriptor *d, *last;
1015 u32 address;
1016 int z;
fe5ca634 1017 struct descriptor_buffer *desc;
30200739 1018
fe5ca634
DM
1019 desc = list_entry(ctx->buffer_list.next,
1020 struct descriptor_buffer, list);
1021 last = ctx->last;
30200739 1022 while (last->branch_address != 0) {
fe5ca634 1023 struct descriptor_buffer *old_desc = desc;
30200739
KH
1024 address = le32_to_cpu(last->branch_address);
1025 z = address & 0xf;
fe5ca634
DM
1026 address &= ~0xf;
1027
1028 /* If the branch address points to a buffer outside of the
1029 * current buffer, advance to the next buffer. */
1030 if (address < desc->buffer_bus ||
1031 address >= desc->buffer_bus + desc->used)
1032 desc = list_entry(desc->list.next,
1033 struct descriptor_buffer, list);
1034 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
a186b4a6 1035 last = find_branch_descriptor(d, z);
30200739
KH
1036
1037 if (!ctx->callback(ctx, d, last))
1038 break;
1039
fe5ca634
DM
1040 if (old_desc != desc) {
1041 /* If we've advanced to the next buffer, move the
1042 * previous buffer to the free list. */
1043 unsigned long flags;
1044 old_desc->used = 0;
1045 spin_lock_irqsave(&ctx->ohci->lock, flags);
1046 list_move_tail(&old_desc->list, &ctx->buffer_list);
1047 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1048 }
1049 ctx->last = last;
30200739
KH
1050 }
1051}
1052
fe5ca634
DM
1053/*
1054 * Allocate a new buffer and add it to the list of free buffers for this
1055 * context. Must be called with ohci->lock held.
1056 */
53dca511 1057static int context_add_buffer(struct context *ctx)
fe5ca634
DM
1058{
1059 struct descriptor_buffer *desc;
f5101d58 1060 dma_addr_t uninitialized_var(bus_addr);
fe5ca634
DM
1061 int offset;
1062
1063 /*
1064 * 16MB of descriptors should be far more than enough for any DMA
1065 * program. This will catch run-away userspace or DoS attacks.
1066 */
1067 if (ctx->total_allocation >= 16*1024*1024)
1068 return -ENOMEM;
1069
1070 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1071 &bus_addr, GFP_ATOMIC);
1072 if (!desc)
1073 return -ENOMEM;
1074
1075 offset = (void *)&desc->buffer - (void *)desc;
1076 desc->buffer_size = PAGE_SIZE - offset;
1077 desc->buffer_bus = bus_addr + offset;
1078 desc->used = 0;
1079
1080 list_add_tail(&desc->list, &ctx->buffer_list);
1081 ctx->total_allocation += PAGE_SIZE;
1082
1083 return 0;
1084}
1085
53dca511
SR
1086static int context_init(struct context *ctx, struct fw_ohci *ohci,
1087 u32 regs, descriptor_callback_t callback)
30200739
KH
1088{
1089 ctx->ohci = ohci;
1090 ctx->regs = regs;
fe5ca634
DM
1091 ctx->total_allocation = 0;
1092
1093 INIT_LIST_HEAD(&ctx->buffer_list);
1094 if (context_add_buffer(ctx) < 0)
30200739
KH
1095 return -ENOMEM;
1096
fe5ca634
DM
1097 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1098 struct descriptor_buffer, list);
1099
30200739
KH
1100 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1101 ctx->callback = callback;
1102
c781c06d
KH
1103 /*
1104 * We put a dummy descriptor in the buffer that has a NULL
30200739 1105 * branch address and looks like it's been sent. That way we
fe5ca634 1106 * have a descriptor to append DMA programs to.
c781c06d 1107 */
fe5ca634
DM
1108 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1109 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1110 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1111 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1112 ctx->last = ctx->buffer_tail->buffer;
1113 ctx->prev = ctx->buffer_tail->buffer;
30200739
KH
1114
1115 return 0;
1116}
1117
53dca511 1118static void context_release(struct context *ctx)
30200739
KH
1119{
1120 struct fw_card *card = &ctx->ohci->card;
fe5ca634 1121 struct descriptor_buffer *desc, *tmp;
30200739 1122
fe5ca634
DM
1123 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1124 dma_free_coherent(card->device, PAGE_SIZE, desc,
1125 desc->buffer_bus -
1126 ((void *)&desc->buffer - (void *)desc));
30200739
KH
1127}
1128
fe5ca634 1129/* Must be called with ohci->lock held */
53dca511
SR
1130static struct descriptor *context_get_descriptors(struct context *ctx,
1131 int z, dma_addr_t *d_bus)
30200739 1132{
fe5ca634
DM
1133 struct descriptor *d = NULL;
1134 struct descriptor_buffer *desc = ctx->buffer_tail;
1135
1136 if (z * sizeof(*d) > desc->buffer_size)
1137 return NULL;
1138
1139 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1140 /* No room for the descriptor in this buffer, so advance to the
1141 * next one. */
30200739 1142
fe5ca634
DM
1143 if (desc->list.next == &ctx->buffer_list) {
1144 /* If there is no free buffer next in the list,
1145 * allocate one. */
1146 if (context_add_buffer(ctx) < 0)
1147 return NULL;
1148 }
1149 desc = list_entry(desc->list.next,
1150 struct descriptor_buffer, list);
1151 ctx->buffer_tail = desc;
1152 }
30200739 1153
fe5ca634 1154 d = desc->buffer + desc->used / sizeof(*d);
2d826cc5 1155 memset(d, 0, z * sizeof(*d));
fe5ca634 1156 *d_bus = desc->buffer_bus + desc->used;
30200739
KH
1157
1158 return d;
1159}
1160
295e3feb 1161static void context_run(struct context *ctx, u32 extra)
30200739
KH
1162{
1163 struct fw_ohci *ohci = ctx->ohci;
1164
a77754a7 1165 reg_write(ohci, COMMAND_PTR(ctx->regs),
fe5ca634 1166 le32_to_cpu(ctx->last->branch_address));
a77754a7
KH
1167 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1168 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
30200739
KH
1169 flush_writes(ohci);
1170}
1171
1172static void context_append(struct context *ctx,
1173 struct descriptor *d, int z, int extra)
1174{
1175 dma_addr_t d_bus;
fe5ca634 1176 struct descriptor_buffer *desc = ctx->buffer_tail;
30200739 1177
fe5ca634 1178 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
30200739 1179
fe5ca634 1180 desc->used += (z + extra) * sizeof(*d);
071595eb
SR
1181
1182 wmb(); /* finish init of new descriptors before branch_address update */
fe5ca634
DM
1183 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1184 ctx->prev = find_branch_descriptor(d, z);
30200739 1185
a77754a7 1186 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
30200739
KH
1187 flush_writes(ctx->ohci);
1188}
1189
1190static void context_stop(struct context *ctx)
1191{
1192 u32 reg;
b8295668 1193 int i;
30200739 1194
a77754a7 1195 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
b8295668 1196 flush_writes(ctx->ohci);
30200739 1197
b8295668 1198 for (i = 0; i < 10; i++) {
a77754a7 1199 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
b8295668 1200 if ((reg & CONTEXT_ACTIVE) == 0)
b0068549 1201 return;
b8295668 1202
b980f5a2 1203 mdelay(1);
b8295668 1204 }
b0068549 1205 fw_error("Error: DMA context still active (0x%08x)\n", reg);
30200739 1206}
ed568912 1207
f319b6a0
KH
1208struct driver_data {
1209 struct fw_packet *packet;
1210};
ed568912 1211
c781c06d
KH
1212/*
1213 * This function apppends a packet to the DMA queue for transmission.
f319b6a0 1214 * Must always be called with the ochi->lock held to ensure proper
c781c06d
KH
1215 * generation handling and locking around packet queue manipulation.
1216 */
53dca511
SR
1217static int at_context_queue_packet(struct context *ctx,
1218 struct fw_packet *packet)
ed568912 1219{
ed568912 1220 struct fw_ohci *ohci = ctx->ohci;
4b6d51ec 1221 dma_addr_t d_bus, uninitialized_var(payload_bus);
f319b6a0
KH
1222 struct driver_data *driver_data;
1223 struct descriptor *d, *last;
1224 __le32 *header;
ed568912 1225 int z, tcode;
f319b6a0 1226 u32 reg;
ed568912 1227
f319b6a0
KH
1228 d = context_get_descriptors(ctx, 4, &d_bus);
1229 if (d == NULL) {
1230 packet->ack = RCODE_SEND_ERROR;
1231 return -1;
ed568912
KH
1232 }
1233
a77754a7 1234 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
f319b6a0
KH
1235 d[0].res_count = cpu_to_le16(packet->timestamp);
1236
c781c06d
KH
1237 /*
1238 * The DMA format for asyncronous link packets is different
ed568912 1239 * from the IEEE1394 layout, so shift the fields around
5b06db16 1240 * accordingly.
c781c06d 1241 */
f319b6a0 1242
5b06db16 1243 tcode = (packet->header[0] >> 4) & 0x0f;
f319b6a0 1244 header = (__le32 *) &d[1];
5b06db16
CL
1245 switch (tcode) {
1246 case TCODE_WRITE_QUADLET_REQUEST:
1247 case TCODE_WRITE_BLOCK_REQUEST:
1248 case TCODE_WRITE_RESPONSE:
1249 case TCODE_READ_QUADLET_REQUEST:
1250 case TCODE_READ_BLOCK_REQUEST:
1251 case TCODE_READ_QUADLET_RESPONSE:
1252 case TCODE_READ_BLOCK_RESPONSE:
1253 case TCODE_LOCK_REQUEST:
1254 case TCODE_LOCK_RESPONSE:
f319b6a0
KH
1255 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1256 (packet->speed << 16));
1257 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1258 (packet->header[0] & 0xffff0000));
1259 header[2] = cpu_to_le32(packet->header[2]);
ed568912 1260
ed568912 1261 if (TCODE_IS_BLOCK_PACKET(tcode))
f319b6a0 1262 header[3] = cpu_to_le32(packet->header[3]);
ed568912 1263 else
f319b6a0
KH
1264 header[3] = (__force __le32) packet->header[3];
1265
1266 d[0].req_count = cpu_to_le16(packet->header_length);
f8c2287c
JF
1267 break;
1268
5b06db16 1269 case TCODE_LINK_INTERNAL:
f319b6a0
KH
1270 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1271 (packet->speed << 16));
5b06db16
CL
1272 header[1] = cpu_to_le32(packet->header[1]);
1273 header[2] = cpu_to_le32(packet->header[2]);
f319b6a0 1274 d[0].req_count = cpu_to_le16(12);
cc550216 1275
5b06db16 1276 if (is_ping_packet(&packet->header[1]))
cc550216 1277 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
f8c2287c
JF
1278 break;
1279
5b06db16 1280 case TCODE_STREAM_DATA:
f8c2287c
JF
1281 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1282 (packet->speed << 16));
1283 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1284 d[0].req_count = cpu_to_le16(8);
1285 break;
1286
1287 default:
1288 /* BUG(); */
1289 packet->ack = RCODE_SEND_ERROR;
1290 return -1;
ed568912
KH
1291 }
1292
f319b6a0
KH
1293 driver_data = (struct driver_data *) &d[3];
1294 driver_data->packet = packet;
20d11673 1295 packet->driver_data = driver_data;
a186b4a6 1296
f319b6a0
KH
1297 if (packet->payload_length > 0) {
1298 payload_bus =
1299 dma_map_single(ohci->card.device, packet->payload,
1300 packet->payload_length, DMA_TO_DEVICE);
8d8bb39b 1301 if (dma_mapping_error(ohci->card.device, payload_bus)) {
f319b6a0
KH
1302 packet->ack = RCODE_SEND_ERROR;
1303 return -1;
1304 }
19593ffd
SR
1305 packet->payload_bus = payload_bus;
1306 packet->payload_mapped = true;
f319b6a0
KH
1307
1308 d[2].req_count = cpu_to_le16(packet->payload_length);
1309 d[2].data_address = cpu_to_le32(payload_bus);
1310 last = &d[2];
1311 z = 3;
ed568912 1312 } else {
f319b6a0
KH
1313 last = &d[0];
1314 z = 2;
ed568912 1315 }
ed568912 1316
a77754a7
KH
1317 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1318 DESCRIPTOR_IRQ_ALWAYS |
1319 DESCRIPTOR_BRANCH_ALWAYS);
ed568912 1320
76f73ca1
JW
1321 /*
1322 * If the controller and packet generations don't match, we need to
1323 * bail out and try again. If IntEvent.busReset is set, the AT context
1324 * is halted, so appending to the context and trying to run it is
1325 * futile. Most controllers do the right thing and just flush the AT
1326 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1327 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1328 * up stalling out. So we just bail out in software and try again
1329 * later, and everyone is happy.
1330 * FIXME: Document how the locking works.
1331 */
1332 if (ohci->generation != packet->generation ||
1333 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
19593ffd 1334 if (packet->payload_mapped)
ab88ca48
SR
1335 dma_unmap_single(ohci->card.device, payload_bus,
1336 packet->payload_length, DMA_TO_DEVICE);
f319b6a0
KH
1337 packet->ack = RCODE_GENERATION;
1338 return -1;
1339 }
1340
1341 context_append(ctx, d, z, 4 - z);
ed568912 1342
f319b6a0 1343 /* If the context isn't already running, start it up. */
a77754a7 1344 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
053b3080 1345 if ((reg & CONTEXT_RUN) == 0)
f319b6a0
KH
1346 context_run(ctx, 0);
1347
1348 return 0;
ed568912
KH
1349}
1350
f319b6a0
KH
1351static int handle_at_packet(struct context *context,
1352 struct descriptor *d,
1353 struct descriptor *last)
ed568912 1354{
f319b6a0 1355 struct driver_data *driver_data;
ed568912 1356 struct fw_packet *packet;
f319b6a0 1357 struct fw_ohci *ohci = context->ohci;
ed568912
KH
1358 int evt;
1359
f319b6a0
KH
1360 if (last->transfer_status == 0)
1361 /* This descriptor isn't done yet, stop iteration. */
1362 return 0;
ed568912 1363
f319b6a0
KH
1364 driver_data = (struct driver_data *) &d[3];
1365 packet = driver_data->packet;
1366 if (packet == NULL)
1367 /* This packet was cancelled, just continue. */
1368 return 1;
730c32f5 1369
19593ffd 1370 if (packet->payload_mapped)
1d1dc5e8 1371 dma_unmap_single(ohci->card.device, packet->payload_bus,
ed568912 1372 packet->payload_length, DMA_TO_DEVICE);
ed568912 1373
f319b6a0
KH
1374 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1375 packet->timestamp = le16_to_cpu(last->res_count);
ed568912 1376
ad3c0fe8
SR
1377 log_ar_at_event('T', packet->speed, packet->header, evt);
1378
f319b6a0
KH
1379 switch (evt) {
1380 case OHCI1394_evt_timeout:
1381 /* Async response transmit timed out. */
1382 packet->ack = RCODE_CANCELLED;
1383 break;
ed568912 1384
f319b6a0 1385 case OHCI1394_evt_flushed:
c781c06d
KH
1386 /*
1387 * The packet was flushed should give same error as
1388 * when we try to use a stale generation count.
1389 */
f319b6a0
KH
1390 packet->ack = RCODE_GENERATION;
1391 break;
ed568912 1392
f319b6a0 1393 case OHCI1394_evt_missing_ack:
c781c06d
KH
1394 /*
1395 * Using a valid (current) generation count, but the
1396 * node is not on the bus or not sending acks.
1397 */
f319b6a0
KH
1398 packet->ack = RCODE_NO_ACK;
1399 break;
ed568912 1400
f319b6a0
KH
1401 case ACK_COMPLETE + 0x10:
1402 case ACK_PENDING + 0x10:
1403 case ACK_BUSY_X + 0x10:
1404 case ACK_BUSY_A + 0x10:
1405 case ACK_BUSY_B + 0x10:
1406 case ACK_DATA_ERROR + 0x10:
1407 case ACK_TYPE_ERROR + 0x10:
1408 packet->ack = evt - 0x10;
1409 break;
ed568912 1410
f319b6a0
KH
1411 default:
1412 packet->ack = RCODE_SEND_ERROR;
1413 break;
1414 }
ed568912 1415
f319b6a0 1416 packet->callback(packet, &ohci->card, packet->ack);
ed568912 1417
f319b6a0 1418 return 1;
ed568912
KH
1419}
1420
a77754a7
KH
1421#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1422#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1423#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1424#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1425#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
93c4cceb 1426
53dca511
SR
1427static void handle_local_rom(struct fw_ohci *ohci,
1428 struct fw_packet *packet, u32 csr)
93c4cceb
KH
1429{
1430 struct fw_packet response;
1431 int tcode, length, i;
1432
a77754a7 1433 tcode = HEADER_GET_TCODE(packet->header[0]);
93c4cceb 1434 if (TCODE_IS_BLOCK_PACKET(tcode))
a77754a7 1435 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb
KH
1436 else
1437 length = 4;
1438
1439 i = csr - CSR_CONFIG_ROM;
1440 if (i + length > CONFIG_ROM_SIZE) {
1441 fw_fill_response(&response, packet->header,
1442 RCODE_ADDRESS_ERROR, NULL, 0);
1443 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1444 fw_fill_response(&response, packet->header,
1445 RCODE_TYPE_ERROR, NULL, 0);
1446 } else {
1447 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1448 (void *) ohci->config_rom + i, length);
1449 }
1450
1451 fw_core_handle_response(&ohci->card, &response);
1452}
1453
53dca511
SR
1454static void handle_local_lock(struct fw_ohci *ohci,
1455 struct fw_packet *packet, u32 csr)
93c4cceb
KH
1456{
1457 struct fw_packet response;
e1393667 1458 int tcode, length, ext_tcode, sel, try;
93c4cceb
KH
1459 __be32 *payload, lock_old;
1460 u32 lock_arg, lock_data;
1461
a77754a7
KH
1462 tcode = HEADER_GET_TCODE(packet->header[0]);
1463 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb 1464 payload = packet->payload;
a77754a7 1465 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
93c4cceb
KH
1466
1467 if (tcode == TCODE_LOCK_REQUEST &&
1468 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1469 lock_arg = be32_to_cpu(payload[0]);
1470 lock_data = be32_to_cpu(payload[1]);
1471 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1472 lock_arg = 0;
1473 lock_data = 0;
1474 } else {
1475 fw_fill_response(&response, packet->header,
1476 RCODE_TYPE_ERROR, NULL, 0);
1477 goto out;
1478 }
1479
1480 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1481 reg_write(ohci, OHCI1394_CSRData, lock_data);
1482 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1483 reg_write(ohci, OHCI1394_CSRControl, sel);
1484
e1393667
CL
1485 for (try = 0; try < 20; try++)
1486 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1487 lock_old = cpu_to_be32(reg_read(ohci,
1488 OHCI1394_CSRData));
1489 fw_fill_response(&response, packet->header,
1490 RCODE_COMPLETE,
1491 &lock_old, sizeof(lock_old));
1492 goto out;
1493 }
1494
1495 fw_error("swap not done (CSR lock timeout)\n");
1496 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
93c4cceb 1497
93c4cceb
KH
1498 out:
1499 fw_core_handle_response(&ohci->card, &response);
1500}
1501
53dca511 1502static void handle_local_request(struct context *ctx, struct fw_packet *packet)
93c4cceb 1503{
2608203d 1504 u64 offset, csr;
93c4cceb 1505
473d28c7
KH
1506 if (ctx == &ctx->ohci->at_request_ctx) {
1507 packet->ack = ACK_PENDING;
1508 packet->callback(packet, &ctx->ohci->card, packet->ack);
1509 }
93c4cceb
KH
1510
1511 offset =
1512 ((unsigned long long)
a77754a7 1513 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
93c4cceb
KH
1514 packet->header[2];
1515 csr = offset - CSR_REGISTER_BASE;
1516
1517 /* Handle config rom reads. */
1518 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1519 handle_local_rom(ctx->ohci, packet, csr);
1520 else switch (csr) {
1521 case CSR_BUS_MANAGER_ID:
1522 case CSR_BANDWIDTH_AVAILABLE:
1523 case CSR_CHANNELS_AVAILABLE_HI:
1524 case CSR_CHANNELS_AVAILABLE_LO:
1525 handle_local_lock(ctx->ohci, packet, csr);
1526 break;
1527 default:
1528 if (ctx == &ctx->ohci->at_request_ctx)
1529 fw_core_handle_request(&ctx->ohci->card, packet);
1530 else
1531 fw_core_handle_response(&ctx->ohci->card, packet);
1532 break;
1533 }
473d28c7
KH
1534
1535 if (ctx == &ctx->ohci->at_response_ctx) {
1536 packet->ack = ACK_COMPLETE;
1537 packet->callback(packet, &ctx->ohci->card, packet->ack);
1538 }
93c4cceb 1539}
e636fe25 1540
53dca511 1541static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
ed568912 1542{
ed568912 1543 unsigned long flags;
2dbd7d7e 1544 int ret;
ed568912
KH
1545
1546 spin_lock_irqsave(&ctx->ohci->lock, flags);
1547
a77754a7 1548 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
e636fe25 1549 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
1550 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1551 handle_local_request(ctx, packet);
1552 return;
e636fe25 1553 }
ed568912 1554
2dbd7d7e 1555 ret = at_context_queue_packet(ctx, packet);
ed568912
KH
1556 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1557
2dbd7d7e 1558 if (ret < 0)
f319b6a0 1559 packet->callback(packet, &ctx->ohci->card, packet->ack);
a186b4a6 1560
ed568912
KH
1561}
1562
a48777e0
CL
1563static u32 cycle_timer_ticks(u32 cycle_timer)
1564{
1565 u32 ticks;
1566
1567 ticks = cycle_timer & 0xfff;
1568 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1569 ticks += (3072 * 8000) * (cycle_timer >> 25);
1570
1571 return ticks;
1572}
1573
1574/*
1575 * Some controllers exhibit one or more of the following bugs when updating the
1576 * iso cycle timer register:
1577 * - When the lowest six bits are wrapping around to zero, a read that happens
1578 * at the same time will return garbage in the lowest ten bits.
1579 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1580 * not incremented for about 60 ns.
1581 * - Occasionally, the entire register reads zero.
1582 *
1583 * To catch these, we read the register three times and ensure that the
1584 * difference between each two consecutive reads is approximately the same, i.e.
1585 * less than twice the other. Furthermore, any negative difference indicates an
1586 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1587 * execute, so we have enough precision to compute the ratio of the differences.)
1588 */
1589static u32 get_cycle_time(struct fw_ohci *ohci)
1590{
1591 u32 c0, c1, c2;
1592 u32 t0, t1, t2;
1593 s32 diff01, diff12;
1594 int i;
1595
1596 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1597
1598 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1599 i = 0;
1600 c1 = c2;
1601 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1602 do {
1603 c0 = c1;
1604 c1 = c2;
1605 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1606 t0 = cycle_timer_ticks(c0);
1607 t1 = cycle_timer_ticks(c1);
1608 t2 = cycle_timer_ticks(c2);
1609 diff01 = t1 - t0;
1610 diff12 = t2 - t1;
1611 } while ((diff01 <= 0 || diff12 <= 0 ||
1612 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1613 && i++ < 20);
1614 }
1615
1616 return c2;
1617}
1618
1619/*
1620 * This function has to be called at least every 64 seconds. The bus_time
1621 * field stores not only the upper 25 bits of the BUS_TIME register but also
1622 * the most significant bit of the cycle timer in bit 6 so that we can detect
1623 * changes in this bit.
1624 */
1625static u32 update_bus_time(struct fw_ohci *ohci)
1626{
1627 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1628
1629 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1630 ohci->bus_time += 0x40;
1631
1632 return ohci->bus_time | cycle_time_seconds;
1633}
1634
ed568912
KH
1635static void bus_reset_tasklet(unsigned long data)
1636{
1637 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 1638 int self_id_count, i, j, reg;
ed568912
KH
1639 int generation, new_generation;
1640 unsigned long flags;
4eaff7d6
SR
1641 void *free_rom = NULL;
1642 dma_addr_t free_rom_bus = 0;
4ffb7a6a 1643 bool is_new_root;
ed568912
KH
1644
1645 reg = reg_read(ohci, OHCI1394_NodeID);
1646 if (!(reg & OHCI1394_NodeID_idValid)) {
02ff8f8e 1647 fw_notify("node ID not valid, new bus reset in progress\n");
ed568912
KH
1648 return;
1649 }
02ff8f8e
SR
1650 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1651 fw_notify("malconfigured bus\n");
1652 return;
1653 }
1654 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1655 OHCI1394_NodeID_nodeNumber);
ed568912 1656
4ffb7a6a
CL
1657 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1658 if (!(ohci->is_root && is_new_root))
1659 reg_write(ohci, OHCI1394_LinkControlSet,
1660 OHCI1394_LinkControl_cycleMaster);
1661 ohci->is_root = is_new_root;
1662
c8a9a498
SR
1663 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1664 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1665 fw_notify("inconsistent self IDs\n");
1666 return;
1667 }
c781c06d
KH
1668 /*
1669 * The count in the SelfIDCount register is the number of
ed568912
KH
1670 * bytes in the self ID receive buffer. Since we also receive
1671 * the inverted quadlets and a header quadlet, we shift one
c781c06d
KH
1672 * bit extra to get the actual number of self IDs.
1673 */
928ec5f1
SR
1674 self_id_count = (reg >> 3) & 0xff;
1675 if (self_id_count == 0 || self_id_count > 252) {
016bf3df
SR
1676 fw_notify("inconsistent self IDs\n");
1677 return;
1678 }
11bf20ad 1679 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
ee71c2f9 1680 rmb();
ed568912
KH
1681
1682 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
c8a9a498
SR
1683 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1684 fw_notify("inconsistent self IDs\n");
1685 return;
1686 }
11bf20ad
SR
1687 ohci->self_id_buffer[j] =
1688 cond_le32_to_cpu(ohci->self_id_cpu[i]);
ed568912 1689 }
ee71c2f9 1690 rmb();
ed568912 1691
c781c06d
KH
1692 /*
1693 * Check the consistency of the self IDs we just read. The
ed568912
KH
1694 * problem we face is that a new bus reset can start while we
1695 * read out the self IDs from the DMA buffer. If this happens,
1696 * the DMA buffer will be overwritten with new self IDs and we
1697 * will read out inconsistent data. The OHCI specification
1698 * (section 11.2) recommends a technique similar to
1699 * linux/seqlock.h, where we remember the generation of the
1700 * self IDs in the buffer before reading them out and compare
1701 * it to the current generation after reading them out. If
1702 * the two generations match we know we have a consistent set
c781c06d
KH
1703 * of self IDs.
1704 */
ed568912
KH
1705
1706 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1707 if (new_generation != generation) {
1708 fw_notify("recursive bus reset detected, "
1709 "discarding self ids\n");
1710 return;
1711 }
1712
1713 /* FIXME: Document how the locking works. */
1714 spin_lock_irqsave(&ohci->lock, flags);
1715
1716 ohci->generation = generation;
f319b6a0
KH
1717 context_stop(&ohci->at_request_ctx);
1718 context_stop(&ohci->at_response_ctx);
ed568912
KH
1719 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1720
4a635593 1721 if (ohci->quirks & QUIRK_RESET_PACKET)
d34316a4
SR
1722 ohci->request_generation = generation;
1723
c781c06d
KH
1724 /*
1725 * This next bit is unrelated to the AT context stuff but we
ed568912
KH
1726 * have to do it under the spinlock also. If a new config rom
1727 * was set up before this reset, the old one is now no longer
1728 * in use and we can free it. Update the config rom pointers
1729 * to point to the current config rom and clear the
88393161 1730 * next_config_rom pointer so a new update can take place.
c781c06d 1731 */
ed568912
KH
1732
1733 if (ohci->next_config_rom != NULL) {
0bd243c4
KH
1734 if (ohci->next_config_rom != ohci->config_rom) {
1735 free_rom = ohci->config_rom;
1736 free_rom_bus = ohci->config_rom_bus;
1737 }
ed568912
KH
1738 ohci->config_rom = ohci->next_config_rom;
1739 ohci->config_rom_bus = ohci->next_config_rom_bus;
1740 ohci->next_config_rom = NULL;
1741
c781c06d
KH
1742 /*
1743 * Restore config_rom image and manually update
ed568912
KH
1744 * config_rom registers. Writing the header quadlet
1745 * will indicate that the config rom is ready, so we
c781c06d
KH
1746 * do that last.
1747 */
ed568912
KH
1748 reg_write(ohci, OHCI1394_BusOptions,
1749 be32_to_cpu(ohci->config_rom[2]));
8e85973e
SR
1750 ohci->config_rom[0] = ohci->next_header;
1751 reg_write(ohci, OHCI1394_ConfigROMhdr,
1752 be32_to_cpu(ohci->next_header));
ed568912
KH
1753 }
1754
080de8c2
SR
1755#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1756 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1757 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1758#endif
1759
ed568912
KH
1760 spin_unlock_irqrestore(&ohci->lock, flags);
1761
4eaff7d6
SR
1762 if (free_rom)
1763 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1764 free_rom, free_rom_bus);
1765
08ddb2f4
SR
1766 log_selfids(ohci->node_id, generation,
1767 self_id_count, ohci->self_id_buffer);
ad3c0fe8 1768
e636fe25 1769 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
c8a94ded
SR
1770 self_id_count, ohci->self_id_buffer,
1771 ohci->csr_state_setclear_abdicate);
1772 ohci->csr_state_setclear_abdicate = false;
ed568912
KH
1773}
1774
1775static irqreturn_t irq_handler(int irq, void *data)
1776{
1777 struct fw_ohci *ohci = data;
168cf9af 1778 u32 event, iso_event;
ed568912
KH
1779 int i;
1780
1781 event = reg_read(ohci, OHCI1394_IntEventClear);
1782
a515958d 1783 if (!event || !~event)
ed568912
KH
1784 return IRQ_NONE;
1785
8327b37b
CL
1786 /*
1787 * busReset and postedWriteErr must not be cleared yet
1788 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1789 */
1790 reg_write(ohci, OHCI1394_IntEventClear,
1791 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
ad3c0fe8 1792 log_irqs(event);
ed568912
KH
1793
1794 if (event & OHCI1394_selfIDComplete)
1795 tasklet_schedule(&ohci->bus_reset_tasklet);
1796
1797 if (event & OHCI1394_RQPkt)
1798 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1799
1800 if (event & OHCI1394_RSPkt)
1801 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1802
1803 if (event & OHCI1394_reqTxComplete)
1804 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1805
1806 if (event & OHCI1394_respTxComplete)
1807 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1808
2dd5bed5
CL
1809 if (event & OHCI1394_isochRx) {
1810 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1811 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1812
1813 while (iso_event) {
1814 i = ffs(iso_event) - 1;
1815 tasklet_schedule(
1816 &ohci->ir_context_list[i].context.tasklet);
1817 iso_event &= ~(1 << i);
1818 }
ed568912
KH
1819 }
1820
2dd5bed5
CL
1821 if (event & OHCI1394_isochTx) {
1822 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1823 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
ed568912 1824
2dd5bed5
CL
1825 while (iso_event) {
1826 i = ffs(iso_event) - 1;
1827 tasklet_schedule(
1828 &ohci->it_context_list[i].context.tasklet);
1829 iso_event &= ~(1 << i);
1830 }
ed568912
KH
1831 }
1832
75f7832e
JW
1833 if (unlikely(event & OHCI1394_regAccessFail))
1834 fw_error("Register access failure - "
1835 "please notify linux1394-devel@lists.sf.net\n");
1836
8327b37b
CL
1837 if (unlikely(event & OHCI1394_postedWriteErr)) {
1838 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1839 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1840 reg_write(ohci, OHCI1394_IntEventClear,
1841 OHCI1394_postedWriteErr);
e524f616 1842 fw_error("PCI posted write error\n");
8327b37b 1843 }
e524f616 1844
bb9f2206
SR
1845 if (unlikely(event & OHCI1394_cycleTooLong)) {
1846 if (printk_ratelimit())
1847 fw_notify("isochronous cycle too long\n");
1848 reg_write(ohci, OHCI1394_LinkControlSet,
1849 OHCI1394_LinkControl_cycleMaster);
1850 }
1851
5ed1f321
JF
1852 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1853 /*
1854 * We need to clear this event bit in order to make
1855 * cycleMatch isochronous I/O work. In theory we should
1856 * stop active cycleMatch iso contexts now and restart
1857 * them at least two cycles later. (FIXME?)
1858 */
1859 if (printk_ratelimit())
1860 fw_notify("isochronous cycle inconsistent\n");
1861 }
1862
a48777e0
CL
1863 if (event & OHCI1394_cycle64Seconds) {
1864 spin_lock(&ohci->lock);
1865 update_bus_time(ohci);
1866 spin_unlock(&ohci->lock);
e597e989
CL
1867 } else
1868 flush_writes(ohci);
a48777e0 1869
ed568912
KH
1870 return IRQ_HANDLED;
1871}
1872
2aef469a
KH
1873static int software_reset(struct fw_ohci *ohci)
1874{
1875 int i;
1876
1877 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1878
1879 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1880 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1881 OHCI1394_HCControl_softReset) == 0)
1882 return 0;
1883 msleep(1);
1884 }
1885
1886 return -EBUSY;
1887}
1888
8e85973e
SR
1889static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1890{
1891 size_t size = length * 4;
1892
1893 memcpy(dest, src, size);
1894 if (size < CONFIG_ROM_SIZE)
1895 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1896}
1897
925e7a65
CL
1898static int configure_1394a_enhancements(struct fw_ohci *ohci)
1899{
1900 bool enable_1394a;
35d999b1 1901 int ret, clear, set, offset;
925e7a65
CL
1902
1903 /* Check if the driver should configure link and PHY. */
1904 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1905 OHCI1394_HCControl_programPhyEnable))
1906 return 0;
1907
1908 /* Paranoia: check whether the PHY supports 1394a, too. */
1909 enable_1394a = false;
35d999b1
SR
1910 ret = read_phy_reg(ohci, 2);
1911 if (ret < 0)
1912 return ret;
1913 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1914 ret = read_paged_phy_reg(ohci, 1, 8);
1915 if (ret < 0)
1916 return ret;
1917 if (ret >= 1)
925e7a65
CL
1918 enable_1394a = true;
1919 }
1920
1921 if (ohci->quirks & QUIRK_NO_1394A)
1922 enable_1394a = false;
1923
1924 /* Configure PHY and link consistently. */
1925 if (enable_1394a) {
1926 clear = 0;
1927 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1928 } else {
1929 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1930 set = 0;
1931 }
02d37bed 1932 ret = update_phy_reg(ohci, 5, clear, set);
35d999b1
SR
1933 if (ret < 0)
1934 return ret;
925e7a65
CL
1935
1936 if (enable_1394a)
1937 offset = OHCI1394_HCControlSet;
1938 else
1939 offset = OHCI1394_HCControlClear;
1940 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1941
1942 /* Clean up: configuration has been taken care of. */
1943 reg_write(ohci, OHCI1394_HCControlClear,
1944 OHCI1394_HCControl_programPhyEnable);
1945
1946 return 0;
1947}
1948
8e85973e
SR
1949static int ohci_enable(struct fw_card *card,
1950 const __be32 *config_rom, size_t length)
ed568912
KH
1951{
1952 struct fw_ohci *ohci = fw_ohci(card);
1953 struct pci_dev *dev = to_pci_dev(card->device);
e91b2787 1954 u32 lps, seconds, version, irqs;
35d999b1 1955 int i, ret;
ed568912 1956
2aef469a
KH
1957 if (software_reset(ohci)) {
1958 fw_error("Failed to reset ohci card.\n");
1959 return -EBUSY;
1960 }
1961
1962 /*
1963 * Now enable LPS, which we need in order to start accessing
1964 * most of the registers. In fact, on some cards (ALI M5251),
1965 * accessing registers in the SClk domain without LPS enabled
1966 * will lock up the machine. Wait 50msec to make sure we have
02214724
JW
1967 * full link enabled. However, with some cards (well, at least
1968 * a JMicron PCIe card), we have to try again sometimes.
2aef469a
KH
1969 */
1970 reg_write(ohci, OHCI1394_HCControlSet,
1971 OHCI1394_HCControl_LPS |
1972 OHCI1394_HCControl_postedWriteEnable);
1973 flush_writes(ohci);
02214724
JW
1974
1975 for (lps = 0, i = 0; !lps && i < 3; i++) {
1976 msleep(50);
1977 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1978 OHCI1394_HCControl_LPS;
1979 }
1980
1981 if (!lps) {
1982 fw_error("Failed to set Link Power Status\n");
1983 return -EIO;
1984 }
2aef469a
KH
1985
1986 reg_write(ohci, OHCI1394_HCControlClear,
1987 OHCI1394_HCControl_noByteSwapData);
1988
affc9c24 1989 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2aef469a
KH
1990 reg_write(ohci, OHCI1394_LinkControlSet,
1991 OHCI1394_LinkControl_rcvSelfID |
bf54e146 1992 OHCI1394_LinkControl_rcvPhyPkt |
2aef469a
KH
1993 OHCI1394_LinkControl_cycleTimerEnable |
1994 OHCI1394_LinkControl_cycleMaster);
1995
1996 reg_write(ohci, OHCI1394_ATRetries,
1997 OHCI1394_MAX_AT_REQ_RETRIES |
1998 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
27a2329f
CL
1999 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2000 (200 << 16));
2aef469a 2001
a48777e0
CL
2002 seconds = lower_32_bits(get_seconds());
2003 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2004 ohci->bus_time = seconds & ~0x3f;
2005
e91b2787
CL
2006 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2007 if (version >= OHCI_VERSION_1_1) {
2008 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2009 0xfffffffe);
db3c9cc1 2010 card->broadcast_channel_auto_allocated = true;
e91b2787
CL
2011 }
2012
a1a1132b
CL
2013 /* Get implemented bits of the priority arbitration request counter. */
2014 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2015 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2016 reg_write(ohci, OHCI1394_FairnessControl, 0);
db3c9cc1 2017 card->priority_budget_implemented = ohci->pri_req_max != 0;
2aef469a
KH
2018
2019 ar_context_run(&ohci->ar_request_ctx);
2020 ar_context_run(&ohci->ar_response_ctx);
2021
2aef469a
KH
2022 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2023 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2024 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2aef469a 2025
35d999b1
SR
2026 ret = configure_1394a_enhancements(ohci);
2027 if (ret < 0)
2028 return ret;
925e7a65 2029
2aef469a 2030 /* Activate link_on bit and contender bit in our self ID packets.*/
35d999b1
SR
2031 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2032 if (ret < 0)
2033 return ret;
2aef469a 2034
c781c06d
KH
2035 /*
2036 * When the link is not yet enabled, the atomic config rom
ed568912
KH
2037 * update mechanism described below in ohci_set_config_rom()
2038 * is not active. We have to update ConfigRomHeader and
2039 * BusOptions manually, and the write to ConfigROMmap takes
2040 * effect immediately. We tie this to the enabling of the
2041 * link, so we have a valid config rom before enabling - the
2042 * OHCI requires that ConfigROMhdr and BusOptions have valid
2043 * values before enabling.
2044 *
2045 * However, when the ConfigROMmap is written, some controllers
2046 * always read back quadlets 0 and 2 from the config rom to
2047 * the ConfigRomHeader and BusOptions registers on bus reset.
2048 * They shouldn't do that in this initial case where the link
2049 * isn't enabled. This means we have to use the same
2050 * workaround here, setting the bus header to 0 and then write
2051 * the right values in the bus reset tasklet.
2052 */
2053
0bd243c4
KH
2054 if (config_rom) {
2055 ohci->next_config_rom =
2056 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2057 &ohci->next_config_rom_bus,
2058 GFP_KERNEL);
2059 if (ohci->next_config_rom == NULL)
2060 return -ENOMEM;
ed568912 2061
8e85973e 2062 copy_config_rom(ohci->next_config_rom, config_rom, length);
0bd243c4
KH
2063 } else {
2064 /*
2065 * In the suspend case, config_rom is NULL, which
2066 * means that we just reuse the old config rom.
2067 */
2068 ohci->next_config_rom = ohci->config_rom;
2069 ohci->next_config_rom_bus = ohci->config_rom_bus;
2070 }
ed568912 2071
8e85973e 2072 ohci->next_header = ohci->next_config_rom[0];
ed568912
KH
2073 ohci->next_config_rom[0] = 0;
2074 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
0bd243c4
KH
2075 reg_write(ohci, OHCI1394_BusOptions,
2076 be32_to_cpu(ohci->next_config_rom[2]));
ed568912
KH
2077 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2078
2079 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2080
262444ee
CL
2081 if (!(ohci->quirks & QUIRK_NO_MSI))
2082 pci_enable_msi(dev);
ed568912 2083 if (request_irq(dev->irq, irq_handler,
262444ee
CL
2084 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2085 ohci_driver_name, ohci)) {
2086 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2087 pci_disable_msi(dev);
ed568912
KH
2088 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2089 ohci->config_rom, ohci->config_rom_bus);
2090 return -EIO;
2091 }
2092
148c7866
SR
2093 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2094 OHCI1394_RQPkt | OHCI1394_RSPkt |
2095 OHCI1394_isochTx | OHCI1394_isochRx |
2096 OHCI1394_postedWriteErr |
2097 OHCI1394_selfIDComplete |
2098 OHCI1394_regAccessFail |
a48777e0 2099 OHCI1394_cycle64Seconds |
148c7866
SR
2100 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
2101 OHCI1394_masterIntEnable;
2102 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2103 irqs |= OHCI1394_busReset;
2104 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2105
ed568912
KH
2106 reg_write(ohci, OHCI1394_HCControlSet,
2107 OHCI1394_HCControl_linkEnable |
2108 OHCI1394_HCControl_BIBimageValid);
2109 flush_writes(ohci);
2110
02d37bed
SR
2111 /* We are ready to go, reset bus to finish initialization. */
2112 fw_schedule_bus_reset(&ohci->card, false, true);
ed568912
KH
2113
2114 return 0;
2115}
2116
53dca511 2117static int ohci_set_config_rom(struct fw_card *card,
8e85973e 2118 const __be32 *config_rom, size_t length)
ed568912
KH
2119{
2120 struct fw_ohci *ohci;
2121 unsigned long flags;
2dbd7d7e 2122 int ret = -EBUSY;
ed568912 2123 __be32 *next_config_rom;
f5101d58 2124 dma_addr_t uninitialized_var(next_config_rom_bus);
ed568912
KH
2125
2126 ohci = fw_ohci(card);
2127
c781c06d
KH
2128 /*
2129 * When the OHCI controller is enabled, the config rom update
ed568912
KH
2130 * mechanism is a bit tricky, but easy enough to use. See
2131 * section 5.5.6 in the OHCI specification.
2132 *
2133 * The OHCI controller caches the new config rom address in a
2134 * shadow register (ConfigROMmapNext) and needs a bus reset
2135 * for the changes to take place. When the bus reset is
2136 * detected, the controller loads the new values for the
2137 * ConfigRomHeader and BusOptions registers from the specified
2138 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2139 * shadow register. All automatically and atomically.
2140 *
2141 * Now, there's a twist to this story. The automatic load of
2142 * ConfigRomHeader and BusOptions doesn't honor the
2143 * noByteSwapData bit, so with a be32 config rom, the
2144 * controller will load be32 values in to these registers
2145 * during the atomic update, even on litte endian
2146 * architectures. The workaround we use is to put a 0 in the
2147 * header quadlet; 0 is endian agnostic and means that the
2148 * config rom isn't ready yet. In the bus reset tasklet we
2149 * then set up the real values for the two registers.
2150 *
2151 * We use ohci->lock to avoid racing with the code that sets
2152 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2153 */
2154
2155 next_config_rom =
2156 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2157 &next_config_rom_bus, GFP_KERNEL);
2158 if (next_config_rom == NULL)
2159 return -ENOMEM;
2160
2161 spin_lock_irqsave(&ohci->lock, flags);
2162
2163 if (ohci->next_config_rom == NULL) {
2164 ohci->next_config_rom = next_config_rom;
2165 ohci->next_config_rom_bus = next_config_rom_bus;
2166
8e85973e 2167 copy_config_rom(ohci->next_config_rom, config_rom, length);
ed568912
KH
2168
2169 ohci->next_header = config_rom[0];
2170 ohci->next_config_rom[0] = 0;
2171
2172 reg_write(ohci, OHCI1394_ConfigROMmap,
2173 ohci->next_config_rom_bus);
2dbd7d7e 2174 ret = 0;
ed568912
KH
2175 }
2176
2177 spin_unlock_irqrestore(&ohci->lock, flags);
2178
c781c06d
KH
2179 /*
2180 * Now initiate a bus reset to have the changes take
ed568912
KH
2181 * effect. We clean up the old config rom memory and DMA
2182 * mappings in the bus reset tasklet, since the OHCI
2183 * controller could need to access it before the bus reset
c781c06d
KH
2184 * takes effect.
2185 */
2dbd7d7e 2186 if (ret == 0)
02d37bed 2187 fw_schedule_bus_reset(&ohci->card, true, true);
4eaff7d6
SR
2188 else
2189 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2190 next_config_rom, next_config_rom_bus);
ed568912 2191
2dbd7d7e 2192 return ret;
ed568912
KH
2193}
2194
2195static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2196{
2197 struct fw_ohci *ohci = fw_ohci(card);
2198
2199 at_context_transmit(&ohci->at_request_ctx, packet);
2200}
2201
2202static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2203{
2204 struct fw_ohci *ohci = fw_ohci(card);
2205
2206 at_context_transmit(&ohci->at_response_ctx, packet);
2207}
2208
730c32f5
KH
2209static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2210{
2211 struct fw_ohci *ohci = fw_ohci(card);
f319b6a0
KH
2212 struct context *ctx = &ohci->at_request_ctx;
2213 struct driver_data *driver_data = packet->driver_data;
2dbd7d7e 2214 int ret = -ENOENT;
730c32f5 2215
f319b6a0 2216 tasklet_disable(&ctx->tasklet);
730c32f5 2217
f319b6a0
KH
2218 if (packet->ack != 0)
2219 goto out;
730c32f5 2220
19593ffd 2221 if (packet->payload_mapped)
1d1dc5e8
SR
2222 dma_unmap_single(ohci->card.device, packet->payload_bus,
2223 packet->payload_length, DMA_TO_DEVICE);
2224
ad3c0fe8 2225 log_ar_at_event('T', packet->speed, packet->header, 0x20);
f319b6a0
KH
2226 driver_data->packet = NULL;
2227 packet->ack = RCODE_CANCELLED;
2228 packet->callback(packet, &ohci->card, packet->ack);
2dbd7d7e 2229 ret = 0;
f319b6a0
KH
2230 out:
2231 tasklet_enable(&ctx->tasklet);
730c32f5 2232
2dbd7d7e 2233 return ret;
730c32f5
KH
2234}
2235
53dca511
SR
2236static int ohci_enable_phys_dma(struct fw_card *card,
2237 int node_id, int generation)
ed568912 2238{
080de8c2
SR
2239#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2240 return 0;
2241#else
ed568912
KH
2242 struct fw_ohci *ohci = fw_ohci(card);
2243 unsigned long flags;
2dbd7d7e 2244 int n, ret = 0;
ed568912 2245
c781c06d
KH
2246 /*
2247 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2248 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2249 */
ed568912
KH
2250
2251 spin_lock_irqsave(&ohci->lock, flags);
2252
2253 if (ohci->generation != generation) {
2dbd7d7e 2254 ret = -ESTALE;
ed568912
KH
2255 goto out;
2256 }
2257
c781c06d
KH
2258 /*
2259 * Note, if the node ID contains a non-local bus ID, physical DMA is
2260 * enabled for _all_ nodes on remote buses.
2261 */
907293d7
SR
2262
2263 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2264 if (n < 32)
2265 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2266 else
2267 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2268
ed568912 2269 flush_writes(ohci);
ed568912 2270 out:
6cad95fe 2271 spin_unlock_irqrestore(&ohci->lock, flags);
2dbd7d7e
SR
2272
2273 return ret;
080de8c2 2274#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
ed568912 2275}
373b2edd 2276
0fcff4e3 2277static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
b677532b 2278{
60d32970 2279 struct fw_ohci *ohci = fw_ohci(card);
a48777e0
CL
2280 unsigned long flags;
2281 u32 value;
60d32970
CL
2282
2283 switch (csr_offset) {
4ffb7a6a
CL
2284 case CSR_STATE_CLEAR:
2285 case CSR_STATE_SET:
4ffb7a6a
CL
2286 if (ohci->is_root &&
2287 (reg_read(ohci, OHCI1394_LinkControlSet) &
2288 OHCI1394_LinkControl_cycleMaster))
c8a94ded 2289 value = CSR_STATE_BIT_CMSTR;
4ffb7a6a 2290 else
c8a94ded
SR
2291 value = 0;
2292 if (ohci->csr_state_setclear_abdicate)
2293 value |= CSR_STATE_BIT_ABDICATE;
b677532b 2294
c8a94ded 2295 return value;
4a9bde9b 2296
506f1a31
CL
2297 case CSR_NODE_IDS:
2298 return reg_read(ohci, OHCI1394_NodeID) << 16;
2299
60d32970
CL
2300 case CSR_CYCLE_TIME:
2301 return get_cycle_time(ohci);
2302
a48777e0
CL
2303 case CSR_BUS_TIME:
2304 /*
2305 * We might be called just after the cycle timer has wrapped
2306 * around but just before the cycle64Seconds handler, so we
2307 * better check here, too, if the bus time needs to be updated.
2308 */
2309 spin_lock_irqsave(&ohci->lock, flags);
2310 value = update_bus_time(ohci);
2311 spin_unlock_irqrestore(&ohci->lock, flags);
2312 return value;
2313
27a2329f
CL
2314 case CSR_BUSY_TIMEOUT:
2315 value = reg_read(ohci, OHCI1394_ATRetries);
2316 return (value >> 4) & 0x0ffff00f;
2317
a1a1132b
CL
2318 case CSR_PRIORITY_BUDGET:
2319 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2320 (ohci->pri_req_max << 8);
2321
60d32970
CL
2322 default:
2323 WARN_ON(1);
2324 return 0;
2325 }
b677532b
CL
2326}
2327
0fcff4e3 2328static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
d60d7f1d
KH
2329{
2330 struct fw_ohci *ohci = fw_ohci(card);
a48777e0 2331 unsigned long flags;
d60d7f1d 2332
506f1a31 2333 switch (csr_offset) {
4ffb7a6a 2334 case CSR_STATE_CLEAR:
4ffb7a6a
CL
2335 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2336 reg_write(ohci, OHCI1394_LinkControlClear,
2337 OHCI1394_LinkControl_cycleMaster);
2338 flush_writes(ohci);
2339 }
c8a94ded
SR
2340 if (value & CSR_STATE_BIT_ABDICATE)
2341 ohci->csr_state_setclear_abdicate = false;
4ffb7a6a 2342 break;
4a9bde9b 2343
4ffb7a6a
CL
2344 case CSR_STATE_SET:
2345 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2346 reg_write(ohci, OHCI1394_LinkControlSet,
2347 OHCI1394_LinkControl_cycleMaster);
2348 flush_writes(ohci);
2349 }
c8a94ded
SR
2350 if (value & CSR_STATE_BIT_ABDICATE)
2351 ohci->csr_state_setclear_abdicate = true;
4ffb7a6a 2352 break;
d60d7f1d 2353
506f1a31
CL
2354 case CSR_NODE_IDS:
2355 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2356 flush_writes(ohci);
2357 break;
2358
9ab5071c
CL
2359 case CSR_CYCLE_TIME:
2360 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2361 reg_write(ohci, OHCI1394_IntEventSet,
2362 OHCI1394_cycleInconsistent);
2363 flush_writes(ohci);
2364 break;
2365
a48777e0
CL
2366 case CSR_BUS_TIME:
2367 spin_lock_irqsave(&ohci->lock, flags);
2368 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2369 spin_unlock_irqrestore(&ohci->lock, flags);
2370 break;
2371
27a2329f
CL
2372 case CSR_BUSY_TIMEOUT:
2373 value = (value & 0xf) | ((value & 0xf) << 4) |
2374 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2375 reg_write(ohci, OHCI1394_ATRetries, value);
2376 flush_writes(ohci);
2377 break;
2378
a1a1132b
CL
2379 case CSR_PRIORITY_BUDGET:
2380 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2381 flush_writes(ohci);
2382 break;
2383
506f1a31
CL
2384 default:
2385 WARN_ON(1);
2386 break;
2387 }
d60d7f1d
KH
2388}
2389
1aa292bb
DM
2390static void copy_iso_headers(struct iso_context *ctx, void *p)
2391{
2392 int i = ctx->header_length;
2393
2394 if (i + ctx->base.header_size > PAGE_SIZE)
2395 return;
2396
2397 /*
2398 * The iso header is byteswapped to little endian by
2399 * the controller, but the remaining header quadlets
2400 * are big endian. We want to present all the headers
2401 * as big endian, so we have to swap the first quadlet.
2402 */
2403 if (ctx->base.header_size > 0)
2404 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2405 if (ctx->base.header_size > 4)
2406 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2407 if (ctx->base.header_size > 8)
2408 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2409 ctx->header_length += ctx->base.header_size;
2410}
2411
a186b4a6
JW
2412static int handle_ir_packet_per_buffer(struct context *context,
2413 struct descriptor *d,
2414 struct descriptor *last)
2415{
2416 struct iso_context *ctx =
2417 container_of(context, struct iso_context, context);
bcee893c 2418 struct descriptor *pd;
a186b4a6 2419 __le32 *ir_header;
bcee893c 2420 void *p;
a186b4a6 2421
872e330e 2422 for (pd = d; pd <= last; pd++)
bcee893c
DM
2423 if (pd->transfer_status)
2424 break;
bcee893c 2425 if (pd > last)
a186b4a6
JW
2426 /* Descriptor(s) not done yet, stop iteration */
2427 return 0;
2428
1aa292bb
DM
2429 p = last + 1;
2430 copy_iso_headers(ctx, p);
a186b4a6 2431
bcee893c
DM
2432 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2433 ir_header = (__le32 *) p;
872e330e
SR
2434 ctx->base.callback.sc(&ctx->base,
2435 le32_to_cpu(ir_header[0]) & 0xffff,
2436 ctx->header_length, ctx->header,
2437 ctx->base.callback_data);
a186b4a6
JW
2438 ctx->header_length = 0;
2439 }
2440
a186b4a6
JW
2441 return 1;
2442}
2443
872e330e
SR
2444/* d == last because each descriptor block is only a single descriptor. */
2445static int handle_ir_buffer_fill(struct context *context,
2446 struct descriptor *d,
2447 struct descriptor *last)
2448{
2449 struct iso_context *ctx =
2450 container_of(context, struct iso_context, context);
2451
2452 if (!last->transfer_status)
2453 /* Descriptor(s) not done yet, stop iteration */
2454 return 0;
2455
2456 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2457 ctx->base.callback.mc(&ctx->base,
2458 le32_to_cpu(last->data_address) +
2459 le16_to_cpu(last->req_count) -
2460 le16_to_cpu(last->res_count),
2461 ctx->base.callback_data);
2462
2463 return 1;
2464}
2465
30200739
KH
2466static int handle_it_packet(struct context *context,
2467 struct descriptor *d,
2468 struct descriptor *last)
ed568912 2469{
30200739
KH
2470 struct iso_context *ctx =
2471 container_of(context, struct iso_context, context);
31769cef
JF
2472 int i;
2473 struct descriptor *pd;
373b2edd 2474
31769cef
JF
2475 for (pd = d; pd <= last; pd++)
2476 if (pd->transfer_status)
2477 break;
2478 if (pd > last)
2479 /* Descriptor(s) not done yet, stop iteration */
30200739
KH
2480 return 0;
2481
31769cef
JF
2482 i = ctx->header_length;
2483 if (i + 4 < PAGE_SIZE) {
2484 /* Present this value as big-endian to match the receive code */
2485 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2486 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2487 le16_to_cpu(pd->res_count));
2488 ctx->header_length += 4;
2489 }
2490 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
872e330e
SR
2491 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2492 ctx->header_length, ctx->header,
2493 ctx->base.callback_data);
31769cef
JF
2494 ctx->header_length = 0;
2495 }
30200739 2496 return 1;
ed568912
KH
2497}
2498
872e330e
SR
2499static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2500{
2501 u32 hi = channels >> 32, lo = channels;
2502
2503 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2504 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2505 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2506 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2507 mmiowb();
2508 ohci->mc_channels = channels;
2509}
2510
53dca511 2511static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
4817ed24 2512 int type, int channel, size_t header_size)
ed568912
KH
2513{
2514 struct fw_ohci *ohci = fw_ohci(card);
872e330e
SR
2515 struct iso_context *uninitialized_var(ctx);
2516 descriptor_callback_t uninitialized_var(callback);
2517 u64 *uninitialized_var(channels);
2518 u32 *uninitialized_var(mask), uninitialized_var(regs);
ed568912 2519 unsigned long flags;
872e330e 2520 int index, ret = -EBUSY;
ed568912 2521
872e330e 2522 spin_lock_irqsave(&ohci->lock, flags);
ed568912 2523
872e330e
SR
2524 switch (type) {
2525 case FW_ISO_CONTEXT_TRANSMIT:
2526 mask = &ohci->it_context_mask;
30200739 2527 callback = handle_it_packet;
872e330e
SR
2528 index = ffs(*mask) - 1;
2529 if (index >= 0) {
2530 *mask &= ~(1 << index);
2531 regs = OHCI1394_IsoXmitContextBase(index);
2532 ctx = &ohci->it_context_list[index];
2533 }
2534 break;
2535
2536 case FW_ISO_CONTEXT_RECEIVE:
4817ed24 2537 channels = &ohci->ir_context_channels;
872e330e 2538 mask = &ohci->ir_context_mask;
6498ba04 2539 callback = handle_ir_packet_per_buffer;
872e330e
SR
2540 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2541 if (index >= 0) {
2542 *channels &= ~(1ULL << channel);
2543 *mask &= ~(1 << index);
2544 regs = OHCI1394_IsoRcvContextBase(index);
2545 ctx = &ohci->ir_context_list[index];
2546 }
2547 break;
ed568912 2548
872e330e
SR
2549 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2550 mask = &ohci->ir_context_mask;
2551 callback = handle_ir_buffer_fill;
2552 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2553 if (index >= 0) {
2554 ohci->mc_allocated = true;
2555 *mask &= ~(1 << index);
2556 regs = OHCI1394_IsoRcvContextBase(index);
2557 ctx = &ohci->ir_context_list[index];
2558 }
2559 break;
2560
2561 default:
2562 index = -1;
2563 ret = -ENOSYS;
4817ed24 2564 }
872e330e 2565
ed568912
KH
2566 spin_unlock_irqrestore(&ohci->lock, flags);
2567
2568 if (index < 0)
872e330e 2569 return ERR_PTR(ret);
373b2edd 2570
2d826cc5 2571 memset(ctx, 0, sizeof(*ctx));
9b32d5f3
KH
2572 ctx->header_length = 0;
2573 ctx->header = (void *) __get_free_page(GFP_KERNEL);
872e330e
SR
2574 if (ctx->header == NULL) {
2575 ret = -ENOMEM;
9b32d5f3 2576 goto out;
872e330e 2577 }
2dbd7d7e
SR
2578 ret = context_init(&ctx->context, ohci, regs, callback);
2579 if (ret < 0)
9b32d5f3 2580 goto out_with_header;
ed568912 2581
872e330e
SR
2582 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2583 set_multichannel_mask(ohci, 0);
2584
ed568912 2585 return &ctx->base;
9b32d5f3
KH
2586
2587 out_with_header:
2588 free_page((unsigned long)ctx->header);
2589 out:
2590 spin_lock_irqsave(&ohci->lock, flags);
872e330e
SR
2591
2592 switch (type) {
2593 case FW_ISO_CONTEXT_RECEIVE:
2594 *channels |= 1ULL << channel;
2595 break;
2596
2597 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2598 ohci->mc_allocated = false;
2599 break;
2600 }
9b32d5f3 2601 *mask |= 1 << index;
872e330e 2602
9b32d5f3
KH
2603 spin_unlock_irqrestore(&ohci->lock, flags);
2604
2dbd7d7e 2605 return ERR_PTR(ret);
ed568912
KH
2606}
2607
eb0306ea
KH
2608static int ohci_start_iso(struct fw_iso_context *base,
2609 s32 cycle, u32 sync, u32 tags)
ed568912 2610{
373b2edd 2611 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 2612 struct fw_ohci *ohci = ctx->context.ohci;
872e330e 2613 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
ed568912
KH
2614 int index;
2615
872e330e
SR
2616 switch (ctx->base.type) {
2617 case FW_ISO_CONTEXT_TRANSMIT:
295e3feb 2618 index = ctx - ohci->it_context_list;
8a2f7d93
KH
2619 match = 0;
2620 if (cycle >= 0)
2621 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
295e3feb 2622 (cycle & 0x7fff) << 16;
21efb3cf 2623
295e3feb
KH
2624 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2625 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
8a2f7d93 2626 context_run(&ctx->context, match);
872e330e
SR
2627 break;
2628
2629 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2630 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2631 /* fall through */
2632 case FW_ISO_CONTEXT_RECEIVE:
295e3feb 2633 index = ctx - ohci->ir_context_list;
8a2f7d93
KH
2634 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2635 if (cycle >= 0) {
2636 match |= (cycle & 0x07fff) << 12;
2637 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2638 }
ed568912 2639
295e3feb
KH
2640 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2641 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
a77754a7 2642 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
8a2f7d93 2643 context_run(&ctx->context, control);
872e330e 2644 break;
295e3feb 2645 }
ed568912
KH
2646
2647 return 0;
2648}
2649
b8295668
KH
2650static int ohci_stop_iso(struct fw_iso_context *base)
2651{
2652 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 2653 struct iso_context *ctx = container_of(base, struct iso_context, base);
b8295668
KH
2654 int index;
2655
872e330e
SR
2656 switch (ctx->base.type) {
2657 case FW_ISO_CONTEXT_TRANSMIT:
b8295668
KH
2658 index = ctx - ohci->it_context_list;
2659 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
872e330e
SR
2660 break;
2661
2662 case FW_ISO_CONTEXT_RECEIVE:
2663 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
b8295668
KH
2664 index = ctx - ohci->ir_context_list;
2665 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
872e330e 2666 break;
b8295668
KH
2667 }
2668 flush_writes(ohci);
2669 context_stop(&ctx->context);
2670
2671 return 0;
2672}
2673
ed568912
KH
2674static void ohci_free_iso_context(struct fw_iso_context *base)
2675{
2676 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 2677 struct iso_context *ctx = container_of(base, struct iso_context, base);
ed568912
KH
2678 unsigned long flags;
2679 int index;
2680
b8295668
KH
2681 ohci_stop_iso(base);
2682 context_release(&ctx->context);
9b32d5f3 2683 free_page((unsigned long)ctx->header);
b8295668 2684
ed568912
KH
2685 spin_lock_irqsave(&ohci->lock, flags);
2686
872e330e
SR
2687 switch (base->type) {
2688 case FW_ISO_CONTEXT_TRANSMIT:
ed568912 2689 index = ctx - ohci->it_context_list;
ed568912 2690 ohci->it_context_mask |= 1 << index;
872e330e
SR
2691 break;
2692
2693 case FW_ISO_CONTEXT_RECEIVE:
ed568912 2694 index = ctx - ohci->ir_context_list;
ed568912 2695 ohci->ir_context_mask |= 1 << index;
4817ed24 2696 ohci->ir_context_channels |= 1ULL << base->channel;
872e330e
SR
2697 break;
2698
2699 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2700 index = ctx - ohci->ir_context_list;
2701 ohci->ir_context_mask |= 1 << index;
2702 ohci->ir_context_channels |= ohci->mc_channels;
2703 ohci->mc_channels = 0;
2704 ohci->mc_allocated = false;
2705 break;
ed568912 2706 }
ed568912
KH
2707
2708 spin_unlock_irqrestore(&ohci->lock, flags);
2709}
2710
872e330e
SR
2711static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2712{
2713 struct fw_ohci *ohci = fw_ohci(base->card);
2714 unsigned long flags;
2715 int ret;
2716
2717 switch (base->type) {
2718 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2719
2720 spin_lock_irqsave(&ohci->lock, flags);
2721
2722 /* Don't allow multichannel to grab other contexts' channels. */
2723 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2724 *channels = ohci->ir_context_channels;
2725 ret = -EBUSY;
2726 } else {
2727 set_multichannel_mask(ohci, *channels);
2728 ret = 0;
2729 }
2730
2731 spin_unlock_irqrestore(&ohci->lock, flags);
2732
2733 break;
2734 default:
2735 ret = -EINVAL;
2736 }
2737
2738 return ret;
2739}
2740
2741static int queue_iso_transmit(struct iso_context *ctx,
2742 struct fw_iso_packet *packet,
2743 struct fw_iso_buffer *buffer,
2744 unsigned long payload)
ed568912 2745{
30200739 2746 struct descriptor *d, *last, *pd;
ed568912
KH
2747 struct fw_iso_packet *p;
2748 __le32 *header;
9aad8125 2749 dma_addr_t d_bus, page_bus;
ed568912
KH
2750 u32 z, header_z, payload_z, irq;
2751 u32 payload_index, payload_end_index, next_page_index;
30200739 2752 int page, end_page, i, length, offset;
ed568912 2753
ed568912 2754 p = packet;
9aad8125 2755 payload_index = payload;
ed568912
KH
2756
2757 if (p->skip)
2758 z = 1;
2759 else
2760 z = 2;
2761 if (p->header_length > 0)
2762 z++;
2763
2764 /* Determine the first page the payload isn't contained in. */
2765 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2766 if (p->payload_length > 0)
2767 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2768 else
2769 payload_z = 0;
2770
2771 z += payload_z;
2772
2773 /* Get header size in number of descriptors. */
2d826cc5 2774 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
ed568912 2775
30200739
KH
2776 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2777 if (d == NULL)
2778 return -ENOMEM;
ed568912
KH
2779
2780 if (!p->skip) {
a77754a7 2781 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
ed568912 2782 d[0].req_count = cpu_to_le16(8);
7f51a100
CL
2783 /*
2784 * Link the skip address to this descriptor itself. This causes
2785 * a context to skip a cycle whenever lost cycles or FIFO
2786 * overruns occur, without dropping the data. The application
2787 * should then decide whether this is an error condition or not.
2788 * FIXME: Make the context's cycle-lost behaviour configurable?
2789 */
2790 d[0].branch_address = cpu_to_le32(d_bus | z);
ed568912
KH
2791
2792 header = (__le32 *) &d[1];
a77754a7
KH
2793 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2794 IT_HEADER_TAG(p->tag) |
2795 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2796 IT_HEADER_CHANNEL(ctx->base.channel) |
2797 IT_HEADER_SPEED(ctx->base.speed));
ed568912 2798 header[1] =
a77754a7 2799 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
ed568912
KH
2800 p->payload_length));
2801 }
2802
2803 if (p->header_length > 0) {
2804 d[2].req_count = cpu_to_le16(p->header_length);
2d826cc5 2805 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
ed568912
KH
2806 memcpy(&d[z], p->header, p->header_length);
2807 }
2808
2809 pd = d + z - payload_z;
2810 payload_end_index = payload_index + p->payload_length;
2811 for (i = 0; i < payload_z; i++) {
2812 page = payload_index >> PAGE_SHIFT;
2813 offset = payload_index & ~PAGE_MASK;
2814 next_page_index = (page + 1) << PAGE_SHIFT;
2815 length =
2816 min(next_page_index, payload_end_index) - payload_index;
2817 pd[i].req_count = cpu_to_le16(length);
9aad8125
KH
2818
2819 page_bus = page_private(buffer->pages[page]);
2820 pd[i].data_address = cpu_to_le32(page_bus + offset);
ed568912
KH
2821
2822 payload_index += length;
2823 }
2824
ed568912 2825 if (p->interrupt)
a77754a7 2826 irq = DESCRIPTOR_IRQ_ALWAYS;
ed568912 2827 else
a77754a7 2828 irq = DESCRIPTOR_NO_IRQ;
ed568912 2829
30200739 2830 last = z == 2 ? d : d + z - 1;
a77754a7
KH
2831 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2832 DESCRIPTOR_STATUS |
2833 DESCRIPTOR_BRANCH_ALWAYS |
cbb59da7 2834 irq);
ed568912 2835
30200739 2836 context_append(&ctx->context, d, z, header_z);
ed568912
KH
2837
2838 return 0;
2839}
373b2edd 2840
872e330e
SR
2841static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2842 struct fw_iso_packet *packet,
2843 struct fw_iso_buffer *buffer,
2844 unsigned long payload)
a186b4a6 2845{
8c0c0cc2 2846 struct descriptor *d, *pd;
a186b4a6
JW
2847 dma_addr_t d_bus, page_bus;
2848 u32 z, header_z, rest;
bcee893c
DM
2849 int i, j, length;
2850 int page, offset, packet_count, header_size, payload_per_buffer;
a186b4a6
JW
2851
2852 /*
1aa292bb
DM
2853 * The OHCI controller puts the isochronous header and trailer in the
2854 * buffer, so we need at least 8 bytes.
a186b4a6 2855 */
872e330e 2856 packet_count = packet->header_length / ctx->base.header_size;
1aa292bb 2857 header_size = max(ctx->base.header_size, (size_t)8);
a186b4a6
JW
2858
2859 /* Get header size in number of descriptors. */
2860 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2861 page = payload >> PAGE_SHIFT;
2862 offset = payload & ~PAGE_MASK;
872e330e 2863 payload_per_buffer = packet->payload_length / packet_count;
a186b4a6
JW
2864
2865 for (i = 0; i < packet_count; i++) {
2866 /* d points to the header descriptor */
bcee893c 2867 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
a186b4a6 2868 d = context_get_descriptors(&ctx->context,
bcee893c 2869 z + header_z, &d_bus);
a186b4a6
JW
2870 if (d == NULL)
2871 return -ENOMEM;
2872
bcee893c
DM
2873 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2874 DESCRIPTOR_INPUT_MORE);
872e330e 2875 if (packet->skip && i == 0)
bcee893c 2876 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
a186b4a6
JW
2877 d->req_count = cpu_to_le16(header_size);
2878 d->res_count = d->req_count;
bcee893c 2879 d->transfer_status = 0;
a186b4a6
JW
2880 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2881
bcee893c 2882 rest = payload_per_buffer;
8c0c0cc2 2883 pd = d;
bcee893c 2884 for (j = 1; j < z; j++) {
8c0c0cc2 2885 pd++;
bcee893c
DM
2886 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2887 DESCRIPTOR_INPUT_MORE);
2888
2889 if (offset + rest < PAGE_SIZE)
2890 length = rest;
2891 else
2892 length = PAGE_SIZE - offset;
2893 pd->req_count = cpu_to_le16(length);
2894 pd->res_count = pd->req_count;
2895 pd->transfer_status = 0;
2896
2897 page_bus = page_private(buffer->pages[page]);
2898 pd->data_address = cpu_to_le32(page_bus + offset);
2899
2900 offset = (offset + length) & ~PAGE_MASK;
2901 rest -= length;
2902 if (offset == 0)
2903 page++;
2904 }
a186b4a6
JW
2905 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2906 DESCRIPTOR_INPUT_LAST |
2907 DESCRIPTOR_BRANCH_ALWAYS);
872e330e 2908 if (packet->interrupt && i == packet_count - 1)
a186b4a6
JW
2909 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2910
a186b4a6
JW
2911 context_append(&ctx->context, d, z, header_z);
2912 }
2913
2914 return 0;
2915}
2916
872e330e
SR
2917static int queue_iso_buffer_fill(struct iso_context *ctx,
2918 struct fw_iso_packet *packet,
2919 struct fw_iso_buffer *buffer,
2920 unsigned long payload)
2921{
2922 struct descriptor *d;
2923 dma_addr_t d_bus, page_bus;
2924 int page, offset, rest, z, i, length;
2925
2926 page = payload >> PAGE_SHIFT;
2927 offset = payload & ~PAGE_MASK;
2928 rest = packet->payload_length;
2929
2930 /* We need one descriptor for each page in the buffer. */
2931 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2932
2933 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2934 return -EFAULT;
2935
2936 for (i = 0; i < z; i++) {
2937 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2938 if (d == NULL)
2939 return -ENOMEM;
2940
2941 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2942 DESCRIPTOR_BRANCH_ALWAYS);
2943 if (packet->skip && i == 0)
2944 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2945 if (packet->interrupt && i == z - 1)
2946 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2947
2948 if (offset + rest < PAGE_SIZE)
2949 length = rest;
2950 else
2951 length = PAGE_SIZE - offset;
2952 d->req_count = cpu_to_le16(length);
2953 d->res_count = d->req_count;
2954 d->transfer_status = 0;
2955
2956 page_bus = page_private(buffer->pages[page]);
2957 d->data_address = cpu_to_le32(page_bus + offset);
2958
2959 rest -= length;
2960 offset = 0;
2961 page++;
2962
2963 context_append(&ctx->context, d, 1, 0);
2964 }
2965
2966 return 0;
2967}
2968
53dca511
SR
2969static int ohci_queue_iso(struct fw_iso_context *base,
2970 struct fw_iso_packet *packet,
2971 struct fw_iso_buffer *buffer,
2972 unsigned long payload)
295e3feb 2973{
e364cf4e 2974 struct iso_context *ctx = container_of(base, struct iso_context, base);
fe5ca634 2975 unsigned long flags;
872e330e 2976 int ret = -ENOSYS;
e364cf4e 2977
fe5ca634 2978 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
872e330e
SR
2979 switch (base->type) {
2980 case FW_ISO_CONTEXT_TRANSMIT:
2981 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2982 break;
2983 case FW_ISO_CONTEXT_RECEIVE:
2984 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2985 break;
2986 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2987 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2988 break;
2989 }
fe5ca634
DM
2990 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2991
2dbd7d7e 2992 return ret;
295e3feb
KH
2993}
2994
21ebcd12 2995static const struct fw_card_driver ohci_driver = {
ed568912 2996 .enable = ohci_enable,
02d37bed 2997 .read_phy_reg = ohci_read_phy_reg,
ed568912
KH
2998 .update_phy_reg = ohci_update_phy_reg,
2999 .set_config_rom = ohci_set_config_rom,
3000 .send_request = ohci_send_request,
3001 .send_response = ohci_send_response,
730c32f5 3002 .cancel_packet = ohci_cancel_packet,
ed568912 3003 .enable_phys_dma = ohci_enable_phys_dma,
0fcff4e3
SR
3004 .read_csr = ohci_read_csr,
3005 .write_csr = ohci_write_csr,
ed568912
KH
3006
3007 .allocate_iso_context = ohci_allocate_iso_context,
3008 .free_iso_context = ohci_free_iso_context,
872e330e 3009 .set_iso_channels = ohci_set_iso_channels,
ed568912 3010 .queue_iso = ohci_queue_iso,
69cdb726 3011 .start_iso = ohci_start_iso,
b8295668 3012 .stop_iso = ohci_stop_iso,
ed568912
KH
3013};
3014
ea8d006b 3015#ifdef CONFIG_PPC_PMAC
5da3dac8 3016static void pmac_ohci_on(struct pci_dev *dev)
2ed0f181 3017{
ea8d006b
SR
3018 if (machine_is(powermac)) {
3019 struct device_node *ofn = pci_device_to_OF_node(dev);
3020
3021 if (ofn) {
3022 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3023 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3024 }
3025 }
2ed0f181
SR
3026}
3027
5da3dac8 3028static void pmac_ohci_off(struct pci_dev *dev)
2ed0f181
SR
3029{
3030 if (machine_is(powermac)) {
3031 struct device_node *ofn = pci_device_to_OF_node(dev);
3032
3033 if (ofn) {
3034 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3035 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3036 }
3037 }
3038}
3039#else
5da3dac8
SR
3040static inline void pmac_ohci_on(struct pci_dev *dev) {}
3041static inline void pmac_ohci_off(struct pci_dev *dev) {}
ea8d006b
SR
3042#endif /* CONFIG_PPC_PMAC */
3043
53dca511
SR
3044static int __devinit pci_probe(struct pci_dev *dev,
3045 const struct pci_device_id *ent)
2ed0f181
SR
3046{
3047 struct fw_ohci *ohci;
aa0170ff 3048 u32 bus_options, max_receive, link_speed, version;
2ed0f181 3049 u64 guid;
6fdb2ee2 3050 int i, err, n_ir, n_it;
2ed0f181
SR
3051 size_t size;
3052
2d826cc5 3053 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
ed568912 3054 if (ohci == NULL) {
7007a076
SR
3055 err = -ENOMEM;
3056 goto fail;
ed568912
KH
3057 }
3058
3059 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3060
5da3dac8 3061 pmac_ohci_on(dev);
130d5496 3062
d79406dd
KH
3063 err = pci_enable_device(dev);
3064 if (err) {
7007a076 3065 fw_error("Failed to enable OHCI hardware\n");
bd7dee63 3066 goto fail_free;
ed568912
KH
3067 }
3068
3069 pci_set_master(dev);
3070 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3071 pci_set_drvdata(dev, ohci);
3072
3073 spin_lock_init(&ohci->lock);
02d37bed 3074 mutex_init(&ohci->phy_reg_mutex);
ed568912
KH
3075
3076 tasklet_init(&ohci->bus_reset_tasklet,
3077 bus_reset_tasklet, (unsigned long)ohci);
3078
d79406dd
KH
3079 err = pci_request_region(dev, 0, ohci_driver_name);
3080 if (err) {
ed568912 3081 fw_error("MMIO resource unavailable\n");
d79406dd 3082 goto fail_disable;
ed568912
KH
3083 }
3084
3085 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3086 if (ohci->registers == NULL) {
3087 fw_error("Failed to remap registers\n");
d79406dd
KH
3088 err = -ENXIO;
3089 goto fail_iomem;
ed568912
KH
3090 }
3091
4a635593 3092 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
9993e0fe
SR
3093 if ((ohci_quirks[i].vendor == dev->vendor) &&
3094 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3095 ohci_quirks[i].device == dev->device) &&
3096 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3097 ohci_quirks[i].revision >= dev->revision)) {
4a635593
SR
3098 ohci->quirks = ohci_quirks[i].flags;
3099 break;
3100 }
3e9cc2f3
SR
3101 if (param_quirks)
3102 ohci->quirks = param_quirks;
b677532b 3103
ec766a79
CL
3104 /*
3105 * Because dma_alloc_coherent() allocates at least one page,
3106 * we save space by using a common buffer for the AR request/
3107 * response descriptors and the self IDs buffer.
3108 */
3109 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3110 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3111 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3112 PAGE_SIZE,
3113 &ohci->misc_buffer_bus,
3114 GFP_KERNEL);
3115 if (!ohci->misc_buffer) {
3116 err = -ENOMEM;
3117 goto fail_iounmap;
3118 }
3119
3120 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
7a39d8b8
CL
3121 OHCI1394_AsReqRcvContextControlSet);
3122 if (err < 0)
ec766a79 3123 goto fail_misc_buf;
ed568912 3124
ec766a79 3125 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
7a39d8b8
CL
3126 OHCI1394_AsRspRcvContextControlSet);
3127 if (err < 0)
3128 goto fail_arreq_ctx;
ed568912 3129
c088ab30
CL
3130 err = context_init(&ohci->at_request_ctx, ohci,
3131 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3132 if (err < 0)
3133 goto fail_arrsp_ctx;
ed568912 3134
c088ab30
CL
3135 err = context_init(&ohci->at_response_ctx, ohci,
3136 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3137 if (err < 0)
3138 goto fail_atreq_ctx;
ed568912 3139
ed568912 3140 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
4802f16d
SR
3141 ohci->ir_context_channels = ~0ULL;
3142 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
ed568912 3143 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
6fdb2ee2
SR
3144 n_ir = hweight32(ohci->ir_context_mask);
3145 size = sizeof(struct iso_context) * n_ir;
4802f16d 3146 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
ed568912
KH
3147
3148 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
4802f16d 3149 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
ed568912 3150 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
6fdb2ee2
SR
3151 n_it = hweight32(ohci->it_context_mask);
3152 size = sizeof(struct iso_context) * n_it;
4802f16d 3153 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
ed568912
KH
3154
3155 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
d79406dd 3156 err = -ENOMEM;
7007a076 3157 goto fail_contexts;
ed568912
KH
3158 }
3159
ec766a79
CL
3160 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3161 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
ed568912 3162
ed568912
KH
3163 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3164 max_receive = (bus_options >> 12) & 0xf;
3165 link_speed = bus_options & 0x7;
3166 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3167 reg_read(ohci, OHCI1394_GUIDLo);
3168
d79406dd 3169 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
e1eff7a3 3170 if (err)
ec766a79 3171 goto fail_contexts;
ed568912 3172
6fdb2ee2
SR
3173 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3174 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3175 "%d IR + %d IT contexts, quirks 0x%x\n",
3176 dev_name(&dev->dev), version >> 16, version & 0xff,
3177 n_ir, n_it, ohci->quirks);
e1eff7a3 3178
ed568912 3179 return 0;
d79406dd 3180
7007a076 3181 fail_contexts:
d79406dd 3182 kfree(ohci->ir_context_list);
7007a076
SR
3183 kfree(ohci->it_context_list);
3184 context_release(&ohci->at_response_ctx);
c088ab30 3185 fail_atreq_ctx:
7007a076 3186 context_release(&ohci->at_request_ctx);
c088ab30 3187 fail_arrsp_ctx:
7007a076 3188 ar_context_release(&ohci->ar_response_ctx);
7a39d8b8 3189 fail_arreq_ctx:
7007a076 3190 ar_context_release(&ohci->ar_request_ctx);
ec766a79
CL
3191 fail_misc_buf:
3192 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3193 ohci->misc_buffer, ohci->misc_buffer_bus);
7a39d8b8 3194 fail_iounmap:
d79406dd
KH
3195 pci_iounmap(dev, ohci->registers);
3196 fail_iomem:
3197 pci_release_region(dev, 0);
3198 fail_disable:
3199 pci_disable_device(dev);
bd7dee63
SR
3200 fail_free:
3201 kfree(&ohci->card);
5da3dac8 3202 pmac_ohci_off(dev);
7007a076
SR
3203 fail:
3204 if (err == -ENOMEM)
3205 fw_error("Out of memory\n");
d79406dd
KH
3206
3207 return err;
ed568912
KH
3208}
3209
3210static void pci_remove(struct pci_dev *dev)
3211{
3212 struct fw_ohci *ohci;
3213
3214 ohci = pci_get_drvdata(dev);
e254a4b4
KH
3215 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3216 flush_writes(ohci);
ed568912
KH
3217 fw_core_remove_card(&ohci->card);
3218
c781c06d
KH
3219 /*
3220 * FIXME: Fail all pending packets here, now that the upper
3221 * layers can't queue any more.
3222 */
ed568912
KH
3223
3224 software_reset(ohci);
3225 free_irq(dev->irq, ohci);
a55709ba
JF
3226
3227 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3228 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3229 ohci->next_config_rom, ohci->next_config_rom_bus);
3230 if (ohci->config_rom)
3231 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3232 ohci->config_rom, ohci->config_rom_bus);
a55709ba
JF
3233 ar_context_release(&ohci->ar_request_ctx);
3234 ar_context_release(&ohci->ar_response_ctx);
ec766a79
CL
3235 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3236 ohci->misc_buffer, ohci->misc_buffer_bus);
a55709ba
JF
3237 context_release(&ohci->at_request_ctx);
3238 context_release(&ohci->at_response_ctx);
d79406dd
KH
3239 kfree(ohci->it_context_list);
3240 kfree(ohci->ir_context_list);
262444ee 3241 pci_disable_msi(dev);
d79406dd
KH
3242 pci_iounmap(dev, ohci->registers);
3243 pci_release_region(dev, 0);
3244 pci_disable_device(dev);
bd7dee63 3245 kfree(&ohci->card);
5da3dac8 3246 pmac_ohci_off(dev);
ea8d006b 3247
ed568912
KH
3248 fw_notify("Removed fw-ohci device.\n");
3249}
3250
2aef469a 3251#ifdef CONFIG_PM
2ed0f181 3252static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2aef469a 3253{
2ed0f181 3254 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
3255 int err;
3256
3257 software_reset(ohci);
2ed0f181 3258 free_irq(dev->irq, ohci);
262444ee 3259 pci_disable_msi(dev);
2ed0f181 3260 err = pci_save_state(dev);
2aef469a 3261 if (err) {
8a8cea27 3262 fw_error("pci_save_state failed\n");
2aef469a
KH
3263 return err;
3264 }
2ed0f181 3265 err = pci_set_power_state(dev, pci_choose_state(dev, state));
55111428
SR
3266 if (err)
3267 fw_error("pci_set_power_state failed with %d\n", err);
5da3dac8 3268 pmac_ohci_off(dev);
ea8d006b 3269
2aef469a
KH
3270 return 0;
3271}
3272
2ed0f181 3273static int pci_resume(struct pci_dev *dev)
2aef469a 3274{
2ed0f181 3275 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
3276 int err;
3277
5da3dac8 3278 pmac_ohci_on(dev);
2ed0f181
SR
3279 pci_set_power_state(dev, PCI_D0);
3280 pci_restore_state(dev);
3281 err = pci_enable_device(dev);
2aef469a 3282 if (err) {
8a8cea27 3283 fw_error("pci_enable_device failed\n");
2aef469a
KH
3284 return err;
3285 }
3286
0bd243c4 3287 return ohci_enable(&ohci->card, NULL, 0);
2aef469a
KH
3288}
3289#endif
3290
a67483d2 3291static const struct pci_device_id pci_table[] = {
ed568912
KH
3292 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3293 { }
3294};
3295
3296MODULE_DEVICE_TABLE(pci, pci_table);
3297
3298static struct pci_driver fw_ohci_pci_driver = {
3299 .name = ohci_driver_name,
3300 .id_table = pci_table,
3301 .probe = pci_probe,
3302 .remove = pci_remove,
2aef469a
KH
3303#ifdef CONFIG_PM
3304 .resume = pci_resume,
3305 .suspend = pci_suspend,
3306#endif
ed568912
KH
3307};
3308
3309MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3310MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3311MODULE_LICENSE("GPL");
3312
1e4c7b0d
OH
3313/* Provide a module alias so root-on-sbp2 initrds don't break. */
3314#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3315MODULE_ALIAS("ohci1394");
3316#endif
3317
ed568912
KH
3318static int __init fw_ohci_init(void)
3319{
3320 return pci_register_driver(&fw_ohci_pci_driver);
3321}
3322
3323static void __exit fw_ohci_cleanup(void)
3324{
3325 pci_unregister_driver(&fw_ohci_pci_driver);
3326}
3327
3328module_init(fw_ohci_init);
3329module_exit(fw_ohci_cleanup);