]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/firmware/efi/libstub/arm-stub.c
efi/libstub: Enable reset attack mitigation
[mirror_ubuntu-bionic-kernel.git] / drivers / firmware / efi / libstub / arm-stub.c
CommitLineData
3c7f2550
MS
1/*
2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
4 *
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
9 *
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
12 *
13 */
14
bd669475 15#include <linux/efi.h>
0ce3cc00 16#include <linux/sort.h>
bd669475
AB
17#include <asm/efi.h>
18
19#include "efistub.h"
20
e69176d6
AB
21/*
22 * This is the base address at which to start allocating virtual memory ranges
23 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
24 * any allocation we choose, and eliminate the risk of a conflict after kexec.
25 * The value chosen is the largest non-zero power of 2 suitable for this purpose
26 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27 * be mapped efficiently.
28 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30 * entire footprint of the UEFI runtime services memory regions)
31 */
32#define EFI_RT_VIRTUAL_BASE SZ_512M
33#define EFI_RT_VIRTUAL_SIZE SZ_512M
34
197decef
AB
35#ifdef CONFIG_ARM64
36# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64
37#else
38# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
39#endif
40
e69176d6
AB
41static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
42
bd669475
AB
43efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
44 void *__image, void **__fh)
3c7f2550
MS
45{
46 efi_file_io_interface_t *io;
47 efi_loaded_image_t *image = __image;
48 efi_file_handle_t *fh;
49 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
50 efi_status_t status;
51 void *handle = (void *)(unsigned long)image->device_handle;
52
53 status = sys_table_arg->boottime->handle_protocol(handle,
54 &fs_proto, (void **)&io);
55 if (status != EFI_SUCCESS) {
56 efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
57 return status;
58 }
59
60 status = io->open_volume(io, &fh);
61 if (status != EFI_SUCCESS)
62 efi_printk(sys_table_arg, "Failed to open volume\n");
63
64 *__fh = fh;
65 return status;
66}
bd669475 67
bd669475 68void efi_char16_printk(efi_system_table_t *sys_table_arg,
3c7f2550
MS
69 efi_char16_t *str)
70{
71 struct efi_simple_text_output_protocol *out;
72
73 out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
74 out->output_string(out, str);
75}
76
f0827e18
AB
77static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
78{
79 efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
80 efi_status_t status;
81 unsigned long size;
82 void **gop_handle = NULL;
83 struct screen_info *si = NULL;
84
85 size = 0;
86 status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
87 &gop_proto, NULL, &size, gop_handle);
88 if (status == EFI_BUFFER_TOO_SMALL) {
89 si = alloc_screen_info(sys_table_arg);
90 if (!si)
91 return NULL;
92 efi_setup_gop(sys_table_arg, si, &gop_proto, size);
93 }
94 return si;
95}
3c7f2550
MS
96
97/*
98 * This function handles the architcture specific differences between arm and
99 * arm64 regarding where the kernel image must be loaded and any memory that
100 * must be reserved. On failure it is required to free all
101 * all allocations it has made.
102 */
bd669475
AB
103efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
104 unsigned long *image_addr,
105 unsigned long *image_size,
106 unsigned long *reserve_addr,
107 unsigned long *reserve_size,
108 unsigned long dram_base,
109 efi_loaded_image_t *image);
3c7f2550
MS
110/*
111 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
112 * that is described in the PE/COFF header. Most of the code is the same
113 * for both archictectures, with the arch-specific code provided in the
114 * handle_kernel_image() function.
115 */
ddeeefe2 116unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
3c7f2550
MS
117 unsigned long *image_addr)
118{
119 efi_loaded_image_t *image;
120 efi_status_t status;
121 unsigned long image_size = 0;
122 unsigned long dram_base;
123 /* addr/point and size pairs for memory management*/
124 unsigned long initrd_addr;
125 u64 initrd_size = 0;
345c736e 126 unsigned long fdt_addr = 0; /* Original DTB */
a643375f 127 unsigned long fdt_size = 0;
3c7f2550
MS
128 char *cmdline_ptr = NULL;
129 int cmdline_size = 0;
130 unsigned long new_fdt_addr;
131 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
132 unsigned long reserve_addr = 0;
133 unsigned long reserve_size = 0;
de8cb458 134 enum efi_secureboot_mode secure_boot;
f0827e18 135 struct screen_info *si;
3c7f2550
MS
136
137 /* Check if we were booted by the EFI firmware */
138 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
139 goto fail;
140
b9d6769b
AB
141 status = check_platform_features(sys_table);
142 if (status != EFI_SUCCESS)
143 goto fail;
144
3c7f2550
MS
145 /*
146 * Get a handle to the loaded image protocol. This is used to get
147 * information about the running image, such as size and the command
148 * line.
149 */
150 status = sys_table->boottime->handle_protocol(handle,
151 &loaded_image_proto, (void *)&image);
152 if (status != EFI_SUCCESS) {
153 pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
154 goto fail;
155 }
156
157 dram_base = get_dram_base(sys_table);
158 if (dram_base == EFI_ERROR) {
159 pr_efi_err(sys_table, "Failed to find DRAM base\n");
160 goto fail;
161 }
3c7f2550
MS
162
163 /*
164 * Get the command line from EFI, using the LOADED_IMAGE
165 * protocol. We are going to copy the command line into the
166 * device tree, so this can be allocated anywhere.
167 */
168 cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
169 if (!cmdline_ptr) {
170 pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
2b5fe07a
AB
171 goto fail;
172 }
173
eeff7d63
AB
174 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
175 IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
176 cmdline_size == 0)
177 efi_parse_options(CONFIG_CMDLINE);
178
179 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
180 efi_parse_options(cmdline_ptr);
181
182 pr_efi(sys_table, "Booting Linux Kernel...\n");
183
f0827e18
AB
184 si = setup_graphics(sys_table);
185
2b5fe07a
AB
186 status = handle_kernel_image(sys_table, image_addr, &image_size,
187 &reserve_addr,
188 &reserve_size,
189 dram_base, image);
190 if (status != EFI_SUCCESS) {
191 pr_efi_err(sys_table, "Failed to relocate kernel\n");
192 goto fail_free_cmdline;
3c7f2550
MS
193 }
194
ccc829ba
MG
195 /* Ask the firmware to clear memory on unclean shutdown */
196 efi_enable_reset_attack_mitigation(sys_table);
197
73a64925 198 secure_boot = efi_get_secureboot(sys_table);
73a64925 199
345c736e 200 /*
de8cb458
DH
201 * Unauthenticated device tree data is a security hazard, so ignore
202 * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
203 * boot is enabled if we can't determine its state.
345c736e 204 */
de8cb458
DH
205 if (secure_boot != efi_secureboot_mode_disabled &&
206 strstr(cmdline_ptr, "dtb=")) {
73a64925 207 pr_efi(sys_table, "Ignoring DTB from command line.\n");
345c736e 208 } else {
3c7f2550
MS
209 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
210 "dtb=",
a643375f 211 ~0UL, &fdt_addr, &fdt_size);
3c7f2550
MS
212
213 if (status != EFI_SUCCESS) {
214 pr_efi_err(sys_table, "Failed to load device tree!\n");
2b5fe07a 215 goto fail_free_image;
3c7f2550
MS
216 }
217 }
0bcaa904
MR
218
219 if (fdt_addr) {
220 pr_efi(sys_table, "Using DTB from command line\n");
221 } else {
345c736e 222 /* Look for a device tree configuration table entry. */
a643375f 223 fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
0bcaa904
MR
224 if (fdt_addr)
225 pr_efi(sys_table, "Using DTB from configuration table\n");
226 }
227
228 if (!fdt_addr)
229 pr_efi(sys_table, "Generating empty DTB\n");
3c7f2550 230
138728dd
AB
231 status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
232 efi_get_max_initrd_addr(dram_base,
233 *image_addr),
3c7f2550
MS
234 (unsigned long *)&initrd_addr,
235 (unsigned long *)&initrd_size);
236 if (status != EFI_SUCCESS)
237 pr_efi_err(sys_table, "Failed initrd from command line!\n");
238
568bc4e8
AB
239 efi_random_get_seed(sys_table);
240
e69176d6
AB
241 if (!nokaslr()) {
242 /*
243 * Randomize the base of the UEFI runtime services region.
244 * Preserve the 2 MB alignment of the region by taking a
245 * shift of 21 bit positions into account when scaling
246 * the headroom value using a 32-bit random value.
247 */
197decef
AB
248 static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
249 EFI_RT_VIRTUAL_BASE -
250 EFI_RT_VIRTUAL_SIZE;
e69176d6
AB
251 u32 rnd;
252
253 status = efi_get_random_bytes(sys_table, sizeof(rnd),
254 (u8 *)&rnd);
255 if (status == EFI_SUCCESS) {
256 virtmap_base = EFI_RT_VIRTUAL_BASE +
257 (((headroom >> 21) * rnd) >> (32 - 21));
258 }
259 }
260
3c7f2550
MS
261 new_fdt_addr = fdt_addr;
262 status = allocate_new_fdt_and_exit_boot(sys_table, handle,
138728dd 263 &new_fdt_addr, efi_get_max_fdt_addr(dram_base),
3c7f2550
MS
264 initrd_addr, initrd_size, cmdline_ptr,
265 fdt_addr, fdt_size);
266
267 /*
268 * If all went well, we need to return the FDT address to the
269 * calling function so it can be passed to kernel as part of
270 * the kernel boot protocol.
271 */
272 if (status == EFI_SUCCESS)
273 return new_fdt_addr;
274
275 pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
276
277 efi_free(sys_table, initrd_size, initrd_addr);
278 efi_free(sys_table, fdt_size, fdt_addr);
279
3c7f2550
MS
280fail_free_image:
281 efi_free(sys_table, image_size, *image_addr);
282 efi_free(sys_table, reserve_size, reserve_addr);
2b5fe07a 283fail_free_cmdline:
f0827e18 284 free_screen_info(sys_table, si);
2b5fe07a 285 efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
3c7f2550
MS
286fail:
287 return EFI_ERROR;
288}
f3cdfd23 289
0ce3cc00
AB
290static int cmp_mem_desc(const void *l, const void *r)
291{
292 const efi_memory_desc_t *left = l, *right = r;
293
294 return (left->phys_addr > right->phys_addr) ? 1 : -1;
295}
296
297/*
298 * Returns whether region @left ends exactly where region @right starts,
299 * or false if either argument is NULL.
300 */
301static bool regions_are_adjacent(efi_memory_desc_t *left,
302 efi_memory_desc_t *right)
303{
304 u64 left_end;
305
306 if (left == NULL || right == NULL)
307 return false;
308
309 left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
310
311 return left_end == right->phys_addr;
312}
313
314/*
315 * Returns whether region @left and region @right have compatible memory type
316 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
317 */
318static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
319 efi_memory_desc_t *right)
320{
321 static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
322 EFI_MEMORY_WC | EFI_MEMORY_UC |
323 EFI_MEMORY_RUNTIME;
324
325 return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
326}
327
f3cdfd23
AB
328/*
329 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
330 *
331 * This function populates the virt_addr fields of all memory region descriptors
332 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
333 * are also copied to @runtime_map, and their total count is returned in @count.
334 */
335void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
336 unsigned long desc_size, efi_memory_desc_t *runtime_map,
337 int *count)
338{
e69176d6 339 u64 efi_virt_base = virtmap_base;
0ce3cc00 340 efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
f3cdfd23
AB
341 int l;
342
0ce3cc00
AB
343 /*
344 * To work around potential issues with the Properties Table feature
345 * introduced in UEFI 2.5, which may split PE/COFF executable images
346 * in memory into several RuntimeServicesCode and RuntimeServicesData
347 * regions, we need to preserve the relative offsets between adjacent
348 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
349 * The easiest way to find adjacent regions is to sort the memory map
350 * before traversing it.
351 */
352 sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
353
354 for (l = 0; l < map_size; l += desc_size, prev = in) {
f3cdfd23
AB
355 u64 paddr, size;
356
0ce3cc00 357 in = (void *)memory_map + l;
f3cdfd23
AB
358 if (!(in->attribute & EFI_MEMORY_RUNTIME))
359 continue;
360
0ce3cc00
AB
361 paddr = in->phys_addr;
362 size = in->num_pages * EFI_PAGE_SIZE;
363
f3cdfd23
AB
364 /*
365 * Make the mapping compatible with 64k pages: this allows
366 * a 4k page size kernel to kexec a 64k page size kernel and
367 * vice versa.
368 */
0ce3cc00
AB
369 if (!regions_are_adjacent(prev, in) ||
370 !regions_have_compatible_memory_type_attrs(prev, in)) {
371
372 paddr = round_down(in->phys_addr, SZ_64K);
373 size += in->phys_addr - paddr;
374
375 /*
376 * Avoid wasting memory on PTEs by choosing a virtual
377 * base that is compatible with section mappings if this
378 * region has the appropriate size and physical
379 * alignment. (Sections are 2 MB on 4k granule kernels)
380 */
381 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
382 efi_virt_base = round_up(efi_virt_base, SZ_2M);
383 else
384 efi_virt_base = round_up(efi_virt_base, SZ_64K);
385 }
f3cdfd23
AB
386
387 in->virt_addr = efi_virt_base + in->phys_addr - paddr;
388 efi_virt_base += size;
389
390 memcpy(out, in, desc_size);
391 out = (void *)out + desc_size;
392 ++*count;
393 }
394}