]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/firmware/qcom_scm-32.c
firmware: qcom_scm-32: Move SMCCC register filling to qcom_scm_call
[mirror_ubuntu-hirsute-kernel.git] / drivers / firmware / qcom_scm-32.c
CommitLineData
08dbd0f8 1// SPDX-License-Identifier: GPL-2.0-only
e0aa1539 2/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
b6a1dfbc 3 * Copyright (C) 2015 Linaro Ltd.
b6a1dfbc
KG
4 */
5
6#include <linux/slab.h>
7#include <linux/io.h>
8#include <linux/module.h>
9#include <linux/mutex.h>
10#include <linux/errno.h>
11#include <linux/err.h>
12#include <linux/qcom_scm.h>
02248981 13#include <linux/arm-smccc.h>
16e59467 14#include <linux/dma-mapping.h>
b6a1dfbc
KG
15
16#include "qcom_scm.h"
17
18#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
19#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
20#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
21#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
22
23#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
24#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
25#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
26#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
27
28struct qcom_scm_entry {
29 int flag;
30 void *entry;
31};
32
33static struct qcom_scm_entry qcom_scm_wb[] = {
34 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
35 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
36 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
37 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
38};
39
40static DEFINE_MUTEX(qcom_scm_lock);
41
efd2b15c
EB
42#define MAX_QCOM_SCM_ARGS 10
43#define MAX_QCOM_SCM_RETS 3
44
45enum qcom_scm_arg_types {
46 QCOM_SCM_VAL,
47 QCOM_SCM_RO,
48 QCOM_SCM_RW,
49 QCOM_SCM_BUFVAL,
50};
51
52#define QCOM_SCM_ARGS_IMPL(num, a, b, c, d, e, f, g, h, i, j, ...) (\
53 (((a) & 0x3) << 4) | \
54 (((b) & 0x3) << 6) | \
55 (((c) & 0x3) << 8) | \
56 (((d) & 0x3) << 10) | \
57 (((e) & 0x3) << 12) | \
58 (((f) & 0x3) << 14) | \
59 (((g) & 0x3) << 16) | \
60 (((h) & 0x3) << 18) | \
61 (((i) & 0x3) << 20) | \
62 (((j) & 0x3) << 22) | \
63 ((num) & 0xf))
64
65#define QCOM_SCM_ARGS(...) QCOM_SCM_ARGS_IMPL(__VA_ARGS__, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
66
67/**
68 * struct qcom_scm_desc
69 * @arginfo: Metadata describing the arguments in args[]
70 * @args: The array of arguments for the secure syscall
71 */
72struct qcom_scm_desc {
73 u32 svc;
74 u32 cmd;
75 u32 arginfo;
76 u64 args[MAX_QCOM_SCM_ARGS];
77 u32 owner;
78};
79
80/**
81 * struct qcom_scm_res
82 * @result: The values returned by the secure syscall
83 */
84struct qcom_scm_res {
85 u64 result[MAX_QCOM_SCM_RETS];
86};
87
590e9280
EB
88/**
89 * struct arm_smccc_args
90 * @args: The array of values used in registers in smc instruction
91 */
92struct arm_smccc_args {
93 unsigned long args[8];
94};
95
fd62c30b
EB
96#define SCM_LEGACY_FNID(s, c) (((s) << 10) | ((c) & 0x3ff))
97
b6a1dfbc 98/**
e0aa1539 99 * struct scm_legacy_command - one SCM command buffer
b6a1dfbc
KG
100 * @len: total available memory for command and response
101 * @buf_offset: start of command buffer
102 * @resp_hdr_offset: start of response buffer
103 * @id: command to be executed
e0aa1539 104 * @buf: buffer returned from scm_legacy_get_command_buffer()
b6a1dfbc
KG
105 *
106 * An SCM command is laid out in memory as follows:
107 *
e0aa1539 108 * ------------------- <--- struct scm_legacy_command
b6a1dfbc 109 * | command header |
e0aa1539 110 * ------------------- <--- scm_legacy_get_command_buffer()
b6a1dfbc 111 * | command buffer |
e0aa1539
EB
112 * ------------------- <--- struct scm_legacy_response and
113 * | response header | scm_legacy_command_to_response()
114 * ------------------- <--- scm_legacy_get_response_buffer()
b6a1dfbc
KG
115 * | response buffer |
116 * -------------------
117 *
118 * There can be arbitrary padding between the headers and buffers so
e0aa1539 119 * you should always use the appropriate scm_legacy_get_*_buffer() routines
b6a1dfbc
KG
120 * to access the buffers in a safe manner.
121 */
e0aa1539 122struct scm_legacy_command {
b6a1dfbc
KG
123 __le32 len;
124 __le32 buf_offset;
125 __le32 resp_hdr_offset;
126 __le32 id;
127 __le32 buf[0];
128};
129
130/**
e0aa1539 131 * struct scm_legacy_response - one SCM response buffer
b6a1dfbc 132 * @len: total available memory for response
e0aa1539 133 * @buf_offset: start of response data relative to start of scm_legacy_response
b6a1dfbc
KG
134 * @is_complete: indicates if the command has finished processing
135 */
e0aa1539 136struct scm_legacy_response {
b6a1dfbc
KG
137 __le32 len;
138 __le32 buf_offset;
139 __le32 is_complete;
140};
141
b6a1dfbc 142/**
e0aa1539 143 * scm_legacy_command_to_response() - Get a pointer to a scm_legacy_response
b6a1dfbc
KG
144 * @cmd: command
145 *
146 * Returns a pointer to a response for a command.
147 */
e0aa1539
EB
148static inline struct scm_legacy_response *scm_legacy_command_to_response(
149 const struct scm_legacy_command *cmd)
b6a1dfbc
KG
150{
151 return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
152}
153
154/**
e0aa1539 155 * scm_legacy_get_command_buffer() - Get a pointer to a command buffer
b6a1dfbc
KG
156 * @cmd: command
157 *
158 * Returns a pointer to the command buffer of a command.
159 */
e0aa1539
EB
160static inline void *scm_legacy_get_command_buffer(
161 const struct scm_legacy_command *cmd)
b6a1dfbc
KG
162{
163 return (void *)cmd->buf;
164}
165
166/**
e0aa1539 167 * scm_legacy_get_response_buffer() - Get a pointer to a response buffer
b6a1dfbc
KG
168 * @rsp: response
169 *
170 * Returns a pointer to a response buffer of a response.
171 */
e0aa1539
EB
172static inline void *scm_legacy_get_response_buffer(
173 const struct scm_legacy_response *rsp)
b6a1dfbc
KG
174{
175 return (void *)rsp + le32_to_cpu(rsp->buf_offset);
176}
177
590e9280
EB
178static void __scm_legacy_do(const struct arm_smccc_args *smc,
179 struct arm_smccc_res *res)
b6a1dfbc 180{
b6a1dfbc 181 do {
590e9280
EB
182 arm_smccc_smc(smc->args[0], smc->args[1], smc->args[2],
183 smc->args[3], smc->args[4], smc->args[5],
184 smc->args[6], smc->args[7], res);
185 } while (res->a0 == QCOM_SCM_INTERRUPTED);
b6a1dfbc
KG
186}
187
b6a1dfbc 188/**
efd2b15c
EB
189 * qcom_scm_call() - Sends a command to the SCM and waits for the command to
190 * finish processing.
b6a1dfbc
KG
191 *
192 * A note on cache maintenance:
193 * Note that any buffers that are expected to be accessed by the secure world
194 * must be flushed before invoking qcom_scm_call and invalidated in the cache
195 * immediately after qcom_scm_call returns. Cache maintenance on the command
196 * and response buffers is taken care of by qcom_scm_call; however, callers are
197 * responsible for any other cached buffers passed over to the secure world.
198 */
efd2b15c
EB
199static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
200 struct qcom_scm_res *res)
b6a1dfbc 201{
efd2b15c 202 u8 arglen = desc->arginfo & 0xf;
590e9280 203 int ret = 0, context_id;
efd2b15c 204 unsigned int i;
e0aa1539
EB
205 struct scm_legacy_command *cmd;
206 struct scm_legacy_response *rsp;
590e9280
EB
207 struct arm_smccc_args smc = {0};
208 struct arm_smccc_res smc_res;
efd2b15c
EB
209 const size_t cmd_len = arglen * sizeof(__le32);
210 const size_t resp_len = MAX_QCOM_SCM_RETS * sizeof(__le32);
16e59467
AG
211 size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len;
212 dma_addr_t cmd_phys;
efd2b15c
EB
213 __le32 *arg_buf;
214 const __le32 *res_buf;
b6a1dfbc 215
16e59467 216 cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL);
b6a1dfbc
KG
217 if (!cmd)
218 return -ENOMEM;
219
16e59467
AG
220 cmd->len = cpu_to_le32(alloc_len);
221 cmd->buf_offset = cpu_to_le32(sizeof(*cmd));
222 cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len);
efd2b15c 223 cmd->id = cpu_to_le32(SCM_LEGACY_FNID(desc->svc, desc->cmd));
16e59467 224
efd2b15c
EB
225 arg_buf = scm_legacy_get_command_buffer(cmd);
226 for (i = 0; i < arglen; i++)
227 arg_buf[i] = cpu_to_le32(desc->args[i]);
b6a1dfbc 228
e0aa1539 229 rsp = scm_legacy_command_to_response(cmd);
16e59467
AG
230
231 cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE);
232 if (dma_mapping_error(dev, cmd_phys)) {
233 kfree(cmd);
234 return -ENOMEM;
235 }
236
590e9280
EB
237 smc.args[0] = 1;
238 smc.args[1] = (unsigned long)&context_id;
239 smc.args[2] = cmd_phys;
240
b6a1dfbc 241 mutex_lock(&qcom_scm_lock);
590e9280
EB
242 __scm_legacy_do(&smc, &smc_res);
243 if (smc_res.a0)
244 ret = qcom_scm_remap_error(smc_res.a0);
b6a1dfbc
KG
245 mutex_unlock(&qcom_scm_lock);
246 if (ret)
247 goto out;
248
b6a1dfbc 249 do {
16e59467
AG
250 dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len,
251 sizeof(*rsp), DMA_FROM_DEVICE);
b6a1dfbc
KG
252 } while (!rsp->is_complete);
253
efd2b15c
EB
254 dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len +
255 le32_to_cpu(rsp->buf_offset),
256 resp_len, DMA_FROM_DEVICE);
257
258 if (res) {
259 res_buf = scm_legacy_get_response_buffer(rsp);
260 for (i = 0; i < MAX_QCOM_SCM_RETS; i++)
261 res->result[i] = le32_to_cpu(res_buf[i]);
16e59467 262 }
b6a1dfbc 263out:
16e59467
AG
264 dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE);
265 kfree(cmd);
b6a1dfbc
KG
266 return ret;
267}
268
e0aa1539
EB
269#define SCM_LEGACY_CLASS_REGISTER (0x2 << 8)
270#define SCM_LEGACY_MASK_IRQS BIT(5)
271#define SCM_LEGACY_ATOMIC_ID(svc, cmd, n) \
fd62c30b 272 ((SCM_LEGACY_FNID(svc, cmd) << 12) | \
e0aa1539
EB
273 SCM_LEGACY_CLASS_REGISTER | \
274 SCM_LEGACY_MASK_IRQS | \
b6a1dfbc
KG
275 (n & 0xf))
276
277/**
278 * qcom_scm_call_atomic1() - Send an atomic SCM command with one argument
279 * @svc_id: service identifier
280 * @cmd_id: command identifier
281 * @arg1: first argument
282 *
283 * This shall only be used with commands that are guaranteed to be
284 * uninterruptable, atomic and SMP safe.
285 */
286static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
287{
288 int context_id;
02248981
EB
289 struct arm_smccc_res res;
290
291 arm_smccc_smc(SCM_LEGACY_ATOMIC_ID(svc, cmd, 1),
292 (unsigned long)&context_id, arg1, 0, 0, 0, 0, 0, &res);
b6a1dfbc 293
02248981 294 return res.a0;
b6a1dfbc
KG
295}
296
13e77747
AG
297/**
298 * qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments
299 * @svc_id: service identifier
300 * @cmd_id: command identifier
301 * @arg1: first argument
302 * @arg2: second argument
303 *
304 * This shall only be used with commands that are guaranteed to be
305 * uninterruptable, atomic and SMP safe.
306 */
307static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2)
308{
309 int context_id;
02248981
EB
310 struct arm_smccc_res res;
311
312 arm_smccc_smc(SCM_LEGACY_ATOMIC_ID(svc, cmd, 2),
313 (unsigned long)&context_id, arg1, 0, 0, 0, 0, 0, &res);
13e77747 314
02248981 315 return res.a0;
13e77747
AG
316}
317
b6a1dfbc
KG
318/**
319 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
320 * @entry: Entry point function for the cpus
321 * @cpus: The cpumask of cpus that will use the entry point
322 *
323 * Set the cold boot address of the cpus. Any cpu outside the supported
324 * range would be removed from the cpu present mask.
325 */
326int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
327{
328 int flags = 0;
329 int cpu;
330 int scm_cb_flags[] = {
331 QCOM_SCM_FLAG_COLDBOOT_CPU0,
332 QCOM_SCM_FLAG_COLDBOOT_CPU1,
333 QCOM_SCM_FLAG_COLDBOOT_CPU2,
334 QCOM_SCM_FLAG_COLDBOOT_CPU3,
335 };
336
337 if (!cpus || (cpus && cpumask_empty(cpus)))
338 return -EINVAL;
339
340 for_each_cpu(cpu, cpus) {
341 if (cpu < ARRAY_SIZE(scm_cb_flags))
342 flags |= scm_cb_flags[cpu];
343 else
344 set_cpu_present(cpu, false);
345 }
346
5443cc5f 347 return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_SET_ADDR,
13e77747 348 flags, virt_to_phys(entry));
b6a1dfbc
KG
349}
350
351/**
352 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
353 * @entry: Entry point function for the cpus
354 * @cpus: The cpumask of cpus that will use the entry point
355 *
356 * Set the Linux entry point for the SCM to transfer control to when coming
357 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
358 */
16e59467
AG
359int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
360 const cpumask_t *cpus)
b6a1dfbc
KG
361{
362 int ret;
363 int flags = 0;
364 int cpu;
efd2b15c
EB
365 struct qcom_scm_desc desc = {
366 .svc = QCOM_SCM_SVC_BOOT,
367 .cmd = QCOM_SCM_BOOT_SET_ADDR,
368 };
b6a1dfbc
KG
369
370 /*
371 * Reassign only if we are switching from hotplug entry point
372 * to cpuidle entry point or vice versa.
373 */
374 for_each_cpu(cpu, cpus) {
375 if (entry == qcom_scm_wb[cpu].entry)
376 continue;
377 flags |= qcom_scm_wb[cpu].flag;
378 }
379
380 /* No change in entry function */
381 if (!flags)
382 return 0;
383
efd2b15c
EB
384 desc.args[0] = flags;
385 desc.args[1] = virt_to_phys(entry);
386 desc.arginfo = QCOM_SCM_ARGS(2);
387
388 ret = qcom_scm_call(dev, &desc, NULL);
b6a1dfbc
KG
389 if (!ret) {
390 for_each_cpu(cpu, cpus)
391 qcom_scm_wb[cpu].entry = entry;
392 }
393
394 return ret;
395}
396
397/**
398 * qcom_scm_cpu_power_down() - Power down the cpu
399 * @flags - Flags to flush cache
400 *
401 * This is an end point to power down cpu. If there was a pending interrupt,
402 * the control would return from this function, otherwise, the cpu jumps to the
403 * warm boot entry point set for this cpu upon reset.
404 */
405void __qcom_scm_cpu_power_down(u32 flags)
406{
5443cc5f 407 qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_TERMINATE_PC,
b6a1dfbc
KG
408 flags & QCOM_SCM_FLUSH_FLAG_MASK);
409}
9626b699 410
16e59467 411int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id)
9626b699 412{
413 int ret;
efd2b15c
EB
414 struct qcom_scm_desc desc = {
415 .svc = QCOM_SCM_SVC_INFO,
416 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
417 .args[0] = SCM_LEGACY_FNID(svc_id, cmd_id),
418 .arginfo = QCOM_SCM_ARGS(1),
419 };
420 struct qcom_scm_res res;
9626b699 421
efd2b15c 422 ret = qcom_scm_call(dev, &desc, &res);
9626b699 423
efd2b15c 424 return ret ? : res.result[0];
9626b699 425}
426
16e59467
AG
427int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req,
428 u32 req_cnt, u32 *resp)
9626b699 429{
efd2b15c
EB
430 int ret;
431 struct qcom_scm_desc desc = {
432 .svc = QCOM_SCM_SVC_HDCP,
433 .cmd = QCOM_SCM_HDCP_INVOKE,
434 };
435 struct qcom_scm_res res;
436
9626b699 437 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
438 return -ERANGE;
439
efd2b15c
EB
440 desc.args[0] = req[0].addr;
441 desc.args[1] = req[0].val;
442 desc.args[2] = req[1].addr;
443 desc.args[3] = req[1].val;
444 desc.args[4] = req[2].addr;
445 desc.args[5] = req[2].val;
446 desc.args[6] = req[3].addr;
447 desc.args[7] = req[3].val;
448 desc.args[8] = req[4].addr;
449 desc.args[9] = req[4].val;
450 desc.arginfo = QCOM_SCM_ARGS(10);
451
452 ret = qcom_scm_call(dev, &desc, &res);
453 *resp = res.result[0];
454
455 return ret;
9626b699 456}
6b1751a8 457
b0a1614f
RC
458int __qcom_scm_ocmem_lock(struct device *dev, u32 id, u32 offset, u32 size,
459 u32 mode)
460{
efd2b15c
EB
461 struct qcom_scm_desc desc = {
462 .svc = QCOM_SCM_SVC_OCMEM,
463 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
464 };
465
466 desc.args[0] = id;
467 desc.args[1] = offset;
468 desc.args[2] = size;
469 desc.args[3] = mode;
470 desc.arginfo = QCOM_SCM_ARGS(4);
471
472 return qcom_scm_call(dev, &desc, NULL);
b0a1614f
RC
473}
474
475int __qcom_scm_ocmem_unlock(struct device *dev, u32 id, u32 offset, u32 size)
476{
efd2b15c
EB
477 struct qcom_scm_desc desc = {
478 .svc = QCOM_SCM_SVC_OCMEM,
479 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
480 };
481
482 desc.args[0] = id;
483 desc.args[1] = offset;
484 desc.args[2] = size;
485 desc.arginfo = QCOM_SCM_ARGS(3);
486
487 return qcom_scm_call(dev, &desc, NULL);
b0a1614f
RC
488}
489
6b1751a8
KG
490void __qcom_scm_init(void)
491{
492}
f01e90fe
BA
493
494bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral)
495{
f01e90fe 496 int ret;
efd2b15c
EB
497 struct qcom_scm_desc desc = {
498 .svc = QCOM_SCM_SVC_PIL,
499 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
500 };
501 struct qcom_scm_res res;
502
503 desc.args[0] = peripheral;
504 desc.arginfo = QCOM_SCM_ARGS(1);
f01e90fe 505
efd2b15c 506 ret = qcom_scm_call(dev, &desc, &res);
f01e90fe 507
efd2b15c 508 return ret ? false : !!res.result[0];
f01e90fe
BA
509}
510
511int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral,
512 dma_addr_t metadata_phys)
513{
f01e90fe 514 int ret;
efd2b15c
EB
515 struct qcom_scm_desc desc = {
516 .svc = QCOM_SCM_SVC_PIL,
517 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
518 };
519 struct qcom_scm_res res;
f01e90fe 520
efd2b15c
EB
521 desc.args[0] = peripheral;
522 desc.args[1] = metadata_phys;
523 desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW);
f01e90fe 524
efd2b15c 525 ret = qcom_scm_call(dev, &desc, &res);
f01e90fe 526
efd2b15c 527 return ret ? : res.result[0];
f01e90fe
BA
528}
529
530int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral,
efd2b15c 531 phys_addr_t addr, phys_addr_t size)
f01e90fe 532{
f01e90fe 533 int ret;
efd2b15c
EB
534 struct qcom_scm_desc desc = {
535 .svc = QCOM_SCM_SVC_PIL,
536 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
537 };
538 struct qcom_scm_res res;
539
540 desc.args[0] = peripheral;
541 desc.args[1] = addr;
542 desc.args[2] = size;
543 desc.arginfo = QCOM_SCM_ARGS(3);
544
545 ret = qcom_scm_call(dev, &desc, &res);
546
547 return ret ? : res.result[0];
f01e90fe
BA
548}
549
550int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral)
551{
f01e90fe 552 int ret;
efd2b15c
EB
553 struct qcom_scm_desc desc = {
554 .svc = QCOM_SCM_SVC_PIL,
555 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
556 };
557 struct qcom_scm_res res;
558
559 desc.args[0] = peripheral;
560 desc.arginfo = QCOM_SCM_ARGS(1);
f01e90fe 561
efd2b15c 562 ret = qcom_scm_call(dev, &desc, &res);
f01e90fe 563
efd2b15c 564 return ret ? : res.result[0];
f01e90fe
BA
565}
566
567int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral)
568{
f01e90fe 569 int ret;
efd2b15c
EB
570 struct qcom_scm_desc desc = {
571 .svc = QCOM_SCM_SVC_PIL,
572 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
573 };
574 struct qcom_scm_res res;
575
576 desc.args[0] = peripheral;
577 desc.arginfo = QCOM_SCM_ARGS(1);
f01e90fe 578
efd2b15c 579 ret = qcom_scm_call(dev, &desc, &res);
f01e90fe 580
efd2b15c 581 return ret ? : res.result[0];
f01e90fe 582}
dd4fe5b2
BA
583
584int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
585{
efd2b15c
EB
586 struct qcom_scm_desc desc = {
587 .svc = QCOM_SCM_SVC_PIL,
588 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
589 };
590 struct qcom_scm_res res;
dd4fe5b2
BA
591 int ret;
592
efd2b15c
EB
593 desc.args[0] = reset;
594 desc.args[1] = 0;
595 desc.arginfo = QCOM_SCM_ARGS(2);
dd4fe5b2 596
efd2b15c
EB
597 ret = qcom_scm_call(dev, &desc, &res);
598
599 return ret ? : res.result[0];
dd4fe5b2 600}
a811b420 601
8c1b7dc9
BA
602int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
603{
5443cc5f
EB
604 return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_SET_DLOAD_MODE,
605 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0, 0);
8c1b7dc9
BA
606}
607
a811b420
AG
608int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id)
609{
efd2b15c
EB
610 struct qcom_scm_desc desc = {
611 .svc = QCOM_SCM_SVC_BOOT,
612 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
613 };
614 struct qcom_scm_res res;
a811b420
AG
615 int ret;
616
efd2b15c
EB
617 desc.args[0] = state;
618 desc.args[1] = id;
a811b420 619
efd2b15c 620 ret = qcom_scm_call(dev, &desc, &res);
a811b420 621
efd2b15c 622 return ret ? : res.result[0];
a811b420 623}
a2c680c6 624
d82bd359
AKD
625int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
626 size_t mem_sz, phys_addr_t src, size_t src_sz,
627 phys_addr_t dest, size_t dest_sz)
628{
629 return -ENODEV;
630}
631
a2c680c6
RC
632int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id,
633 u32 spare)
634{
efd2b15c
EB
635 struct qcom_scm_desc desc = {
636 .svc = QCOM_SCM_SVC_MP,
637 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
638 };
639 struct qcom_scm_res res;
640 int ret;
0434a406 641
efd2b15c
EB
642 desc.args[0] = device_id;
643 desc.args[1] = spare;
644 desc.arginfo = QCOM_SCM_ARGS(2);
0434a406 645
efd2b15c 646 ret = qcom_scm_call(dev, &desc, &res);
0434a406 647
efd2b15c 648 return ret ? : res.result[0];
a2c680c6 649}
b182cc4d
SV
650
651int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare,
652 size_t *size)
653{
654 return -ENODEV;
655}
656
657int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size,
658 u32 spare)
659{
660 return -ENODEV;
661}
4e659dbe
BA
662
663int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr,
664 unsigned int *val)
665{
666 int ret;
667
668 ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr);
669 if (ret >= 0)
670 *val = ret;
671
672 return ret < 0 ? ret : 0;
673}
674
675int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val)
676{
677 return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE,
678 addr, val);
679}
5eb0e0e4
VG
680
681int __qcom_scm_qsmmu500_wait_safe_toggle(struct device *dev, bool enable)
682{
683 return -ENODEV;
684}