]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/gpu/drm/amd/powerplay/hwmgr/polaris10_hwmgr.c
drm/amd/powerplay: fix bug that get wrong polaris evv voltage.
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / amd / powerplay / hwmgr / polaris10_hwmgr.c
CommitLineData
a23eefa2
RZ
1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
ae17c999 26#include <asm/div64.h>
a23eefa2
RZ
27#include "linux/delay.h"
28#include "pp_acpi.h"
29#include "hwmgr.h"
2cc0c0b5
FC
30#include "polaris10_hwmgr.h"
31#include "polaris10_powertune.h"
32#include "polaris10_dyn_defaults.h"
33#include "polaris10_smumgr.h"
a23eefa2
RZ
34#include "pp_debug.h"
35#include "ppatomctrl.h"
36#include "atombios.h"
37#include "tonga_pptable.h"
38#include "pppcielanes.h"
39#include "amd_pcie_helpers.h"
40#include "hardwaremanager.h"
41#include "tonga_processpptables.h"
42#include "cgs_common.h"
43#include "smu74.h"
44#include "smu_ucode_xfer_vi.h"
45#include "smu74_discrete.h"
46#include "smu/smu_7_1_3_d.h"
47#include "smu/smu_7_1_3_sh_mask.h"
48#include "gmc/gmc_8_1_d.h"
49#include "gmc/gmc_8_1_sh_mask.h"
50#include "oss/oss_3_0_d.h"
51#include "gca/gfx_8_0_d.h"
52#include "bif/bif_5_0_d.h"
53#include "bif/bif_5_0_sh_mask.h"
54#include "gmc/gmc_8_1_d.h"
55#include "gmc/gmc_8_1_sh_mask.h"
56#include "bif/bif_5_0_d.h"
57#include "bif/bif_5_0_sh_mask.h"
58#include "dce/dce_10_0_d.h"
59#include "dce/dce_10_0_sh_mask.h"
60
2cc0c0b5
FC
61#include "polaris10_thermal.h"
62#include "polaris10_clockpowergating.h"
eede5262 63
a23eefa2
RZ
64#define MC_CG_ARB_FREQ_F0 0x0a
65#define MC_CG_ARB_FREQ_F1 0x0b
66#define MC_CG_ARB_FREQ_F2 0x0c
67#define MC_CG_ARB_FREQ_F3 0x0d
68
69#define MC_CG_SEQ_DRAMCONF_S0 0x05
70#define MC_CG_SEQ_DRAMCONF_S1 0x06
71#define MC_CG_SEQ_YCLK_SUSPEND 0x04
72#define MC_CG_SEQ_YCLK_RESUME 0x0a
73
74
75#define SMC_RAM_END 0x40000
76
77#define SMC_CG_IND_START 0xc0030000
78#define SMC_CG_IND_END 0xc0040000
79
80#define VOLTAGE_SCALE 4
81#define VOLTAGE_VID_OFFSET_SCALE1 625
82#define VOLTAGE_VID_OFFSET_SCALE2 100
83
84#define VDDC_VDDCI_DELTA 200
85
86#define MEM_FREQ_LOW_LATENCY 25000
87#define MEM_FREQ_HIGH_LATENCY 80000
88
89#define MEM_LATENCY_HIGH 45
90#define MEM_LATENCY_LOW 35
91#define MEM_LATENCY_ERR 0xFFFF
92
93#define MC_SEQ_MISC0_GDDR5_SHIFT 28
94#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
95#define MC_SEQ_MISC0_GDDR5_VALUE 5
96
97
98#define PCIE_BUS_CLK 10000
99#define TCLK (PCIE_BUS_CLK / 10)
100
0812a945 101#define CEILING_UCHAR(double) ((double-(uint8_t)(double)) > 0 ? (uint8_t)(double+1) : (uint8_t)(double))
a23eefa2 102
909a0631
NW
103static const uint16_t polaris10_clock_stretcher_lookup_table[2][4] =
104{ {600, 1050, 3, 0}, {600, 1050, 6, 1} };
a23eefa2
RZ
105
106/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
909a0631
NW
107static const uint32_t polaris10_clock_stretcher_ddt_table[2][4][4] =
108{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
109 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
a23eefa2
RZ
110
111/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
909a0631
NW
112static const uint8_t polaris10_clock_stretch_amount_conversion[2][6] =
113{ {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
a23eefa2
RZ
114
115/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
116enum DPM_EVENT_SRC {
117 DPM_EVENT_SRC_ANALOG = 0,
118 DPM_EVENT_SRC_EXTERNAL = 1,
119 DPM_EVENT_SRC_DIGITAL = 2,
120 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
121 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
122};
123
909a0631 124static const unsigned long PhwPolaris10_Magic = (unsigned long)(PHM_VIslands_Magic);
a23eefa2 125
2cc0c0b5 126struct polaris10_power_state *cast_phw_polaris10_power_state(
a23eefa2
RZ
127 struct pp_hw_power_state *hw_ps)
128{
2cc0c0b5 129 PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
a23eefa2
RZ
130 "Invalid Powerstate Type!",
131 return NULL);
132
2cc0c0b5 133 return (struct polaris10_power_state *)hw_ps;
a23eefa2
RZ
134}
135
2cc0c0b5 136const struct polaris10_power_state *cast_const_phw_polaris10_power_state(
a23eefa2
RZ
137 const struct pp_hw_power_state *hw_ps)
138{
2cc0c0b5 139 PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
a23eefa2
RZ
140 "Invalid Powerstate Type!",
141 return NULL);
142
2cc0c0b5 143 return (const struct polaris10_power_state *)hw_ps;
a23eefa2
RZ
144}
145
2cc0c0b5 146static bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
147{
148 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
149 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
150 ? true : false;
151}
152
153/**
154 * Find the MC microcode version and store it in the HwMgr struct
155 *
156 * @param hwmgr the address of the powerplay hardware manager.
157 * @return always 0
158 */
159int phm_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
160{
161 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
162
163 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
164
165 return 0;
166}
167
168uint16_t phm_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
169{
170 uint32_t speedCntl = 0;
171
172 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
173 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
174 ixPCIE_LC_SPEED_CNTL);
175 return((uint16_t)PHM_GET_FIELD(speedCntl,
176 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
177}
178
179int phm_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
180{
181 uint32_t link_width;
182
183 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
184 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
185 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
186
187 PP_ASSERT_WITH_CODE((7 >= link_width),
188 "Invalid PCIe lane width!", return 0);
189
190 return decode_pcie_lane_width(link_width);
191}
192
e85c7d66 193/**
194* Enable voltage control
195*
196* @param pHwMgr the address of the powerplay hardware manager.
197* @return always PP_Result_OK
198*/
2cc0c0b5 199int polaris10_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
e85c7d66 200{
201 PP_ASSERT_WITH_CODE(
202 (hwmgr->smumgr->smumgr_funcs->send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable) == 0),
203 "Failed to enable voltage DPM during DPM Start Function!",
204 return 1;
205 );
206
207 return 0;
208}
a23eefa2
RZ
209
210/**
211* Checks if we want to support voltage control
212*
213* @param hwmgr the address of the powerplay hardware manager.
214*/
2cc0c0b5 215static bool polaris10_voltage_control(const struct pp_hwmgr *hwmgr)
a23eefa2 216{
2cc0c0b5
FC
217 const struct polaris10_hwmgr *data =
218 (const struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2 219
2cc0c0b5 220 return (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control);
a23eefa2
RZ
221}
222
223/**
224* Enable voltage control
225*
226* @param hwmgr the address of the powerplay hardware manager.
227* @return always 0
228*/
2cc0c0b5 229static int polaris10_enable_voltage_control(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
230{
231 /* enable voltage control */
232 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
233 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
234
235 return 0;
236}
237
238/**
239* Create Voltage Tables.
240*
241* @param hwmgr the address of the powerplay hardware manager.
242* @return always 0
243*/
2cc0c0b5 244static int polaris10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
a23eefa2 245{
2cc0c0b5 246 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
247 struct phm_ppt_v1_information *table_info =
248 (struct phm_ppt_v1_information *)hwmgr->pptable;
249 int result;
250
2cc0c0b5 251 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
a23eefa2
RZ
252 result = atomctrl_get_voltage_table_v3(hwmgr,
253 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
254 &(data->mvdd_voltage_table));
255 PP_ASSERT_WITH_CODE((0 == result),
256 "Failed to retrieve MVDD table.",
257 return result);
2cc0c0b5 258 } else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
a23eefa2
RZ
259 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
260 table_info->vdd_dep_on_mclk);
261 PP_ASSERT_WITH_CODE((0 == result),
262 "Failed to retrieve SVI2 MVDD table from dependancy table.",
263 return result;);
264 }
265
2cc0c0b5 266 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
a23eefa2
RZ
267 result = atomctrl_get_voltage_table_v3(hwmgr,
268 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
269 &(data->vddci_voltage_table));
270 PP_ASSERT_WITH_CODE((0 == result),
271 "Failed to retrieve VDDCI table.",
272 return result);
2cc0c0b5 273 } else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
a23eefa2
RZ
274 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
275 table_info->vdd_dep_on_mclk);
276 PP_ASSERT_WITH_CODE((0 == result),
277 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
278 return result);
279 }
280
2cc0c0b5 281 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
a23eefa2
RZ
282 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
283 table_info->vddc_lookup_table);
284 PP_ASSERT_WITH_CODE((0 == result),
285 "Failed to retrieve SVI2 VDDC table from lookup table.",
286 return result);
287 }
288
289 PP_ASSERT_WITH_CODE(
290 (data->vddc_voltage_table.count <= (SMU74_MAX_LEVELS_VDDC)),
291 "Too many voltage values for VDDC. Trimming to fit state table.",
292 phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDC,
293 &(data->vddc_voltage_table)));
294
295 PP_ASSERT_WITH_CODE(
296 (data->vddci_voltage_table.count <= (SMU74_MAX_LEVELS_VDDCI)),
297 "Too many voltage values for VDDCI. Trimming to fit state table.",
298 phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDCI,
299 &(data->vddci_voltage_table)));
300
301 PP_ASSERT_WITH_CODE(
302 (data->mvdd_voltage_table.count <= (SMU74_MAX_LEVELS_MVDD)),
303 "Too many voltage values for MVDD. Trimming to fit state table.",
304 phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_MVDD,
305 &(data->mvdd_voltage_table)));
306
307 return 0;
308}
309
310/**
311* Programs static screed detection parameters
312*
313* @param hwmgr the address of the powerplay hardware manager.
314* @return always 0
315*/
2cc0c0b5 316static int polaris10_program_static_screen_threshold_parameters(
a23eefa2
RZ
317 struct pp_hwmgr *hwmgr)
318{
2cc0c0b5 319 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
320
321 /* Set static screen threshold unit */
322 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
323 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
324 data->static_screen_threshold_unit);
325 /* Set static screen threshold */
326 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
327 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
328 data->static_screen_threshold);
329
330 return 0;
331}
332
333/**
334* Setup display gap for glitch free memory clock switching.
335*
336* @param hwmgr the address of the powerplay hardware manager.
337* @return always 0
338*/
2cc0c0b5 339static int polaris10_enable_display_gap(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
340{
341 uint32_t display_gap =
342 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
343 ixCG_DISPLAY_GAP_CNTL);
344
345 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
346 DISP_GAP, DISPLAY_GAP_IGNORE);
347
348 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
349 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
350
351 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
352 ixCG_DISPLAY_GAP_CNTL, display_gap);
353
354 return 0;
355}
356
357/**
358* Programs activity state transition voting clients
359*
360* @param hwmgr the address of the powerplay hardware manager.
361* @return always 0
362*/
2cc0c0b5 363static int polaris10_program_voting_clients(struct pp_hwmgr *hwmgr)
a23eefa2 364{
2cc0c0b5 365 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
366
367 /* Clear reset for voting clients before enabling DPM */
368 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
369 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
370 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
371 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
372
373 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
374 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
375 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
376 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
377 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
378 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
379 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
380 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
381 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
382 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
383 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
384 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
385 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
386 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
387 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
388 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
389
390 return 0;
391}
392
393/**
394* Get the location of various tables inside the FW image.
395*
396* @param hwmgr the address of the powerplay hardware manager.
397* @return always 0
398*/
2cc0c0b5 399static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr)
a23eefa2 400{
2cc0c0b5
FC
401 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
402 struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
a23eefa2
RZ
403 uint32_t tmp;
404 int result;
405 bool error = false;
406
2cc0c0b5 407 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
408 SMU7_FIRMWARE_HEADER_LOCATION +
409 offsetof(SMU74_Firmware_Header, DpmTable),
410 &tmp, data->sram_end);
411
412 if (0 == result)
413 data->dpm_table_start = tmp;
414
415 error |= (0 != result);
416
2cc0c0b5 417 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
418 SMU7_FIRMWARE_HEADER_LOCATION +
419 offsetof(SMU74_Firmware_Header, SoftRegisters),
420 &tmp, data->sram_end);
421
422 if (!result) {
423 data->soft_regs_start = tmp;
424 smu_data->soft_regs_start = tmp;
425 }
426
427 error |= (0 != result);
428
2cc0c0b5 429 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
430 SMU7_FIRMWARE_HEADER_LOCATION +
431 offsetof(SMU74_Firmware_Header, mcRegisterTable),
432 &tmp, data->sram_end);
433
434 if (!result)
435 data->mc_reg_table_start = tmp;
436
2cc0c0b5 437 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
438 SMU7_FIRMWARE_HEADER_LOCATION +
439 offsetof(SMU74_Firmware_Header, FanTable),
440 &tmp, data->sram_end);
441
442 if (!result)
443 data->fan_table_start = tmp;
444
445 error |= (0 != result);
446
2cc0c0b5 447 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
448 SMU7_FIRMWARE_HEADER_LOCATION +
449 offsetof(SMU74_Firmware_Header, mcArbDramTimingTable),
450 &tmp, data->sram_end);
451
452 if (!result)
453 data->arb_table_start = tmp;
454
455 error |= (0 != result);
456
2cc0c0b5 457 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
458 SMU7_FIRMWARE_HEADER_LOCATION +
459 offsetof(SMU74_Firmware_Header, Version),
460 &tmp, data->sram_end);
461
462 if (!result)
463 hwmgr->microcode_version_info.SMC = tmp;
464
465 error |= (0 != result);
466
467 return error ? -1 : 0;
468}
469
470/* Copy one arb setting to another and then switch the active set.
471 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
472 */
2cc0c0b5 473static int polaris10_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
474 uint32_t arb_src, uint32_t arb_dest)
475{
476 uint32_t mc_arb_dram_timing;
477 uint32_t mc_arb_dram_timing2;
478 uint32_t burst_time;
479 uint32_t mc_cg_config;
480
481 switch (arb_src) {
482 case MC_CG_ARB_FREQ_F0:
483 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
484 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
485 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
486 break;
487 case MC_CG_ARB_FREQ_F1:
488 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
489 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
490 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
491 break;
492 default:
493 return -EINVAL;
494 }
495
496 switch (arb_dest) {
497 case MC_CG_ARB_FREQ_F0:
498 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
499 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
500 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
501 break;
502 case MC_CG_ARB_FREQ_F1:
503 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
504 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
505 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
506 break;
507 default:
508 return -EINVAL;
509 }
510
511 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
512 mc_cg_config |= 0x0000000F;
513 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
514 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
515
516 return 0;
517}
518
519/**
520* Initial switch from ARB F0->F1
521*
522* @param hwmgr the address of the powerplay hardware manager.
523* @return always 0
524* This function is to be called from the SetPowerState table.
525*/
2cc0c0b5 526static int polaris10_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
a23eefa2 527{
2cc0c0b5 528 return polaris10_copy_and_switch_arb_sets(hwmgr,
a23eefa2
RZ
529 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
530}
531
2cc0c0b5 532static int polaris10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
a23eefa2 533{
2cc0c0b5 534 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
535 struct phm_ppt_v1_information *table_info =
536 (struct phm_ppt_v1_information *)(hwmgr->pptable);
537 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
538 uint32_t i, max_entry;
539
540 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
541 data->use_pcie_power_saving_levels), "No pcie performance levels!",
542 return -EINVAL);
543
544 if (data->use_pcie_performance_levels &&
545 !data->use_pcie_power_saving_levels) {
546 data->pcie_gen_power_saving = data->pcie_gen_performance;
547 data->pcie_lane_power_saving = data->pcie_lane_performance;
548 } else if (!data->use_pcie_performance_levels &&
549 data->use_pcie_power_saving_levels) {
550 data->pcie_gen_performance = data->pcie_gen_power_saving;
551 data->pcie_lane_performance = data->pcie_lane_power_saving;
552 }
553
554 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
555 SMU74_MAX_LEVELS_LINK,
556 MAX_REGULAR_DPM_NUMBER);
557
558 if (pcie_table != NULL) {
559 /* max_entry is used to make sure we reserve one PCIE level
560 * for boot level (fix for A+A PSPP issue).
561 * If PCIE table from PPTable have ULV entry + 8 entries,
562 * then ignore the last entry.*/
563 max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ?
564 SMU74_MAX_LEVELS_LINK : pcie_table->count;
565 for (i = 1; i < max_entry; i++) {
566 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
567 get_pcie_gen_support(data->pcie_gen_cap,
568 pcie_table->entries[i].gen_speed),
569 get_pcie_lane_support(data->pcie_lane_cap,
570 pcie_table->entries[i].lane_width));
571 }
572 data->dpm_table.pcie_speed_table.count = max_entry - 1;
e85c7d66 573
574 /* Setup BIF_SCLK levels */
575 for (i = 0; i < max_entry; i++)
576 data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
a23eefa2
RZ
577 } else {
578 /* Hardcode Pcie Table */
579 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
580 get_pcie_gen_support(data->pcie_gen_cap,
581 PP_Min_PCIEGen),
582 get_pcie_lane_support(data->pcie_lane_cap,
583 PP_Max_PCIELane));
584 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
585 get_pcie_gen_support(data->pcie_gen_cap,
586 PP_Min_PCIEGen),
587 get_pcie_lane_support(data->pcie_lane_cap,
588 PP_Max_PCIELane));
589 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
590 get_pcie_gen_support(data->pcie_gen_cap,
591 PP_Max_PCIEGen),
592 get_pcie_lane_support(data->pcie_lane_cap,
593 PP_Max_PCIELane));
594 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
595 get_pcie_gen_support(data->pcie_gen_cap,
596 PP_Max_PCIEGen),
597 get_pcie_lane_support(data->pcie_lane_cap,
598 PP_Max_PCIELane));
599 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
600 get_pcie_gen_support(data->pcie_gen_cap,
601 PP_Max_PCIEGen),
602 get_pcie_lane_support(data->pcie_lane_cap,
603 PP_Max_PCIELane));
604 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
605 get_pcie_gen_support(data->pcie_gen_cap,
606 PP_Max_PCIEGen),
607 get_pcie_lane_support(data->pcie_lane_cap,
608 PP_Max_PCIELane));
609
610 data->dpm_table.pcie_speed_table.count = 6;
611 }
612 /* Populate last level for boot PCIE level, but do not increment count. */
613 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
614 data->dpm_table.pcie_speed_table.count,
615 get_pcie_gen_support(data->pcie_gen_cap,
616 PP_Min_PCIEGen),
617 get_pcie_lane_support(data->pcie_lane_cap,
618 PP_Max_PCIELane));
619
620 return 0;
621}
622
623/*
624 * This function is to initalize all DPM state tables
625 * for SMU7 based on the dependency table.
626 * Dynamic state patching function will then trim these
627 * state tables to the allowed range based
628 * on the power policy or external client requests,
629 * such as UVD request, etc.
630 */
2cc0c0b5 631int polaris10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
a23eefa2 632{
2cc0c0b5 633 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
634 struct phm_ppt_v1_information *table_info =
635 (struct phm_ppt_v1_information *)(hwmgr->pptable);
636 uint32_t i;
637
638 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
639 table_info->vdd_dep_on_sclk;
640 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
641 table_info->vdd_dep_on_mclk;
642
643 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
644 "SCLK dependency table is missing. This table is mandatory",
645 return -EINVAL);
646 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
647 "SCLK dependency table has to have is missing."
648 "This table is mandatory",
649 return -EINVAL);
650
651 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
652 "MCLK dependency table is missing. This table is mandatory",
653 return -EINVAL);
654 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
655 "MCLK dependency table has to have is missing."
656 "This table is mandatory",
657 return -EINVAL);
658
659 /* clear the state table to reset everything to default */
660 phm_reset_single_dpm_table(
661 &data->dpm_table.sclk_table, SMU74_MAX_LEVELS_GRAPHICS, MAX_REGULAR_DPM_NUMBER);
662 phm_reset_single_dpm_table(
663 &data->dpm_table.mclk_table, SMU74_MAX_LEVELS_MEMORY, MAX_REGULAR_DPM_NUMBER);
664
665
666 /* Initialize Sclk DPM table based on allow Sclk values */
667 data->dpm_table.sclk_table.count = 0;
668 for (i = 0; i < dep_sclk_table->count; i++) {
669 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
670 dep_sclk_table->entries[i].clk) {
671
672 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
673 dep_sclk_table->entries[i].clk;
674
675 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
676 (i == 0) ? true : false;
677 data->dpm_table.sclk_table.count++;
678 }
679 }
680
681 /* Initialize Mclk DPM table based on allow Mclk values */
682 data->dpm_table.mclk_table.count = 0;
683 for (i = 0; i < dep_mclk_table->count; i++) {
684 if (i == 0 || data->dpm_table.mclk_table.dpm_levels
685 [data->dpm_table.mclk_table.count - 1].value !=
686 dep_mclk_table->entries[i].clk) {
687 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
688 dep_mclk_table->entries[i].clk;
689 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
690 (i == 0) ? true : false;
691 data->dpm_table.mclk_table.count++;
692 }
693 }
694
695 /* setup PCIE gen speed levels */
2cc0c0b5 696 polaris10_setup_default_pcie_table(hwmgr);
a23eefa2
RZ
697
698 /* save a copy of the default DPM table */
699 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
2cc0c0b5 700 sizeof(struct polaris10_dpm_table));
a23eefa2
RZ
701
702 return 0;
703}
704
705uint8_t convert_to_vid(uint16_t vddc)
706{
707 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
708}
709
710/**
711 * Mvdd table preparation for SMC.
712 *
713 * @param *hwmgr The address of the hardware manager.
714 * @param *table The SMC DPM table structure to be populated.
715 * @return 0
716 */
2cc0c0b5 717static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
718 SMU74_Discrete_DpmTable *table)
719{
2cc0c0b5 720 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
721 uint32_t count, level;
722
2cc0c0b5 723 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
a23eefa2
RZ
724 count = data->mvdd_voltage_table.count;
725 if (count > SMU_MAX_SMIO_LEVELS)
726 count = SMU_MAX_SMIO_LEVELS;
727 for (level = 0; level < count; level++) {
728 table->SmioTable2.Pattern[level].Voltage =
729 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
730 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
731 table->SmioTable2.Pattern[level].Smio =
732 (uint8_t) level;
733 table->Smio[level] |=
734 data->mvdd_voltage_table.entries[level].smio_low;
735 }
095d28c6 736 table->SmioMask2 = data->mvdd_voltage_table.mask_low;
a23eefa2
RZ
737
738 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
739 }
740
741 return 0;
742}
743
2cc0c0b5 744static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
745 struct SMU74_Discrete_DpmTable *table)
746{
747 uint32_t count, level;
2cc0c0b5 748 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
749
750 count = data->vddci_voltage_table.count;
751
2cc0c0b5 752 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
a23eefa2
RZ
753 if (count > SMU_MAX_SMIO_LEVELS)
754 count = SMU_MAX_SMIO_LEVELS;
755 for (level = 0; level < count; ++level) {
756 table->SmioTable1.Pattern[level].Voltage =
757 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
758 table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
759
760 table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
761 }
762 }
763
764 table->SmioMask1 = data->vddci_voltage_table.mask_low;
765
766 return 0;
767}
768
769/**
770* Preparation of vddc and vddgfx CAC tables for SMC.
771*
772* @param hwmgr the address of the hardware manager
773* @param table the SMC DPM table structure to be populated
774* @return always 0
775*/
2cc0c0b5 776static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
777 struct SMU74_Discrete_DpmTable *table)
778{
779 uint32_t count;
780 uint8_t index;
2cc0c0b5 781 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
782 struct phm_ppt_v1_information *table_info =
783 (struct phm_ppt_v1_information *)(hwmgr->pptable);
784 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
785 table_info->vddc_lookup_table;
786 /* tables is already swapped, so in order to use the value from it,
787 * we need to swap it back.
788 * We are populating vddc CAC data to BapmVddc table
789 * in split and merged mode
790 */
791 for (count = 0; count < lookup_table->count; count++) {
792 index = phm_get_voltage_index(lookup_table,
793 data->vddc_voltage_table.entries[count].value);
794 table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low);
795 table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid);
796 table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high);
797 }
798
799 return 0;
800}
801
802/**
803* Preparation of voltage tables for SMC.
804*
805* @param hwmgr the address of the hardware manager
806* @param table the SMC DPM table structure to be populated
807* @return always 0
808*/
809
2cc0c0b5 810int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
811 struct SMU74_Discrete_DpmTable *table)
812{
2cc0c0b5
FC
813 polaris10_populate_smc_vddci_table(hwmgr, table);
814 polaris10_populate_smc_mvdd_table(hwmgr, table);
815 polaris10_populate_cac_table(hwmgr, table);
a23eefa2
RZ
816
817 return 0;
818}
819
2cc0c0b5 820static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
821 struct SMU74_Discrete_Ulv *state)
822{
2cc0c0b5 823 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
824 struct phm_ppt_v1_information *table_info =
825 (struct phm_ppt_v1_information *)(hwmgr->pptable);
826
827 state->CcPwrDynRm = 0;
828 state->CcPwrDynRm1 = 0;
829
830 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
831 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
832 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
833
834 state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
835
836 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
837 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
838 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
839
840 return 0;
841}
842
2cc0c0b5 843static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
844 struct SMU74_Discrete_DpmTable *table)
845{
2cc0c0b5 846 return polaris10_populate_ulv_level(hwmgr, &table->Ulv);
a23eefa2
RZ
847}
848
2cc0c0b5 849static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
850 struct SMU74_Discrete_DpmTable *table)
851{
2cc0c0b5
FC
852 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
853 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
a23eefa2
RZ
854 int i;
855
856 /* Index (dpm_table->pcie_speed_table.count)
857 * is reserved for PCIE boot level. */
858 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
859 table->LinkLevel[i].PcieGenSpeed =
860 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
861 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
862 dpm_table->pcie_speed_table.dpm_levels[i].param1);
863 table->LinkLevel[i].EnabledForActivity = 1;
864 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
865 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
866 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
867 }
868
869 data->smc_state_table.LinkLevelCount =
870 (uint8_t)dpm_table->pcie_speed_table.count;
871 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
872 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
873
874 return 0;
875}
876
2cc0c0b5 877static uint32_t polaris10_get_xclk(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
878{
879 uint32_t reference_clock, tmp;
880 struct cgs_display_info info = {0};
881 struct cgs_mode_info mode_info;
882
883 info.mode_info = &mode_info;
884
885 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
886
887 if (tmp)
888 return TCLK;
889
890 cgs_get_active_displays_info(hwmgr->device, &info);
891 reference_clock = mode_info.ref_clock;
892
893 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
894
895 if (0 != tmp)
896 return reference_clock / 4;
897
898 return reference_clock;
899}
900
901/**
902* Calculates the SCLK dividers using the provided engine clock
903*
904* @param hwmgr the address of the hardware manager
905* @param clock the engine clock to use to populate the structure
906* @param sclk the SMC SCLK structure to be populated
907*/
2cc0c0b5 908static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
909 uint32_t clock, SMU_SclkSetting *sclk_setting)
910{
2cc0c0b5 911 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
912 const SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
913 struct pp_atomctrl_clock_dividers_ai dividers;
914
915 uint32_t ref_clock;
916 uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
917 uint8_t i;
918 int result;
919 uint64_t temp;
920
921 sclk_setting->SclkFrequency = clock;
922 /* get the engine clock dividers for this clock value */
923 result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, &dividers);
924 if (result == 0) {
925 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
926 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
927 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
928 sclk_setting->PllRange = dividers.ucSclkPllRange;
e85c7d66 929 sclk_setting->Sclk_slew_rate = 0x400;
930 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
931 sclk_setting->Pcc_down_slew_rate = 0xffff;
a23eefa2
RZ
932 sclk_setting->SSc_En = dividers.ucSscEnable;
933 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
934 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
e85c7d66 935 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
a23eefa2
RZ
936 return result;
937 }
938
2cc0c0b5 939 ref_clock = polaris10_get_xclk(hwmgr);
a23eefa2
RZ
940
941 for (i = 0; i < NUM_SCLK_RANGE; i++) {
942 if (clock > data->range_table[i].trans_lower_frequency
943 && clock <= data->range_table[i].trans_upper_frequency) {
944 sclk_setting->PllRange = i;
945 break;
946 }
947 }
948
949 sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
950 temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
951 temp <<= 0x10;
ae17c999
SG
952 do_div(temp, ref_clock);
953 sclk_setting->Fcw_frac = temp & 0xffff;
a23eefa2
RZ
954
955 pcc_target_percent = 10; /* Hardcode 10% for now. */
956 pcc_target_freq = clock - (clock * pcc_target_percent / 100);
957 sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
958
959 ss_target_percent = 2; /* Hardcode 2% for now. */
960 sclk_setting->SSc_En = 0;
961 if (ss_target_percent) {
962 sclk_setting->SSc_En = 1;
963 ss_target_freq = clock - (clock * ss_target_percent / 100);
964 sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
965 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
966 temp <<= 0x10;
ae17c999
SG
967 do_div(temp, ref_clock);
968 sclk_setting->Fcw1_frac = temp & 0xffff;
a23eefa2
RZ
969 }
970
971 return 0;
972}
973
2cc0c0b5 974static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
975 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
976 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
977{
978 uint32_t i;
979 uint16_t vddci;
2cc0c0b5 980 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
981
982 *voltage = *mvdd = 0;
983
984 /* clock - voltage dependency table is empty table */
985 if (dep_table->count == 0)
986 return -EINVAL;
987
988 for (i = 0; i < dep_table->count; i++) {
989 /* find first sclk bigger than request */
990 if (dep_table->entries[i].clk >= clock) {
991 *voltage |= (dep_table->entries[i].vddc *
992 VOLTAGE_SCALE) << VDDC_SHIFT;
2cc0c0b5 993 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
a23eefa2
RZ
994 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
995 VOLTAGE_SCALE) << VDDCI_SHIFT;
996 else if (dep_table->entries[i].vddci)
997 *voltage |= (dep_table->entries[i].vddci *
998 VOLTAGE_SCALE) << VDDCI_SHIFT;
999 else {
1000 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
1001 (dep_table->entries[i].vddc -
1002 (uint16_t)data->vddc_vddci_delta));
3ff21127 1003 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
a23eefa2
RZ
1004 }
1005
2cc0c0b5 1006 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
a23eefa2
RZ
1007 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1008 VOLTAGE_SCALE;
1009 else if (dep_table->entries[i].mvdd)
1010 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1011 VOLTAGE_SCALE;
1012
1013 *voltage |= 1 << PHASES_SHIFT;
1014 return 0;
1015 }
1016 }
1017
1018 /* sclk is bigger than max sclk in the dependence table */
1019 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1020
2cc0c0b5 1021 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
a23eefa2
RZ
1022 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1023 VOLTAGE_SCALE) << VDDCI_SHIFT;
1024 else if (dep_table->entries[i-1].vddci) {
1025 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
1026 (dep_table->entries[i].vddc -
1027 (uint16_t)data->vddc_vddci_delta));
1028 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1029 }
1030
2cc0c0b5 1031 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
a23eefa2
RZ
1032 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1033 else if (dep_table->entries[i].mvdd)
1034 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1035
1036 return 0;
1037}
1038
909a0631
NW
1039static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] =
1040{ {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112},
1041 {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
1042 {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112},
1043 {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160},
1044 {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112},
1045 {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160},
1046 {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108},
1047 {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} };
a23eefa2 1048
2cc0c0b5 1049static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
1050{
1051 uint32_t i, ref_clk;
2cc0c0b5 1052 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1053 SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
1054 struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
1055
2cc0c0b5 1056 ref_clk = polaris10_get_xclk(hwmgr);
a23eefa2
RZ
1057
1058 if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
1059 for (i = 0; i < NUM_SCLK_RANGE; i++) {
1060 table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting;
1061 table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv;
1062 table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc;
1063
1064 table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper;
1065 table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower;
1066
1067 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
1068 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
1069 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
1070 }
1071 return;
1072 }
1073
1074 for (i = 0; i < NUM_SCLK_RANGE; i++) {
1075
1076 data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
1077 data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
1078
1079 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
1080 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
1081 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
1082
1083 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
1084 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
1085
1086 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
1087 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
1088 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
1089 }
1090}
1091
1092/**
1093* Populates single SMC SCLK structure using the provided engine clock
1094*
1095* @param hwmgr the address of the hardware manager
1096* @param clock the engine clock to use to populate the structure
1097* @param sclk the SMC SCLK structure to be populated
1098*/
1099
2cc0c0b5 1100static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1101 uint32_t clock, uint16_t sclk_al_threshold,
1102 struct SMU74_Discrete_GraphicsLevel *level)
1103{
1104 int result, i, temp;
1105 /* PP_Clocks minClocks; */
1106 uint32_t mvdd;
2cc0c0b5 1107 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1108 struct phm_ppt_v1_information *table_info =
1109 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1110 SMU_SclkSetting curr_sclk_setting = { 0 };
1111
2cc0c0b5 1112 result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
a23eefa2
RZ
1113
1114 /* populate graphics levels */
2cc0c0b5 1115 result = polaris10_get_dependency_volt_by_clk(hwmgr,
a23eefa2
RZ
1116 table_info->vdd_dep_on_sclk, clock,
1117 &level->MinVoltage, &mvdd);
1118
1119 PP_ASSERT_WITH_CODE((0 == result),
1120 "can not find VDDC voltage value for "
1121 "VDDC engine clock dependency table",
1122 return result);
1123 level->ActivityLevel = sclk_al_threshold;
1124
1125 level->CcPwrDynRm = 0;
1126 level->CcPwrDynRm1 = 0;
1127 level->EnabledForActivity = 0;
1128 level->EnabledForThrottle = 1;
1129 level->UpHyst = 10;
1130 level->DownHyst = 0;
1131 level->VoltageDownHyst = 0;
1132 level->PowerThrottle = 0;
1133
1134 /*
1135 * TODO: get minimum clocks from dal configaration
1136 * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
1137 */
1138 /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
1139
1140 /* get level->DeepSleepDivId
1141 if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
1142 level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
1143 */
859b8b6a 1144 PP_ASSERT_WITH_CODE((clock >= POLARIS10_MINIMUM_ENGINE_CLOCK), "Engine clock can't satisfy stutter requirement!", return 0);
2cc0c0b5 1145 for (i = POLARIS10_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
354ef928 1146 temp = clock >> i;
a23eefa2 1147
859b8b6a 1148 if (temp >= POLARIS10_MINIMUM_ENGINE_CLOCK || i == 0)
a23eefa2
RZ
1149 break;
1150 }
1151
1152 level->DeepSleepDivId = i;
1153
1154 /* Default to slow, highest DPM level will be
1155 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
1156 */
1157 if (data->update_up_hyst)
1158 level->UpHyst = (uint8_t)data->up_hyst;
1159 if (data->update_down_hyst)
1160 level->DownHyst = (uint8_t)data->down_hyst;
1161
1162 level->SclkSetting = curr_sclk_setting;
1163
1164 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1165 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1166 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1167 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1168 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
1169 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
1170 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
1171 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
e85c7d66 1172 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
1173 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
1174 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
a23eefa2
RZ
1175 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
1176 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
e85c7d66 1177 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
a23eefa2
RZ
1178 return 0;
1179}
1180
1181/**
1182* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1183*
1184* @param hwmgr the address of the hardware manager
1185*/
2cc0c0b5 1186static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
a23eefa2 1187{
2cc0c0b5
FC
1188 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1189 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
a23eefa2
RZ
1190 struct phm_ppt_v1_information *table_info =
1191 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1192 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1193 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1194 int result = 0;
1195 uint32_t array = data->dpm_table_start +
1196 offsetof(SMU74_Discrete_DpmTable, GraphicsLevel);
1197 uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) *
1198 SMU74_MAX_LEVELS_GRAPHICS;
1199 struct SMU74_Discrete_GraphicsLevel *levels =
1200 data->smc_state_table.GraphicsLevel;
1201 uint32_t i, max_entry;
1202 uint8_t hightest_pcie_level_enabled = 0,
1203 lowest_pcie_level_enabled = 0,
1204 mid_pcie_level_enabled = 0,
1205 count = 0;
1206
2cc0c0b5 1207 polaris10_get_sclk_range_table(hwmgr);
a23eefa2
RZ
1208
1209 for (i = 0; i < dpm_table->sclk_table.count; i++) {
1210
2cc0c0b5 1211 result = polaris10_populate_single_graphic_level(hwmgr,
a23eefa2
RZ
1212 dpm_table->sclk_table.dpm_levels[i].value,
1213 (uint16_t)data->activity_target[i],
1214 &(data->smc_state_table.GraphicsLevel[i]));
1215 if (result)
1216 return result;
1217
1218 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1219 if (i > 1)
1220 levels[i].DeepSleepDivId = 0;
1221 }
5de95e55
RZ
1222 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1223 PHM_PlatformCaps_SPLLShutdownSupport))
1224 data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
a23eefa2
RZ
1225
1226 data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
1227 data->smc_state_table.GraphicsDpmLevelCount =
1228 (uint8_t)dpm_table->sclk_table.count;
1229 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1230 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1231
1232
1233 if (pcie_table != NULL) {
1234 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1235 "There must be 1 or more PCIE levels defined in PPTable.",
1236 return -EINVAL);
1237 max_entry = pcie_entry_cnt - 1;
1238 for (i = 0; i < dpm_table->sclk_table.count; i++)
1239 levels[i].pcieDpmLevel =
1240 (uint8_t) ((i < max_entry) ? i : max_entry);
1241 } else {
1242 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1243 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1244 (1 << (hightest_pcie_level_enabled + 1))) != 0))
1245 hightest_pcie_level_enabled++;
1246
1247 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1248 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1249 (1 << lowest_pcie_level_enabled)) == 0))
1250 lowest_pcie_level_enabled++;
1251
1252 while ((count < hightest_pcie_level_enabled) &&
1253 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1254 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1255 count++;
1256
1257 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1258 hightest_pcie_level_enabled ?
1259 (lowest_pcie_level_enabled + 1 + count) :
1260 hightest_pcie_level_enabled;
1261
1262 /* set pcieDpmLevel to hightest_pcie_level_enabled */
1263 for (i = 2; i < dpm_table->sclk_table.count; i++)
1264 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1265
1266 /* set pcieDpmLevel to lowest_pcie_level_enabled */
1267 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1268
1269 /* set pcieDpmLevel to mid_pcie_level_enabled */
1270 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1271 }
1272 /* level count will send to smc once at init smc table and never change */
2cc0c0b5 1273 result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
a23eefa2
RZ
1274 (uint32_t)array_size, data->sram_end);
1275
1276 return result;
1277}
1278
2cc0c0b5 1279static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1280 uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level)
1281{
2cc0c0b5 1282 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1283 struct phm_ppt_v1_information *table_info =
1284 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1285 int result = 0;
1286 struct cgs_display_info info = {0, 0, NULL};
1287
1288 cgs_get_active_displays_info(hwmgr->device, &info);
1289
1290 if (table_info->vdd_dep_on_mclk) {
2cc0c0b5 1291 result = polaris10_get_dependency_volt_by_clk(hwmgr,
a23eefa2
RZ
1292 table_info->vdd_dep_on_mclk, clock,
1293 &mem_level->MinVoltage, &mem_level->MinMvdd);
1294 PP_ASSERT_WITH_CODE((0 == result),
1295 "can not find MinVddc voltage value from memory "
1296 "VDDC voltage dependency table", return result);
1297 }
1298
1299 mem_level->MclkFrequency = clock;
a23eefa2
RZ
1300 mem_level->EnabledForThrottle = 1;
1301 mem_level->EnabledForActivity = 0;
1302 mem_level->UpHyst = 0;
1303 mem_level->DownHyst = 100;
1304 mem_level->VoltageDownHyst = 0;
1305 mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
1306 mem_level->StutterEnable = false;
a23eefa2
RZ
1307 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1308
1309 data->display_timing.num_existing_displays = info.display_count;
1310
1311 if ((data->mclk_stutter_mode_threshold) &&
1312 (clock <= data->mclk_stutter_mode_threshold) &&
1313 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1314 STUTTER_ENABLE) & 0x1))
1315 mem_level->StutterEnable = true;
1316
1317 if (!result) {
1318 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1319 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1320 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1321 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1322 }
1323 return result;
1324}
1325
1326/**
1327* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
1328*
1329* @param hwmgr the address of the hardware manager
1330*/
2cc0c0b5 1331static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
a23eefa2 1332{
2cc0c0b5
FC
1333 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1334 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
a23eefa2
RZ
1335 int result;
1336 /* populate MCLK dpm table to SMU7 */
1337 uint32_t array = data->dpm_table_start +
1338 offsetof(SMU74_Discrete_DpmTable, MemoryLevel);
1339 uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) *
1340 SMU74_MAX_LEVELS_MEMORY;
1341 struct SMU74_Discrete_MemoryLevel *levels =
1342 data->smc_state_table.MemoryLevel;
1343 uint32_t i;
1344
1345 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1346 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1347 "can not populate memory level as memory clock is zero",
1348 return -EINVAL);
2cc0c0b5 1349 result = polaris10_populate_single_memory_level(hwmgr,
a23eefa2
RZ
1350 dpm_table->mclk_table.dpm_levels[i].value,
1351 &levels[i]);
b4c6f99e
RZ
1352 if (i == dpm_table->mclk_table.count - 1) {
1353 levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1354 levels[i].EnabledForActivity = 1;
1355 }
a23eefa2
RZ
1356 if (result)
1357 return result;
1358 }
1359
a23eefa2
RZ
1360 /* in order to prevent MC activity from stutter mode to push DPM up.
1361 * the UVD change complements this by putting the MCLK in
1362 * a higher state by default such that we are not effected by
1363 * up threshold or and MCLK DPM latency.
1364 */
9a3c1b34 1365 levels[0].ActivityLevel = 0x1f;
a23eefa2
RZ
1366 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1367
1368 data->smc_state_table.MemoryDpmLevelCount =
1369 (uint8_t)dpm_table->mclk_table.count;
1370 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1371 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
a23eefa2
RZ
1372
1373 /* level count will send to smc once at init smc table and never change */
2cc0c0b5 1374 result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
a23eefa2
RZ
1375 (uint32_t)array_size, data->sram_end);
1376
1377 return result;
1378}
1379
1380/**
1381* Populates the SMC MVDD structure using the provided memory clock.
1382*
1383* @param hwmgr the address of the hardware manager
1384* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
1385* @param voltage the SMC VOLTAGE structure to be populated
1386*/
2cc0c0b5 1387int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1388 uint32_t mclk, SMIO_Pattern *smio_pat)
1389{
2cc0c0b5 1390 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1391 struct phm_ppt_v1_information *table_info =
1392 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1393 uint32_t i = 0;
1394
2cc0c0b5 1395 if (POLARIS10_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
a23eefa2
RZ
1396 /* find mvdd value which clock is more than request */
1397 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1398 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1399 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1400 break;
1401 }
1402 }
1403 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1404 "MVDD Voltage is outside the supported range.",
1405 return -EINVAL);
1406 } else
1407 return -EINVAL;
1408
1409 return 0;
1410}
1411
2cc0c0b5 1412static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1413 SMU74_Discrete_DpmTable *table)
1414{
1415 int result = 0;
1416 uint32_t sclk_frequency;
2cc0c0b5 1417 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1418 struct phm_ppt_v1_information *table_info =
1419 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1420 SMIO_Pattern vol_level;
1421 uint32_t mvdd;
1422 uint16_t us_mvdd;
1423
1424 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1425
0636e0d6
RZ
1426
1427 /* Get MinVoltage and Frequency from DPM0,
1428 * already converted to SMC_UL */
1429 sclk_frequency = data->dpm_table.sclk_table.dpm_levels[0].value;
1430 result = polaris10_get_dependency_volt_by_clk(hwmgr,
1431 table_info->vdd_dep_on_sclk,
1432 sclk_frequency,
1433 &table->ACPILevel.MinVoltage, &mvdd);
1434 PP_ASSERT_WITH_CODE((0 == result),
1435 "Cannot find ACPI VDDC voltage value "
1436 "in Clock Dependency Table",
1437 );
1438
a23eefa2 1439
2cc0c0b5 1440 result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting));
a23eefa2
RZ
1441 PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result);
1442
1443 table->ACPILevel.DeepSleepDivId = 0;
1444 table->ACPILevel.CcPwrDynRm = 0;
1445 table->ACPILevel.CcPwrDynRm1 = 0;
1446
1447 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1448 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1449 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1450 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1451
1452 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1453 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1454 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1455 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
e85c7d66 1456 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1457 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1458 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
a23eefa2
RZ
1459 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1460 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
e85c7d66 1461 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
a23eefa2 1462
0636e0d6
RZ
1463
1464 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1465 table->MemoryACPILevel.MclkFrequency =
1466 data->dpm_table.mclk_table.dpm_levels[0].value;
1467 result = polaris10_get_dependency_volt_by_clk(hwmgr,
1468 table_info->vdd_dep_on_mclk,
1469 table->MemoryACPILevel.MclkFrequency,
1470 &table->MemoryACPILevel.MinVoltage, &mvdd);
1471 PP_ASSERT_WITH_CODE((0 == result),
1472 "Cannot find ACPI VDDCI voltage value "
1473 "in Clock Dependency Table",
1474 );
a23eefa2
RZ
1475
1476 us_mvdd = 0;
2cc0c0b5 1477 if ((POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
a23eefa2
RZ
1478 (data->mclk_dpm_key_disabled))
1479 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1480 else {
2cc0c0b5 1481 if (!polaris10_populate_mvdd_value(hwmgr,
a23eefa2
RZ
1482 data->dpm_table.mclk_table.dpm_levels[0].value,
1483 &vol_level))
1484 us_mvdd = vol_level.Voltage;
1485 }
1486
2cc0c0b5 1487 if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level))
a23eefa2
RZ
1488 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1489 else
1490 table->MemoryACPILevel.MinMvdd = 0;
1491
1492 table->MemoryACPILevel.StutterEnable = false;
1493
1494 table->MemoryACPILevel.EnabledForThrottle = 0;
1495 table->MemoryACPILevel.EnabledForActivity = 0;
1496 table->MemoryACPILevel.UpHyst = 0;
1497 table->MemoryACPILevel.DownHyst = 100;
1498 table->MemoryACPILevel.VoltageDownHyst = 0;
1499 table->MemoryACPILevel.ActivityLevel =
1500 PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
1501
1502 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1503 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1504
1505 return result;
1506}
1507
2cc0c0b5 1508static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1509 SMU74_Discrete_DpmTable *table)
1510{
1511 int result = -EINVAL;
1512 uint8_t count;
1513 struct pp_atomctrl_clock_dividers_vi dividers;
1514 struct phm_ppt_v1_information *table_info =
1515 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1516 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1517 table_info->mm_dep_table;
2cc0c0b5 1518 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
0636e0d6 1519 uint32_t vddci;
a23eefa2
RZ
1520
1521 table->VceLevelCount = (uint8_t)(mm_table->count);
1522 table->VceBootLevel = 0;
1523
1524 for (count = 0; count < table->VceLevelCount; count++) {
1525 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
681ed01c 1526 table->VceLevel[count].MinVoltage = 0;
a23eefa2
RZ
1527 table->VceLevel[count].MinVoltage |=
1528 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
0636e0d6
RZ
1529
1530 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1531 vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1532 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1533 else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1534 vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1535 else
1536 vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1537
1538
a23eefa2 1539 table->VceLevel[count].MinVoltage |=
0636e0d6 1540 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
a23eefa2
RZ
1541 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1542
1543 /*retrieve divider value for VBIOS */
1544 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1545 table->VceLevel[count].Frequency, &dividers);
1546 PP_ASSERT_WITH_CODE((0 == result),
1547 "can not find divide id for VCE engine clock",
1548 return result);
1549
1550 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1551
1552 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1553 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1554 }
1555 return result;
1556}
1557
2cc0c0b5 1558static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1559 SMU74_Discrete_DpmTable *table)
1560{
1561 int result = -EINVAL;
1562 uint8_t count;
1563 struct pp_atomctrl_clock_dividers_vi dividers;
1564 struct phm_ppt_v1_information *table_info =
1565 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1566 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1567 table_info->mm_dep_table;
2cc0c0b5 1568 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
0636e0d6 1569 uint32_t vddci;
a23eefa2
RZ
1570
1571 table->SamuBootLevel = 0;
1572 table->SamuLevelCount = (uint8_t)(mm_table->count);
1573
1574 for (count = 0; count < table->SamuLevelCount; count++) {
1575 /* not sure whether we need evclk or not */
681ed01c 1576 table->SamuLevel[count].MinVoltage = 0;
a23eefa2
RZ
1577 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
1578 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1579 VOLTAGE_SCALE) << VDDC_SHIFT;
0636e0d6
RZ
1580
1581 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1582 vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1583 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1584 else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1585 vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1586 else
1587 vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1588
1589 table->SamuLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
a23eefa2
RZ
1590 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1591
1592 /* retrieve divider value for VBIOS */
1593 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1594 table->SamuLevel[count].Frequency, &dividers);
1595 PP_ASSERT_WITH_CODE((0 == result),
1596 "can not find divide id for samu clock", return result);
1597
1598 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1599
1600 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1601 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
1602 }
1603 return result;
1604}
1605
2cc0c0b5 1606static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1607 int32_t eng_clock, int32_t mem_clock,
1608 SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs)
1609{
1610 uint32_t dram_timing;
1611 uint32_t dram_timing2;
1612 uint32_t burst_time;
1613 int result;
1614
1615 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1616 eng_clock, mem_clock);
1617 PP_ASSERT_WITH_CODE(result == 0,
1618 "Error calling VBIOS to set DRAM_TIMING.", return result);
1619
1620 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1621 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1622 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1623
1624
1625 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
1626 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1627 arb_regs->McArbBurstTime = (uint8_t)burst_time;
1628
1629 return 0;
1630}
1631
2cc0c0b5 1632static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
a23eefa2 1633{
2cc0c0b5 1634 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1635 struct SMU74_Discrete_MCArbDramTimingTable arb_regs;
1636 uint32_t i, j;
1637 int result = 0;
1638
1639 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1640 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2cc0c0b5 1641 result = polaris10_populate_memory_timing_parameters(hwmgr,
a23eefa2
RZ
1642 data->dpm_table.sclk_table.dpm_levels[i].value,
1643 data->dpm_table.mclk_table.dpm_levels[j].value,
1644 &arb_regs.entries[i][j]);
1645 if (result == 0)
1646 result = atomctrl_set_ac_timing_ai(hwmgr, data->dpm_table.mclk_table.dpm_levels[j].value, j);
1647 if (result != 0)
1648 return result;
1649 }
1650 }
1651
2cc0c0b5 1652 result = polaris10_copy_bytes_to_smc(
a23eefa2
RZ
1653 hwmgr->smumgr,
1654 data->arb_table_start,
1655 (uint8_t *)&arb_regs,
1656 sizeof(SMU74_Discrete_MCArbDramTimingTable),
1657 data->sram_end);
1658 return result;
1659}
1660
2cc0c0b5 1661static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1662 struct SMU74_Discrete_DpmTable *table)
1663{
1664 int result = -EINVAL;
1665 uint8_t count;
1666 struct pp_atomctrl_clock_dividers_vi dividers;
1667 struct phm_ppt_v1_information *table_info =
1668 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1669 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1670 table_info->mm_dep_table;
2cc0c0b5 1671 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
0636e0d6 1672 uint32_t vddci;
a23eefa2
RZ
1673
1674 table->UvdLevelCount = (uint8_t)(mm_table->count);
1675 table->UvdBootLevel = 0;
1676
1677 for (count = 0; count < table->UvdLevelCount; count++) {
681ed01c 1678 table->UvdLevel[count].MinVoltage = 0;
a23eefa2
RZ
1679 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1680 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1681 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1682 VOLTAGE_SCALE) << VDDC_SHIFT;
0636e0d6
RZ
1683
1684 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1685 vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1686 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1687 else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1688 vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1689 else
1690 vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1691
1692 table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
a23eefa2
RZ
1693 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1694
1695 /* retrieve divider value for VBIOS */
1696 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1697 table->UvdLevel[count].VclkFrequency, &dividers);
1698 PP_ASSERT_WITH_CODE((0 == result),
1699 "can not find divide id for Vclk clock", return result);
1700
1701 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1702
1703 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1704 table->UvdLevel[count].DclkFrequency, &dividers);
1705 PP_ASSERT_WITH_CODE((0 == result),
1706 "can not find divide id for Dclk clock", return result);
1707
1708 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1709
1710 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1711 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1712 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
a23eefa2 1713 }
0636e0d6 1714
a23eefa2
RZ
1715 return result;
1716}
1717
2cc0c0b5 1718static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1719 struct SMU74_Discrete_DpmTable *table)
1720{
1721 int result = 0;
2cc0c0b5 1722 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1723
1724 table->GraphicsBootLevel = 0;
1725 table->MemoryBootLevel = 0;
1726
1727 /* find boot level from dpm table */
1728 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1729 data->vbios_boot_state.sclk_bootup_value,
1730 (uint32_t *)&(table->GraphicsBootLevel));
1731
1732 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1733 data->vbios_boot_state.mclk_bootup_value,
1734 (uint32_t *)&(table->MemoryBootLevel));
1735
1736 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1737 VOLTAGE_SCALE;
1738 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1739 VOLTAGE_SCALE;
1740 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1741 VOLTAGE_SCALE;
1742
1743 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1744 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1745 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1746
1747 return 0;
1748}
1749
1750
2cc0c0b5 1751static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
a23eefa2 1752{
2cc0c0b5 1753 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1754 struct phm_ppt_v1_information *table_info =
1755 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1756 uint8_t count, level;
1757
1758 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1759
1760 for (level = 0; level < count; level++) {
1761 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1762 data->vbios_boot_state.sclk_bootup_value) {
1763 data->smc_state_table.GraphicsBootLevel = level;
1764 break;
1765 }
1766 }
1767
1768 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1769 for (level = 0; level < count; level++) {
1770 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1771 data->vbios_boot_state.mclk_bootup_value) {
1772 data->smc_state_table.MemoryBootLevel = level;
1773 break;
1774 }
1775 }
1776
1777 return 0;
1778}
1779
2cc0c0b5 1780static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
a23eefa2 1781{
270d0136 1782 uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
2cc0c0b5 1783 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
270d0136 1784 uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
a23eefa2
RZ
1785 struct phm_ppt_v1_information *table_info =
1786 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1787 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1788 table_info->vdd_dep_on_sclk;
1789
1790 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1791
1792 /* Read SMU_Eefuse to read and calculate RO and determine
1793 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1794 */
1795 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
270d0136 1796 ixSMU_EFUSE_0 + (67 * 4));
a23eefa2
RZ
1797 efuse &= 0xFF000000;
1798 efuse = efuse >> 24;
a23eefa2 1799
270d0136
RZ
1800 if (hwmgr->chip_id == CHIP_POLARIS10) {
1801 min = 1000;
1802 max = 2300;
1803 } else {
1804 min = 1100;
1805 max = 2100;
1806 }
a23eefa2 1807
270d0136 1808 ro = efuse * (max -min)/255 + min;
a23eefa2 1809
0812a945
RZ
1810 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset
1811 * there is a little difference in calculating
1812 * volt_with_cks with windows */
a23eefa2
RZ
1813 for (i = 0; i < sclk_table->count; i++) {
1814 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1815 sclk_table->entries[i].cks_enable << i;
0812a945
RZ
1816 if (hwmgr->chip_id == CHIP_POLARIS10) {
1817 volt_without_cks = (uint32_t)((2753594000 + (sclk_table->entries[i].clk/100) * 136418 -(ro - 70) * 1000000) / \
1818 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1819 volt_with_cks = (uint32_t)((279720200 + sclk_table->entries[i].clk * 3232 - (ro - 65) * 100000000) / \
1820 (252248000 - sclk_table->entries[i].clk/100 * 115764));
1821 } else {
1822 volt_without_cks = (uint32_t)((2416794800 + (sclk_table->entries[i].clk/100) * 1476925/10 -(ro - 50) * 1000000) / \
1823 (2625416 - (sclk_table->entries[i].clk/100) * 12586807/10000));
1824 volt_with_cks = (uint32_t)((2999656000 + sclk_table->entries[i].clk * 392803/100 - (ro - 44) * 1000000) / \
1825 (3422454 - sclk_table->entries[i].clk/100 * 18886376/10000));
1826 }
270d0136 1827
a23eefa2 1828 if (volt_without_cks >= volt_with_cks)
0812a945
RZ
1829 volt_offset = (uint8_t)CEILING_UCHAR((volt_without_cks - volt_with_cks +
1830 sclk_table->entries[i].cks_voffset) * 100 / 625);
270d0136 1831
a23eefa2
RZ
1832 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1833 }
1834
83a7af6d 1835 data->smc_state_table.LdoRefSel = (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 6;
a23eefa2
RZ
1836 /* Populate CKS Lookup Table */
1837 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1838 stretch_amount2 = 0;
1839 else if (stretch_amount == 3 || stretch_amount == 4)
1840 stretch_amount2 = 1;
1841 else {
1842 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1843 PHM_PlatformCaps_ClockStretcher);
1844 PP_ASSERT_WITH_CODE(false,
1845 "Stretch Amount in PPTable not supported\n",
1846 return -EINVAL);
1847 }
1848
a23eefa2
RZ
1849 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1850 value &= 0xFFFFFFFE;
1851 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1852
1853 return 0;
1854}
1855
1856/**
1857* Populates the SMC VRConfig field in DPM table.
1858*
1859* @param hwmgr the address of the hardware manager
1860* @param table the SMC DPM table structure to be populated
1861* @return always 0
1862*/
2cc0c0b5 1863static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
1864 struct SMU74_Discrete_DpmTable *table)
1865{
2cc0c0b5 1866 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
1867 uint16_t config;
1868
1869 config = VR_MERGED_WITH_VDDC;
1870 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1871
1872 /* Set Vddc Voltage Controller */
2cc0c0b5 1873 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
a23eefa2
RZ
1874 config = VR_SVI2_PLANE_1;
1875 table->VRConfig |= config;
1876 } else {
1877 PP_ASSERT_WITH_CODE(false,
1878 "VDDC should be on SVI2 control in merged mode!",
1879 );
1880 }
1881 /* Set Vddci Voltage Controller */
2cc0c0b5 1882 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
a23eefa2
RZ
1883 config = VR_SVI2_PLANE_2; /* only in merged mode */
1884 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2cc0c0b5 1885 } else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
a23eefa2
RZ
1886 config = VR_SMIO_PATTERN_1;
1887 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1888 } else {
1889 config = VR_STATIC_VOLTAGE;
1890 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1891 }
1892 /* Set Mvdd Voltage Controller */
2cc0c0b5 1893 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
a23eefa2
RZ
1894 config = VR_SVI2_PLANE_2;
1895 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2cc0c0b5 1896 } else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
a23eefa2
RZ
1897 config = VR_SMIO_PATTERN_2;
1898 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1899 } else {
1900 config = VR_STATIC_VOLTAGE;
1901 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1902 }
1903
1904 return 0;
1905}
1906
432c3a3c
RZ
1907
1908int polaris10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1909{
1910 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1911 SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
1912 int result = 0;
1913 struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1914 AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1915 AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1916 uint32_t tmp, i;
1917 struct pp_smumgr *smumgr = hwmgr->smumgr;
1918 struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
1919
1920 struct phm_ppt_v1_information *table_info =
1921 (struct phm_ppt_v1_information *)hwmgr->pptable;
1922 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1923 table_info->vdd_dep_on_sclk;
1924
1925
1926 if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
1927 return result;
1928
1929 result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1930
1931 if (0 == result) {
1932 table->BTCGB_VDROOP_TABLE[0].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1933 table->BTCGB_VDROOP_TABLE[0].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1934 table->BTCGB_VDROOP_TABLE[0].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1935 table->BTCGB_VDROOP_TABLE[1].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1936 table->BTCGB_VDROOP_TABLE[1].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1937 table->BTCGB_VDROOP_TABLE[1].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1938 table->AVFSGB_VDROOP_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1939 table->AVFSGB_VDROOP_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1940 table->AVFSGB_VDROOP_TABLE[0].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1941 table->AVFSGB_VDROOP_TABLE[0].m1_shift = 24;
1942 table->AVFSGB_VDROOP_TABLE[0].m2_shift = 12;
1943 table->AVFSGB_VDROOP_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1944 table->AVFSGB_VDROOP_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1945 table->AVFSGB_VDROOP_TABLE[1].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1946 table->AVFSGB_VDROOP_TABLE[1].m1_shift = 24;
1947 table->AVFSGB_VDROOP_TABLE[1].m2_shift = 12;
1948 table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1949 AVFS_meanNsigma.Aconstant[0] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1950 AVFS_meanNsigma.Aconstant[1] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1951 AVFS_meanNsigma.Aconstant[2] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1952 AVFS_meanNsigma.DC_tol_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1953 AVFS_meanNsigma.Platform_mean = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1954 AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1955 AVFS_meanNsigma.Platform_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1956
1957 for (i = 0; i < NUM_VFT_COLUMNS; i++) {
1958 AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1959 AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t)(sclk_table->entries[i].sclk_offset) / 100);
1960 }
1961
1962 result = polaris10_read_smc_sram_dword(smumgr,
1963 SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsMeanNSigma),
1964 &tmp, data->sram_end);
1965
1966 polaris10_copy_bytes_to_smc(smumgr,
1967 tmp,
1968 (uint8_t *)&AVFS_meanNsigma,
1969 sizeof(AVFS_meanNsigma_t),
1970 data->sram_end);
1971
1972 result = polaris10_read_smc_sram_dword(smumgr,
1973 SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable),
1974 &tmp, data->sram_end);
1975 polaris10_copy_bytes_to_smc(smumgr,
1976 tmp,
1977 (uint8_t *)&AVFS_SclkOffset,
1978 sizeof(AVFS_Sclk_Offset_t),
1979 data->sram_end);
1980
1981 data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1982 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1983 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1984 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1985 data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1986 }
1987 return result;
1988}
1989
1990
a23eefa2
RZ
1991/**
1992* Initializes the SMC table and uploads it
1993*
1994* @param hwmgr the address of the powerplay hardware manager.
1995* @return always 0
1996*/
2cc0c0b5 1997static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
1998{
1999 int result;
2cc0c0b5 2000 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2001 struct phm_ppt_v1_information *table_info =
2002 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2003 struct SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
2cc0c0b5 2004 const struct polaris10_ulv_parm *ulv = &(data->ulv);
a23eefa2
RZ
2005 uint8_t i;
2006 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
e85c7d66 2007 pp_atomctrl_clock_dividers_vi dividers;
a23eefa2 2008
2cc0c0b5 2009 result = polaris10_setup_default_dpm_tables(hwmgr);
a23eefa2
RZ
2010 PP_ASSERT_WITH_CODE(0 == result,
2011 "Failed to setup default DPM tables!", return result);
2012
2cc0c0b5
FC
2013 if (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control)
2014 polaris10_populate_smc_voltage_tables(hwmgr, table);
a23eefa2 2015
681ed01c 2016 table->SystemFlags = 0;
a23eefa2
RZ
2017 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2018 PHM_PlatformCaps_AutomaticDCTransition))
2019 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2020
2021 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2022 PHM_PlatformCaps_StepVddc))
2023 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2024
2025 if (data->is_memory_gddr5)
2026 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2027
2028 if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2cc0c0b5 2029 result = polaris10_populate_ulv_state(hwmgr, table);
a23eefa2
RZ
2030 PP_ASSERT_WITH_CODE(0 == result,
2031 "Failed to initialize ULV state!", return result);
2032 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2cc0c0b5 2033 ixCG_ULV_PARAMETER, PPPOLARIS10_CGULVPARAMETER_DFLT);
a23eefa2
RZ
2034 }
2035
2cc0c0b5 2036 result = polaris10_populate_smc_link_level(hwmgr, table);
a23eefa2
RZ
2037 PP_ASSERT_WITH_CODE(0 == result,
2038 "Failed to initialize Link Level!", return result);
2039
2cc0c0b5 2040 result = polaris10_populate_all_graphic_levels(hwmgr);
a23eefa2
RZ
2041 PP_ASSERT_WITH_CODE(0 == result,
2042 "Failed to initialize Graphics Level!", return result);
2043
2cc0c0b5 2044 result = polaris10_populate_all_memory_levels(hwmgr);
a23eefa2
RZ
2045 PP_ASSERT_WITH_CODE(0 == result,
2046 "Failed to initialize Memory Level!", return result);
2047
2cc0c0b5 2048 result = polaris10_populate_smc_acpi_level(hwmgr, table);
a23eefa2
RZ
2049 PP_ASSERT_WITH_CODE(0 == result,
2050 "Failed to initialize ACPI Level!", return result);
2051
2cc0c0b5 2052 result = polaris10_populate_smc_vce_level(hwmgr, table);
a23eefa2
RZ
2053 PP_ASSERT_WITH_CODE(0 == result,
2054 "Failed to initialize VCE Level!", return result);
2055
2cc0c0b5 2056 result = polaris10_populate_smc_samu_level(hwmgr, table);
a23eefa2
RZ
2057 PP_ASSERT_WITH_CODE(0 == result,
2058 "Failed to initialize SAMU Level!", return result);
2059
2060 /* Since only the initial state is completely set up at this point
2061 * (the other states are just copies of the boot state) we only
2062 * need to populate the ARB settings for the initial state.
2063 */
2cc0c0b5 2064 result = polaris10_program_memory_timing_parameters(hwmgr);
a23eefa2
RZ
2065 PP_ASSERT_WITH_CODE(0 == result,
2066 "Failed to Write ARB settings for the initial state.", return result);
2067
2cc0c0b5 2068 result = polaris10_populate_smc_uvd_level(hwmgr, table);
a23eefa2
RZ
2069 PP_ASSERT_WITH_CODE(0 == result,
2070 "Failed to initialize UVD Level!", return result);
2071
2cc0c0b5 2072 result = polaris10_populate_smc_boot_level(hwmgr, table);
a23eefa2
RZ
2073 PP_ASSERT_WITH_CODE(0 == result,
2074 "Failed to initialize Boot Level!", return result);
2075
2cc0c0b5 2076 result = polaris10_populate_smc_initailial_state(hwmgr);
a23eefa2
RZ
2077 PP_ASSERT_WITH_CODE(0 == result,
2078 "Failed to initialize Boot State!", return result);
2079
2cc0c0b5 2080 result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr);
a23eefa2
RZ
2081 PP_ASSERT_WITH_CODE(0 == result,
2082 "Failed to populate BAPM Parameters!", return result);
2083
2084 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2085 PHM_PlatformCaps_ClockStretcher)) {
2cc0c0b5 2086 result = polaris10_populate_clock_stretcher_data_table(hwmgr);
a23eefa2
RZ
2087 PP_ASSERT_WITH_CODE(0 == result,
2088 "Failed to populate Clock Stretcher Data Table!",
2089 return result);
2090 }
432c3a3c
RZ
2091
2092 result = polaris10_populate_avfs_parameters(hwmgr);
2093 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate AVFS Parameters!", return result;);
2094
9ab9cf05 2095 table->CurrSclkPllRange = 0xff;
a23eefa2
RZ
2096 table->GraphicsVoltageChangeEnable = 1;
2097 table->GraphicsThermThrottleEnable = 1;
2098 table->GraphicsInterval = 1;
2099 table->VoltageInterval = 1;
2100 table->ThermalInterval = 1;
2101 table->TemperatureLimitHigh =
2102 table_info->cac_dtp_table->usTargetOperatingTemp *
2cc0c0b5 2103 POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
a23eefa2
RZ
2104 table->TemperatureLimitLow =
2105 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2cc0c0b5 2106 POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
a23eefa2
RZ
2107 table->MemoryVoltageChangeEnable = 1;
2108 table->MemoryInterval = 1;
2109 table->VoltageResponseTime = 0;
2110 table->PhaseResponseTime = 0;
2111 table->MemoryThermThrottleEnable = 1;
2112 table->PCIeBootLinkLevel = 0;
2113 table->PCIeGenInterval = 1;
681ed01c 2114 table->VRConfig = 0;
a23eefa2 2115
2cc0c0b5 2116 result = polaris10_populate_vr_config(hwmgr, table);
a23eefa2
RZ
2117 PP_ASSERT_WITH_CODE(0 == result,
2118 "Failed to populate VRConfig setting!", return result);
2119
2120 table->ThermGpio = 17;
2121 table->SclkStepSize = 0x4000;
2122
2123 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2124 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2125 } else {
2cc0c0b5 2126 table->VRHotGpio = POLARIS10_UNUSED_GPIO_PIN;
a23eefa2
RZ
2127 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2128 PHM_PlatformCaps_RegulatorHot);
2129 }
2130
2131 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2132 &gpio_pin)) {
2133 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2134 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2135 PHM_PlatformCaps_AutomaticDCTransition);
2136 } else {
2cc0c0b5 2137 table->AcDcGpio = POLARIS10_UNUSED_GPIO_PIN;
a23eefa2
RZ
2138 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2139 PHM_PlatformCaps_AutomaticDCTransition);
2140 }
2141
2142 /* Thermal Output GPIO */
2143 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2144 &gpio_pin)) {
2145 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2146 PHM_PlatformCaps_ThermalOutGPIO);
2147
2148 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2149
2150 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2151 * since VBIOS will program this register to set 'inactive state',
2152 * driver can then determine 'active state' from this and
2153 * program SMU with correct polarity
2154 */
2155 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)
2156 & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2157 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2158
2159 /* if required, combine VRHot/PCC with thermal out GPIO */
2160 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)
2161 && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal))
2162 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2163 } else {
2164 table->ThermOutGpio = 17;
2165 table->ThermOutPolarity = 1;
2166 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2167 }
2168
e85c7d66 2169 /* Populate BIF_SCLK levels into SMC DPM table */
2170 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) {
2171 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, data->bif_sclk_table[i], &dividers);
2172 PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result);
2173
2174 if (i == 0)
2175 table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
2176 else
2177 table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
2178 }
2179
a23eefa2
RZ
2180 for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++)
2181 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2182
2183 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2184 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2185 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2186 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2187 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
9ab9cf05 2188 CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
a23eefa2
RZ
2189 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2190 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2191 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2192 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2193
2194 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2cc0c0b5 2195 result = polaris10_copy_bytes_to_smc(hwmgr->smumgr,
a23eefa2
RZ
2196 data->dpm_table_start +
2197 offsetof(SMU74_Discrete_DpmTable, SystemFlags),
2198 (uint8_t *)&(table->SystemFlags),
2199 sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController),
2200 data->sram_end);
2201 PP_ASSERT_WITH_CODE(0 == result,
2202 "Failed to upload dpm data to SMC memory!", return result);
2203
2204 return 0;
2205}
2206
2207/**
2208* Initialize the ARB DRAM timing table's index field.
2209*
2210* @param hwmgr the address of the powerplay hardware manager.
2211* @return always 0
2212*/
2cc0c0b5 2213static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr)
a23eefa2 2214{
2cc0c0b5 2215 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2216 uint32_t tmp;
2217 int result;
2218
2219 /* This is a read-modify-write on the first byte of the ARB table.
2220 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
2221 * is the field 'current'.
2222 * This solution is ugly, but we never write the whole table only
2223 * individual fields in it.
2224 * In reality this field should not be in that structure
2225 * but in a soft register.
2226 */
2cc0c0b5 2227 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
2228 data->arb_table_start, &tmp, data->sram_end);
2229
2230 if (result)
2231 return result;
2232
2233 tmp &= 0x00FFFFFF;
2234 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
2235
2cc0c0b5 2236 return polaris10_write_smc_sram_dword(hwmgr->smumgr,
a23eefa2
RZ
2237 data->arb_table_start, tmp, data->sram_end);
2238}
2239
2cc0c0b5 2240static int polaris10_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2241{
2242 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2243 PHM_PlatformCaps_RegulatorHot))
2244 return smum_send_msg_to_smc(hwmgr->smumgr,
2245 PPSMC_MSG_EnableVRHotGPIOInterrupt);
2246
2247 return 0;
2248}
2249
2cc0c0b5 2250static int polaris10_enable_sclk_control(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2251{
2252 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
2253 SCLK_PWRMGT_OFF, 0);
2254 return 0;
2255}
2256
2cc0c0b5 2257static int polaris10_enable_ulv(struct pp_hwmgr *hwmgr)
a23eefa2 2258{
2cc0c0b5
FC
2259 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2260 struct polaris10_ulv_parm *ulv = &(data->ulv);
a23eefa2
RZ
2261
2262 if (ulv->ulv_supported)
2263 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
2264
2265 return 0;
2266}
2267
2cc0c0b5 2268static int polaris10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2269{
2270 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2271 PHM_PlatformCaps_SclkDeepSleep)) {
2272 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
2273 PP_ASSERT_WITH_CODE(false,
2274 "Attempt to enable Master Deep Sleep switch failed!",
2275 return -1);
2276 } else {
2277 if (smum_send_msg_to_smc(hwmgr->smumgr,
2278 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
2279 PP_ASSERT_WITH_CODE(false,
2280 "Attempt to disable Master Deep Sleep switch failed!",
2281 return -1);
2282 }
2283 }
2284
2285 return 0;
2286}
2287
2cc0c0b5 2288static int polaris10_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
a23eefa2 2289{
2cc0c0b5 2290 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
40787ef2
RZ
2291 uint32_t soft_register_value = 0;
2292 uint32_t handshake_disables_offset = data->soft_regs_start
2293 + offsetof(SMU74_SoftRegisters, HandshakeDisables);
a23eefa2
RZ
2294
2295 /* enable SCLK dpm */
2296 if (!data->sclk_dpm_key_disabled)
2297 PP_ASSERT_WITH_CODE(
2298 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
2299 "Failed to enable SCLK DPM during DPM Start Function!",
2300 return -1);
2301
2302 /* enable MCLK dpm */
2303 if (0 == data->mclk_dpm_key_disabled) {
40787ef2
RZ
2304/* Disable UVD - SMU handshake for MCLK. */
2305 soft_register_value = cgs_read_ind_register(hwmgr->device,
2306 CGS_IND_REG__SMC, handshake_disables_offset);
2307 soft_register_value |= SMU7_UVD_MCLK_HANDSHAKE_DISABLE;
2308 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2309 handshake_disables_offset, soft_register_value);
a23eefa2
RZ
2310
2311 PP_ASSERT_WITH_CODE(
2312 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2313 PPSMC_MSG_MCLKDPM_Enable)),
2314 "Failed to enable MCLK DPM during DPM Start Function!",
2315 return -1);
2316
a23eefa2
RZ
2317 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
2318
2319 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
2320 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
2321 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
2322 udelay(10);
2323 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
2324 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
2325 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
2326 }
2327
2328 return 0;
2329}
2330
2cc0c0b5 2331static int polaris10_start_dpm(struct pp_hwmgr *hwmgr)
a23eefa2 2332{
2cc0c0b5 2333 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2334
2335 /*enable general power management */
2336
2337 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
2338 GLOBAL_PWRMGT_EN, 1);
2339
2340 /* enable sclk deep sleep */
2341
2342 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
2343 DYNAMIC_PM_EN, 1);
2344
2345 /* prepare for PCIE DPM */
2346
2347 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2348 data->soft_regs_start + offsetof(SMU74_SoftRegisters,
2349 VoltageChangeTimeout), 0x1000);
2350 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
2351 SWRST_COMMAND_1, RESETLC, 0x0);
e85c7d66 2352/*
a23eefa2
RZ
2353 PP_ASSERT_WITH_CODE(
2354 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2355 PPSMC_MSG_Voltage_Cntl_Enable)),
2356 "Failed to enable voltage DPM during DPM Start Function!",
2357 return -1);
e85c7d66 2358*/
a23eefa2 2359
2cc0c0b5 2360 if (polaris10_enable_sclk_mclk_dpm(hwmgr)) {
a23eefa2
RZ
2361 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
2362 return -1;
2363 }
2364
2365 /* enable PCIE dpm */
2366 if (0 == data->pcie_dpm_key_disabled) {
2367 PP_ASSERT_WITH_CODE(
2368 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2369 PPSMC_MSG_PCIeDPM_Enable)),
2370 "Failed to enable pcie DPM during DPM Start Function!",
2371 return -1);
2372 }
2373
c8c67448
EH
2374 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2375 PHM_PlatformCaps_Falcon_QuickTransition)) {
2376 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr,
2377 PPSMC_MSG_EnableACDCGPIOInterrupt)),
2378 "Failed to enable AC DC GPIO Interrupt!",
2379 );
2380 }
a23eefa2
RZ
2381
2382 return 0;
2383}
2384
2cc0c0b5 2385static void polaris10_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
a23eefa2
RZ
2386{
2387 bool protection;
2388 enum DPM_EVENT_SRC src;
2389
2390 switch (sources) {
2391 default:
2392 printk(KERN_ERR "Unknown throttling event sources.");
2393 /* fall through */
2394 case 0:
2395 protection = false;
2396 /* src is unused */
2397 break;
2398 case (1 << PHM_AutoThrottleSource_Thermal):
2399 protection = true;
2400 src = DPM_EVENT_SRC_DIGITAL;
2401 break;
2402 case (1 << PHM_AutoThrottleSource_External):
2403 protection = true;
2404 src = DPM_EVENT_SRC_EXTERNAL;
2405 break;
2406 case (1 << PHM_AutoThrottleSource_External) |
2407 (1 << PHM_AutoThrottleSource_Thermal):
2408 protection = true;
2409 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
2410 break;
2411 }
2412 /* Order matters - don't enable thermal protection for the wrong source. */
2413 if (protection) {
2414 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
2415 DPM_EVENT_SRC, src);
2416 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
2417 THERMAL_PROTECTION_DIS,
f0911de8 2418 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
a23eefa2
RZ
2419 PHM_PlatformCaps_ThermalController));
2420 } else
2421 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
2422 THERMAL_PROTECTION_DIS, 1);
2423}
2424
2cc0c0b5 2425static int polaris10_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
2426 PHM_AutoThrottleSource source)
2427{
2cc0c0b5 2428 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2429
2430 if (!(data->active_auto_throttle_sources & (1 << source))) {
2431 data->active_auto_throttle_sources |= 1 << source;
2cc0c0b5 2432 polaris10_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
a23eefa2
RZ
2433 }
2434 return 0;
2435}
2436
2cc0c0b5 2437static int polaris10_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
a23eefa2 2438{
2cc0c0b5 2439 return polaris10_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
a23eefa2
RZ
2440}
2441
2cc0c0b5 2442int polaris10_pcie_performance_request(struct pp_hwmgr *hwmgr)
a23eefa2 2443{
2cc0c0b5 2444 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2445 data->pcie_performance_request = true;
2446
2447 return 0;
2448}
2449
2cc0c0b5 2450int polaris10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2451{
2452 int tmp_result, result = 0;
2cc0c0b5 2453 tmp_result = (!polaris10_is_dpm_running(hwmgr)) ? 0 : -1;
a23eefa2
RZ
2454 PP_ASSERT_WITH_CODE(result == 0,
2455 "DPM is already running right now, no need to enable DPM!",
2456 return 0);
2457
2cc0c0b5
FC
2458 if (polaris10_voltage_control(hwmgr)) {
2459 tmp_result = polaris10_enable_voltage_control(hwmgr);
a23eefa2
RZ
2460 PP_ASSERT_WITH_CODE(tmp_result == 0,
2461 "Failed to enable voltage control!",
2462 result = tmp_result);
2463
2cc0c0b5 2464 tmp_result = polaris10_construct_voltage_tables(hwmgr);
a23eefa2
RZ
2465 PP_ASSERT_WITH_CODE((0 == tmp_result),
2466 "Failed to contruct voltage tables!",
2467 result = tmp_result);
2468 }
2469
2470 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2471 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
2472 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2473 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
2474
2475 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2476 PHM_PlatformCaps_ThermalController))
2477 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2478 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
2479
2cc0c0b5 2480 tmp_result = polaris10_program_static_screen_threshold_parameters(hwmgr);
a23eefa2
RZ
2481 PP_ASSERT_WITH_CODE((0 == tmp_result),
2482 "Failed to program static screen threshold parameters!",
2483 result = tmp_result);
2484
2cc0c0b5 2485 tmp_result = polaris10_enable_display_gap(hwmgr);
a23eefa2
RZ
2486 PP_ASSERT_WITH_CODE((0 == tmp_result),
2487 "Failed to enable display gap!", result = tmp_result);
2488
2cc0c0b5 2489 tmp_result = polaris10_program_voting_clients(hwmgr);
a23eefa2
RZ
2490 PP_ASSERT_WITH_CODE((0 == tmp_result),
2491 "Failed to program voting clients!", result = tmp_result);
2492
2cc0c0b5 2493 tmp_result = polaris10_process_firmware_header(hwmgr);
a23eefa2
RZ
2494 PP_ASSERT_WITH_CODE((0 == tmp_result),
2495 "Failed to process firmware header!", result = tmp_result);
2496
2cc0c0b5 2497 tmp_result = polaris10_initial_switch_from_arbf0_to_f1(hwmgr);
a23eefa2
RZ
2498 PP_ASSERT_WITH_CODE((0 == tmp_result),
2499 "Failed to initialize switch from ArbF0 to F1!",
2500 result = tmp_result);
2501
2cc0c0b5 2502 tmp_result = polaris10_init_smc_table(hwmgr);
a23eefa2
RZ
2503 PP_ASSERT_WITH_CODE((0 == tmp_result),
2504 "Failed to initialize SMC table!", result = tmp_result);
2505
2cc0c0b5 2506 tmp_result = polaris10_init_arb_table_index(hwmgr);
a23eefa2
RZ
2507 PP_ASSERT_WITH_CODE((0 == tmp_result),
2508 "Failed to initialize ARB table index!", result = tmp_result);
2509
2cc0c0b5 2510 tmp_result = polaris10_populate_pm_fuses(hwmgr);
a23eefa2
RZ
2511 PP_ASSERT_WITH_CODE((0 == tmp_result),
2512 "Failed to populate PM fuses!", result = tmp_result);
2513
2cc0c0b5 2514 tmp_result = polaris10_enable_vrhot_gpio_interrupt(hwmgr);
a23eefa2
RZ
2515 PP_ASSERT_WITH_CODE((0 == tmp_result),
2516 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
2517
83a7af6d
RZ
2518 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay);
2519
2cc0c0b5 2520 tmp_result = polaris10_enable_sclk_control(hwmgr);
a23eefa2
RZ
2521 PP_ASSERT_WITH_CODE((0 == tmp_result),
2522 "Failed to enable SCLK control!", result = tmp_result);
2523
2cc0c0b5 2524 tmp_result = polaris10_enable_smc_voltage_controller(hwmgr);
e85c7d66 2525 PP_ASSERT_WITH_CODE((0 == tmp_result),
2526 "Failed to enable voltage control!", result = tmp_result);
2527
2cc0c0b5 2528 tmp_result = polaris10_enable_ulv(hwmgr);
a23eefa2
RZ
2529 PP_ASSERT_WITH_CODE((0 == tmp_result),
2530 "Failed to enable ULV!", result = tmp_result);
2531
2cc0c0b5 2532 tmp_result = polaris10_enable_deep_sleep_master_switch(hwmgr);
a23eefa2
RZ
2533 PP_ASSERT_WITH_CODE((0 == tmp_result),
2534 "Failed to enable deep sleep master switch!", result = tmp_result);
2535
2cc0c0b5 2536 tmp_result = polaris10_start_dpm(hwmgr);
a23eefa2
RZ
2537 PP_ASSERT_WITH_CODE((0 == tmp_result),
2538 "Failed to start DPM!", result = tmp_result);
2539
2cc0c0b5 2540 tmp_result = polaris10_enable_smc_cac(hwmgr);
a23eefa2
RZ
2541 PP_ASSERT_WITH_CODE((0 == tmp_result),
2542 "Failed to enable SMC CAC!", result = tmp_result);
2543
2cc0c0b5 2544 tmp_result = polaris10_enable_power_containment(hwmgr);
a23eefa2
RZ
2545 PP_ASSERT_WITH_CODE((0 == tmp_result),
2546 "Failed to enable power containment!", result = tmp_result);
2547
2cc0c0b5 2548 tmp_result = polaris10_power_control_set_level(hwmgr);
a23eefa2
RZ
2549 PP_ASSERT_WITH_CODE((0 == tmp_result),
2550 "Failed to power control set level!", result = tmp_result);
2551
2cc0c0b5 2552 tmp_result = polaris10_enable_thermal_auto_throttle(hwmgr);
a23eefa2
RZ
2553 PP_ASSERT_WITH_CODE((0 == tmp_result),
2554 "Failed to enable thermal auto throttle!", result = tmp_result);
2555
2cc0c0b5 2556 tmp_result = polaris10_pcie_performance_request(hwmgr);
a23eefa2 2557 PP_ASSERT_WITH_CODE((0 == tmp_result),
5f88567c 2558 "pcie performance request failed!", result = tmp_result);
a23eefa2
RZ
2559
2560 return result;
2561}
2562
2cc0c0b5 2563int polaris10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2564{
2565
2566 return 0;
2567}
2568
2cc0c0b5 2569int polaris10_reset_asic_tasks(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2570{
2571
2572 return 0;
2573}
2574
2cc0c0b5 2575int polaris10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
a23eefa2 2576{
a72d5604
EH
2577 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2578
2579 if (data->soft_pp_table) {
2580 kfree(data->soft_pp_table);
2581 data->soft_pp_table = NULL;
2582 }
2583
a23eefa2
RZ
2584 return phm_hwmgr_backend_fini(hwmgr);
2585}
2586
2cc0c0b5 2587int polaris10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
a23eefa2 2588{
2cc0c0b5 2589 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2590
2591 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2592 PHM_PlatformCaps_SclkDeepSleep);
2593
f0911de8
RZ
2594 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2595 PHM_PlatformCaps_DynamicPatchPowerState);
2596
2cc0c0b5 2597 if (data->mvdd_control == POLARIS10_VOLTAGE_CONTROL_NONE)
a23eefa2
RZ
2598 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2599 PHM_PlatformCaps_EnableMVDDControl);
2600
2cc0c0b5 2601 if (data->vddci_control == POLARIS10_VOLTAGE_CONTROL_NONE)
a23eefa2
RZ
2602 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2603 PHM_PlatformCaps_ControlVDDCI);
2604
2605 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2606 PHM_PlatformCaps_TablelessHardwareInterface);
2607
2608 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2609 PHM_PlatformCaps_EnableSMU7ThermalManagement);
2610
2611 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2612 PHM_PlatformCaps_DynamicPowerManagement);
2613
f0911de8
RZ
2614 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2615 PHM_PlatformCaps_UnTabledHardwareInterface);
2616
a23eefa2
RZ
2617 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2618 PHM_PlatformCaps_TablelessHardwareInterface);
2619
2620 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2621 PHM_PlatformCaps_SMC);
2622
2623 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2624 PHM_PlatformCaps_NonABMSupportInPPLib);
2625
2626 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2627 PHM_PlatformCaps_DynamicUVDState);
2628
a23eefa2 2629 /* power tune caps Assume disabled */
a23eefa2
RZ
2630 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2631 PHM_PlatformCaps_SQRamping);
2632 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2633 PHM_PlatformCaps_DBRamping);
2634 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2635 PHM_PlatformCaps_TDRamping);
2636 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2637 PHM_PlatformCaps_TCPRamping);
2638
f0911de8
RZ
2639 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2640 PHM_PlatformCaps_PowerContainment);
2641 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2642 PHM_PlatformCaps_CAC);
2643
2644 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2645 PHM_PlatformCaps_RegulatorHot);
2646
2647 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2648 PHM_PlatformCaps_AutomaticDCTransition);
2649
2650 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2651 PHM_PlatformCaps_ODFuzzyFanControlSupport);
2652
2653 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2654 PHM_PlatformCaps_FanSpeedInTableIsRPM);
919e334d 2655
5de95e55
RZ
2656 if (hwmgr->chip_id == CHIP_POLARIS11)
2657 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2658 PHM_PlatformCaps_SPLLShutdownSupport);
a23eefa2
RZ
2659 return 0;
2660}
2661
2cc0c0b5 2662static void polaris10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
a23eefa2 2663{
2cc0c0b5 2664 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2 2665
2cc0c0b5 2666 polaris10_initialize_power_tune_defaults(hwmgr);
a23eefa2
RZ
2667
2668 data->pcie_gen_performance.max = PP_PCIEGen1;
2669 data->pcie_gen_performance.min = PP_PCIEGen3;
2670 data->pcie_gen_power_saving.max = PP_PCIEGen1;
2671 data->pcie_gen_power_saving.min = PP_PCIEGen3;
2672 data->pcie_lane_performance.max = 0;
2673 data->pcie_lane_performance.min = 16;
2674 data->pcie_lane_power_saving.max = 0;
2675 data->pcie_lane_power_saving.min = 16;
2676}
2677
2678/**
2679* Get Leakage VDDC based on leakage ID.
2680*
2681* @param hwmgr the address of the powerplay hardware manager.
2682* @return always 0
2683*/
2cc0c0b5 2684static int polaris10_get_evv_voltages(struct pp_hwmgr *hwmgr)
a23eefa2 2685{
2cc0c0b5 2686 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2 2687 uint16_t vv_id;
e5eb3717 2688 uint32_t vddc = 0;
a23eefa2
RZ
2689 uint16_t i, j;
2690 uint32_t sclk = 0;
2691 struct phm_ppt_v1_information *table_info =
2692 (struct phm_ppt_v1_information *)hwmgr->pptable;
2693 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2694 table_info->vdd_dep_on_sclk;
2695 int result;
2696
2cc0c0b5 2697 for (i = 0; i < POLARIS10_MAX_LEAKAGE_COUNT; i++) {
a23eefa2
RZ
2698 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2699 if (!phm_get_sclk_for_voltage_evv(hwmgr,
2700 table_info->vddc_lookup_table, vv_id, &sclk)) {
2701 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2702 PHM_PlatformCaps_ClockStretcher)) {
2703 for (j = 1; j < sclk_table->count; j++) {
2704 if (sclk_table->entries[j].clk == sclk &&
2705 sclk_table->entries[j].cks_enable == 0) {
2706 sclk += 5000;
2707 break;
2708 }
2709 }
2710 }
2711
2712
2713 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
2714 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
2715 "Error retrieving EVV voltage value!",
2716 continue);
2717
2718
e5eb3717
RZ
2719 /* need to make sure vddc is less than 2v or else, it could burn the ASIC.
2720 * real voltage level in unit of 0.01mv */
2721 PP_ASSERT_WITH_CODE((vddc < 200000 && vddc != 0),
a23eefa2
RZ
2722 "Invalid VDDC value", result = -EINVAL;);
2723
2724 /* the voltage should not be zero nor equal to leakage ID */
2725 if (vddc != 0 && vddc != vv_id) {
2726 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
2727 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2728 data->vddc_leakage.count++;
2729 }
2730 }
2731 }
2732
2733 return 0;
2734}
2735
2736/**
2737 * Change virtual leakage voltage to actual value.
2738 *
2739 * @param hwmgr the address of the powerplay hardware manager.
2740 * @param pointer to changing voltage
2741 * @param pointer to leakage table
2742 */
2cc0c0b5
FC
2743static void polaris10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2744 uint16_t *voltage, struct polaris10_leakage_voltage *leakage_table)
a23eefa2
RZ
2745{
2746 uint32_t index;
2747
2748 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2749 for (index = 0; index < leakage_table->count; index++) {
2750 /* if this voltage matches a leakage voltage ID */
2751 /* patch with actual leakage voltage */
2752 if (leakage_table->leakage_id[index] == *voltage) {
2753 *voltage = leakage_table->actual_voltage[index];
2754 break;
2755 }
2756 }
2757
2758 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2759 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
2760}
2761
2762/**
2763* Patch voltage lookup table by EVV leakages.
2764*
2765* @param hwmgr the address of the powerplay hardware manager.
2766* @param pointer to voltage lookup table
2767* @param pointer to leakage table
2768* @return always 0
2769*/
2cc0c0b5 2770static int polaris10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
a23eefa2 2771 phm_ppt_v1_voltage_lookup_table *lookup_table,
2cc0c0b5 2772 struct polaris10_leakage_voltage *leakage_table)
a23eefa2
RZ
2773{
2774 uint32_t i;
2775
2776 for (i = 0; i < lookup_table->count; i++)
2cc0c0b5 2777 polaris10_patch_with_vdd_leakage(hwmgr,
a23eefa2
RZ
2778 &lookup_table->entries[i].us_vdd, leakage_table);
2779
2780 return 0;
2781}
2782
2cc0c0b5
FC
2783static int polaris10_patch_clock_voltage_limits_with_vddc_leakage(
2784 struct pp_hwmgr *hwmgr, struct polaris10_leakage_voltage *leakage_table,
a23eefa2
RZ
2785 uint16_t *vddc)
2786{
2787 struct phm_ppt_v1_information *table_info =
2788 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2cc0c0b5 2789 polaris10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
a23eefa2
RZ
2790 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2791 table_info->max_clock_voltage_on_dc.vddc;
2792 return 0;
2793}
2794
2cc0c0b5 2795static int polaris10_patch_voltage_dependency_tables_with_lookup_table(
a23eefa2
RZ
2796 struct pp_hwmgr *hwmgr)
2797{
2798 uint8_t entryId;
2799 uint8_t voltageId;
2800 struct phm_ppt_v1_information *table_info =
2801 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2802
2803 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2804 table_info->vdd_dep_on_sclk;
2805 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2806 table_info->vdd_dep_on_mclk;
2807 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2808 table_info->mm_dep_table;
2809
2810 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
2811 voltageId = sclk_table->entries[entryId].vddInd;
2812 sclk_table->entries[entryId].vddc =
2813 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
2814 }
2815
2816 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
2817 voltageId = mclk_table->entries[entryId].vddInd;
2818 mclk_table->entries[entryId].vddc =
2819 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
2820 }
2821
2822 for (entryId = 0; entryId < mm_table->count; ++entryId) {
2823 voltageId = mm_table->entries[entryId].vddcInd;
2824 mm_table->entries[entryId].vddc =
2825 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
2826 }
2827
2828 return 0;
2829
2830}
2831
2cc0c0b5 2832static int polaris10_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2833{
2834 /* Need to determine if we need calculated voltage. */
2835 return 0;
2836}
2837
2cc0c0b5 2838static int polaris10_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2839{
2840 /* Need to determine if we need calculated voltage from mm table. */
2841 return 0;
2842}
2843
2cc0c0b5 2844static int polaris10_sort_lookup_table(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
2845 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2846{
2847 uint32_t table_size, i, j;
2848 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
2849 table_size = lookup_table->count;
2850
2851 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2852 "Lookup table is empty", return -EINVAL);
2853
2854 /* Sorting voltages */
2855 for (i = 0; i < table_size - 1; i++) {
2856 for (j = i + 1; j > 0; j--) {
2857 if (lookup_table->entries[j].us_vdd <
2858 lookup_table->entries[j - 1].us_vdd) {
2859 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
2860 lookup_table->entries[j - 1] = lookup_table->entries[j];
2861 lookup_table->entries[j] = tmp_voltage_lookup_record;
2862 }
2863 }
2864 }
2865
2866 return 0;
2867}
2868
2cc0c0b5 2869static int polaris10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2870{
2871 int result = 0;
2872 int tmp_result;
2cc0c0b5 2873 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2874 struct phm_ppt_v1_information *table_info =
2875 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2876
2cc0c0b5 2877 tmp_result = polaris10_patch_lookup_table_with_leakage(hwmgr,
a23eefa2
RZ
2878 table_info->vddc_lookup_table, &(data->vddc_leakage));
2879 if (tmp_result)
2880 result = tmp_result;
2881
2cc0c0b5 2882 tmp_result = polaris10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
a23eefa2
RZ
2883 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2884 if (tmp_result)
2885 result = tmp_result;
2886
2cc0c0b5 2887 tmp_result = polaris10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
a23eefa2
RZ
2888 if (tmp_result)
2889 result = tmp_result;
2890
2cc0c0b5 2891 tmp_result = polaris10_calc_voltage_dependency_tables(hwmgr);
a23eefa2
RZ
2892 if (tmp_result)
2893 result = tmp_result;
2894
2cc0c0b5 2895 tmp_result = polaris10_calc_mm_voltage_dependency_table(hwmgr);
a23eefa2
RZ
2896 if (tmp_result)
2897 result = tmp_result;
2898
2cc0c0b5 2899 tmp_result = polaris10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
a23eefa2
RZ
2900 if (tmp_result)
2901 result = tmp_result;
2902
2903 return result;
2904}
2905
2cc0c0b5 2906static int polaris10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
2907{
2908 struct phm_ppt_v1_information *table_info =
2909 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2910
2911 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2912 table_info->vdd_dep_on_sclk;
2913 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2914 table_info->vdd_dep_on_mclk;
2915
2916 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
edf600da 2917 "VDD dependency on SCLK table is missing. \
a23eefa2
RZ
2918 This table is mandatory", return -EINVAL);
2919 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
edf600da 2920 "VDD dependency on SCLK table has to have is missing. \
a23eefa2
RZ
2921 This table is mandatory", return -EINVAL);
2922
2923 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
edf600da 2924 "VDD dependency on MCLK table is missing. \
a23eefa2
RZ
2925 This table is mandatory", return -EINVAL);
2926 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2927 "VDD dependency on MCLK table has to have is missing. \
2928 This table is mandatory", return -EINVAL);
2929
2930 table_info->max_clock_voltage_on_ac.sclk =
2931 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2932 table_info->max_clock_voltage_on_ac.mclk =
2933 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2934 table_info->max_clock_voltage_on_ac.vddc =
2935 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2936 table_info->max_clock_voltage_on_ac.vddci =
2937 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2938
f0911de8
RZ
2939 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2940 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2941 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2942 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =table_info->max_clock_voltage_on_ac.vddci;
2943
a23eefa2
RZ
2944 return 0;
2945}
2946
3a8bd717
RZ
2947int polaris10_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2948{
2949 struct phm_ppt_v1_information *table_info =
2950 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2951 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
2952 table_info->vdd_dep_on_mclk;
2953 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
2954 table_info->vddc_lookup_table;
2955 uint32_t i;
2956
2957 if (hwmgr->chip_id == CHIP_POLARIS10 && hwmgr->hw_revision == 0xC7) {
2958 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2959 return 0;
2960
2961 for (i = 0; i < lookup_table->count; i++) {
2962 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2963 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2964 return 0;
2965 }
2966 }
2967 }
2968 return 0;
2969}
2970
2971
2cc0c0b5 2972int polaris10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
a23eefa2 2973{
2cc0c0b5 2974 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
2975 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2976 uint32_t temp_reg;
2977 int result;
f0911de8
RZ
2978 struct phm_ppt_v1_information *table_info =
2979 (struct phm_ppt_v1_information *)(hwmgr->pptable);
a23eefa2
RZ
2980
2981 data->dll_default_on = false;
2982 data->sram_end = SMC_RAM_END;
7d367c2a 2983 data->mclk_dpm0_activity_target = 0xa;
a23eefa2 2984 data->disable_dpm_mask = 0xFF;
2cc0c0b5
FC
2985 data->static_screen_threshold = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
2986 data->static_screen_threshold_unit = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
2987 data->activity_target[0] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2988 data->activity_target[1] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2989 data->activity_target[2] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2990 data->activity_target[3] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2991 data->activity_target[4] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2992 data->activity_target[5] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2993 data->activity_target[6] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2994 data->activity_target[7] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2995
2996 data->voting_rights_clients0 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT0;
2997 data->voting_rights_clients1 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT1;
2998 data->voting_rights_clients2 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT2;
2999 data->voting_rights_clients3 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT3;
3000 data->voting_rights_clients4 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT4;
3001 data->voting_rights_clients5 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT5;
3002 data->voting_rights_clients6 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT6;
3003 data->voting_rights_clients7 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT7;
a23eefa2
RZ
3004
3005 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
3006
2cc0c0b5 3007 data->mclk_activity_target = PPPOLARIS10_MCLK_TARGETACTIVITY_DFLT;
a23eefa2
RZ
3008
3009 /* need to set voltage control types before EVV patching */
2cc0c0b5
FC
3010 data->voltage_control = POLARIS10_VOLTAGE_CONTROL_NONE;
3011 data->vddci_control = POLARIS10_VOLTAGE_CONTROL_NONE;
3012 data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_NONE;
a23eefa2 3013
919e334d
RZ
3014 data->enable_tdc_limit_feature = true;
3015 data->enable_pkg_pwr_tracking_feature = true;
a2fb4934 3016 data->force_pcie_gen = PP_PCIEGenInvalid;
9a3c1b34 3017 data->mclk_stutter_mode_threshold = 40000;
919e334d 3018
a23eefa2
RZ
3019 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3020 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
2cc0c0b5 3021 data->voltage_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
a23eefa2 3022
a23eefa2
RZ
3023 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3024 PHM_PlatformCaps_EnableMVDDControl)) {
3025 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3026 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
2cc0c0b5 3027 data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
a23eefa2
RZ
3028 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3029 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
2cc0c0b5 3030 data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
a23eefa2
RZ
3031 }
3032
3033 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3034 PHM_PlatformCaps_ControlVDDCI)) {
3035 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3036 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
2cc0c0b5 3037 data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
a23eefa2
RZ
3038 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
3039 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
2cc0c0b5 3040 data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
a23eefa2
RZ
3041 }
3042
270d0136
RZ
3043 if (table_info->cac_dtp_table->usClockStretchAmount != 0)
3044 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3045 PHM_PlatformCaps_ClockStretcher);
3046
2cc0c0b5 3047 polaris10_set_features_platform_caps(hwmgr);
a23eefa2 3048
3a8bd717 3049 polaris10_patch_voltage_workaround(hwmgr);
2cc0c0b5 3050 polaris10_init_dpm_defaults(hwmgr);
a23eefa2
RZ
3051
3052 /* Get leakage voltage based on leakage ID. */
2cc0c0b5 3053 result = polaris10_get_evv_voltages(hwmgr);
a23eefa2
RZ
3054
3055 if (result) {
3056 printk("Get EVV Voltage Failed. Abort Driver loading!\n");
3057 return -1;
3058 }
3059
2cc0c0b5
FC
3060 polaris10_complete_dependency_tables(hwmgr);
3061 polaris10_set_private_data_based_on_pptable(hwmgr);
a23eefa2
RZ
3062
3063 /* Initalize Dynamic State Adjustment Rule Settings */
3064 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
3065
3066 if (0 == result) {
3067 struct cgs_system_info sys_info = {0};
3068
3069 data->is_tlu_enabled = 0;
3070
3071 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2cc0c0b5 3072 POLARIS10_MAX_HARDWARE_POWERLEVELS;
a23eefa2
RZ
3073 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
3074 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
f0911de8 3075
a23eefa2
RZ
3076
3077 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
3078 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
3079 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
3080 case 0:
3081 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
3082 break;
3083 case 1:
3084 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
3085 break;
3086 case 2:
3087 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
3088 break;
3089 case 3:
3090 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
3091 break;
3092 case 4:
3093 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
3094 break;
3095 default:
3096 PP_ASSERT_WITH_CODE(0,
3097 "Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!",
3098 );
3099 break;
3100 }
3101 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
3102 }
3103
f0911de8
RZ
3104 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
3105 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
3106 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
3107 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
3108
3109 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
3110 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
3111
3112 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
3113
3114 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
3115
3116 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
3117 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
3118
3119 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
3120
3121 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
3122 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp -50) : 0;
3123
3124 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
3125 table_info->cac_dtp_table->usOperatingTempStep = 1;
3126 table_info->cac_dtp_table->usOperatingTempHyst = 1;
3127
3128 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
3129 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
3130
3131 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
3132 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
3133
3134 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
3135 table_info->cac_dtp_table->usOperatingTempMinLimit;
3136
3137 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
3138 table_info->cac_dtp_table->usOperatingTempMaxLimit;
3139
3140 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
3141 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
3142
3143 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
3144 table_info->cac_dtp_table->usOperatingTempStep;
3145
3146 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
3147 table_info->cac_dtp_table->usTargetOperatingTemp;
3148 }
3149
a23eefa2
RZ
3150 sys_info.size = sizeof(struct cgs_system_info);
3151 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
3152 result = cgs_query_system_info(hwmgr->device, &sys_info);
3153 if (result)
3154 data->pcie_gen_cap = 0x30007;
3155 else
3156 data->pcie_gen_cap = (uint32_t)sys_info.value;
3157 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3158 data->pcie_spc_cap = 20;
3159 sys_info.size = sizeof(struct cgs_system_info);
3160 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
3161 result = cgs_query_system_info(hwmgr->device, &sys_info);
3162 if (result)
3163 data->pcie_lane_cap = 0x2f0000;
3164 else
3165 data->pcie_lane_cap = (uint32_t)sys_info.value;
f0911de8
RZ
3166
3167 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
3168/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
3169 hwmgr->platform_descriptor.clockStep.engineClock = 500;
3170 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
a23eefa2
RZ
3171 } else {
3172 /* Ignore return value in here, we are cleaning up a mess. */
2cc0c0b5 3173 polaris10_hwmgr_backend_fini(hwmgr);
a23eefa2
RZ
3174 }
3175
3176 return 0;
3177}
3178
2cc0c0b5 3179static int polaris10_force_dpm_highest(struct pp_hwmgr *hwmgr)
a23eefa2 3180{
2cc0c0b5 3181 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
3182 uint32_t level, tmp;
3183
3184 if (!data->pcie_dpm_key_disabled) {
3185 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3186 level = 0;
3187 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3188 while (tmp >>= 1)
3189 level++;
3190
3191 if (level)
3192 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3193 PPSMC_MSG_PCIeDPM_ForceLevel, level);
3194 }
3195 }
3196
3197 if (!data->sclk_dpm_key_disabled) {
3198 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3199 level = 0;
3200 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3201 while (tmp >>= 1)
3202 level++;
3203
3204 if (level)
3205 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3206 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3207 (1 << level));
3208 }
3209 }
3210
3211 if (!data->mclk_dpm_key_disabled) {
3212 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3213 level = 0;
3214 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3215 while (tmp >>= 1)
3216 level++;
3217
3218 if (level)
3219 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3220 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3221 (1 << level));
3222 }
3223 }
3224
3225 return 0;
3226}
3227
2cc0c0b5 3228static int polaris10_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
a23eefa2 3229{
2cc0c0b5 3230 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
3231
3232 phm_apply_dal_min_voltage_request(hwmgr);
3233
3234 if (!data->sclk_dpm_key_disabled) {
3235 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3236 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3237 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3238 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3239 }
3240
3241 if (!data->mclk_dpm_key_disabled) {
3242 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3243 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3244 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3245 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3246 }
3247
3248 return 0;
3249}
3250
2cc0c0b5 3251static int polaris10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
a23eefa2 3252{
2cc0c0b5 3253 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2 3254
2cc0c0b5 3255 if (!polaris10_is_dpm_running(hwmgr))
a23eefa2
RZ
3256 return -EINVAL;
3257
3258 if (!data->pcie_dpm_key_disabled) {
3259 smum_send_msg_to_smc(hwmgr->smumgr,
3260 PPSMC_MSG_PCIeDPM_UnForceLevel);
3261 }
3262
2cc0c0b5 3263 return polaris10_upload_dpm_level_enable_mask(hwmgr);
a23eefa2
RZ
3264}
3265
2cc0c0b5 3266static int polaris10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
a23eefa2 3267{
2cc0c0b5
FC
3268 struct polaris10_hwmgr *data =
3269 (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
3270 uint32_t level;
3271
3272 if (!data->sclk_dpm_key_disabled)
3273 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3274 level = phm_get_lowest_enabled_level(hwmgr,
3275 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3276 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3277 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3278 (1 << level));
3279
3280 }
2043f43e 3281
a23eefa2
RZ
3282 if (!data->mclk_dpm_key_disabled) {
3283 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3284 level = phm_get_lowest_enabled_level(hwmgr,
3285 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3286 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3287 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3288 (1 << level));
3289 }
3290 }
2043f43e 3291
a23eefa2
RZ
3292 if (!data->pcie_dpm_key_disabled) {
3293 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3294 level = phm_get_lowest_enabled_level(hwmgr,
3295 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3296 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3297 PPSMC_MSG_PCIeDPM_ForceLevel,
3298 (level));
3299 }
3300 }
3301
3302 return 0;
3303
3304}
2cc0c0b5 3305static int polaris10_force_dpm_level(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
3306 enum amd_dpm_forced_level level)
3307{
3308 int ret = 0;
3309
3310 switch (level) {
3311 case AMD_DPM_FORCED_LEVEL_HIGH:
2cc0c0b5 3312 ret = polaris10_force_dpm_highest(hwmgr);
a23eefa2
RZ
3313 if (ret)
3314 return ret;
3315 break;
3316 case AMD_DPM_FORCED_LEVEL_LOW:
2cc0c0b5 3317 ret = polaris10_force_dpm_lowest(hwmgr);
a23eefa2
RZ
3318 if (ret)
3319 return ret;
3320 break;
3321 case AMD_DPM_FORCED_LEVEL_AUTO:
2cc0c0b5 3322 ret = polaris10_unforce_dpm_levels(hwmgr);
a23eefa2
RZ
3323 if (ret)
3324 return ret;
3325 break;
3326 default:
3327 break;
3328 }
3329
3330 hwmgr->dpm_level = level;
3331
3332 return ret;
3333}
3334
2cc0c0b5 3335static int polaris10_get_power_state_size(struct pp_hwmgr *hwmgr)
a23eefa2 3336{
2cc0c0b5 3337 return sizeof(struct polaris10_power_state);
a23eefa2
RZ
3338}
3339
3340
2cc0c0b5 3341static int polaris10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
3342 struct pp_power_state *request_ps,
3343 const struct pp_power_state *current_ps)
3344{
3345
2cc0c0b5
FC
3346 struct polaris10_power_state *polaris10_ps =
3347 cast_phw_polaris10_power_state(&request_ps->hardware);
a23eefa2
RZ
3348 uint32_t sclk;
3349 uint32_t mclk;
3350 struct PP_Clocks minimum_clocks = {0};
3351 bool disable_mclk_switching;
3352 bool disable_mclk_switching_for_frame_lock;
3353 struct cgs_display_info info = {0};
3354 const struct phm_clock_and_voltage_limits *max_limits;
3355 uint32_t i;
2cc0c0b5 3356 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
3357 struct phm_ppt_v1_information *table_info =
3358 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3359 int32_t count;
3360 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3361
3362 data->battery_state = (PP_StateUILabel_Battery ==
3363 request_ps->classification.ui_label);
3364
2cc0c0b5 3365 PP_ASSERT_WITH_CODE(polaris10_ps->performance_level_count == 2,
a23eefa2
RZ
3366 "VI should always have 2 performance levels",
3367 );
3368
3369 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3370 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3371 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3372
3373 /* Cap clock DPM tables at DC MAX if it is in DC. */
3374 if (PP_PowerSource_DC == hwmgr->power_source) {
2cc0c0b5
FC
3375 for (i = 0; i < polaris10_ps->performance_level_count; i++) {
3376 if (polaris10_ps->performance_levels[i].memory_clock > max_limits->mclk)
3377 polaris10_ps->performance_levels[i].memory_clock = max_limits->mclk;
3378 if (polaris10_ps->performance_levels[i].engine_clock > max_limits->sclk)
3379 polaris10_ps->performance_levels[i].engine_clock = max_limits->sclk;
a23eefa2
RZ
3380 }
3381 }
3382
2cc0c0b5
FC
3383 polaris10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
3384 polaris10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
a23eefa2
RZ
3385
3386 cgs_get_active_displays_info(hwmgr->device, &info);
3387
3388 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3389
3390 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
3391
3392 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3393 PHM_PlatformCaps_StablePState)) {
3394 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3395 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3396
3397 for (count = table_info->vdd_dep_on_sclk->count - 1;
3398 count >= 0; count--) {
3399 if (stable_pstate_sclk >=
3400 table_info->vdd_dep_on_sclk->entries[count].clk) {
3401 stable_pstate_sclk =
3402 table_info->vdd_dep_on_sclk->entries[count].clk;
3403 break;
3404 }
3405 }
3406
3407 if (count < 0)
3408 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3409
3410 stable_pstate_mclk = max_limits->mclk;
3411
3412 minimum_clocks.engineClock = stable_pstate_sclk;
3413 minimum_clocks.memoryClock = stable_pstate_mclk;
3414 }
3415
3416 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3417 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3418
3419 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3420 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3421
2cc0c0b5 3422 polaris10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
a23eefa2
RZ
3423
3424 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3425 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
3426 hwmgr->platform_descriptor.overdriveLimit.engineClock),
3427 "Overdrive sclk exceeds limit",
3428 hwmgr->gfx_arbiter.sclk_over_drive =
3429 hwmgr->platform_descriptor.overdriveLimit.engineClock);
3430
3431 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
2cc0c0b5 3432 polaris10_ps->performance_levels[1].engine_clock =
a23eefa2
RZ
3433 hwmgr->gfx_arbiter.sclk_over_drive;
3434 }
3435
3436 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
3437 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
3438 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
3439 "Overdrive mclk exceeds limit",
3440 hwmgr->gfx_arbiter.mclk_over_drive =
3441 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
3442
3443 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
2cc0c0b5 3444 polaris10_ps->performance_levels[1].memory_clock =
a23eefa2
RZ
3445 hwmgr->gfx_arbiter.mclk_over_drive;
3446 }
3447
3448 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3449 hwmgr->platform_descriptor.platformCaps,
3450 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3451
3452 disable_mclk_switching = (1 < info.display_count) ||
3453 disable_mclk_switching_for_frame_lock;
3454
2cc0c0b5
FC
3455 sclk = polaris10_ps->performance_levels[0].engine_clock;
3456 mclk = polaris10_ps->performance_levels[0].memory_clock;
a23eefa2
RZ
3457
3458 if (disable_mclk_switching)
2cc0c0b5
FC
3459 mclk = polaris10_ps->performance_levels
3460 [polaris10_ps->performance_level_count - 1].memory_clock;
a23eefa2
RZ
3461
3462 if (sclk < minimum_clocks.engineClock)
3463 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3464 max_limits->sclk : minimum_clocks.engineClock;
3465
3466 if (mclk < minimum_clocks.memoryClock)
3467 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3468 max_limits->mclk : minimum_clocks.memoryClock;
3469
2cc0c0b5
FC
3470 polaris10_ps->performance_levels[0].engine_clock = sclk;
3471 polaris10_ps->performance_levels[0].memory_clock = mclk;
a23eefa2 3472
2cc0c0b5
FC
3473 polaris10_ps->performance_levels[1].engine_clock =
3474 (polaris10_ps->performance_levels[1].engine_clock >=
3475 polaris10_ps->performance_levels[0].engine_clock) ?
3476 polaris10_ps->performance_levels[1].engine_clock :
3477 polaris10_ps->performance_levels[0].engine_clock;
a23eefa2
RZ
3478
3479 if (disable_mclk_switching) {
2cc0c0b5
FC
3480 if (mclk < polaris10_ps->performance_levels[1].memory_clock)
3481 mclk = polaris10_ps->performance_levels[1].memory_clock;
a23eefa2 3482
2cc0c0b5
FC
3483 polaris10_ps->performance_levels[0].memory_clock = mclk;
3484 polaris10_ps->performance_levels[1].memory_clock = mclk;
a23eefa2 3485 } else {
2cc0c0b5
FC
3486 if (polaris10_ps->performance_levels[1].memory_clock <
3487 polaris10_ps->performance_levels[0].memory_clock)
3488 polaris10_ps->performance_levels[1].memory_clock =
3489 polaris10_ps->performance_levels[0].memory_clock;
a23eefa2
RZ
3490 }
3491
3492 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3493 PHM_PlatformCaps_StablePState)) {
2cc0c0b5
FC
3494 for (i = 0; i < polaris10_ps->performance_level_count; i++) {
3495 polaris10_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3496 polaris10_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3497 polaris10_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3498 polaris10_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
a23eefa2
RZ
3499 }
3500 }
3501 return 0;
3502}
3503
3504
2cc0c0b5 3505static int polaris10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
a23eefa2
RZ
3506{
3507 struct pp_power_state *ps;
2cc0c0b5 3508 struct polaris10_power_state *polaris10_ps;
a23eefa2
RZ
3509
3510 if (hwmgr == NULL)
3511 return -EINVAL;
3512
3513 ps = hwmgr->request_ps;
3514
3515 if (ps == NULL)
3516 return -EINVAL;
3517
2cc0c0b5 3518 polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
a23eefa2
RZ
3519
3520 if (low)
2cc0c0b5 3521 return polaris10_ps->performance_levels[0].memory_clock;
a23eefa2 3522 else
2cc0c0b5
FC
3523 return polaris10_ps->performance_levels
3524 [polaris10_ps->performance_level_count-1].memory_clock;
a23eefa2
RZ
3525}
3526
2cc0c0b5 3527static int polaris10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
a23eefa2
RZ
3528{
3529 struct pp_power_state *ps;
2cc0c0b5 3530 struct polaris10_power_state *polaris10_ps;
a23eefa2
RZ
3531
3532 if (hwmgr == NULL)
3533 return -EINVAL;
3534
3535 ps = hwmgr->request_ps;
3536
3537 if (ps == NULL)
3538 return -EINVAL;
3539
2cc0c0b5 3540 polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
a23eefa2
RZ
3541
3542 if (low)
2cc0c0b5 3543 return polaris10_ps->performance_levels[0].engine_clock;
a23eefa2 3544 else
2cc0c0b5
FC
3545 return polaris10_ps->performance_levels
3546 [polaris10_ps->performance_level_count-1].engine_clock;
a23eefa2
RZ
3547}
3548
2cc0c0b5 3549static int polaris10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
3550 struct pp_hw_power_state *hw_ps)
3551{
2cc0c0b5
FC
3552 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3553 struct polaris10_power_state *ps = (struct polaris10_power_state *)hw_ps;
a23eefa2
RZ
3554 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3555 uint16_t size;
3556 uint8_t frev, crev;
3557 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3558
3559 /* First retrieve the Boot clocks and VDDC from the firmware info table.
3560 * We assume here that fw_info is unchanged if this call fails.
3561 */
3562 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
3563 hwmgr->device, index,
3564 &size, &frev, &crev);
3565 if (!fw_info)
3566 /* During a test, there is no firmware info table. */
3567 return 0;
3568
3569 /* Patch the state. */
3570 data->vbios_boot_state.sclk_bootup_value =
3571 le32_to_cpu(fw_info->ulDefaultEngineClock);
3572 data->vbios_boot_state.mclk_bootup_value =
3573 le32_to_cpu(fw_info->ulDefaultMemoryClock);
3574 data->vbios_boot_state.mvdd_bootup_value =
3575 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3576 data->vbios_boot_state.vddc_bootup_value =
3577 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3578 data->vbios_boot_state.vddci_bootup_value =
3579 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3580 data->vbios_boot_state.pcie_gen_bootup_value =
3581 phm_get_current_pcie_speed(hwmgr);
3582
3583 data->vbios_boot_state.pcie_lane_bootup_value =
3584 (uint16_t)phm_get_current_pcie_lane_number(hwmgr);
3585
3586 /* set boot power state */
3587 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3588 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3589 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3590 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3591
3592 return 0;
3593}
3594
2cc0c0b5 3595static int polaris10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
3596 void *state, struct pp_power_state *power_state,
3597 void *pp_table, uint32_t classification_flag)
3598{
2cc0c0b5
FC
3599 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3600 struct polaris10_power_state *polaris10_power_state =
3601 (struct polaris10_power_state *)(&(power_state->hardware));
3602 struct polaris10_performance_level *performance_level;
a23eefa2
RZ
3603 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3604 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3605 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3ff21127
RZ
3606 PPTable_Generic_SubTable_Header *sclk_dep_table =
3607 (PPTable_Generic_SubTable_Header *)
a23eefa2
RZ
3608 (((unsigned long)powerplay_table) +
3609 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3ff21127 3610
a23eefa2
RZ
3611 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3612 (ATOM_Tonga_MCLK_Dependency_Table *)
3613 (((unsigned long)powerplay_table) +
3614 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3615
3616 /* The following fields are not initialized here: id orderedList allStatesList */
3617 power_state->classification.ui_label =
3618 (le16_to_cpu(state_entry->usClassification) &
3619 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3620 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3621 power_state->classification.flags = classification_flag;
3622 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3623
3624 power_state->classification.temporary_state = false;
3625 power_state->classification.to_be_deleted = false;
3626
3627 power_state->validation.disallowOnDC =
3628 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3629 ATOM_Tonga_DISALLOW_ON_DC));
3630
3631 power_state->pcie.lanes = 0;
3632
3633 power_state->display.disableFrameModulation = false;
3634 power_state->display.limitRefreshrate = false;
3635 power_state->display.enableVariBright =
3636 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3637 ATOM_Tonga_ENABLE_VARIBRIGHT));
3638
3639 power_state->validation.supportedPowerLevels = 0;
3640 power_state->uvd_clocks.VCLK = 0;
3641 power_state->uvd_clocks.DCLK = 0;
3642 power_state->temperatures.min = 0;
3643 power_state->temperatures.max = 0;
3644
2cc0c0b5
FC
3645 performance_level = &(polaris10_power_state->performance_levels
3646 [polaris10_power_state->performance_level_count++]);
a23eefa2
RZ
3647
3648 PP_ASSERT_WITH_CODE(
2cc0c0b5 3649 (polaris10_power_state->performance_level_count < SMU74_MAX_LEVELS_GRAPHICS),
a23eefa2
RZ
3650 "Performance levels exceeds SMC limit!",
3651 return -1);
3652
3653 PP_ASSERT_WITH_CODE(
2cc0c0b5 3654 (polaris10_power_state->performance_level_count <=
a23eefa2
RZ
3655 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3656 "Performance levels exceeds Driver limit!",
3657 return -1);
3658
3659 /* Performance levels are arranged from low to high. */
3660 performance_level->memory_clock = mclk_dep_table->entries
3661 [state_entry->ucMemoryClockIndexLow].ulMclk;
3ff21127
RZ
3662 if (sclk_dep_table->ucRevId == 0)
3663 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3664 [state_entry->ucEngineClockIndexLow].ulSclk;
3665 else if (sclk_dep_table->ucRevId == 1)
3666 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
a23eefa2
RZ
3667 [state_entry->ucEngineClockIndexLow].ulSclk;
3668 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3669 state_entry->ucPCIEGenLow);
3670 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3671 state_entry->ucPCIELaneHigh);
3672
2cc0c0b5
FC
3673 performance_level = &(polaris10_power_state->performance_levels
3674 [polaris10_power_state->performance_level_count++]);
a23eefa2
RZ
3675 performance_level->memory_clock = mclk_dep_table->entries
3676 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3ff21127
RZ
3677
3678 if (sclk_dep_table->ucRevId == 0)
3679 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3680 [state_entry->ucEngineClockIndexHigh].ulSclk;
3681 else if (sclk_dep_table->ucRevId == 1)
3682 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
a23eefa2 3683 [state_entry->ucEngineClockIndexHigh].ulSclk;
3ff21127 3684
a23eefa2
RZ
3685 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3686 state_entry->ucPCIEGenHigh);
3687 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3688 state_entry->ucPCIELaneHigh);
3689
3690 return 0;
3691}
3692
2cc0c0b5 3693static int polaris10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
3694 unsigned long entry_index, struct pp_power_state *state)
3695{
3696 int result;
2cc0c0b5
FC
3697 struct polaris10_power_state *ps;
3698 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
3699 struct phm_ppt_v1_information *table_info =
3700 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3701 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3702 table_info->vdd_dep_on_mclk;
3703
3704 state->hardware.magic = PHM_VIslands_Magic;
3705
2cc0c0b5 3706 ps = (struct polaris10_power_state *)(&state->hardware);
a23eefa2
RZ
3707
3708 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
2cc0c0b5 3709 polaris10_get_pp_table_entry_callback_func);
a23eefa2
RZ
3710
3711 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3712 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3713 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3714 */
3715 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3716 if (dep_mclk_table->entries[0].clk !=
3717 data->vbios_boot_state.mclk_bootup_value)
3718 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3719 "does not match VBIOS boot MCLK level");
3720 if (dep_mclk_table->entries[0].vddci !=
3721 data->vbios_boot_state.vddci_bootup_value)
3722 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3723 "does not match VBIOS boot VDDCI level");
3724 }
3725
3726 /* set DC compatible flag if this state supports DC */
3727 if (!state->validation.disallowOnDC)
3728 ps->dc_compatible = true;
3729
3730 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3731 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3732
3733 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3734 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3735
3736 if (!result) {
3737 uint32_t i;
3738
3739 switch (state->classification.ui_label) {
3740 case PP_StateUILabel_Performance:
3741 data->use_pcie_performance_levels = true;
a23eefa2
RZ
3742 for (i = 0; i < ps->performance_level_count; i++) {
3743 if (data->pcie_gen_performance.max <
3744 ps->performance_levels[i].pcie_gen)
3745 data->pcie_gen_performance.max =
3746 ps->performance_levels[i].pcie_gen;
3747
3748 if (data->pcie_gen_performance.min >
3749 ps->performance_levels[i].pcie_gen)
3750 data->pcie_gen_performance.min =
3751 ps->performance_levels[i].pcie_gen;
3752
3753 if (data->pcie_lane_performance.max <
3754 ps->performance_levels[i].pcie_lane)
3755 data->pcie_lane_performance.max =
3756 ps->performance_levels[i].pcie_lane;
a23eefa2
RZ
3757 if (data->pcie_lane_performance.min >
3758 ps->performance_levels[i].pcie_lane)
3759 data->pcie_lane_performance.min =
3760 ps->performance_levels[i].pcie_lane;
3761 }
3762 break;
3763 case PP_StateUILabel_Battery:
3764 data->use_pcie_power_saving_levels = true;
3765
3766 for (i = 0; i < ps->performance_level_count; i++) {
3767 if (data->pcie_gen_power_saving.max <
3768 ps->performance_levels[i].pcie_gen)
3769 data->pcie_gen_power_saving.max =
3770 ps->performance_levels[i].pcie_gen;
3771
3772 if (data->pcie_gen_power_saving.min >
3773 ps->performance_levels[i].pcie_gen)
3774 data->pcie_gen_power_saving.min =
3775 ps->performance_levels[i].pcie_gen;
3776
3777 if (data->pcie_lane_power_saving.max <
3778 ps->performance_levels[i].pcie_lane)
3779 data->pcie_lane_power_saving.max =
3780 ps->performance_levels[i].pcie_lane;
3781
3782 if (data->pcie_lane_power_saving.min >
3783 ps->performance_levels[i].pcie_lane)
3784 data->pcie_lane_power_saving.min =
3785 ps->performance_levels[i].pcie_lane;
3786 }
3787 break;
3788 default:
3789 break;
3790 }
3791 }
3792 return 0;
3793}
3794
3795static void
2cc0c0b5 3796polaris10_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
a23eefa2 3797{
b2d96143
RZ
3798 uint32_t sclk, mclk, activity_percent;
3799 uint32_t offset;
3800 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
3801
3802 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
3803
3804 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3805
3806 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
3807
3808 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3809 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
3810 mclk / 100, sclk / 100);
b2d96143
RZ
3811
3812 offset = data->soft_regs_start + offsetof(SMU74_SoftRegisters, AverageGraphicsActivity);
3813 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
3814 activity_percent += 0x80;
3815 activity_percent >>= 8;
3816
3817 seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
3818
3819 seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en");
3820
3821 seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en");
a23eefa2
RZ
3822}
3823
2cc0c0b5 3824static int polaris10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
a23eefa2
RZ
3825{
3826 const struct phm_set_power_state_input *states =
3827 (const struct phm_set_power_state_input *)input;
2cc0c0b5
FC
3828 const struct polaris10_power_state *polaris10_ps =
3829 cast_const_phw_polaris10_power_state(states->pnew_state);
3830 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3831 struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
3832 uint32_t sclk = polaris10_ps->performance_levels
3833 [polaris10_ps->performance_level_count - 1].engine_clock;
3834 struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
3835 uint32_t mclk = polaris10_ps->performance_levels
3836 [polaris10_ps->performance_level_count - 1].memory_clock;
a23eefa2
RZ
3837 struct PP_Clocks min_clocks = {0};
3838 uint32_t i;
3839 struct cgs_display_info info = {0};
3840
3841 data->need_update_smu7_dpm_table = 0;
3842
3843 for (i = 0; i < sclk_table->count; i++) {
3844 if (sclk == sclk_table->dpm_levels[i].value)
3845 break;
3846 }
3847
3848 if (i >= sclk_table->count)
3849 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3850 else {
3851 /* TODO: Check SCLK in DAL's minimum clocks
3852 * in case DeepSleep divider update is required.
3853 */
2cc0c0b5
FC
3854 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
3855 (min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
3856 data->display_timing.min_clock_in_sr >= POLARIS10_MINIMUM_ENGINE_CLOCK))
a23eefa2
RZ
3857 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
3858 }
3859
3860 for (i = 0; i < mclk_table->count; i++) {
3861 if (mclk == mclk_table->dpm_levels[i].value)
3862 break;
3863 }
3864
3865 if (i >= mclk_table->count)
3866 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3867
3868 cgs_get_active_displays_info(hwmgr->device, &info);
3869
3870 if (data->display_timing.num_existing_displays != info.display_count)
3871 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
3872
3873 return 0;
3874}
3875
2cc0c0b5
FC
3876static uint16_t polaris10_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
3877 const struct polaris10_power_state *polaris10_ps)
a23eefa2
RZ
3878{
3879 uint32_t i;
3880 uint32_t sclk, max_sclk = 0;
2cc0c0b5
FC
3881 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3882 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
a23eefa2 3883
2cc0c0b5
FC
3884 for (i = 0; i < polaris10_ps->performance_level_count; i++) {
3885 sclk = polaris10_ps->performance_levels[i].engine_clock;
a23eefa2
RZ
3886 if (max_sclk < sclk)
3887 max_sclk = sclk;
3888 }
3889
3890 for (i = 0; i < dpm_table->sclk_table.count; i++) {
3891 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
3892 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
3893 dpm_table->pcie_speed_table.dpm_levels
3894 [dpm_table->pcie_speed_table.count - 1].value :
3895 dpm_table->pcie_speed_table.dpm_levels[i].value);
3896 }
3897
3898 return 0;
3899}
3900
2cc0c0b5 3901static int polaris10_request_link_speed_change_before_state_change(
a23eefa2
RZ
3902 struct pp_hwmgr *hwmgr, const void *input)
3903{
3904 const struct phm_set_power_state_input *states =
3905 (const struct phm_set_power_state_input *)input;
2cc0c0b5
FC
3906 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3907 const struct polaris10_power_state *polaris10_nps =
3908 cast_const_phw_polaris10_power_state(states->pnew_state);
3909 const struct polaris10_power_state *polaris10_cps =
3910 cast_const_phw_polaris10_power_state(states->pcurrent_state);
a23eefa2 3911
2cc0c0b5 3912 uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_nps);
a23eefa2
RZ
3913 uint16_t current_link_speed;
3914
3915 if (data->force_pcie_gen == PP_PCIEGenInvalid)
2cc0c0b5 3916 current_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_cps);
a23eefa2
RZ
3917 else
3918 current_link_speed = data->force_pcie_gen;
3919
3920 data->force_pcie_gen = PP_PCIEGenInvalid;
3921 data->pspp_notify_required = false;
3922
3923 if (target_link_speed > current_link_speed) {
3924 switch (target_link_speed) {
3925 case PP_PCIEGen3:
3926 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
3927 break;
3928 data->force_pcie_gen = PP_PCIEGen2;
3929 if (current_link_speed == PP_PCIEGen2)
3930 break;
3931 case PP_PCIEGen2:
3932 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
3933 break;
3934 default:
3935 data->force_pcie_gen = phm_get_current_pcie_speed(hwmgr);
3936 break;
3937 }
3938 } else {
3939 if (target_link_speed < current_link_speed)
3940 data->pspp_notify_required = true;
3941 }
3942
3943 return 0;
3944}
3945
2cc0c0b5 3946static int polaris10_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
a23eefa2 3947{
2cc0c0b5 3948 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
3949
3950 if (0 == data->need_update_smu7_dpm_table)
3951 return 0;
3952
3953 if ((0 == data->sclk_dpm_key_disabled) &&
3954 (data->need_update_smu7_dpm_table &
3955 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
2cc0c0b5 3956 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
a23eefa2
RZ
3957 "Trying to freeze SCLK DPM when DPM is disabled",
3958 );
3959 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3960 PPSMC_MSG_SCLKDPM_FreezeLevel),
3961 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
3962 return -1);
3963 }
3964
3965 if ((0 == data->mclk_dpm_key_disabled) &&
3966 (data->need_update_smu7_dpm_table &
3967 DPMTABLE_OD_UPDATE_MCLK)) {
2cc0c0b5 3968 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
a23eefa2
RZ
3969 "Trying to freeze MCLK DPM when DPM is disabled",
3970 );
3971 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3972 PPSMC_MSG_MCLKDPM_FreezeLevel),
3973 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
3974 return -1);
3975 }
3976
3977 return 0;
3978}
3979
2cc0c0b5 3980static int polaris10_populate_and_upload_sclk_mclk_dpm_levels(
a23eefa2
RZ
3981 struct pp_hwmgr *hwmgr, const void *input)
3982{
3983 int result = 0;
3984 const struct phm_set_power_state_input *states =
3985 (const struct phm_set_power_state_input *)input;
2cc0c0b5
FC
3986 const struct polaris10_power_state *polaris10_ps =
3987 cast_const_phw_polaris10_power_state(states->pnew_state);
3988 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3989 uint32_t sclk = polaris10_ps->performance_levels
3990 [polaris10_ps->performance_level_count - 1].engine_clock;
3991 uint32_t mclk = polaris10_ps->performance_levels
3992 [polaris10_ps->performance_level_count - 1].memory_clock;
3993 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
3994
3995 struct polaris10_dpm_table *golden_dpm_table = &data->golden_dpm_table;
a23eefa2
RZ
3996 uint32_t dpm_count, clock_percent;
3997 uint32_t i;
3998
3999 if (0 == data->need_update_smu7_dpm_table)
4000 return 0;
4001
4002 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4003 dpm_table->sclk_table.dpm_levels
4004 [dpm_table->sclk_table.count - 1].value = sclk;
4005
4006 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
4007 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
4008 /* Need to do calculation based on the golden DPM table
4009 * as the Heatmap GPU Clock axis is also based on the default values
4010 */
4011 PP_ASSERT_WITH_CODE(
4012 (golden_dpm_table->sclk_table.dpm_levels
4013 [golden_dpm_table->sclk_table.count - 1].value != 0),
4014 "Divide by 0!",
4015 return -1);
4016 dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;
4017
4018 for (i = dpm_count; i > 1; i--) {
4019 if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
4020 clock_percent =
4021 ((sclk
4022 - golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
4023 ) * 100)
4024 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
4025
4026 dpm_table->sclk_table.dpm_levels[i].value =
4027 golden_dpm_table->sclk_table.dpm_levels[i].value +
4028 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4029 clock_percent)/100;
4030
4031 } else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
4032 clock_percent =
4033 ((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
4034 - sclk) * 100)
4035 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
4036
4037 dpm_table->sclk_table.dpm_levels[i].value =
4038 golden_dpm_table->sclk_table.dpm_levels[i].value -
4039 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4040 clock_percent) / 100;
4041 } else
4042 dpm_table->sclk_table.dpm_levels[i].value =
4043 golden_dpm_table->sclk_table.dpm_levels[i].value;
4044 }
4045 }
4046 }
4047
4048 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4049 dpm_table->mclk_table.dpm_levels
4050 [dpm_table->mclk_table.count - 1].value = mclk;
4051
4052 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
4053 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
4054
4055 PP_ASSERT_WITH_CODE(
4056 (golden_dpm_table->mclk_table.dpm_levels
4057 [golden_dpm_table->mclk_table.count-1].value != 0),
4058 "Divide by 0!",
4059 return -1);
4060 dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
4061 for (i = dpm_count; i > 1; i--) {
4062 if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
4063 clock_percent = ((mclk -
4064 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
4065 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
4066
4067 dpm_table->mclk_table.dpm_levels[i].value =
4068 golden_dpm_table->mclk_table.dpm_levels[i].value +
4069 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4070 clock_percent) / 100;
4071
4072 } else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
4073 clock_percent = (
4074 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
4075 * 100)
4076 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
4077
4078 dpm_table->mclk_table.dpm_levels[i].value =
4079 golden_dpm_table->mclk_table.dpm_levels[i].value -
4080 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4081 clock_percent) / 100;
4082 } else
4083 dpm_table->mclk_table.dpm_levels[i].value =
4084 golden_dpm_table->mclk_table.dpm_levels[i].value;
4085 }
4086 }
4087 }
4088
4089 if (data->need_update_smu7_dpm_table &
4090 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
2cc0c0b5 4091 result = polaris10_populate_all_graphic_levels(hwmgr);
a23eefa2
RZ
4092 PP_ASSERT_WITH_CODE((0 == result),
4093 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4094 return result);
4095 }
4096
4097 if (data->need_update_smu7_dpm_table &
4098 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4099 /*populate MCLK dpm table to SMU7 */
2cc0c0b5 4100 result = polaris10_populate_all_memory_levels(hwmgr);
a23eefa2
RZ
4101 PP_ASSERT_WITH_CODE((0 == result),
4102 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4103 return result);
4104 }
4105
4106 return result;
4107}
4108
2cc0c0b5
FC
4109static int polaris10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4110 struct polaris10_single_dpm_table *dpm_table,
a23eefa2
RZ
4111 uint32_t low_limit, uint32_t high_limit)
4112{
4113 uint32_t i;
a23eefa2
RZ
4114
4115 for (i = 0; i < dpm_table->count; i++) {
4116 if ((dpm_table->dpm_levels[i].value < low_limit)
4117 || (dpm_table->dpm_levels[i].value > high_limit))
4118 dpm_table->dpm_levels[i].enabled = false;
a23eefa2
RZ
4119 else
4120 dpm_table->dpm_levels[i].enabled = true;
4121 }
4122
4123 return 0;
4124}
4125
2cc0c0b5
FC
4126static int polaris10_trim_dpm_states(struct pp_hwmgr *hwmgr,
4127 const struct polaris10_power_state *polaris10_ps)
a23eefa2
RZ
4128{
4129 int result = 0;
2cc0c0b5 4130 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4131 uint32_t high_limit_count;
4132
2cc0c0b5 4133 PP_ASSERT_WITH_CODE((polaris10_ps->performance_level_count >= 1),
a23eefa2
RZ
4134 "power state did not have any performance level",
4135 return -1);
4136
2cc0c0b5 4137 high_limit_count = (1 == polaris10_ps->performance_level_count) ? 0 : 1;
a23eefa2 4138
2cc0c0b5 4139 polaris10_trim_single_dpm_states(hwmgr,
a23eefa2 4140 &(data->dpm_table.sclk_table),
2cc0c0b5
FC
4141 polaris10_ps->performance_levels[0].engine_clock,
4142 polaris10_ps->performance_levels[high_limit_count].engine_clock);
a23eefa2 4143
2cc0c0b5 4144 polaris10_trim_single_dpm_states(hwmgr,
a23eefa2 4145 &(data->dpm_table.mclk_table),
2cc0c0b5
FC
4146 polaris10_ps->performance_levels[0].memory_clock,
4147 polaris10_ps->performance_levels[high_limit_count].memory_clock);
a23eefa2
RZ
4148
4149 return result;
4150}
4151
2cc0c0b5 4152static int polaris10_generate_dpm_level_enable_mask(
a23eefa2
RZ
4153 struct pp_hwmgr *hwmgr, const void *input)
4154{
4155 int result;
4156 const struct phm_set_power_state_input *states =
4157 (const struct phm_set_power_state_input *)input;
2cc0c0b5
FC
4158 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4159 const struct polaris10_power_state *polaris10_ps =
4160 cast_const_phw_polaris10_power_state(states->pnew_state);
a23eefa2 4161
2cc0c0b5 4162 result = polaris10_trim_dpm_states(hwmgr, polaris10_ps);
a23eefa2
RZ
4163 if (result)
4164 return result;
4165
4166 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4167 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4168 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4169 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4170 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4171 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4172
4173 return 0;
4174}
4175
2cc0c0b5 4176int polaris10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
a23eefa2
RZ
4177{
4178 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
92c6d645
EH
4179 PPSMC_MSG_UVDDPM_Enable :
4180 PPSMC_MSG_UVDDPM_Disable);
4181}
4182
2cc0c0b5 4183int polaris10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
92c6d645
EH
4184{
4185 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
a23eefa2
RZ
4186 PPSMC_MSG_VCEDPM_Enable :
4187 PPSMC_MSG_VCEDPM_Disable);
4188}
4189
2cc0c0b5 4190int polaris10_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
92c6d645
EH
4191{
4192 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4193 PPSMC_MSG_SAMUDPM_Enable :
4194 PPSMC_MSG_SAMUDPM_Disable);
4195}
4196
2cc0c0b5 4197int polaris10_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
92c6d645 4198{
2cc0c0b5 4199 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
92c6d645
EH
4200 uint32_t mm_boot_level_offset, mm_boot_level_value;
4201 struct phm_ppt_v1_information *table_info =
4202 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4203
4204 if (!bgate) {
4205 data->smc_state_table.UvdBootLevel = 0;
4206 if (table_info->mm_dep_table->count > 0)
4207 data->smc_state_table.UvdBootLevel =
4208 (uint8_t) (table_info->mm_dep_table->count - 1);
4209 mm_boot_level_offset = data->dpm_table_start +
4210 offsetof(SMU74_Discrete_DpmTable, UvdBootLevel);
4211 mm_boot_level_offset /= 4;
4212 mm_boot_level_offset *= 4;
4213 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4214 CGS_IND_REG__SMC, mm_boot_level_offset);
4215 mm_boot_level_value &= 0x00FFFFFF;
4216 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4217 cgs_write_ind_register(hwmgr->device,
4218 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4219
4220 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4221 PHM_PlatformCaps_UVDDPM) ||
4222 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4223 PHM_PlatformCaps_StablePState))
4224 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4225 PPSMC_MSG_UVDDPM_SetEnabledMask,
4226 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4227 }
4228
2cc0c0b5 4229 return polaris10_enable_disable_uvd_dpm(hwmgr, !bgate);
92c6d645
EH
4230}
4231
2cc0c0b5 4232static int polaris10_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
a23eefa2
RZ
4233{
4234 const struct phm_set_power_state_input *states =
4235 (const struct phm_set_power_state_input *)input;
2cc0c0b5
FC
4236 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4237 const struct polaris10_power_state *polaris10_nps =
4238 cast_const_phw_polaris10_power_state(states->pnew_state);
4239 const struct polaris10_power_state *polaris10_cps =
4240 cast_const_phw_polaris10_power_state(states->pcurrent_state);
a23eefa2
RZ
4241
4242 uint32_t mm_boot_level_offset, mm_boot_level_value;
4243 struct phm_ppt_v1_information *table_info =
4244 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4245
2cc0c0b5
FC
4246 if (polaris10_nps->vce_clks.evclk > 0 &&
4247 (polaris10_cps == NULL || polaris10_cps->vce_clks.evclk == 0)) {
a23eefa2
RZ
4248
4249 data->smc_state_table.VceBootLevel =
4250 (uint8_t) (table_info->mm_dep_table->count - 1);
4251
4252 mm_boot_level_offset = data->dpm_table_start +
4253 offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
4254 mm_boot_level_offset /= 4;
4255 mm_boot_level_offset *= 4;
4256 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4257 CGS_IND_REG__SMC, mm_boot_level_offset);
4258 mm_boot_level_value &= 0xFF00FFFF;
4259 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4260 cgs_write_ind_register(hwmgr->device,
4261 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4262
4263 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4264 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4265 PPSMC_MSG_VCEDPM_SetEnabledMask,
4266 (uint32_t)1 << data->smc_state_table.VceBootLevel);
4267
2cc0c0b5
FC
4268 polaris10_enable_disable_vce_dpm(hwmgr, true);
4269 } else if (polaris10_nps->vce_clks.evclk == 0 &&
4270 polaris10_cps != NULL &&
4271 polaris10_cps->vce_clks.evclk > 0)
4272 polaris10_enable_disable_vce_dpm(hwmgr, false);
a23eefa2
RZ
4273 }
4274
4275 return 0;
4276}
4277
2cc0c0b5 4278int polaris10_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
92c6d645 4279{
2cc0c0b5 4280 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
92c6d645 4281 uint32_t mm_boot_level_offset, mm_boot_level_value;
92c6d645
EH
4282
4283 if (!bgate) {
871fd840 4284 data->smc_state_table.SamuBootLevel = 0;
92c6d645
EH
4285 mm_boot_level_offset = data->dpm_table_start +
4286 offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
4287 mm_boot_level_offset /= 4;
4288 mm_boot_level_offset *= 4;
4289 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4290 CGS_IND_REG__SMC, mm_boot_level_offset);
4291 mm_boot_level_value &= 0xFFFFFF00;
4292 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4293 cgs_write_ind_register(hwmgr->device,
4294 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4295
4296 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4297 PHM_PlatformCaps_StablePState))
4298 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4299 PPSMC_MSG_SAMUDPM_SetEnabledMask,
4300 (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4301 }
4302
2cc0c0b5 4303 return polaris10_enable_disable_samu_dpm(hwmgr, !bgate);
92c6d645
EH
4304}
4305
2cc0c0b5 4306static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
a23eefa2 4307{
2cc0c0b5 4308 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4309
4310 int result = 0;
4311 uint32_t low_sclk_interrupt_threshold = 0;
4312
4313 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4314 PHM_PlatformCaps_SclkThrottleLowNotification)
4315 && (hwmgr->gfx_arbiter.sclk_threshold !=
4316 data->low_sclk_interrupt_threshold)) {
4317 data->low_sclk_interrupt_threshold =
4318 hwmgr->gfx_arbiter.sclk_threshold;
4319 low_sclk_interrupt_threshold =
4320 data->low_sclk_interrupt_threshold;
4321
4322 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4323
2cc0c0b5 4324 result = polaris10_copy_bytes_to_smc(
a23eefa2
RZ
4325 hwmgr->smumgr,
4326 data->dpm_table_start +
4327 offsetof(SMU74_Discrete_DpmTable,
4328 LowSclkInterruptThreshold),
4329 (uint8_t *)&low_sclk_interrupt_threshold,
4330 sizeof(uint32_t),
4331 data->sram_end);
4332 }
4333
4334 return result;
4335}
4336
2cc0c0b5 4337static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
a23eefa2 4338{
2cc0c0b5 4339 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4340
4341 if (data->need_update_smu7_dpm_table &
4342 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2cc0c0b5 4343 return polaris10_program_memory_timing_parameters(hwmgr);
a23eefa2
RZ
4344
4345 return 0;
4346}
4347
2cc0c0b5 4348static int polaris10_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
a23eefa2 4349{
2cc0c0b5 4350 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4351
4352 if (0 == data->need_update_smu7_dpm_table)
4353 return 0;
4354
4355 if ((0 == data->sclk_dpm_key_disabled) &&
4356 (data->need_update_smu7_dpm_table &
4357 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4358
2cc0c0b5 4359 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
a23eefa2
RZ
4360 "Trying to Unfreeze SCLK DPM when DPM is disabled",
4361 );
4362 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4363 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4364 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4365 return -1);
4366 }
4367
4368 if ((0 == data->mclk_dpm_key_disabled) &&
4369 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4370
2cc0c0b5 4371 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
a23eefa2
RZ
4372 "Trying to Unfreeze MCLK DPM when DPM is disabled",
4373 );
4374 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4375 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4376 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4377 return -1);
4378 }
4379
4380 data->need_update_smu7_dpm_table = 0;
4381
4382 return 0;
4383}
4384
2cc0c0b5 4385static int polaris10_notify_link_speed_change_after_state_change(
a23eefa2
RZ
4386 struct pp_hwmgr *hwmgr, const void *input)
4387{
4388 const struct phm_set_power_state_input *states =
4389 (const struct phm_set_power_state_input *)input;
2cc0c0b5
FC
4390 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4391 const struct polaris10_power_state *polaris10_ps =
4392 cast_const_phw_polaris10_power_state(states->pnew_state);
4393 uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_ps);
a23eefa2
RZ
4394 uint8_t request;
4395
4396 if (data->pspp_notify_required) {
4397 if (target_link_speed == PP_PCIEGen3)
4398 request = PCIE_PERF_REQ_GEN3;
4399 else if (target_link_speed == PP_PCIEGen2)
4400 request = PCIE_PERF_REQ_GEN2;
4401 else
4402 request = PCIE_PERF_REQ_GEN1;
4403
4404 if (request == PCIE_PERF_REQ_GEN1 &&
4405 phm_get_current_pcie_speed(hwmgr) > 0)
4406 return 0;
4407
4408 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4409 if (PP_PCIEGen2 == target_link_speed)
4410 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4411 else
4412 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4413 }
4414 }
4415
4416 return 0;
4417}
4418
83a7af6d
RZ
4419static int polaris10_notify_smc_display(struct pp_hwmgr *hwmgr)
4420{
4421 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4422
4423 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4424 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2);
4425 return (smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ? 0 : -EINVAL;
4426}
4427
2cc0c0b5 4428static int polaris10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
a23eefa2
RZ
4429{
4430 int tmp_result, result = 0;
2cc0c0b5 4431 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2 4432
2cc0c0b5 4433 tmp_result = polaris10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
a23eefa2
RZ
4434 PP_ASSERT_WITH_CODE((0 == tmp_result),
4435 "Failed to find DPM states clocks in DPM table!",
4436 result = tmp_result);
4437
4438 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4439 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4440 tmp_result =
2cc0c0b5 4441 polaris10_request_link_speed_change_before_state_change(hwmgr, input);
a23eefa2
RZ
4442 PP_ASSERT_WITH_CODE((0 == tmp_result),
4443 "Failed to request link speed change before state change!",
4444 result = tmp_result);
4445 }
4446
2cc0c0b5 4447 tmp_result = polaris10_freeze_sclk_mclk_dpm(hwmgr);
a23eefa2
RZ
4448 PP_ASSERT_WITH_CODE((0 == tmp_result),
4449 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4450
2cc0c0b5 4451 tmp_result = polaris10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
a23eefa2
RZ
4452 PP_ASSERT_WITH_CODE((0 == tmp_result),
4453 "Failed to populate and upload SCLK MCLK DPM levels!",
4454 result = tmp_result);
4455
2cc0c0b5 4456 tmp_result = polaris10_generate_dpm_level_enable_mask(hwmgr, input);
a23eefa2
RZ
4457 PP_ASSERT_WITH_CODE((0 == tmp_result),
4458 "Failed to generate DPM level enabled mask!",
4459 result = tmp_result);
4460
2cc0c0b5 4461 tmp_result = polaris10_update_vce_dpm(hwmgr, input);
a23eefa2
RZ
4462 PP_ASSERT_WITH_CODE((0 == tmp_result),
4463 "Failed to update VCE DPM!",
4464 result = tmp_result);
4465
2cc0c0b5 4466 tmp_result = polaris10_update_sclk_threshold(hwmgr);
a23eefa2
RZ
4467 PP_ASSERT_WITH_CODE((0 == tmp_result),
4468 "Failed to update SCLK threshold!",
4469 result = tmp_result);
4470
2cc0c0b5 4471 tmp_result = polaris10_program_mem_timing_parameters(hwmgr);
a23eefa2
RZ
4472 PP_ASSERT_WITH_CODE((0 == tmp_result),
4473 "Failed to program memory timing parameters!",
4474 result = tmp_result);
4475
83a7af6d
RZ
4476 tmp_result = polaris10_notify_smc_display(hwmgr);
4477 PP_ASSERT_WITH_CODE((0 == tmp_result),
4478 "Failed to notify smc display settings!",
4479 result = tmp_result);
4480
2cc0c0b5 4481 tmp_result = polaris10_unfreeze_sclk_mclk_dpm(hwmgr);
a23eefa2
RZ
4482 PP_ASSERT_WITH_CODE((0 == tmp_result),
4483 "Failed to unfreeze SCLK MCLK DPM!",
4484 result = tmp_result);
4485
2cc0c0b5 4486 tmp_result = polaris10_upload_dpm_level_enable_mask(hwmgr);
a23eefa2
RZ
4487 PP_ASSERT_WITH_CODE((0 == tmp_result),
4488 "Failed to upload DPM level enabled mask!",
4489 result = tmp_result);
4490
4491 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4492 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4493 tmp_result =
2cc0c0b5 4494 polaris10_notify_link_speed_change_after_state_change(hwmgr, input);
a23eefa2
RZ
4495 PP_ASSERT_WITH_CODE((0 == tmp_result),
4496 "Failed to notify link speed change after state change!",
4497 result = tmp_result);
4498 }
4499 data->apply_optimized_settings = false;
4500 return result;
4501}
4502
2cc0c0b5 4503static int polaris10_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
a23eefa2 4504{
eede5262
EH
4505 hwmgr->thermal_controller.
4506 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
a23eefa2 4507
eede5262 4508 if (phm_is_hw_access_blocked(hwmgr))
a23eefa2 4509 return 0;
eede5262
EH
4510
4511 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4512 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
a23eefa2
RZ
4513}
4514
83a7af6d 4515
2cc0c0b5 4516int polaris10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
a23eefa2
RZ
4517{
4518 PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
4519
4520 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
4521}
4522
2cc0c0b5 4523int polaris10_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
4524{
4525 uint32_t num_active_displays = 0;
4526 struct cgs_display_info info = {0};
4527 info.mode_info = NULL;
4528
4529 cgs_get_active_displays_info(hwmgr->device, &info);
4530
4531 num_active_displays = info.display_count;
4532
4533 if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
2cc0c0b5 4534 polaris10_notify_smc_display_change(hwmgr, false);
a23eefa2
RZ
4535
4536 return 0;
4537}
4538
4539/**
4540* Programs the display gap
4541*
4542* @param hwmgr the address of the powerplay hardware manager.
4543* @return always OK
4544*/
2cc0c0b5 4545int polaris10_program_display_gap(struct pp_hwmgr *hwmgr)
a23eefa2 4546{
2cc0c0b5 4547 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4548 uint32_t num_active_displays = 0;
4549 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4550 uint32_t display_gap2;
4551 uint32_t pre_vbi_time_in_us;
4552 uint32_t frame_time_in_us;
4553 uint32_t ref_clock;
4554 uint32_t refresh_rate = 0;
4555 struct cgs_display_info info = {0};
4556 struct cgs_mode_info mode_info;
4557
4558 info.mode_info = &mode_info;
4559
4560 cgs_get_active_displays_info(hwmgr->device, &info);
4561 num_active_displays = info.display_count;
4562
4563 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4564 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4565
4566 ref_clock = mode_info.ref_clock;
4567 refresh_rate = mode_info.refresh_rate;
4568
4569 if (0 == refresh_rate)
4570 refresh_rate = 60;
4571
4572 frame_time_in_us = 1000000 / refresh_rate;
4573
4574 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
83a7af6d
RZ
4575 data->frame_time_x2 = frame_time_in_us * 2 / 100;
4576
a23eefa2
RZ
4577 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4578
4579 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4580
4581 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, PreVBlankGap), 0x64);
4582
4583 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
4584
a23eefa2
RZ
4585 return 0;
4586}
4587
4588
2cc0c0b5 4589int polaris10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
a23eefa2 4590{
2cc0c0b5 4591 return polaris10_program_display_gap(hwmgr);
a23eefa2
RZ
4592}
4593
4594/**
4595* Set maximum target operating fan output RPM
4596*
4597* @param hwmgr: the address of the powerplay hardware manager.
4598* @param usMaxFanRpm: max operating fan RPM value.
4599* @return The response that came from the SMC.
4600*/
2cc0c0b5 4601static int polaris10_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
a23eefa2 4602{
eede5262
EH
4603 hwmgr->thermal_controller.
4604 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4605
4606 if (phm_is_hw_access_blocked(hwmgr))
4607 return 0;
4608
4609 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4610 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
a23eefa2
RZ
4611}
4612
2cc0c0b5 4613int polaris10_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
a23eefa2
RZ
4614 const void *thermal_interrupt_info)
4615{
4616 return 0;
4617}
4618
2cc0c0b5 4619bool polaris10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
a23eefa2 4620{
2cc0c0b5 4621 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4622 bool is_update_required = false;
4623 struct cgs_display_info info = {0, 0, NULL};
4624
4625 cgs_get_active_displays_info(hwmgr->device, &info);
4626
4627 if (data->display_timing.num_existing_displays != info.display_count)
4628 is_update_required = true;
4629/* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
4630 if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4631 cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
2cc0c0b5
FC
4632 if (min_clocks.engineClockInSR != data->display_timing.minClockInSR &&
4633 (min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
4634 data->display_timing.minClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK))
a23eefa2
RZ
4635 is_update_required = true;
4636*/
4637 return is_update_required;
4638}
4639
2cc0c0b5
FC
4640static inline bool polaris10_are_power_levels_equal(const struct polaris10_performance_level *pl1,
4641 const struct polaris10_performance_level *pl2)
a23eefa2
RZ
4642{
4643 return ((pl1->memory_clock == pl2->memory_clock) &&
4644 (pl1->engine_clock == pl2->engine_clock) &&
4645 (pl1->pcie_gen == pl2->pcie_gen) &&
4646 (pl1->pcie_lane == pl2->pcie_lane));
4647}
4648
2cc0c0b5 4649int polaris10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
a23eefa2 4650{
2cc0c0b5
FC
4651 const struct polaris10_power_state *psa = cast_const_phw_polaris10_power_state(pstate1);
4652 const struct polaris10_power_state *psb = cast_const_phw_polaris10_power_state(pstate2);
a23eefa2
RZ
4653 int i;
4654
4655 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4656 return -EINVAL;
4657
4658 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4659 if (psa->performance_level_count != psb->performance_level_count) {
4660 *equal = false;
4661 return 0;
4662 }
4663
4664 for (i = 0; i < psa->performance_level_count; i++) {
2cc0c0b5 4665 if (!polaris10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
a23eefa2
RZ
4666 /* If we have found even one performance level pair that is different the states are different. */
4667 *equal = false;
4668 return 0;
4669 }
4670 }
4671
4672 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4673 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4674 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4675 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4676
4677 return 0;
4678}
4679
2cc0c0b5 4680int polaris10_upload_mc_firmware(struct pp_hwmgr *hwmgr)
a23eefa2 4681{
2cc0c0b5 4682 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4683
4684 uint32_t vbios_version;
4685
4686 /* Read MC indirect register offset 0x9F bits [3:0] to see if VBIOS has already loaded a full version of MC ucode or not.*/
4687
4688 phm_get_mc_microcode_version(hwmgr);
4689 vbios_version = hwmgr->microcode_version_info.MC & 0xf;
4690 /* Full version of MC ucode has already been loaded. */
4691 if (vbios_version == 0) {
4692 data->need_long_memory_training = false;
4693 return 0;
4694 }
4695
83a7af6d 4696 data->need_long_memory_training = false;
a23eefa2
RZ
4697
4698/*
edf600da 4699 * PPMCME_FirmwareDescriptorEntry *pfd = NULL;
a23eefa2
RZ
4700 pfd = &tonga_mcmeFirmware;
4701 if (0 == PHM_READ_FIELD(hwmgr->device, MC_SEQ_SUP_CNTL, RUN))
2cc0c0b5 4702 polaris10_load_mc_microcode(hwmgr, pfd->dpmThreshold,
a23eefa2
RZ
4703 pfd->cfgArray, pfd->cfgSize, pfd->ioDebugArray,
4704 pfd->ioDebugSize, pfd->ucodeArray, pfd->ucodeSize);
4705*/
4706 return 0;
4707}
4708
4709/**
4710 * Read clock related registers.
4711 *
4712 * @param hwmgr the address of the powerplay hardware manager.
4713 * @return always 0
4714 */
2cc0c0b5 4715static int polaris10_read_clock_registers(struct pp_hwmgr *hwmgr)
a23eefa2 4716{
2cc0c0b5 4717 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4718
4719 data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device,
4720 CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL)
4721 & CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK;
4722
4723 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device,
4724 CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2)
4725 & CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK;
4726
4727 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device,
4728 CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4)
4729 & CG_SPLL_FUNC_CNTL_4__SPLL_SPARE_MASK;
4730
4731 return 0;
4732}
4733
4734/**
4735 * Find out if memory is GDDR5.
4736 *
4737 * @param hwmgr the address of the powerplay hardware manager.
4738 * @return always 0
4739 */
2cc0c0b5 4740static int polaris10_get_memory_type(struct pp_hwmgr *hwmgr)
a23eefa2 4741{
2cc0c0b5 4742 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4743 uint32_t temp;
4744
4745 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
4746
4747 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
4748 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
4749 MC_SEQ_MISC0_GDDR5_SHIFT));
4750
4751 return 0;
4752}
4753
4754/**
4755 * Enables Dynamic Power Management by SMC
4756 *
4757 * @param hwmgr the address of the powerplay hardware manager.
4758 * @return always 0
4759 */
2cc0c0b5 4760static int polaris10_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
4761{
4762 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4763 GENERAL_PWRMGT, STATIC_PM_EN, 1);
4764
4765 return 0;
4766}
4767
4768/**
4769 * Initialize PowerGating States for different engines
4770 *
4771 * @param hwmgr the address of the powerplay hardware manager.
4772 * @return always 0
4773 */
2cc0c0b5 4774static int polaris10_init_power_gate_state(struct pp_hwmgr *hwmgr)
a23eefa2 4775{
2cc0c0b5 4776 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4777
4778 data->uvd_power_gated = false;
4779 data->vce_power_gated = false;
4780 data->samu_power_gated = false;
4781
4782 return 0;
4783}
4784
2cc0c0b5 4785static int polaris10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
a23eefa2 4786{
2cc0c0b5 4787 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
a23eefa2
RZ
4788 data->low_sclk_interrupt_threshold = 0;
4789
4790 return 0;
4791}
4792
2cc0c0b5 4793int polaris10_setup_asic_task(struct pp_hwmgr *hwmgr)
a23eefa2
RZ
4794{
4795 int tmp_result, result = 0;
4796
2cc0c0b5 4797 polaris10_upload_mc_firmware(hwmgr);
a23eefa2 4798
2cc0c0b5 4799 tmp_result = polaris10_read_clock_registers(hwmgr);
a23eefa2
RZ
4800 PP_ASSERT_WITH_CODE((0 == tmp_result),
4801 "Failed to read clock registers!", result = tmp_result);
4802
2cc0c0b5 4803 tmp_result = polaris10_get_memory_type(hwmgr);
a23eefa2
RZ
4804 PP_ASSERT_WITH_CODE((0 == tmp_result),
4805 "Failed to get memory type!", result = tmp_result);
4806
2cc0c0b5 4807 tmp_result = polaris10_enable_acpi_power_management(hwmgr);
a23eefa2
RZ
4808 PP_ASSERT_WITH_CODE((0 == tmp_result),
4809 "Failed to enable ACPI power management!", result = tmp_result);
4810
2cc0c0b5 4811 tmp_result = polaris10_init_power_gate_state(hwmgr);
a23eefa2
RZ
4812 PP_ASSERT_WITH_CODE((0 == tmp_result),
4813 "Failed to init power gate state!", result = tmp_result);
4814
4815 tmp_result = phm_get_mc_microcode_version(hwmgr);
4816 PP_ASSERT_WITH_CODE((0 == tmp_result),
4817 "Failed to get MC microcode version!", result = tmp_result);
4818
2cc0c0b5 4819 tmp_result = polaris10_init_sclk_threshold(hwmgr);
a23eefa2
RZ
4820 PP_ASSERT_WITH_CODE((0 == tmp_result),
4821 "Failed to init sclk threshold!", result = tmp_result);
4822
4823 return result;
4824}
4825
2cc0c0b5
FC
4826static int polaris10_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
4827{
4828 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4829
a72d5604 4830 if (!data->soft_pp_table) {
c688c641
MFW
4831 data->soft_pp_table = kmemdup(hwmgr->soft_pp_table,
4832 hwmgr->soft_pp_table_size,
4833 GFP_KERNEL);
a72d5604
EH
4834 if (!data->soft_pp_table)
4835 return -ENOMEM;
a72d5604 4836 }
2cc0c0b5 4837
a72d5604
EH
4838 *table = (char *)&data->soft_pp_table;
4839
4840 return hwmgr->soft_pp_table_size;
2cc0c0b5
FC
4841}
4842
4843static int polaris10_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
4844{
4845 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4846
a72d5604
EH
4847 if (!data->soft_pp_table) {
4848 data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL);
4849 if (!data->soft_pp_table)
4850 return -ENOMEM;
4851 }
4852
4853 memcpy(data->soft_pp_table, buf, size);
4854
4855 hwmgr->soft_pp_table = data->soft_pp_table;
2cc0c0b5 4856
a72d5604 4857 /* TODO: re-init powerplay to implement modified pptable */
2cc0c0b5
FC
4858
4859 return 0;
4860}
4861
4862static int polaris10_force_clock_level(struct pp_hwmgr *hwmgr,
5632708f 4863 enum pp_clock_type type, uint32_t mask)
2cc0c0b5
FC
4864{
4865 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4866
4867 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
4868 return -EINVAL;
4869
4870 switch (type) {
4871 case PP_SCLK:
4872 if (!data->sclk_dpm_key_disabled)
4873 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4874 PPSMC_MSG_SCLKDPM_SetEnabledMask,
5632708f 4875 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
2cc0c0b5
FC
4876 break;
4877 case PP_MCLK:
4878 if (!data->mclk_dpm_key_disabled)
4879 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4880 PPSMC_MSG_MCLKDPM_SetEnabledMask,
5632708f 4881 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
2cc0c0b5
FC
4882 break;
4883 case PP_PCIE:
5632708f
EH
4884 {
4885 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4886 uint32_t level = 0;
4887
4888 while (tmp >>= 1)
4889 level++;
4890
2cc0c0b5
FC
4891 if (!data->pcie_dpm_key_disabled)
4892 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4893 PPSMC_MSG_PCIeDPM_ForceLevel,
5632708f 4894 level);
2cc0c0b5 4895 break;
5632708f 4896 }
2cc0c0b5
FC
4897 default:
4898 break;
4899 }
4900
4901 return 0;
4902}
4903
4904static uint16_t polaris10_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
4905{
4906 uint32_t speedCntl = 0;
4907
4908 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
4909 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
4910 ixPCIE_LC_SPEED_CNTL);
4911 return((uint16_t)PHM_GET_FIELD(speedCntl,
4912 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4913}
4914
4915static int polaris10_print_clock_levels(struct pp_hwmgr *hwmgr,
4916 enum pp_clock_type type, char *buf)
4917{
4918 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4919 struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4920 struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4921 struct polaris10_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4922 int i, now, size = 0;
4923 uint32_t clock, pcie_speed;
4924
4925 switch (type) {
4926 case PP_SCLK:
4927 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4928 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4929
4930 for (i = 0; i < sclk_table->count; i++) {
4931 if (clock > sclk_table->dpm_levels[i].value)
4932 continue;
4933 break;
4934 }
4935 now = i;
4936
4937 for (i = 0; i < sclk_table->count; i++)
4938 size += sprintf(buf + size, "%d: %uMhz %s\n",
4939 i, sclk_table->dpm_levels[i].value / 100,
4940 (i == now) ? "*" : "");
4941 break;
4942 case PP_MCLK:
4943 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4944 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4945
4946 for (i = 0; i < mclk_table->count; i++) {
4947 if (clock > mclk_table->dpm_levels[i].value)
4948 continue;
4949 break;
4950 }
4951 now = i;
4952
4953 for (i = 0; i < mclk_table->count; i++)
4954 size += sprintf(buf + size, "%d: %uMhz %s\n",
4955 i, mclk_table->dpm_levels[i].value / 100,
4956 (i == now) ? "*" : "");
4957 break;
4958 case PP_PCIE:
4959 pcie_speed = polaris10_get_current_pcie_speed(hwmgr);
4960 for (i = 0; i < pcie_table->count; i++) {
4961 if (pcie_speed != pcie_table->dpm_levels[i].value)
4962 continue;
4963 break;
4964 }
4965 now = i;
4966
4967 for (i = 0; i < pcie_table->count; i++)
4968 size += sprintf(buf + size, "%d: %s %s\n", i,
4969 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
4970 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
4971 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
4972 (i == now) ? "*" : "");
4973 break;
4974 default:
4975 break;
4976 }
4977 return size;
4978}
4979
9e26bbb3
RZ
4980static int polaris10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4981{
4982 if (mode) {
4983 /* stop auto-manage */
4984 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4985 PHM_PlatformCaps_MicrocodeFanControl))
4986 polaris10_fan_ctrl_stop_smc_fan_control(hwmgr);
4987 polaris10_fan_ctrl_set_static_mode(hwmgr, mode);
4988 } else
4989 /* restart auto-manage */
4990 polaris10_fan_ctrl_reset_fan_speed_to_default(hwmgr);
4991
4992 return 0;
4993}
4994
4995static int polaris10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4996{
4997 if (hwmgr->fan_ctrl_is_in_default_mode)
4998 return hwmgr->fan_ctrl_default_mode;
4999 else
5000 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5001 CG_FDO_CTRL2, FDO_PWM_MODE);
5002}
5003
2cc0c0b5
FC
5004static const struct pp_hwmgr_func polaris10_hwmgr_funcs = {
5005 .backend_init = &polaris10_hwmgr_backend_init,
5006 .backend_fini = &polaris10_hwmgr_backend_fini,
5007 .asic_setup = &polaris10_setup_asic_task,
5008 .dynamic_state_management_enable = &polaris10_enable_dpm_tasks,
5009 .apply_state_adjust_rules = polaris10_apply_state_adjust_rules,
5010 .force_dpm_level = &polaris10_force_dpm_level,
5011 .power_state_set = polaris10_set_power_state_tasks,
5012 .get_power_state_size = polaris10_get_power_state_size,
5013 .get_mclk = polaris10_dpm_get_mclk,
5014 .get_sclk = polaris10_dpm_get_sclk,
5015 .patch_boot_state = polaris10_dpm_patch_boot_state,
5016 .get_pp_table_entry = polaris10_get_pp_table_entry,
a23eefa2 5017 .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
2cc0c0b5
FC
5018 .print_current_perforce_level = polaris10_print_current_perforce_level,
5019 .powerdown_uvd = polaris10_phm_powerdown_uvd,
5020 .powergate_uvd = polaris10_phm_powergate_uvd,
5021 .powergate_vce = polaris10_phm_powergate_vce,
5022 .disable_clock_power_gating = polaris10_phm_disable_clock_power_gating,
5023 .update_clock_gatings = polaris10_phm_update_clock_gatings,
5024 .notify_smc_display_config_after_ps_adjustment = polaris10_notify_smc_display_config_after_ps_adjustment,
5025 .display_config_changed = polaris10_display_configuration_changed_task,
5026 .set_max_fan_pwm_output = polaris10_set_max_fan_pwm_output,
5027 .set_max_fan_rpm_output = polaris10_set_max_fan_rpm_output,
5028 .get_temperature = polaris10_thermal_get_temperature,
5029 .stop_thermal_controller = polaris10_thermal_stop_thermal_controller,
5030 .get_fan_speed_info = polaris10_fan_ctrl_get_fan_speed_info,
5031 .get_fan_speed_percent = polaris10_fan_ctrl_get_fan_speed_percent,
5032 .set_fan_speed_percent = polaris10_fan_ctrl_set_fan_speed_percent,
5033 .reset_fan_speed_to_default = polaris10_fan_ctrl_reset_fan_speed_to_default,
5034 .get_fan_speed_rpm = polaris10_fan_ctrl_get_fan_speed_rpm,
5035 .set_fan_speed_rpm = polaris10_fan_ctrl_set_fan_speed_rpm,
5036 .uninitialize_thermal_controller = polaris10_thermal_ctrl_uninitialize_thermal_controller,
5037 .register_internal_thermal_interrupt = polaris10_register_internal_thermal_interrupt,
5038 .check_smc_update_required_for_display_configuration = polaris10_check_smc_update_required_for_display_configuration,
5039 .check_states_equal = polaris10_check_states_equal,
9e26bbb3
RZ
5040 .set_fan_control_mode = polaris10_set_fan_control_mode,
5041 .get_fan_control_mode = polaris10_get_fan_control_mode,
2cc0c0b5
FC
5042 .get_pp_table = polaris10_get_pp_table,
5043 .set_pp_table = polaris10_set_pp_table,
5044 .force_clock_level = polaris10_force_clock_level,
5045 .print_clock_levels = polaris10_print_clock_levels,
5046 .enable_per_cu_power_gating = polaris10_phm_enable_per_cu_power_gating,
a23eefa2
RZ
5047};
5048
2cc0c0b5 5049int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr)
a23eefa2 5050{
2cc0c0b5 5051 struct polaris10_hwmgr *data;
a23eefa2 5052
2cc0c0b5 5053 data = kzalloc (sizeof(struct polaris10_hwmgr), GFP_KERNEL);
a23eefa2
RZ
5054 if (data == NULL)
5055 return -ENOMEM;
5056
5057 hwmgr->backend = data;
2cc0c0b5 5058 hwmgr->hwmgr_func = &polaris10_hwmgr_funcs;
a23eefa2 5059 hwmgr->pptable_func = &tonga_pptable_funcs;
2cc0c0b5 5060 pp_polaris10_thermal_initialize(hwmgr);
a23eefa2
RZ
5061
5062 return 0;
5063}