]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
drm/amd/powerplay: add Tonga dpm support (v3)
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_hwmgr.c
CommitLineData
c82baa28 1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
26#include "linux/delay.h"
27#include "pp_acpi.h"
28#include "hwmgr.h"
29#include <atombios.h>
30#include "tonga_hwmgr.h"
31#include "pptable.h"
32#include "processpptables.h"
33#include "tonga_processpptables.h"
34#include "tonga_pptable.h"
35#include "pp_debug.h"
36#include "tonga_ppsmc.h"
37#include "cgs_common.h"
38#include "pppcielanes.h"
39#include "tonga_dyn_defaults.h"
40#include "smumgr.h"
41#include "tonga_smumgr.h"
42
43#include "smu/smu_7_1_2_d.h"
44#include "smu/smu_7_1_2_sh_mask.h"
45
46#include "gmc/gmc_8_1_d.h"
47#include "gmc/gmc_8_1_sh_mask.h"
48
49#include "bif/bif_5_0_d.h"
50#include "bif/bif_5_0_sh_mask.h"
51
52#define MC_CG_ARB_FREQ_F0 0x0a
53#define MC_CG_ARB_FREQ_F1 0x0b
54#define MC_CG_ARB_FREQ_F2 0x0c
55#define MC_CG_ARB_FREQ_F3 0x0d
56
57#define MC_CG_SEQ_DRAMCONF_S0 0x05
58#define MC_CG_SEQ_DRAMCONF_S1 0x06
59#define MC_CG_SEQ_YCLK_SUSPEND 0x04
60#define MC_CG_SEQ_YCLK_RESUME 0x0a
61
62#define PCIE_BUS_CLK 10000
63#define TCLK (PCIE_BUS_CLK / 10)
64
65#define SMC_RAM_END 0x40000
66#define SMC_CG_IND_START 0xc0030000
67#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/
68
69#define VOLTAGE_SCALE 4
70#define VOLTAGE_VID_OFFSET_SCALE1 625
71#define VOLTAGE_VID_OFFSET_SCALE2 100
72
73#define VDDC_VDDCI_DELTA 200
74#define VDDC_VDDGFX_DELTA 300
75
76#define MC_SEQ_MISC0_GDDR5_SHIFT 28
77#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
78#define MC_SEQ_MISC0_GDDR5_VALUE 5
79
80typedef uint32_t PECI_RegistryValue;
81
82/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
83uint16_t PP_ClockStretcherLookupTable[2][4] = {
84 {600, 1050, 3, 0},
85 {600, 1050, 6, 1} };
86
87/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
88uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
89 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
90 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
91
92/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
93uint8_t PP_ClockStretchAmountConversion[2][6] = {
94 {0, 1, 3, 2, 4, 5},
95 {0, 2, 4, 5, 6, 5} };
96
97/* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
98enum DPM_EVENT_SRC {
99 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
100 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
101 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
102 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
103 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
104};
105typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
106
107enum DISPLAY_GAP {
108 DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */
109 DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */
110 DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. (Note that HW may deassert WM in VBI depending on DC_STUTTER_CNTL.) */
111 DISPLAY_GAP_IGNORE = 3 /* Do not wait. */
112};
113typedef enum DISPLAY_GAP DISPLAY_GAP;
114
115const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
116
117struct tonga_power_state *cast_phw_tonga_power_state(
118 struct pp_hw_power_state *hw_ps)
119{
120 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
121 "Invalid Powerstate Type!",
122 return NULL;);
123
124 return (struct tonga_power_state *)hw_ps;
125}
126
127const struct tonga_power_state *cast_const_phw_tonga_power_state(
128 const struct pp_hw_power_state *hw_ps)
129{
130 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
131 "Invalid Powerstate Type!",
132 return NULL;);
133
134 return (const struct tonga_power_state *)hw_ps;
135}
136
137int tonga_add_voltage(struct pp_hwmgr *hwmgr,
138 phm_ppt_v1_voltage_lookup_table *look_up_table,
139 phm_ppt_v1_voltage_lookup_record *record)
140{
141 uint32_t i;
142 PP_ASSERT_WITH_CODE((NULL != look_up_table),
143 "Lookup Table empty.", return -1;);
144 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
145 "Lookup Table empty.", return -1;);
146 PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
147 "Lookup Table is full.", return -1;);
148
149 /* This is to avoid entering duplicate calculated records. */
150 for (i = 0; i < look_up_table->count; i++) {
151 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
152 if (look_up_table->entries[i].us_calculated == 1)
153 return 0;
154 else
155 break;
156 }
157 }
158
159 look_up_table->entries[i].us_calculated = 1;
160 look_up_table->entries[i].us_vdd = record->us_vdd;
161 look_up_table->entries[i].us_cac_low = record->us_cac_low;
162 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
163 look_up_table->entries[i].us_cac_high = record->us_cac_high;
164 /* Only increment the count when we're appending, not replacing duplicate entry. */
165 if (i == look_up_table->count)
166 look_up_table->count++;
167
168 return 0;
169}
170
171uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
172 uint32_t voltage)
173{
174 uint8_t count = (uint8_t) (voltage_table->count);
175 uint8_t i = 0;
176
177 PP_ASSERT_WITH_CODE((NULL != voltage_table),
178 "Voltage Table empty.", return 0;);
179 PP_ASSERT_WITH_CODE((0 != count),
180 "Voltage Table empty.", return 0;);
181
182 for (i = 0; i < count; i++) {
183 /* find first voltage bigger than requested */
184 if (voltage_table->entries[i].value >= voltage)
185 return i;
186 }
187
188 /* voltage is bigger than max voltage in the table */
189 return i - 1;
190}
191
192/**
193 * @brief PhwTonga_GetVoltageOrder
194 * Returns index of requested voltage record in lookup(table)
195 * @param hwmgr - pointer to hardware manager
196 * @param lookupTable - lookup list to search in
197 * @param voltage - voltage to look for
198 * @return 0 on success
199 */
200uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
201 uint16_t voltage)
202{
203 uint8_t count = (uint8_t) (look_up_table->count);
204 uint8_t i;
205
206 PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
207 PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
208
209 for (i = 0; i < count; i++) {
210 /* find first voltage equal or bigger than requested */
211 if (look_up_table->entries[i].us_vdd >= voltage)
212 return i;
213 }
214
215 /* voltage is bigger than max voltage in the table */
216 return i-1;
217}
218
219bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
220{
221 /*
222 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
223 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
224 * whereas voltage control is a fundemental change that will not be disabled
225 */
226
227 return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
228 FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
229}
230
231/**
232 * Re-generate the DPM level mask value
233 * @param hwmgr the address of the hardware manager
234 */
235static uint32_t tonga_get_dpm_level_enable_mask_value(
236 struct tonga_single_dpm_table * dpm_table)
237{
238 uint32_t i;
239 uint32_t mask_value = 0;
240
241 for (i = dpm_table->count; i > 0; i--) {
242 mask_value = mask_value << 1;
243
244 if (dpm_table->dpm_levels[i-1].enabled)
245 mask_value |= 0x1;
246 else
247 mask_value &= 0xFFFFFFFE;
248 }
249 return mask_value;
250}
251
252/**
253 * Retrieve DPM default values from registry (if available)
254 *
255 * @param hwmgr the address of the powerplay hardware manager.
256 */
257void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
258{
259 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
260 phw_tonga_ulv_parm *ulv = &(data->ulv);
261 uint32_t tmp;
262
263 ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
264 data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
265 data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
266 data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
267 data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
268 data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
269 data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
270 data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
271 data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
272
273 data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
274 data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
275
276 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
277 PHM_PlatformCaps_ABM);
278 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
279 PHM_PlatformCaps_NonABMSupportInPPLib);
280
281 tmp = 0;
282 if (tmp == 0)
283 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
284 PHM_PlatformCaps_DynamicACTiming);
285
286 tmp = 0;
287 if (0 != tmp)
288 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
289 PHM_PlatformCaps_DisableMemoryTransition);
290
291 data->mclk_strobe_mode_threshold = 40000;
292 data->mclk_stutter_mode_threshold = 30000;
293 data->mclk_edc_enable_threshold = 40000;
294 data->mclk_edc_wr_enable_threshold = 40000;
295
296 tmp = 0;
297 if (tmp != 0)
298 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
299 PHM_PlatformCaps_DisableMCLS);
300
301 data->pcie_gen_performance.max = PP_PCIEGen1;
302 data->pcie_gen_performance.min = PP_PCIEGen3;
303 data->pcie_gen_power_saving.max = PP_PCIEGen1;
304 data->pcie_gen_power_saving.min = PP_PCIEGen3;
305
306 data->pcie_lane_performance.max = 0;
307 data->pcie_lane_performance.min = 16;
308 data->pcie_lane_power_saving.max = 0;
309 data->pcie_lane_power_saving.min = 16;
310
311 tmp = 0;
312
313 if (tmp)
314 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
315 PHM_PlatformCaps_SclkThrottleLowNotification);
316
317 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
318 PHM_PlatformCaps_DynamicUVDState);
319
320}
321
322int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
323{
324 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
325
326 int result = 0;
327 uint32_t low_sclk_interrupt_threshold = 0;
328
329 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
330 PHM_PlatformCaps_SclkThrottleLowNotification)
331 && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
332 data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
333 low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
334
335 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
336
337 result = tonga_copy_bytes_to_smc(
338 hwmgr->smumgr,
339 data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
340 LowSclkInterruptThreshold),
341 (uint8_t *)&low_sclk_interrupt_threshold,
342 sizeof(uint32_t),
343 data->sram_end
344 );
345 }
346
347 return result;
348}
349
350/**
351 * Find SCLK value that is associated with specified virtual_voltage_Id.
352 *
353 * @param hwmgr the address of the powerplay hardware manager.
354 * @param virtual_voltage_Id voltageId to look for.
355 * @param sclk output value .
356 * @return always 0 if success and 2 if association not found
357 */
358static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
359 phm_ppt_v1_voltage_lookup_table *lookup_table,
360 uint16_t virtual_voltage_id, uint32_t *sclk)
361{
362 uint8_t entryId;
363 uint8_t voltageId;
364 struct phm_ppt_v1_information *pptable_info =
365 (struct phm_ppt_v1_information *)(hwmgr->pptable);
366
367 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
368
369 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
370 for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
371 voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
372 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
373 break;
374 }
375
376 PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
377 "Can't find requested voltage id in vdd_dep_on_sclk table!",
378 return -1;
379 );
380
381 *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
382
383 return 0;
384}
385
386/**
387 * Get Leakage VDDC based on leakage ID.
388 *
389 * @param hwmgr the address of the powerplay hardware manager.
390 * @return 2 if vddgfx returned is greater than 2V or if BIOS
391 */
392int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
393{
394 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
395 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
396 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
397 uint16_t virtual_voltage_id;
398 uint16_t vddc = 0;
399 uint16_t vddgfx = 0;
400 uint16_t i, j;
401 uint32_t sclk = 0;
402
403 /* retrieve voltage for leakage ID (0xff01 + i) */
404 for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
405 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
406
407 /* in split mode we should have only vddgfx EVV leakages */
408 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
409 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
410 pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
411 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
412 PHM_PlatformCaps_ClockStretcher)) {
413 for (j = 1; j < sclk_table->count; j++) {
414 if (sclk_table->entries[j].clk == sclk &&
415 sclk_table->entries[j].cks_enable == 0) {
416 sclk += 5000;
417 break;
418 }
419 }
420 }
421 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
422 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
423 virtual_voltage_id, &vddgfx),
424 "Error retrieving EVV voltage value!", continue);
425
426 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
427 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
428
429 /* the voltage should not be zero nor equal to leakage ID */
430 if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
431 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
432 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
433 data->vddcgfx_leakage.count++;
434 }
435 }
436 } else {
437 /* in merged mode we have only vddc EVV leakages */
438 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
439 pptable_info->vddc_lookup_table,
440 virtual_voltage_id, &sclk)) {
441 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
442 (hwmgr, VOLTAGE_TYPE_VDDC, sclk,
443 virtual_voltage_id, &vddc),
444 "Error retrieving EVV voltage value!", continue);
445
446 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
447 if (vddc > 2000)
448 printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n");
449
450 /* the voltage should not be zero nor equal to leakage ID */
451 if (vddc != 0 && vddc != virtual_voltage_id) {
452 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
453 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
454 data->vddc_leakage.count++;
455 }
456 }
457 }
458 }
459
460 return 0;
461}
462
463int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
464{
465 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
466
467 /* enable SCLK dpm */
468 if (0 == data->sclk_dpm_key_disabled) {
469 PP_ASSERT_WITH_CODE(
470 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
471 PPSMC_MSG_DPM_Enable)),
472 "Failed to enable SCLK DPM during DPM Start Function!",
473 return -1);
474 }
475
476 /* enable MCLK dpm */
477 if (0 == data->mclk_dpm_key_disabled) {
478 PP_ASSERT_WITH_CODE(
479 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
480 PPSMC_MSG_MCLKDPM_Enable)),
481 "Failed to enable MCLK DPM during DPM Start Function!",
482 return -1);
483
484 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
485
486 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
487 ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
488 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
489 ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
490 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
491 ixLCAC_CPL_CNTL, 0x100005);/*Read */
492
493 udelay(10);
494
495 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
496 ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
497 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
498 ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
499 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
500 ixLCAC_CPL_CNTL, 0x500005);/* write */
501
502 }
503
504 return 0;
505}
506
507int tonga_start_dpm(struct pp_hwmgr *hwmgr)
508{
509 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
510
511 /* enable general power management */
512 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
513 /* enable sclk deep sleep */
514 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
515
516 /* prepare for PCIE DPM */
517 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
518 offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
519
520 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
521
522 PP_ASSERT_WITH_CODE(
523 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
524 PPSMC_MSG_Voltage_Cntl_Enable)),
525 "Failed to enable voltage DPM during DPM Start Function!",
526 return -1);
527
528 if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
529 PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
530 }
531
532 /* enable PCIE dpm */
533 if (0 == data->pcie_dpm_key_disabled) {
534 PP_ASSERT_WITH_CODE(
535 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
536 PPSMC_MSG_PCIeDPM_Enable)),
537 "Failed to enable pcie DPM during DPM Start Function!",
538 return -1
539 );
540 }
541
542 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
543 PHM_PlatformCaps_Falcon_QuickTransition)) {
544 smum_send_msg_to_smc(hwmgr->smumgr,
545 PPSMC_MSG_EnableACDCGPIOInterrupt);
546 }
547
548 return 0;
549}
550
551int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
552{
553 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
554
555 /* disable SCLK dpm */
556 if (0 == data->sclk_dpm_key_disabled) {
557 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
558 PP_ASSERT_WITH_CODE(
559 (0 == tonga_is_dpm_running(hwmgr)),
560 "Trying to Disable SCLK DPM when DPM is disabled",
561 return -1
562 );
563
564 PP_ASSERT_WITH_CODE(
565 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
566 PPSMC_MSG_DPM_Disable)),
567 "Failed to disable SCLK DPM during DPM stop Function!",
568 return -1);
569 }
570
571 /* disable MCLK dpm */
572 if (0 == data->mclk_dpm_key_disabled) {
573 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
574 PP_ASSERT_WITH_CODE(
575 (0 == tonga_is_dpm_running(hwmgr)),
576 "Trying to Disable MCLK DPM when DPM is disabled",
577 return -1
578 );
579
580 PP_ASSERT_WITH_CODE(
581 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
582 PPSMC_MSG_MCLKDPM_Disable)),
583 "Failed to Disable MCLK DPM during DPM stop Function!",
584 return -1);
585 }
586
587 return 0;
588}
589
590int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
591{
592 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
593
594 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
595 /* disable sclk deep sleep*/
596 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
597
598 /* disable PCIE dpm */
599 if (0 == data->pcie_dpm_key_disabled) {
600 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
601 PP_ASSERT_WITH_CODE(
602 (0 == tonga_is_dpm_running(hwmgr)),
603 "Trying to Disable PCIE DPM when DPM is disabled",
604 return -1
605 );
606 PP_ASSERT_WITH_CODE(
607 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
608 PPSMC_MSG_PCIeDPM_Disable)),
609 "Failed to disable pcie DPM during DPM stop Function!",
610 return -1);
611 }
612
613 if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
614 PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
615
616 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
617 PP_ASSERT_WITH_CODE(
618 (0 == tonga_is_dpm_running(hwmgr)),
619 "Trying to Disable Voltage CNTL when DPM is disabled",
620 return -1
621 );
622
623 PP_ASSERT_WITH_CODE(
624 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
625 PPSMC_MSG_Voltage_Cntl_Disable)),
626 "Failed to disable voltage DPM during DPM stop Function!",
627 return -1);
628
629 return 0;
630}
631
632int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
633{
634 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
635
636 return 0;
637}
638
639/**
640 * Send a message to the SMC and return a parameter
641 *
642 * @param hwmgr: the address of the powerplay hardware manager.
643 * @param msg: the message to send.
644 * @param parameter: pointer to the received parameter
645 * @return The response that came from the SMC.
646 */
647PPSMC_Result tonga_send_msg_to_smc_return_parameter(
648 struct pp_hwmgr *hwmgr,
649 PPSMC_Msg msg,
650 uint32_t *parameter)
651{
652 int result;
653
654 result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
655
656 if ((0 == result) && parameter) {
657 *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
658 }
659
660 return result;
661}
662
663/**
664 * force DPM power State
665 *
666 * @param hwmgr: the address of the powerplay hardware manager.
667 * @param n : DPM level
668 * @return The response that came from the SMC.
669 */
670int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
671{
672 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
673 uint32_t level_mask = 1 << n;
674
675 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
676 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
677 "Trying to force SCLK when DPM is disabled", return -1;);
678 if (0 == data->sclk_dpm_key_disabled)
679 return (0 == smum_send_msg_to_smc_with_parameter(
680 hwmgr->smumgr,
681 (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
682 level_mask) ? 0 : 1);
683
684 return 0;
685}
686
687/**
688 * force DPM power State
689 *
690 * @param hwmgr: the address of the powerplay hardware manager.
691 * @param n : DPM level
692 * @return The response that came from the SMC.
693 */
694int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
695{
696 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
697 uint32_t level_mask = 1 << n;
698
699 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
700 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
701 "Trying to Force MCLK when DPM is disabled", return -1;);
702 if (0 == data->mclk_dpm_key_disabled)
703 return (0 == smum_send_msg_to_smc_with_parameter(
704 hwmgr->smumgr,
705 (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
706 level_mask) ? 0 : 1);
707
708 return 0;
709}
710
711/**
712 * force DPM power State
713 *
714 * @param hwmgr: the address of the powerplay hardware manager.
715 * @param n : DPM level
716 * @return The response that came from the SMC.
717 */
718int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
719{
720 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
721
722 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
723 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
724 "Trying to Force PCIE level when DPM is disabled", return -1;);
725 if (0 == data->pcie_dpm_key_disabled)
726 return (0 == smum_send_msg_to_smc_with_parameter(
727 hwmgr->smumgr,
728 (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
729 n) ? 0 : 1);
730
731 return 0;
732}
733
734/**
735 * Set the initial state by calling SMC to switch to this state directly
736 *
737 * @param hwmgr the address of the powerplay hardware manager.
738 * @return always 0
739 */
740int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
741{
742 /*
743 * SMC only stores one state that SW will ask to switch too,
744 * so we switch the the just uploaded one
745 */
746 return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
747}
748
749/**
750 * Get the location of various tables inside the FW image.
751 *
752 * @param hwmgr the address of the powerplay hardware manager.
753 * @return always 0
754 */
755int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
756{
757 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
758 struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
759
760 uint32_t tmp;
761 int result;
762 bool error = 0;
763
764 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
765 SMU72_FIRMWARE_HEADER_LOCATION +
766 offsetof(SMU72_Firmware_Header, DpmTable),
767 &tmp, data->sram_end);
768
769 if (0 == result) {
770 data->dpm_table_start = tmp;
771 }
772
773 error |= (0 != result);
774
775 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
776 SMU72_FIRMWARE_HEADER_LOCATION +
777 offsetof(SMU72_Firmware_Header, SoftRegisters),
778 &tmp, data->sram_end);
779
780 if (0 == result) {
781 data->soft_regs_start = tmp;
782 tonga_smu->ulSoftRegsStart = tmp;
783 }
784
785 error |= (0 != result);
786
787
788 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
789 SMU72_FIRMWARE_HEADER_LOCATION +
790 offsetof(SMU72_Firmware_Header, mcRegisterTable),
791 &tmp, data->sram_end);
792
793 if (0 == result) {
794 data->mc_reg_table_start = tmp;
795 }
796
797 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
798 SMU72_FIRMWARE_HEADER_LOCATION +
799 offsetof(SMU72_Firmware_Header, FanTable),
800 &tmp, data->sram_end);
801
802 if (0 == result) {
803 data->fan_table_start = tmp;
804 }
805
806 error |= (0 != result);
807
808 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
809 SMU72_FIRMWARE_HEADER_LOCATION +
810 offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
811 &tmp, data->sram_end);
812
813 if (0 == result) {
814 data->arb_table_start = tmp;
815 }
816
817 error |= (0 != result);
818
819
820 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
821 SMU72_FIRMWARE_HEADER_LOCATION +
822 offsetof(SMU72_Firmware_Header, Version),
823 &tmp, data->sram_end);
824
825 if (0 == result) {
826 hwmgr->microcode_version_info.SMC = tmp;
827 }
828
829 error |= (0 != result);
830
831 return error ? 1 : 0;
832}
833
834/**
835 * Read clock related registers.
836 *
837 * @param hwmgr the address of the powerplay hardware manager.
838 * @return always 0
839 */
840int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
841{
842 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
843
844 data->clock_registers.vCG_SPLL_FUNC_CNTL =
845 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
846 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
847 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
848 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
849 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
850 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
851 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
852 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
853 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
854 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
855 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
856 data->clock_registers.vDLL_CNTL =
857 cgs_read_register(hwmgr->device, mmDLL_CNTL);
858 data->clock_registers.vMCLK_PWRMGT_CNTL =
859 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
860 data->clock_registers.vMPLL_AD_FUNC_CNTL =
861 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
862 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
863 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
864 data->clock_registers.vMPLL_FUNC_CNTL =
865 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
866 data->clock_registers.vMPLL_FUNC_CNTL_1 =
867 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
868 data->clock_registers.vMPLL_FUNC_CNTL_2 =
869 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
870 data->clock_registers.vMPLL_SS1 =
871 cgs_read_register(hwmgr->device, mmMPLL_SS1);
872 data->clock_registers.vMPLL_SS2 =
873 cgs_read_register(hwmgr->device, mmMPLL_SS2);
874
875 return 0;
876}
877
878/**
879 * Find out if memory is GDDR5.
880 *
881 * @param hwmgr the address of the powerplay hardware manager.
882 * @return always 0
883 */
884int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
885{
886 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
887 uint32_t temp;
888
889 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
890
891 data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
892 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
893 MC_SEQ_MISC0_GDDR5_SHIFT));
894
895 return 0;
896}
897
898/**
899 * Enables Dynamic Power Management by SMC
900 *
901 * @param hwmgr the address of the powerplay hardware manager.
902 * @return always 0
903 */
904int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
905{
906 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
907
908 return 0;
909}
910
911/**
912 * Initialize PowerGating States for different engines
913 *
914 * @param hwmgr the address of the powerplay hardware manager.
915 * @return always 0
916 */
917int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
918{
919 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
920
921 data->uvd_power_gated = 0;
922 data->vce_power_gated = 0;
923 data->samu_power_gated = 0;
924 data->acp_power_gated = 0;
925 data->pg_acp_init = 1;
926
927 return 0;
928}
929
930/**
931 * Checks if DPM is enabled
932 *
933 * @param hwmgr the address of the powerplay hardware manager.
934 * @return always 0
935 */
936int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
937{
938 /*
939 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
940 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
941 * whereas voltage control is a fundemental change that will not be disabled
942 */
943 return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
944}
945
946/**
947 * Checks if DPM is stopped
948 *
949 * @param hwmgr the address of the powerplay hardware manager.
950 * @return always 0
951 */
952int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
953{
954 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
955
956 if (0 != tonga_is_dpm_running(hwmgr)) {
957 /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
958 if (!data->dpm_table_start) {
959 return 1;
960 }
961 }
962
963 return 0;
964}
965
966/**
967 * Remove repeated voltage values and create table with unique values.
968 *
969 * @param hwmgr the address of the powerplay hardware manager.
970 * @param voltage_table the pointer to changing voltage table
971 * @return 1 in success
972 */
973
974static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
975 pp_atomctrl_voltage_table *voltage_table)
976{
977 uint32_t table_size, i, j;
978 uint16_t vvalue;
979 bool bVoltageFound = 0;
980 pp_atomctrl_voltage_table *table;
981
982 PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
983 table_size = sizeof(pp_atomctrl_voltage_table);
984 table = kzalloc(table_size, GFP_KERNEL);
985
986 if (NULL == table)
987 return -ENOMEM;
988
989 memset(table, 0x00, table_size);
990 table->mask_low = voltage_table->mask_low;
991 table->phase_delay = voltage_table->phase_delay;
992
993 for (i = 0; i < voltage_table->count; i++) {
994 vvalue = voltage_table->entries[i].value;
995 bVoltageFound = 0;
996
997 for (j = 0; j < table->count; j++) {
998 if (vvalue == table->entries[j].value) {
999 bVoltageFound = 1;
1000 break;
1001 }
1002 }
1003
1004 if (!bVoltageFound) {
1005 table->entries[table->count].value = vvalue;
1006 table->entries[table->count].smio_low =
1007 voltage_table->entries[i].smio_low;
1008 table->count++;
1009 }
1010 }
1011
1012 memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
1013
1014 kfree(table);
1015
1016 return 0;
1017}
1018
1019static int tonga_get_svi2_vdd_ci_voltage_table(
1020 struct pp_hwmgr *hwmgr,
1021 phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
1022{
1023 uint32_t i;
1024 int result;
1025 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1026 pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
1027
1028 PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
1029 "Voltage Dependency Table empty.", return -1;);
1030
1031 vddci_voltage_table->mask_low = 0;
1032 vddci_voltage_table->phase_delay = 0;
1033 vddci_voltage_table->count = voltage_dependency_table->count;
1034
1035 for (i = 0; i < voltage_dependency_table->count; i++) {
1036 vddci_voltage_table->entries[i].value =
1037 voltage_dependency_table->entries[i].vddci;
1038 vddci_voltage_table->entries[i].smio_low = 0;
1039 }
1040
1041 result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
1042 PP_ASSERT_WITH_CODE((0 == result),
1043 "Failed to trim VDDCI table.", return result;);
1044
1045 return 0;
1046}
1047
1048
1049
1050static int tonga_get_svi2_vdd_voltage_table(
1051 struct pp_hwmgr *hwmgr,
1052 phm_ppt_v1_voltage_lookup_table *look_up_table,
1053 pp_atomctrl_voltage_table *voltage_table)
1054{
1055 uint8_t i = 0;
1056
1057 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1058 "Voltage Lookup Table empty.", return -1;);
1059
1060 voltage_table->mask_low = 0;
1061 voltage_table->phase_delay = 0;
1062
1063 voltage_table->count = look_up_table->count;
1064
1065 for (i = 0; i < voltage_table->count; i++) {
1066 voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
1067 voltage_table->entries[i].smio_low = 0;
1068 }
1069
1070 return 0;
1071}
1072
1073/*
1074 * -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
1075 * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
1076 */
1077
1078static void tonga_trim_voltage_table_to_fit_state_table(
1079 struct pp_hwmgr *hwmgr,
1080 uint32_t max_voltage_steps,
1081 pp_atomctrl_voltage_table *voltage_table)
1082{
1083 unsigned int i, diff;
1084
1085 if (voltage_table->count <= max_voltage_steps) {
1086 return;
1087 }
1088
1089 diff = voltage_table->count - max_voltage_steps;
1090
1091 for (i = 0; i < max_voltage_steps; i++) {
1092 voltage_table->entries[i] = voltage_table->entries[i + diff];
1093 }
1094
1095 voltage_table->count = max_voltage_steps;
1096
1097 return;
1098}
1099
1100/**
1101 * Create Voltage Tables.
1102 *
1103 * @param hwmgr the address of the powerplay hardware manager.
1104 * @return always 0
1105 */
1106int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1107{
1108 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1109 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1110 int result;
1111
1112 /* MVDD has only GPIO voltage control */
1113 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1114 result = atomctrl_get_voltage_table_v3(hwmgr,
1115 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
1116 PP_ASSERT_WITH_CODE((0 == result),
1117 "Failed to retrieve MVDD table.", return result;);
1118 }
1119
1120 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1121 /* GPIO voltage */
1122 result = atomctrl_get_voltage_table_v3(hwmgr,
1123 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
1124 PP_ASSERT_WITH_CODE((0 == result),
1125 "Failed to retrieve VDDCI table.", return result;);
1126 } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1127 /* SVI2 voltage */
1128 result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
1129 pptable_info->vdd_dep_on_mclk);
1130 PP_ASSERT_WITH_CODE((0 == result),
1131 "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
1132 }
1133
1134 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1135 /* VDDGFX has only SVI2 voltage control */
1136 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1137 pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
1138 PP_ASSERT_WITH_CODE((0 == result),
1139 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
1140 }
1141
1142 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1143 /* VDDC has only SVI2 voltage control */
1144 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1145 pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
1146 PP_ASSERT_WITH_CODE((0 == result),
1147 "Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
1148 }
1149
1150 PP_ASSERT_WITH_CODE(
1151 (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
1152 "Too many voltage values for VDDC. Trimming to fit state table.",
1153 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1154 SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
1155 );
1156
1157 PP_ASSERT_WITH_CODE(
1158 (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
1159 "Too many voltage values for VDDGFX. Trimming to fit state table.",
1160 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1161 SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
1162 );
1163
1164 PP_ASSERT_WITH_CODE(
1165 (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
1166 "Too many voltage values for VDDCI. Trimming to fit state table.",
1167 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1168 SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
1169 );
1170
1171 PP_ASSERT_WITH_CODE(
1172 (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
1173 "Too many voltage values for MVDD. Trimming to fit state table.",
1174 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1175 SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
1176 );
1177
1178 return 0;
1179}
1180
1181/**
1182 * Vddc table preparation for SMC.
1183 *
1184 * @param hwmgr the address of the hardware manager
1185 * @param table the SMC DPM table structure to be populated
1186 * @return always 0
1187 */
1188static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
1189 SMU72_Discrete_DpmTable *table)
1190{
1191 unsigned int count;
1192 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1193
1194 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1195 table->VddcLevelCount = data->vddc_voltage_table.count;
1196 for (count = 0; count < table->VddcLevelCount; count++) {
1197 table->VddcTable[count] =
1198 PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
1199 }
1200 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
1201 }
1202 return 0;
1203}
1204
1205/**
1206 * VddGfx table preparation for SMC.
1207 *
1208 * @param hwmgr the address of the hardware manager
1209 * @param table the SMC DPM table structure to be populated
1210 * @return always 0
1211 */
1212static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
1213 SMU72_Discrete_DpmTable *table)
1214{
1215 unsigned int count;
1216 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1217
1218 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1219 table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
1220 for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
1221 table->VddGfxTable[count] =
1222 PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
1223 }
1224 CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
1225 }
1226 return 0;
1227}
1228
1229/**
1230 * Vddci table preparation for SMC.
1231 *
1232 * @param *hwmgr The address of the hardware manager.
1233 * @param *table The SMC DPM table structure to be populated.
1234 * @return 0
1235 */
1236static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
1237 SMU72_Discrete_DpmTable *table)
1238{
1239 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1240 uint32_t count;
1241
1242 table->VddciLevelCount = data->vddci_voltage_table.count;
1243 for (count = 0; count < table->VddciLevelCount; count++) {
1244 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1245 table->VddciTable[count] =
1246 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1247 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1248 table->SmioTable1.Pattern[count].Voltage =
1249 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1250 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
1251 table->SmioTable1.Pattern[count].Smio =
1252 (uint8_t) count;
1253 table->Smio[count] |=
1254 data->vddci_voltage_table.entries[count].smio_low;
1255 table->VddciTable[count] =
1256 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1257 }
1258 }
1259
1260 table->SmioMask1 = data->vddci_voltage_table.mask_low;
1261 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
1262
1263 return 0;
1264}
1265
1266/**
1267 * Mvdd table preparation for SMC.
1268 *
1269 * @param *hwmgr The address of the hardware manager.
1270 * @param *table The SMC DPM table structure to be populated.
1271 * @return 0
1272 */
1273static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
1274 SMU72_Discrete_DpmTable *table)
1275{
1276 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1277 uint32_t count;
1278
1279 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1280 table->MvddLevelCount = data->mvdd_voltage_table.count;
1281 for (count = 0; count < table->MvddLevelCount; count++) {
1282 table->SmioTable2.Pattern[count].Voltage =
1283 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
1284 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
1285 table->SmioTable2.Pattern[count].Smio =
1286 (uint8_t) count;
1287 table->Smio[count] |=
1288 data->mvdd_voltage_table.entries[count].smio_low;
1289 }
1290 table->SmioMask2 = data->vddci_voltage_table.mask_low;
1291
1292 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
1293 }
1294
1295 return 0;
1296}
1297
1298/**
1299 * Convert a voltage value in mv unit to VID number required by SMU firmware
1300 */
1301static uint8_t convert_to_vid(uint16_t vddc)
1302{
1303 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
1304}
1305
1306
1307/**
1308 * Preparation of vddc and vddgfx CAC tables for SMC.
1309 *
1310 * @param hwmgr the address of the hardware manager
1311 * @param table the SMC DPM table structure to be populated
1312 * @return always 0
1313 */
1314static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
1315 SMU72_Discrete_DpmTable *table)
1316{
1317 uint32_t count;
1318 uint8_t index;
1319 int result = 0;
1320 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1321 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1322 struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
1323 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
1324
1325 /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
1326 uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
1327 uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
1328
1329 for (count = 0; count < vddcLevelCount; count++) {
1330 /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
1331 index = tonga_get_voltage_index(vddc_lookup_table,
1332 data->vddc_voltage_table.entries[count].value);
1333 table->BapmVddcVidLoSidd[count] =
1334 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1335 table->BapmVddcVidHiSidd[count] =
1336 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1337 table->BapmVddcVidHiSidd2[count] =
1338 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1339 }
1340
1341 if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
1342 /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
1343 for (count = 0; count < vddgfxLevelCount; count++) {
1344 index = tonga_get_voltage_index(vddgfx_lookup_table,
1345 data->vddgfx_voltage_table.entries[count].value);
1346 table->BapmVddGfxVidLoSidd[count] =
1347 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
1348 table->BapmVddGfxVidHiSidd[count] =
1349 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
1350 table->BapmVddGfxVidHiSidd2[count] =
1351 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
1352 }
1353 } else {
1354 for (count = 0; count < vddcLevelCount; count++) {
1355 index = tonga_get_voltage_index(vddc_lookup_table,
1356 data->vddc_voltage_table.entries[count].value);
1357 table->BapmVddGfxVidLoSidd[count] =
1358 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1359 table->BapmVddGfxVidHiSidd[count] =
1360 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1361 table->BapmVddGfxVidHiSidd2[count] =
1362 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1363 }
1364 }
1365
1366 return result;
1367}
1368
1369
1370/**
1371 * Preparation of voltage tables for SMC.
1372 *
1373 * @param hwmgr the address of the hardware manager
1374 * @param table the SMC DPM table structure to be populated
1375 * @return always 0
1376 */
1377
1378int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1379 SMU72_Discrete_DpmTable *table)
1380{
1381 int result;
1382
1383 result = tonga_populate_smc_vddc_table(hwmgr, table);
1384 PP_ASSERT_WITH_CODE(0 == result,
1385 "can not populate VDDC voltage table to SMC", return -1);
1386
1387 result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
1388 PP_ASSERT_WITH_CODE(0 == result,
1389 "can not populate VDDCI voltage table to SMC", return -1);
1390
1391 result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
1392 PP_ASSERT_WITH_CODE(0 == result,
1393 "can not populate VDDGFX voltage table to SMC", return -1);
1394
1395 result = tonga_populate_smc_mvdd_table(hwmgr, table);
1396 PP_ASSERT_WITH_CODE(0 == result,
1397 "can not populate MVDD voltage table to SMC", return -1);
1398
1399 result = tonga_populate_cac_tables(hwmgr, table);
1400 PP_ASSERT_WITH_CODE(0 == result,
1401 "can not populate CAC voltage tables to SMC", return -1);
1402
1403 return 0;
1404}
1405
1406/**
1407 * Populates the SMC VRConfig field in DPM table.
1408 *
1409 * @param hwmgr the address of the hardware manager
1410 * @param table the SMC DPM table structure to be populated
1411 * @return always 0
1412 */
1413static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1414 SMU72_Discrete_DpmTable *table)
1415{
1416 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1417 uint16_t config;
1418
1419 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1420 /* Splitted mode */
1421 config = VR_SVI2_PLANE_1;
1422 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1423
1424 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1425 config = VR_SVI2_PLANE_2;
1426 table->VRConfig |= config;
1427 } else {
1428 printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
1429 }
1430 } else {
1431 /* Merged mode */
1432 config = VR_MERGED_WITH_VDDC;
1433 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1434
1435 /* Set Vddc Voltage Controller */
1436 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1437 config = VR_SVI2_PLANE_1;
1438 table->VRConfig |= config;
1439 } else {
1440 printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
1441 }
1442 }
1443
1444 /* Set Vddci Voltage Controller */
1445 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1446 config = VR_SVI2_PLANE_2; /* only in merged mode */
1447 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1448 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1449 config = VR_SMIO_PATTERN_1;
1450 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1451 }
1452
1453 /* Set Mvdd Voltage Controller */
1454 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1455 config = VR_SMIO_PATTERN_2;
1456 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1457 }
1458
1459 return 0;
1460}
1461
1462static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
1463 phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
1464 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1465{
1466 uint32_t i = 0;
1467 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1468 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1469
1470 /* clock - voltage dependency table is empty table */
1471 if (allowed_clock_voltage_table->count == 0)
1472 return -1;
1473
1474 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
1475 /* find first sclk bigger than request */
1476 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
1477 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1478 allowed_clock_voltage_table->entries[i].vddgfx);
1479
1480 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1481 allowed_clock_voltage_table->entries[i].vddc);
1482
1483 if (allowed_clock_voltage_table->entries[i].vddci) {
1484 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1485 allowed_clock_voltage_table->entries[i].vddci);
1486 } else {
1487 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1488 allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
1489 }
1490
1491 if (allowed_clock_voltage_table->entries[i].mvdd) {
1492 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
1493 }
1494
1495 voltage->Phases = 1;
1496 return 0;
1497 }
1498 }
1499
1500 /* sclk is bigger than max sclk in the dependence table */
1501 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1502 allowed_clock_voltage_table->entries[i-1].vddgfx);
1503 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1504 allowed_clock_voltage_table->entries[i-1].vddc);
1505
1506 if (allowed_clock_voltage_table->entries[i-1].vddci) {
1507 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1508 allowed_clock_voltage_table->entries[i-1].vddci);
1509 }
1510 if (allowed_clock_voltage_table->entries[i-1].mvdd) {
1511 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
1512 }
1513
1514 return 0;
1515}
1516
1517/**
1518 * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1519 *
1520 * @param hwmgr the address of the powerplay hardware manager.
1521 * @return always 0
1522 */
1523int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
1524{
1525 return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
1526}
1527
1528int tonga_populate_memory_timing_parameters(
1529 struct pp_hwmgr *hwmgr,
1530 uint32_t engine_clock,
1531 uint32_t memory_clock,
1532 struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1533 )
1534{
1535 uint32_t dramTiming;
1536 uint32_t dramTiming2;
1537 uint32_t burstTime;
1538 int result;
1539
1540 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1541 engine_clock, memory_clock);
1542
1543 PP_ASSERT_WITH_CODE(result == 0,
1544 "Error calling VBIOS to set DRAM_TIMING.", return result);
1545
1546 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1547 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1548 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1549
1550 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1551 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1552 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1553
1554 return 0;
1555}
1556
1557/**
1558 * Setup parameters for the MC ARB.
1559 *
1560 * @param hwmgr the address of the powerplay hardware manager.
1561 * @return always 0
1562 * This function is to be called from the SetPowerState table.
1563 */
1564int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1565{
1566 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1567 int result = 0;
1568 SMU72_Discrete_MCArbDramTimingTable arb_regs;
1569 uint32_t i, j;
1570
1571 memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1572
1573 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1574 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1575 result = tonga_populate_memory_timing_parameters
1576 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1577 data->dpm_table.mclk_table.dpm_levels[j].value,
1578 &arb_regs.entries[i][j]);
1579
1580 if (0 != result) {
1581 break;
1582 }
1583 }
1584 }
1585
1586 if (0 == result) {
1587 result = tonga_copy_bytes_to_smc(
1588 hwmgr->smumgr,
1589 data->arb_table_start,
1590 (uint8_t *)&arb_regs,
1591 sizeof(SMU72_Discrete_MCArbDramTimingTable),
1592 data->sram_end
1593 );
1594 }
1595
1596 return result;
1597}
1598
1599static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
1600{
1601 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1602 struct tonga_dpm_table *dpm_table = &data->dpm_table;
1603 uint32_t i;
1604
1605 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
1606 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1607 table->LinkLevel[i].PcieGenSpeed =
1608 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1609 table->LinkLevel[i].PcieLaneCount =
1610 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1611 table->LinkLevel[i].EnabledForActivity =
1612 1;
1613 table->LinkLevel[i].SPC =
1614 (uint8_t)(data->pcie_spc_cap & 0xff);
1615 table->LinkLevel[i].DownThreshold =
1616 PP_HOST_TO_SMC_UL(5);
1617 table->LinkLevel[i].UpThreshold =
1618 PP_HOST_TO_SMC_UL(30);
1619 }
1620
1621 data->smc_state_table.LinkLevelCount =
1622 (uint8_t)dpm_table->pcie_speed_table.count;
1623 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1624 tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1625
1626 return 0;
1627}
1628
1629
1630static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1631 SMU72_Discrete_DpmTable *table)
1632{
1633 int result = 0;
1634
1635 uint8_t count;
1636 pp_atomctrl_clock_dividers_vi dividers;
1637 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1638 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1639 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1640
1641 table->VceLevelCount = (uint8_t) (mm_table->count);
1642 table->VceBootLevel = 0;
1643
1644 for (count = 0; count < table->VceLevelCount; count++) {
1645 table->VceLevel[count].Frequency =
1646 mm_table->entries[count].eclk;
1647 table->VceLevel[count].MinVoltage.Vddc =
1648 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1649 mm_table->entries[count].vddc);
1650 table->VceLevel[count].MinVoltage.VddGfx =
1651 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1652 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1653 mm_table->entries[count].vddgfx) : 0;
1654 table->VceLevel[count].MinVoltage.Vddci =
1655 tonga_get_voltage_id(&data->vddci_voltage_table,
1656 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1657 table->VceLevel[count].MinVoltage.Phases = 1;
1658
1659 /* retrieve divider value for VBIOS */
1660 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1661 table->VceLevel[count].Frequency, &dividers);
1662 PP_ASSERT_WITH_CODE((0 == result),
1663 "can not find divide id for VCE engine clock", return result);
1664
1665 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1666
1667 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1668 }
1669
1670 return result;
1671}
1672
1673static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1674 SMU72_Discrete_DpmTable *table)
1675{
1676 int result = 0;
1677 uint8_t count;
1678 pp_atomctrl_clock_dividers_vi dividers;
1679 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1680 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1681 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1682
1683 table->AcpLevelCount = (uint8_t) (mm_table->count);
1684 table->AcpBootLevel = 0;
1685
1686 for (count = 0; count < table->AcpLevelCount; count++) {
1687 table->AcpLevel[count].Frequency =
1688 pptable_info->mm_dep_table->entries[count].aclk;
1689 table->AcpLevel[count].MinVoltage.Vddc =
1690 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1691 mm_table->entries[count].vddc);
1692 table->AcpLevel[count].MinVoltage.VddGfx =
1693 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1694 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1695 mm_table->entries[count].vddgfx) : 0;
1696 table->AcpLevel[count].MinVoltage.Vddci =
1697 tonga_get_voltage_id(&data->vddci_voltage_table,
1698 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1699 table->AcpLevel[count].MinVoltage.Phases = 1;
1700
1701 /* retrieve divider value for VBIOS */
1702 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1703 table->AcpLevel[count].Frequency, &dividers);
1704 PP_ASSERT_WITH_CODE((0 == result),
1705 "can not find divide id for engine clock", return result);
1706
1707 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1708
1709 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1710 }
1711
1712 return result;
1713}
1714
1715static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1716 SMU72_Discrete_DpmTable *table)
1717{
1718 int result = 0;
1719 uint8_t count;
1720 pp_atomctrl_clock_dividers_vi dividers;
1721 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1722 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1723 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1724
1725 table->SamuBootLevel = 0;
1726 table->SamuLevelCount = (uint8_t) (mm_table->count);
1727
1728 for (count = 0; count < table->SamuLevelCount; count++) {
1729 /* not sure whether we need evclk or not */
1730 table->SamuLevel[count].Frequency =
1731 pptable_info->mm_dep_table->entries[count].samclock;
1732 table->SamuLevel[count].MinVoltage.Vddc =
1733 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1734 mm_table->entries[count].vddc);
1735 table->SamuLevel[count].MinVoltage.VddGfx =
1736 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1737 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1738 mm_table->entries[count].vddgfx) : 0;
1739 table->SamuLevel[count].MinVoltage.Vddci =
1740 tonga_get_voltage_id(&data->vddci_voltage_table,
1741 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1742 table->SamuLevel[count].MinVoltage.Phases = 1;
1743
1744 /* retrieve divider value for VBIOS */
1745 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1746 table->SamuLevel[count].Frequency, &dividers);
1747 PP_ASSERT_WITH_CODE((0 == result),
1748 "can not find divide id for samu clock", return result);
1749
1750 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1751
1752 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1753 }
1754
1755 return result;
1756}
1757
1758/**
1759 * Populates the SMC MCLK structure using the provided memory clock
1760 *
1761 * @param hwmgr the address of the hardware manager
1762 * @param memory_clock the memory clock to use to populate the structure
1763 * @param sclk the SMC SCLK structure to be populated
1764 */
1765static int tonga_calculate_mclk_params(
1766 struct pp_hwmgr *hwmgr,
1767 uint32_t memory_clock,
1768 SMU72_Discrete_MemoryLevel *mclk,
1769 bool strobe_mode,
1770 bool dllStateOn
1771 )
1772{
1773 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1774 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1775 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1776 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1777 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1778 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1779 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1780 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1781 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1782 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1783
1784 pp_atomctrl_memory_clock_param mpll_param;
1785 int result;
1786
1787 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1788 memory_clock, &mpll_param, strobe_mode);
1789 PP_ASSERT_WITH_CODE(0 == result,
1790 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1791
1792 /* MPLL_FUNC_CNTL setup*/
1793 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1794
1795 /* MPLL_FUNC_CNTL_1 setup*/
1796 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1797 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1798 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1799 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1800 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1801 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1802
1803 /* MPLL_AD_FUNC_CNTL setup*/
1804 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1805 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1806
1807 if (data->is_memory_GDDR5) {
1808 /* MPLL_DQ_FUNC_CNTL setup*/
1809 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1810 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1811 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1812 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1813 }
1814
1815 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1816 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1817 /*
1818 ************************************
1819 Fref = Reference Frequency
1820 NF = Feedback divider ratio
1821 NR = Reference divider ratio
1822 Fnom = Nominal VCO output frequency = Fref * NF / NR
1823 Fs = Spreading Rate
1824 D = Percentage down-spread / 2
1825 Fint = Reference input frequency to PFD = Fref / NR
1826 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1827 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1828 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1829 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1830 *************************************
1831 */
1832 pp_atomctrl_internal_ss_info ss_info;
1833 uint32_t freq_nom;
1834 uint32_t tmp;
1835 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1836
1837 /* for GDDR5 for all modes and DDR3 */
1838 if (1 == mpll_param.qdr)
1839 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1840 else
1841 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1842
1843 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1844 tmp = (freq_nom / reference_clock);
1845 tmp = tmp * tmp;
1846
1847 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1848 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1849 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1850 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1851 /* = reference_clock * 5 / speed_spectrum_rate */
1852 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1853
1854 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1855 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1856 uint32_t clkv =
1857 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1858 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1859
1860 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1861 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1862 }
1863 }
1864
1865 /* MCLK_PWRMGT_CNTL setup */
1866 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1867 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1868 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1869 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1870 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1871 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1872
1873
1874 /* Save the result data to outpupt memory level structure */
1875 mclk->MclkFrequency = memory_clock;
1876 mclk->MpllFuncCntl = mpll_func_cntl;
1877 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1878 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1879 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1880 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1881 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1882 mclk->DllCntl = dll_cntl;
1883 mclk->MpllSs1 = mpll_ss1;
1884 mclk->MpllSs2 = mpll_ss2;
1885
1886 return 0;
1887}
1888
1889static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
1890 bool strobe_mode)
1891{
1892 uint8_t mc_para_index;
1893
1894 if (strobe_mode) {
1895 if (memory_clock < 12500) {
1896 mc_para_index = 0x00;
1897 } else if (memory_clock > 47500) {
1898 mc_para_index = 0x0f;
1899 } else {
1900 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1901 }
1902 } else {
1903 if (memory_clock < 65000) {
1904 mc_para_index = 0x00;
1905 } else if (memory_clock > 135000) {
1906 mc_para_index = 0x0f;
1907 } else {
1908 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1909 }
1910 }
1911
1912 return mc_para_index;
1913}
1914
1915static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1916{
1917 uint8_t mc_para_index;
1918
1919 if (memory_clock < 10000) {
1920 mc_para_index = 0;
1921 } else if (memory_clock >= 80000) {
1922 mc_para_index = 0x0f;
1923 } else {
1924 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1925 }
1926
1927 return mc_para_index;
1928}
1929
1930static int tonga_populate_single_memory_level(
1931 struct pp_hwmgr *hwmgr,
1932 uint32_t memory_clock,
1933 SMU72_Discrete_MemoryLevel *memory_level
1934 )
1935{
1936 uint32_t minMvdd = 0;
1937 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1938 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1939 int result = 0;
1940 bool dllStateOn;
1941 struct cgs_display_info info = {0};
1942
1943
1944 if (NULL != pptable_info->vdd_dep_on_mclk) {
1945 result = tonga_get_dependecy_volt_by_clk(hwmgr,
1946 pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
1947 PP_ASSERT_WITH_CODE((0 == result),
1948 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1949 }
1950
1951 if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
1952 memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
1953 } else {
1954 memory_level->MinMvdd = minMvdd;
1955 }
1956 memory_level->EnabledForThrottle = 1;
1957 memory_level->EnabledForActivity = 0;
1958 memory_level->UpHyst = 0;
1959 memory_level->DownHyst = 100;
1960 memory_level->VoltageDownHyst = 0;
1961
1962 /* Indicates maximum activity level for this performance level.*/
1963 memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
1964 memory_level->StutterEnable = 0;
1965 memory_level->StrobeEnable = 0;
1966 memory_level->EdcReadEnable = 0;
1967 memory_level->EdcWriteEnable = 0;
1968 memory_level->RttEnable = 0;
1969
1970 /* default set to low watermark. Highest level will be set to high later.*/
1971 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1972
1973 cgs_get_active_displays_info(hwmgr->device, &info);
1974 data->display_timing.num_existing_displays = info.display_count;
1975
1976 if ((data->mclk_stutter_mode_threshold != 0) &&
1977 (memory_clock <= data->mclk_stutter_mode_threshold) &&
1978 (data->is_uvd_enabled == 0)
1979#if defined(LINUX)
1980 && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
1981 && (data->display_timing.num_existing_displays <= 2)
1982 && (data->display_timing.num_existing_displays != 0)
1983#endif
1984 )
1985 memory_level->StutterEnable = 1;
1986
1987 /* decide strobe mode*/
1988 memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
1989 (memory_clock <= data->mclk_strobe_mode_threshold);
1990
1991 /* decide EDC mode and memory clock ratio*/
1992 if (data->is_memory_GDDR5) {
1993 memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
1994 memory_level->StrobeEnable);
1995
1996 if ((data->mclk_edc_enable_threshold != 0) &&
1997 (memory_clock > data->mclk_edc_enable_threshold)) {
1998 memory_level->EdcReadEnable = 1;
1999 }
2000
2001 if ((data->mclk_edc_wr_enable_threshold != 0) &&
2002 (memory_clock > data->mclk_edc_wr_enable_threshold)) {
2003 memory_level->EdcWriteEnable = 1;
2004 }
2005
2006 if (memory_level->StrobeEnable) {
2007 if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
2008 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
2009 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2010 } else {
2011 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
2012 }
2013
2014 } else {
2015 dllStateOn = data->dll_defaule_on;
2016 }
2017 } else {
2018 memory_level->StrobeRatio =
2019 tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
2020 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2021 }
2022
2023 result = tonga_calculate_mclk_params(hwmgr,
2024 memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
2025
2026 if (0 == result) {
2027 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
2028 /* MCLK frequency in units of 10KHz*/
2029 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
2030 /* Indicates maximum activity level for this performance level.*/
2031 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
2032 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
2033 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
2034 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
2035 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
2036 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
2037 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
2038 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
2039 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
2040 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
2041 }
2042
2043 return result;
2044}
2045
2046/**
2047 * Populates the SMC MVDD structure using the provided memory clock.
2048 *
2049 * @param hwmgr the address of the hardware manager
2050 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2051 * @param voltage the SMC VOLTAGE structure to be populated
2052 */
2053int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
2054{
2055 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2056 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2057 uint32_t i = 0;
2058
2059 if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2060 /* find mvdd value which clock is more than request */
2061 for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
2062 if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
2063 /* Always round to higher voltage. */
2064 smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
2065 break;
2066 }
2067 }
2068
2069 PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
2070 "MVDD Voltage is outside the supported range.", return -1);
2071
2072 } else {
2073 return -1;
2074 }
2075
2076 return 0;
2077}
2078
2079
2080static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
2081 SMU72_Discrete_DpmTable *table)
2082{
2083 int result = 0;
2084 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2085 pp_atomctrl_clock_dividers_vi dividers;
2086 SMIO_Pattern voltage_level;
2087 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2088 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2089 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
2090 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
2091
2092 /* The ACPI state should not do DPM on DC (or ever).*/
2093 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2094
2095 table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
2096
2097 /* assign zero for now*/
2098 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
2099
2100 /* get the engine clock dividers for this clock value*/
2101 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2102 table->ACPILevel.SclkFrequency, &dividers);
2103
2104 PP_ASSERT_WITH_CODE(result == 0,
2105 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2106
2107 /* divider ID for required SCLK*/
2108 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2109 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2110 table->ACPILevel.DeepSleepDivId = 0;
2111
2112 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2113 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
2114 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2115 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
2116 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
2117 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
2118
2119 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2120 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2121 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2122 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2123 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2124 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2125 table->ACPILevel.CcPwrDynRm = 0;
2126 table->ACPILevel.CcPwrDynRm1 = 0;
2127
2128
2129 /* For various features to be enabled/disabled while this level is active.*/
2130 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2131 /* SCLK frequency in units of 10KHz*/
2132 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2133 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2134 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2135 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2136 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2137 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2138 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2139 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2140 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2141
2142 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
2143 table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
2144
2145 /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
2146
2147 if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
2148 table->MemoryACPILevel.MinMvdd =
2149 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
2150 else
2151 table->MemoryACPILevel.MinMvdd = 0;
2152
2153 /* Force reset on DLL*/
2154 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2155 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
2156 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2157 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
2158
2159 /* Disable DLL in ACPIState*/
2160 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2161 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
2162 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2163 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
2164
2165 /* Enable DLL bypass signal*/
2166 dll_cntl = PHM_SET_FIELD(dll_cntl,
2167 DLL_CNTL, MRDCK0_BYPASS, 0);
2168 dll_cntl = PHM_SET_FIELD(dll_cntl,
2169 DLL_CNTL, MRDCK1_BYPASS, 0);
2170
2171 table->MemoryACPILevel.DllCntl =
2172 PP_HOST_TO_SMC_UL(dll_cntl);
2173 table->MemoryACPILevel.MclkPwrmgtCntl =
2174 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
2175 table->MemoryACPILevel.MpllAdFuncCntl =
2176 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
2177 table->MemoryACPILevel.MpllDqFuncCntl =
2178 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
2179 table->MemoryACPILevel.MpllFuncCntl =
2180 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
2181 table->MemoryACPILevel.MpllFuncCntl_1 =
2182 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
2183 table->MemoryACPILevel.MpllFuncCntl_2 =
2184 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
2185 table->MemoryACPILevel.MpllSs1 =
2186 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
2187 table->MemoryACPILevel.MpllSs2 =
2188 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
2189
2190 table->MemoryACPILevel.EnabledForThrottle = 0;
2191 table->MemoryACPILevel.EnabledForActivity = 0;
2192 table->MemoryACPILevel.UpHyst = 0;
2193 table->MemoryACPILevel.DownHyst = 100;
2194 table->MemoryACPILevel.VoltageDownHyst = 0;
2195 /* Indicates maximum activity level for this performance level.*/
2196 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2197
2198 table->MemoryACPILevel.StutterEnable = 0;
2199 table->MemoryACPILevel.StrobeEnable = 0;
2200 table->MemoryACPILevel.EdcReadEnable = 0;
2201 table->MemoryACPILevel.EdcWriteEnable = 0;
2202 table->MemoryACPILevel.RttEnable = 0;
2203
2204 return result;
2205}
2206
2207static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
2208{
2209 int result = 0;
2210 uint32_t i;
2211
2212 for (i = 0; i < table->count; i++) {
2213 if (value == table->dpm_levels[i].value) {
2214 *boot_level = i;
2215 result = 0;
2216 }
2217 }
2218 return result;
2219}
2220
2221static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2222 SMU72_Discrete_DpmTable *table)
2223{
2224 int result = 0;
2225 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2226
2227 table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2228 table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2229
2230 /* find boot level from dpm table*/
2231 result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
2232 data->vbios_boot_state.sclk_bootup_value,
2233 (uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
2234
2235 if (0 != result) {
2236 data->smc_state_table.GraphicsBootLevel = 0;
2237 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2238 in dependency table. Using Graphics DPM level 0!");
2239 result = 0;
2240 }
2241
2242 result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
2243 data->vbios_boot_state.mclk_bootup_value,
2244 (uint32_t *)&(data->smc_state_table.MemoryBootLevel));
2245
2246 if (0 != result) {
2247 data->smc_state_table.MemoryBootLevel = 0;
2248 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2249 in dependency table. Using Memory DPM level 0!");
2250 result = 0;
2251 }
2252
2253 table->BootVoltage.Vddc =
2254 tonga_get_voltage_id(&(data->vddc_voltage_table),
2255 data->vbios_boot_state.vddc_bootup_value);
2256 table->BootVoltage.VddGfx =
2257 tonga_get_voltage_id(&(data->vddgfx_voltage_table),
2258 data->vbios_boot_state.vddgfx_bootup_value);
2259 table->BootVoltage.Vddci =
2260 tonga_get_voltage_id(&(data->vddci_voltage_table),
2261 data->vbios_boot_state.vddci_bootup_value);
2262 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
2263
2264 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2265
2266 return result;
2267}
2268
2269
2270/**
2271 * Calculates the SCLK dividers using the provided engine clock
2272 *
2273 * @param hwmgr the address of the hardware manager
2274 * @param engine_clock the engine clock to use to populate the structure
2275 * @param sclk the SMC SCLK structure to be populated
2276 */
2277int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
2278 uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
2279{
2280 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2281 pp_atomctrl_clock_dividers_vi dividers;
2282 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2283 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2284 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2285 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2286 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2287 uint32_t reference_clock;
2288 uint32_t reference_divider;
2289 uint32_t fbdiv;
2290 int result;
2291
2292 /* get the engine clock dividers for this clock value*/
2293 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
2294
2295 PP_ASSERT_WITH_CODE(result == 0,
2296 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2297
2298 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
2299 reference_clock = atomctrl_get_reference_clock(hwmgr);
2300
2301 reference_divider = 1 + dividers.uc_pll_ref_div;
2302
2303 /* low 14 bits is fraction and high 12 bits is divider*/
2304 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
2305
2306 /* SPLL_FUNC_CNTL setup*/
2307 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2308 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
2309 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2310 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
2311
2312 /* SPLL_FUNC_CNTL_3 setup*/
2313 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2314 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
2315
2316 /* set to use fractional accumulation*/
2317 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2318 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
2319
2320 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2321 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
2322 pp_atomctrl_internal_ss_info ss_info;
2323
2324 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
2325 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
2326 /*
2327 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
2328 * ss_info.speed_spectrum_rate -- in unit of khz
2329 */
2330 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
2331 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
2332
2333 /* clkv = 2 * D * fbdiv / NS */
2334 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
2335
2336 cg_spll_spread_spectrum =
2337 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
2338 cg_spll_spread_spectrum =
2339 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
2340 cg_spll_spread_spectrum_2 =
2341 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
2342 }
2343 }
2344
2345 sclk->SclkFrequency = engine_clock;
2346 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
2347 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
2348 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
2349 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
2350 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
2351
2352 return 0;
2353}
2354
2355/**
2356 * Populates single SMC SCLK structure using the provided engine clock
2357 *
2358 * @param hwmgr the address of the hardware manager
2359 * @param engine_clock the engine clock to use to populate the structure
2360 * @param sclk the SMC SCLK structure to be populated
2361 */
2362static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
2363{
2364 int result;
2365 uint32_t threshold;
2366 uint32_t mvdd;
2367 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2368 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2369
2370 result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
2371
2372
2373 /* populate graphics levels*/
2374 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2375 pptable_info->vdd_dep_on_sclk, engine_clock,
2376 &graphic_level->MinVoltage, &mvdd);
2377 PP_ASSERT_WITH_CODE((0 == result),
2378 "can not find VDDC voltage value for VDDC \
2379 engine clock dependency table", return result);
2380
2381 /* SCLK frequency in units of 10KHz*/
2382 graphic_level->SclkFrequency = engine_clock;
2383
2384 /* Indicates maximum activity level for this performance level. 50% for now*/
2385 graphic_level->ActivityLevel = sclk_activity_level_threshold;
2386
2387 graphic_level->CcPwrDynRm = 0;
2388 graphic_level->CcPwrDynRm1 = 0;
2389 /* this level can be used if activity is high enough.*/
2390 graphic_level->EnabledForActivity = 0;
2391 /* this level can be used for throttling.*/
2392 graphic_level->EnabledForThrottle = 1;
2393 graphic_level->UpHyst = 0;
2394 graphic_level->DownHyst = 0;
2395 graphic_level->VoltageDownHyst = 0;
2396 graphic_level->PowerThrottle = 0;
2397
2398 threshold = engine_clock * data->fast_watemark_threshold / 100;
2399/*
2400 *get the DAL clock. do it in funture.
2401 PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
2402 data->display_timing.min_clock_insr = minClocks.engineClockInSR;
2403
2404 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
2405 {
2406 graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR);
2407 }
2408*/
2409
2410 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
2411 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2412
2413 if (0 == result) {
2414 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
2415 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
2416 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
2417 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
2418 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
2419 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
2420 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
2421 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
2422 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
2423 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
2424 }
2425
2426 return result;
2427}
2428
2429/**
2430 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2431 *
2432 * @param hwmgr the address of the hardware manager
2433 */
2434static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2435{
2436 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2437 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2438 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2439 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2440 uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
2441 int result = 0;
2442 uint32_t level_array_adress = data->dpm_table_start +
2443 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
2444 uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
2445 SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/
2446 SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
2447 uint32_t i, maxEntry;
2448 uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
2449 PECI_RegistryValue reg_value;
2450 memset(levels, 0x00, level_array_size);
2451
2452 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2453 result = tonga_populate_single_graphic_level(hwmgr,
2454 dpm_table->sclk_table.dpm_levels[i].value,
2455 (uint16_t)data->activity_target[i],
2456 &(data->smc_state_table.GraphicsLevel[i]));
2457
2458 if (0 != result)
2459 return result;
2460
2461 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2462 if (i > 1)
2463 data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
2464
2465 if (0 == i) {
2466 reg_value = 0;
2467 if (reg_value != 0)
2468 data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
2469 }
2470
2471 if (1 == i) {
2472 reg_value = 0;
2473 if (reg_value != 0)
2474 data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
2475 }
2476 }
2477
2478 /* Only enable level 0 for now. */
2479 data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
2480
2481 /* set highest level watermark to high */
2482 if (dpm_table->sclk_table.count > 1)
2483 data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
2484 PPSMC_DISPLAY_WATERMARK_HIGH;
2485
2486 data->smc_state_table.GraphicsDpmLevelCount =
2487 (uint8_t)dpm_table->sclk_table.count;
2488 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2489 tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2490
2491 if (pcie_table != NULL) {
2492 PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
2493 "There must be 1 or more PCIE levels defined in PPTable.", return -1);
2494 maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
2495 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2496 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
2497 (uint8_t) ((i < maxEntry) ? i : maxEntry);
2498 }
2499 } else {
2500 if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
2501 printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
2502
2503 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2504 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2505 (1<<(highest_pcie_level_enabled+1))) != 0)) {
2506 highest_pcie_level_enabled++;
2507 }
2508
2509 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2510 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2511 (1<<lowest_pcie_level_enabled)) == 0)) {
2512 lowest_pcie_level_enabled++;
2513 }
2514
2515 while ((count < highest_pcie_level_enabled) &&
2516 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2517 (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
2518 count++;
2519 }
2520 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
2521 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
2522
2523
2524 /* set pcieDpmLevel to highest_pcie_level_enabled*/
2525 for (i = 2; i < dpm_table->sclk_table.count; i++) {
2526 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
2527 }
2528
2529 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
2530 data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
2531
2532 /* set pcieDpmLevel to mid_pcie_level_enabled*/
2533 data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
2534 }
2535 /* level count will send to smc once at init smc table and never change*/
2536 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2537
2538 if (0 != result)
2539 return result;
2540
2541 return 0;
2542}
2543
2544/**
2545 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2546 *
2547 * @param hwmgr the address of the hardware manager
2548 */
2549
2550static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2551{
2552 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2553 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2554 int result;
2555 /* populate MCLK dpm table to SMU7 */
2556 uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
2557 uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
2558 SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
2559 uint32_t i;
2560
2561 memset(levels, 0x00, level_array_size);
2562
2563 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2564 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2565 "can not populate memory level as memory clock is zero", return -1);
2566 result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
2567 &(data->smc_state_table.MemoryLevel[i]));
2568 if (0 != result) {
2569 return result;
2570 }
2571 }
2572
2573 /* Only enable level 0 for now.*/
2574 data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
2575
2576 /*
2577 * in order to prevent MC activity from stutter mode to push DPM up.
2578 * the UVD change complements this by putting the MCLK in a higher state
2579 * by default such that we are not effected by up threshold or and MCLK DPM latency.
2580 */
2581 data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
2582 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
2583
2584 data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
2585 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2586 /* set highest level watermark to high*/
2587 data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
2588
2589 /* level count will send to smc once at init smc table and never change*/
2590 result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
2591 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2592
2593 if (0 != result) {
2594 return result;
2595 }
2596
2597 return 0;
2598}
2599
2600struct TONGA_DLL_SPEED_SETTING {
2601 uint16_t Min; /* Minimum Data Rate*/
2602 uint16_t Max; /* Maximum Data Rate*/
2603 uint32_t dll_speed; /* The desired DLL_SPEED setting*/
2604};
2605
2606static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2607{
2608 return 0;
2609}
2610
2611/* ---------------------------------------- ULV related functions ----------------------------------------------------*/
2612
2613
2614static int tonga_reset_single_dpm_table(
2615 struct pp_hwmgr *hwmgr,
2616 struct tonga_single_dpm_table *dpm_table,
2617 uint32_t count)
2618{
2619 uint32_t i;
2620 if (!(count <= MAX_REGULAR_DPM_NUMBER))
2621 printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
2622 table entries to exceed max number! \n");
2623
2624 dpm_table->count = count;
2625 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
2626 dpm_table->dpm_levels[i].enabled = 0;
2627 }
2628
2629 return 0;
2630}
2631
2632static void tonga_setup_pcie_table_entry(
2633 struct tonga_single_dpm_table *dpm_table,
2634 uint32_t index, uint32_t pcie_gen,
2635 uint32_t pcie_lanes)
2636{
2637 dpm_table->dpm_levels[index].value = pcie_gen;
2638 dpm_table->dpm_levels[index].param1 = pcie_lanes;
2639 dpm_table->dpm_levels[index].enabled = 1;
2640}
2641
2642bool is_pcie_gen3_supported(uint32_t pcie_link_speed_cap)
2643{
2644 if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
2645 return 1;
2646
2647 return 0;
2648}
2649
2650bool is_pcie_gen2_supported(uint32_t pcie_link_speed_cap)
2651{
2652 if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
2653 return 1;
2654
2655 return 0;
2656}
2657
2658/* Get the new PCIE speed given the ASIC PCIE Cap and the NewState's requested PCIE speed*/
2659uint16_t get_pcie_gen_support(uint32_t pcie_link_speed_cap, uint16_t ns_pcie_gen)
2660{
2661 uint32_t asic_pcie_link_speed_cap = (pcie_link_speed_cap &
2662 CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_MASK);
2663 uint32_t sys_pcie_link_speed_cap = (pcie_link_speed_cap &
2664 CAIL_PCIE_LINK_SPEED_SUPPORT_MASK);
2665
2666 switch (asic_pcie_link_speed_cap) {
2667 case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1:
2668 return PP_PCIEGen1;
2669
2670 case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2:
2671 return PP_PCIEGen2;
2672
2673 case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3:
2674 return PP_PCIEGen3;
2675
2676 default:
2677 if (is_pcie_gen3_supported(sys_pcie_link_speed_cap) &&
2678 (ns_pcie_gen == PP_PCIEGen3)) {
2679 return PP_PCIEGen3;
2680 } else if (is_pcie_gen2_supported(sys_pcie_link_speed_cap) &&
2681 ((ns_pcie_gen == PP_PCIEGen3) || (ns_pcie_gen == PP_PCIEGen2))) {
2682 return PP_PCIEGen2;
2683 }
2684 }
2685
2686 return PP_PCIEGen1;
2687}
2688
2689uint16_t get_pcie_lane_support(uint32_t pcie_lane_width_cap, uint16_t ns_pcie_lanes)
2690{
2691 int i, j;
2692 uint16_t new_pcie_lanes = ns_pcie_lanes;
2693 uint16_t pcie_lanes[7] = {1, 2, 4, 8, 12, 16, 32};
2694
2695 switch (pcie_lane_width_cap) {
2696 case 0:
2697 printk(KERN_ERR "[ powerplay ] No valid PCIE lane width reported by CAIL!");
2698 break;
2699 case CAIL_PCIE_LINK_WIDTH_SUPPORT_X1:
2700 new_pcie_lanes = 1;
2701 break;
2702 case CAIL_PCIE_LINK_WIDTH_SUPPORT_X2:
2703 new_pcie_lanes = 2;
2704 break;
2705 case CAIL_PCIE_LINK_WIDTH_SUPPORT_X4:
2706 new_pcie_lanes = 4;
2707 break;
2708 case CAIL_PCIE_LINK_WIDTH_SUPPORT_X8:
2709 new_pcie_lanes = 8;
2710 break;
2711 case CAIL_PCIE_LINK_WIDTH_SUPPORT_X12:
2712 new_pcie_lanes = 12;
2713 break;
2714 case CAIL_PCIE_LINK_WIDTH_SUPPORT_X16:
2715 new_pcie_lanes = 16;
2716 break;
2717 case CAIL_PCIE_LINK_WIDTH_SUPPORT_X32:
2718 new_pcie_lanes = 32;
2719 break;
2720 default:
2721 for (i = 0; i < 7; i++) {
2722 if (ns_pcie_lanes == pcie_lanes[i]) {
2723 if (pcie_lane_width_cap & (0x10000 << i)) {
2724 break;
2725 } else {
2726 for (j = i - 1; j >= 0; j--) {
2727 if (pcie_lane_width_cap & (0x10000 << j)) {
2728 new_pcie_lanes = pcie_lanes[j];
2729 break;
2730 }
2731 }
2732
2733 if (j < 0) {
2734 for (j = i + 1; j < 7; j++) {
2735 if (pcie_lane_width_cap & (0x10000 << j)) {
2736 new_pcie_lanes = pcie_lanes[j];
2737 break;
2738 }
2739 }
2740 if (j > 7)
2741 printk(KERN_ERR "[ powerplay ] Cannot find a valid PCIE lane width!");
2742 }
2743 }
2744 break;
2745 }
2746 }
2747 break;
2748 }
2749
2750 return new_pcie_lanes;
2751}
2752
2753static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
2754{
2755 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2756 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2757 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2758 uint32_t i, maxEntry;
2759
2760 if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
2761 data->pcie_gen_power_saving = data->pcie_gen_performance;
2762 data->pcie_lane_power_saving = data->pcie_lane_performance;
2763 } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
2764 data->pcie_gen_performance = data->pcie_gen_power_saving;
2765 data->pcie_lane_performance = data->pcie_lane_power_saving;
2766 }
2767
2768 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
2769
2770 if (pcie_table != NULL) {
2771 /*
2772 * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
2773 * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
2774 */
2775 maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
2776 SMU72_MAX_LEVELS_LINK : pcie_table->count;
2777 for (i = 1; i < maxEntry; i++) {
2778 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
2779 get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
2780 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2781 }
2782 data->dpm_table.pcie_speed_table.count = maxEntry - 1;
2783 } else {
2784 /* Hardcode Pcie Table */
2785 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
2786 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2787 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2788 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
2789 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2790 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2791 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
2792 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2793 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2794 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
2795 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2796 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2797 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
2798 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2799 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2800 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
2801 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2802 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2803 data->dpm_table.pcie_speed_table.count = 6;
2804 }
2805 /* Populate last level for boot PCIE level, but do not increment count. */
2806 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
2807 data->dpm_table.pcie_speed_table.count,
2808 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2809 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2810
2811 return 0;
2812
2813}
2814
2815/*
2816 * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
2817 * Dynamic state patching function will then trim these state tables to the allowed range based
2818 * on the power policy or external client requests, such as UVD request, etc.
2819 */
2820static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
2821{
2822 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2823 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2824 uint32_t i;
2825
2826 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
2827 pptable_info->vdd_dep_on_sclk;
2828 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
2829 pptable_info->vdd_dep_on_mclk;
2830
2831 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2832 "SCLK dependency table is missing. This table is mandatory", return -1);
2833 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
2834 "SCLK dependency table has to have is missing. This table is mandatory", return -1);
2835
2836 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2837 "MCLK dependency table is missing. This table is mandatory", return -1);
2838 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
2839 "VMCLK dependency table has to have is missing. This table is mandatory", return -1);
2840
2841 /* clear the state table to reset everything to default */
2842 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
2843 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
2844 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
2845 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
2846 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
2847 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
2848 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
2849
2850 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2851 "SCLK dependency table is missing. This table is mandatory", return -1);
2852 /* Initialize Sclk DPM table based on allow Sclk values*/
2853 data->dpm_table.sclk_table.count = 0;
2854
2855 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2856 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
2857 allowed_vdd_sclk_table->entries[i].clk) {
2858 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
2859 allowed_vdd_sclk_table->entries[i].clk;
2860 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
2861 data->dpm_table.sclk_table.count++;
2862 }
2863 }
2864
2865 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2866 "MCLK dependency table is missing. This table is mandatory", return -1);
2867 /* Initialize Mclk DPM table based on allow Mclk values */
2868 data->dpm_table.mclk_table.count = 0;
2869 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2870 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
2871 allowed_vdd_mclk_table->entries[i].clk) {
2872 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
2873 allowed_vdd_mclk_table->entries[i].clk;
2874 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
2875 data->dpm_table.mclk_table.count++;
2876 }
2877 }
2878
2879 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
2880 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2881 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
2882 /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
2883 /* param1 is for corresponding std voltage */
2884 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
2885 }
2886 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
2887
2888 if (NULL != allowed_vdd_mclk_table) {
2889 /* Initialize Vddci DPM table based on allow Mclk values */
2890 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2891 data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
2892 data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
2893 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
2894 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
2895 }
2896 data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
2897 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
2898 }
2899
2900 /* setup PCIE gen speed levels*/
2901 tonga_setup_default_pcie_tables(hwmgr);
2902
2903 /* save a copy of the default DPM table*/
2904 memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
2905
2906 return 0;
2907}
2908
2909int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
2910 const struct tonga_power_state *bootState)
2911{
2912 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2913 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2914 uint8_t count, level;
2915
2916 count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
2917 for (level = 0; level < count; level++) {
2918 if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
2919 bootState->performance_levels[0].engine_clock) {
2920 data->smc_state_table.GraphicsBootLevel = level;
2921 break;
2922 }
2923 }
2924
2925 count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
2926 for (level = 0; level < count; level++) {
2927 if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
2928 bootState->performance_levels[0].memory_clock) {
2929 data->smc_state_table.MemoryBootLevel = level;
2930 break;
2931 }
2932 }
2933
2934 return 0;
2935}
2936
2937/**
2938 * Initializes the SMC table and uploads it
2939 *
2940 * @param hwmgr the address of the powerplay hardware manager.
2941 * @param pInput the pointer to input data (PowerState)
2942 * @return always 0
2943 */
2944int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2945{
2946 int result;
2947 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2948 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2949 SMU72_Discrete_DpmTable *table = &(data->smc_state_table);
2950 const phw_tonga_ulv_parm *ulv = &(data->ulv);
2951 uint8_t i;
2952 PECI_RegistryValue reg_value;
2953 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2954
2955 result = tonga_setup_default_dpm_tables(hwmgr);
2956 PP_ASSERT_WITH_CODE(0 == result,
2957 "Failed to setup default DPM tables!", return result;);
2958 memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
2959 if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
2960 tonga_populate_smc_voltage_tables(hwmgr, table);
2961 }
2962
2963 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2964 PHM_PlatformCaps_AutomaticDCTransition)) {
2965 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2966 }
2967
2968 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2969 PHM_PlatformCaps_StepVddc)) {
2970 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2971 }
2972
2973 if (data->is_memory_GDDR5) {
2974 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2975 }
2976
2977 i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2978
2979 if (i == 1 || i == 0) {
2980 table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
2981 }
2982
2983 if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
2984 PP_ASSERT_WITH_CODE(0 == result,
2985 "Failed to initialize ULV state!", return result;);
2986
2987 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2988 ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
2989 }
2990
2991 result = tonga_populate_smc_link_level(hwmgr, table);
2992 PP_ASSERT_WITH_CODE(0 == result,
2993 "Failed to initialize Link Level!", return result;);
2994
2995 result = tonga_populate_all_graphic_levels(hwmgr);
2996 PP_ASSERT_WITH_CODE(0 == result,
2997 "Failed to initialize Graphics Level!", return result;);
2998
2999 result = tonga_populate_all_memory_levels(hwmgr);
3000 PP_ASSERT_WITH_CODE(0 == result,
3001 "Failed to initialize Memory Level!", return result;);
3002
3003 result = tonga_populate_smv_acpi_level(hwmgr, table);
3004 PP_ASSERT_WITH_CODE(0 == result,
3005 "Failed to initialize ACPI Level!", return result;);
3006
3007 result = tonga_populate_smc_vce_level(hwmgr, table);
3008 PP_ASSERT_WITH_CODE(0 == result,
3009 "Failed to initialize VCE Level!", return result;);
3010
3011 result = tonga_populate_smc_acp_level(hwmgr, table);
3012 PP_ASSERT_WITH_CODE(0 == result,
3013 "Failed to initialize ACP Level!", return result;);
3014
3015 result = tonga_populate_smc_samu_level(hwmgr, table);
3016 PP_ASSERT_WITH_CODE(0 == result,
3017 "Failed to initialize SAMU Level!", return result;);
3018
3019 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
3020 /* need to populate the ARB settings for the initial state. */
3021 result = tonga_program_memory_timing_parameters(hwmgr);
3022 PP_ASSERT_WITH_CODE(0 == result,
3023 "Failed to Write ARB settings for the initial state.", return result;);
3024
3025 result = tonga_populate_smc_boot_level(hwmgr, table);
3026 PP_ASSERT_WITH_CODE(0 == result,
3027 "Failed to initialize Boot Level!", return result;);
3028
3029 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3030 PHM_PlatformCaps_ClockStretcher)) {
3031 result = tonga_populate_clock_stretcher_data_table(hwmgr);
3032 PP_ASSERT_WITH_CODE(0 == result,
3033 "Failed to populate Clock Stretcher Data Table!", return result;);
3034 }
3035 table->GraphicsVoltageChangeEnable = 1;
3036 table->GraphicsThermThrottleEnable = 1;
3037 table->GraphicsInterval = 1;
3038 table->VoltageInterval = 1;
3039 table->ThermalInterval = 1;
3040 table->TemperatureLimitHigh =
3041 pptable_info->cac_dtp_table->usTargetOperatingTemp *
3042 TONGA_Q88_FORMAT_CONVERSION_UNIT;
3043 table->TemperatureLimitLow =
3044 (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3045 TONGA_Q88_FORMAT_CONVERSION_UNIT;
3046 table->MemoryVoltageChangeEnable = 1;
3047 table->MemoryInterval = 1;
3048 table->VoltageResponseTime = 0;
3049 table->PhaseResponseTime = 0;
3050 table->MemoryThermThrottleEnable = 1;
3051
3052 /*
3053 * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
3054 * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
3055 * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
3056 * To avoid it, we set PCIeBootLinkLevel to highest dpm level
3057 */
3058 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
3059 "There must be 1 or more PCIE levels defined in PPTable.",
3060 return -1);
3061
3062 table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
3063
3064 table->PCIeGenInterval = 1;
3065
3066 result = tonga_populate_vr_config(hwmgr, table);
3067 PP_ASSERT_WITH_CODE(0 == result,
3068 "Failed to populate VRConfig setting!", return result);
3069
3070 table->ThermGpio = 17;
3071 table->SclkStepSize = 0x4000;
3072
3073 reg_value = 0;
3074 if ((0 == reg_value) &&
3075 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3076 VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
3077 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3078 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3079 PHM_PlatformCaps_RegulatorHot);
3080 } else {
3081 table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
3082 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3083 PHM_PlatformCaps_RegulatorHot);
3084 }
3085
3086 /* ACDC Switch GPIO */
3087 reg_value = 0;
3088 if ((0 == reg_value) &&
3089 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3090 PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
3091 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3092 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3093 PHM_PlatformCaps_AutomaticDCTransition);
3094 } else {
3095 table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
3096 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3097 PHM_PlatformCaps_AutomaticDCTransition);
3098 }
3099
3100 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3101 PHM_PlatformCaps_Falcon_QuickTransition);
3102
3103 reg_value = 0;
3104 if (1 == reg_value) {
3105 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3106 PHM_PlatformCaps_AutomaticDCTransition);
3107 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3108 PHM_PlatformCaps_Falcon_QuickTransition);
3109 }
3110
3111 reg_value = 0;
3112 if ((0 == reg_value) &&
3113 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3114 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
3115 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3116 PHM_PlatformCaps_ThermalOutGPIO);
3117
3118 table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3119
3120 table->ThermOutPolarity =
3121 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3122 (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
3123
3124 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3125
3126 /* if required, combine VRHot/PCC with thermal out GPIO*/
3127 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3128 PHM_PlatformCaps_RegulatorHot) &&
3129 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3130 PHM_PlatformCaps_CombinePCCWithThermalSignal)){
3131 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3132 }
3133 } else {
3134 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3135 PHM_PlatformCaps_ThermalOutGPIO);
3136
3137 table->ThermOutGpio = 17;
3138 table->ThermOutPolarity = 1;
3139 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3140 }
3141
3142 for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
3143 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3144 }
3145 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3146 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3147 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3148 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3149 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3150 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3151 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3152 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3153 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3154
3155 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3156 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
3157 offsetof(SMU72_Discrete_DpmTable, SystemFlags),
3158 (uint8_t *)&(table->SystemFlags),
3159 sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
3160 data->sram_end);
3161
3162 PP_ASSERT_WITH_CODE(0 == result,
3163 "Failed to upload dpm data to SMC memory!", return result;);
3164
3165 return result;
3166}
3167
3168/* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
3169static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
3170{
3171 return;
3172}
3173
3174int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3175{
3176 PPSMC_Result result;
3177 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3178
3179 /* Apply minimum voltage based on DAL's request level */
3180 tonga_apply_dal_minimum_voltage_request(hwmgr);
3181
3182 if (0 == data->sclk_dpm_key_disabled) {
3183 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3184 if (0 != tonga_is_dpm_running(hwmgr))
3185 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3186
3187 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3188 result = smum_send_msg_to_smc_with_parameter(
3189 hwmgr->smumgr,
3190 (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
3191 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3192 PP_ASSERT_WITH_CODE((0 == result),
3193 "Set Sclk Dpm enable Mask failed", return -1);
3194 }
3195 }
3196
3197 if (0 == data->mclk_dpm_key_disabled) {
3198 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3199 if (0 != tonga_is_dpm_running(hwmgr))
3200 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3201
3202 if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3203 result = smum_send_msg_to_smc_with_parameter(
3204 hwmgr->smumgr,
3205 (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
3206 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3207 PP_ASSERT_WITH_CODE((0 == result),
3208 "Set Mclk Dpm enable Mask failed", return -1);
3209 }
3210 }
3211
3212 return 0;
3213}
3214
3215
3216int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
3217{
3218 uint32_t level, tmp;
3219 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3220
3221 if (0 == data->pcie_dpm_key_disabled) {
3222 /* PCIE */
3223 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3224 level = 0;
3225 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3226 while (tmp >>= 1)
3227 level++ ;
3228
3229 if (0 != level) {
3230 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3231 "force highest pcie dpm state failed!", return -1);
3232 }
3233 }
3234 }
3235
3236 if (0 == data->sclk_dpm_key_disabled) {
3237 /* SCLK */
3238 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
3239 level = 0;
3240 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3241 while (tmp >>= 1)
3242 level++ ;
3243
3244 if (0 != level) {
3245 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3246 "force highest sclk dpm state failed!", return -1);
3247 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3248 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3249 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3250 Curr_Sclk_Index does not match the level \n");
3251
3252 }
3253 }
3254 }
3255
3256 if (0 == data->mclk_dpm_key_disabled) {
3257 /* MCLK */
3258 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3259 level = 0;
3260 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3261 while (tmp >>= 1)
3262 level++ ;
3263
3264 if (0 != level) {
3265 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3266 "force highest mclk dpm state failed!", return -1);
3267 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3268 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3269 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3270 Curr_Sclk_Index does not match the level \n");
3271 }
3272 }
3273 }
3274
3275 return 0;
3276}
3277
3278/**
3279 * Find the MC microcode version and store it in the HwMgr struct
3280 *
3281 * @param hwmgr the address of the powerplay hardware manager.
3282 * @return always 0
3283 */
3284int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
3285{
3286 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
3287
3288 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
3289
3290 return 0;
3291}
3292
3293/**
3294 * Initialize Dynamic State Adjustment Rule Settings
3295 *
3296 * @param hwmgr the address of the powerplay hardware manager.
3297 */
3298int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
3299{
3300 uint32_t table_size;
3301 struct phm_clock_voltage_dependency_table *table_clk_vlt;
3302 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3303
3304 hwmgr->dyn_state.mclk_sclk_ratio = 4;
3305 hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */
3306 hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */
3307
3308 /* initialize vddc_dep_on_dal_pwrl table */
3309 table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
3310 table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
3311
3312 if (NULL == table_clk_vlt) {
3313 printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
3314 return -ENOMEM;
3315 } else {
3316 table_clk_vlt->count = 4;
3317 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
3318 table_clk_vlt->entries[0].v = 0;
3319 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
3320 table_clk_vlt->entries[1].v = 720;
3321 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
3322 table_clk_vlt->entries[2].v = 810;
3323 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
3324 table_clk_vlt->entries[3].v = 900;
3325 pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
3326 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
3327 }
3328
3329 return 0;
3330}
3331
3332static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
3333{
3334 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3335 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3336
3337 phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
3338 pptable_info->vdd_dep_on_sclk;
3339 phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
3340 pptable_info->vdd_dep_on_mclk;
3341
3342 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
3343 "VDD dependency on SCLK table is missing. \
3344 This table is mandatory", return -1);
3345 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
3346 "VDD dependency on SCLK table has to have is missing. \
3347 This table is mandatory", return -1);
3348
3349 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
3350 "VDD dependency on MCLK table is missing. \
3351 This table is mandatory", return -1);
3352 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
3353 "VDD dependency on MCLK table has to have is missing. \
3354 This table is mandatory", return -1);
3355
3356 data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
3357 data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3358
3359 pptable_info->max_clock_voltage_on_ac.sclk =
3360 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
3361 pptable_info->max_clock_voltage_on_ac.mclk =
3362 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
3363 pptable_info->max_clock_voltage_on_ac.vddc =
3364 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3365 pptable_info->max_clock_voltage_on_ac.vddci =
3366 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
3367
3368 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
3369 pptable_info->max_clock_voltage_on_ac.sclk;
3370 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
3371 pptable_info->max_clock_voltage_on_ac.mclk;
3372 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
3373 pptable_info->max_clock_voltage_on_ac.vddc;
3374 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
3375 pptable_info->max_clock_voltage_on_ac.vddci;
3376
3377 return 0;
3378}
3379
3380int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3381{
3382 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3383 int result = 1;
3384
3385 PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
3386 "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
3387 return result);
3388
3389 if (0 == data->pcie_dpm_key_disabled) {
3390 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
3391 hwmgr->smumgr,
3392 PPSMC_MSG_PCIeDPM_UnForceLevel)),
3393 "unforce pcie level failed!",
3394 return -1);
3395 }
3396
3397 result = tonga_upload_dpm_level_enable_mask(hwmgr);
3398
3399 return result;
3400}
3401
3402static uint32_t tonga_get_lowest_enable_level(
3403 struct pp_hwmgr *hwmgr, uint32_t level_mask)
3404{
3405 uint32_t level = 0;
3406
3407 while (0 == (level_mask & (1 << level)))
3408 level++;
3409
3410 return level;
3411}
3412
3413static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3414{
3415 uint32_t level = 0;
3416 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3417
3418 /* for now force only sclk */
3419 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3420 level = tonga_get_lowest_enable_level(hwmgr,
3421 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3422
3423 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3424 "force sclk dpm state failed!", return -1);
3425
3426 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3427 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3428 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3429 Curr_Sclk_Index does not match the level \n");
3430 }
3431
3432 return 0;
3433}
3434
3435static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
3436{
3437 uint8_t entryId;
3438 uint8_t voltageId;
3439 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3440 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3441
3442 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3443 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3444 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3445
3446 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3447 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3448 voltageId = sclk_table->entries[entryId].vddInd;
3449 sclk_table->entries[entryId].vddgfx =
3450 pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
3451 }
3452 } else {
3453 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3454 voltageId = sclk_table->entries[entryId].vddInd;
3455 sclk_table->entries[entryId].vddc =
3456 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3457 }
3458 }
3459
3460 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3461 voltageId = mclk_table->entries[entryId].vddInd;
3462 mclk_table->entries[entryId].vddc =
3463 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3464 }
3465
3466 for (entryId = 0; entryId < mm_table->count; ++entryId) {
3467 voltageId = mm_table->entries[entryId].vddcInd;
3468 mm_table->entries[entryId].vddc =
3469 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3470 }
3471
3472 return 0;
3473
3474}
3475
3476static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
3477{
3478 uint8_t entryId;
3479 phm_ppt_v1_voltage_lookup_record v_record;
3480 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3481 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3482
3483 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3484 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3485
3486 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3487 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3488 if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
3489 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3490 sclk_table->entries[entryId].vdd_offset - 0xFFFF;
3491 else
3492 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3493 sclk_table->entries[entryId].vdd_offset;
3494
3495 sclk_table->entries[entryId].vddc =
3496 v_record.us_cac_low = v_record.us_cac_mid =
3497 v_record.us_cac_high = v_record.us_vdd;
3498
3499 tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
3500 }
3501
3502 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3503 if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
3504 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3505 mclk_table->entries[entryId].vdd_offset - 0xFFFF;
3506 else
3507 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3508 mclk_table->entries[entryId].vdd_offset;
3509
3510 mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
3511 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3512 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3513 }
3514 }
3515
3516 return 0;
3517
3518}
3519
3520static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
3521{
3522 uint32_t entryId;
3523 phm_ppt_v1_voltage_lookup_record v_record;
3524 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3525 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3526 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3527
3528 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3529 for (entryId = 0; entryId < mm_table->count; entryId++) {
3530 if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
3531 v_record.us_vdd = mm_table->entries[entryId].vddc +
3532 mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
3533 else
3534 v_record.us_vdd = mm_table->entries[entryId].vddc +
3535 mm_table->entries[entryId].vddgfx_offset;
3536
3537 /* Add the calculated VDDGFX to the VDDGFX lookup table */
3538 mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
3539 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3540 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3541 }
3542 }
3543 return 0;
3544}
3545
3546
3547/**
3548 * Change virtual leakage voltage to actual value.
3549 *
3550 * @param hwmgr the address of the powerplay hardware manager.
3551 * @param pointer to changing voltage
3552 * @param pointer to leakage table
3553 */
3554static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
3555 uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
3556{
3557 uint32_t leakage_index;
3558
3559 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
3560 for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
3561 /* if this voltage matches a leakage voltage ID */
3562 /* patch with actual leakage voltage */
3563 if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
3564 *voltage = pLeakageTable->actual_voltage[leakage_index];
3565 break;
3566 }
3567 }
3568
3569 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
3570 printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
3571}
3572
3573/**
3574 * Patch voltage lookup table by EVV leakages.
3575 *
3576 * @param hwmgr the address of the powerplay hardware manager.
3577 * @param pointer to voltage lookup table
3578 * @param pointer to leakage table
3579 * @return always 0
3580 */
3581static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
3582 phm_ppt_v1_voltage_lookup_table *lookup_table,
3583 phw_tonga_leakage_voltage *pLeakageTable)
3584{
3585 uint32_t i;
3586
3587 for (i = 0; i < lookup_table->count; i++) {
3588 tonga_patch_with_vdd_leakage(hwmgr,
3589 &lookup_table->entries[i].us_vdd, pLeakageTable);
3590 }
3591
3592 return 0;
3593}
3594
3595static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
3596 phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
3597{
3598 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3599
3600 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
3601 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
3602 pptable_info->max_clock_voltage_on_dc.vddc;
3603
3604 return 0;
3605}
3606
3607static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
3608 struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
3609 uint16_t *Vddgfx)
3610{
3611 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
3612 return 0;
3613}
3614
3615int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
3616 phm_ppt_v1_voltage_lookup_table *lookup_table)
3617{
3618 uint32_t table_size, i, j;
3619 phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
3620 table_size = lookup_table->count;
3621
3622 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
3623 "Lookup table is empty", return -1);
3624
3625 /* Sorting voltages */
3626 for (i = 0; i < table_size - 1; i++) {
3627 for (j = i + 1; j > 0; j--) {
3628 if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
3629 tmp_voltage_lookup_record = lookup_table->entries[j-1];
3630 lookup_table->entries[j-1] = lookup_table->entries[j];
3631 lookup_table->entries[j] = tmp_voltage_lookup_record;
3632 }
3633 }
3634 }
3635
3636 return 0;
3637}
3638
3639static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
3640{
3641 int result = 0;
3642 int tmp_result;
3643 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3644 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3645
3646 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3647 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3648 pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
3649 if (tmp_result != 0)
3650 result = tmp_result;
3651
3652 tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
3653 &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
3654 if (tmp_result != 0)
3655 result = tmp_result;
3656 } else {
3657 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3658 pptable_info->vddc_lookup_table, &(data->vddc_leakage));
3659 if (tmp_result != 0)
3660 result = tmp_result;
3661
3662 tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
3663 &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
3664 if (tmp_result != 0)
3665 result = tmp_result;
3666 }
3667
3668 tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
3669 if (tmp_result != 0)
3670 result = tmp_result;
3671
3672 tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
3673 if (tmp_result != 0)
3674 result = tmp_result;
3675
3676 tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
3677 if (tmp_result != 0)
3678 result = tmp_result;
3679
3680 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
3681 if (tmp_result != 0)
3682 result = tmp_result;
3683
3684 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
3685 if (tmp_result != 0)
3686 result = tmp_result;
3687
3688 return result;
3689}
3690
3691int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
3692{
3693 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3694 data->low_sclk_interrupt_threshold = 0;
3695
3696 return 0;
3697}
3698
3699int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
3700{
3701 int tmp_result, result = 0;
3702
3703 tmp_result = tonga_read_clock_registers(hwmgr);
3704 PP_ASSERT_WITH_CODE((0 == tmp_result),
3705 "Failed to read clock registers!", result = tmp_result);
3706
3707 tmp_result = tonga_get_memory_type(hwmgr);
3708 PP_ASSERT_WITH_CODE((0 == tmp_result),
3709 "Failed to get memory type!", result = tmp_result);
3710
3711 tmp_result = tonga_enable_acpi_power_management(hwmgr);
3712 PP_ASSERT_WITH_CODE((0 == tmp_result),
3713 "Failed to enable ACPI power management!", result = tmp_result);
3714
3715 tmp_result = tonga_init_power_gate_state(hwmgr);
3716 PP_ASSERT_WITH_CODE((0 == tmp_result),
3717 "Failed to init power gate state!", result = tmp_result);
3718
3719 tmp_result = tonga_get_mc_microcode_version(hwmgr);
3720 PP_ASSERT_WITH_CODE((0 == tmp_result),
3721 "Failed to get MC microcode version!", result = tmp_result);
3722
3723 tmp_result = tonga_init_sclk_threshold(hwmgr);
3724 PP_ASSERT_WITH_CODE((0 == tmp_result),
3725 "Failed to init sclk threshold!", result = tmp_result);
3726
3727 return result;
3728}
3729
3730/**
3731 * Enable voltage control
3732 *
3733 * @param hwmgr the address of the powerplay hardware manager.
3734 * @return always 0
3735 */
3736int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
3737{
3738 /* enable voltage control */
3739 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
3740
3741 return 0;
3742}
3743
3744/**
3745 * Checks if we want to support voltage control
3746 *
3747 * @param hwmgr the address of the powerplay hardware manager.
3748 */
3749bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
3750{
3751 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3752
3753 return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
3754}
3755
3756/*---------------------------MC----------------------------*/
3757
3758uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
3759{
3760 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
3761}
3762
3763bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
3764{
3765 bool result = 1;
3766
3767 switch (inReg) {
3768 case mmMC_SEQ_RAS_TIMING:
3769 *outReg = mmMC_SEQ_RAS_TIMING_LP;
3770 break;
3771
3772 case mmMC_SEQ_DLL_STBY:
3773 *outReg = mmMC_SEQ_DLL_STBY_LP;
3774 break;
3775
3776 case mmMC_SEQ_G5PDX_CMD0:
3777 *outReg = mmMC_SEQ_G5PDX_CMD0_LP;
3778 break;
3779
3780 case mmMC_SEQ_G5PDX_CMD1:
3781 *outReg = mmMC_SEQ_G5PDX_CMD1_LP;
3782 break;
3783
3784 case mmMC_SEQ_G5PDX_CTRL:
3785 *outReg = mmMC_SEQ_G5PDX_CTRL_LP;
3786 break;
3787
3788 case mmMC_SEQ_CAS_TIMING:
3789 *outReg = mmMC_SEQ_CAS_TIMING_LP;
3790 break;
3791
3792 case mmMC_SEQ_MISC_TIMING:
3793 *outReg = mmMC_SEQ_MISC_TIMING_LP;
3794 break;
3795
3796 case mmMC_SEQ_MISC_TIMING2:
3797 *outReg = mmMC_SEQ_MISC_TIMING2_LP;
3798 break;
3799
3800 case mmMC_SEQ_PMG_DVS_CMD:
3801 *outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
3802 break;
3803
3804 case mmMC_SEQ_PMG_DVS_CTL:
3805 *outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
3806 break;
3807
3808 case mmMC_SEQ_RD_CTL_D0:
3809 *outReg = mmMC_SEQ_RD_CTL_D0_LP;
3810 break;
3811
3812 case mmMC_SEQ_RD_CTL_D1:
3813 *outReg = mmMC_SEQ_RD_CTL_D1_LP;
3814 break;
3815
3816 case mmMC_SEQ_WR_CTL_D0:
3817 *outReg = mmMC_SEQ_WR_CTL_D0_LP;
3818 break;
3819
3820 case mmMC_SEQ_WR_CTL_D1:
3821 *outReg = mmMC_SEQ_WR_CTL_D1_LP;
3822 break;
3823
3824 case mmMC_PMG_CMD_EMRS:
3825 *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
3826 break;
3827
3828 case mmMC_PMG_CMD_MRS:
3829 *outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
3830 break;
3831
3832 case mmMC_PMG_CMD_MRS1:
3833 *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
3834 break;
3835
3836 case mmMC_SEQ_PMG_TIMING:
3837 *outReg = mmMC_SEQ_PMG_TIMING_LP;
3838 break;
3839
3840 case mmMC_PMG_CMD_MRS2:
3841 *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
3842 break;
3843
3844 case mmMC_SEQ_WR_CTL_2:
3845 *outReg = mmMC_SEQ_WR_CTL_2_LP;
3846 break;
3847
3848 default:
3849 result = 0;
3850 break;
3851 }
3852
3853 return result;
3854}
3855
3856int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
3857{
3858 uint32_t i;
3859 uint16_t address;
3860
3861 for (i = 0; i < table->last; i++) {
3862 table->mc_reg_address[i].s0 =
3863 tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
3864 ? address : table->mc_reg_address[i].s1;
3865 }
3866 return 0;
3867}
3868
3869int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
3870{
3871 uint8_t i, j;
3872
3873 PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3874 "Invalid VramInfo table.", return -1);
3875 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
3876 "Invalid VramInfo table.", return -1);
3877
3878 for (i = 0; i < table->last; i++) {
3879 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
3880 }
3881 ni_table->last = table->last;
3882
3883 for (i = 0; i < table->num_entries; i++) {
3884 ni_table->mc_reg_table_entry[i].mclk_max =
3885 table->mc_reg_table_entry[i].mclk_max;
3886 for (j = 0; j < table->last; j++) {
3887 ni_table->mc_reg_table_entry[i].mc_data[j] =
3888 table->mc_reg_table_entry[i].mc_data[j];
3889 }
3890 }
3891 ni_table->num_entries = table->num_entries;
3892
3893 return 0;
3894}
3895
3896/**
3897 * VBIOS omits some information to reduce size, we need to recover them here.
3898 * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3899 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3900 * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
3901 * 3. need to set these data for each clock range
3902 *
3903 * @param hwmgr the address of the powerplay hardware manager.
3904 * @param table the address of MCRegTable
3905 * @return always 0
3906 */
3907int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
3908{
3909 uint8_t i, j, k;
3910 uint32_t temp_reg;
3911 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3912
3913 for (i = 0, j = table->last; i < table->last; i++) {
3914 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3915 "Invalid VramInfo table.", return -1);
3916 switch (table->mc_reg_address[i].s1) {
3917 /*
3918 * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3919 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3920 */
3921 case mmMC_SEQ_MISC1:
3922 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
3923 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
3924 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
3925 for (k = 0; k < table->num_entries; k++) {
3926 table->mc_reg_table_entry[k].mc_data[j] =
3927 ((temp_reg & 0xffff0000)) |
3928 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
3929 }
3930 j++;
3931 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3932 "Invalid VramInfo table.", return -1);
3933
3934 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3935 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3936 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3937 for (k = 0; k < table->num_entries; k++) {
3938 table->mc_reg_table_entry[k].mc_data[j] =
3939 (temp_reg & 0xffff0000) |
3940 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3941
3942 if (!data->is_memory_GDDR5) {
3943 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3944 }
3945 }
3946 j++;
3947 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3948 "Invalid VramInfo table.", return -1);
3949
3950 if (!data->is_memory_GDDR5) {
3951 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3952 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3953 for (k = 0; k < table->num_entries; k++) {
3954 table->mc_reg_table_entry[k].mc_data[j] =
3955 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3956 }
3957 j++;
3958 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3959 "Invalid VramInfo table.", return -1);
3960 }
3961
3962 break;
3963
3964 case mmMC_SEQ_RESERVE_M:
3965 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3966 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3967 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3968 for (k = 0; k < table->num_entries; k++) {
3969 table->mc_reg_table_entry[k].mc_data[j] =
3970 (temp_reg & 0xffff0000) |
3971 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3972 }
3973 j++;
3974 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3975 "Invalid VramInfo table.", return -1);
3976 break;
3977
3978 default:
3979 break;
3980 }
3981
3982 }
3983
3984 table->last = j;
3985
3986 return 0;
3987}
3988
3989int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
3990{
3991 uint8_t i, j;
3992 for (i = 0; i < table->last; i++) {
3993 for (j = 1; j < table->num_entries; j++) {
3994 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3995 table->mc_reg_table_entry[j].mc_data[i]) {
3996 table->validflag |= (1<<i);
3997 break;
3998 }
3999 }
4000 }
4001
4002 return 0;
4003}
4004
4005int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
4006{
4007 int result;
4008 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4009 pp_atomctrl_mc_reg_table *table;
4010 phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
4011 uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
4012
4013 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
4014
4015 if (NULL == table)
4016 return -1;
4017
4018 /* Program additional LP registers that are no longer programmed by VBIOS */
4019 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
4020 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
4021 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
4022 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
4023 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
4024 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
4025 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
4026 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
4027 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
4028 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
4029 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
4030 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
4031 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
4032 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
4033 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
4034 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
4035 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
4036 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
4037 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
4038 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
4039
4040 memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
4041
4042 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
4043
4044 if (0 == result)
4045 result = tonga_copy_vbios_smc_reg_table(table, ni_table);
4046
4047 if (0 == result) {
4048 tonga_set_s0_mc_reg_index(ni_table);
4049 result = tonga_set_mc_special_registers(hwmgr, ni_table);
4050 }
4051
4052 if (0 == result)
4053 tonga_set_valid_flag(ni_table);
4054
4055 kfree(table);
4056 return result;
4057}
4058
4059/*
4060* Copy one arb setting to another and then switch the active set.
4061* arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
4062*/
4063int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
4064 uint32_t arbFreqSrc, uint32_t arbFreqDest)
4065{
4066 uint32_t mc_arb_dram_timing;
4067 uint32_t mc_arb_dram_timing2;
4068 uint32_t burst_time;
4069 uint32_t mc_cg_config;
4070
4071 switch (arbFreqSrc) {
4072 case MC_CG_ARB_FREQ_F0:
4073 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
4074 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
4075 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
4076 break;
4077
4078 case MC_CG_ARB_FREQ_F1:
4079 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
4080 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
4081 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
4082 break;
4083
4084 default:
4085 return -1;
4086 }
4087
4088 switch (arbFreqDest) {
4089 case MC_CG_ARB_FREQ_F0:
4090 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
4091 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
4092 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
4093 break;
4094
4095 case MC_CG_ARB_FREQ_F1:
4096 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
4097 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
4098 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
4099 break;
4100
4101 default:
4102 return -1;
4103 }
4104
4105 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
4106 mc_cg_config |= 0x0000000F;
4107 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
4108 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
4109
4110 return 0;
4111}
4112
4113/**
4114 * Initial switch from ARB F0->F1
4115 *
4116 * @param hwmgr the address of the powerplay hardware manager.
4117 * @return always 0
4118 * This function is to be called from the SetPowerState table.
4119 */
4120int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
4121{
4122 return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
4123}
4124
4125/**
4126 * Initialize the ARB DRAM timing table's index field.
4127 *
4128 * @param hwmgr the address of the powerplay hardware manager.
4129 * @return always 0
4130 */
4131int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
4132{
4133 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4134 uint32_t tmp;
4135 int result;
4136
4137 /*
4138 * This is a read-modify-write on the first byte of the ARB table.
4139 * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
4140 * This solution is ugly, but we never write the whole table only individual fields in it.
4141 * In reality this field should not be in that structure but in a soft register.
4142 */
4143 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
4144 data->arb_table_start, &tmp, data->sram_end);
4145
4146 if (0 != result)
4147 return result;
4148
4149 tmp &= 0x00FFFFFF;
4150 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
4151
4152 return tonga_write_smc_sram_dword(hwmgr->smumgr,
4153 data->arb_table_start, tmp, data->sram_end);
4154}
4155
4156int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
4157{
4158 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4159
4160 uint32_t i, j;
4161
4162 for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
4163 if (data->tonga_mc_reg_table.validflag & 1<<j) {
4164 PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
4165 "Index of mc_reg_table->address[] array out of boundary", return -1);
4166 mc_reg_table->address[i].s0 =
4167 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
4168 mc_reg_table->address[i].s1 =
4169 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
4170 i++;
4171 }
4172 }
4173
4174 mc_reg_table->last = (uint8_t)i;
4175
4176 return 0;
4177}
4178
4179/*convert register values from driver to SMC format */
4180void tonga_convert_mc_registers(
4181 const phw_tonga_mc_reg_entry * pEntry,
4182 SMU72_Discrete_MCRegisterSet *pData,
4183 uint32_t numEntries, uint32_t validflag)
4184{
4185 uint32_t i, j;
4186
4187 for (i = 0, j = 0; j < numEntries; j++) {
4188 if (validflag & 1<<j) {
4189 pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
4190 i++;
4191 }
4192 }
4193}
4194
4195/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
4196int tonga_convert_mc_reg_table_entry_to_smc(
4197 struct pp_hwmgr *hwmgr,
4198 const uint32_t memory_clock,
4199 SMU72_Discrete_MCRegisterSet *mc_reg_table_data
4200 )
4201{
4202 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4203 uint32_t i = 0;
4204
4205 for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
4206 if (memory_clock <=
4207 data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
4208 break;
4209 }
4210 }
4211
4212 if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
4213 --i;
4214
4215 tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
4216 mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
4217
4218 return 0;
4219}
4220
4221int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
4222 SMU72_Discrete_MCRegisters *mc_reg_table)
4223{
4224 int result = 0;
4225 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4226 int res;
4227 uint32_t i;
4228
4229 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
4230 res = tonga_convert_mc_reg_table_entry_to_smc(
4231 hwmgr,
4232 data->dpm_table.mclk_table.dpm_levels[i].value,
4233 &mc_reg_table->data[i]
4234 );
4235
4236 if (0 != res)
4237 result = res;
4238 }
4239
4240 return result;
4241}
4242
4243int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
4244{
4245 int result;
4246 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4247
4248 memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
4249 result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
4250 PP_ASSERT_WITH_CODE(0 == result,
4251 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
4252
4253 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
4254 PP_ASSERT_WITH_CODE(0 == result,
4255 "Failed to initialize MCRegTable for driver state!", return result;);
4256
4257 return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
4258 (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
4259}
4260
4261/**
4262 * Programs static screed detection parameters
4263 *
4264 * @param hwmgr the address of the powerplay hardware manager.
4265 * @return always 0
4266 */
4267int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
4268{
4269 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4270
4271 /* Set static screen threshold unit*/
4272 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4273 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
4274 data->static_screen_threshold_unit);
4275 /* Set static screen threshold*/
4276 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4277 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
4278 data->static_screen_threshold);
4279
4280 return 0;
4281}
4282
4283/**
4284 * Setup display gap for glitch free memory clock switching.
4285 *
4286 * @param hwmgr the address of the powerplay hardware manager.
4287 * @return always 0
4288 */
4289int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
4290{
4291 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4292 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4293
4294 display_gap = PHM_SET_FIELD(display_gap,
4295 CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
4296
4297 display_gap = PHM_SET_FIELD(display_gap,
4298 CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
4299
4300 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4301 ixCG_DISPLAY_GAP_CNTL, display_gap);
4302
4303 return 0;
4304}
4305
4306/**
4307 * Programs activity state transition voting clients
4308 *
4309 * @param hwmgr the address of the powerplay hardware manager.
4310 * @return always 0
4311 */
4312int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
4313{
4314 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4315
4316 /* Clear reset for voting clients before enabling DPM */
4317 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4318 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
4319 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4320 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
4321
4322 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4323 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
4324 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4325 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
4326 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4327 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
4328 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4329 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
4330 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4331 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
4332 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4333 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
4334 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4335 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
4336 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4337 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
4338
4339 return 0;
4340}
4341
4342
4343int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
4344{
4345 int tmp_result, result = 0;
4346
4347 tmp_result = tonga_check_for_dpm_stopped(hwmgr);
4348
4349 if (cf_tonga_voltage_control(hwmgr)) {
4350 tmp_result = tonga_enable_voltage_control(hwmgr);
4351 PP_ASSERT_WITH_CODE((0 == tmp_result),
4352 "Failed to enable voltage control!", result = tmp_result);
4353
4354 tmp_result = tonga_construct_voltage_tables(hwmgr);
4355 PP_ASSERT_WITH_CODE((0 == tmp_result),
4356 "Failed to contruct voltage tables!", result = tmp_result);
4357 }
4358
4359 tmp_result = tonga_initialize_mc_reg_table(hwmgr);
4360 PP_ASSERT_WITH_CODE((0 == tmp_result),
4361 "Failed to initialize MC reg table!", result = tmp_result);
4362
4363 tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
4364 PP_ASSERT_WITH_CODE((0 == tmp_result),
4365 "Failed to program static screen threshold parameters!", result = tmp_result);
4366
4367 tmp_result = tonga_enable_display_gap(hwmgr);
4368 PP_ASSERT_WITH_CODE((0 == tmp_result),
4369 "Failed to enable display gap!", result = tmp_result);
4370
4371 tmp_result = tonga_program_voting_clients(hwmgr);
4372 PP_ASSERT_WITH_CODE((0 == tmp_result),
4373 "Failed to program voting clients!", result = tmp_result);
4374
4375 tmp_result = tonga_process_firmware_header(hwmgr);
4376 PP_ASSERT_WITH_CODE((0 == tmp_result),
4377 "Failed to process firmware header!", result = tmp_result);
4378
4379 tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
4380 PP_ASSERT_WITH_CODE((0 == tmp_result),
4381 "Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
4382
4383 tmp_result = tonga_init_smc_table(hwmgr);
4384 PP_ASSERT_WITH_CODE((0 == tmp_result),
4385 "Failed to initialize SMC table!", result = tmp_result);
4386
4387 tmp_result = tonga_init_arb_table_index(hwmgr);
4388 PP_ASSERT_WITH_CODE((0 == tmp_result),
4389 "Failed to initialize ARB table index!", result = tmp_result);
4390
4391 tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
4392 PP_ASSERT_WITH_CODE((0 == tmp_result),
4393 "Failed to populate initialize MC Reg table!", result = tmp_result);
4394
4395 /* enable SCLK control */
4396 tmp_result = tonga_enable_sclk_control(hwmgr);
4397 PP_ASSERT_WITH_CODE((0 == tmp_result),
4398 "Failed to enable SCLK control!", result = tmp_result);
4399
4400 /* enable DPM */
4401 tmp_result = tonga_start_dpm(hwmgr);
4402 PP_ASSERT_WITH_CODE((0 == tmp_result),
4403 "Failed to start DPM!", result = tmp_result);
4404
4405 return result;
4406}
4407
4408int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4409{
4410 int tmp_result, result = 0;
4411
4412 tmp_result = tonga_check_for_dpm_running(hwmgr);
4413 PP_ASSERT_WITH_CODE((0 == tmp_result),
4414 "SMC is still running!", return 0);
4415
4416 tmp_result = tonga_stop_dpm(hwmgr);
4417 PP_ASSERT_WITH_CODE((0 == tmp_result),
4418 "Failed to stop DPM!", result = tmp_result);
4419
4420 tmp_result = tonga_reset_to_default(hwmgr);
4421 PP_ASSERT_WITH_CODE((0 == tmp_result),
4422 "Failed to reset to default!", result = tmp_result);
4423
4424 return result;
4425}
4426
4427int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
4428{
4429 int result;
4430
4431 result = tonga_set_boot_state(hwmgr);
4432 if (0 != result)
4433 printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
4434
4435 return result;
4436}
4437
4438int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
4439{
4440 if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
4441 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
4442 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
4443 }
4444
4445 if (NULL != hwmgr->backend) {
4446 kfree(hwmgr->backend);
4447 hwmgr->backend = NULL;
4448 }
4449
4450 return 0;
4451}
4452
4453/**
4454 * Initializes the Volcanic Islands Hardware Manager
4455 *
4456 * @param hwmgr the address of the powerplay hardware manager.
4457 * @return 1 if success; otherwise appropriate error code.
4458 */
4459int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
4460{
4461 int result = 0;
4462 SMU72_Discrete_DpmTable *table = NULL;
4463 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4464 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
4465 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4466 phw_tonga_ulv_parm *ulv;
4467
4468 PP_ASSERT_WITH_CODE((NULL != hwmgr),
4469 "Invalid Parameter!", return -1;);
4470
4471 data->dll_defaule_on = 0;
4472 data->sram_end = SMC_RAM_END;
4473
4474 data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
4475 data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
4476 data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
4477 data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
4478 data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
4479 data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
4480 data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
4481 data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
4482
4483 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
4484 data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
4485 data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
4486
4487 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4488 PHM_PlatformCaps_DisableVoltageIsland);
4489
4490 data->sclk_dpm_key_disabled = 0;
4491 data->mclk_dpm_key_disabled = 0;
4492 data->pcie_dpm_key_disabled = 0;
4493 data->pcc_monitor_enabled = 0;
4494
4495 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4496 PHM_PlatformCaps_UnTabledHardwareInterface);
4497
4498 data->gpio_debug = 0;
4499 data->engine_clock_data = 0;
4500 data->memory_clock_data = 0;
4501 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4502 PHM_PlatformCaps_DynamicPatchPowerState);
4503
4504 /* need to set voltage control types before EVV patching*/
4505 data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
4506 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
4507 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
4508 data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
4509
4510 if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4511 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
4512 data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4513 }
4514
4515 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4516 PHM_PlatformCaps_ControlVDDGFX)) {
4517 if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4518 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
4519 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4520 }
4521 }
4522
4523 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
4524 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4525 PHM_PlatformCaps_ControlVDDGFX);
4526 }
4527
4528 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4529 PHM_PlatformCaps_EnableMVDDControl)) {
4530 if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4531 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
4532 data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4533 }
4534 }
4535
4536 if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
4537 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4538 PHM_PlatformCaps_EnableMVDDControl);
4539 }
4540
4541 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4542 PHM_PlatformCaps_ControlVDDCI)) {
4543 if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4544 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
4545 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4546 else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4547 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
4548 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4549 }
4550
4551 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
4552 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4553 PHM_PlatformCaps_ControlVDDCI);
4554
4555 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4556 PHM_PlatformCaps_TablelessHardwareInterface);
4557
4558 if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
4559 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4560 PHM_PlatformCaps_ClockStretcher);
4561
4562 /* Initializes DPM default values*/
4563 tonga_initialize_dpm_defaults(hwmgr);
4564
4565 /* Get leakage voltage based on leakage ID.*/
4566 PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
4567 "Get EVV Voltage Failed. Abort Driver loading!", return -1);
4568
4569 tonga_complete_dependency_tables(hwmgr);
4570
4571 /* Parse pptable data read from VBIOS*/
4572 tonga_set_private_var_based_on_pptale(hwmgr);
4573
4574 /* ULV Support*/
4575 ulv = &(data->ulv);
4576 ulv->ulv_supported = 0;
4577
4578 /* Initalize Dynamic State Adjustment Rule Settings*/
4579 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
4580 data->uvd_enabled = 0;
4581
4582 table = &(data->smc_state_table);
4583
4584 /*
4585 * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
4586 * Peak Current Control feature is enabled and we should program PCC HW register
4587 */
4588 if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
4589 uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
4590 CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
4591
4592 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
4593 case 0:
4594 temp_reg = PHM_SET_FIELD(temp_reg,
4595 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
4596 break;
4597 case 1:
4598 temp_reg = PHM_SET_FIELD(temp_reg,
4599 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
4600 break;
4601 case 2:
4602 temp_reg = PHM_SET_FIELD(temp_reg,
4603 CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
4604 break;
4605 case 3:
4606 temp_reg = PHM_SET_FIELD(temp_reg,
4607 CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
4608 break;
4609 case 4:
4610 temp_reg = PHM_SET_FIELD(temp_reg,
4611 CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
4612 break;
4613 default:
4614 printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \
4615 Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
4616 break;
4617 }
4618 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4619 ixCNB_PWRMGT_CNTL, temp_reg);
4620 }
4621
4622 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4623 PHM_PlatformCaps_EnableSMU7ThermalManagement);
4624 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4625 PHM_PlatformCaps_SMU7);
4626
4627 data->vddc_phase_shed_control = 0;
4628
4629 if (0 == result) {
4630 data->is_tlu_enabled = 0;
4631 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
4632 TONGA_MAX_HARDWARE_POWERLEVELS;
4633 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
4634 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
4635
4636 data->pcie_gen_cap = 0x30007;
4637 data->pcie_lane_cap = 0x2f0000;
4638 } else {
4639 /* Ignore return value in here, we are cleaning up a mess. */
4640 tonga_hwmgr_backend_fini(hwmgr);
4641 }
4642
4643 return result;
4644}
4645
4646static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
4647 enum amd_dpm_forced_level level)
4648{
4649 int ret = 0;
4650
4651 switch (level) {
4652 case AMD_DPM_FORCED_LEVEL_HIGH:
4653 ret = tonga_force_dpm_highest(hwmgr);
4654 if (ret)
4655 return ret;
4656 break;
4657 case AMD_DPM_FORCED_LEVEL_LOW:
4658 ret = tonga_force_dpm_lowest(hwmgr);
4659 if (ret)
4660 return ret;
4661 break;
4662 case AMD_DPM_FORCED_LEVEL_AUTO:
4663 ret = tonga_unforce_dpm_levels(hwmgr);
4664 if (ret)
4665 return ret;
4666 break;
4667 default:
4668 break;
4669 }
4670
4671 hwmgr->dpm_level = level;
4672 return ret;
4673}
4674
4675static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4676 struct pp_power_state *prequest_ps,
4677 const struct pp_power_state *pcurrent_ps)
4678{
4679 struct tonga_power_state *tonga_ps =
4680 cast_phw_tonga_power_state(&prequest_ps->hardware);
4681
4682 uint32_t sclk;
4683 uint32_t mclk;
4684 struct PP_Clocks minimum_clocks = {0};
4685 bool disable_mclk_switching;
4686 bool disable_mclk_switching_for_frame_lock;
4687 struct cgs_display_info info = {0};
4688 const struct phm_clock_and_voltage_limits *max_limits;
4689 uint32_t i;
4690 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4691 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4692
4693 int32_t count;
4694 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4695
4696 data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
4697
4698 PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
4699 "VI should always have 2 performance levels",
4700 );
4701
4702 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4703 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4704 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4705
4706 if (PP_PowerSource_DC == hwmgr->power_source) {
4707 for (i = 0; i < tonga_ps->performance_level_count; i++) {
4708 if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
4709 tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
4710 if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
4711 tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
4712 }
4713 }
4714
4715 tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
4716 tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
4717
4718 tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4719
4720 cgs_get_active_displays_info(hwmgr->device, &info);
4721
4722 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4723
4724 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4725
4726 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4727
4728 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4729 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4730
4731 for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
4732 if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
4733 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
4734 break;
4735 }
4736 }
4737
4738 if (count < 0)
4739 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
4740
4741 stable_pstate_mclk = max_limits->mclk;
4742
4743 minimum_clocks.engineClock = stable_pstate_sclk;
4744 minimum_clocks.memoryClock = stable_pstate_mclk;
4745 }
4746
4747 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4748 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4749
4750 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4751 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4752
4753 tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4754
4755 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4756 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
4757 "Overdrive sclk exceeds limit",
4758 hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
4759
4760 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4761 tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
4762 }
4763
4764 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4765 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4766 "Overdrive mclk exceeds limit",
4767 hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4768
4769 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4770 tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
4771 }
4772
4773 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4774 hwmgr->platform_descriptor.platformCaps,
4775 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4776
4777 disable_mclk_switching = (1 < info.display_count) ||
4778 disable_mclk_switching_for_frame_lock;
4779
4780 sclk = tonga_ps->performance_levels[0].engine_clock;
4781 mclk = tonga_ps->performance_levels[0].memory_clock;
4782
4783 if (disable_mclk_switching)
4784 mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
4785
4786 if (sclk < minimum_clocks.engineClock)
4787 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
4788
4789 if (mclk < minimum_clocks.memoryClock)
4790 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
4791
4792 tonga_ps->performance_levels[0].engine_clock = sclk;
4793 tonga_ps->performance_levels[0].memory_clock = mclk;
4794
4795 tonga_ps->performance_levels[1].engine_clock =
4796 (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
4797 tonga_ps->performance_levels[1].engine_clock :
4798 tonga_ps->performance_levels[0].engine_clock;
4799
4800 if (disable_mclk_switching) {
4801 if (mclk < tonga_ps->performance_levels[1].memory_clock)
4802 mclk = tonga_ps->performance_levels[1].memory_clock;
4803
4804 tonga_ps->performance_levels[0].memory_clock = mclk;
4805 tonga_ps->performance_levels[1].memory_clock = mclk;
4806 } else {
4807 if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
4808 tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
4809 }
4810
4811 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4812 for (i=0; i < tonga_ps->performance_level_count; i++) {
4813 tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4814 tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4815 tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4816 tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4817 }
4818 }
4819
4820 return 0;
4821}
4822
4823int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
4824{
4825 return sizeof(struct tonga_power_state);
4826}
4827
4828static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4829{
4830 struct pp_power_state *ps;
4831 struct tonga_power_state *tonga_ps;
4832
4833 if (hwmgr == NULL)
4834 return -EINVAL;
4835
4836 ps = hwmgr->request_ps;
4837
4838 if (ps == NULL)
4839 return -EINVAL;
4840
4841 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4842
4843 if (low)
4844 return tonga_ps->performance_levels[0].memory_clock;
4845 else
4846 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
4847}
4848
4849static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4850{
4851 struct pp_power_state *ps;
4852 struct tonga_power_state *tonga_ps;
4853
4854 if (hwmgr == NULL)
4855 return -EINVAL;
4856
4857 ps = hwmgr->request_ps;
4858
4859 if (ps == NULL)
4860 return -EINVAL;
4861
4862 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4863
4864 if (low)
4865 return tonga_ps->performance_levels[0].engine_clock;
4866 else
4867 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
4868}
4869
4870static uint16_t tonga_get_current_pcie_speed(
4871 struct pp_hwmgr *hwmgr)
4872{
4873 uint32_t speed_cntl = 0;
4874
4875 speed_cntl = cgs_read_ind_register(hwmgr->device,
4876 CGS_IND_REG__PCIE,
4877 ixPCIE_LC_SPEED_CNTL);
4878 return((uint16_t)PHM_GET_FIELD(speed_cntl,
4879 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4880}
4881
4882static int tonga_get_current_pcie_lane_number(
4883 struct pp_hwmgr *hwmgr)
4884{
4885 uint32_t link_width;
4886
4887 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4888 CGS_IND_REG__PCIE,
4889 PCIE_LC_LINK_WIDTH_CNTL,
4890 LC_LINK_WIDTH_RD);
4891
4892 PP_ASSERT_WITH_CODE((7 >= link_width),
4893 "Invalid PCIe lane width!", return 0);
4894
4895 return decode_pcie_lane_width(link_width);
4896}
4897
4898static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
4899 struct pp_hw_power_state *hw_ps)
4900{
4901 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4902 struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
4903 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
4904 uint16_t size;
4905 uint8_t frev, crev;
4906 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
4907
4908 /* First retrieve the Boot clocks and VDDC from the firmware info table.
4909 * We assume here that fw_info is unchanged if this call fails.
4910 */
4911 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
4912 hwmgr->device, index,
4913 &size, &frev, &crev);
4914 if (!fw_info)
4915 /* During a test, there is no firmware info table. */
4916 return 0;
4917
4918 /* Patch the state. */
4919 data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock);
4920 data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock);
4921 data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
4922 data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
4923 data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
4924 data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
4925 data->vbios_boot_state.pcie_lane_bootup_value =
4926 (uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
4927
4928 /* set boot power state */
4929 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
4930 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
4931 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
4932 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
4933
4934 return 0;
4935}
4936
4937static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
4938 void *state, struct pp_power_state *power_state,
4939 void *pp_table, uint32_t classification_flag)
4940{
4941 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4942
4943 struct tonga_power_state *tonga_ps =
4944 (struct tonga_power_state *)(&(power_state->hardware));
4945
4946 struct tonga_performance_level *performance_level;
4947
4948 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
4949
4950 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
4951 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
4952
4953 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
4954 (ATOM_Tonga_SCLK_Dependency_Table *)
4955 (((uint64_t)powerplay_table) +
4956 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
4957
4958 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
4959 (ATOM_Tonga_MCLK_Dependency_Table *)
4960 (((uint64_t)powerplay_table) +
4961 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
4962
4963 /* The following fields are not initialized here: id orderedList allStatesList */
4964 power_state->classification.ui_label =
4965 (le16_to_cpu(state_entry->usClassification) &
4966 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
4967 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
4968 power_state->classification.flags = classification_flag;
4969 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
4970
4971 power_state->classification.temporary_state = false;
4972 power_state->classification.to_be_deleted = false;
4973
4974 power_state->validation.disallowOnDC =
4975 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
4976
4977 power_state->pcie.lanes = 0;
4978
4979 power_state->display.disableFrameModulation = false;
4980 power_state->display.limitRefreshrate = false;
4981 power_state->display.enableVariBright =
4982 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
4983
4984 power_state->validation.supportedPowerLevels = 0;
4985 power_state->uvd_clocks.VCLK = 0;
4986 power_state->uvd_clocks.DCLK = 0;
4987 power_state->temperatures.min = 0;
4988 power_state->temperatures.max = 0;
4989
4990 performance_level = &(tonga_ps->performance_levels
4991 [tonga_ps->performance_level_count++]);
4992
4993 PP_ASSERT_WITH_CODE(
4994 (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
4995 "Performance levels exceeds SMC limit!",
4996 return -1);
4997
4998 PP_ASSERT_WITH_CODE(
4999 (tonga_ps->performance_level_count <=
5000 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
5001 "Performance levels exceeds Driver limit!",
5002 return -1);
5003
5004 /* Performance levels are arranged from low to high. */
5005 performance_level->memory_clock =
5006 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
5007
5008 performance_level->engine_clock =
5009 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
5010
5011 performance_level->pcie_gen = get_pcie_gen_support(
5012 data->pcie_gen_cap,
5013 state_entry->ucPCIEGenLow);
5014
5015 performance_level->pcie_lane = get_pcie_lane_support(
5016 data->pcie_lane_cap,
5017 state_entry->ucPCIELaneHigh);
5018
5019 performance_level =
5020 &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
5021
5022 performance_level->memory_clock =
5023 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
5024
5025 performance_level->engine_clock =
5026 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
5027
5028 performance_level->pcie_gen = get_pcie_gen_support(
5029 data->pcie_gen_cap,
5030 state_entry->ucPCIEGenHigh);
5031
5032 performance_level->pcie_lane = get_pcie_lane_support(
5033 data->pcie_lane_cap,
5034 state_entry->ucPCIELaneHigh);
5035
5036 return 0;
5037}
5038
5039static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
5040 unsigned long entry_index, struct pp_power_state *ps)
5041{
5042 int result;
5043 struct tonga_power_state *tonga_ps;
5044 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5045
5046 struct phm_ppt_v1_information *table_info =
5047 (struct phm_ppt_v1_information *)(hwmgr->pptable);
5048
5049 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5050 table_info->vdd_dep_on_mclk;
5051
5052 ps->hardware.magic = PhwTonga_Magic;
5053
5054 tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
5055
5056 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
5057 tonga_get_pp_table_entry_callback_func);
5058
5059 /* This is the earliest time we have all the dependency table and the VBIOS boot state
5060 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
5061 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
5062 */
5063 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
5064 if (dep_mclk_table->entries[0].clk !=
5065 data->vbios_boot_state.mclk_bootup_value)
5066 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
5067 "does not match VBIOS boot MCLK level");
5068 if (dep_mclk_table->entries[0].vddci !=
5069 data->vbios_boot_state.vddci_bootup_value)
5070 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
5071 "does not match VBIOS boot VDDCI level");
5072 }
5073
5074 /* set DC compatible flag if this state supports DC */
5075 if (!ps->validation.disallowOnDC)
5076 tonga_ps->dc_compatible = true;
5077
5078 if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
5079 data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
5080 else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
5081 if (data->bacos.best_match == 0xffff) {
5082 /* For V.I. use boot state as base BACO state */
5083 data->bacos.best_match = PP_StateClassificationFlag_Boot;
5084 data->bacos.performance_level = tonga_ps->performance_levels[0];
5085 }
5086 }
5087
5088 tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
5089 tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
5090
5091 if (!result) {
5092 uint32_t i;
5093
5094 switch (ps->classification.ui_label) {
5095 case PP_StateUILabel_Performance:
5096 data->use_pcie_performance_levels = true;
5097
5098 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5099 if (data->pcie_gen_performance.max <
5100 tonga_ps->performance_levels[i].pcie_gen)
5101 data->pcie_gen_performance.max =
5102 tonga_ps->performance_levels[i].pcie_gen;
5103
5104 if (data->pcie_gen_performance.min >
5105 tonga_ps->performance_levels[i].pcie_gen)
5106 data->pcie_gen_performance.min =
5107 tonga_ps->performance_levels[i].pcie_gen;
5108
5109 if (data->pcie_lane_performance.max <
5110 tonga_ps->performance_levels[i].pcie_lane)
5111 data->pcie_lane_performance.max =
5112 tonga_ps->performance_levels[i].pcie_lane;
5113
5114 if (data->pcie_lane_performance.min >
5115 tonga_ps->performance_levels[i].pcie_lane)
5116 data->pcie_lane_performance.min =
5117 tonga_ps->performance_levels[i].pcie_lane;
5118 }
5119 break;
5120 case PP_StateUILabel_Battery:
5121 data->use_pcie_power_saving_levels = true;
5122
5123 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5124 if (data->pcie_gen_power_saving.max <
5125 tonga_ps->performance_levels[i].pcie_gen)
5126 data->pcie_gen_power_saving.max =
5127 tonga_ps->performance_levels[i].pcie_gen;
5128
5129 if (data->pcie_gen_power_saving.min >
5130 tonga_ps->performance_levels[i].pcie_gen)
5131 data->pcie_gen_power_saving.min =
5132 tonga_ps->performance_levels[i].pcie_gen;
5133
5134 if (data->pcie_lane_power_saving.max <
5135 tonga_ps->performance_levels[i].pcie_lane)
5136 data->pcie_lane_power_saving.max =
5137 tonga_ps->performance_levels[i].pcie_lane;
5138
5139 if (data->pcie_lane_power_saving.min >
5140 tonga_ps->performance_levels[i].pcie_lane)
5141 data->pcie_lane_power_saving.min =
5142 tonga_ps->performance_levels[i].pcie_lane;
5143 }
5144 break;
5145 default:
5146 break;
5147 }
5148 }
5149 return 0;
5150}
5151
5152static void
5153tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
5154{
5155 uint32_t sclk, mclk;
5156
5157 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
5158
5159 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5160
5161 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
5162
5163 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5164 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100);
5165}
5166
5167static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
5168{
5169 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5170 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5171 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5172 struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
5173 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5174 struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
5175 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5176 struct PP_Clocks min_clocks = {0};
5177 uint32_t i;
5178 struct cgs_display_info info = {0};
5179
5180 data->need_update_smu7_dpm_table = 0;
5181
5182 for (i = 0; i < psclk_table->count; i++) {
5183 if (sclk == psclk_table->dpm_levels[i].value)
5184 break;
5185 }
5186
5187 if (i >= psclk_table->count)
5188 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5189 else {
5190 /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
5191 if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
5192 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
5193 }
5194
5195 for (i=0; i < pmclk_table->count; i++) {
5196 if (mclk == pmclk_table->dpm_levels[i].value)
5197 break;
5198 }
5199
5200 if (i >= pmclk_table->count)
5201 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5202
5203 cgs_get_active_displays_info(hwmgr->device, &info);
5204
5205 if (data->display_timing.num_existing_displays != info.display_count)
5206 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
5207
5208 return 0;
5209}
5210
5211static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
5212{
5213 uint32_t i;
5214 uint32_t sclk, max_sclk = 0;
5215 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5216 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5217
5218 for (i = 0; i < hw_ps->performance_level_count; i++) {
5219 sclk = hw_ps->performance_levels[i].engine_clock;
5220 if (max_sclk < sclk)
5221 max_sclk = sclk;
5222 }
5223
5224 for (i = 0; i < pdpm_table->sclk_table.count; i++) {
5225 if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
5226 return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
5227 pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
5228 pdpm_table->pcie_speed_table.dpm_levels[i].value);
5229 }
5230
5231 return 0;
5232}
5233
5234static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
5235{
5236 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5237 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5238 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5239 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5240
5241 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
5242 uint16_t current_link_speed;
5243
5244 if (data->force_pcie_gen == PP_PCIEGenInvalid)
5245 current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
5246 else
5247 current_link_speed = data->force_pcie_gen;
5248
5249 data->force_pcie_gen = PP_PCIEGenInvalid;
5250 data->pspp_notify_required = false;
5251 if (target_link_speed > current_link_speed) {
5252 switch(target_link_speed) {
5253 case PP_PCIEGen3:
5254 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
5255 break;
5256 data->force_pcie_gen = PP_PCIEGen2;
5257 if (current_link_speed == PP_PCIEGen2)
5258 break;
5259 case PP_PCIEGen2:
5260 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
5261 break;
5262 default:
5263 data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
5264 break;
5265 }
5266 } else {
5267 if (target_link_speed < current_link_speed)
5268 data->pspp_notify_required = true;
5269 }
5270
5271 return 0;
5272}
5273
5274static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5275{
5276 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5277
5278 if (0 == data->need_update_smu7_dpm_table)
5279 return 0;
5280
5281 if ((0 == data->sclk_dpm_key_disabled) &&
5282 (data->need_update_smu7_dpm_table &
5283 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5284 PP_ASSERT_WITH_CODE(
5285 true == tonga_is_dpm_running(hwmgr),
5286 "Trying to freeze SCLK DPM when DPM is disabled",
5287 );
5288 PP_ASSERT_WITH_CODE(
5289 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5290 PPSMC_MSG_SCLKDPM_FreezeLevel),
5291 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
5292 return -1);
5293 }
5294
5295 if ((0 == data->mclk_dpm_key_disabled) &&
5296 (data->need_update_smu7_dpm_table &
5297 DPMTABLE_OD_UPDATE_MCLK)) {
5298 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5299 "Trying to freeze MCLK DPM when DPM is disabled",
5300 );
5301 PP_ASSERT_WITH_CODE(
5302 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5303 PPSMC_MSG_MCLKDPM_FreezeLevel),
5304 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
5305 return -1);
5306 }
5307
5308 return 0;
5309}
5310
5311static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
5312{
5313 int result = 0;
5314
5315 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5316 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5317 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5318 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5319 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5320 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5321
5322 struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
5323 uint32_t dpm_count, clock_percent;
5324 uint32_t i;
5325
5326 if (0 == data->need_update_smu7_dpm_table)
5327 return 0;
5328
5329 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
5330 pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
5331
5332 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5333 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5334 /* Need to do calculation based on the golden DPM table
5335 * as the Heatmap GPU Clock axis is also based on the default values
5336 */
5337 PP_ASSERT_WITH_CODE(
5338 (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
5339 "Divide by 0!",
5340 return -1);
5341 dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
5342 for (i = dpm_count; i > 1; i--) {
5343 if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
5344 clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
5345 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5346
5347 pdpm_table->sclk_table.dpm_levels[i].value =
5348 pgolden_dpm_table->sclk_table.dpm_levels[i].value +
5349 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5350
5351 } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
5352 clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
5353 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5354
5355 pdpm_table->sclk_table.dpm_levels[i].value =
5356 pgolden_dpm_table->sclk_table.dpm_levels[i].value -
5357 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5358 } else
5359 pdpm_table->sclk_table.dpm_levels[i].value =
5360 pgolden_dpm_table->sclk_table.dpm_levels[i].value;
5361 }
5362 }
5363 }
5364
5365 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
5366 pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
5367
5368 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5369 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5370
5371 PP_ASSERT_WITH_CODE(
5372 (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
5373 "Divide by 0!",
5374 return -1);
5375 dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
5376 for (i = dpm_count; i > 1; i--) {
5377 if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
5378 clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
5379 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5380
5381 pdpm_table->mclk_table.dpm_levels[i].value =
5382 pgolden_dpm_table->mclk_table.dpm_levels[i].value +
5383 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5384
5385 } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
5386 clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
5387 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5388
5389 pdpm_table->mclk_table.dpm_levels[i].value =
5390 pgolden_dpm_table->mclk_table.dpm_levels[i].value -
5391 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5392 } else
5393 pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
5394 }
5395 }
5396 }
5397
5398 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
5399 result = tonga_populate_all_memory_levels(hwmgr);
5400 PP_ASSERT_WITH_CODE((0 == result),
5401 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
5402 return result);
5403 }
5404
5405 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
5406 /*populate MCLK dpm table to SMU7 */
5407 result = tonga_populate_all_memory_levels(hwmgr);
5408 PP_ASSERT_WITH_CODE((0 == result),
5409 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
5410 return result);
5411 }
5412
5413 return result;
5414}
5415
5416static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
5417 struct tonga_single_dpm_table * pdpm_table,
5418 uint32_t low_limit, uint32_t high_limit)
5419{
5420 uint32_t i;
5421
5422 for (i = 0; i < pdpm_table->count; i++) {
5423 if ((pdpm_table->dpm_levels[i].value < low_limit) ||
5424 (pdpm_table->dpm_levels[i].value > high_limit))
5425 pdpm_table->dpm_levels[i].enabled = false;
5426 else
5427 pdpm_table->dpm_levels[i].enabled = true;
5428 }
5429 return 0;
5430}
5431
5432static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
5433{
5434 int result = 0;
5435 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5436 uint32_t high_limit_count;
5437
5438 PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
5439 "power state did not have any performance level",
5440 return -1);
5441
5442 high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
5443
5444 tonga_trim_single_dpm_states(hwmgr,
5445 &(data->dpm_table.sclk_table),
5446 hw_state->performance_levels[0].engine_clock,
5447 hw_state->performance_levels[high_limit_count].engine_clock);
5448
5449 tonga_trim_single_dpm_states(hwmgr,
5450 &(data->dpm_table.mclk_table),
5451 hw_state->performance_levels[0].memory_clock,
5452 hw_state->performance_levels[high_limit_count].memory_clock);
5453
5454 return result;
5455}
5456
5457static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
5458{
5459 int result;
5460 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5461 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5462 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5463
5464
5465 result = tonga_trim_dpm_states(hwmgr, tonga_ps);
5466 if (0 != result)
5467 return result;
5468
5469 data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
5470 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
5471 data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
5472 if (data->uvd_enabled)
5473 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
5474
5475 data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
5476
5477 return 0;
5478}
5479
5480static int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
5481{
5482 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
5483 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
5484 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
5485}
5486
5487static int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
5488{
5489 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5490 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5491 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5492 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5493
5494 uint32_t mm_boot_level_offset, mm_boot_level_value;
5495 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5496
5497 if(tonga_nps->vce_clocks.EVCLK >0 &&
5498 (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
5499 data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
5500
5501 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
5502 mm_boot_level_offset /= 4;
5503 mm_boot_level_offset *= 4;
5504 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5505 mm_boot_level_value &= 0xFF00FFFF;
5506 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
5507 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5508
5509 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
5510 smum_send_msg_to_smc_with_parameter(
5511 hwmgr->smumgr,
5512 (PPSMC_Msg)(PPSMC_MSG_VCEDPM_SetEnabledMask),
5513 (uint32_t)1 << data->smc_state_table.VceBootLevel);
5514
5515 tonga_enable_disable_vce_dpm(hwmgr, true);
5516 } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
5517 tonga_enable_disable_vce_dpm(hwmgr, false);
5518 }
5519
5520 return 0;
5521}
5522
5523static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
5524{
5525 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5526
5527 uint32_t address;
5528 int32_t result;
5529
5530 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
5531 return 0;
5532
5533
5534 memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
5535
5536 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
5537
5538 if(result != 0)
5539 return result;
5540
5541
5542 address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
5543
5544 return tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
5545 (uint8_t *)&data->mc_reg_table.data[0],
5546 sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
5547 data->sram_end);
5548}
5549
5550static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
5551{
5552 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5553
5554 if (data->need_update_smu7_dpm_table &
5555 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
5556 return tonga_program_memory_timing_parameters(hwmgr);
5557
5558 return 0;
5559}
5560
5561static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5562{
5563 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5564
5565 if (0 == data->need_update_smu7_dpm_table)
5566 return 0;
5567
5568 if ((0 == data->sclk_dpm_key_disabled) &&
5569 (data->need_update_smu7_dpm_table &
5570 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5571
5572 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5573 "Trying to Unfreeze SCLK DPM when DPM is disabled",
5574 );
5575 PP_ASSERT_WITH_CODE(
5576 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5577 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5578 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
5579 return -1);
5580 }
5581
5582 if ((0 == data->mclk_dpm_key_disabled) &&
5583 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
5584
5585 PP_ASSERT_WITH_CODE(
5586 true == tonga_is_dpm_running(hwmgr),
5587 "Trying to Unfreeze MCLK DPM when DPM is disabled",
5588 );
5589 PP_ASSERT_WITH_CODE(
5590 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5591 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5592 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
5593 return -1);
5594 }
5595
5596 data->need_update_smu7_dpm_table = 0;
5597
5598 return 0;
5599}
5600
5601static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
5602{
5603 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5604 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5605 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5606 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
5607 uint8_t request;
5608
5609 if (data->pspp_notify_required ||
5610 data->pcie_performance_request) {
5611 if (target_link_speed == PP_PCIEGen3)
5612 request = PCIE_PERF_REQ_GEN3;
5613 else if (target_link_speed == PP_PCIEGen2)
5614 request = PCIE_PERF_REQ_GEN2;
5615 else
5616 request = PCIE_PERF_REQ_GEN1;
5617
5618 if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
5619 data->pcie_performance_request = false;
5620 return 0;
5621 }
5622
5623 if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
5624 if (PP_PCIEGen2 == target_link_speed)
5625 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
5626 else
5627 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
5628 }
5629 }
5630
5631 data->pcie_performance_request = false;
5632 return 0;
5633}
5634
5635static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
5636{
5637 int tmp_result, result = 0;
5638
5639 tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
5640 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
5641
5642 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5643 tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
5644 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
5645 }
5646
5647 tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
5648 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
5649
5650 tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
5651 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
5652
5653 tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
5654 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
5655
5656 tmp_result = tonga_update_vce_dpm(hwmgr, input);
5657 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
5658
5659 tmp_result = tonga_update_sclk_threshold(hwmgr);
5660 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
5661
5662 tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
5663 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
5664
5665 tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
5666 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
5667
5668 tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
5669 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
5670
5671 tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
5672 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
5673
5674 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5675 tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
5676 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
5677 }
5678
5679 return result;
5680}
5681
5682static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
5683 .backend_init = &tonga_hwmgr_backend_init,
5684 .backend_fini = &tonga_hwmgr_backend_fini,
5685 .asic_setup = &tonga_setup_asic_task,
5686 .dynamic_state_management_enable = &tonga_enable_dpm_tasks,
5687 .apply_state_adjust_rules = tonga_apply_state_adjust_rules,
5688 .force_dpm_level = &tonga_force_dpm_level,
5689 .power_state_set = tonga_set_power_state_tasks,
5690 .get_power_state_size = tonga_get_power_state_size,
5691 .get_mclk = tonga_dpm_get_mclk,
5692 .get_sclk = tonga_dpm_get_sclk,
5693 .patch_boot_state = tonga_dpm_patch_boot_state,
5694 .get_pp_table_entry = tonga_get_pp_table_entry,
5695 .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
5696 .print_current_perforce_level = tonga_print_current_perforce_level,
5697};
5698
5699int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
5700{
5701 tonga_hwmgr *data;
5702
5703 data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
5704 if (data == NULL)
5705 return -ENOMEM;
5706 memset(data, 0x00, sizeof(tonga_hwmgr));
5707
5708 hwmgr->backend = data;
5709 hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
5710 hwmgr->pptable_func = &tonga_pptable_funcs;
5711
5712 return 0;
5713}
5714