]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/amd/powerplay/hwmgr/vega10_hwmgr.c
drm: Add DRM_MODE_ROTATE_ and DRM_MODE_REFLECT_ to UAPI
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / amd / powerplay / hwmgr / vega10_hwmgr.c
CommitLineData
f83a9991
EH
1/*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
26#include "linux/delay.h"
27
28#include "hwmgr.h"
29#include "amd_powerplay.h"
30#include "vega10_smumgr.h"
31#include "hardwaremanager.h"
32#include "ppatomfwctrl.h"
33#include "atomfirmware.h"
34#include "cgs_common.h"
35#include "vega10_powertune.h"
36#include "smu9.h"
37#include "smu9_driver_if.h"
38#include "vega10_inc.h"
39#include "pp_soc15.h"
40#include "pppcielanes.h"
41#include "vega10_hwmgr.h"
42#include "vega10_processpptables.h"
43#include "vega10_pptable.h"
44#include "vega10_thermal.h"
45#include "pp_debug.h"
46#include "pp_acpi.h"
47#include "amd_pcie_helpers.h"
48#include "cgs_linux.h"
49#include "ppinterrupt.h"
50
51
52#define VOLTAGE_SCALE 4
53#define VOLTAGE_VID_OFFSET_SCALE1 625
54#define VOLTAGE_VID_OFFSET_SCALE2 100
55
56#define HBM_MEMORY_CHANNEL_WIDTH 128
57
58uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
59
60#define MEM_FREQ_LOW_LATENCY 25000
61#define MEM_FREQ_HIGH_LATENCY 80000
62#define MEM_LATENCY_HIGH 245
63#define MEM_LATENCY_LOW 35
64#define MEM_LATENCY_ERR 0xFFFF
65
66#define mmDF_CS_AON0_DramBaseAddress0 0x0044
67#define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0
68
69//DF_CS_AON0_DramBaseAddress0
70#define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0
71#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1
72#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4
73#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8
74#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc
75#define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L
76#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L
77#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L
78#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L
79#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L
80
81const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
82
83struct vega10_power_state *cast_phw_vega10_power_state(
84 struct pp_hw_power_state *hw_ps)
85{
86 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
87 "Invalid Powerstate Type!",
88 return NULL;);
89
90 return (struct vega10_power_state *)hw_ps;
91}
92
93const struct vega10_power_state *cast_const_phw_vega10_power_state(
94 const struct pp_hw_power_state *hw_ps)
95{
96 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
97 "Invalid Powerstate Type!",
98 return NULL;);
99
100 return (const struct vega10_power_state *)hw_ps;
101}
102
103static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
104{
105 struct vega10_hwmgr *data =
106 (struct vega10_hwmgr *)(hwmgr->backend);
107
108 data->registry_data.sclk_dpm_key_disabled =
109 hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
110 data->registry_data.socclk_dpm_key_disabled =
111 hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
112 data->registry_data.mclk_dpm_key_disabled =
113 hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
2d5f5f94
RZ
114 data->registry_data.pcie_dpm_key_disabled =
115 hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
f83a9991
EH
116
117 data->registry_data.dcefclk_dpm_key_disabled =
118 hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
119
120 if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
121 data->registry_data.power_containment_support = 1;
122 data->registry_data.enable_pkg_pwr_tracking_feature = 1;
123 data->registry_data.enable_tdc_limit_feature = 1;
124 }
125
afc0255c 126 data->registry_data.clock_stretcher_support =
97782cc9 127 hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? false : true;
afc0255c 128
f83a9991
EH
129 data->registry_data.disable_water_mark = 0;
130
131 data->registry_data.fan_control_support = 1;
132 data->registry_data.thermal_support = 1;
133 data->registry_data.fw_ctf_enabled = 1;
134
135 data->registry_data.avfs_support = 1;
136 data->registry_data.led_dpm_enabled = 1;
137
138 data->registry_data.vr0hot_enabled = 1;
139 data->registry_data.vr1hot_enabled = 1;
140 data->registry_data.regulator_hot_gpio_support = 1;
141
142 data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
143 data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
144 data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
145 data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
146 data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
147 data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
148 data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
149 data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
150 data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
151 data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
152 data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
153 data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
154 data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
155
156 data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
157 data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
158 data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
159 data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
160}
161
162static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
163{
164 struct vega10_hwmgr *data =
165 (struct vega10_hwmgr *)(hwmgr->backend);
166 struct phm_ppt_v2_information *table_info =
167 (struct phm_ppt_v2_information *)hwmgr->pptable;
168 struct cgs_system_info sys_info = {0};
169 int result;
170
171 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
172 PHM_PlatformCaps_SclkDeepSleep);
173
174 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
175 PHM_PlatformCaps_DynamicPatchPowerState);
176
177 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
178 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
179 PHM_PlatformCaps_ControlVDDCI);
180
181 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
182 PHM_PlatformCaps_TablelessHardwareInterface);
183
184 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
185 PHM_PlatformCaps_EnableSMU7ThermalManagement);
186
187 sys_info.size = sizeof(struct cgs_system_info);
188 sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
189 result = cgs_query_system_info(hwmgr->device, &sys_info);
190
191 if (!result && (sys_info.value & AMD_PG_SUPPORT_UVD))
192 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
193 PHM_PlatformCaps_UVDPowerGating);
194
195 if (!result && (sys_info.value & AMD_PG_SUPPORT_VCE))
196 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
197 PHM_PlatformCaps_VCEPowerGating);
198
199 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
200 PHM_PlatformCaps_UnTabledHardwareInterface);
201
202 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
203 PHM_PlatformCaps_FanSpeedInTableIsRPM);
204
205 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
206 PHM_PlatformCaps_ODFuzzyFanControlSupport);
207
208 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
209 PHM_PlatformCaps_DynamicPowerManagement);
210
211 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
212 PHM_PlatformCaps_SMC);
213
214 /* power tune caps */
215 /* assume disabled */
216 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
217 PHM_PlatformCaps_PowerContainment);
218 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
219 PHM_PlatformCaps_SQRamping);
220 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
221 PHM_PlatformCaps_DBRamping);
222 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
223 PHM_PlatformCaps_TDRamping);
224 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
225 PHM_PlatformCaps_TCPRamping);
226
227 if (data->registry_data.power_containment_support)
228 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
229 PHM_PlatformCaps_PowerContainment);
230 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
231 PHM_PlatformCaps_CAC);
232
233 if (table_info->tdp_table->usClockStretchAmount &&
234 data->registry_data.clock_stretcher_support)
235 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
236 PHM_PlatformCaps_ClockStretcher);
237
238 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
239 PHM_PlatformCaps_RegulatorHot);
240 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
241 PHM_PlatformCaps_AutomaticDCTransition);
242
243 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
244 PHM_PlatformCaps_UVDDPM);
245 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
246 PHM_PlatformCaps_VCEDPM);
247
248 return 0;
249}
250
251static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
252{
253 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
254 int i;
255
256 vega10_initialize_power_tune_defaults(hwmgr);
257
258 for (i = 0; i < GNLD_FEATURES_MAX; i++) {
259 data->smu_features[i].smu_feature_id = 0xffff;
260 data->smu_features[i].smu_feature_bitmap = 1 << i;
261 data->smu_features[i].enabled = false;
262 data->smu_features[i].supported = false;
263 }
264
265 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
266 FEATURE_DPM_PREFETCHER_BIT;
267 data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
268 FEATURE_DPM_GFXCLK_BIT;
269 data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
270 FEATURE_DPM_UCLK_BIT;
271 data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
272 FEATURE_DPM_SOCCLK_BIT;
273 data->smu_features[GNLD_DPM_UVD].smu_feature_id =
274 FEATURE_DPM_UVD_BIT;
275 data->smu_features[GNLD_DPM_VCE].smu_feature_id =
276 FEATURE_DPM_VCE_BIT;
277 data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
278 FEATURE_DPM_MP0CLK_BIT;
279 data->smu_features[GNLD_DPM_LINK].smu_feature_id =
280 FEATURE_DPM_LINK_BIT;
281 data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
282 FEATURE_DPM_DCEFCLK_BIT;
283 data->smu_features[GNLD_ULV].smu_feature_id =
284 FEATURE_ULV_BIT;
285 data->smu_features[GNLD_AVFS].smu_feature_id =
286 FEATURE_AVFS_BIT;
287 data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
288 FEATURE_DS_GFXCLK_BIT;
289 data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
290 FEATURE_DS_SOCCLK_BIT;
291 data->smu_features[GNLD_DS_LCLK].smu_feature_id =
292 FEATURE_DS_LCLK_BIT;
293 data->smu_features[GNLD_PPT].smu_feature_id =
294 FEATURE_PPT_BIT;
295 data->smu_features[GNLD_TDC].smu_feature_id =
296 FEATURE_TDC_BIT;
297 data->smu_features[GNLD_THERMAL].smu_feature_id =
298 FEATURE_THERMAL_BIT;
299 data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
300 FEATURE_GFX_PER_CU_CG_BIT;
301 data->smu_features[GNLD_RM].smu_feature_id =
302 FEATURE_RM_BIT;
303 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
304 FEATURE_DS_DCEFCLK_BIT;
305 data->smu_features[GNLD_ACDC].smu_feature_id =
306 FEATURE_ACDC_BIT;
307 data->smu_features[GNLD_VR0HOT].smu_feature_id =
308 FEATURE_VR0HOT_BIT;
309 data->smu_features[GNLD_VR1HOT].smu_feature_id =
310 FEATURE_VR1HOT_BIT;
311 data->smu_features[GNLD_FW_CTF].smu_feature_id =
312 FEATURE_FW_CTF_BIT;
313 data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
314 FEATURE_LED_DISPLAY_BIT;
315 data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
316 FEATURE_FAN_CONTROL_BIT;
317 data->smu_features[GNLD_VOLTAGE_CONTROLLER].smu_feature_id =
318 FEATURE_VOLTAGE_CONTROLLER_BIT;
319
320 if (!data->registry_data.prefetcher_dpm_key_disabled)
321 data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
322
323 if (!data->registry_data.sclk_dpm_key_disabled)
324 data->smu_features[GNLD_DPM_GFXCLK].supported = true;
325
326 if (!data->registry_data.mclk_dpm_key_disabled)
327 data->smu_features[GNLD_DPM_UCLK].supported = true;
328
329 if (!data->registry_data.socclk_dpm_key_disabled)
330 data->smu_features[GNLD_DPM_SOCCLK].supported = true;
331
332 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
333 PHM_PlatformCaps_UVDDPM))
334 data->smu_features[GNLD_DPM_UVD].supported = true;
335
336 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
337 PHM_PlatformCaps_VCEDPM))
338 data->smu_features[GNLD_DPM_VCE].supported = true;
339
340 if (!data->registry_data.pcie_dpm_key_disabled)
341 data->smu_features[GNLD_DPM_LINK].supported = true;
342
343 if (!data->registry_data.dcefclk_dpm_key_disabled)
344 data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
345
346 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
347 PHM_PlatformCaps_SclkDeepSleep) &&
348 data->registry_data.sclk_deep_sleep_support) {
349 data->smu_features[GNLD_DS_GFXCLK].supported = true;
350 data->smu_features[GNLD_DS_SOCCLK].supported = true;
351 data->smu_features[GNLD_DS_LCLK].supported = true;
352 }
353
354 if (data->registry_data.enable_pkg_pwr_tracking_feature)
355 data->smu_features[GNLD_PPT].supported = true;
356
357 if (data->registry_data.enable_tdc_limit_feature)
358 data->smu_features[GNLD_TDC].supported = true;
359
360 if (data->registry_data.thermal_support)
361 data->smu_features[GNLD_THERMAL].supported = true;
362
363 if (data->registry_data.fan_control_support)
364 data->smu_features[GNLD_FAN_CONTROL].supported = true;
365
366 if (data->registry_data.fw_ctf_enabled)
367 data->smu_features[GNLD_FW_CTF].supported = true;
368
369 if (data->registry_data.avfs_support)
370 data->smu_features[GNLD_AVFS].supported = true;
371
372 if (data->registry_data.led_dpm_enabled)
373 data->smu_features[GNLD_LED_DISPLAY].supported = true;
374
375 if (data->registry_data.vr1hot_enabled)
376 data->smu_features[GNLD_VR1HOT].supported = true;
377
378 if (data->registry_data.vr0hot_enabled)
379 data->smu_features[GNLD_VR0HOT].supported = true;
380
381}
382
383#ifdef PPLIB_VEGA10_EVV_SUPPORT
384static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
385 phm_ppt_v1_voltage_lookup_table *lookup_table,
386 uint16_t virtual_voltage_id, int32_t *socclk)
387{
388 uint8_t entry_id;
389 uint8_t voltage_id;
390 struct phm_ppt_v2_information *table_info =
391 (struct phm_ppt_v2_information *)(hwmgr->pptable);
392
393 PP_ASSERT_WITH_CODE(lookup_table->count != 0,
394 "Lookup table is empty",
395 return -EINVAL);
396
397 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
398 for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
399 voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
400 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
401 break;
402 }
403
404 PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
405 "Can't find requested voltage id in vdd_dep_on_socclk table!",
406 return -EINVAL);
407
408 *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
409
410 return 0;
411}
412
413#define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01
414/**
415* Get Leakage VDDC based on leakage ID.
416*
417* @param hwmgr the address of the powerplay hardware manager.
418* @return always 0.
419*/
420static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
421{
422 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
423 uint16_t vv_id;
424 uint32_t vddc = 0;
425 uint16_t i, j;
426 uint32_t sclk = 0;
427 struct phm_ppt_v2_information *table_info =
428 (struct phm_ppt_v2_information *)hwmgr->pptable;
429 struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
430 table_info->vdd_dep_on_socclk;
431 int result;
432
433 for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
434 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
435
436 if (!vega10_get_socclk_for_voltage_evv(hwmgr,
437 table_info->vddc_lookup_table, vv_id, &sclk)) {
438 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
439 PHM_PlatformCaps_ClockStretcher)) {
440 for (j = 1; j < socclk_table->count; j++) {
441 if (socclk_table->entries[j].clk == sclk &&
442 socclk_table->entries[j].cks_enable == 0) {
443 sclk += 5000;
444 break;
445 }
446 }
447 }
448
449 PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
450 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
451 "Error retrieving EVV voltage value!",
452 continue);
453
454
455 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
456 PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
457 "Invalid VDDC value", result = -EINVAL;);
458
459 /* the voltage should not be zero nor equal to leakage ID */
460 if (vddc != 0 && vddc != vv_id) {
461 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
462 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
463 data->vddc_leakage.count++;
464 }
465 }
466 }
467
468 return 0;
469}
470
471/**
472 * Change virtual leakage voltage to actual value.
473 *
474 * @param hwmgr the address of the powerplay hardware manager.
475 * @param pointer to changing voltage
476 * @param pointer to leakage table
477 */
478static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
479 uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
480{
481 uint32_t index;
482
483 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
484 for (index = 0; index < leakage_table->count; index++) {
485 /* if this voltage matches a leakage voltage ID */
486 /* patch with actual leakage voltage */
487 if (leakage_table->leakage_id[index] == *voltage) {
488 *voltage = leakage_table->actual_voltage[index];
489 break;
490 }
491 }
492
493 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
494 pr_info("Voltage value looks like a Leakage ID \
495 but it's not patched\n");
496}
497
498/**
499* Patch voltage lookup table by EVV leakages.
500*
501* @param hwmgr the address of the powerplay hardware manager.
502* @param pointer to voltage lookup table
503* @param pointer to leakage table
504* @return always 0
505*/
506static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
507 phm_ppt_v1_voltage_lookup_table *lookup_table,
508 struct vega10_leakage_voltage *leakage_table)
509{
510 uint32_t i;
511
512 for (i = 0; i < lookup_table->count; i++)
513 vega10_patch_with_vdd_leakage(hwmgr,
514 &lookup_table->entries[i].us_vdd, leakage_table);
515
516 return 0;
517}
518
519static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
520 struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
521 uint16_t *vddc)
522{
523 vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
524
525 return 0;
526}
527#endif
528
529static int vega10_patch_voltage_dependency_tables_with_lookup_table(
530 struct pp_hwmgr *hwmgr)
531{
532 uint8_t entry_id;
533 uint8_t voltage_id;
534 struct phm_ppt_v2_information *table_info =
535 (struct phm_ppt_v2_information *)(hwmgr->pptable);
536 struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
537 table_info->vdd_dep_on_socclk;
538 struct phm_ppt_v1_clock_voltage_dependency_table *gfxclk_table =
539 table_info->vdd_dep_on_sclk;
540 struct phm_ppt_v1_clock_voltage_dependency_table *dcefclk_table =
541 table_info->vdd_dep_on_dcefclk;
542 struct phm_ppt_v1_clock_voltage_dependency_table *pixclk_table =
543 table_info->vdd_dep_on_pixclk;
544 struct phm_ppt_v1_clock_voltage_dependency_table *dspclk_table =
545 table_info->vdd_dep_on_dispclk;
546 struct phm_ppt_v1_clock_voltage_dependency_table *phyclk_table =
547 table_info->vdd_dep_on_phyclk;
548 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
549 table_info->vdd_dep_on_mclk;
550 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
551 table_info->mm_dep_table;
552
553 for (entry_id = 0; entry_id < socclk_table->count; entry_id++) {
554 voltage_id = socclk_table->entries[entry_id].vddInd;
555 socclk_table->entries[entry_id].vddc =
556 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
557 }
558
559 for (entry_id = 0; entry_id < gfxclk_table->count; entry_id++) {
560 voltage_id = gfxclk_table->entries[entry_id].vddInd;
561 gfxclk_table->entries[entry_id].vddc =
562 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
563 }
564
565 for (entry_id = 0; entry_id < dcefclk_table->count; entry_id++) {
566 voltage_id = dcefclk_table->entries[entry_id].vddInd;
567 dcefclk_table->entries[entry_id].vddc =
568 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
569 }
570
571 for (entry_id = 0; entry_id < pixclk_table->count; entry_id++) {
572 voltage_id = pixclk_table->entries[entry_id].vddInd;
573 pixclk_table->entries[entry_id].vddc =
574 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
575 }
576
577 for (entry_id = 0; entry_id < dspclk_table->count; entry_id++) {
578 voltage_id = dspclk_table->entries[entry_id].vddInd;
579 dspclk_table->entries[entry_id].vddc =
580 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
581 }
582
583 for (entry_id = 0; entry_id < phyclk_table->count; entry_id++) {
584 voltage_id = phyclk_table->entries[entry_id].vddInd;
585 phyclk_table->entries[entry_id].vddc =
586 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
587 }
588
589 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
590 voltage_id = mclk_table->entries[entry_id].vddInd;
591 mclk_table->entries[entry_id].vddc =
592 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
593 voltage_id = mclk_table->entries[entry_id].vddciInd;
594 mclk_table->entries[entry_id].vddci =
595 table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
596 voltage_id = mclk_table->entries[entry_id].mvddInd;
597 mclk_table->entries[entry_id].mvdd =
598 table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
599 }
600
601 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
602 voltage_id = mm_table->entries[entry_id].vddcInd;
603 mm_table->entries[entry_id].vddc =
604 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
605 }
606
607 return 0;
608
609}
610
611static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
612 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
613{
614 uint32_t table_size, i, j;
615 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
616
617 PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
618 "Lookup table is empty", return -EINVAL);
619
620 table_size = lookup_table->count;
621
622 /* Sorting voltages */
623 for (i = 0; i < table_size - 1; i++) {
624 for (j = i + 1; j > 0; j--) {
625 if (lookup_table->entries[j].us_vdd <
626 lookup_table->entries[j - 1].us_vdd) {
627 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
628 lookup_table->entries[j - 1] = lookup_table->entries[j];
629 lookup_table->entries[j] = tmp_voltage_lookup_record;
630 }
631 }
632 }
633
634 return 0;
635}
636
637static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
638{
639 int result = 0;
640 int tmp_result;
641 struct phm_ppt_v2_information *table_info =
642 (struct phm_ppt_v2_information *)(hwmgr->pptable);
643#ifdef PPLIB_VEGA10_EVV_SUPPORT
644 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
645
646 tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
647 table_info->vddc_lookup_table, &(data->vddc_leakage));
648 if (tmp_result)
649 result = tmp_result;
650
651 tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
652 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
653 if (tmp_result)
654 result = tmp_result;
655#endif
656
657 tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
658 if (tmp_result)
659 result = tmp_result;
660
661 tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
662 if (tmp_result)
663 result = tmp_result;
664
665 return result;
666}
667
668static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
669{
670 struct phm_ppt_v2_information *table_info =
671 (struct phm_ppt_v2_information *)(hwmgr->pptable);
672 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
673 table_info->vdd_dep_on_socclk;
674 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
675 table_info->vdd_dep_on_mclk;
676
677 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
678 "VDD dependency on SCLK table is missing. \
679 This table is mandatory", return -EINVAL);
680 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
681 "VDD dependency on SCLK table is empty. \
682 This table is mandatory", return -EINVAL);
683
684 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
685 "VDD dependency on MCLK table is missing. \
686 This table is mandatory", return -EINVAL);
687 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
688 "VDD dependency on MCLK table is empty. \
689 This table is mandatory", return -EINVAL);
690
691 table_info->max_clock_voltage_on_ac.sclk =
692 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
693 table_info->max_clock_voltage_on_ac.mclk =
694 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
695 table_info->max_clock_voltage_on_ac.vddc =
696 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
697 table_info->max_clock_voltage_on_ac.vddci =
698 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
699
700 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
701 table_info->max_clock_voltage_on_ac.sclk;
702 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
703 table_info->max_clock_voltage_on_ac.mclk;
704 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
705 table_info->max_clock_voltage_on_ac.vddc;
706 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
707 table_info->max_clock_voltage_on_ac.vddci;
708
709 return 0;
710}
711
712static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
713{
714 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
715 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
716
717 kfree(hwmgr->backend);
718 hwmgr->backend = NULL;
719
720 return 0;
721}
722
723static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
724{
725 int result = 0;
726 struct vega10_hwmgr *data;
727 uint32_t config_telemetry = 0;
728 struct pp_atomfwctrl_voltage_table vol_table;
729 struct cgs_system_info sys_info = {0};
730
731 data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
732 if (data == NULL)
733 return -ENOMEM;
734
735 hwmgr->backend = data;
736
737 vega10_set_default_registry_data(hwmgr);
738
739 data->disable_dpm_mask = 0xff;
740 data->workload_mask = 0xff;
741
742 /* need to set voltage control types before EVV patching */
743 data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
744 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
745 data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
746
747 /* VDDCR_SOC */
748 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
749 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
750 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
751 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
752 &vol_table)) {
753 config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
754 (vol_table.telemetry_offset & 0xff);
755 data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
756 }
757 } else {
758 kfree(hwmgr->backend);
759 hwmgr->backend = NULL;
760 PP_ASSERT_WITH_CODE(false,
761 "VDDCR_SOC is not SVID2!",
762 return -1);
763 }
764
765 /* MVDDC */
766 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
767 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
768 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
769 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
770 &vol_table)) {
771 config_telemetry |=
772 ((vol_table.telemetry_slope << 24) & 0xff000000) |
773 ((vol_table.telemetry_offset << 16) & 0xff0000);
774 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
775 }
776 }
777
778 /* VDDCI_MEM */
779 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
780 PHM_PlatformCaps_ControlVDDCI)) {
781 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
782 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
783 data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
784 }
785
786 data->config_telemetry = config_telemetry;
787
788 vega10_set_features_platform_caps(hwmgr);
789
790 vega10_init_dpm_defaults(hwmgr);
791
792#ifdef PPLIB_VEGA10_EVV_SUPPORT
793 /* Get leakage voltage based on leakage ID. */
794 PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
795 "Get EVV Voltage Failed. Abort Driver loading!",
796 return -1);
797#endif
798
799 /* Patch our voltage dependency table with actual leakage voltage
800 * We need to perform leakage translation before it's used by other functions
801 */
802 vega10_complete_dependency_tables(hwmgr);
803
804 /* Parse pptable data read from VBIOS */
805 vega10_set_private_data_based_on_pptable(hwmgr);
806
807 data->is_tlu_enabled = false;
808
809 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
810 VEGA10_MAX_HARDWARE_POWERLEVELS;
811 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
812 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
813
814 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
815 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
816 hwmgr->platform_descriptor.clockStep.engineClock = 500;
817 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
818
819 sys_info.size = sizeof(struct cgs_system_info);
820 sys_info.info_id = CGS_SYSTEM_INFO_GFX_CU_INFO;
821 result = cgs_query_system_info(hwmgr->device, &sys_info);
822 data->total_active_cus = sys_info.value;
823 /* Setup default Overdrive Fan control settings */
824 data->odn_fan_table.target_fan_speed =
825 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
826 data->odn_fan_table.target_temperature =
827 hwmgr->thermal_controller.
828 advanceFanControlParameters.ucTargetTemperature;
829 data->odn_fan_table.min_performance_clock =
830 hwmgr->thermal_controller.advanceFanControlParameters.
831 ulMinFanSCLKAcousticLimit;
832 data->odn_fan_table.min_fan_limit =
833 hwmgr->thermal_controller.
834 advanceFanControlParameters.usFanPWMMinLimit *
835 hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
836
837 return result;
838}
839
840static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
841{
842 struct vega10_hwmgr *data =
843 (struct vega10_hwmgr *)(hwmgr->backend);
844
845 data->low_sclk_interrupt_threshold = 0;
846
847 return 0;
848}
849
850static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
851{
852 struct vega10_hwmgr *data =
853 (struct vega10_hwmgr *)(hwmgr->backend);
854 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
855
856 struct pp_atomfwctrl_voltage_table table;
857 uint8_t i, j;
858 uint32_t mask = 0;
859 uint32_t tmp;
860 int32_t ret = 0;
861
862 ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
863 VOLTAGE_OBJ_GPIO_LUT, &table);
864
865 if (!ret) {
866 tmp = table.mask_low;
867 for (i = 0, j = 0; i < 32; i++) {
868 if (tmp & 1) {
869 mask |= (uint32_t)(i << (8 * j));
870 if (++j >= 3)
871 break;
872 }
873 tmp >>= 1;
874 }
875 }
876
877 pp_table->LedPin0 = (uint8_t)(mask & 0xff);
878 pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
879 pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
880 return 0;
881}
882
883static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
884{
885 PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
886 "Failed to init sclk threshold!",
887 return -EINVAL);
888
889 PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
890 "Failed to set up led dpm config!",
891 return -EINVAL);
892
893 return 0;
894}
895
896static bool vega10_is_dpm_running(struct pp_hwmgr *hwmgr)
897{
898 uint32_t features_enabled;
899
900 if (!vega10_get_smc_features(hwmgr->smumgr, &features_enabled)) {
901 if (features_enabled & SMC_DPM_FEATURES)
902 return true;
903 }
904 return false;
905}
906
907/**
908* Remove repeated voltage values and create table with unique values.
909*
910* @param hwmgr the address of the powerplay hardware manager.
911* @param vol_table the pointer to changing voltage table
912* @return 0 in success
913*/
914
915static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
916 struct pp_atomfwctrl_voltage_table *vol_table)
917{
918 uint32_t i, j;
919 uint16_t vvalue;
920 bool found = false;
921 struct pp_atomfwctrl_voltage_table *table;
922
923 PP_ASSERT_WITH_CODE(vol_table,
924 "Voltage Table empty.", return -EINVAL);
925 table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
926 GFP_KERNEL);
927
928 if (!table)
929 return -ENOMEM;
930
931 table->mask_low = vol_table->mask_low;
932 table->phase_delay = vol_table->phase_delay;
933
934 for (i = 0; i < vol_table->count; i++) {
935 vvalue = vol_table->entries[i].value;
936 found = false;
937
938 for (j = 0; j < table->count; j++) {
939 if (vvalue == table->entries[j].value) {
940 found = true;
941 break;
942 }
943 }
944
945 if (!found) {
946 table->entries[table->count].value = vvalue;
947 table->entries[table->count].smio_low =
948 vol_table->entries[i].smio_low;
949 table->count++;
950 }
951 }
952
953 memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
954 kfree(table);
955
956 return 0;
957}
958
959static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
960 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
961 struct pp_atomfwctrl_voltage_table *vol_table)
962{
963 int i;
964
965 PP_ASSERT_WITH_CODE(dep_table->count,
966 "Voltage Dependency Table empty.",
967 return -EINVAL);
968
969 vol_table->mask_low = 0;
970 vol_table->phase_delay = 0;
971 vol_table->count = dep_table->count;
972
973 for (i = 0; i < vol_table->count; i++) {
974 vol_table->entries[i].value = dep_table->entries[i].mvdd;
975 vol_table->entries[i].smio_low = 0;
976 }
977
978 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
979 vol_table),
980 "Failed to trim MVDD Table!",
981 return -1);
982
983 return 0;
984}
985
986static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
987 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
988 struct pp_atomfwctrl_voltage_table *vol_table)
989{
990 uint32_t i;
991
992 PP_ASSERT_WITH_CODE(dep_table->count,
993 "Voltage Dependency Table empty.",
994 return -EINVAL);
995
996 vol_table->mask_low = 0;
997 vol_table->phase_delay = 0;
998 vol_table->count = dep_table->count;
999
1000 for (i = 0; i < dep_table->count; i++) {
1001 vol_table->entries[i].value = dep_table->entries[i].vddci;
1002 vol_table->entries[i].smio_low = 0;
1003 }
1004
1005 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1006 "Failed to trim VDDCI table.",
1007 return -1);
1008
1009 return 0;
1010}
1011
1012static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1013 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1014 struct pp_atomfwctrl_voltage_table *vol_table)
1015{
1016 int i;
1017
1018 PP_ASSERT_WITH_CODE(dep_table->count,
1019 "Voltage Dependency Table empty.",
1020 return -EINVAL);
1021
1022 vol_table->mask_low = 0;
1023 vol_table->phase_delay = 0;
1024 vol_table->count = dep_table->count;
1025
1026 for (i = 0; i < vol_table->count; i++) {
1027 vol_table->entries[i].value = dep_table->entries[i].vddc;
1028 vol_table->entries[i].smio_low = 0;
1029 }
1030
1031 return 0;
1032}
1033
1034/* ---- Voltage Tables ----
1035 * If the voltage table would be bigger than
1036 * what will fit into the state table on
1037 * the SMC keep only the higher entries.
1038 */
1039static void vega10_trim_voltage_table_to_fit_state_table(
1040 struct pp_hwmgr *hwmgr,
1041 uint32_t max_vol_steps,
1042 struct pp_atomfwctrl_voltage_table *vol_table)
1043{
1044 unsigned int i, diff;
1045
1046 if (vol_table->count <= max_vol_steps)
1047 return;
1048
1049 diff = vol_table->count - max_vol_steps;
1050
1051 for (i = 0; i < max_vol_steps; i++)
1052 vol_table->entries[i] = vol_table->entries[i + diff];
1053
1054 vol_table->count = max_vol_steps;
1055}
1056
1057/**
1058* Create Voltage Tables.
1059*
1060* @param hwmgr the address of the powerplay hardware manager.
1061* @return always 0
1062*/
1063static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1064{
1065 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
1066 struct phm_ppt_v2_information *table_info =
1067 (struct phm_ppt_v2_information *)hwmgr->pptable;
1068 int result;
1069
1070 if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1071 data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1072 result = vega10_get_mvdd_voltage_table(hwmgr,
1073 table_info->vdd_dep_on_mclk,
1074 &(data->mvdd_voltage_table));
1075 PP_ASSERT_WITH_CODE(!result,
1076 "Failed to retrieve MVDDC table!",
1077 return result);
1078 }
1079
1080 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1081 result = vega10_get_vddci_voltage_table(hwmgr,
1082 table_info->vdd_dep_on_mclk,
1083 &(data->vddci_voltage_table));
1084 PP_ASSERT_WITH_CODE(!result,
1085 "Failed to retrieve VDDCI_MEM table!",
1086 return result);
1087 }
1088
1089 if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1090 data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1091 result = vega10_get_vdd_voltage_table(hwmgr,
1092 table_info->vdd_dep_on_sclk,
1093 &(data->vddc_voltage_table));
1094 PP_ASSERT_WITH_CODE(!result,
1095 "Failed to retrieve VDDCR_SOC table!",
1096 return result);
1097 }
1098
1099 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1100 "Too many voltage values for VDDC. Trimming to fit state table.",
1101 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1102 16, &(data->vddc_voltage_table)));
1103
1104 PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1105 "Too many voltage values for VDDCI. Trimming to fit state table.",
1106 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1107 16, &(data->vddci_voltage_table)));
1108
1109 PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1110 "Too many voltage values for MVDD. Trimming to fit state table.",
1111 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1112 16, &(data->mvdd_voltage_table)));
1113
1114
1115 return 0;
1116}
1117
1118/*
1119 * @fn vega10_init_dpm_state
1120 * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1121 *
1122 * @param dpm_state - the address of the DPM Table to initiailize.
1123 * @return None.
1124 */
1125static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1126{
1127 dpm_state->soft_min_level = 0xff;
1128 dpm_state->soft_max_level = 0xff;
1129 dpm_state->hard_min_level = 0xff;
1130 dpm_state->hard_max_level = 0xff;
1131}
1132
1133static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1134 struct vega10_single_dpm_table *dpm_table,
1135 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1136{
1137 int i;
1138
1139 for (i = 0; i < dep_table->count; i++) {
b7a1f0e3 1140 if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
f83a9991
EH
1141 dep_table->entries[i].clk) {
1142 dpm_table->dpm_levels[dpm_table->count].value =
1143 dep_table->entries[i].clk;
1144 dpm_table->dpm_levels[dpm_table->count].enabled = true;
1145 dpm_table->count++;
1146 }
1147 }
1148}
1149static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1150{
1151 struct vega10_hwmgr *data =
1152 (struct vega10_hwmgr *)(hwmgr->backend);
1153 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1154 struct phm_ppt_v2_information *table_info =
1155 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1156 struct phm_ppt_v1_pcie_table *bios_pcie_table =
1157 table_info->pcie_table;
1158 uint32_t i;
1159
1160 PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1161 "Incorrect number of PCIE States from VBIOS!",
1162 return -1);
1163
1164 for (i = 0; i < NUM_LINK_LEVELS - 1; i++) {
1165 if (data->registry_data.pcieSpeedOverride)
1166 pcie_table->pcie_gen[i] =
1167 data->registry_data.pcieSpeedOverride;
1168 else
1169 pcie_table->pcie_gen[i] =
1170 bios_pcie_table->entries[i].gen_speed;
1171
1172 if (data->registry_data.pcieLaneOverride)
1173 pcie_table->pcie_lane[i] =
1174 data->registry_data.pcieLaneOverride;
1175 else
1176 pcie_table->pcie_lane[i] =
1177 bios_pcie_table->entries[i].lane_width;
1178
1179 if (data->registry_data.pcieClockOverride)
1180 pcie_table->lclk[i] =
1181 data->registry_data.pcieClockOverride;
1182 else
1183 pcie_table->lclk[i] =
1184 bios_pcie_table->entries[i].pcie_sclk;
f83a9991
EH
1185 }
1186
00c4855e 1187 pcie_table->count = NUM_LINK_LEVELS;
f83a9991
EH
1188
1189 return 0;
1190}
1191
1192/*
1193 * This function is to initialize all DPM state tables
1194 * for SMU based on the dependency table.
1195 * Dynamic state patching function will then trim these
1196 * state tables to the allowed range based
1197 * on the power policy or external client requests,
1198 * such as UVD request, etc.
1199 */
1200static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1201{
1202 struct vega10_hwmgr *data =
1203 (struct vega10_hwmgr *)(hwmgr->backend);
1204 struct phm_ppt_v2_information *table_info =
1205 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1206 struct vega10_single_dpm_table *dpm_table;
1207 uint32_t i;
1208
1209 struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1210 table_info->vdd_dep_on_socclk;
1211 struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1212 table_info->vdd_dep_on_sclk;
1213 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1214 table_info->vdd_dep_on_mclk;
1215 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1216 table_info->mm_dep_table;
1217 struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1218 table_info->vdd_dep_on_dcefclk;
1219 struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1220 table_info->vdd_dep_on_pixclk;
1221 struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1222 table_info->vdd_dep_on_dispclk;
1223 struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1224 table_info->vdd_dep_on_phyclk;
1225
1226 PP_ASSERT_WITH_CODE(dep_soc_table,
1227 "SOCCLK dependency table is missing. This table is mandatory",
1228 return -EINVAL);
1229 PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1230 "SOCCLK dependency table is empty. This table is mandatory",
1231 return -EINVAL);
1232
1233 PP_ASSERT_WITH_CODE(dep_gfx_table,
1234 "GFXCLK dependency table is missing. This table is mandatory",
1235 return -EINVAL);
1236 PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1237 "GFXCLK dependency table is empty. This table is mandatory",
1238 return -EINVAL);
1239
1240 PP_ASSERT_WITH_CODE(dep_mclk_table,
1241 "MCLK dependency table is missing. This table is mandatory",
1242 return -EINVAL);
1243 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1244 "MCLK dependency table has to have is missing. This table is mandatory",
1245 return -EINVAL);
1246
1247 /* Initialize Sclk DPM table based on allow Sclk values */
1248 data->dpm_table.soc_table.count = 0;
1249 data->dpm_table.gfx_table.count = 0;
1250 data->dpm_table.dcef_table.count = 0;
1251
1252 dpm_table = &(data->dpm_table.soc_table);
1253 vega10_setup_default_single_dpm_table(hwmgr,
1254 dpm_table,
1255 dep_soc_table);
1256
1257 vega10_init_dpm_state(&(dpm_table->dpm_state));
1258
1259 dpm_table = &(data->dpm_table.gfx_table);
1260 vega10_setup_default_single_dpm_table(hwmgr,
1261 dpm_table,
1262 dep_gfx_table);
1263 vega10_init_dpm_state(&(dpm_table->dpm_state));
1264
1265 /* Initialize Mclk DPM table based on allow Mclk values */
1266 data->dpm_table.mem_table.count = 0;
1267 dpm_table = &(data->dpm_table.mem_table);
1268 vega10_setup_default_single_dpm_table(hwmgr,
1269 dpm_table,
1270 dep_mclk_table);
1271 vega10_init_dpm_state(&(dpm_table->dpm_state));
1272
1273 data->dpm_table.eclk_table.count = 0;
1274 dpm_table = &(data->dpm_table.eclk_table);
1275 for (i = 0; i < dep_mm_table->count; i++) {
1276 if (i == 0 || dpm_table->dpm_levels
b7a1f0e3 1277 [dpm_table->count - 1].value <=
f83a9991
EH
1278 dep_mm_table->entries[i].eclk) {
1279 dpm_table->dpm_levels[dpm_table->count].value =
1280 dep_mm_table->entries[i].eclk;
1281 dpm_table->dpm_levels[dpm_table->count].enabled =
1282 (i == 0) ? true : false;
1283 dpm_table->count++;
1284 }
1285 }
1286 vega10_init_dpm_state(&(dpm_table->dpm_state));
1287
1288 data->dpm_table.vclk_table.count = 0;
1289 data->dpm_table.dclk_table.count = 0;
1290 dpm_table = &(data->dpm_table.vclk_table);
1291 for (i = 0; i < dep_mm_table->count; i++) {
1292 if (i == 0 || dpm_table->dpm_levels
b7a1f0e3 1293 [dpm_table->count - 1].value <=
f83a9991
EH
1294 dep_mm_table->entries[i].vclk) {
1295 dpm_table->dpm_levels[dpm_table->count].value =
1296 dep_mm_table->entries[i].vclk;
1297 dpm_table->dpm_levels[dpm_table->count].enabled =
1298 (i == 0) ? true : false;
1299 dpm_table->count++;
1300 }
1301 }
1302 vega10_init_dpm_state(&(dpm_table->dpm_state));
1303
1304 dpm_table = &(data->dpm_table.dclk_table);
1305 for (i = 0; i < dep_mm_table->count; i++) {
1306 if (i == 0 || dpm_table->dpm_levels
b7a1f0e3 1307 [dpm_table->count - 1].value <=
f83a9991
EH
1308 dep_mm_table->entries[i].dclk) {
1309 dpm_table->dpm_levels[dpm_table->count].value =
1310 dep_mm_table->entries[i].dclk;
1311 dpm_table->dpm_levels[dpm_table->count].enabled =
1312 (i == 0) ? true : false;
1313 dpm_table->count++;
1314 }
1315 }
1316 vega10_init_dpm_state(&(dpm_table->dpm_state));
1317
1318 /* Assume there is no headless Vega10 for now */
1319 dpm_table = &(data->dpm_table.dcef_table);
1320 vega10_setup_default_single_dpm_table(hwmgr,
1321 dpm_table,
1322 dep_dcef_table);
1323
1324 vega10_init_dpm_state(&(dpm_table->dpm_state));
1325
1326 dpm_table = &(data->dpm_table.pixel_table);
1327 vega10_setup_default_single_dpm_table(hwmgr,
1328 dpm_table,
1329 dep_pix_table);
1330
1331 vega10_init_dpm_state(&(dpm_table->dpm_state));
1332
1333 dpm_table = &(data->dpm_table.display_table);
1334 vega10_setup_default_single_dpm_table(hwmgr,
1335 dpm_table,
1336 dep_disp_table);
1337
1338 vega10_init_dpm_state(&(dpm_table->dpm_state));
1339
1340 dpm_table = &(data->dpm_table.phy_table);
1341 vega10_setup_default_single_dpm_table(hwmgr,
1342 dpm_table,
1343 dep_phy_table);
1344
1345 vega10_init_dpm_state(&(dpm_table->dpm_state));
1346
1347 vega10_setup_default_pcie_table(hwmgr);
1348
1349 /* save a copy of the default DPM table */
1350 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1351 sizeof(struct vega10_dpm_table));
1352
1353 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1354 PHM_PlatformCaps_ODNinACSupport) ||
1355 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1356 PHM_PlatformCaps_ODNinDCSupport)) {
1357 data->odn_dpm_table.odn_core_clock_dpm_levels.
1358 number_of_performance_levels = data->dpm_table.gfx_table.count;
1359 for (i = 0; i < data->dpm_table.gfx_table.count; i++) {
1360 data->odn_dpm_table.odn_core_clock_dpm_levels.
1361 performance_level_entries[i].clock =
1362 data->dpm_table.gfx_table.dpm_levels[i].value;
1363 data->odn_dpm_table.odn_core_clock_dpm_levels.
1364 performance_level_entries[i].enabled = true;
1365 }
1366
1367 data->odn_dpm_table.vdd_dependency_on_sclk.count =
1368 dep_gfx_table->count;
1369 for (i = 0; i < dep_gfx_table->count; i++) {
1370 data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].clk =
1371 dep_gfx_table->entries[i].clk;
1372 data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].vddInd =
1373 dep_gfx_table->entries[i].vddInd;
1374 data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].cks_enable =
1375 dep_gfx_table->entries[i].cks_enable;
1376 data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].cks_voffset =
1377 dep_gfx_table->entries[i].cks_voffset;
1378 }
1379
1380 data->odn_dpm_table.odn_memory_clock_dpm_levels.
1381 number_of_performance_levels = data->dpm_table.mem_table.count;
1382 for (i = 0; i < data->dpm_table.mem_table.count; i++) {
1383 data->odn_dpm_table.odn_memory_clock_dpm_levels.
1384 performance_level_entries[i].clock =
1385 data->dpm_table.mem_table.dpm_levels[i].value;
1386 data->odn_dpm_table.odn_memory_clock_dpm_levels.
1387 performance_level_entries[i].enabled = true;
1388 }
1389
1390 data->odn_dpm_table.vdd_dependency_on_mclk.count = dep_mclk_table->count;
1391 for (i = 0; i < dep_mclk_table->count; i++) {
1392 data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].clk =
1393 dep_mclk_table->entries[i].clk;
1394 data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].vddInd =
1395 dep_mclk_table->entries[i].vddInd;
1396 data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].vddci =
1397 dep_mclk_table->entries[i].vddci;
1398 }
1399 }
1400
1401 return 0;
1402}
1403
1404/*
1405 * @fn vega10_populate_ulv_state
1406 * @brief Function to provide parameters for Utral Low Voltage state to SMC.
1407 *
1408 * @param hwmgr - the address of the hardware manager.
1409 * @return Always 0.
1410 */
1411static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1412{
1413 struct vega10_hwmgr *data =
1414 (struct vega10_hwmgr *)(hwmgr->backend);
1415 struct phm_ppt_v2_information *table_info =
1416 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1417
1418 data->smc_state_table.pp_table.UlvOffsetVid =
effa290c 1419 (uint8_t)table_info->us_ulv_voltage_offset;
f83a9991
EH
1420
1421 data->smc_state_table.pp_table.UlvSmnclkDid =
1422 (uint8_t)(table_info->us_ulv_smnclk_did);
1423 data->smc_state_table.pp_table.UlvMp1clkDid =
1424 (uint8_t)(table_info->us_ulv_mp1clk_did);
1425 data->smc_state_table.pp_table.UlvGfxclkBypass =
1426 (uint8_t)(table_info->us_ulv_gfxclk_bypass);
1427 data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1428 (uint8_t)(data->vddc_voltage_table.psi0_enable);
1429 data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1430 (uint8_t)(data->vddc_voltage_table.psi1_enable);
1431
1432 return 0;
1433}
1434
1435static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1436 uint32_t lclock, uint8_t *curr_lclk_did)
1437{
1438 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1439
1440 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1441 hwmgr,
1442 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1443 lclock, &dividers),
1444 "Failed to get LCLK clock settings from VBIOS!",
1445 return -1);
1446
1447 *curr_lclk_did = dividers.ulDid;
1448
1449 return 0;
1450}
1451
1452static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1453{
1454 int result = -1;
1455 struct vega10_hwmgr *data =
1456 (struct vega10_hwmgr *)(hwmgr->backend);
1457 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1458 struct vega10_pcie_table *pcie_table =
1459 &(data->dpm_table.pcie_table);
1460 uint32_t i, j;
1461
1462 for (i = 0; i < pcie_table->count; i++) {
1463 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1464 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1465
1466 result = vega10_populate_single_lclk_level(hwmgr,
1467 pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1468 if (result) {
1469 pr_info("Populate LClock Level %d Failed!\n", i);
1470 return result;
1471 }
1472 }
1473
1474 j = i - 1;
1475 while (i < NUM_LINK_LEVELS) {
1476 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1477 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1478
1479 result = vega10_populate_single_lclk_level(hwmgr,
1480 pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1481 if (result) {
1482 pr_info("Populate LClock Level %d Failed!\n", i);
1483 return result;
1484 }
1485 i++;
1486 }
1487
1488 return result;
1489}
1490
1491/**
1492* Populates single SMC GFXSCLK structure using the provided engine clock
1493*
1494* @param hwmgr the address of the hardware manager
1495* @param gfx_clock the GFX clock to use to populate the structure.
1496* @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure.
1497*/
1498
1499static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1500 uint32_t gfx_clock, PllSetting_t *current_gfxclk_level)
1501{
1502 struct phm_ppt_v2_information *table_info =
1503 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1504 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk =
1505 table_info->vdd_dep_on_sclk;
1506 struct vega10_hwmgr *data =
1507 (struct vega10_hwmgr *)(hwmgr->backend);
1508 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1509 uint32_t i;
1510
1511 if (data->apply_overdrive_next_settings_mask &
1512 DPMTABLE_OD_UPDATE_VDDC)
1513 dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1514 &(data->odn_dpm_table.vdd_dependency_on_sclk);
1515
1516 PP_ASSERT_WITH_CODE(dep_on_sclk,
1517 "Invalid SOC_VDD-GFX_CLK Dependency Table!",
1518 return -EINVAL);
1519
1520 for (i = 0; i < dep_on_sclk->count; i++) {
1521 if (dep_on_sclk->entries[i].clk == gfx_clock)
1522 break;
1523 }
1524
1525 PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1526 "Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1527 return -EINVAL);
1528 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1529 COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1530 gfx_clock, &dividers),
1531 "Failed to get GFX Clock settings from VBIOS!",
1532 return -EINVAL);
1533
1534 /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1535 current_gfxclk_level->FbMult =
1536 cpu_to_le32(dividers.ulPll_fb_mult);
1537 /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
327fce0c
RZ
1538 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1539 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1540 current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1541 else
1542 current_gfxclk_level->SsOn = 0;
f83a9991
EH
1543 current_gfxclk_level->SsFbMult =
1544 cpu_to_le32(dividers.ulPll_ss_fbsmult);
1545 current_gfxclk_level->SsSlewFrac =
1546 cpu_to_le16(dividers.usPll_ss_slew_frac);
1547 current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1548
1549 return 0;
1550}
1551
1552/**
1553 * @brief Populates single SMC SOCCLK structure using the provided clock.
1554 *
1555 * @param hwmgr - the address of the hardware manager.
1556 * @param soc_clock - the SOC clock to use to populate the structure.
1557 * @param current_socclk_level - location in PPTable for the SMC SOCCLK structure.
1558 * @return 0 on success..
1559 */
1560static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1561 uint32_t soc_clock, uint8_t *current_soc_did,
1562 uint8_t *current_vol_index)
1563{
1564 struct phm_ppt_v2_information *table_info =
1565 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1566 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc =
1567 table_info->vdd_dep_on_socclk;
1568 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1569 uint32_t i;
1570
1571 PP_ASSERT_WITH_CODE(dep_on_soc,
1572 "Invalid SOC_VDD-SOC_CLK Dependency Table!",
1573 return -EINVAL);
1574 for (i = 0; i < dep_on_soc->count; i++) {
1575 if (dep_on_soc->entries[i].clk == soc_clock)
1576 break;
1577 }
1578 PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1579 "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1580 return -EINVAL);
1581 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1582 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1583 soc_clock, &dividers),
1584 "Failed to get SOC Clock settings from VBIOS!",
1585 return -EINVAL);
1586
1587 *current_soc_did = (uint8_t)dividers.ulDid;
1588 *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1589
1590 return 0;
1591}
1592
1593uint16_t vega10_locate_vddc_given_clock(struct pp_hwmgr *hwmgr,
1594 uint32_t clk,
1595 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1596{
1597 uint16_t i;
1598
1599 for (i = 0; i < dep_table->count; i++) {
1600 if (dep_table->entries[i].clk == clk)
1601 return dep_table->entries[i].vddc;
1602 }
1603
1604 pr_info("[LocateVddcGivenClock] Cannot locate SOC Vddc for this clock!");
1605 return 0;
1606}
1607
1608/**
1609* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1610*
1611* @param hwmgr the address of the hardware manager
1612*/
1613static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1614{
1615 struct vega10_hwmgr *data =
1616 (struct vega10_hwmgr *)(hwmgr->backend);
1617 struct phm_ppt_v2_information *table_info =
1618 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1619 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
1620 table_info->vdd_dep_on_socclk;
1621 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1622 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1623 int result = 0;
1624 uint32_t i, j;
1625
1626 for (i = 0; i < dpm_table->count; i++) {
1627 result = vega10_populate_single_gfx_level(hwmgr,
1628 dpm_table->dpm_levels[i].value,
1629 &(pp_table->GfxclkLevel[i]));
1630 if (result)
1631 return result;
1632 }
1633
1634 j = i - 1;
1635 while (i < NUM_GFXCLK_DPM_LEVELS) {
1636 result = vega10_populate_single_gfx_level(hwmgr,
1637 dpm_table->dpm_levels[j].value,
1638 &(pp_table->GfxclkLevel[i]));
1639 if (result)
1640 return result;
1641 i++;
1642 }
1643
1644 pp_table->GfxclkSlewRate =
1645 cpu_to_le16(table_info->us_gfxclk_slew_rate);
1646
1647 dpm_table = &(data->dpm_table.soc_table);
1648 for (i = 0; i < dpm_table->count; i++) {
1649 pp_table->SocVid[i] =
1650 (uint8_t)convert_to_vid(
1651 vega10_locate_vddc_given_clock(hwmgr,
1652 dpm_table->dpm_levels[i].value,
1653 dep_table));
1654 result = vega10_populate_single_soc_level(hwmgr,
1655 dpm_table->dpm_levels[i].value,
1656 &(pp_table->SocclkDid[i]),
1657 &(pp_table->SocDpmVoltageIndex[i]));
1658 if (result)
1659 return result;
1660 }
1661
1662 j = i - 1;
1663 while (i < NUM_SOCCLK_DPM_LEVELS) {
1664 pp_table->SocVid[i] = pp_table->SocVid[j];
1665 result = vega10_populate_single_soc_level(hwmgr,
1666 dpm_table->dpm_levels[j].value,
1667 &(pp_table->SocclkDid[i]),
1668 &(pp_table->SocDpmVoltageIndex[i]));
1669 if (result)
1670 return result;
1671 i++;
1672 }
1673
1674 return result;
1675}
1676
1677/**
1678 * @brief Populates single SMC GFXCLK structure using the provided clock.
1679 *
1680 * @param hwmgr - the address of the hardware manager.
1681 * @param mem_clock - the memory clock to use to populate the structure.
1682 * @return 0 on success..
1683 */
1684static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1685 uint32_t mem_clock, uint8_t *current_mem_vid,
1686 PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1687{
1688 struct vega10_hwmgr *data =
1689 (struct vega10_hwmgr *)(hwmgr->backend);
1690 struct phm_ppt_v2_information *table_info =
1691 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1692 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk =
1693 table_info->vdd_dep_on_mclk;
1694 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1695 uint32_t i;
1696
1697 if (data->apply_overdrive_next_settings_mask &
1698 DPMTABLE_OD_UPDATE_VDDC)
1699 dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1700 &data->odn_dpm_table.vdd_dependency_on_mclk;
1701
1702 PP_ASSERT_WITH_CODE(dep_on_mclk,
1703 "Invalid SOC_VDD-UCLK Dependency Table!",
1704 return -EINVAL);
1705
1706 for (i = 0; i < dep_on_mclk->count; i++) {
1707 if (dep_on_mclk->entries[i].clk == mem_clock)
1708 break;
1709 }
1710
1711 PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1712 "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1713 return -EINVAL);
1714
1715 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1716 hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1717 "Failed to get UCLK settings from VBIOS!",
1718 return -1);
1719
1720 *current_mem_vid =
1721 (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1722 *current_mem_soc_vind =
1723 (uint8_t)(dep_on_mclk->entries[i].vddInd);
1724 current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1725 current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1726
1727 PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1728 "Invalid Divider ID!",
1729 return -EINVAL);
1730
1731 return 0;
1732}
1733
1734/**
1735 * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1736 *
1737 * @param pHwMgr - the address of the hardware manager.
1738 * @return PP_Result_OK on success.
1739 */
1740static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1741{
1742 struct vega10_hwmgr *data =
1743 (struct vega10_hwmgr *)(hwmgr->backend);
1744 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1745 struct vega10_single_dpm_table *dpm_table =
1746 &(data->dpm_table.mem_table);
1747 int result = 0;
1748 uint32_t i, j, reg, mem_channels;
1749
1750 for (i = 0; i < dpm_table->count; i++) {
1751 result = vega10_populate_single_memory_level(hwmgr,
1752 dpm_table->dpm_levels[i].value,
1753 &(pp_table->MemVid[i]),
1754 &(pp_table->UclkLevel[i]),
1755 &(pp_table->MemSocVoltageIndex[i]));
1756 if (result)
1757 return result;
1758 }
1759
1760 j = i - 1;
1761 while (i < NUM_UCLK_DPM_LEVELS) {
1762 result = vega10_populate_single_memory_level(hwmgr,
1763 dpm_table->dpm_levels[j].value,
1764 &(pp_table->MemVid[i]),
1765 &(pp_table->UclkLevel[i]),
1766 &(pp_table->MemSocVoltageIndex[i]));
1767 if (result)
1768 return result;
1769 i++;
1770 }
1771
1772 reg = soc15_get_register_offset(DF_HWID, 0,
1773 mmDF_CS_AON0_DramBaseAddress0_BASE_IDX,
1774 mmDF_CS_AON0_DramBaseAddress0);
1775 mem_channels = (cgs_read_register(hwmgr->device, reg) &
1776 DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
1777 DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
1778 pp_table->NumMemoryChannels = cpu_to_le16(mem_channels);
1779 pp_table->MemoryChannelWidth =
1780 cpu_to_le16(HBM_MEMORY_CHANNEL_WIDTH *
1781 channel_number[mem_channels]);
1782
1783 pp_table->LowestUclkReservedForUlv =
1784 (uint8_t)(data->lowest_uclk_reserved_for_ulv);
1785
1786 return result;
1787}
1788
1789static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1790 DSPCLK_e disp_clock)
1791{
1792 struct vega10_hwmgr *data =
1793 (struct vega10_hwmgr *)(hwmgr->backend);
1794 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1795 struct phm_ppt_v2_information *table_info =
1796 (struct phm_ppt_v2_information *)
1797 (hwmgr->pptable);
1798 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1799 uint32_t i;
1800 uint16_t clk = 0, vddc = 0;
1801 uint8_t vid = 0;
1802
1803 switch (disp_clock) {
1804 case DSPCLK_DCEFCLK:
1805 dep_table = table_info->vdd_dep_on_dcefclk;
1806 break;
1807 case DSPCLK_DISPCLK:
1808 dep_table = table_info->vdd_dep_on_dispclk;
1809 break;
1810 case DSPCLK_PIXCLK:
1811 dep_table = table_info->vdd_dep_on_pixclk;
1812 break;
1813 case DSPCLK_PHYCLK:
1814 dep_table = table_info->vdd_dep_on_phyclk;
1815 break;
1816 default:
1817 return -1;
1818 }
1819
1820 PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1821 "Number Of Entries Exceeded maximum!",
1822 return -1);
1823
1824 for (i = 0; i < dep_table->count; i++) {
1825 clk = (uint16_t)(dep_table->entries[i].clk / 100);
1826 vddc = table_info->vddc_lookup_table->
1827 entries[dep_table->entries[i].vddInd].us_vdd;
1828 vid = (uint8_t)convert_to_vid(vddc);
1829 pp_table->DisplayClockTable[disp_clock][i].Freq =
1830 cpu_to_le16(clk);
1831 pp_table->DisplayClockTable[disp_clock][i].Vid =
1832 cpu_to_le16(vid);
1833 }
1834
1835 while (i < NUM_DSPCLK_LEVELS) {
1836 pp_table->DisplayClockTable[disp_clock][i].Freq =
1837 cpu_to_le16(clk);
1838 pp_table->DisplayClockTable[disp_clock][i].Vid =
1839 cpu_to_le16(vid);
1840 i++;
1841 }
1842
1843 return 0;
1844}
1845
1846static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1847{
1848 uint32_t i;
1849
1850 for (i = 0; i < DSPCLK_COUNT; i++) {
1851 PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1852 "Failed to populate Clock in DisplayClockTable!",
1853 return -1);
1854 }
1855
1856 return 0;
1857}
1858
1859static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1860 uint32_t eclock, uint8_t *current_eclk_did,
1861 uint8_t *current_soc_vol)
1862{
1863 struct phm_ppt_v2_information *table_info =
1864 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1865 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1866 table_info->mm_dep_table;
1867 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1868 uint32_t i;
1869
1870 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1871 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1872 eclock, &dividers),
1873 "Failed to get ECLK clock settings from VBIOS!",
1874 return -1);
1875
1876 *current_eclk_did = (uint8_t)dividers.ulDid;
1877
1878 for (i = 0; i < dep_table->count; i++) {
1879 if (dep_table->entries[i].eclk == eclock)
1880 *current_soc_vol = dep_table->entries[i].vddcInd;
1881 }
1882
1883 return 0;
1884}
1885
1886static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
1887{
1888 struct vega10_hwmgr *data =
1889 (struct vega10_hwmgr *)(hwmgr->backend);
1890 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1891 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
1892 int result = -EINVAL;
1893 uint32_t i, j;
1894
1895 for (i = 0; i < dpm_table->count; i++) {
1896 result = vega10_populate_single_eclock_level(hwmgr,
1897 dpm_table->dpm_levels[i].value,
1898 &(pp_table->EclkDid[i]),
1899 &(pp_table->VceDpmVoltageIndex[i]));
1900 if (result)
1901 return result;
1902 }
1903
1904 j = i - 1;
1905 while (i < NUM_VCE_DPM_LEVELS) {
1906 result = vega10_populate_single_eclock_level(hwmgr,
1907 dpm_table->dpm_levels[j].value,
1908 &(pp_table->EclkDid[i]),
1909 &(pp_table->VceDpmVoltageIndex[i]));
1910 if (result)
1911 return result;
1912 i++;
1913 }
1914
1915 return result;
1916}
1917
1918static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
1919 uint32_t vclock, uint8_t *current_vclk_did)
1920{
1921 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1922
1923 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1924 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1925 vclock, &dividers),
1926 "Failed to get VCLK clock settings from VBIOS!",
1927 return -EINVAL);
1928
1929 *current_vclk_did = (uint8_t)dividers.ulDid;
1930
1931 return 0;
1932}
1933
1934static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
1935 uint32_t dclock, uint8_t *current_dclk_did)
1936{
1937 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1938
1939 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1940 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1941 dclock, &dividers),
1942 "Failed to get DCLK clock settings from VBIOS!",
1943 return -EINVAL);
1944
1945 *current_dclk_did = (uint8_t)dividers.ulDid;
1946
1947 return 0;
1948}
1949
1950static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
1951{
1952 struct vega10_hwmgr *data =
1953 (struct vega10_hwmgr *)(hwmgr->backend);
1954 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1955 struct vega10_single_dpm_table *vclk_dpm_table =
1956 &(data->dpm_table.vclk_table);
1957 struct vega10_single_dpm_table *dclk_dpm_table =
1958 &(data->dpm_table.dclk_table);
1959 struct phm_ppt_v2_information *table_info =
1960 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1961 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1962 table_info->mm_dep_table;
1963 int result = -EINVAL;
1964 uint32_t i, j;
1965
1966 for (i = 0; i < vclk_dpm_table->count; i++) {
1967 result = vega10_populate_single_vclock_level(hwmgr,
1968 vclk_dpm_table->dpm_levels[i].value,
1969 &(pp_table->VclkDid[i]));
1970 if (result)
1971 return result;
1972 }
1973
1974 j = i - 1;
1975 while (i < NUM_UVD_DPM_LEVELS) {
1976 result = vega10_populate_single_vclock_level(hwmgr,
1977 vclk_dpm_table->dpm_levels[j].value,
1978 &(pp_table->VclkDid[i]));
1979 if (result)
1980 return result;
1981 i++;
1982 }
1983
1984 for (i = 0; i < dclk_dpm_table->count; i++) {
1985 result = vega10_populate_single_dclock_level(hwmgr,
1986 dclk_dpm_table->dpm_levels[i].value,
1987 &(pp_table->DclkDid[i]));
1988 if (result)
1989 return result;
1990 }
1991
1992 j = i - 1;
1993 while (i < NUM_UVD_DPM_LEVELS) {
1994 result = vega10_populate_single_dclock_level(hwmgr,
1995 dclk_dpm_table->dpm_levels[j].value,
1996 &(pp_table->DclkDid[i]));
1997 if (result)
1998 return result;
1999 i++;
2000 }
2001
2002 for (i = 0; i < dep_table->count; i++) {
2003 if (dep_table->entries[i].vclk ==
2004 vclk_dpm_table->dpm_levels[i].value &&
2005 dep_table->entries[i].dclk ==
2006 dclk_dpm_table->dpm_levels[i].value)
2007 pp_table->UvdDpmVoltageIndex[i] =
2008 dep_table->entries[i].vddcInd;
2009 else
2010 return -1;
2011 }
2012
2013 j = i - 1;
2014 while (i < NUM_UVD_DPM_LEVELS) {
2015 pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2016 i++;
2017 }
2018
2019 return 0;
2020}
2021
2022static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2023{
2024 struct vega10_hwmgr *data =
2025 (struct vega10_hwmgr *)(hwmgr->backend);
2026 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2027 struct phm_ppt_v2_information *table_info =
2028 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2029 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2030 table_info->vdd_dep_on_sclk;
2031 uint32_t i;
2032
afc0255c 2033 for (i = 0; i < dep_table->count; i++) {
f83a9991 2034 pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
afc0255c
RZ
2035 pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2036 * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
f83a9991
EH
2037 }
2038
2039 return 0;
2040}
2041
2042static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2043{
2044 struct vega10_hwmgr *data =
2045 (struct vega10_hwmgr *)(hwmgr->backend);
2046 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2047 struct phm_ppt_v2_information *table_info =
2048 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2049 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2050 table_info->vdd_dep_on_sclk;
2051 struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2052 int result = 0;
2053 uint32_t i;
2054
2055 pp_table->MinVoltageVid = (uint8_t)0xff;
2056 pp_table->MaxVoltageVid = (uint8_t)0;
2057
2058 if (data->smu_features[GNLD_AVFS].supported) {
2059 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2060 if (!result) {
2061 pp_table->MinVoltageVid = (uint8_t)
f83a9991 2062 convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
6524e494
RZ
2063 pp_table->MaxVoltageVid = (uint8_t)
2064 convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2065
2066 pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2067 pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2068 pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2069 pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2070 pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2071 pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2072 pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
f83a9991
EH
2073
2074 pp_table->BtcGbVdroopTableCksOff.a0 =
2075 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
6524e494 2076 pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
f83a9991
EH
2077 pp_table->BtcGbVdroopTableCksOff.a1 =
2078 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
6524e494 2079 pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
f83a9991
EH
2080 pp_table->BtcGbVdroopTableCksOff.a2 =
2081 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
6524e494
RZ
2082 pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2083
2084 pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2085 pp_table->BtcGbVdroopTableCksOn.a0 =
2086 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2087 pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2088 pp_table->BtcGbVdroopTableCksOn.a1 =
2089 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2090 pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2091 pp_table->BtcGbVdroopTableCksOn.a2 =
2092 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2093 pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
f83a9991
EH
2094
2095 pp_table->AvfsGbCksOn.m1 =
2096 cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2097 pp_table->AvfsGbCksOn.m2 =
6524e494 2098 cpu_to_le16(avfs_params.ulGbFuseTableCksonM2);
f83a9991
EH
2099 pp_table->AvfsGbCksOn.b =
2100 cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2101 pp_table->AvfsGbCksOn.m1_shift = 24;
2102 pp_table->AvfsGbCksOn.m2_shift = 12;
6524e494 2103 pp_table->AvfsGbCksOn.b_shift = 0;
f83a9991 2104
6524e494
RZ
2105 pp_table->OverrideAvfsGbCksOn =
2106 avfs_params.ucEnableGbFuseTableCkson;
f83a9991
EH
2107 pp_table->AvfsGbCksOff.m1 =
2108 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2109 pp_table->AvfsGbCksOff.m2 =
6524e494 2110 cpu_to_le16(avfs_params.ulGbFuseTableCksoffM2);
f83a9991
EH
2111 pp_table->AvfsGbCksOff.b =
2112 cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2113 pp_table->AvfsGbCksOff.m1_shift = 24;
2114 pp_table->AvfsGbCksOff.m2_shift = 12;
6524e494
RZ
2115 pp_table->AvfsGbCksOff.b_shift = 0;
2116
2117 for (i = 0; i < dep_table->count; i++) {
2118 if (dep_table->entries[i].sclk_offset == 0)
2119 pp_table->StaticVoltageOffsetVid[i] = 248;
2120 else
2121 pp_table->StaticVoltageOffsetVid[i] =
2122 (uint8_t)(dep_table->entries[i].sclk_offset *
f83a9991
EH
2123 VOLTAGE_VID_OFFSET_SCALE2 /
2124 VOLTAGE_VID_OFFSET_SCALE1);
6524e494 2125 }
f83a9991
EH
2126
2127 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2128 data->disp_clk_quad_eqn_a) &&
2129 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2130 data->disp_clk_quad_eqn_b)) {
2131 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2132 (int32_t)data->disp_clk_quad_eqn_a;
2133 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
6524e494 2134 (int32_t)data->disp_clk_quad_eqn_b;
f83a9991
EH
2135 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2136 (int32_t)data->disp_clk_quad_eqn_c;
2137 } else {
2138 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2139 (int32_t)avfs_params.ulDispclk2GfxclkM1;
2140 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
6524e494 2141 (int32_t)avfs_params.ulDispclk2GfxclkM2;
f83a9991
EH
2142 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2143 (int32_t)avfs_params.ulDispclk2GfxclkB;
2144 }
2145
2146 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2147 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
4bae05e1 2148 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
f83a9991
EH
2149
2150 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2151 data->dcef_clk_quad_eqn_a) &&
2152 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2153 data->dcef_clk_quad_eqn_b)) {
2154 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2155 (int32_t)data->dcef_clk_quad_eqn_a;
2156 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
6524e494 2157 (int32_t)data->dcef_clk_quad_eqn_b;
f83a9991
EH
2158 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2159 (int32_t)data->dcef_clk_quad_eqn_c;
2160 } else {
2161 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2162 (int32_t)avfs_params.ulDcefclk2GfxclkM1;
2163 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
6524e494 2164 (int32_t)avfs_params.ulDcefclk2GfxclkM2;
f83a9991
EH
2165 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2166 (int32_t)avfs_params.ulDcefclk2GfxclkB;
2167 }
2168
2169 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2170 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
4bae05e1 2171 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
f83a9991
EH
2172
2173 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2174 data->pixel_clk_quad_eqn_a) &&
2175 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2176 data->pixel_clk_quad_eqn_b)) {
2177 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2178 (int32_t)data->pixel_clk_quad_eqn_a;
2179 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
6524e494 2180 (int32_t)data->pixel_clk_quad_eqn_b;
f83a9991
EH
2181 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2182 (int32_t)data->pixel_clk_quad_eqn_c;
2183 } else {
2184 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2185 (int32_t)avfs_params.ulPixelclk2GfxclkM1;
2186 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
6524e494 2187 (int32_t)avfs_params.ulPixelclk2GfxclkM2;
f83a9991
EH
2188 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2189 (int32_t)avfs_params.ulPixelclk2GfxclkB;
2190 }
2191
2192 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2193 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
4bae05e1 2194 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
f83a9991
EH
2195 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2196 data->phy_clk_quad_eqn_a) &&
2197 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2198 data->phy_clk_quad_eqn_b)) {
2199 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2200 (int32_t)data->phy_clk_quad_eqn_a;
2201 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
6524e494 2202 (int32_t)data->phy_clk_quad_eqn_b;
f83a9991
EH
2203 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2204 (int32_t)data->phy_clk_quad_eqn_c;
2205 } else {
2206 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2207 (int32_t)avfs_params.ulPhyclk2GfxclkM1;
2208 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
6524e494 2209 (int32_t)avfs_params.ulPhyclk2GfxclkM2;
f83a9991
EH
2210 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2211 (int32_t)avfs_params.ulPhyclk2GfxclkB;
2212 }
2213
2214 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2215 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
4bae05e1 2216 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
f83a9991
EH
2217 } else {
2218 data->smu_features[GNLD_AVFS].supported = false;
2219 }
2220 }
2221
2222 return 0;
2223}
2224
2225static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2226{
2227 struct vega10_hwmgr *data =
2228 (struct vega10_hwmgr *)(hwmgr->backend);
2229 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2230 struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2231 int result;
2232
2233 result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2234 if (!result) {
2235 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2236 PHM_PlatformCaps_RegulatorHot) &&
2237 (data->registry_data.regulator_hot_gpio_support)) {
2238 pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2239 pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2240 pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2241 pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2242 } else {
2243 pp_table->VR0HotGpio = 0;
2244 pp_table->VR0HotPolarity = 0;
2245 pp_table->VR1HotGpio = 0;
2246 pp_table->VR1HotPolarity = 0;
2247 }
2248
2249 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2250 PHM_PlatformCaps_AutomaticDCTransition) &&
2251 (data->registry_data.ac_dc_switch_gpio_support)) {
2252 pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2253 pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2254 } else {
2255 pp_table->AcDcGpio = 0;
2256 pp_table->AcDcPolarity = 0;
2257 }
2258 }
2259
2260 return result;
2261}
2262
2263static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2264{
2265 struct vega10_hwmgr *data =
2266 (struct vega10_hwmgr *)(hwmgr->backend);
2267
2268 if (data->smu_features[GNLD_AVFS].supported) {
2269 if (enable) {
2270 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2271 true,
2272 data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2273 "[avfs_control] Attempt to Enable AVFS feature Failed!",
2274 return -1);
2275 data->smu_features[GNLD_AVFS].enabled = true;
2276 } else {
2277 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2278 false,
2279 data->smu_features[GNLD_AVFS].smu_feature_id),
2280 "[avfs_control] Attempt to Disable AVFS feature Failed!",
2281 return -1);
2282 data->smu_features[GNLD_AVFS].enabled = false;
2283 }
2284 }
2285
2286 return 0;
2287}
2288
2289/**
2290* Initializes the SMC table and uploads it
2291*
2292* @param hwmgr the address of the powerplay hardware manager.
2293* @param pInput the pointer to input data (PowerState)
2294* @return always 0
2295*/
2296static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2297{
2298 int result;
2299 struct vega10_hwmgr *data =
2300 (struct vega10_hwmgr *)(hwmgr->backend);
2301 struct phm_ppt_v2_information *table_info =
2302 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2303 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2304 struct pp_atomfwctrl_voltage_table voltage_table;
05ee3215 2305 struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
f83a9991
EH
2306
2307 result = vega10_setup_default_dpm_tables(hwmgr);
2308 PP_ASSERT_WITH_CODE(!result,
2309 "Failed to setup default DPM tables!",
2310 return result);
2311
2312 pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2313 VOLTAGE_OBJ_SVID2, &voltage_table);
2314 pp_table->MaxVidStep = voltage_table.max_vid_step;
2315
2316 pp_table->GfxDpmVoltageMode =
2317 (uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2318 pp_table->SocDpmVoltageMode =
2319 (uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2320 pp_table->UclkDpmVoltageMode =
2321 (uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2322 pp_table->UvdDpmVoltageMode =
2323 (uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2324 pp_table->VceDpmVoltageMode =
2325 (uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2326 pp_table->Mp0DpmVoltageMode =
2327 (uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
effa290c 2328
f83a9991
EH
2329 pp_table->DisplayDpmVoltageMode =
2330 (uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2331
2332 if (data->registry_data.ulv_support &&
2333 table_info->us_ulv_voltage_offset) {
2334 result = vega10_populate_ulv_state(hwmgr);
2335 PP_ASSERT_WITH_CODE(!result,
2336 "Failed to initialize ULV state!",
2337 return result);
2338 }
2339
2340 result = vega10_populate_smc_link_levels(hwmgr);
2341 PP_ASSERT_WITH_CODE(!result,
2342 "Failed to initialize Link Level!",
2343 return result);
2344
2345 result = vega10_populate_all_graphic_levels(hwmgr);
2346 PP_ASSERT_WITH_CODE(!result,
2347 "Failed to initialize Graphics Level!",
2348 return result);
2349
2350 result = vega10_populate_all_memory_levels(hwmgr);
2351 PP_ASSERT_WITH_CODE(!result,
2352 "Failed to initialize Memory Level!",
2353 return result);
2354
2355 result = vega10_populate_all_display_clock_levels(hwmgr);
2356 PP_ASSERT_WITH_CODE(!result,
2357 "Failed to initialize Display Level!",
2358 return result);
2359
2360 result = vega10_populate_smc_vce_levels(hwmgr);
2361 PP_ASSERT_WITH_CODE(!result,
2362 "Failed to initialize VCE Level!",
2363 return result);
2364
2365 result = vega10_populate_smc_uvd_levels(hwmgr);
2366 PP_ASSERT_WITH_CODE(!result,
2367 "Failed to initialize UVD Level!",
2368 return result);
2369
afc0255c 2370 if (data->registry_data.clock_stretcher_support) {
f83a9991
EH
2371 result = vega10_populate_clock_stretcher_table(hwmgr);
2372 PP_ASSERT_WITH_CODE(!result,
2373 "Failed to populate Clock Stretcher Table!",
2374 return result);
2375 }
2376
05ee3215
RZ
2377 result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2378 if (!result) {
2379 data->vbios_boot_state.vddc = boot_up_values.usVddc;
2380 data->vbios_boot_state.vddci = boot_up_values.usVddci;
2381 data->vbios_boot_state.mvddc = boot_up_values.usMvddc;
2382 data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2383 data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2384 data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2385 if (0 != boot_up_values.usVddc) {
2386 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2387 PPSMC_MSG_SetFloorSocVoltage,
2388 (boot_up_values.usVddc * 4));
2389 data->vbios_boot_state.bsoc_vddc_lock = true;
2390 } else {
2391 data->vbios_boot_state.bsoc_vddc_lock = false;
2392 }
2393 }
2394
f83a9991
EH
2395 result = vega10_populate_avfs_parameters(hwmgr);
2396 PP_ASSERT_WITH_CODE(!result,
2397 "Failed to initialize AVFS Parameters!",
2398 return result);
2399
2400 result = vega10_populate_gpio_parameters(hwmgr);
2401 PP_ASSERT_WITH_CODE(!result,
2402 "Failed to initialize GPIO Parameters!",
2403 return result);
2404
2405 pp_table->GfxclkAverageAlpha = (uint8_t)
2406 (data->gfxclk_average_alpha);
2407 pp_table->SocclkAverageAlpha = (uint8_t)
2408 (data->socclk_average_alpha);
2409 pp_table->UclkAverageAlpha = (uint8_t)
2410 (data->uclk_average_alpha);
2411 pp_table->GfxActivityAverageAlpha = (uint8_t)
2412 (data->gfx_activity_average_alpha);
2413
2414 result = vega10_copy_table_to_smc(hwmgr->smumgr,
2415 (uint8_t *)pp_table, PPTABLE);
2416 PP_ASSERT_WITH_CODE(!result,
2417 "Failed to upload PPtable!", return result);
2418
2211a787
RZ
2419 result = vega10_avfs_enable(hwmgr, true);
2420 PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
f83a9991 2421 return result);
f83a9991
EH
2422
2423 return 0;
2424}
2425
2426static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2427{
2428 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
2429
2430 if (data->smu_features[GNLD_THERMAL].supported) {
2431 if (data->smu_features[GNLD_THERMAL].enabled)
2432 pr_info("THERMAL Feature Already enabled!");
2433
2434 PP_ASSERT_WITH_CODE(
2435 !vega10_enable_smc_features(hwmgr->smumgr,
2436 true,
2437 data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2438 "Enable THERMAL Feature Failed!",
2439 return -1);
2440 data->smu_features[GNLD_THERMAL].enabled = true;
2441 }
2442
2443 return 0;
2444}
2445
8b9242ed
RZ
2446static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2447{
2448 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
2449
2450 if (data->smu_features[GNLD_THERMAL].supported) {
2451 if (!data->smu_features[GNLD_THERMAL].enabled)
2452 pr_info("THERMAL Feature Already disabled!");
2453
2454 PP_ASSERT_WITH_CODE(
2455 !vega10_enable_smc_features(hwmgr->smumgr,
2456 false,
2457 data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2458 "disable THERMAL Feature Failed!",
2459 return -1);
2460 data->smu_features[GNLD_THERMAL].enabled = false;
2461 }
2462
2463 return 0;
2464}
2465
f83a9991
EH
2466static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2467{
2468 struct vega10_hwmgr *data =
2469 (struct vega10_hwmgr *)(hwmgr->backend);
2470
2471 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2472 PHM_PlatformCaps_RegulatorHot)) {
2473 if (data->smu_features[GNLD_VR0HOT].supported) {
2474 PP_ASSERT_WITH_CODE(
2475 !vega10_enable_smc_features(hwmgr->smumgr,
2476 true,
2477 data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2478 "Attempt to Enable VR0 Hot feature Failed!",
2479 return -1);
2480 data->smu_features[GNLD_VR0HOT].enabled = true;
2481 } else {
2482 if (data->smu_features[GNLD_VR1HOT].supported) {
2483 PP_ASSERT_WITH_CODE(
2484 !vega10_enable_smc_features(hwmgr->smumgr,
2485 true,
2486 data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2487 "Attempt to Enable VR0 Hot feature Failed!",
2488 return -1);
2489 data->smu_features[GNLD_VR1HOT].enabled = true;
2490 }
2491 }
2492 }
2493 return 0;
2494}
2495
2496static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2497{
2498 struct vega10_hwmgr *data =
2499 (struct vega10_hwmgr *)(hwmgr->backend);
2500
2501 if (data->registry_data.ulv_support) {
2502 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2503 true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2504 "Enable ULV Feature Failed!",
2505 return -1);
2506 data->smu_features[GNLD_ULV].enabled = true;
2507 }
2508
2509 return 0;
2510}
2511
2512static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2513{
2514 struct vega10_hwmgr *data =
2515 (struct vega10_hwmgr *)(hwmgr->backend);
2516
2517 if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2518 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2519 true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2520 "Attempt to Enable DS_GFXCLK Feature Failed!",
2521 return -1);
2522 data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2523 }
2524
2525 if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2526 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2527 true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2528 "Attempt to Enable DS_GFXCLK Feature Failed!",
2529 return -1);
2530 data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2531 }
2532
2533 if (data->smu_features[GNLD_DS_LCLK].supported) {
2534 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2535 true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2536 "Attempt to Enable DS_GFXCLK Feature Failed!",
2537 return -1);
2538 data->smu_features[GNLD_DS_LCLK].enabled = true;
2539 }
2540
2541 return 0;
2542}
2543
8b9242ed
RZ
2544static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2545{
2546 struct vega10_hwmgr *data =
2547 (struct vega10_hwmgr *)(hwmgr->backend);
2548 uint32_t i, feature_mask = 0;
2549
2550
2551 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2552 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2553 true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2554 "Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2555 data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2556 }
2557
2558 for (i = 0; i < GNLD_DPM_MAX; i++) {
2559 if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2560 if (data->smu_features[i].supported) {
2561 if (data->smu_features[i].enabled) {
2562 feature_mask |= data->smu_features[i].
2563 smu_feature_bitmap;
2564 data->smu_features[i].enabled = false;
2565 }
2566 }
2567 }
2568 }
2569
2570 vega10_enable_smc_features(hwmgr->smumgr, false, feature_mask);
2571
2572 return 0;
2573}
2574
f83a9991
EH
2575/**
2576 * @brief Tell SMC to enabled the supported DPMs.
2577 *
2578 * @param hwmgr - the address of the powerplay hardware manager.
2579 * @Param bitmap - bitmap for the features to enabled.
2580 * @return 0 on at least one DPM is successfully enabled.
2581 */
2582static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2583{
2584 struct vega10_hwmgr *data =
2585 (struct vega10_hwmgr *)(hwmgr->backend);
2586 uint32_t i, feature_mask = 0;
2587
2588 for (i = 0; i < GNLD_DPM_MAX; i++) {
2589 if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2590 if (data->smu_features[i].supported) {
2591 if (!data->smu_features[i].enabled) {
2592 feature_mask |= data->smu_features[i].
2593 smu_feature_bitmap;
2594 data->smu_features[i].enabled = true;
2595 }
2596 }
2597 }
2598 }
2599
2600 if (vega10_enable_smc_features(hwmgr->smumgr,
2601 true, feature_mask)) {
2602 for (i = 0; i < GNLD_DPM_MAX; i++) {
2603 if (data->smu_features[i].smu_feature_bitmap &
2604 feature_mask)
2605 data->smu_features[i].enabled = false;
2606 }
2607 }
2608
2609 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2610 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2611 true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2612 "Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2613 data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2614 }
2615
05ee3215
RZ
2616 if (data->vbios_boot_state.bsoc_vddc_lock) {
2617 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2618 PPSMC_MSG_SetFloorSocVoltage, 0);
2619 data->vbios_boot_state.bsoc_vddc_lock = false;
2620 }
2621
f83a9991
EH
2622 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2623 PHM_PlatformCaps_Falcon_QuickTransition)) {
2624 if (data->smu_features[GNLD_ACDC].supported) {
2625 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
2626 true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2627 "Attempt to Enable DS_GFXCLK Feature Failed!",
2628 return -1);
2629 data->smu_features[GNLD_ACDC].enabled = true;
2630 }
2631 }
2632
2633 return 0;
2634}
2635
2636static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2637{
2638 struct vega10_hwmgr *data =
2639 (struct vega10_hwmgr *)(hwmgr->backend);
2640 int tmp_result, result = 0;
2641
2642 tmp_result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2643 PPSMC_MSG_ConfigureTelemetry, data->config_telemetry);
2644 PP_ASSERT_WITH_CODE(!tmp_result,
2645 "Failed to configure telemetry!",
2646 return tmp_result);
2647
f83a9991
EH
2648 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2649 PPSMC_MSG_NumOfDisplays, 0);
2650
2651 tmp_result = (!vega10_is_dpm_running(hwmgr)) ? 0 : -1;
2652 PP_ASSERT_WITH_CODE(!tmp_result,
2653 "DPM is already running right , skipping re-enablement!",
2654 return 0);
2655
2656 tmp_result = vega10_construct_voltage_tables(hwmgr);
2657 PP_ASSERT_WITH_CODE(!tmp_result,
2658 "Failed to contruct voltage tables!",
2659 result = tmp_result);
2660
2661 tmp_result = vega10_init_smc_table(hwmgr);
2662 PP_ASSERT_WITH_CODE(!tmp_result,
2663 "Failed to initialize SMC table!",
2664 result = tmp_result);
2665
2666 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2667 PHM_PlatformCaps_ThermalController)) {
2668 tmp_result = vega10_enable_thermal_protection(hwmgr);
2669 PP_ASSERT_WITH_CODE(!tmp_result,
2670 "Failed to enable thermal protection!",
2671 result = tmp_result);
2672 }
2673
2674 tmp_result = vega10_enable_vrhot_feature(hwmgr);
2675 PP_ASSERT_WITH_CODE(!tmp_result,
2676 "Failed to enable VR hot feature!",
2677 result = tmp_result);
2678
2679 tmp_result = vega10_enable_ulv(hwmgr);
2680 PP_ASSERT_WITH_CODE(!tmp_result,
2681 "Failed to enable ULV!",
2682 result = tmp_result);
2683
2684 tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
2685 PP_ASSERT_WITH_CODE(!tmp_result,
2686 "Failed to enable deep sleep master switch!",
2687 result = tmp_result);
2688
2689 tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
2690 PP_ASSERT_WITH_CODE(!tmp_result,
2691 "Failed to start DPM!", result = tmp_result);
2692
2693 tmp_result = vega10_enable_power_containment(hwmgr);
2694 PP_ASSERT_WITH_CODE(!tmp_result,
2695 "Failed to enable power containment!",
2696 result = tmp_result);
2697
2698 tmp_result = vega10_power_control_set_level(hwmgr);
2699 PP_ASSERT_WITH_CODE(!tmp_result,
2700 "Failed to power control set level!",
2701 result = tmp_result);
2702
2703 return result;
2704}
2705
2706static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
2707{
2708 return sizeof(struct vega10_power_state);
2709}
2710
2711static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
2712 void *state, struct pp_power_state *power_state,
2713 void *pp_table, uint32_t classification_flag)
2714{
2715 struct vega10_power_state *vega10_power_state =
2716 cast_phw_vega10_power_state(&(power_state->hardware));
2717 struct vega10_performance_level *performance_level;
2718 ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
2719 ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
2720 (ATOM_Vega10_POWERPLAYTABLE *)pp_table;
2721 ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
2722 (ATOM_Vega10_SOCCLK_Dependency_Table *)
2723 (((unsigned long)powerplay_table) +
2724 le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
2725 ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
2726 (ATOM_Vega10_GFXCLK_Dependency_Table *)
2727 (((unsigned long)powerplay_table) +
2728 le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
2729 ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
2730 (ATOM_Vega10_MCLK_Dependency_Table *)
2731 (((unsigned long)powerplay_table) +
2732 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
2733
2734
2735 /* The following fields are not initialized here:
2736 * id orderedList allStatesList
2737 */
2738 power_state->classification.ui_label =
2739 (le16_to_cpu(state_entry->usClassification) &
2740 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
2741 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
2742 power_state->classification.flags = classification_flag;
2743 /* NOTE: There is a classification2 flag in BIOS
2744 * that is not being used right now
2745 */
2746 power_state->classification.temporary_state = false;
2747 power_state->classification.to_be_deleted = false;
2748
2749 power_state->validation.disallowOnDC =
2750 ((le32_to_cpu(state_entry->ulCapsAndSettings) &
2751 ATOM_Vega10_DISALLOW_ON_DC) != 0);
2752
2753 power_state->display.disableFrameModulation = false;
2754 power_state->display.limitRefreshrate = false;
2755 power_state->display.enableVariBright =
2756 ((le32_to_cpu(state_entry->ulCapsAndSettings) &
2757 ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
2758
2759 power_state->validation.supportedPowerLevels = 0;
2760 power_state->uvd_clocks.VCLK = 0;
2761 power_state->uvd_clocks.DCLK = 0;
2762 power_state->temperatures.min = 0;
2763 power_state->temperatures.max = 0;
2764
2765 performance_level = &(vega10_power_state->performance_levels
2766 [vega10_power_state->performance_level_count++]);
2767
2768 PP_ASSERT_WITH_CODE(
2769 (vega10_power_state->performance_level_count <
2770 NUM_GFXCLK_DPM_LEVELS),
2771 "Performance levels exceeds SMC limit!",
2772 return -1);
2773
2774 PP_ASSERT_WITH_CODE(
2775 (vega10_power_state->performance_level_count <=
2776 hwmgr->platform_descriptor.
2777 hardwareActivityPerformanceLevels),
2778 "Performance levels exceeds Driver limit!",
2779 return -1);
2780
2781 /* Performance levels are arranged from low to high. */
2782 performance_level->soc_clock = socclk_dep_table->entries
2783 [state_entry->ucSocClockIndexLow].ulClk;
2784 performance_level->gfx_clock = gfxclk_dep_table->entries
2785 [state_entry->ucGfxClockIndexLow].ulClk;
2786 performance_level->mem_clock = mclk_dep_table->entries
2787 [state_entry->ucMemClockIndexLow].ulMemClk;
2788
2789 performance_level = &(vega10_power_state->performance_levels
2790 [vega10_power_state->performance_level_count++]);
2791
2792 performance_level->soc_clock = socclk_dep_table->entries
2793 [state_entry->ucSocClockIndexHigh].ulClk;
2794 performance_level->gfx_clock = gfxclk_dep_table->entries
2795 [state_entry->ucGfxClockIndexHigh].ulClk;
2796 performance_level->mem_clock = mclk_dep_table->entries
2797 [state_entry->ucMemClockIndexHigh].ulMemClk;
2798 return 0;
2799}
2800
2801static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
2802 unsigned long entry_index, struct pp_power_state *state)
2803{
2804 int result;
2805 struct vega10_power_state *ps;
2806
2807 state->hardware.magic = PhwVega10_Magic;
2808
2809 ps = cast_phw_vega10_power_state(&state->hardware);
2810
2811 result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
2812 vega10_get_pp_table_entry_callback_func);
2813
2814 /*
2815 * This is the earliest time we have all the dependency table
2816 * and the VBIOS boot state
2817 */
2818 /* set DC compatible flag if this state supports DC */
2819 if (!state->validation.disallowOnDC)
2820 ps->dc_compatible = true;
2821
2822 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
2823 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
2824
2825 return 0;
2826}
2827
2828static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
2829 struct pp_hw_power_state *hw_ps)
2830{
2831 return 0;
2832}
2833
2834static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
2835 struct pp_power_state *request_ps,
2836 const struct pp_power_state *current_ps)
2837{
2838 struct vega10_power_state *vega10_ps =
2839 cast_phw_vega10_power_state(&request_ps->hardware);
2840 uint32_t sclk;
2841 uint32_t mclk;
2842 struct PP_Clocks minimum_clocks = {0};
2843 bool disable_mclk_switching;
2844 bool disable_mclk_switching_for_frame_lock;
2845 bool disable_mclk_switching_for_vr;
2846 bool force_mclk_high;
2847 struct cgs_display_info info = {0};
2848 const struct phm_clock_and_voltage_limits *max_limits;
2849 uint32_t i;
2850 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
2851 struct phm_ppt_v2_information *table_info =
2852 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2853 int32_t count;
2854 uint32_t stable_pstate_sclk_dpm_percentage;
2855 uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
2856 uint32_t latency;
2857
2858 data->battery_state = (PP_StateUILabel_Battery ==
2859 request_ps->classification.ui_label);
2860
2861 if (vega10_ps->performance_level_count != 2)
2862 pr_info("VI should always have 2 performance levels");
2863
2864 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
2865 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
2866 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
2867
2868 /* Cap clock DPM tables at DC MAX if it is in DC. */
2869 if (PP_PowerSource_DC == hwmgr->power_source) {
2870 for (i = 0; i < vega10_ps->performance_level_count; i++) {
2871 if (vega10_ps->performance_levels[i].mem_clock >
2872 max_limits->mclk)
2873 vega10_ps->performance_levels[i].mem_clock =
2874 max_limits->mclk;
2875 if (vega10_ps->performance_levels[i].gfx_clock >
2876 max_limits->sclk)
2877 vega10_ps->performance_levels[i].gfx_clock =
2878 max_limits->sclk;
2879 }
2880 }
2881
2882 vega10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
2883 vega10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
2884
2885 cgs_get_active_displays_info(hwmgr->device, &info);
2886
2887 /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
2888 minimum_clocks.engineClock = hwmgr->display_config.min_core_set_clock;
2889 /* minimum_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock; */
2890
2891 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2892 PHM_PlatformCaps_StablePState)) {
2893 PP_ASSERT_WITH_CODE(
2894 data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
2895 data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
2896 "percent sclk value must range from 1% to 100%, setting default value",
2897 stable_pstate_sclk_dpm_percentage = 75);
2898
2899 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
2900 stable_pstate_sclk = (max_limits->sclk *
2901 stable_pstate_sclk_dpm_percentage) / 100;
2902
2903 for (count = table_info->vdd_dep_on_sclk->count - 1;
2904 count >= 0; count--) {
2905 if (stable_pstate_sclk >=
2906 table_info->vdd_dep_on_sclk->entries[count].clk) {
2907 stable_pstate_sclk =
2908 table_info->vdd_dep_on_sclk->entries[count].clk;
2909 break;
2910 }
2911 }
2912
2913 if (count < 0)
2914 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
2915
2916 stable_pstate_mclk = max_limits->mclk;
2917
2918 minimum_clocks.engineClock = stable_pstate_sclk;
2919 minimum_clocks.memoryClock = stable_pstate_mclk;
2920 }
2921
2922 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
2923 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
2924
2925 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
2926 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
2927
2928 vega10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
2929
2930 if (hwmgr->gfx_arbiter.sclk_over_drive) {
2931 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
2932 hwmgr->platform_descriptor.overdriveLimit.engineClock),
2933 "Overdrive sclk exceeds limit",
2934 hwmgr->gfx_arbiter.sclk_over_drive =
2935 hwmgr->platform_descriptor.overdriveLimit.engineClock);
2936
2937 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
2938 vega10_ps->performance_levels[1].gfx_clock =
2939 hwmgr->gfx_arbiter.sclk_over_drive;
2940 }
2941
2942 if (hwmgr->gfx_arbiter.mclk_over_drive) {
2943 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
2944 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
2945 "Overdrive mclk exceeds limit",
2946 hwmgr->gfx_arbiter.mclk_over_drive =
2947 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
2948
2949 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
2950 vega10_ps->performance_levels[1].mem_clock =
2951 hwmgr->gfx_arbiter.mclk_over_drive;
2952 }
2953
2954 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
2955 hwmgr->platform_descriptor.platformCaps,
2956 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
2957 disable_mclk_switching_for_vr = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2958 PHM_PlatformCaps_DisableMclkSwitchForVR);
2959 force_mclk_high = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2960 PHM_PlatformCaps_ForceMclkHigh);
2961
2962 disable_mclk_switching = (info.display_count > 1) ||
2963 disable_mclk_switching_for_frame_lock ||
2964 disable_mclk_switching_for_vr ||
2965 force_mclk_high;
2966
2967 sclk = vega10_ps->performance_levels[0].gfx_clock;
2968 mclk = vega10_ps->performance_levels[0].mem_clock;
2969
2970 if (sclk < minimum_clocks.engineClock)
2971 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
2972 max_limits->sclk : minimum_clocks.engineClock;
2973
2974 if (mclk < minimum_clocks.memoryClock)
2975 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
2976 max_limits->mclk : minimum_clocks.memoryClock;
2977
2978 vega10_ps->performance_levels[0].gfx_clock = sclk;
2979 vega10_ps->performance_levels[0].mem_clock = mclk;
2980
2981 vega10_ps->performance_levels[1].gfx_clock =
2982 (vega10_ps->performance_levels[1].gfx_clock >=
2983 vega10_ps->performance_levels[0].gfx_clock) ?
2984 vega10_ps->performance_levels[1].gfx_clock :
2985 vega10_ps->performance_levels[0].gfx_clock;
2986
2987 if (disable_mclk_switching) {
2988 /* Set Mclk the max of level 0 and level 1 */
2989 if (mclk < vega10_ps->performance_levels[1].mem_clock)
2990 mclk = vega10_ps->performance_levels[1].mem_clock;
2991
2992 /* Find the lowest MCLK frequency that is within
2993 * the tolerable latency defined in DAL
2994 */
2995 latency = 0;
2996 for (i = 0; i < data->mclk_latency_table.count; i++) {
2997 if ((data->mclk_latency_table.entries[i].latency <= latency) &&
2998 (data->mclk_latency_table.entries[i].frequency >=
2999 vega10_ps->performance_levels[0].mem_clock) &&
3000 (data->mclk_latency_table.entries[i].frequency <=
3001 vega10_ps->performance_levels[1].mem_clock))
3002 mclk = data->mclk_latency_table.entries[i].frequency;
3003 }
3004 vega10_ps->performance_levels[0].mem_clock = mclk;
3005 } else {
3006 if (vega10_ps->performance_levels[1].mem_clock <
3007 vega10_ps->performance_levels[0].mem_clock)
3008 vega10_ps->performance_levels[1].mem_clock =
3009 vega10_ps->performance_levels[0].mem_clock;
3010 }
3011
3012 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3013 PHM_PlatformCaps_StablePState)) {
3014 for (i = 0; i < vega10_ps->performance_level_count; i++) {
3015 vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3016 vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3017 }
3018 }
3019
3020 return 0;
3021}
3022
3023static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3024{
3025 const struct phm_set_power_state_input *states =
3026 (const struct phm_set_power_state_input *)input;
3027 const struct vega10_power_state *vega10_ps =
3028 cast_const_phw_vega10_power_state(states->pnew_state);
3029 struct vega10_hwmgr *data =
3030 (struct vega10_hwmgr *)(hwmgr->backend);
3031 struct vega10_single_dpm_table *sclk_table =
3032 &(data->dpm_table.gfx_table);
3033 uint32_t sclk = vega10_ps->performance_levels
3034 [vega10_ps->performance_level_count - 1].gfx_clock;
3035 struct vega10_single_dpm_table *mclk_table =
3036 &(data->dpm_table.mem_table);
3037 uint32_t mclk = vega10_ps->performance_levels
3038 [vega10_ps->performance_level_count - 1].mem_clock;
3039 struct PP_Clocks min_clocks = {0};
3040 uint32_t i;
3041 struct cgs_display_info info = {0};
3042
3043 data->need_update_dpm_table = 0;
3044
3045 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3046 PHM_PlatformCaps_ODNinACSupport) ||
3047 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3048 PHM_PlatformCaps_ODNinDCSupport)) {
3049 for (i = 0; i < sclk_table->count; i++) {
3050 if (sclk == sclk_table->dpm_levels[i].value)
3051 break;
3052 }
3053
3054 if (!(data->apply_overdrive_next_settings_mask &
3055 DPMTABLE_OD_UPDATE_SCLK) && i >= sclk_table->count) {
3056 /* Check SCLK in DAL's minimum clocks
3057 * in case DeepSleep divider update is required.
3058 */
3059 if (data->display_timing.min_clock_in_sr !=
3060 min_clocks.engineClockInSR &&
3061 (min_clocks.engineClockInSR >=
3062 VEGA10_MINIMUM_ENGINE_CLOCK ||
3063 data->display_timing.min_clock_in_sr >=
3064 VEGA10_MINIMUM_ENGINE_CLOCK))
3065 data->need_update_dpm_table |= DPMTABLE_UPDATE_SCLK;
3066 }
3067
3068 cgs_get_active_displays_info(hwmgr->device, &info);
3069
3070 if (data->display_timing.num_existing_displays !=
3071 info.display_count)
3072 data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3073 } else {
3074 for (i = 0; i < sclk_table->count; i++) {
3075 if (sclk == sclk_table->dpm_levels[i].value)
3076 break;
3077 }
3078
3079 if (i >= sclk_table->count)
3080 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3081 else {
3082 /* Check SCLK in DAL's minimum clocks
3083 * in case DeepSleep divider update is required.
3084 */
3085 if (data->display_timing.min_clock_in_sr !=
3086 min_clocks.engineClockInSR &&
3087 (min_clocks.engineClockInSR >=
3088 VEGA10_MINIMUM_ENGINE_CLOCK ||
3089 data->display_timing.min_clock_in_sr >=
3090 VEGA10_MINIMUM_ENGINE_CLOCK))
3091 data->need_update_dpm_table |= DPMTABLE_UPDATE_SCLK;
3092 }
3093
3094 for (i = 0; i < mclk_table->count; i++) {
3095 if (mclk == mclk_table->dpm_levels[i].value)
3096 break;
3097 }
3098
3099 cgs_get_active_displays_info(hwmgr->device, &info);
3100
3101 if (i >= mclk_table->count)
3102 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3103
3104 if (data->display_timing.num_existing_displays !=
3105 info.display_count ||
3106 i >= mclk_table->count)
3107 data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3108 }
3109 return 0;
3110}
3111
3112static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3113 struct pp_hwmgr *hwmgr, const void *input)
3114{
3115 int result = 0;
3116 const struct phm_set_power_state_input *states =
3117 (const struct phm_set_power_state_input *)input;
3118 const struct vega10_power_state *vega10_ps =
3119 cast_const_phw_vega10_power_state(states->pnew_state);
3120 struct vega10_hwmgr *data =
3121 (struct vega10_hwmgr *)(hwmgr->backend);
3122 uint32_t sclk = vega10_ps->performance_levels
3123 [vega10_ps->performance_level_count - 1].gfx_clock;
3124 uint32_t mclk = vega10_ps->performance_levels
3125 [vega10_ps->performance_level_count - 1].mem_clock;
3126 struct vega10_dpm_table *dpm_table = &data->dpm_table;
3127 struct vega10_dpm_table *golden_dpm_table =
3128 &data->golden_dpm_table;
3129 uint32_t dpm_count, clock_percent;
3130 uint32_t i;
3131
3132 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3133 PHM_PlatformCaps_ODNinACSupport) ||
3134 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3135 PHM_PlatformCaps_ODNinDCSupport)) {
3136
3137 if (!data->need_update_dpm_table &&
3138 !data->apply_optimized_settings &&
3139 !data->apply_overdrive_next_settings_mask)
3140 return 0;
3141
3142 if (data->apply_overdrive_next_settings_mask &
3143 DPMTABLE_OD_UPDATE_SCLK) {
3144 for (dpm_count = 0;
3145 dpm_count < dpm_table->gfx_table.count;
3146 dpm_count++) {
3147 dpm_table->gfx_table.dpm_levels[dpm_count].enabled =
3148 data->odn_dpm_table.odn_core_clock_dpm_levels.
3149 performance_level_entries[dpm_count].enabled;
3150 dpm_table->gfx_table.dpm_levels[dpm_count].value =
3151 data->odn_dpm_table.odn_core_clock_dpm_levels.
3152 performance_level_entries[dpm_count].clock;
3153 }
3154 }
3155
3156 if (data->apply_overdrive_next_settings_mask &
3157 DPMTABLE_OD_UPDATE_MCLK) {
3158 for (dpm_count = 0;
3159 dpm_count < dpm_table->mem_table.count;
3160 dpm_count++) {
3161 dpm_table->mem_table.dpm_levels[dpm_count].enabled =
3162 data->odn_dpm_table.odn_memory_clock_dpm_levels.
3163 performance_level_entries[dpm_count].enabled;
3164 dpm_table->mem_table.dpm_levels[dpm_count].value =
3165 data->odn_dpm_table.odn_memory_clock_dpm_levels.
3166 performance_level_entries[dpm_count].clock;
3167 }
3168 }
3169
3170 if ((data->need_update_dpm_table & DPMTABLE_UPDATE_SCLK) ||
3171 data->apply_optimized_settings ||
3172 (data->apply_overdrive_next_settings_mask &
3173 DPMTABLE_OD_UPDATE_SCLK)) {
3174 result = vega10_populate_all_graphic_levels(hwmgr);
3175 PP_ASSERT_WITH_CODE(!result,
3176 "Failed to populate SCLK during \
3177 PopulateNewDPMClocksStates Function!",
3178 return result);
3179 }
3180
3181 if ((data->need_update_dpm_table & DPMTABLE_UPDATE_MCLK) ||
3182 (data->apply_overdrive_next_settings_mask &
3183 DPMTABLE_OD_UPDATE_MCLK)){
3184 result = vega10_populate_all_memory_levels(hwmgr);
3185 PP_ASSERT_WITH_CODE(!result,
3186 "Failed to populate MCLK during \
3187 PopulateNewDPMClocksStates Function!",
3188 return result);
3189 }
3190 } else {
3191 if (!data->need_update_dpm_table &&
3192 !data->apply_optimized_settings)
3193 return 0;
3194
3195 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK &&
3196 data->smu_features[GNLD_DPM_GFXCLK].supported) {
3197 dpm_table->
3198 gfx_table.dpm_levels[dpm_table->gfx_table.count - 1].
3199 value = sclk;
3200
3201 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3202 PHM_PlatformCaps_OD6PlusinACSupport) ||
3203 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3204 PHM_PlatformCaps_OD6PlusinDCSupport)) {
3205 /* Need to do calculation based on the golden DPM table
3206 * as the Heatmap GPU Clock axis is also based on
3207 * the default values
3208 */
3209 PP_ASSERT_WITH_CODE(
3210 golden_dpm_table->gfx_table.dpm_levels
3211 [golden_dpm_table->gfx_table.count - 1].value,
3212 "Divide by 0!",
3213 return -1);
3214
3215 dpm_count = dpm_table->gfx_table.count < 2 ?
3216 0 : dpm_table->gfx_table.count - 2;
3217 for (i = dpm_count; i > 1; i--) {
3218 if (sclk > golden_dpm_table->gfx_table.dpm_levels
3219 [golden_dpm_table->gfx_table.count - 1].value) {
3220 clock_percent =
3221 ((sclk - golden_dpm_table->gfx_table.dpm_levels
3222 [golden_dpm_table->gfx_table.count - 1].value) *
3223 100) /
3224 golden_dpm_table->gfx_table.dpm_levels
3225 [golden_dpm_table->gfx_table.count - 1].value;
3226
3227 dpm_table->gfx_table.dpm_levels[i].value =
3228 golden_dpm_table->gfx_table.dpm_levels[i].value +
3229 (golden_dpm_table->gfx_table.dpm_levels[i].value *
3230 clock_percent) / 100;
3231 } else if (golden_dpm_table->
3232 gfx_table.dpm_levels[dpm_table->gfx_table.count-1].value >
3233 sclk) {
3234 clock_percent =
3235 ((golden_dpm_table->gfx_table.dpm_levels
3236 [golden_dpm_table->gfx_table.count - 1].value -
3237 sclk) * 100) /
3238 golden_dpm_table->gfx_table.dpm_levels
3239 [golden_dpm_table->gfx_table.count-1].value;
3240
3241 dpm_table->gfx_table.dpm_levels[i].value =
3242 golden_dpm_table->gfx_table.dpm_levels[i].value -
3243 (golden_dpm_table->gfx_table.dpm_levels[i].value *
3244 clock_percent) / 100;
3245 } else
3246 dpm_table->gfx_table.dpm_levels[i].value =
3247 golden_dpm_table->gfx_table.dpm_levels[i].value;
3248 }
3249 }
3250 }
3251
3252 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK &&
3253 data->smu_features[GNLD_DPM_UCLK].supported) {
3254 dpm_table->
3255 mem_table.dpm_levels[dpm_table->mem_table.count - 1].
3256 value = mclk;
3257
3258 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3259 PHM_PlatformCaps_OD6PlusinACSupport) ||
3260 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3261 PHM_PlatformCaps_OD6PlusinDCSupport)) {
3262
3263 PP_ASSERT_WITH_CODE(
3264 golden_dpm_table->mem_table.dpm_levels
3265 [golden_dpm_table->mem_table.count - 1].value,
3266 "Divide by 0!",
3267 return -1);
3268
3269 dpm_count = dpm_table->mem_table.count < 2 ?
3270 0 : dpm_table->mem_table.count - 2;
3271 for (i = dpm_count; i > 1; i--) {
3272 if (mclk > golden_dpm_table->mem_table.dpm_levels
3273 [golden_dpm_table->mem_table.count-1].value) {
3274 clock_percent = ((mclk -
3275 golden_dpm_table->mem_table.dpm_levels
3276 [golden_dpm_table->mem_table.count-1].value) *
3277 100) /
3278 golden_dpm_table->mem_table.dpm_levels
3279 [golden_dpm_table->mem_table.count-1].value;
3280
3281 dpm_table->mem_table.dpm_levels[i].value =
3282 golden_dpm_table->mem_table.dpm_levels[i].value +
3283 (golden_dpm_table->mem_table.dpm_levels[i].value *
3284 clock_percent) / 100;
3285 } else if (golden_dpm_table->mem_table.dpm_levels
3286 [dpm_table->mem_table.count-1].value > mclk) {
3287 clock_percent = ((golden_dpm_table->mem_table.dpm_levels
3288 [golden_dpm_table->mem_table.count-1].value - mclk) *
3289 100) /
3290 golden_dpm_table->mem_table.dpm_levels
3291 [golden_dpm_table->mem_table.count-1].value;
3292
3293 dpm_table->mem_table.dpm_levels[i].value =
3294 golden_dpm_table->mem_table.dpm_levels[i].value -
3295 (golden_dpm_table->mem_table.dpm_levels[i].value *
3296 clock_percent) / 100;
3297 } else
3298 dpm_table->mem_table.dpm_levels[i].value =
3299 golden_dpm_table->mem_table.dpm_levels[i].value;
3300 }
3301 }
3302 }
3303
3304 if ((data->need_update_dpm_table &
3305 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) ||
3306 data->apply_optimized_settings) {
3307 result = vega10_populate_all_graphic_levels(hwmgr);
3308 PP_ASSERT_WITH_CODE(!result,
3309 "Failed to populate SCLK during \
3310 PopulateNewDPMClocksStates Function!",
3311 return result);
3312 }
3313
3314 if (data->need_update_dpm_table &
3315 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
3316 result = vega10_populate_all_memory_levels(hwmgr);
3317 PP_ASSERT_WITH_CODE(!result,
3318 "Failed to populate MCLK during \
3319 PopulateNewDPMClocksStates Function!",
3320 return result);
3321 }
3322 }
3323
3324 return result;
3325}
3326
3327static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3328 struct vega10_single_dpm_table *dpm_table,
3329 uint32_t low_limit, uint32_t high_limit)
3330{
3331 uint32_t i;
3332
3333 for (i = 0; i < dpm_table->count; i++) {
3334 if ((dpm_table->dpm_levels[i].value < low_limit) ||
3335 (dpm_table->dpm_levels[i].value > high_limit))
3336 dpm_table->dpm_levels[i].enabled = false;
3337 else
3338 dpm_table->dpm_levels[i].enabled = true;
3339 }
3340 return 0;
3341}
3342
3343static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3344 struct vega10_single_dpm_table *dpm_table,
3345 uint32_t low_limit, uint32_t high_limit,
3346 uint32_t disable_dpm_mask)
3347{
3348 uint32_t i;
3349
3350 for (i = 0; i < dpm_table->count; i++) {
3351 if ((dpm_table->dpm_levels[i].value < low_limit) ||
3352 (dpm_table->dpm_levels[i].value > high_limit))
3353 dpm_table->dpm_levels[i].enabled = false;
3354 else if (!((1 << i) & disable_dpm_mask))
3355 dpm_table->dpm_levels[i].enabled = false;
3356 else
3357 dpm_table->dpm_levels[i].enabled = true;
3358 }
3359 return 0;
3360}
3361
3362static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3363 const struct vega10_power_state *vega10_ps)
3364{
3365 struct vega10_hwmgr *data =
3366 (struct vega10_hwmgr *)(hwmgr->backend);
3367 uint32_t high_limit_count;
3368
3369 PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3370 "power state did not have any performance level",
3371 return -1);
3372
3373 high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3374
3375 vega10_trim_single_dpm_states(hwmgr,
3376 &(data->dpm_table.soc_table),
3377 vega10_ps->performance_levels[0].soc_clock,
3378 vega10_ps->performance_levels[high_limit_count].soc_clock);
3379
3380 vega10_trim_single_dpm_states_with_mask(hwmgr,
3381 &(data->dpm_table.gfx_table),
3382 vega10_ps->performance_levels[0].gfx_clock,
3383 vega10_ps->performance_levels[high_limit_count].gfx_clock,
3384 data->disable_dpm_mask);
3385
3386 vega10_trim_single_dpm_states(hwmgr,
3387 &(data->dpm_table.mem_table),
3388 vega10_ps->performance_levels[0].mem_clock,
3389 vega10_ps->performance_levels[high_limit_count].mem_clock);
3390
3391 return 0;
3392}
3393
3394static uint32_t vega10_find_lowest_dpm_level(
3395 struct vega10_single_dpm_table *table)
3396{
3397 uint32_t i;
3398
3399 for (i = 0; i < table->count; i++) {
3400 if (table->dpm_levels[i].enabled)
3401 break;
3402 }
3403
3404 return i;
3405}
3406
3407static uint32_t vega10_find_highest_dpm_level(
3408 struct vega10_single_dpm_table *table)
3409{
3410 uint32_t i = 0;
3411
3412 if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3413 for (i = table->count; i > 0; i--) {
3414 if (table->dpm_levels[i - 1].enabled)
3415 return i - 1;
3416 }
3417 } else {
3418 pr_info("DPM Table Has Too Many Entries!");
3419 return MAX_REGULAR_DPM_NUMBER - 1;
3420 }
3421
3422 return i;
3423}
3424
3425static void vega10_apply_dal_minimum_voltage_request(
3426 struct pp_hwmgr *hwmgr)
3427{
3428 return;
3429}
3430
3431static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3432{
3433 struct vega10_hwmgr *data =
3434 (struct vega10_hwmgr *)(hwmgr->backend);
3435
3436 vega10_apply_dal_minimum_voltage_request(hwmgr);
3437
3438 if (!data->registry_data.sclk_dpm_key_disabled) {
3439 if (data->smc_state_table.gfx_boot_level !=
3440 data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3441 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3442 hwmgr->smumgr,
3443 PPSMC_MSG_SetSoftMinGfxclkByIndex,
3444 data->smc_state_table.gfx_boot_level),
3445 "Failed to set soft min sclk index!",
3446 return -EINVAL);
3447 data->dpm_table.gfx_table.dpm_state.soft_min_level =
3448 data->smc_state_table.gfx_boot_level;
3449 }
3450 }
3451
3452 if (!data->registry_data.mclk_dpm_key_disabled) {
3453 if (data->smc_state_table.mem_boot_level !=
3454 data->dpm_table.mem_table.dpm_state.soft_min_level) {
3455 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3456 hwmgr->smumgr,
3457 PPSMC_MSG_SetSoftMinUclkByIndex,
3458 data->smc_state_table.mem_boot_level),
3459 "Failed to set soft min mclk index!",
3460 return -EINVAL);
3461
3462 data->dpm_table.mem_table.dpm_state.soft_min_level =
3463 data->smc_state_table.mem_boot_level;
3464 }
3465 }
3466
3467 return 0;
3468}
3469
3470static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3471{
3472 struct vega10_hwmgr *data =
3473 (struct vega10_hwmgr *)(hwmgr->backend);
3474
3475 vega10_apply_dal_minimum_voltage_request(hwmgr);
3476
3477 if (!data->registry_data.sclk_dpm_key_disabled) {
3478 if (data->smc_state_table.gfx_max_level !=
3479 data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3480 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3481 hwmgr->smumgr,
3482 PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3483 data->smc_state_table.gfx_max_level),
3484 "Failed to set soft max sclk index!",
3485 return -EINVAL);
3486 data->dpm_table.gfx_table.dpm_state.soft_max_level =
3487 data->smc_state_table.gfx_max_level;
3488 }
3489 }
3490
3491 if (!data->registry_data.mclk_dpm_key_disabled) {
3492 if (data->smc_state_table.mem_max_level !=
3493 data->dpm_table.mem_table.dpm_state.soft_max_level) {
3494 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3495 hwmgr->smumgr,
3496 PPSMC_MSG_SetSoftMaxUclkByIndex,
3497 data->smc_state_table.mem_max_level),
3498 "Failed to set soft max mclk index!",
3499 return -EINVAL);
3500 data->dpm_table.mem_table.dpm_state.soft_max_level =
3501 data->smc_state_table.mem_max_level;
3502 }
3503 }
3504
3505 return 0;
3506}
3507
3508static int vega10_generate_dpm_level_enable_mask(
3509 struct pp_hwmgr *hwmgr, const void *input)
3510{
3511 struct vega10_hwmgr *data =
3512 (struct vega10_hwmgr *)(hwmgr->backend);
3513 const struct phm_set_power_state_input *states =
3514 (const struct phm_set_power_state_input *)input;
3515 const struct vega10_power_state *vega10_ps =
3516 cast_const_phw_vega10_power_state(states->pnew_state);
3517 int i;
3518
3519 PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3520 "Attempt to Trim DPM States Failed!",
3521 return -1);
3522
3523 data->smc_state_table.gfx_boot_level =
3524 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3525 data->smc_state_table.gfx_max_level =
3526 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3527 data->smc_state_table.mem_boot_level =
3528 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3529 data->smc_state_table.mem_max_level =
3530 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3531
3532 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3533 "Attempt to upload DPM Bootup Levels Failed!",
3534 return -1);
3535 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3536 "Attempt to upload DPM Max Levels Failed!",
3537 return -1);
3538 for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3539 data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3540
3541
3542 for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3543 data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3544
3545 return 0;
3546}
3547
3548int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3549{
3550 struct vega10_hwmgr *data =
3551 (struct vega10_hwmgr *)(hwmgr->backend);
3552
3553 if (data->smu_features[GNLD_DPM_VCE].supported) {
3554 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
3555 enable,
3556 data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3557 "Attempt to Enable/Disable DPM VCE Failed!",
3558 return -1);
3559 data->smu_features[GNLD_DPM_VCE].enabled = enable;
3560 }
3561
3562 return 0;
3563}
3564
3565static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3566{
3567 struct vega10_hwmgr *data =
3568 (struct vega10_hwmgr *)(hwmgr->backend);
3569 int result = 0;
3570 uint32_t low_sclk_interrupt_threshold = 0;
3571
3572 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3573 PHM_PlatformCaps_SclkThrottleLowNotification)
3574 && (hwmgr->gfx_arbiter.sclk_threshold !=
3575 data->low_sclk_interrupt_threshold)) {
3576 data->low_sclk_interrupt_threshold =
3577 hwmgr->gfx_arbiter.sclk_threshold;
3578 low_sclk_interrupt_threshold =
3579 data->low_sclk_interrupt_threshold;
3580
3581 data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3582 cpu_to_le32(low_sclk_interrupt_threshold);
3583
3584 /* This message will also enable SmcToHost Interrupt */
3585 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3586 PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3587 (uint32_t)low_sclk_interrupt_threshold);
3588 }
3589
3590 return result;
3591}
3592
3593static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3594 const void *input)
3595{
3596 int tmp_result, result = 0;
3597 struct vega10_hwmgr *data =
3598 (struct vega10_hwmgr *)(hwmgr->backend);
3599 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3600
3601 tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3602 PP_ASSERT_WITH_CODE(!tmp_result,
3603 "Failed to find DPM states clocks in DPM table!",
3604 result = tmp_result);
3605
3606 tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3607 PP_ASSERT_WITH_CODE(!tmp_result,
3608 "Failed to populate and upload SCLK MCLK DPM levels!",
3609 result = tmp_result);
3610
3611 tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3612 PP_ASSERT_WITH_CODE(!tmp_result,
3613 "Failed to generate DPM level enabled mask!",
3614 result = tmp_result);
3615
3616 tmp_result = vega10_update_sclk_threshold(hwmgr);
3617 PP_ASSERT_WITH_CODE(!tmp_result,
3618 "Failed to update SCLK threshold!",
3619 result = tmp_result);
3620
3621 result = vega10_copy_table_to_smc(hwmgr->smumgr,
3622 (uint8_t *)pp_table, PPTABLE);
3623 PP_ASSERT_WITH_CODE(!result,
3624 "Failed to upload PPtable!", return result);
3625
3626 data->apply_optimized_settings = false;
3627 data->apply_overdrive_next_settings_mask = 0;
3628
3629 return 0;
3630}
3631
3632static int vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3633{
3634 struct pp_power_state *ps;
3635 struct vega10_power_state *vega10_ps;
3636
3637 if (hwmgr == NULL)
3638 return -EINVAL;
3639
3640 ps = hwmgr->request_ps;
3641
3642 if (ps == NULL)
3643 return -EINVAL;
3644
3645 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3646
3647 if (low)
3648 return vega10_ps->performance_levels[0].gfx_clock;
3649 else
3650 return vega10_ps->performance_levels
3651 [vega10_ps->performance_level_count - 1].gfx_clock;
3652}
3653
3654static int vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3655{
3656 struct pp_power_state *ps;
3657 struct vega10_power_state *vega10_ps;
3658
3659 if (hwmgr == NULL)
3660 return -EINVAL;
3661
3662 ps = hwmgr->request_ps;
3663
3664 if (ps == NULL)
3665 return -EINVAL;
3666
3667 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3668
3669 if (low)
3670 return vega10_ps->performance_levels[0].mem_clock;
3671 else
3672 return vega10_ps->performance_levels
3673 [vega10_ps->performance_level_count-1].mem_clock;
3674}
3675
3676static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3677 void *value, int *size)
3678{
3679 uint32_t sclk_idx, mclk_idx, activity_percent = 0;
3680 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
3681 struct vega10_dpm_table *dpm_table = &data->dpm_table;
3682 int ret = 0;
3683
3684 switch (idx) {
3685 case AMDGPU_PP_SENSOR_GFX_SCLK:
3686 ret = smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_GetCurrentGfxclkIndex);
3687 if (!ret) {
3688 vega10_read_arg_from_smc(hwmgr->smumgr, &sclk_idx);
3689 *((uint32_t *)value) = dpm_table->gfx_table.dpm_levels[sclk_idx].value;
3690 *size = 4;
3691 }
3692 break;
3693 case AMDGPU_PP_SENSOR_GFX_MCLK:
3694 ret = smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_GetCurrentUclkIndex);
3695 if (!ret) {
3696 vega10_read_arg_from_smc(hwmgr->smumgr, &mclk_idx);
3697 *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3698 *size = 4;
3699 }
3700 break;
3701 case AMDGPU_PP_SENSOR_GPU_LOAD:
3702 ret = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_GetAverageGfxActivity, 0);
3703 if (!ret) {
3704 vega10_read_arg_from_smc(hwmgr->smumgr, &activity_percent);
3705 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3706 *size = 4;
3707 }
3708 break;
3709 case AMDGPU_PP_SENSOR_GPU_TEMP:
3710 *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3711 *size = 4;
3712 break;
3713 case AMDGPU_PP_SENSOR_UVD_POWER:
3714 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3715 *size = 4;
3716 break;
3717 case AMDGPU_PP_SENSOR_VCE_POWER:
3718 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3719 *size = 4;
3720 break;
3721 default:
3722 ret = -EINVAL;
3723 break;
3724 }
3725 return ret;
3726}
3727
3728static int vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3729 bool has_disp)
3730{
3731 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3732 PPSMC_MSG_SetUclkFastSwitch,
3733 has_disp ? 0 : 1);
3734}
3735
3736int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3737 struct pp_display_clock_request *clock_req)
3738{
3739 int result = 0;
3740 enum amd_pp_clock_type clk_type = clock_req->clock_type;
3741 uint32_t clk_freq = clock_req->clock_freq_in_khz / 100;
3742 DSPCLK_e clk_select = 0;
3743 uint32_t clk_request = 0;
3744
3745 switch (clk_type) {
3746 case amd_pp_dcef_clock:
3747 clk_select = DSPCLK_DCEFCLK;
3748 break;
3749 case amd_pp_disp_clock:
3750 clk_select = DSPCLK_DISPCLK;
3751 break;
3752 case amd_pp_pixel_clock:
3753 clk_select = DSPCLK_PIXCLK;
3754 break;
3755 case amd_pp_phy_clock:
3756 clk_select = DSPCLK_PHYCLK;
3757 break;
3758 default:
3759 pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
3760 result = -1;
3761 break;
3762 }
3763
3764 if (!result) {
3765 clk_request = (clk_freq << 16) | clk_select;
3766 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3767 PPSMC_MSG_RequestDisplayClockByFreq,
3768 clk_request);
3769 }
3770
3771 return result;
3772}
3773
3774static int vega10_notify_smc_display_config_after_ps_adjustment(
3775 struct pp_hwmgr *hwmgr)
3776{
3777 struct vega10_hwmgr *data =
3778 (struct vega10_hwmgr *)(hwmgr->backend);
3779 struct vega10_single_dpm_table *dpm_table =
3780 &data->dpm_table.dcef_table;
3781 uint32_t num_active_disps = 0;
3782 struct cgs_display_info info = {0};
3783 struct PP_Clocks min_clocks = {0};
3784 uint32_t i;
3785 struct pp_display_clock_request clock_req;
3786
3787 info.mode_info = NULL;
3788
3789 cgs_get_active_displays_info(hwmgr->device, &info);
3790
3791 num_active_disps = info.display_count;
3792
3793 if (num_active_disps > 1)
3794 vega10_notify_smc_display_change(hwmgr, false);
3795 else
3796 vega10_notify_smc_display_change(hwmgr, true);
3797
3798 min_clocks.dcefClock = hwmgr->display_config.min_dcef_set_clk;
3799 min_clocks.dcefClockInSR = hwmgr->display_config.min_dcef_deep_sleep_set_clk;
3800
3801 for (i = 0; i < dpm_table->count; i++) {
3802 if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
3803 break;
3804 }
3805
3806 if (i < dpm_table->count) {
3807 clock_req.clock_type = amd_pp_dcef_clock;
3808 clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value;
3809 if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
3810 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter(
3811 hwmgr->smumgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
3812 min_clocks.dcefClockInSR),
3813 "Attempt to set divider for DCEFCLK Failed!",);
3814 } else
3815 pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
3816 } else
3817 pr_info("Cannot find requested DCEFCLK!");
3818
3819 return 0;
3820}
3821
3822static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
3823{
3824 struct vega10_hwmgr *data =
3825 (struct vega10_hwmgr *)(hwmgr->backend);
3826
3827 data->smc_state_table.gfx_boot_level =
3828 data->smc_state_table.gfx_max_level =
3829 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3830 data->smc_state_table.mem_boot_level =
3831 data->smc_state_table.mem_max_level =
3832 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3833
3834 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3835 "Failed to upload boot level to highest!",
3836 return -1);
3837
3838 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3839 "Failed to upload dpm max level to highest!",
3840 return -1);
3841
3842 return 0;
3843}
3844
3845static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3846{
3847 struct vega10_hwmgr *data =
3848 (struct vega10_hwmgr *)(hwmgr->backend);
3849
3850 data->smc_state_table.gfx_boot_level =
3851 data->smc_state_table.gfx_max_level =
3852 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3853 data->smc_state_table.mem_boot_level =
3854 data->smc_state_table.mem_max_level =
3855 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3856
3857 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3858 "Failed to upload boot level to highest!",
3859 return -1);
3860
3861 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3862 "Failed to upload dpm max level to highest!",
3863 return -1);
3864
3865 return 0;
3866
3867}
3868
3869static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3870{
3871 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
3872
3873 data->smc_state_table.gfx_boot_level =
3874 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3875 data->smc_state_table.gfx_max_level =
3876 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3877 data->smc_state_table.mem_boot_level =
3878 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3879 data->smc_state_table.mem_max_level =
3880 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3881
3882 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3883 "Failed to upload DPM Bootup Levels!",
3884 return -1);
3885
3886 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3887 "Failed to upload DPM Max Levels!",
3888 return -1);
3889 return 0;
3890}
3891
3892static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3893 enum amd_dpm_forced_level level)
3894{
3895 int ret = 0;
3896
3897 switch (level) {
3898 case AMD_DPM_FORCED_LEVEL_HIGH:
3899 ret = vega10_force_dpm_highest(hwmgr);
3900 if (ret)
3901 return ret;
3902 break;
3903 case AMD_DPM_FORCED_LEVEL_LOW:
3904 ret = vega10_force_dpm_lowest(hwmgr);
3905 if (ret)
3906 return ret;
3907 break;
3908 case AMD_DPM_FORCED_LEVEL_AUTO:
3909 ret = vega10_unforce_dpm_levels(hwmgr);
3910 if (ret)
3911 return ret;
3912 break;
3913 default:
3914 break;
3915 }
3916
3917 hwmgr->dpm_level = level;
3918
3919 return ret;
3920}
3921
3922static int vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
3923{
7522ffc4 3924 int result = 0;
f83a9991 3925
7522ffc4
RZ
3926 switch (mode) {
3927 case AMD_FAN_CTRL_NONE:
3928 result = vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
3929 break;
3930 case AMD_FAN_CTRL_MANUAL:
3931 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3932 PHM_PlatformCaps_MicrocodeFanControl))
3933 result = vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
3934 break;
3935 case AMD_FAN_CTRL_AUTO:
3936 result = vega10_fan_ctrl_set_static_mode(hwmgr, mode);
3937 if (!result)
3938 result = vega10_fan_ctrl_start_smc_fan_control(hwmgr);
3939 break;
3940 default:
3941 break;
3942 }
3943 return result;
f83a9991
EH
3944}
3945
3946static int vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
3947{
7522ffc4 3948 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
f83a9991 3949
7522ffc4
RZ
3950 if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
3951 return AMD_FAN_CTRL_MANUAL;
3952 else
3953 return AMD_FAN_CTRL_AUTO;
f83a9991
EH
3954}
3955
3956static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
3957 struct amd_pp_simple_clock_info *info)
3958{
3959 struct phm_ppt_v2_information *table_info =
3960 (struct phm_ppt_v2_information *)hwmgr->pptable;
3961 struct phm_clock_and_voltage_limits *max_limits =
3962 &table_info->max_clock_voltage_on_ac;
3963
3964 info->engine_max_clock = max_limits->sclk;
3965 info->memory_max_clock = max_limits->mclk;
3966
3967 return 0;
3968}
3969
3970static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
3971 struct pp_clock_levels_with_latency *clocks)
3972{
3973 struct phm_ppt_v2_information *table_info =
3974 (struct phm_ppt_v2_information *)hwmgr->pptable;
3975 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
3976 table_info->vdd_dep_on_sclk;
3977 uint32_t i;
3978
3979 for (i = 0; i < dep_table->count; i++) {
3980 if (dep_table->entries[i].clk) {
3981 clocks->data[clocks->num_levels].clocks_in_khz =
3982 dep_table->entries[i].clk;
3983 clocks->num_levels++;
3984 }
3985 }
3986
3987}
3988
3989static uint32_t vega10_get_mem_latency(struct pp_hwmgr *hwmgr,
3990 uint32_t clock)
3991{
3992 if (clock >= MEM_FREQ_LOW_LATENCY &&
3993 clock < MEM_FREQ_HIGH_LATENCY)
3994 return MEM_LATENCY_HIGH;
3995 else if (clock >= MEM_FREQ_HIGH_LATENCY)
3996 return MEM_LATENCY_LOW;
3997 else
3998 return MEM_LATENCY_ERR;
3999}
4000
4001static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4002 struct pp_clock_levels_with_latency *clocks)
4003{
4004 struct phm_ppt_v2_information *table_info =
4005 (struct phm_ppt_v2_information *)hwmgr->pptable;
4006 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4007 table_info->vdd_dep_on_mclk;
4008 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4009 uint32_t i;
4010
4011 clocks->num_levels = 0;
4012 data->mclk_latency_table.count = 0;
4013
4014 for (i = 0; i < dep_table->count; i++) {
4015 if (dep_table->entries[i].clk) {
4016 clocks->data[clocks->num_levels].clocks_in_khz =
4017 data->mclk_latency_table.entries
4018 [data->mclk_latency_table.count].frequency =
4019 dep_table->entries[i].clk;
4020 clocks->data[clocks->num_levels].latency_in_us =
4021 data->mclk_latency_table.entries
4022 [data->mclk_latency_table.count].latency =
4023 vega10_get_mem_latency(hwmgr,
4024 dep_table->entries[i].clk);
4025 clocks->num_levels++;
4026 data->mclk_latency_table.count++;
4027 }
4028 }
4029}
4030
4031static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4032 struct pp_clock_levels_with_latency *clocks)
4033{
4034 struct phm_ppt_v2_information *table_info =
4035 (struct phm_ppt_v2_information *)hwmgr->pptable;
4036 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4037 table_info->vdd_dep_on_dcefclk;
4038 uint32_t i;
4039
4040 for (i = 0; i < dep_table->count; i++) {
4041 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk;
4042 clocks->data[i].latency_in_us = 0;
4043 clocks->num_levels++;
4044 }
4045}
4046
4047static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4048 struct pp_clock_levels_with_latency *clocks)
4049{
4050 struct phm_ppt_v2_information *table_info =
4051 (struct phm_ppt_v2_information *)hwmgr->pptable;
4052 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4053 table_info->vdd_dep_on_socclk;
4054 uint32_t i;
4055
4056 for (i = 0; i < dep_table->count; i++) {
4057 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk;
4058 clocks->data[i].latency_in_us = 0;
4059 clocks->num_levels++;
4060 }
4061}
4062
4063static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4064 enum amd_pp_clock_type type,
4065 struct pp_clock_levels_with_latency *clocks)
4066{
4067 switch (type) {
4068 case amd_pp_sys_clock:
4069 vega10_get_sclks(hwmgr, clocks);
4070 break;
4071 case amd_pp_mem_clock:
4072 vega10_get_memclocks(hwmgr, clocks);
4073 break;
4074 case amd_pp_dcef_clock:
4075 vega10_get_dcefclocks(hwmgr, clocks);
4076 break;
4077 case amd_pp_soc_clock:
4078 vega10_get_socclocks(hwmgr, clocks);
4079 break;
4080 default:
4081 return -1;
4082 }
4083
4084 return 0;
4085}
4086
4087static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4088 enum amd_pp_clock_type type,
4089 struct pp_clock_levels_with_voltage *clocks)
4090{
4091 struct phm_ppt_v2_information *table_info =
4092 (struct phm_ppt_v2_information *)hwmgr->pptable;
4093 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4094 uint32_t i;
4095
4096 switch (type) {
4097 case amd_pp_mem_clock:
4098 dep_table = table_info->vdd_dep_on_mclk;
4099 break;
4100 case amd_pp_dcef_clock:
4101 dep_table = table_info->vdd_dep_on_dcefclk;
4102 break;
4103 case amd_pp_disp_clock:
4104 dep_table = table_info->vdd_dep_on_dispclk;
4105 break;
4106 case amd_pp_pixel_clock:
4107 dep_table = table_info->vdd_dep_on_pixclk;
4108 break;
4109 case amd_pp_phy_clock:
4110 dep_table = table_info->vdd_dep_on_phyclk;
4111 break;
4112 default:
4113 return -1;
4114 }
4115
4116 for (i = 0; i < dep_table->count; i++) {
4117 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk;
4118 clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4119 entries[dep_table->entries[i].vddInd].us_vdd);
4120 clocks->num_levels++;
4121 }
4122
4123 if (i < dep_table->count)
4124 return -1;
4125
4126 return 0;
4127}
4128
4129static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4130 struct pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
4131{
4132 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4133 Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4134 int result = 0;
4135 uint32_t i;
4136
4137 if (!data->registry_data.disable_water_mark) {
4138 for (i = 0; i < wm_with_clock_ranges->num_wm_sets_dmif; i++) {
4139 table->WatermarkRow[WM_DCEFCLK][i].MinClock =
4140 cpu_to_le16((uint16_t)
4141 (wm_with_clock_ranges->wm_sets_dmif[i].wm_min_dcefclk_in_khz) /
4142 100);
4143 table->WatermarkRow[WM_DCEFCLK][i].MaxClock =
4144 cpu_to_le16((uint16_t)
4145 (wm_with_clock_ranges->wm_sets_dmif[i].wm_max_dcefclk_in_khz) /
4146 100);
4147 table->WatermarkRow[WM_DCEFCLK][i].MinUclk =
4148 cpu_to_le16((uint16_t)
4149 (wm_with_clock_ranges->wm_sets_dmif[i].wm_min_memclk_in_khz) /
4150 100);
4151 table->WatermarkRow[WM_DCEFCLK][i].MaxUclk =
4152 cpu_to_le16((uint16_t)
4153 (wm_with_clock_ranges->wm_sets_dmif[i].wm_max_memclk_in_khz) /
4154 100);
4155 table->WatermarkRow[WM_DCEFCLK][i].WmSetting = (uint8_t)
4156 wm_with_clock_ranges->wm_sets_dmif[i].wm_set_id;
4157 }
4158
4159 for (i = 0; i < wm_with_clock_ranges->num_wm_sets_mcif; i++) {
4160 table->WatermarkRow[WM_SOCCLK][i].MinClock =
4161 cpu_to_le16((uint16_t)
4162 (wm_with_clock_ranges->wm_sets_mcif[i].wm_min_socclk_in_khz) /
4163 100);
4164 table->WatermarkRow[WM_SOCCLK][i].MaxClock =
4165 cpu_to_le16((uint16_t)
4166 (wm_with_clock_ranges->wm_sets_mcif[i].wm_max_socclk_in_khz) /
4167 100);
4168 table->WatermarkRow[WM_SOCCLK][i].MinUclk =
4169 cpu_to_le16((uint16_t)
4170 (wm_with_clock_ranges->wm_sets_mcif[i].wm_min_memclk_in_khz) /
4171 100);
4172 table->WatermarkRow[WM_SOCCLK][i].MaxUclk =
4173 cpu_to_le16((uint16_t)
4174 (wm_with_clock_ranges->wm_sets_mcif[i].wm_max_memclk_in_khz) /
4175 100);
4176 table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
4177 wm_with_clock_ranges->wm_sets_mcif[i].wm_set_id;
4178 }
4179 data->water_marks_bitmap = WaterMarksExist;
4180 }
4181
4182 return result;
4183}
4184
4185static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4186 enum pp_clock_type type, uint32_t mask)
4187{
4188 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4189 uint32_t i;
4190
4191 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
4192 return -EINVAL;
4193
4194 switch (type) {
4195 case PP_SCLK:
f83a9991
EH
4196 for (i = 0; i < 32; i++) {
4197 if (mask & (1 << i))
4198 break;
4199 }
7b52db39 4200 data->smc_state_table.gfx_boot_level = i;
f83a9991 4201
7b52db39
RZ
4202 for (i = 31; i >= 0; i--) {
4203 if (mask & (1 << i))
4204 break;
4205 }
4206 data->smc_state_table.gfx_max_level = i;
4207
4208 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4209 "Failed to upload boot level to lowest!",
4210 return -EINVAL);
4211
4212 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4213 "Failed to upload dpm max level to highest!",
4214 return -EINVAL);
f83a9991
EH
4215 break;
4216
4217 case PP_MCLK:
f83a9991
EH
4218 for (i = 0; i < 32; i++) {
4219 if (mask & (1 << i))
4220 break;
4221 }
4222
f83a9991
EH
4223 for (i = 0; i < 32; i++) {
4224 if (mask & (1 << i))
4225 break;
4226 }
7b52db39
RZ
4227 data->smc_state_table.mem_boot_level = i;
4228
4229 for (i = 31; i >= 0; i--) {
4230 if (mask & (1 << i))
4231 break;
4232 }
4233 data->smc_state_table.mem_max_level = i;
4234
4235 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4236 "Failed to upload boot level to lowest!",
4237 return -EINVAL);
4238
4239 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4240 "Failed to upload dpm max level to highest!",
4241 return -EINVAL);
f83a9991 4242
f83a9991 4243 break;
7b52db39
RZ
4244
4245 case PP_PCIE:
f83a9991
EH
4246 default:
4247 break;
4248 }
4249
4250 return 0;
4251}
4252
4253static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4254 enum pp_clock_type type, char *buf)
4255{
4256 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4257 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4258 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4259 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
4260 int i, now, size = 0;
4261
4262 switch (type) {
4263 case PP_SCLK:
4264 if (data->registry_data.sclk_dpm_key_disabled)
4265 break;
4266
4267 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr->smumgr,
4268 PPSMC_MSG_GetCurrentGfxclkIndex),
4269 "Attempt to get current sclk index Failed!",
4270 return -1);
4271 PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr->smumgr,
4272 &now),
4273 "Attempt to read sclk index Failed!",
4274 return -1);
4275
4276 for (i = 0; i < sclk_table->count; i++)
4277 size += sprintf(buf + size, "%d: %uMhz %s\n",
4278 i, sclk_table->dpm_levels[i].value / 100,
4279 (i == now) ? "*" : "");
4280 break;
4281 case PP_MCLK:
4282 if (data->registry_data.mclk_dpm_key_disabled)
4283 break;
4284
4285 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr->smumgr,
4286 PPSMC_MSG_GetCurrentUclkIndex),
4287 "Attempt to get current mclk index Failed!",
4288 return -1);
4289 PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr->smumgr,
4290 &now),
4291 "Attempt to read mclk index Failed!",
4292 return -1);
4293
4294 for (i = 0; i < mclk_table->count; i++)
4295 size += sprintf(buf + size, "%d: %uMhz %s\n",
4296 i, mclk_table->dpm_levels[i].value / 100,
4297 (i == now) ? "*" : "");
4298 break;
4299 case PP_PCIE:
4300 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr->smumgr,
4301 PPSMC_MSG_GetCurrentLinkIndex),
4302 "Attempt to get current mclk index Failed!",
4303 return -1);
4304 PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr->smumgr,
4305 &now),
4306 "Attempt to read mclk index Failed!",
4307 return -1);
4308
4309 for (i = 0; i < pcie_table->count; i++)
4310 size += sprintf(buf + size, "%d: %s %s\n", i,
4311 (pcie_table->pcie_gen[i] == 0) ? "2.5GB, x1" :
4312 (pcie_table->pcie_gen[i] == 1) ? "5.0GB, x16" :
4313 (pcie_table->pcie_gen[i] == 2) ? "8.0GB, x16" : "",
4314 (i == now) ? "*" : "");
4315 break;
4316 default:
4317 break;
4318 }
4319 return size;
4320}
4321
4322static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4323{
4324 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4325 int result = 0;
4326 uint32_t num_turned_on_displays = 1;
4327 Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4328 struct cgs_display_info info = {0};
4329
4330 if ((data->water_marks_bitmap & WaterMarksExist) &&
4331 !(data->water_marks_bitmap & WaterMarksLoaded)) {
4332 result = vega10_copy_table_to_smc(hwmgr->smumgr,
4333 (uint8_t *)wm_table, WMTABLE);
4334 PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL);
4335 data->water_marks_bitmap |= WaterMarksLoaded;
4336 }
4337
4338 if (data->water_marks_bitmap & WaterMarksLoaded) {
4339 cgs_get_active_displays_info(hwmgr->device, &info);
4340 num_turned_on_displays = info.display_count;
4341 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4342 PPSMC_MSG_NumOfDisplays, num_turned_on_displays);
4343 }
4344
4345 return result;
4346}
4347
4348int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4349{
4350 struct vega10_hwmgr *data =
4351 (struct vega10_hwmgr *)(hwmgr->backend);
4352
4353 if (data->smu_features[GNLD_DPM_UVD].supported) {
4354 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr->smumgr,
4355 enable,
4356 data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4357 "Attempt to Enable/Disable DPM UVD Failed!",
4358 return -1);
4359 data->smu_features[GNLD_DPM_UVD].enabled = enable;
4360 }
4361 return 0;
4362}
4363
4364static int vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4365{
4366 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4367
4368 data->vce_power_gated = bgate;
4369 return vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4370}
4371
4372static int vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4373{
4374 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4375
4376 data->uvd_power_gated = bgate;
4377 return vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4378}
4379
4380static inline bool vega10_are_power_levels_equal(
4381 const struct vega10_performance_level *pl1,
4382 const struct vega10_performance_level *pl2)
4383{
4384 return ((pl1->soc_clock == pl2->soc_clock) &&
4385 (pl1->gfx_clock == pl2->gfx_clock) &&
4386 (pl1->mem_clock == pl2->mem_clock));
4387}
4388
4389static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4390 const struct pp_hw_power_state *pstate1,
4391 const struct pp_hw_power_state *pstate2, bool *equal)
4392{
4393 const struct vega10_power_state *psa;
4394 const struct vega10_power_state *psb;
4395 int i;
4396
4397 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4398 return -EINVAL;
4399
4400 psa = cast_const_phw_vega10_power_state(pstate1);
4401 psb = cast_const_phw_vega10_power_state(pstate2);
4402 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4403 if (psa->performance_level_count != psb->performance_level_count) {
4404 *equal = false;
4405 return 0;
4406 }
4407
4408 for (i = 0; i < psa->performance_level_count; i++) {
4409 if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4410 /* If we have found even one performance level pair that is different the states are different. */
4411 *equal = false;
4412 return 0;
4413 }
4414 }
4415
4416 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4417 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4418 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4419 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4420
4421 return 0;
4422}
4423
4424static bool
4425vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4426{
4427 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4428 bool is_update_required = false;
4429 struct cgs_display_info info = {0, 0, NULL};
4430
4431 cgs_get_active_displays_info(hwmgr->device, &info);
4432
4433 if (data->display_timing.num_existing_displays != info.display_count)
4434 is_update_required = true;
4435
4436 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4437 if (data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr)
4438 is_update_required = true;
4439 }
4440
4441 return is_update_required;
4442}
4443
8b9242ed
RZ
4444static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4445{
4446 int tmp_result, result = 0;
4447
4448 tmp_result = (vega10_is_dpm_running(hwmgr)) ? 0 : -1;
4449 PP_ASSERT_WITH_CODE(tmp_result == 0,
4450 "DPM is not running right now, no need to disable DPM!",
4451 return 0);
4452
4453 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4454 PHM_PlatformCaps_ThermalController))
4455 vega10_disable_thermal_protection(hwmgr);
4456
4457 tmp_result = vega10_disable_power_containment(hwmgr);
4458 PP_ASSERT_WITH_CODE((tmp_result == 0),
4459 "Failed to disable power containment!", result = tmp_result);
4460
4461 tmp_result = vega10_avfs_enable(hwmgr, false);
4462 PP_ASSERT_WITH_CODE((tmp_result == 0),
4463 "Failed to disable AVFS!", result = tmp_result);
4464
4465 tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
4466 PP_ASSERT_WITH_CODE((tmp_result == 0),
4467 "Failed to stop DPM!", result = tmp_result);
4468
4469 return result;
4470}
4471
4472static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
4473{
4474 struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend);
4475 int result;
4476
4477 result = vega10_disable_dpm_tasks(hwmgr);
4478 PP_ASSERT_WITH_CODE((0 == result),
4479 "[disable_dpm_tasks] Failed to disable DPM!",
4480 );
4481 data->water_marks_bitmap &= ~(WaterMarksLoaded);
4482
4483 return result;
4484}
4485
4486
f83a9991
EH
4487static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
4488 .backend_init = vega10_hwmgr_backend_init,
4489 .backend_fini = vega10_hwmgr_backend_fini,
4490 .asic_setup = vega10_setup_asic_task,
4491 .dynamic_state_management_enable = vega10_enable_dpm_tasks,
8b9242ed 4492 .dynamic_state_management_disable = vega10_disable_dpm_tasks,
f83a9991
EH
4493 .get_num_of_pp_table_entries =
4494 vega10_get_number_of_powerplay_table_entries,
4495 .get_power_state_size = vega10_get_power_state_size,
4496 .get_pp_table_entry = vega10_get_pp_table_entry,
4497 .patch_boot_state = vega10_patch_boot_state,
4498 .apply_state_adjust_rules = vega10_apply_state_adjust_rules,
4499 .power_state_set = vega10_set_power_state_tasks,
4500 .get_sclk = vega10_dpm_get_sclk,
4501 .get_mclk = vega10_dpm_get_mclk,
4502 .notify_smc_display_config_after_ps_adjustment =
4503 vega10_notify_smc_display_config_after_ps_adjustment,
4504 .force_dpm_level = vega10_dpm_force_dpm_level,
4505 .get_temperature = vega10_thermal_get_temperature,
4506 .stop_thermal_controller = vega10_thermal_stop_thermal_controller,
4507 .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
4508 .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
4509 .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
4510 .reset_fan_speed_to_default =
4511 vega10_fan_ctrl_reset_fan_speed_to_default,
4512 .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
4513 .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
4514 .uninitialize_thermal_controller =
4515 vega10_thermal_ctrl_uninitialize_thermal_controller,
4516 .set_fan_control_mode = vega10_set_fan_control_mode,
4517 .get_fan_control_mode = vega10_get_fan_control_mode,
4518 .read_sensor = vega10_read_sensor,
4519 .get_dal_power_level = vega10_get_dal_power_level,
4520 .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
4521 .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
4522 .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
4523 .display_clock_voltage_request = vega10_display_clock_voltage_request,
4524 .force_clock_level = vega10_force_clock_level,
4525 .print_clock_levels = vega10_print_clock_levels,
4526 .display_config_changed = vega10_display_configuration_changed_task,
4527 .powergate_uvd = vega10_power_gate_uvd,
4528 .powergate_vce = vega10_power_gate_vce,
4529 .check_states_equal = vega10_check_states_equal,
4530 .check_smc_update_required_for_display_configuration =
4531 vega10_check_smc_update_required_for_display_configuration,
8b9242ed
RZ
4532 .power_off_asic = vega10_power_off_asic,
4533 .disable_smc_firmware_ctf = vega10_thermal_disable_alert,
f83a9991
EH
4534};
4535
4536int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
4537{
4538 hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
4539 hwmgr->pptable_func = &vega10_pptable_funcs;
4540 pp_vega10_thermal_initialize(hwmgr);
4541 return 0;
4542}