]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/gpu/drm/drm_modes.c
drm/mode: add the GTF algorithm in kernel space
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / drm_modes.c
CommitLineData
f453ba04
DA
1/*
2 * The list_sort function is (presumably) licensed under the GPL (see the
3 * top level "COPYING" file for details).
4 *
5 * The remainder of this file is:
6 *
7 * Copyright © 1997-2003 by The XFree86 Project, Inc.
8 * Copyright © 2007 Dave Airlie
9 * Copyright © 2007-2008 Intel Corporation
10 * Jesse Barnes <jesse.barnes@intel.com>
d782c3f9 11 * Copyright 2005-2006 Luc Verhaegen
26bbdada 12 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com
f453ba04
DA
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a
15 * copy of this software and associated documentation files (the "Software"),
16 * to deal in the Software without restriction, including without limitation
17 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 * and/or sell copies of the Software, and to permit persons to whom the
19 * Software is furnished to do so, subject to the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
28 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
29 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
30 * OTHER DEALINGS IN THE SOFTWARE.
31 *
32 * Except as contained in this notice, the name of the copyright holder(s)
33 * and author(s) shall not be used in advertising or otherwise to promote
34 * the sale, use or other dealings in this Software without prior written
35 * authorization from the copyright holder(s) and author(s).
36 */
37
38#include <linux/list.h>
39#include "drmP.h"
40#include "drm.h"
41#include "drm_crtc.h"
42
f0531859 43#define DRM_MODESET_DEBUG "drm_mode"
f453ba04
DA
44/**
45 * drm_mode_debug_printmodeline - debug print a mode
46 * @dev: DRM device
47 * @mode: mode to print
48 *
49 * LOCKING:
50 * None.
51 *
52 * Describe @mode using DRM_DEBUG.
53 */
54void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
55{
f0531859 56 DRM_DEBUG_MODE(DRM_MODESET_DEBUG,
57 "Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x\n",
58 mode->base.id, mode->name, mode->vrefresh, mode->clock,
59 mode->hdisplay, mode->hsync_start,
60 mode->hsync_end, mode->htotal,
61 mode->vdisplay, mode->vsync_start,
62 mode->vsync_end, mode->vtotal, mode->type, mode->flags);
f453ba04
DA
63}
64EXPORT_SYMBOL(drm_mode_debug_printmodeline);
65
d782c3f9
ZY
66/**
67 * drm_cvt_mode -create a modeline based on CVT algorithm
68 * @dev: DRM device
69 * @hdisplay: hdisplay size
70 * @vdisplay: vdisplay size
71 * @vrefresh : vrefresh rate
72 * @reduced : Whether the GTF calculation is simplified
73 * @interlaced:Whether the interlace is supported
74 *
75 * LOCKING:
76 * none.
77 *
78 * return the modeline based on CVT algorithm
79 *
80 * This function is called to generate the modeline based on CVT algorithm
81 * according to the hdisplay, vdisplay, vrefresh.
82 * It is based from the VESA(TM) Coordinated Video Timing Generator by
83 * Graham Loveridge April 9, 2003 available at
84 * http://www.vesa.org/public/CVT/CVTd6r1.xls
85 *
86 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
87 * What I have done is to translate it by using integer calculation.
88 */
89#define HV_FACTOR 1000
90struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
91 int vdisplay, int vrefresh,
92 bool reduced, bool interlaced)
93{
94 /* 1) top/bottom margin size (% of height) - default: 1.8, */
95#define CVT_MARGIN_PERCENTAGE 18
96 /* 2) character cell horizontal granularity (pixels) - default 8 */
97#define CVT_H_GRANULARITY 8
98 /* 3) Minimum vertical porch (lines) - default 3 */
99#define CVT_MIN_V_PORCH 3
100 /* 4) Minimum number of vertical back porch lines - default 6 */
101#define CVT_MIN_V_BPORCH 6
102 /* Pixel Clock step (kHz) */
103#define CVT_CLOCK_STEP 250
104 struct drm_display_mode *drm_mode;
105 bool margins = false;
106 unsigned int vfieldrate, hperiod;
107 int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
108 int interlace;
109
110 /* allocate the drm_display_mode structure. If failure, we will
111 * return directly
112 */
113 drm_mode = drm_mode_create(dev);
114 if (!drm_mode)
115 return NULL;
116
117 /* the CVT default refresh rate is 60Hz */
118 if (!vrefresh)
119 vrefresh = 60;
120
121 /* the required field fresh rate */
122 if (interlaced)
123 vfieldrate = vrefresh * 2;
124 else
125 vfieldrate = vrefresh;
126
127 /* horizontal pixels */
128 hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
129
130 /* determine the left&right borders */
131 hmargin = 0;
132 if (margins) {
133 hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
134 hmargin -= hmargin % CVT_H_GRANULARITY;
135 }
136 /* find the total active pixels */
137 drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
138
139 /* find the number of lines per field */
140 if (interlaced)
141 vdisplay_rnd = vdisplay / 2;
142 else
143 vdisplay_rnd = vdisplay;
144
145 /* find the top & bottom borders */
146 vmargin = 0;
147 if (margins)
148 vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
149
150 drm_mode->vdisplay = vdisplay_rnd + 2 * vmargin;
151
152 /* Interlaced */
153 if (interlaced)
154 interlace = 1;
155 else
156 interlace = 0;
157
158 /* Determine VSync Width from aspect ratio */
159 if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
160 vsync = 4;
161 else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
162 vsync = 5;
163 else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
164 vsync = 6;
165 else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
166 vsync = 7;
167 else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
168 vsync = 7;
169 else /* custom */
170 vsync = 10;
171
172 if (!reduced) {
173 /* simplify the GTF calculation */
174 /* 4) Minimum time of vertical sync + back porch interval (µs)
175 * default 550.0
176 */
177 int tmp1, tmp2;
178#define CVT_MIN_VSYNC_BP 550
179 /* 3) Nominal HSync width (% of line period) - default 8 */
180#define CVT_HSYNC_PERCENTAGE 8
181 unsigned int hblank_percentage;
182 int vsyncandback_porch, vback_porch, hblank;
183
184 /* estimated the horizontal period */
185 tmp1 = HV_FACTOR * 1000000 -
186 CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
187 tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
188 interlace;
189 hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
190
191 tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
192 /* 9. Find number of lines in sync + backporch */
193 if (tmp1 < (vsync + CVT_MIN_V_PORCH))
194 vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
195 else
196 vsyncandback_porch = tmp1;
197 /* 10. Find number of lines in back porch */
198 vback_porch = vsyncandback_porch - vsync;
199 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
200 vsyncandback_porch + CVT_MIN_V_PORCH;
201 /* 5) Definition of Horizontal blanking time limitation */
202 /* Gradient (%/kHz) - default 600 */
203#define CVT_M_FACTOR 600
204 /* Offset (%) - default 40 */
205#define CVT_C_FACTOR 40
206 /* Blanking time scaling factor - default 128 */
207#define CVT_K_FACTOR 128
208 /* Scaling factor weighting - default 20 */
209#define CVT_J_FACTOR 20
210#define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256)
211#define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
212 CVT_J_FACTOR)
213 /* 12. Find ideal blanking duty cycle from formula */
214 hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
215 hperiod / 1000;
216 /* 13. Blanking time */
217 if (hblank_percentage < 20 * HV_FACTOR)
218 hblank_percentage = 20 * HV_FACTOR;
219 hblank = drm_mode->hdisplay * hblank_percentage /
220 (100 * HV_FACTOR - hblank_percentage);
221 hblank -= hblank % (2 * CVT_H_GRANULARITY);
222 /* 14. find the total pixes per line */
223 drm_mode->htotal = drm_mode->hdisplay + hblank;
224 drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
225 drm_mode->hsync_start = drm_mode->hsync_end -
226 (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
227 drm_mode->hsync_start += CVT_H_GRANULARITY -
228 drm_mode->hsync_start % CVT_H_GRANULARITY;
229 /* fill the Vsync values */
230 drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
231 drm_mode->vsync_end = drm_mode->vsync_start + vsync;
232 } else {
233 /* Reduced blanking */
234 /* Minimum vertical blanking interval time (µs)- default 460 */
235#define CVT_RB_MIN_VBLANK 460
236 /* Fixed number of clocks for horizontal sync */
237#define CVT_RB_H_SYNC 32
238 /* Fixed number of clocks for horizontal blanking */
239#define CVT_RB_H_BLANK 160
240 /* Fixed number of lines for vertical front porch - default 3*/
241#define CVT_RB_VFPORCH 3
242 int vbilines;
243 int tmp1, tmp2;
244 /* 8. Estimate Horizontal period. */
245 tmp1 = HV_FACTOR * 1000000 -
246 CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
247 tmp2 = vdisplay_rnd + 2 * vmargin;
248 hperiod = tmp1 / (tmp2 * vfieldrate);
249 /* 9. Find number of lines in vertical blanking */
250 vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
251 /* 10. Check if vertical blanking is sufficient */
252 if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
253 vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
254 /* 11. Find total number of lines in vertical field */
255 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
256 /* 12. Find total number of pixels in a line */
257 drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
258 /* Fill in HSync values */
259 drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
260 drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC;
261 }
262 /* 15/13. Find pixel clock frequency (kHz for xf86) */
263 drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
264 drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
265 /* 18/16. Find actual vertical frame frequency */
266 /* ignore - just set the mode flag for interlaced */
267 if (interlaced)
268 drm_mode->vtotal *= 2;
269 /* Fill the mode line name */
270 drm_mode_set_name(drm_mode);
271 if (reduced)
272 drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
273 DRM_MODE_FLAG_NVSYNC);
274 else
275 drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
276 DRM_MODE_FLAG_NHSYNC);
277 if (interlaced)
278 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
279
280 return drm_mode;
281}
282EXPORT_SYMBOL(drm_cvt_mode);
283
26bbdada
ZY
284/**
285 * drm_gtf_mode - create the modeline based on GTF algorithm
286 *
287 * @dev :drm device
288 * @hdisplay :hdisplay size
289 * @vdisplay :vdisplay size
290 * @vrefresh :vrefresh rate.
291 * @interlaced :whether the interlace is supported
292 * @margins :whether the margin is supported
293 *
294 * LOCKING.
295 * none.
296 *
297 * return the modeline based on GTF algorithm
298 *
299 * This function is to create the modeline based on the GTF algorithm.
300 * Generalized Timing Formula is derived from:
301 * GTF Spreadsheet by Andy Morrish (1/5/97)
302 * available at http://www.vesa.org
303 *
304 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
305 * What I have done is to translate it by using integer calculation.
306 * I also refer to the function of fb_get_mode in the file of
307 * drivers/video/fbmon.c
308 */
309struct drm_display_mode *drm_gtf_mode(struct drm_device *dev, int hdisplay,
310 int vdisplay, int vrefresh,
311 bool interlaced, int margins)
312{
313 /* 1) top/bottom margin size (% of height) - default: 1.8, */
314#define GTF_MARGIN_PERCENTAGE 18
315 /* 2) character cell horizontal granularity (pixels) - default 8 */
316#define GTF_CELL_GRAN 8
317 /* 3) Minimum vertical porch (lines) - default 3 */
318#define GTF_MIN_V_PORCH 1
319 /* width of vsync in lines */
320#define V_SYNC_RQD 3
321 /* width of hsync as % of total line */
322#define H_SYNC_PERCENT 8
323 /* min time of vsync + back porch (microsec) */
324#define MIN_VSYNC_PLUS_BP 550
325 /* blanking formula gradient */
326#define GTF_M 600
327 /* blanking formula offset */
328#define GTF_C 40
329 /* blanking formula scaling factor */
330#define GTF_K 128
331 /* blanking formula scaling factor */
332#define GTF_J 20
333 /* C' and M' are part of the Blanking Duty Cycle computation */
334#define GTF_C_PRIME (((GTF_C - GTF_J) * GTF_K / 256) + GTF_J)
335#define GTF_M_PRIME (GTF_K * GTF_M / 256)
336 struct drm_display_mode *drm_mode;
337 unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
338 int top_margin, bottom_margin;
339 int interlace;
340 unsigned int hfreq_est;
341 int vsync_plus_bp, vback_porch;
342 unsigned int vtotal_lines, vfieldrate_est, hperiod;
343 unsigned int vfield_rate, vframe_rate;
344 int left_margin, right_margin;
345 unsigned int total_active_pixels, ideal_duty_cycle;
346 unsigned int hblank, total_pixels, pixel_freq;
347 int hsync, hfront_porch, vodd_front_porch_lines;
348 unsigned int tmp1, tmp2;
349
350 drm_mode = drm_mode_create(dev);
351 if (!drm_mode)
352 return NULL;
353
354 /* 1. In order to give correct results, the number of horizontal
355 * pixels requested is first processed to ensure that it is divisible
356 * by the character size, by rounding it to the nearest character
357 * cell boundary:
358 */
359 hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
360 hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
361
362 /* 2. If interlace is requested, the number of vertical lines assumed
363 * by the calculation must be halved, as the computation calculates
364 * the number of vertical lines per field.
365 */
366 if (interlaced)
367 vdisplay_rnd = vdisplay / 2;
368 else
369 vdisplay_rnd = vdisplay;
370
371 /* 3. Find the frame rate required: */
372 if (interlaced)
373 vfieldrate_rqd = vrefresh * 2;
374 else
375 vfieldrate_rqd = vrefresh;
376
377 /* 4. Find number of lines in Top margin: */
378 top_margin = 0;
379 if (margins)
380 top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
381 1000;
382 /* 5. Find number of lines in bottom margin: */
383 bottom_margin = top_margin;
384
385 /* 6. If interlace is required, then set variable interlace: */
386 if (interlaced)
387 interlace = 1;
388 else
389 interlace = 0;
390
391 /* 7. Estimate the Horizontal frequency */
392 {
393 tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
394 tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
395 2 + interlace;
396 hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
397 }
398
399 /* 8. Find the number of lines in V sync + back porch */
400 /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
401 vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
402 vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
403 /* 9. Find the number of lines in V back porch alone: */
404 vback_porch = vsync_plus_bp - V_SYNC_RQD;
405 /* 10. Find the total number of lines in Vertical field period: */
406 vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
407 vsync_plus_bp + GTF_MIN_V_PORCH;
408 /* 11. Estimate the Vertical field frequency: */
409 vfieldrate_est = hfreq_est / vtotal_lines;
410 /* 12. Find the actual horizontal period: */
411 hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
412
413 /* 13. Find the actual Vertical field frequency: */
414 vfield_rate = hfreq_est / vtotal_lines;
415 /* 14. Find the Vertical frame frequency: */
416 if (interlaced)
417 vframe_rate = vfield_rate / 2;
418 else
419 vframe_rate = vfield_rate;
420 /* 15. Find number of pixels in left margin: */
421 if (margins)
422 left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
423 1000;
424 else
425 left_margin = 0;
426
427 /* 16.Find number of pixels in right margin: */
428 right_margin = left_margin;
429 /* 17.Find total number of active pixels in image and left and right */
430 total_active_pixels = hdisplay_rnd + left_margin + right_margin;
431 /* 18.Find the ideal blanking duty cycle from blanking duty cycle */
432 ideal_duty_cycle = GTF_C_PRIME * 1000 -
433 (GTF_M_PRIME * 1000000 / hfreq_est);
434 /* 19.Find the number of pixels in the blanking time to the nearest
435 * double character cell: */
436 hblank = total_active_pixels * ideal_duty_cycle /
437 (100000 - ideal_duty_cycle);
438 hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
439 hblank = hblank * 2 * GTF_CELL_GRAN;
440 /* 20.Find total number of pixels: */
441 total_pixels = total_active_pixels + hblank;
442 /* 21.Find pixel clock frequency: */
443 pixel_freq = total_pixels * hfreq_est / 1000;
444 /* Stage 1 computations are now complete; I should really pass
445 * the results to another function and do the Stage 2 computations,
446 * but I only need a few more values so I'll just append the
447 * computations here for now */
448 /* 17. Find the number of pixels in the horizontal sync period: */
449 hsync = H_SYNC_PERCENT * total_pixels / 100;
450 hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
451 hsync = hsync * GTF_CELL_GRAN;
452 /* 18. Find the number of pixels in horizontal front porch period */
453 hfront_porch = hblank / 2 - hsync;
454 /* 36. Find the number of lines in the odd front porch period: */
455 vodd_front_porch_lines = GTF_MIN_V_PORCH ;
456
457 /* finally, pack the results in the mode struct */
458 drm_mode->hdisplay = hdisplay_rnd;
459 drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
460 drm_mode->hsync_end = drm_mode->hsync_start + hsync;
461 drm_mode->htotal = total_pixels;
462 drm_mode->vdisplay = vdisplay_rnd;
463 drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
464 drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
465 drm_mode->vtotal = vtotal_lines;
466
467 drm_mode->clock = pixel_freq;
468
469 drm_mode_set_name(drm_mode);
470 drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
471
472 if (interlaced) {
473 drm_mode->vtotal *= 2;
474 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
475 }
476
477 return drm_mode;
478}
479EXPORT_SYMBOL(drm_gtf_mode);
f453ba04
DA
480/**
481 * drm_mode_set_name - set the name on a mode
482 * @mode: name will be set in this mode
483 *
484 * LOCKING:
485 * None.
486 *
487 * Set the name of @mode to a standard format.
488 */
489void drm_mode_set_name(struct drm_display_mode *mode)
490{
491 snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d", mode->hdisplay,
492 mode->vdisplay);
493}
494EXPORT_SYMBOL(drm_mode_set_name);
495
496/**
497 * drm_mode_list_concat - move modes from one list to another
498 * @head: source list
499 * @new: dst list
500 *
501 * LOCKING:
502 * Caller must ensure both lists are locked.
503 *
504 * Move all the modes from @head to @new.
505 */
506void drm_mode_list_concat(struct list_head *head, struct list_head *new)
507{
508
509 struct list_head *entry, *tmp;
510
511 list_for_each_safe(entry, tmp, head) {
512 list_move_tail(entry, new);
513 }
514}
515EXPORT_SYMBOL(drm_mode_list_concat);
516
517/**
518 * drm_mode_width - get the width of a mode
519 * @mode: mode
520 *
521 * LOCKING:
522 * None.
523 *
524 * Return @mode's width (hdisplay) value.
525 *
526 * FIXME: is this needed?
527 *
528 * RETURNS:
529 * @mode->hdisplay
530 */
531int drm_mode_width(struct drm_display_mode *mode)
532{
533 return mode->hdisplay;
534
535}
536EXPORT_SYMBOL(drm_mode_width);
537
538/**
539 * drm_mode_height - get the height of a mode
540 * @mode: mode
541 *
542 * LOCKING:
543 * None.
544 *
545 * Return @mode's height (vdisplay) value.
546 *
547 * FIXME: is this needed?
548 *
549 * RETURNS:
550 * @mode->vdisplay
551 */
552int drm_mode_height(struct drm_display_mode *mode)
553{
554 return mode->vdisplay;
555}
556EXPORT_SYMBOL(drm_mode_height);
557
558/**
559 * drm_mode_vrefresh - get the vrefresh of a mode
560 * @mode: mode
561 *
562 * LOCKING:
563 * None.
564 *
565 * Return @mode's vrefresh rate or calculate it if necessary.
566 *
567 * FIXME: why is this needed? shouldn't vrefresh be set already?
568 *
569 * RETURNS:
570 * Vertical refresh rate of @mode x 1000. For precision reasons.
571 */
572int drm_mode_vrefresh(struct drm_display_mode *mode)
573{
574 int refresh = 0;
575 unsigned int calc_val;
576
577 if (mode->vrefresh > 0)
578 refresh = mode->vrefresh;
579 else if (mode->htotal > 0 && mode->vtotal > 0) {
580 /* work out vrefresh the value will be x1000 */
581 calc_val = (mode->clock * 1000);
582
583 calc_val /= mode->htotal;
584 calc_val *= 1000;
585 calc_val /= mode->vtotal;
586
587 refresh = calc_val;
588 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
589 refresh *= 2;
590 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
591 refresh /= 2;
592 if (mode->vscan > 1)
593 refresh /= mode->vscan;
594 }
595 return refresh;
596}
597EXPORT_SYMBOL(drm_mode_vrefresh);
598
599/**
600 * drm_mode_set_crtcinfo - set CRTC modesetting parameters
601 * @p: mode
602 * @adjust_flags: unused? (FIXME)
603 *
604 * LOCKING:
605 * None.
606 *
607 * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
608 */
609void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
610{
611 if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
612 return;
613
614 p->crtc_hdisplay = p->hdisplay;
615 p->crtc_hsync_start = p->hsync_start;
616 p->crtc_hsync_end = p->hsync_end;
617 p->crtc_htotal = p->htotal;
618 p->crtc_hskew = p->hskew;
619 p->crtc_vdisplay = p->vdisplay;
620 p->crtc_vsync_start = p->vsync_start;
621 p->crtc_vsync_end = p->vsync_end;
622 p->crtc_vtotal = p->vtotal;
623
624 if (p->flags & DRM_MODE_FLAG_INTERLACE) {
625 if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
626 p->crtc_vdisplay /= 2;
627 p->crtc_vsync_start /= 2;
628 p->crtc_vsync_end /= 2;
629 p->crtc_vtotal /= 2;
630 }
631
632 p->crtc_vtotal |= 1;
633 }
634
635 if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
636 p->crtc_vdisplay *= 2;
637 p->crtc_vsync_start *= 2;
638 p->crtc_vsync_end *= 2;
639 p->crtc_vtotal *= 2;
640 }
641
642 if (p->vscan > 1) {
643 p->crtc_vdisplay *= p->vscan;
644 p->crtc_vsync_start *= p->vscan;
645 p->crtc_vsync_end *= p->vscan;
646 p->crtc_vtotal *= p->vscan;
647 }
648
649 p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
650 p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
651 p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
652 p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
653
654 p->crtc_hadjusted = false;
655 p->crtc_vadjusted = false;
656}
657EXPORT_SYMBOL(drm_mode_set_crtcinfo);
658
659
660/**
661 * drm_mode_duplicate - allocate and duplicate an existing mode
662 * @m: mode to duplicate
663 *
664 * LOCKING:
665 * None.
666 *
667 * Just allocate a new mode, copy the existing mode into it, and return
668 * a pointer to it. Used to create new instances of established modes.
669 */
670struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
671 struct drm_display_mode *mode)
672{
673 struct drm_display_mode *nmode;
674 int new_id;
675
676 nmode = drm_mode_create(dev);
677 if (!nmode)
678 return NULL;
679
680 new_id = nmode->base.id;
681 *nmode = *mode;
682 nmode->base.id = new_id;
683 INIT_LIST_HEAD(&nmode->head);
684 return nmode;
685}
686EXPORT_SYMBOL(drm_mode_duplicate);
687
688/**
689 * drm_mode_equal - test modes for equality
690 * @mode1: first mode
691 * @mode2: second mode
692 *
693 * LOCKING:
694 * None.
695 *
696 * Check to see if @mode1 and @mode2 are equivalent.
697 *
698 * RETURNS:
699 * True if the modes are equal, false otherwise.
700 */
701bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
702{
703 /* do clock check convert to PICOS so fb modes get matched
704 * the same */
705 if (mode1->clock && mode2->clock) {
706 if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
707 return false;
708 } else if (mode1->clock != mode2->clock)
709 return false;
710
711 if (mode1->hdisplay == mode2->hdisplay &&
712 mode1->hsync_start == mode2->hsync_start &&
713 mode1->hsync_end == mode2->hsync_end &&
714 mode1->htotal == mode2->htotal &&
715 mode1->hskew == mode2->hskew &&
716 mode1->vdisplay == mode2->vdisplay &&
717 mode1->vsync_start == mode2->vsync_start &&
718 mode1->vsync_end == mode2->vsync_end &&
719 mode1->vtotal == mode2->vtotal &&
720 mode1->vscan == mode2->vscan &&
721 mode1->flags == mode2->flags)
722 return true;
723
724 return false;
725}
726EXPORT_SYMBOL(drm_mode_equal);
727
728/**
729 * drm_mode_validate_size - make sure modes adhere to size constraints
730 * @dev: DRM device
731 * @mode_list: list of modes to check
732 * @maxX: maximum width
733 * @maxY: maximum height
734 * @maxPitch: max pitch
735 *
736 * LOCKING:
737 * Caller must hold a lock protecting @mode_list.
738 *
739 * The DRM device (@dev) has size and pitch limits. Here we validate the
740 * modes we probed for @dev against those limits and set their status as
741 * necessary.
742 */
743void drm_mode_validate_size(struct drm_device *dev,
744 struct list_head *mode_list,
745 int maxX, int maxY, int maxPitch)
746{
747 struct drm_display_mode *mode;
748
749 list_for_each_entry(mode, mode_list, head) {
750 if (maxPitch > 0 && mode->hdisplay > maxPitch)
751 mode->status = MODE_BAD_WIDTH;
752
753 if (maxX > 0 && mode->hdisplay > maxX)
754 mode->status = MODE_VIRTUAL_X;
755
756 if (maxY > 0 && mode->vdisplay > maxY)
757 mode->status = MODE_VIRTUAL_Y;
758 }
759}
760EXPORT_SYMBOL(drm_mode_validate_size);
761
762/**
763 * drm_mode_validate_clocks - validate modes against clock limits
764 * @dev: DRM device
765 * @mode_list: list of modes to check
766 * @min: minimum clock rate array
767 * @max: maximum clock rate array
768 * @n_ranges: number of clock ranges (size of arrays)
769 *
770 * LOCKING:
771 * Caller must hold a lock protecting @mode_list.
772 *
773 * Some code may need to check a mode list against the clock limits of the
774 * device in question. This function walks the mode list, testing to make
775 * sure each mode falls within a given range (defined by @min and @max
776 * arrays) and sets @mode->status as needed.
777 */
778void drm_mode_validate_clocks(struct drm_device *dev,
779 struct list_head *mode_list,
780 int *min, int *max, int n_ranges)
781{
782 struct drm_display_mode *mode;
783 int i;
784
785 list_for_each_entry(mode, mode_list, head) {
786 bool good = false;
787 for (i = 0; i < n_ranges; i++) {
788 if (mode->clock >= min[i] && mode->clock <= max[i]) {
789 good = true;
790 break;
791 }
792 }
793 if (!good)
794 mode->status = MODE_CLOCK_RANGE;
795 }
796}
797EXPORT_SYMBOL(drm_mode_validate_clocks);
798
799/**
800 * drm_mode_prune_invalid - remove invalid modes from mode list
801 * @dev: DRM device
802 * @mode_list: list of modes to check
803 * @verbose: be verbose about it
804 *
805 * LOCKING:
806 * Caller must hold a lock protecting @mode_list.
807 *
808 * Once mode list generation is complete, a caller can use this routine to
809 * remove invalid modes from a mode list. If any of the modes have a
810 * status other than %MODE_OK, they are removed from @mode_list and freed.
811 */
812void drm_mode_prune_invalid(struct drm_device *dev,
813 struct list_head *mode_list, bool verbose)
814{
815 struct drm_display_mode *mode, *t;
816
817 list_for_each_entry_safe(mode, t, mode_list, head) {
818 if (mode->status != MODE_OK) {
819 list_del(&mode->head);
820 if (verbose) {
821 drm_mode_debug_printmodeline(mode);
f0531859 822 DRM_DEBUG_MODE(DRM_MODESET_DEBUG,
823 "Not using %s mode %d\n",
824 mode->name, mode->status);
f453ba04
DA
825 }
826 drm_mode_destroy(dev, mode);
827 }
828 }
829}
830EXPORT_SYMBOL(drm_mode_prune_invalid);
831
832/**
833 * drm_mode_compare - compare modes for favorability
834 * @lh_a: list_head for first mode
835 * @lh_b: list_head for second mode
836 *
837 * LOCKING:
838 * None.
839 *
840 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
841 * which is better.
842 *
843 * RETURNS:
844 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
845 * positive if @lh_b is better than @lh_a.
846 */
847static int drm_mode_compare(struct list_head *lh_a, struct list_head *lh_b)
848{
849 struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
850 struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
851 int diff;
852
853 diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
854 ((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
855 if (diff)
856 return diff;
857 diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
858 if (diff)
859 return diff;
860 diff = b->clock - a->clock;
861 return diff;
862}
863
864/* FIXME: what we don't have a list sort function? */
865/* list sort from Mark J Roberts (mjr@znex.org) */
866void list_sort(struct list_head *head,
867 int (*cmp)(struct list_head *a, struct list_head *b))
868{
869 struct list_head *p, *q, *e, *list, *tail, *oldhead;
870 int insize, nmerges, psize, qsize, i;
871
872 list = head->next;
873 list_del(head);
874 insize = 1;
875 for (;;) {
876 p = oldhead = list;
877 list = tail = NULL;
878 nmerges = 0;
879
880 while (p) {
881 nmerges++;
882 q = p;
883 psize = 0;
884 for (i = 0; i < insize; i++) {
885 psize++;
886 q = q->next == oldhead ? NULL : q->next;
887 if (!q)
888 break;
889 }
890
891 qsize = insize;
892 while (psize > 0 || (qsize > 0 && q)) {
893 if (!psize) {
894 e = q;
895 q = q->next;
896 qsize--;
897 if (q == oldhead)
898 q = NULL;
899 } else if (!qsize || !q) {
900 e = p;
901 p = p->next;
902 psize--;
903 if (p == oldhead)
904 p = NULL;
905 } else if (cmp(p, q) <= 0) {
906 e = p;
907 p = p->next;
908 psize--;
909 if (p == oldhead)
910 p = NULL;
911 } else {
912 e = q;
913 q = q->next;
914 qsize--;
915 if (q == oldhead)
916 q = NULL;
917 }
918 if (tail)
919 tail->next = e;
920 else
921 list = e;
922 e->prev = tail;
923 tail = e;
924 }
925 p = q;
926 }
927
928 tail->next = list;
929 list->prev = tail;
930
931 if (nmerges <= 1)
932 break;
933
934 insize *= 2;
935 }
936
937 head->next = list;
938 head->prev = list->prev;
939 list->prev->next = head;
940 list->prev = head;
941}
942
943/**
944 * drm_mode_sort - sort mode list
945 * @mode_list: list to sort
946 *
947 * LOCKING:
948 * Caller must hold a lock protecting @mode_list.
949 *
950 * Sort @mode_list by favorability, putting good modes first.
951 */
952void drm_mode_sort(struct list_head *mode_list)
953{
954 list_sort(mode_list, drm_mode_compare);
955}
956EXPORT_SYMBOL(drm_mode_sort);
957
958/**
959 * drm_mode_connector_list_update - update the mode list for the connector
960 * @connector: the connector to update
961 *
962 * LOCKING:
963 * Caller must hold a lock protecting @mode_list.
964 *
965 * This moves the modes from the @connector probed_modes list
966 * to the actual mode list. It compares the probed mode against the current
967 * list and only adds different modes. All modes unverified after this point
968 * will be removed by the prune invalid modes.
969 */
970void drm_mode_connector_list_update(struct drm_connector *connector)
971{
972 struct drm_display_mode *mode;
973 struct drm_display_mode *pmode, *pt;
974 int found_it;
975
976 list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
977 head) {
978 found_it = 0;
979 /* go through current modes checking for the new probed mode */
980 list_for_each_entry(mode, &connector->modes, head) {
981 if (drm_mode_equal(pmode, mode)) {
982 found_it = 1;
983 /* if equal delete the probed mode */
984 mode->status = pmode->status;
985 list_del(&pmode->head);
986 drm_mode_destroy(connector->dev, pmode);
987 break;
988 }
989 }
990
991 if (!found_it) {
992 list_move_tail(&pmode->head, &connector->modes);
993 }
994 }
995}
996EXPORT_SYMBOL(drm_mode_connector_list_update);