]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Replace the pending_gpu_write flag with an explicit seqno
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
88241785 40static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
43static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
8c59967c 59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 60
61050808
CW
61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62{
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
5d82e3e6 69 obj->fence_dirty = false;
61050808
CW
70 obj->fence_reg = I915_FENCE_REG_NONE;
71}
72
73aa808f
CW
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
21dd3734
CW
88static int
89i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
90{
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
0a6759c6
DV
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
105 if (ret == 0) {
106 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
107 return -EIO;
108 } else if (ret < 0) {
30dbf0c0 109 return ret;
0a6759c6 110 }
30dbf0c0 111
21dd3734
CW
112 if (atomic_read(&dev_priv->mm.wedged)) {
113 /* GPU is hung, bump the completion count to account for
114 * the token we just consumed so that we never hit zero and
115 * end up waiting upon a subsequent completion event that
116 * will never happen.
117 */
118 spin_lock_irqsave(&x->wait.lock, flags);
119 x->done++;
120 spin_unlock_irqrestore(&x->wait.lock, flags);
121 }
122 return 0;
30dbf0c0
CW
123}
124
54cf91dc 125int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 126{
76c1dec1
CW
127 int ret;
128
21dd3734 129 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
23bc5982 137 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
138 return 0;
139}
30dbf0c0 140
7d1c4804 141static inline bool
05394f39 142i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 143{
1b50247a 144 return !obj->active;
7d1c4804
CW
145}
146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e 152
7bb6fb8d
DV
153 if (drm_core_check_feature(dev, DRIVER_MODESET))
154 return -ENODEV;
155
2021746e
CW
156 if (args->gtt_start >= args->gtt_end ||
157 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
158 return -EINVAL;
79e53945 159
f534bc0b
DV
160 /* GEM with user mode setting was never supported on ilk and later. */
161 if (INTEL_INFO(dev)->gen >= 5)
162 return -ENODEV;
163
79e53945 164 mutex_lock(&dev->struct_mutex);
644ec02b
DV
165 i915_gem_init_global_gtt(dev, args->gtt_start,
166 args->gtt_end, args->gtt_end);
673a394b
EA
167 mutex_unlock(&dev->struct_mutex);
168
2021746e 169 return 0;
673a394b
EA
170}
171
5a125c3c
EA
172int
173i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 174 struct drm_file *file)
5a125c3c 175{
73aa808f 176 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 177 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
5a125c3c 180
6299f992 181 pinned = 0;
73aa808f 182 mutex_lock(&dev->struct_mutex);
1b50247a
CW
183 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
184 if (obj->pin_count)
185 pinned += obj->gtt_space->size;
73aa808f 186 mutex_unlock(&dev->struct_mutex);
5a125c3c 187
6299f992 188 args->aper_size = dev_priv->mm.gtt_total;
0206e353 189 args->aper_available_size = args->aper_size - pinned;
6299f992 190
5a125c3c
EA
191 return 0;
192}
193
ff72145b
DA
194static int
195i915_gem_create(struct drm_file *file,
196 struct drm_device *dev,
197 uint64_t size,
198 uint32_t *handle_p)
673a394b 199{
05394f39 200 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
201 int ret;
202 u32 handle;
673a394b 203
ff72145b 204 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
205 if (size == 0)
206 return -EINVAL;
673a394b
EA
207
208 /* Allocate the new object */
ff72145b 209 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
210 if (obj == NULL)
211 return -ENOMEM;
212
05394f39 213 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 214 if (ret) {
05394f39
CW
215 drm_gem_object_release(&obj->base);
216 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 217 kfree(obj);
673a394b 218 return ret;
1dfd9754 219 }
673a394b 220
202f2fef 221 /* drop reference from allocate - handle holds it now */
05394f39 222 drm_gem_object_unreference(&obj->base);
202f2fef
CW
223 trace_i915_gem_object_create(obj);
224
ff72145b 225 *handle_p = handle;
673a394b
EA
226 return 0;
227}
228
ff72145b
DA
229int
230i915_gem_dumb_create(struct drm_file *file,
231 struct drm_device *dev,
232 struct drm_mode_create_dumb *args)
233{
234 /* have to work out size/pitch and return them */
ed0291fd 235 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
236 args->size = args->pitch * args->height;
237 return i915_gem_create(file, dev,
238 args->size, &args->handle);
239}
240
241int i915_gem_dumb_destroy(struct drm_file *file,
242 struct drm_device *dev,
243 uint32_t handle)
244{
245 return drm_gem_handle_delete(file, handle);
246}
247
248/**
249 * Creates a new mm object and returns a handle to it.
250 */
251int
252i915_gem_create_ioctl(struct drm_device *dev, void *data,
253 struct drm_file *file)
254{
255 struct drm_i915_gem_create *args = data;
63ed2cb2 256
ff72145b
DA
257 return i915_gem_create(file, dev,
258 args->size, &args->handle);
259}
260
05394f39 261static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 262{
05394f39 263 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
264
265 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 266 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
267}
268
8461d226
DV
269static inline int
270__copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273{
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293}
294
8c59967c 295static inline int
4f0c7cfb
BW
296__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
8c59967c
DV
298 int length)
299{
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319}
320
d174bd64
DV
321/* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
eb01459f 324static int
d174bd64
DV
325shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328{
329 char *vaddr;
330 int ret;
331
e7e58eb5 332 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret;
345}
346
23c18c71
DV
347static void
348shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350{
e7e58eb5 351 if (unlikely(swizzled)) {
23c18c71
DV
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367}
368
d174bd64
DV
369/* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371static int
372shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375{
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
23c18c71
DV
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
d174bd64
DV
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret;
396}
397
eb01459f 398static int
dbf7bff0
DV
399i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
eb01459f 403{
05394f39 404 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 410 int hit_slowpath = 0;
96d79b52 411 int prefaulted = 0;
8489731c 412 int needs_clflush = 0;
692a576b 413 int release_page;
eb01459f 414
8461d226 415 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
416 remain = args->size;
417
8461d226 418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 419
8489731c
DV
420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421 /* If we're not in the cpu read domain, set ourself into the gtt
422 * read domain and manually flush cachelines (if required). This
423 * optimizes for the case when the gpu will dirty the data
424 * anyway again before the next pread happens. */
425 if (obj->cache_level == I915_CACHE_NONE)
426 needs_clflush = 1;
427 ret = i915_gem_object_set_to_gtt_domain(obj, false);
428 if (ret)
429 return ret;
430 }
eb01459f 431
8461d226 432 offset = args->offset;
eb01459f
EA
433
434 while (remain > 0) {
e5281ccd
CW
435 struct page *page;
436
eb01459f
EA
437 /* Operation in this page
438 *
eb01459f 439 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
440 * page_length = bytes to copy for this page
441 */
c8cbbb8b 442 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
443 page_length = remain;
444 if ((shmem_page_offset + page_length) > PAGE_SIZE)
445 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 446
692a576b
DV
447 if (obj->pages) {
448 page = obj->pages[offset >> PAGE_SHIFT];
449 release_page = 0;
450 } else {
451 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
452 if (IS_ERR(page)) {
453 ret = PTR_ERR(page);
454 goto out;
455 }
456 release_page = 1;
b65552f0 457 }
e5281ccd 458
8461d226
DV
459 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
460 (page_to_phys(page) & (1 << 17)) != 0;
461
d174bd64
DV
462 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
463 user_data, page_do_bit17_swizzling,
464 needs_clflush);
465 if (ret == 0)
466 goto next_page;
dbf7bff0
DV
467
468 hit_slowpath = 1;
692a576b 469 page_cache_get(page);
dbf7bff0
DV
470 mutex_unlock(&dev->struct_mutex);
471
96d79b52 472 if (!prefaulted) {
f56f821f 473 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
474 /* Userspace is tricking us, but we've already clobbered
475 * its pages with the prefault and promised to write the
476 * data up to the first fault. Hence ignore any errors
477 * and just continue. */
478 (void)ret;
479 prefaulted = 1;
480 }
eb01459f 481
d174bd64
DV
482 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483 user_data, page_do_bit17_swizzling,
484 needs_clflush);
eb01459f 485
dbf7bff0 486 mutex_lock(&dev->struct_mutex);
e5281ccd 487 page_cache_release(page);
dbf7bff0 488next_page:
e5281ccd 489 mark_page_accessed(page);
692a576b
DV
490 if (release_page)
491 page_cache_release(page);
e5281ccd 492
8461d226
DV
493 if (ret) {
494 ret = -EFAULT;
495 goto out;
496 }
497
eb01459f 498 remain -= page_length;
8461d226 499 user_data += page_length;
eb01459f
EA
500 offset += page_length;
501 }
502
4f27b75d 503out:
dbf7bff0
DV
504 if (hit_slowpath) {
505 /* Fixup: Kill any reinstated backing storage pages */
506 if (obj->madv == __I915_MADV_PURGED)
507 i915_gem_object_truncate(obj);
508 }
eb01459f
EA
509
510 return ret;
511}
512
673a394b
EA
513/**
514 * Reads data from the object referenced by handle.
515 *
516 * On error, the contents of *data are undefined.
517 */
518int
519i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 520 struct drm_file *file)
673a394b
EA
521{
522 struct drm_i915_gem_pread *args = data;
05394f39 523 struct drm_i915_gem_object *obj;
35b62a89 524 int ret = 0;
673a394b 525
51311d0a
CW
526 if (args->size == 0)
527 return 0;
528
529 if (!access_ok(VERIFY_WRITE,
530 (char __user *)(uintptr_t)args->data_ptr,
531 args->size))
532 return -EFAULT;
533
4f27b75d 534 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 535 if (ret)
4f27b75d 536 return ret;
673a394b 537
05394f39 538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 539 if (&obj->base == NULL) {
1d7cfea1
CW
540 ret = -ENOENT;
541 goto unlock;
4f27b75d 542 }
673a394b 543
7dcd2499 544 /* Bounds check source. */
05394f39
CW
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
ce9d419d 547 ret = -EINVAL;
35b62a89 548 goto out;
ce9d419d
CW
549 }
550
1286ff73
DV
551 /* prime objects have no backing filp to GEM pread/pwrite
552 * pages from.
553 */
554 if (!obj->base.filp) {
555 ret = -EINVAL;
556 goto out;
557 }
558
db53a302
CW
559 trace_i915_gem_object_pread(obj, args->offset, args->size);
560
dbf7bff0 561 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 562
35b62a89 563out:
05394f39 564 drm_gem_object_unreference(&obj->base);
1d7cfea1 565unlock:
4f27b75d 566 mutex_unlock(&dev->struct_mutex);
eb01459f 567 return ret;
673a394b
EA
568}
569
0839ccb8
KP
570/* This is the fast write path which cannot handle
571 * page faults in the source data
9b7530cc 572 */
0839ccb8
KP
573
574static inline int
575fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
9b7530cc 579{
4f0c7cfb
BW
580 void __iomem *vaddr_atomic;
581 void *vaddr;
0839ccb8 582 unsigned long unwritten;
9b7530cc 583
3e4d3af5 584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
585 /* We can use the cpu mem copy function because this is X86. */
586 vaddr = (void __force*)vaddr_atomic + page_offset;
587 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 588 user_data, length);
3e4d3af5 589 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 590 return unwritten;
0839ccb8
KP
591}
592
3de09aa3
EA
593/**
594 * This is the fast pwrite path, where we copy the data directly from the
595 * user into the GTT, uncached.
596 */
673a394b 597static int
05394f39
CW
598i915_gem_gtt_pwrite_fast(struct drm_device *dev,
599 struct drm_i915_gem_object *obj,
3de09aa3 600 struct drm_i915_gem_pwrite *args,
05394f39 601 struct drm_file *file)
673a394b 602{
0839ccb8 603 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 604 ssize_t remain;
0839ccb8 605 loff_t offset, page_base;
673a394b 606 char __user *user_data;
935aaa69
DV
607 int page_offset, page_length, ret;
608
609 ret = i915_gem_object_pin(obj, 0, true);
610 if (ret)
611 goto out;
612
613 ret = i915_gem_object_set_to_gtt_domain(obj, true);
614 if (ret)
615 goto out_unpin;
616
617 ret = i915_gem_object_put_fence(obj);
618 if (ret)
619 goto out_unpin;
673a394b
EA
620
621 user_data = (char __user *) (uintptr_t) args->data_ptr;
622 remain = args->size;
673a394b 623
05394f39 624 offset = obj->gtt_offset + args->offset;
673a394b
EA
625
626 while (remain > 0) {
627 /* Operation in this page
628 *
0839ccb8
KP
629 * page_base = page offset within aperture
630 * page_offset = offset within page
631 * page_length = bytes to copy for this page
673a394b 632 */
c8cbbb8b
CW
633 page_base = offset & PAGE_MASK;
634 page_offset = offset_in_page(offset);
0839ccb8
KP
635 page_length = remain;
636 if ((page_offset + remain) > PAGE_SIZE)
637 page_length = PAGE_SIZE - page_offset;
638
0839ccb8 639 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
640 * source page isn't available. Return the error and we'll
641 * retry in the slow path.
0839ccb8 642 */
fbd5a26d 643 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
644 page_offset, user_data, page_length)) {
645 ret = -EFAULT;
646 goto out_unpin;
647 }
673a394b 648
0839ccb8
KP
649 remain -= page_length;
650 user_data += page_length;
651 offset += page_length;
673a394b 652 }
673a394b 653
935aaa69
DV
654out_unpin:
655 i915_gem_object_unpin(obj);
656out:
3de09aa3 657 return ret;
673a394b
EA
658}
659
d174bd64
DV
660/* Per-page copy function for the shmem pwrite fastpath.
661 * Flushes invalid cachelines before writing to the target if
662 * needs_clflush_before is set and flushes out any written cachelines after
663 * writing if needs_clflush is set. */
3043c60c 664static int
d174bd64
DV
665shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
666 char __user *user_data,
667 bool page_do_bit17_swizzling,
668 bool needs_clflush_before,
669 bool needs_clflush_after)
673a394b 670{
d174bd64 671 char *vaddr;
673a394b 672 int ret;
3de09aa3 673
e7e58eb5 674 if (unlikely(page_do_bit17_swizzling))
d174bd64 675 return -EINVAL;
3de09aa3 676
d174bd64
DV
677 vaddr = kmap_atomic(page);
678 if (needs_clflush_before)
679 drm_clflush_virt_range(vaddr + shmem_page_offset,
680 page_length);
681 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
682 user_data,
683 page_length);
684 if (needs_clflush_after)
685 drm_clflush_virt_range(vaddr + shmem_page_offset,
686 page_length);
687 kunmap_atomic(vaddr);
3de09aa3
EA
688
689 return ret;
690}
691
d174bd64
DV
692/* Only difference to the fast-path function is that this can handle bit17
693 * and uses non-atomic copy and kmap functions. */
3043c60c 694static int
d174bd64
DV
695shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
696 char __user *user_data,
697 bool page_do_bit17_swizzling,
698 bool needs_clflush_before,
699 bool needs_clflush_after)
673a394b 700{
d174bd64
DV
701 char *vaddr;
702 int ret;
e5281ccd 703
d174bd64 704 vaddr = kmap(page);
e7e58eb5 705 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
d174bd64
DV
709 if (page_do_bit17_swizzling)
710 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
711 user_data,
712 page_length);
d174bd64
DV
713 else
714 ret = __copy_from_user(vaddr + shmem_page_offset,
715 user_data,
716 page_length);
717 if (needs_clflush_after)
23c18c71
DV
718 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
719 page_length,
720 page_do_bit17_swizzling);
d174bd64 721 kunmap(page);
40123c1f 722
d174bd64 723 return ret;
40123c1f
EA
724}
725
40123c1f 726static int
e244a443
DV
727i915_gem_shmem_pwrite(struct drm_device *dev,
728 struct drm_i915_gem_object *obj,
729 struct drm_i915_gem_pwrite *args,
730 struct drm_file *file)
40123c1f 731{
05394f39 732 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 733 ssize_t remain;
8c59967c
DV
734 loff_t offset;
735 char __user *user_data;
eb2c0c81 736 int shmem_page_offset, page_length, ret = 0;
8c59967c 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 738 int hit_slowpath = 0;
58642885
DV
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
692a576b 741 int release_page;
40123c1f 742
8c59967c 743 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
744 remain = args->size;
745
8c59967c 746 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 747
58642885
DV
748 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
749 /* If we're not in the cpu write domain, set ourself into the gtt
750 * write domain and manually flush cachelines (if required). This
751 * optimizes for the case when the gpu will use the data
752 * right away and we therefore have to clflush anyway. */
753 if (obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_after = 1;
755 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756 if (ret)
757 return ret;
758 }
759 /* Same trick applies for invalidate partially written cachelines before
760 * writing. */
761 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
762 && obj->cache_level == I915_CACHE_NONE)
763 needs_clflush_before = 1;
764
673a394b 765 offset = args->offset;
05394f39 766 obj->dirty = 1;
673a394b 767
40123c1f 768 while (remain > 0) {
e5281ccd 769 struct page *page;
58642885 770 int partial_cacheline_write;
e5281ccd 771
40123c1f
EA
772 /* Operation in this page
773 *
40123c1f 774 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
775 * page_length = bytes to copy for this page
776 */
c8cbbb8b 777 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
778
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 782
58642885
DV
783 /* If we don't overwrite a cacheline completely we need to be
784 * careful to have up-to-date data by first clflushing. Don't
785 * overcomplicate things and flush the entire patch. */
786 partial_cacheline_write = needs_clflush_before &&
787 ((shmem_page_offset | page_length)
788 & (boot_cpu_data.x86_clflush_size - 1));
789
692a576b
DV
790 if (obj->pages) {
791 page = obj->pages[offset >> PAGE_SHIFT];
792 release_page = 0;
793 } else {
794 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
795 if (IS_ERR(page)) {
796 ret = PTR_ERR(page);
797 goto out;
798 }
799 release_page = 1;
e5281ccd
CW
800 }
801
8c59967c
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
e244a443
DV
811
812 hit_slowpath = 1;
692a576b 813 page_cache_get(page);
e244a443
DV
814 mutex_unlock(&dev->struct_mutex);
815
d174bd64
DV
816 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
817 user_data, page_do_bit17_swizzling,
818 partial_cacheline_write,
819 needs_clflush_after);
40123c1f 820
e244a443 821 mutex_lock(&dev->struct_mutex);
692a576b 822 page_cache_release(page);
e244a443 823next_page:
e5281ccd
CW
824 set_page_dirty(page);
825 mark_page_accessed(page);
692a576b
DV
826 if (release_page)
827 page_cache_release(page);
e5281ccd 828
8c59967c
DV
829 if (ret) {
830 ret = -EFAULT;
831 goto out;
832 }
833
40123c1f 834 remain -= page_length;
8c59967c 835 user_data += page_length;
40123c1f 836 offset += page_length;
673a394b
EA
837 }
838
fbd5a26d 839out:
e244a443
DV
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
8c59967c 850 }
673a394b 851
58642885
DV
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
40123c1f 855 return ret;
673a394b
EA
856}
857
858/**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863int
864i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 865 struct drm_file *file)
673a394b
EA
866{
867 struct drm_i915_gem_pwrite *args = data;
05394f39 868 struct drm_i915_gem_object *obj;
51311d0a
CW
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
f56f821f
DV
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
51311d0a
CW
881 if (ret)
882 return -EFAULT;
673a394b 883
fbd5a26d 884 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 885 if (ret)
fbd5a26d 886 return ret;
1d7cfea1 887
05394f39 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 889 if (&obj->base == NULL) {
1d7cfea1
CW
890 ret = -ENOENT;
891 goto unlock;
fbd5a26d 892 }
673a394b 893
7dcd2499 894 /* Bounds check destination. */
05394f39
CW
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
ce9d419d 897 ret = -EINVAL;
35b62a89 898 goto out;
ce9d419d
CW
899 }
900
1286ff73
DV
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
db53a302
CW
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
935aaa69 911 ret = -EFAULT;
673a394b
EA
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
5c0480f2 918 if (obj->phys_obj) {
fbd5a26d 919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
920 goto out;
921 }
922
923 if (obj->gtt_space &&
3ae53783 924 obj->cache_level == I915_CACHE_NONE &&
c07496fa 925 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 926 obj->map_and_fenceable &&
5c0480f2 927 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 928 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
929 /* Note that the gtt paths might fail with non-page-backed user
930 * pointers (e.g. gtt mappings when moving data between
931 * textures). Fallback to the shmem path in that case. */
fbd5a26d 932 }
673a394b 933
5c0480f2 934 if (ret == -EFAULT)
935aaa69 935 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 936
35b62a89 937out:
05394f39 938 drm_gem_object_unreference(&obj->base);
1d7cfea1 939unlock:
fbd5a26d 940 mutex_unlock(&dev->struct_mutex);
673a394b
EA
941 return ret;
942}
943
944/**
2ef7eeaa
EA
945 * Called when user space prepares to use an object with the CPU, either
946 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
947 */
948int
949i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 950 struct drm_file *file)
673a394b
EA
951{
952 struct drm_i915_gem_set_domain *args = data;
05394f39 953 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
954 uint32_t read_domains = args->read_domains;
955 uint32_t write_domain = args->write_domain;
673a394b
EA
956 int ret;
957
2ef7eeaa 958 /* Only handle setting domains to types used by the CPU. */
21d509e3 959 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
960 return -EINVAL;
961
21d509e3 962 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
963 return -EINVAL;
964
965 /* Having something in the write domain implies it's in the read
966 * domain, and only that read domain. Enforce that in the request.
967 */
968 if (write_domain != 0 && read_domains != write_domain)
969 return -EINVAL;
970
76c1dec1 971 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 972 if (ret)
76c1dec1 973 return ret;
1d7cfea1 974
05394f39 975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 976 if (&obj->base == NULL) {
1d7cfea1
CW
977 ret = -ENOENT;
978 goto unlock;
76c1dec1 979 }
673a394b 980
2ef7eeaa
EA
981 if (read_domains & I915_GEM_DOMAIN_GTT) {
982 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
983
984 /* Silently promote "you're not bound, there was nothing to do"
985 * to success, since the client was just asking us to
986 * make sure everything was done.
987 */
988 if (ret == -EINVAL)
989 ret = 0;
2ef7eeaa 990 } else {
e47c68e9 991 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
992 }
993
05394f39 994 drm_gem_object_unreference(&obj->base);
1d7cfea1 995unlock:
673a394b
EA
996 mutex_unlock(&dev->struct_mutex);
997 return ret;
998}
999
1000/**
1001 * Called when user space has done writes to this buffer
1002 */
1003int
1004i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1005 struct drm_file *file)
673a394b
EA
1006{
1007 struct drm_i915_gem_sw_finish *args = data;
05394f39 1008 struct drm_i915_gem_object *obj;
673a394b
EA
1009 int ret = 0;
1010
76c1dec1 1011 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1012 if (ret)
76c1dec1 1013 return ret;
1d7cfea1 1014
05394f39 1015 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1016 if (&obj->base == NULL) {
1d7cfea1
CW
1017 ret = -ENOENT;
1018 goto unlock;
673a394b
EA
1019 }
1020
673a394b 1021 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1022 if (obj->pin_count)
e47c68e9
EA
1023 i915_gem_object_flush_cpu_write_domain(obj);
1024
05394f39 1025 drm_gem_object_unreference(&obj->base);
1d7cfea1 1026unlock:
673a394b
EA
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029}
1030
1031/**
1032 * Maps the contents of an object, returning the address it is mapped
1033 * into.
1034 *
1035 * While the mapping holds a reference on the contents of the object, it doesn't
1036 * imply a ref on the object itself.
1037 */
1038int
1039i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1040 struct drm_file *file)
673a394b
EA
1041{
1042 struct drm_i915_gem_mmap *args = data;
1043 struct drm_gem_object *obj;
673a394b
EA
1044 unsigned long addr;
1045
05394f39 1046 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1047 if (obj == NULL)
bf79cb91 1048 return -ENOENT;
673a394b 1049
1286ff73
DV
1050 /* prime objects have no backing filp to GEM mmap
1051 * pages from.
1052 */
1053 if (!obj->filp) {
1054 drm_gem_object_unreference_unlocked(obj);
1055 return -EINVAL;
1056 }
1057
6be5ceb0 1058 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1059 PROT_READ | PROT_WRITE, MAP_SHARED,
1060 args->offset);
bc9025bd 1061 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1062 if (IS_ERR((void *)addr))
1063 return addr;
1064
1065 args->addr_ptr = (uint64_t) addr;
1066
1067 return 0;
1068}
1069
de151cf6
JB
1070/**
1071 * i915_gem_fault - fault a page into the GTT
1072 * vma: VMA in question
1073 * vmf: fault info
1074 *
1075 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1076 * from userspace. The fault handler takes care of binding the object to
1077 * the GTT (if needed), allocating and programming a fence register (again,
1078 * only if needed based on whether the old reg is still valid or the object
1079 * is tiled) and inserting a new PTE into the faulting process.
1080 *
1081 * Note that the faulting process may involve evicting existing objects
1082 * from the GTT and/or fence registers to make room. So performance may
1083 * suffer if the GTT working set is large or there are few fence registers
1084 * left.
1085 */
1086int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1087{
05394f39
CW
1088 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1089 struct drm_device *dev = obj->base.dev;
7d1c4804 1090 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1091 pgoff_t page_offset;
1092 unsigned long pfn;
1093 int ret = 0;
0f973f27 1094 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1095
1096 /* We don't use vmf->pgoff since that has the fake offset */
1097 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1098 PAGE_SHIFT;
1099
d9bc7e9f
CW
1100 ret = i915_mutex_lock_interruptible(dev);
1101 if (ret)
1102 goto out;
a00b10c3 1103
db53a302
CW
1104 trace_i915_gem_object_fault(obj, page_offset, true, write);
1105
d9bc7e9f 1106 /* Now bind it into the GTT if needed */
919926ae
CW
1107 if (!obj->map_and_fenceable) {
1108 ret = i915_gem_object_unbind(obj);
1109 if (ret)
1110 goto unlock;
a00b10c3 1111 }
05394f39 1112 if (!obj->gtt_space) {
75e9e915 1113 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1114 if (ret)
1115 goto unlock;
de151cf6 1116
e92d03bf
EA
1117 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1118 if (ret)
1119 goto unlock;
1120 }
4a684a41 1121
74898d7e
DV
1122 if (!obj->has_global_gtt_mapping)
1123 i915_gem_gtt_bind_object(obj, obj->cache_level);
1124
06d98131 1125 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1126 if (ret)
1127 goto unlock;
de151cf6 1128
05394f39
CW
1129 if (i915_gem_object_is_inactive(obj))
1130 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1131
6299f992
CW
1132 obj->fault_mappable = true;
1133
dd2757f8 1134 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1135 page_offset;
1136
1137 /* Finally, remap it using the new GTT offset */
1138 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1139unlock:
de151cf6 1140 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1141out:
de151cf6 1142 switch (ret) {
d9bc7e9f 1143 case -EIO:
a9340cca
DV
1144 /* If this -EIO is due to a gpu hang, give the reset code a
1145 * chance to clean up the mess. Otherwise return the proper
1146 * SIGBUS. */
1147 if (!atomic_read(&dev_priv->mm.wedged))
1148 return VM_FAULT_SIGBUS;
045e769a 1149 case -EAGAIN:
d9bc7e9f
CW
1150 /* Give the error handler a chance to run and move the
1151 * objects off the GPU active list. Next time we service the
1152 * fault, we should be able to transition the page into the
1153 * GTT without touching the GPU (and so avoid further
1154 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1155 * with coherency, just lost writes.
1156 */
045e769a 1157 set_need_resched();
c715089f
CW
1158 case 0:
1159 case -ERESTARTSYS:
bed636ab 1160 case -EINTR:
c715089f 1161 return VM_FAULT_NOPAGE;
de151cf6 1162 case -ENOMEM:
de151cf6 1163 return VM_FAULT_OOM;
de151cf6 1164 default:
c715089f 1165 return VM_FAULT_SIGBUS;
de151cf6
JB
1166 }
1167}
1168
901782b2
CW
1169/**
1170 * i915_gem_release_mmap - remove physical page mappings
1171 * @obj: obj in question
1172 *
af901ca1 1173 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1174 * relinquish ownership of the pages back to the system.
1175 *
1176 * It is vital that we remove the page mapping if we have mapped a tiled
1177 * object through the GTT and then lose the fence register due to
1178 * resource pressure. Similarly if the object has been moved out of the
1179 * aperture, than pages mapped into userspace must be revoked. Removing the
1180 * mapping will then trigger a page fault on the next user access, allowing
1181 * fixup by i915_gem_fault().
1182 */
d05ca301 1183void
05394f39 1184i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1185{
6299f992
CW
1186 if (!obj->fault_mappable)
1187 return;
901782b2 1188
f6e47884
CW
1189 if (obj->base.dev->dev_mapping)
1190 unmap_mapping_range(obj->base.dev->dev_mapping,
1191 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1192 obj->base.size, 1);
fb7d516a 1193
6299f992 1194 obj->fault_mappable = false;
901782b2
CW
1195}
1196
92b88aeb 1197static uint32_t
e28f8711 1198i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1199{
e28f8711 1200 uint32_t gtt_size;
92b88aeb
CW
1201
1202 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1203 tiling_mode == I915_TILING_NONE)
1204 return size;
92b88aeb
CW
1205
1206 /* Previous chips need a power-of-two fence region when tiling */
1207 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1208 gtt_size = 1024*1024;
92b88aeb 1209 else
e28f8711 1210 gtt_size = 512*1024;
92b88aeb 1211
e28f8711
CW
1212 while (gtt_size < size)
1213 gtt_size <<= 1;
92b88aeb 1214
e28f8711 1215 return gtt_size;
92b88aeb
CW
1216}
1217
de151cf6
JB
1218/**
1219 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1220 * @obj: object to check
1221 *
1222 * Return the required GTT alignment for an object, taking into account
5e783301 1223 * potential fence register mapping.
de151cf6
JB
1224 */
1225static uint32_t
e28f8711
CW
1226i915_gem_get_gtt_alignment(struct drm_device *dev,
1227 uint32_t size,
1228 int tiling_mode)
de151cf6 1229{
de151cf6
JB
1230 /*
1231 * Minimum alignment is 4k (GTT page size), but might be greater
1232 * if a fence register is needed for the object.
1233 */
a00b10c3 1234 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1235 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1236 return 4096;
1237
a00b10c3
CW
1238 /*
1239 * Previous chips need to be aligned to the size of the smallest
1240 * fence register that can contain the object.
1241 */
e28f8711 1242 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1243}
1244
5e783301
DV
1245/**
1246 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1247 * unfenced object
e28f8711
CW
1248 * @dev: the device
1249 * @size: size of the object
1250 * @tiling_mode: tiling mode of the object
5e783301
DV
1251 *
1252 * Return the required GTT alignment for an object, only taking into account
1253 * unfenced tiled surface requirements.
1254 */
467cffba 1255uint32_t
e28f8711
CW
1256i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1257 uint32_t size,
1258 int tiling_mode)
5e783301 1259{
5e783301
DV
1260 /*
1261 * Minimum alignment is 4k (GTT page size) for sane hw.
1262 */
1263 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1264 tiling_mode == I915_TILING_NONE)
5e783301
DV
1265 return 4096;
1266
e28f8711
CW
1267 /* Previous hardware however needs to be aligned to a power-of-two
1268 * tile height. The simplest method for determining this is to reuse
1269 * the power-of-tile object size.
5e783301 1270 */
e28f8711 1271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1272}
1273
de151cf6 1274int
ff72145b
DA
1275i915_gem_mmap_gtt(struct drm_file *file,
1276 struct drm_device *dev,
1277 uint32_t handle,
1278 uint64_t *offset)
de151cf6 1279{
da761a6e 1280 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1281 struct drm_i915_gem_object *obj;
de151cf6
JB
1282 int ret;
1283
76c1dec1 1284 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1285 if (ret)
76c1dec1 1286 return ret;
de151cf6 1287
ff72145b 1288 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1289 if (&obj->base == NULL) {
1d7cfea1
CW
1290 ret = -ENOENT;
1291 goto unlock;
1292 }
de151cf6 1293
05394f39 1294 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1295 ret = -E2BIG;
ff56b0bc 1296 goto out;
da761a6e
CW
1297 }
1298
05394f39 1299 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1300 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1301 ret = -EINVAL;
1302 goto out;
ab18282d
CW
1303 }
1304
05394f39 1305 if (!obj->base.map_list.map) {
b464e9a2 1306 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1307 if (ret)
1308 goto out;
de151cf6
JB
1309 }
1310
ff72145b 1311 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1312
1d7cfea1 1313out:
05394f39 1314 drm_gem_object_unreference(&obj->base);
1d7cfea1 1315unlock:
de151cf6 1316 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1317 return ret;
de151cf6
JB
1318}
1319
ff72145b
DA
1320/**
1321 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1322 * @dev: DRM device
1323 * @data: GTT mapping ioctl data
1324 * @file: GEM object info
1325 *
1326 * Simply returns the fake offset to userspace so it can mmap it.
1327 * The mmap call will end up in drm_gem_mmap(), which will set things
1328 * up so we can get faults in the handler above.
1329 *
1330 * The fault handler will take care of binding the object into the GTT
1331 * (since it may have been evicted to make room for something), allocating
1332 * a fence register, and mapping the appropriate aperture address into
1333 * userspace.
1334 */
1335int
1336i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1337 struct drm_file *file)
1338{
1339 struct drm_i915_gem_mmap_gtt *args = data;
1340
ff72145b
DA
1341 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1342}
1343
1286ff73 1344int
05394f39 1345i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1346 gfp_t gfpmask)
1347{
e5281ccd
CW
1348 int page_count, i;
1349 struct address_space *mapping;
1350 struct inode *inode;
1351 struct page *page;
1352
1286ff73
DV
1353 if (obj->pages || obj->sg_table)
1354 return 0;
1355
e5281ccd
CW
1356 /* Get the list of pages out of our struct file. They'll be pinned
1357 * at this point until we release them.
1358 */
05394f39
CW
1359 page_count = obj->base.size / PAGE_SIZE;
1360 BUG_ON(obj->pages != NULL);
1361 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1362 if (obj->pages == NULL)
e5281ccd
CW
1363 return -ENOMEM;
1364
05394f39 1365 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1366 mapping = inode->i_mapping;
5949eac4
HD
1367 gfpmask |= mapping_gfp_mask(mapping);
1368
e5281ccd 1369 for (i = 0; i < page_count; i++) {
5949eac4 1370 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1371 if (IS_ERR(page))
1372 goto err_pages;
1373
05394f39 1374 obj->pages[i] = page;
e5281ccd
CW
1375 }
1376
6dacfd2f 1377 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1378 i915_gem_object_do_bit_17_swizzle(obj);
1379
1380 return 0;
1381
1382err_pages:
1383 while (i--)
05394f39 1384 page_cache_release(obj->pages[i]);
e5281ccd 1385
05394f39
CW
1386 drm_free_large(obj->pages);
1387 obj->pages = NULL;
e5281ccd
CW
1388 return PTR_ERR(page);
1389}
1390
5cdf5881 1391static void
05394f39 1392i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1393{
05394f39 1394 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1395 int i;
1396
1286ff73
DV
1397 if (!obj->pages)
1398 return;
1399
05394f39 1400 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1401
6dacfd2f 1402 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1403 i915_gem_object_save_bit_17_swizzle(obj);
1404
05394f39
CW
1405 if (obj->madv == I915_MADV_DONTNEED)
1406 obj->dirty = 0;
3ef94daa
CW
1407
1408 for (i = 0; i < page_count; i++) {
05394f39
CW
1409 if (obj->dirty)
1410 set_page_dirty(obj->pages[i]);
3ef94daa 1411
05394f39
CW
1412 if (obj->madv == I915_MADV_WILLNEED)
1413 mark_page_accessed(obj->pages[i]);
3ef94daa 1414
05394f39 1415 page_cache_release(obj->pages[i]);
3ef94daa 1416 }
05394f39 1417 obj->dirty = 0;
673a394b 1418
05394f39
CW
1419 drm_free_large(obj->pages);
1420 obj->pages = NULL;
673a394b
EA
1421}
1422
54cf91dc 1423void
05394f39 1424i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1425 struct intel_ring_buffer *ring,
1426 u32 seqno)
673a394b 1427{
05394f39 1428 struct drm_device *dev = obj->base.dev;
69dc4987 1429 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1430
852835f3 1431 BUG_ON(ring == NULL);
05394f39 1432 obj->ring = ring;
673a394b
EA
1433
1434 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1435 if (!obj->active) {
1436 drm_gem_object_reference(&obj->base);
1437 obj->active = 1;
673a394b 1438 }
e35a41de 1439
673a394b 1440 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1441 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1442 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1443
0201f1ec 1444 obj->last_read_seqno = seqno;
caea7476 1445
7dd49065 1446 if (obj->fenced_gpu_access) {
caea7476 1447 obj->last_fenced_seqno = seqno;
caea7476 1448
7dd49065
CW
1449 /* Bump MRU to take account of the delayed flush */
1450 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1451 struct drm_i915_fence_reg *reg;
1452
1453 reg = &dev_priv->fence_regs[obj->fence_reg];
1454 list_move_tail(&reg->lru_list,
1455 &dev_priv->mm.fence_list);
1456 }
caea7476
CW
1457 }
1458}
1459
1460static void
1461i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1462{
1463 list_del_init(&obj->ring_list);
0201f1ec
CW
1464 obj->last_read_seqno = 0;
1465 obj->last_write_seqno = 0;
15a13bbd 1466 obj->last_fenced_seqno = 0;
673a394b
EA
1467}
1468
ce44b0ea 1469static void
05394f39 1470i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1471{
05394f39 1472 struct drm_device *dev = obj->base.dev;
ce44b0ea 1473 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1474
05394f39
CW
1475 BUG_ON(!obj->active);
1476 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1477
1478 i915_gem_object_move_off_active(obj);
1479}
1480
1481static void
1482i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1483{
1484 struct drm_device *dev = obj->base.dev;
1485 struct drm_i915_private *dev_priv = dev->dev_private;
1486
1b50247a 1487 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476
CW
1488
1489 BUG_ON(!list_empty(&obj->gpu_write_list));
1490 BUG_ON(!obj->active);
1491 obj->ring = NULL;
1492
1493 i915_gem_object_move_off_active(obj);
1494 obj->fenced_gpu_access = false;
caea7476
CW
1495
1496 obj->active = 0;
1497 drm_gem_object_unreference(&obj->base);
1498
1499 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1500}
673a394b 1501
963b4836
CW
1502/* Immediately discard the backing storage */
1503static void
05394f39 1504i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1505{
bb6baf76 1506 struct inode *inode;
963b4836 1507
ae9fed6b
CW
1508 /* Our goal here is to return as much of the memory as
1509 * is possible back to the system as we are called from OOM.
1510 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1511 * backing pages, *now*.
ae9fed6b 1512 */
05394f39 1513 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1514 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1515
a14917ee
CW
1516 if (obj->base.map_list.map)
1517 drm_gem_free_mmap_offset(&obj->base);
1518
05394f39 1519 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1520}
1521
1522static inline int
05394f39 1523i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1524{
05394f39 1525 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1526}
1527
63560396 1528static void
db53a302
CW
1529i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1530 uint32_t flush_domains)
63560396 1531{
05394f39 1532 struct drm_i915_gem_object *obj, *next;
63560396 1533
05394f39 1534 list_for_each_entry_safe(obj, next,
64193406 1535 &ring->gpu_write_list,
63560396 1536 gpu_write_list) {
05394f39
CW
1537 if (obj->base.write_domain & flush_domains) {
1538 uint32_t old_write_domain = obj->base.write_domain;
63560396 1539
05394f39
CW
1540 obj->base.write_domain = 0;
1541 list_del_init(&obj->gpu_write_list);
1ec14ad3 1542 i915_gem_object_move_to_active(obj, ring,
db53a302 1543 i915_gem_next_request_seqno(ring));
63560396 1544
63560396 1545 trace_i915_gem_object_change_domain(obj,
05394f39 1546 obj->base.read_domains,
63560396
DV
1547 old_write_domain);
1548 }
1549 }
1550}
8187a2b7 1551
53d227f2
DV
1552static u32
1553i915_gem_get_seqno(struct drm_device *dev)
1554{
1555 drm_i915_private_t *dev_priv = dev->dev_private;
1556 u32 seqno = dev_priv->next_seqno;
1557
1558 /* reserve 0 for non-seqno */
1559 if (++dev_priv->next_seqno == 0)
1560 dev_priv->next_seqno = 1;
1561
1562 return seqno;
1563}
1564
1565u32
1566i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1567{
1568 if (ring->outstanding_lazy_request == 0)
1569 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1570
1571 return ring->outstanding_lazy_request;
1572}
1573
3cce469c 1574int
db53a302 1575i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1576 struct drm_file *file,
db53a302 1577 struct drm_i915_gem_request *request)
673a394b 1578{
db53a302 1579 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1580 uint32_t seqno;
a71d8d94 1581 u32 request_ring_position;
673a394b 1582 int was_empty;
3cce469c
CW
1583 int ret;
1584
cc889e0f
DV
1585 /*
1586 * Emit any outstanding flushes - execbuf can fail to emit the flush
1587 * after having emitted the batchbuffer command. Hence we need to fix
1588 * things up similar to emitting the lazy request. The difference here
1589 * is that the flush _must_ happen before the next request, no matter
1590 * what.
1591 */
1592 if (ring->gpu_caches_dirty) {
1593 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1594 if (ret)
1595 return ret;
1596
1597 ring->gpu_caches_dirty = false;
1598 }
1599
3bb73aba
CW
1600 if (request == NULL) {
1601 request = kmalloc(sizeof(*request), GFP_KERNEL);
1602 if (request == NULL)
1603 return -ENOMEM;
1604 }
1605
53d227f2 1606 seqno = i915_gem_next_request_seqno(ring);
673a394b 1607
a71d8d94
CW
1608 /* Record the position of the start of the request so that
1609 * should we detect the updated seqno part-way through the
1610 * GPU processing the request, we never over-estimate the
1611 * position of the head.
1612 */
1613 request_ring_position = intel_ring_get_tail(ring);
1614
3cce469c 1615 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1616 if (ret) {
1617 kfree(request);
1618 return ret;
1619 }
673a394b 1620
db53a302 1621 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1622
1623 request->seqno = seqno;
852835f3 1624 request->ring = ring;
a71d8d94 1625 request->tail = request_ring_position;
673a394b 1626 request->emitted_jiffies = jiffies;
852835f3
ZN
1627 was_empty = list_empty(&ring->request_list);
1628 list_add_tail(&request->list, &ring->request_list);
3bb73aba 1629 request->file_priv = NULL;
852835f3 1630
db53a302
CW
1631 if (file) {
1632 struct drm_i915_file_private *file_priv = file->driver_priv;
1633
1c25595f 1634 spin_lock(&file_priv->mm.lock);
f787a5f5 1635 request->file_priv = file_priv;
b962442e 1636 list_add_tail(&request->client_list,
f787a5f5 1637 &file_priv->mm.request_list);
1c25595f 1638 spin_unlock(&file_priv->mm.lock);
b962442e 1639 }
673a394b 1640
5391d0cf 1641 ring->outstanding_lazy_request = 0;
db53a302 1642
f65d9421 1643 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1644 if (i915_enable_hangcheck) {
1645 mod_timer(&dev_priv->hangcheck_timer,
1646 jiffies +
1647 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1648 }
f65d9421 1649 if (was_empty)
b3b079db
CW
1650 queue_delayed_work(dev_priv->wq,
1651 &dev_priv->mm.retire_work, HZ);
f65d9421 1652 }
cc889e0f
DV
1653
1654 WARN_ON(!list_empty(&ring->gpu_write_list));
1655
3cce469c 1656 return 0;
673a394b
EA
1657}
1658
f787a5f5
CW
1659static inline void
1660i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1661{
1c25595f 1662 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1663
1c25595f
CW
1664 if (!file_priv)
1665 return;
1c5d22f7 1666
1c25595f 1667 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1668 if (request->file_priv) {
1669 list_del(&request->client_list);
1670 request->file_priv = NULL;
1671 }
1c25595f 1672 spin_unlock(&file_priv->mm.lock);
673a394b 1673}
673a394b 1674
dfaae392
CW
1675static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1676 struct intel_ring_buffer *ring)
9375e446 1677{
dfaae392
CW
1678 while (!list_empty(&ring->request_list)) {
1679 struct drm_i915_gem_request *request;
673a394b 1680
dfaae392
CW
1681 request = list_first_entry(&ring->request_list,
1682 struct drm_i915_gem_request,
1683 list);
de151cf6 1684
dfaae392 1685 list_del(&request->list);
f787a5f5 1686 i915_gem_request_remove_from_client(request);
dfaae392
CW
1687 kfree(request);
1688 }
673a394b 1689
dfaae392 1690 while (!list_empty(&ring->active_list)) {
05394f39 1691 struct drm_i915_gem_object *obj;
9375e446 1692
05394f39
CW
1693 obj = list_first_entry(&ring->active_list,
1694 struct drm_i915_gem_object,
1695 ring_list);
9375e446 1696
05394f39
CW
1697 obj->base.write_domain = 0;
1698 list_del_init(&obj->gpu_write_list);
1699 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1700 }
1701}
1702
312817a3
CW
1703static void i915_gem_reset_fences(struct drm_device *dev)
1704{
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 int i;
1707
4b9de737 1708 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1709 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1710
ada726c7 1711 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1712
ada726c7
CW
1713 if (reg->obj)
1714 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1715
ada726c7
CW
1716 reg->pin_count = 0;
1717 reg->obj = NULL;
1718 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1719 }
ada726c7
CW
1720
1721 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1722}
1723
069efc1d 1724void i915_gem_reset(struct drm_device *dev)
673a394b 1725{
77f01230 1726 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1727 struct drm_i915_gem_object *obj;
b4519513 1728 struct intel_ring_buffer *ring;
1ec14ad3 1729 int i;
673a394b 1730
b4519513
CW
1731 for_each_ring(ring, dev_priv, i)
1732 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392
CW
1733
1734 /* Remove anything from the flushing lists. The GPU cache is likely
1735 * to be lost on reset along with the data, so simply move the
1736 * lost bo to the inactive list.
1737 */
1738 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1739 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1740 struct drm_i915_gem_object,
1741 mm_list);
dfaae392 1742
05394f39
CW
1743 obj->base.write_domain = 0;
1744 list_del_init(&obj->gpu_write_list);
1745 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1746 }
1747
1748 /* Move everything out of the GPU domains to ensure we do any
1749 * necessary invalidation upon reuse.
1750 */
05394f39 1751 list_for_each_entry(obj,
77f01230 1752 &dev_priv->mm.inactive_list,
69dc4987 1753 mm_list)
77f01230 1754 {
05394f39 1755 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1756 }
069efc1d
CW
1757
1758 /* The fence registers are invalidated so clear them out */
312817a3 1759 i915_gem_reset_fences(dev);
673a394b
EA
1760}
1761
1762/**
1763 * This function clears the request list as sequence numbers are passed.
1764 */
a71d8d94 1765void
db53a302 1766i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1767{
673a394b 1768 uint32_t seqno;
1ec14ad3 1769 int i;
673a394b 1770
db53a302 1771 if (list_empty(&ring->request_list))
6c0594a3
KW
1772 return;
1773
db53a302 1774 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1775
78501eac 1776 seqno = ring->get_seqno(ring);
1ec14ad3 1777
076e2c0e 1778 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1779 if (seqno >= ring->sync_seqno[i])
1780 ring->sync_seqno[i] = 0;
1781
852835f3 1782 while (!list_empty(&ring->request_list)) {
673a394b 1783 struct drm_i915_gem_request *request;
673a394b 1784
852835f3 1785 request = list_first_entry(&ring->request_list,
673a394b
EA
1786 struct drm_i915_gem_request,
1787 list);
673a394b 1788
dfaae392 1789 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1790 break;
1791
db53a302 1792 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1793 /* We know the GPU must have read the request to have
1794 * sent us the seqno + interrupt, so use the position
1795 * of tail of the request to update the last known position
1796 * of the GPU head.
1797 */
1798 ring->last_retired_head = request->tail;
b84d5f0c
CW
1799
1800 list_del(&request->list);
f787a5f5 1801 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1802 kfree(request);
1803 }
673a394b 1804
b84d5f0c
CW
1805 /* Move any buffers on the active list that are no longer referenced
1806 * by the ringbuffer to the flushing/inactive lists as appropriate.
1807 */
1808 while (!list_empty(&ring->active_list)) {
05394f39 1809 struct drm_i915_gem_object *obj;
b84d5f0c 1810
0206e353 1811 obj = list_first_entry(&ring->active_list,
05394f39
CW
1812 struct drm_i915_gem_object,
1813 ring_list);
673a394b 1814
0201f1ec 1815 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 1816 break;
b84d5f0c 1817
05394f39 1818 if (obj->base.write_domain != 0)
b84d5f0c
CW
1819 i915_gem_object_move_to_flushing(obj);
1820 else
1821 i915_gem_object_move_to_inactive(obj);
673a394b 1822 }
9d34e5db 1823
db53a302
CW
1824 if (unlikely(ring->trace_irq_seqno &&
1825 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1826 ring->irq_put(ring);
db53a302 1827 ring->trace_irq_seqno = 0;
9d34e5db 1828 }
23bc5982 1829
db53a302 1830 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1831}
1832
b09a1fec
CW
1833void
1834i915_gem_retire_requests(struct drm_device *dev)
1835{
1836 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1837 struct intel_ring_buffer *ring;
1ec14ad3 1838 int i;
b09a1fec 1839
b4519513
CW
1840 for_each_ring(ring, dev_priv, i)
1841 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1842}
1843
75ef9da2 1844static void
673a394b
EA
1845i915_gem_retire_work_handler(struct work_struct *work)
1846{
1847 drm_i915_private_t *dev_priv;
1848 struct drm_device *dev;
b4519513 1849 struct intel_ring_buffer *ring;
0a58705b
CW
1850 bool idle;
1851 int i;
673a394b
EA
1852
1853 dev_priv = container_of(work, drm_i915_private_t,
1854 mm.retire_work.work);
1855 dev = dev_priv->dev;
1856
891b48cf
CW
1857 /* Come back later if the device is busy... */
1858 if (!mutex_trylock(&dev->struct_mutex)) {
1859 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1860 return;
1861 }
1862
b09a1fec 1863 i915_gem_retire_requests(dev);
d1b851fc 1864
0a58705b
CW
1865 /* Send a periodic flush down the ring so we don't hold onto GEM
1866 * objects indefinitely.
1867 */
1868 idle = true;
b4519513 1869 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
1870 if (ring->gpu_caches_dirty)
1871 i915_add_request(ring, NULL, NULL);
0a58705b
CW
1872
1873 idle &= list_empty(&ring->request_list);
1874 }
1875
1876 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1877 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1878
673a394b
EA
1879 mutex_unlock(&dev->struct_mutex);
1880}
1881
d6b2c790
DV
1882int
1883i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1884 bool interruptible)
b4aca010 1885{
b4aca010
BW
1886 if (atomic_read(&dev_priv->mm.wedged)) {
1887 struct completion *x = &dev_priv->error_completion;
1888 bool recovery_complete;
1889 unsigned long flags;
1890
1891 /* Give the error handler a chance to run. */
1892 spin_lock_irqsave(&x->wait.lock, flags);
1893 recovery_complete = x->done > 0;
1894 spin_unlock_irqrestore(&x->wait.lock, flags);
1895
d6b2c790
DV
1896 /* Non-interruptible callers can't handle -EAGAIN, hence return
1897 * -EIO unconditionally for these. */
1898 if (!interruptible)
1899 return -EIO;
1900
1901 /* Recovery complete, but still wedged means reset failure. */
1902 if (recovery_complete)
1903 return -EIO;
1904
1905 return -EAGAIN;
b4aca010
BW
1906 }
1907
1908 return 0;
1909}
1910
1911/*
1912 * Compare seqno against outstanding lazy request. Emit a request if they are
1913 * equal.
1914 */
1915static int
1916i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1917{
3bb73aba 1918 int ret;
b4aca010
BW
1919
1920 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1921
3bb73aba
CW
1922 ret = 0;
1923 if (seqno == ring->outstanding_lazy_request)
1924 ret = i915_add_request(ring, NULL, NULL);
b4aca010
BW
1925
1926 return ret;
1927}
1928
5c81fe85
BW
1929/**
1930 * __wait_seqno - wait until execution of seqno has finished
1931 * @ring: the ring expected to report seqno
1932 * @seqno: duh!
1933 * @interruptible: do an interruptible wait (normally yes)
1934 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1935 *
1936 * Returns 0 if the seqno was found within the alloted time. Else returns the
1937 * errno with remaining time filled in timeout argument.
1938 */
604dd3ec 1939static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1940 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1941{
1942 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1943 struct timespec before, now, wait_time={1,0};
1944 unsigned long timeout_jiffies;
1945 long end;
1946 bool wait_forever = true;
d6b2c790 1947 int ret;
604dd3ec
BW
1948
1949 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1950 return 0;
1951
1952 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1953
1954 if (timeout != NULL) {
1955 wait_time = *timeout;
1956 wait_forever = false;
1957 }
1958
1959 timeout_jiffies = timespec_to_jiffies(&wait_time);
1960
604dd3ec
BW
1961 if (WARN_ON(!ring->irq_get(ring)))
1962 return -ENODEV;
1963
5c81fe85
BW
1964 /* Record current time in case interrupted by signal, or wedged * */
1965 getrawmonotonic(&before);
1966
604dd3ec
BW
1967#define EXIT_COND \
1968 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1969 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1970 do {
1971 if (interruptible)
1972 end = wait_event_interruptible_timeout(ring->irq_queue,
1973 EXIT_COND,
1974 timeout_jiffies);
1975 else
1976 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1977 timeout_jiffies);
604dd3ec 1978
d6b2c790
DV
1979 ret = i915_gem_check_wedge(dev_priv, interruptible);
1980 if (ret)
1981 end = ret;
5c81fe85
BW
1982 } while (end == 0 && wait_forever);
1983
1984 getrawmonotonic(&now);
604dd3ec
BW
1985
1986 ring->irq_put(ring);
1987 trace_i915_gem_request_wait_end(ring, seqno);
1988#undef EXIT_COND
1989
5c81fe85
BW
1990 if (timeout) {
1991 struct timespec sleep_time = timespec_sub(now, before);
1992 *timeout = timespec_sub(*timeout, sleep_time);
1993 }
1994
1995 switch (end) {
eeef9b38 1996 case -EIO:
5c81fe85
BW
1997 case -EAGAIN: /* Wedged */
1998 case -ERESTARTSYS: /* Signal */
1999 return (int)end;
2000 case 0: /* Timeout */
2001 if (timeout)
2002 set_normalized_timespec(timeout, 0, 0);
2003 return -ETIME;
2004 default: /* Completed */
2005 WARN_ON(end < 0); /* We're not aware of other errors */
2006 return 0;
2007 }
604dd3ec
BW
2008}
2009
db53a302
CW
2010/**
2011 * Waits for a sequence number to be signaled, and cleans up the
2012 * request and object lists appropriately for that event.
2013 */
5a5a0c64 2014int
199b2bc2 2015i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 2016{
db53a302 2017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
2018 int ret = 0;
2019
2020 BUG_ON(seqno == 0);
2021
d6b2c790 2022 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
2023 if (ret)
2024 return ret;
3cce469c 2025
b4aca010
BW
2026 ret = i915_gem_check_olr(ring, seqno);
2027 if (ret)
2028 return ret;
ffed1d09 2029
5c81fe85 2030 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 2031
673a394b
EA
2032 return ret;
2033}
2034
673a394b
EA
2035/**
2036 * Ensures that all rendering to the object has completed and the object is
2037 * safe to unbind from the GTT or access from the CPU.
2038 */
0201f1ec
CW
2039static __must_check int
2040i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2041 bool readonly)
673a394b 2042{
0201f1ec 2043 u32 seqno;
673a394b
EA
2044 int ret;
2045
e47c68e9
EA
2046 /* This function only exists to support waiting for existing rendering,
2047 * not for emitting required flushes.
673a394b 2048 */
05394f39 2049 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2050
2051 /* If there is rendering queued on the buffer being evicted, wait for
2052 * it.
2053 */
0201f1ec
CW
2054 if (readonly)
2055 seqno = obj->last_write_seqno;
2056 else
2057 seqno = obj->last_read_seqno;
2058 if (seqno == 0)
2059 return 0;
2060
2061 ret = i915_wait_seqno(obj->ring, seqno);
2062 if (ret)
2063 return ret;
2064
2065 /* Manually manage the write flush as we may have not yet retired
2066 * the buffer.
2067 */
2068 if (obj->last_write_seqno &&
2069 i915_seqno_passed(seqno, obj->last_write_seqno)) {
2070 obj->last_write_seqno = 0;
2071 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
673a394b
EA
2072 }
2073
0201f1ec 2074 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2075 return 0;
2076}
2077
30dfebf3
DV
2078/**
2079 * Ensures that an object will eventually get non-busy by flushing any required
2080 * write domains, emitting any outstanding lazy request and retiring and
2081 * completed requests.
2082 */
2083static int
2084i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2085{
2086 int ret;
2087
2088 if (obj->active) {
2089 ret = i915_gem_object_flush_gpu_write_domain(obj);
2090 if (ret)
2091 return ret;
2092
0201f1ec 2093 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2094 if (ret)
2095 return ret;
0201f1ec 2096
30dfebf3
DV
2097 i915_gem_retire_requests_ring(obj->ring);
2098 }
2099
2100 return 0;
2101}
2102
23ba4fd0
BW
2103/**
2104 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2105 * @DRM_IOCTL_ARGS: standard ioctl arguments
2106 *
2107 * Returns 0 if successful, else an error is returned with the remaining time in
2108 * the timeout parameter.
2109 * -ETIME: object is still busy after timeout
2110 * -ERESTARTSYS: signal interrupted the wait
2111 * -ENONENT: object doesn't exist
2112 * Also possible, but rare:
2113 * -EAGAIN: GPU wedged
2114 * -ENOMEM: damn
2115 * -ENODEV: Internal IRQ fail
2116 * -E?: The add request failed
2117 *
2118 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2119 * non-zero timeout parameter the wait ioctl will wait for the given number of
2120 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2121 * without holding struct_mutex the object may become re-busied before this
2122 * function completes. A similar but shorter * race condition exists in the busy
2123 * ioctl
2124 */
2125int
2126i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2127{
2128 struct drm_i915_gem_wait *args = data;
2129 struct drm_i915_gem_object *obj;
2130 struct intel_ring_buffer *ring = NULL;
eac1f14f 2131 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2132 u32 seqno = 0;
2133 int ret = 0;
2134
eac1f14f
BW
2135 if (args->timeout_ns >= 0) {
2136 timeout_stack = ns_to_timespec(args->timeout_ns);
2137 timeout = &timeout_stack;
2138 }
23ba4fd0
BW
2139
2140 ret = i915_mutex_lock_interruptible(dev);
2141 if (ret)
2142 return ret;
2143
2144 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2145 if (&obj->base == NULL) {
2146 mutex_unlock(&dev->struct_mutex);
2147 return -ENOENT;
2148 }
2149
30dfebf3
DV
2150 /* Need to make sure the object gets inactive eventually. */
2151 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2152 if (ret)
2153 goto out;
2154
2155 if (obj->active) {
0201f1ec 2156 seqno = obj->last_read_seqno;
23ba4fd0
BW
2157 ring = obj->ring;
2158 }
2159
2160 if (seqno == 0)
2161 goto out;
2162
23ba4fd0
BW
2163 /* Do this after OLR check to make sure we make forward progress polling
2164 * on this IOCTL with a 0 timeout (like busy ioctl)
2165 */
2166 if (!args->timeout_ns) {
2167 ret = -ETIME;
2168 goto out;
2169 }
2170
2171 drm_gem_object_unreference(&obj->base);
2172 mutex_unlock(&dev->struct_mutex);
2173
eac1f14f
BW
2174 ret = __wait_seqno(ring, seqno, true, timeout);
2175 if (timeout) {
2176 WARN_ON(!timespec_valid(timeout));
2177 args->timeout_ns = timespec_to_ns(timeout);
2178 }
23ba4fd0
BW
2179 return ret;
2180
2181out:
2182 drm_gem_object_unreference(&obj->base);
2183 mutex_unlock(&dev->struct_mutex);
2184 return ret;
2185}
2186
5816d648
BW
2187/**
2188 * i915_gem_object_sync - sync an object to a ring.
2189 *
2190 * @obj: object which may be in use on another ring.
2191 * @to: ring we wish to use the object on. May be NULL.
2192 *
2193 * This code is meant to abstract object synchronization with the GPU.
2194 * Calling with NULL implies synchronizing the object with the CPU
2195 * rather than a particular GPU ring.
2196 *
2197 * Returns 0 if successful, else propagates up the lower layer error.
2198 */
2911a35b
BW
2199int
2200i915_gem_object_sync(struct drm_i915_gem_object *obj,
2201 struct intel_ring_buffer *to)
2202{
2203 struct intel_ring_buffer *from = obj->ring;
2204 u32 seqno;
2205 int ret, idx;
2206
2207 if (from == NULL || to == from)
2208 return 0;
2209
5816d648 2210 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2211 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2212
2213 idx = intel_ring_sync_index(from, to);
2214
0201f1ec 2215 seqno = obj->last_read_seqno;
2911a35b
BW
2216 if (seqno <= from->sync_seqno[idx])
2217 return 0;
2218
b4aca010
BW
2219 ret = i915_gem_check_olr(obj->ring, seqno);
2220 if (ret)
2221 return ret;
2911a35b 2222
1500f7ea 2223 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2224 if (!ret)
2225 from->sync_seqno[idx] = seqno;
2911a35b 2226
e3a5a225 2227 return ret;
2911a35b
BW
2228}
2229
b5ffc9bc
CW
2230static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2231{
2232 u32 old_write_domain, old_read_domains;
2233
b5ffc9bc
CW
2234 /* Act a barrier for all accesses through the GTT */
2235 mb();
2236
2237 /* Force a pagefault for domain tracking on next user access */
2238 i915_gem_release_mmap(obj);
2239
b97c3d9c
KP
2240 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2241 return;
2242
b5ffc9bc
CW
2243 old_read_domains = obj->base.read_domains;
2244 old_write_domain = obj->base.write_domain;
2245
2246 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2247 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2248
2249 trace_i915_gem_object_change_domain(obj,
2250 old_read_domains,
2251 old_write_domain);
2252}
2253
673a394b
EA
2254/**
2255 * Unbinds an object from the GTT aperture.
2256 */
0f973f27 2257int
05394f39 2258i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2259{
7bddb01f 2260 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2261 int ret = 0;
2262
05394f39 2263 if (obj->gtt_space == NULL)
673a394b
EA
2264 return 0;
2265
31d8d651
CW
2266 if (obj->pin_count)
2267 return -EBUSY;
673a394b 2268
a8198eea 2269 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2270 if (ret)
a8198eea
CW
2271 return ret;
2272 /* Continue on if we fail due to EIO, the GPU is hung so we
2273 * should be safe and we need to cleanup or else we might
2274 * cause memory corruption through use-after-free.
2275 */
2276
b5ffc9bc 2277 i915_gem_object_finish_gtt(obj);
5323fd04 2278
673a394b
EA
2279 /* Move the object to the CPU domain to ensure that
2280 * any possible CPU writes while it's not in the GTT
a8198eea 2281 * are flushed when we go to remap it.
673a394b 2282 */
a8198eea
CW
2283 if (ret == 0)
2284 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2285 if (ret == -ERESTARTSYS)
673a394b 2286 return ret;
812ed492 2287 if (ret) {
a8198eea
CW
2288 /* In the event of a disaster, abandon all caches and
2289 * hope for the best.
2290 */
812ed492 2291 i915_gem_clflush_object(obj);
05394f39 2292 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2293 }
673a394b 2294
96b47b65 2295 /* release the fence reg _after_ flushing */
d9e86c0e 2296 ret = i915_gem_object_put_fence(obj);
1488fc08 2297 if (ret)
d9e86c0e 2298 return ret;
96b47b65 2299
db53a302
CW
2300 trace_i915_gem_object_unbind(obj);
2301
74898d7e
DV
2302 if (obj->has_global_gtt_mapping)
2303 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2304 if (obj->has_aliasing_ppgtt_mapping) {
2305 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2306 obj->has_aliasing_ppgtt_mapping = 0;
2307 }
74163907 2308 i915_gem_gtt_finish_object(obj);
7bddb01f 2309
e5281ccd 2310 i915_gem_object_put_pages_gtt(obj);
673a394b 2311
6299f992 2312 list_del_init(&obj->gtt_list);
05394f39 2313 list_del_init(&obj->mm_list);
75e9e915 2314 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2315 obj->map_and_fenceable = true;
673a394b 2316
05394f39
CW
2317 drm_mm_put_block(obj->gtt_space);
2318 obj->gtt_space = NULL;
2319 obj->gtt_offset = 0;
673a394b 2320
05394f39 2321 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2322 i915_gem_object_truncate(obj);
2323
8dc1775d 2324 return ret;
673a394b
EA
2325}
2326
88241785 2327int
db53a302 2328i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2329 uint32_t invalidate_domains,
2330 uint32_t flush_domains)
2331{
88241785
CW
2332 int ret;
2333
36d527de
CW
2334 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2335 return 0;
2336
db53a302
CW
2337 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2338
88241785
CW
2339 ret = ring->flush(ring, invalidate_domains, flush_domains);
2340 if (ret)
2341 return ret;
2342
36d527de
CW
2343 if (flush_domains & I915_GEM_GPU_DOMAINS)
2344 i915_gem_process_flushing_list(ring, flush_domains);
2345
88241785 2346 return 0;
54cf91dc
CW
2347}
2348
b2da9fe5 2349static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2350{
88241785
CW
2351 int ret;
2352
395b70be 2353 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2354 return 0;
2355
88241785 2356 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2357 ret = i915_gem_flush_ring(ring,
0ac74c6b 2358 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2359 if (ret)
2360 return ret;
2361 }
2362
199b2bc2 2363 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2364}
2365
b2da9fe5 2366int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2367{
2368 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2369 struct intel_ring_buffer *ring;
1ec14ad3 2370 int ret, i;
4df2faf4 2371
4df2faf4 2372 /* Flush everything onto the inactive list. */
b4519513
CW
2373 for_each_ring(ring, dev_priv, i) {
2374 ret = i915_ring_idle(ring);
1ec14ad3
CW
2375 if (ret)
2376 return ret;
b4519513
CW
2377
2378 /* Is the device fubar? */
2379 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2380 return -EBUSY;
f2ef6eb1
BW
2381
2382 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2383 if (ret)
2384 return ret;
1ec14ad3 2385 }
4df2faf4 2386
8a1a49f9 2387 return 0;
4df2faf4
DV
2388}
2389
9ce079e4
CW
2390static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2391 struct drm_i915_gem_object *obj)
4e901fdc 2392{
4e901fdc 2393 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2394 uint64_t val;
2395
9ce079e4
CW
2396 if (obj) {
2397 u32 size = obj->gtt_space->size;
4e901fdc 2398
9ce079e4
CW
2399 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2400 0xfffff000) << 32;
2401 val |= obj->gtt_offset & 0xfffff000;
2402 val |= (uint64_t)((obj->stride / 128) - 1) <<
2403 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2404
9ce079e4
CW
2405 if (obj->tiling_mode == I915_TILING_Y)
2406 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2407 val |= I965_FENCE_REG_VALID;
2408 } else
2409 val = 0;
c6642782 2410
9ce079e4
CW
2411 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2412 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2413}
2414
9ce079e4
CW
2415static void i965_write_fence_reg(struct drm_device *dev, int reg,
2416 struct drm_i915_gem_object *obj)
de151cf6 2417{
de151cf6 2418 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2419 uint64_t val;
2420
9ce079e4
CW
2421 if (obj) {
2422 u32 size = obj->gtt_space->size;
de151cf6 2423
9ce079e4
CW
2424 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2425 0xfffff000) << 32;
2426 val |= obj->gtt_offset & 0xfffff000;
2427 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2428 if (obj->tiling_mode == I915_TILING_Y)
2429 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2430 val |= I965_FENCE_REG_VALID;
2431 } else
2432 val = 0;
c6642782 2433
9ce079e4
CW
2434 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2435 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2436}
2437
9ce079e4
CW
2438static void i915_write_fence_reg(struct drm_device *dev, int reg,
2439 struct drm_i915_gem_object *obj)
de151cf6 2440{
de151cf6 2441 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2442 u32 val;
de151cf6 2443
9ce079e4
CW
2444 if (obj) {
2445 u32 size = obj->gtt_space->size;
2446 int pitch_val;
2447 int tile_width;
c6642782 2448
9ce079e4
CW
2449 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2450 (size & -size) != size ||
2451 (obj->gtt_offset & (size - 1)),
2452 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2453 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2454
9ce079e4
CW
2455 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2456 tile_width = 128;
2457 else
2458 tile_width = 512;
2459
2460 /* Note: pitch better be a power of two tile widths */
2461 pitch_val = obj->stride / tile_width;
2462 pitch_val = ffs(pitch_val) - 1;
2463
2464 val = obj->gtt_offset;
2465 if (obj->tiling_mode == I915_TILING_Y)
2466 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2467 val |= I915_FENCE_SIZE_BITS(size);
2468 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2469 val |= I830_FENCE_REG_VALID;
2470 } else
2471 val = 0;
2472
2473 if (reg < 8)
2474 reg = FENCE_REG_830_0 + reg * 4;
2475 else
2476 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2477
2478 I915_WRITE(reg, val);
2479 POSTING_READ(reg);
de151cf6
JB
2480}
2481
9ce079e4
CW
2482static void i830_write_fence_reg(struct drm_device *dev, int reg,
2483 struct drm_i915_gem_object *obj)
de151cf6 2484{
de151cf6 2485 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2486 uint32_t val;
de151cf6 2487
9ce079e4
CW
2488 if (obj) {
2489 u32 size = obj->gtt_space->size;
2490 uint32_t pitch_val;
de151cf6 2491
9ce079e4
CW
2492 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2493 (size & -size) != size ||
2494 (obj->gtt_offset & (size - 1)),
2495 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2496 obj->gtt_offset, size);
e76a16de 2497
9ce079e4
CW
2498 pitch_val = obj->stride / 128;
2499 pitch_val = ffs(pitch_val) - 1;
de151cf6 2500
9ce079e4
CW
2501 val = obj->gtt_offset;
2502 if (obj->tiling_mode == I915_TILING_Y)
2503 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2504 val |= I830_FENCE_SIZE_BITS(size);
2505 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2506 val |= I830_FENCE_REG_VALID;
2507 } else
2508 val = 0;
c6642782 2509
9ce079e4
CW
2510 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2511 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2512}
2513
2514static void i915_gem_write_fence(struct drm_device *dev, int reg,
2515 struct drm_i915_gem_object *obj)
2516{
2517 switch (INTEL_INFO(dev)->gen) {
2518 case 7:
2519 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2520 case 5:
2521 case 4: i965_write_fence_reg(dev, reg, obj); break;
2522 case 3: i915_write_fence_reg(dev, reg, obj); break;
2523 case 2: i830_write_fence_reg(dev, reg, obj); break;
2524 default: break;
2525 }
de151cf6
JB
2526}
2527
61050808
CW
2528static inline int fence_number(struct drm_i915_private *dev_priv,
2529 struct drm_i915_fence_reg *fence)
2530{
2531 return fence - dev_priv->fence_regs;
2532}
2533
2534static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2535 struct drm_i915_fence_reg *fence,
2536 bool enable)
2537{
2538 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2539 int reg = fence_number(dev_priv, fence);
2540
2541 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2542
2543 if (enable) {
2544 obj->fence_reg = reg;
2545 fence->obj = obj;
2546 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2547 } else {
2548 obj->fence_reg = I915_FENCE_REG_NONE;
2549 fence->obj = NULL;
2550 list_del_init(&fence->lru_list);
2551 }
2552}
2553
d9e86c0e 2554static int
a360bb1a 2555i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2556{
2557 int ret;
2558
2559 if (obj->fenced_gpu_access) {
88241785 2560 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2561 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2562 0, obj->base.write_domain);
2563 if (ret)
2564 return ret;
2565 }
d9e86c0e
CW
2566
2567 obj->fenced_gpu_access = false;
2568 }
2569
1c293ea3 2570 if (obj->last_fenced_seqno) {
199b2bc2 2571 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2572 if (ret)
2573 return ret;
d9e86c0e
CW
2574
2575 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2576 }
2577
63256ec5
CW
2578 /* Ensure that all CPU reads are completed before installing a fence
2579 * and all writes before removing the fence.
2580 */
2581 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2582 mb();
2583
d9e86c0e
CW
2584 return 0;
2585}
2586
2587int
2588i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2589{
61050808 2590 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2591 int ret;
2592
a360bb1a 2593 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2594 if (ret)
2595 return ret;
2596
61050808
CW
2597 if (obj->fence_reg == I915_FENCE_REG_NONE)
2598 return 0;
d9e86c0e 2599
61050808
CW
2600 i915_gem_object_update_fence(obj,
2601 &dev_priv->fence_regs[obj->fence_reg],
2602 false);
2603 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2604
2605 return 0;
2606}
2607
2608static struct drm_i915_fence_reg *
a360bb1a 2609i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2610{
ae3db24a 2611 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2612 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2613 int i;
ae3db24a
DV
2614
2615 /* First try to find a free reg */
d9e86c0e 2616 avail = NULL;
ae3db24a
DV
2617 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2618 reg = &dev_priv->fence_regs[i];
2619 if (!reg->obj)
d9e86c0e 2620 return reg;
ae3db24a 2621
1690e1eb 2622 if (!reg->pin_count)
d9e86c0e 2623 avail = reg;
ae3db24a
DV
2624 }
2625
d9e86c0e
CW
2626 if (avail == NULL)
2627 return NULL;
ae3db24a
DV
2628
2629 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2630 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2631 if (reg->pin_count)
ae3db24a
DV
2632 continue;
2633
8fe301ad 2634 return reg;
ae3db24a
DV
2635 }
2636
8fe301ad 2637 return NULL;
ae3db24a
DV
2638}
2639
de151cf6 2640/**
9a5a53b3 2641 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2642 * @obj: object to map through a fence reg
2643 *
2644 * When mapping objects through the GTT, userspace wants to be able to write
2645 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2646 * This function walks the fence regs looking for a free one for @obj,
2647 * stealing one if it can't find any.
2648 *
2649 * It then sets up the reg based on the object's properties: address, pitch
2650 * and tiling format.
9a5a53b3
CW
2651 *
2652 * For an untiled surface, this removes any existing fence.
de151cf6 2653 */
8c4b8c3f 2654int
06d98131 2655i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2656{
05394f39 2657 struct drm_device *dev = obj->base.dev;
79e53945 2658 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2659 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2660 struct drm_i915_fence_reg *reg;
ae3db24a 2661 int ret;
de151cf6 2662
14415745
CW
2663 /* Have we updated the tiling parameters upon the object and so
2664 * will need to serialise the write to the associated fence register?
2665 */
5d82e3e6 2666 if (obj->fence_dirty) {
14415745
CW
2667 ret = i915_gem_object_flush_fence(obj);
2668 if (ret)
2669 return ret;
2670 }
9a5a53b3 2671
d9e86c0e 2672 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2673 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2674 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2675 if (!obj->fence_dirty) {
14415745
CW
2676 list_move_tail(&reg->lru_list,
2677 &dev_priv->mm.fence_list);
2678 return 0;
2679 }
2680 } else if (enable) {
2681 reg = i915_find_fence_reg(dev);
2682 if (reg == NULL)
2683 return -EDEADLK;
d9e86c0e 2684
14415745
CW
2685 if (reg->obj) {
2686 struct drm_i915_gem_object *old = reg->obj;
2687
2688 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2689 if (ret)
2690 return ret;
2691
14415745 2692 i915_gem_object_fence_lost(old);
29c5a587 2693 }
14415745 2694 } else
a09ba7fa 2695 return 0;
a09ba7fa 2696
14415745 2697 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2698 obj->fence_dirty = false;
14415745 2699
9ce079e4 2700 return 0;
de151cf6
JB
2701}
2702
673a394b
EA
2703/**
2704 * Finds free space in the GTT aperture and binds the object there.
2705 */
2706static int
05394f39 2707i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2708 unsigned alignment,
75e9e915 2709 bool map_and_fenceable)
673a394b 2710{
05394f39 2711 struct drm_device *dev = obj->base.dev;
673a394b 2712 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2713 struct drm_mm_node *free_space;
a00b10c3 2714 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2715 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2716 bool mappable, fenceable;
07f73f69 2717 int ret;
673a394b 2718
05394f39 2719 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2720 DRM_ERROR("Attempting to bind a purgeable object\n");
2721 return -EINVAL;
2722 }
2723
e28f8711
CW
2724 fence_size = i915_gem_get_gtt_size(dev,
2725 obj->base.size,
2726 obj->tiling_mode);
2727 fence_alignment = i915_gem_get_gtt_alignment(dev,
2728 obj->base.size,
2729 obj->tiling_mode);
2730 unfenced_alignment =
2731 i915_gem_get_unfenced_gtt_alignment(dev,
2732 obj->base.size,
2733 obj->tiling_mode);
a00b10c3 2734
673a394b 2735 if (alignment == 0)
5e783301
DV
2736 alignment = map_and_fenceable ? fence_alignment :
2737 unfenced_alignment;
75e9e915 2738 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2739 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2740 return -EINVAL;
2741 }
2742
05394f39 2743 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2744
654fc607
CW
2745 /* If the object is bigger than the entire aperture, reject it early
2746 * before evicting everything in a vain attempt to find space.
2747 */
05394f39 2748 if (obj->base.size >
75e9e915 2749 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2750 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2751 return -E2BIG;
2752 }
2753
673a394b 2754 search_free:
75e9e915 2755 if (map_and_fenceable)
920afa77
DV
2756 free_space =
2757 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
6b9d89b4
CW
2758 size, alignment,
2759 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2760 0);
2761 else
2762 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2763 size, alignment, 0);
920afa77
DV
2764
2765 if (free_space != NULL) {
75e9e915 2766 if (map_and_fenceable)
05394f39 2767 obj->gtt_space =
920afa77 2768 drm_mm_get_block_range_generic(free_space,
a00b10c3 2769 size, alignment, 0,
6b9d89b4 2770 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2771 0);
2772 else
05394f39 2773 obj->gtt_space =
a00b10c3 2774 drm_mm_get_block(free_space, size, alignment);
920afa77 2775 }
05394f39 2776 if (obj->gtt_space == NULL) {
673a394b
EA
2777 /* If the gtt is empty and we're still having trouble
2778 * fitting our object in, we're out of memory.
2779 */
75e9e915
DV
2780 ret = i915_gem_evict_something(dev, size, alignment,
2781 map_and_fenceable);
9731129c 2782 if (ret)
673a394b 2783 return ret;
9731129c 2784
673a394b
EA
2785 goto search_free;
2786 }
2787
e5281ccd 2788 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2789 if (ret) {
05394f39
CW
2790 drm_mm_put_block(obj->gtt_space);
2791 obj->gtt_space = NULL;
07f73f69
CW
2792
2793 if (ret == -ENOMEM) {
809b6334
CW
2794 /* first try to reclaim some memory by clearing the GTT */
2795 ret = i915_gem_evict_everything(dev, false);
07f73f69 2796 if (ret) {
07f73f69 2797 /* now try to shrink everyone else */
4bdadb97
CW
2798 if (gfpmask) {
2799 gfpmask = 0;
2800 goto search_free;
07f73f69
CW
2801 }
2802
809b6334 2803 return -ENOMEM;
07f73f69
CW
2804 }
2805
2806 goto search_free;
2807 }
2808
673a394b
EA
2809 return ret;
2810 }
2811
74163907 2812 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2813 if (ret) {
e5281ccd 2814 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2815 drm_mm_put_block(obj->gtt_space);
2816 obj->gtt_space = NULL;
07f73f69 2817
809b6334 2818 if (i915_gem_evict_everything(dev, false))
07f73f69 2819 return ret;
07f73f69
CW
2820
2821 goto search_free;
673a394b 2822 }
673a394b 2823
0ebb9829
DV
2824 if (!dev_priv->mm.aliasing_ppgtt)
2825 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2826
6299f992 2827 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2828 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2829
673a394b
EA
2830 /* Assert that the object is not currently in any GPU domain. As it
2831 * wasn't in the GTT, there shouldn't be any way it could have been in
2832 * a GPU cache
2833 */
05394f39
CW
2834 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2835 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2836
6299f992 2837 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2838
75e9e915 2839 fenceable =
05394f39 2840 obj->gtt_space->size == fence_size &&
0206e353 2841 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2842
75e9e915 2843 mappable =
05394f39 2844 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2845
05394f39 2846 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2847
db53a302 2848 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2849 return 0;
2850}
2851
2852void
05394f39 2853i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2854{
673a394b
EA
2855 /* If we don't have a page list set up, then we're not pinned
2856 * to GPU, and we can ignore the cache flush because it'll happen
2857 * again at bind time.
2858 */
05394f39 2859 if (obj->pages == NULL)
673a394b
EA
2860 return;
2861
9c23f7fc
CW
2862 /* If the GPU is snooping the contents of the CPU cache,
2863 * we do not need to manually clear the CPU cache lines. However,
2864 * the caches are only snooped when the render cache is
2865 * flushed/invalidated. As we always have to emit invalidations
2866 * and flushes when moving into and out of the RENDER domain, correct
2867 * snooping behaviour occurs naturally as the result of our domain
2868 * tracking.
2869 */
2870 if (obj->cache_level != I915_CACHE_NONE)
2871 return;
2872
1c5d22f7 2873 trace_i915_gem_object_clflush(obj);
cfa16a0d 2874
05394f39 2875 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2876}
2877
e47c68e9 2878/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2879static int
3619df03 2880i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2881{
05394f39 2882 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2883 return 0;
e47c68e9
EA
2884
2885 /* Queue the GPU write cache flushing we need. */
db53a302 2886 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2887}
2888
2889/** Flushes the GTT write domain for the object if it's dirty. */
2890static void
05394f39 2891i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2892{
1c5d22f7
CW
2893 uint32_t old_write_domain;
2894
05394f39 2895 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2896 return;
2897
63256ec5 2898 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2899 * to it immediately go to main memory as far as we know, so there's
2900 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2901 *
2902 * However, we do have to enforce the order so that all writes through
2903 * the GTT land before any writes to the device, such as updates to
2904 * the GATT itself.
e47c68e9 2905 */
63256ec5
CW
2906 wmb();
2907
05394f39
CW
2908 old_write_domain = obj->base.write_domain;
2909 obj->base.write_domain = 0;
1c5d22f7
CW
2910
2911 trace_i915_gem_object_change_domain(obj,
05394f39 2912 obj->base.read_domains,
1c5d22f7 2913 old_write_domain);
e47c68e9
EA
2914}
2915
2916/** Flushes the CPU write domain for the object if it's dirty. */
2917static void
05394f39 2918i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2919{
1c5d22f7 2920 uint32_t old_write_domain;
e47c68e9 2921
05394f39 2922 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2923 return;
2924
2925 i915_gem_clflush_object(obj);
40ce6575 2926 intel_gtt_chipset_flush();
05394f39
CW
2927 old_write_domain = obj->base.write_domain;
2928 obj->base.write_domain = 0;
1c5d22f7
CW
2929
2930 trace_i915_gem_object_change_domain(obj,
05394f39 2931 obj->base.read_domains,
1c5d22f7 2932 old_write_domain);
e47c68e9
EA
2933}
2934
2ef7eeaa
EA
2935/**
2936 * Moves a single object to the GTT read, and possibly write domain.
2937 *
2938 * This function returns when the move is complete, including waiting on
2939 * flushes to occur.
2940 */
79e53945 2941int
2021746e 2942i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2943{
8325a09d 2944 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2945 uint32_t old_write_domain, old_read_domains;
e47c68e9 2946 int ret;
2ef7eeaa 2947
02354392 2948 /* Not valid to be called on unbound objects. */
05394f39 2949 if (obj->gtt_space == NULL)
02354392
EA
2950 return -EINVAL;
2951
8d7e3de1
CW
2952 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2953 return 0;
2954
88241785
CW
2955 ret = i915_gem_object_flush_gpu_write_domain(obj);
2956 if (ret)
2957 return ret;
2958
0201f1ec
CW
2959 ret = i915_gem_object_wait_rendering(obj, !write);
2960 if (ret)
2961 return ret;
2dafb1e0 2962
7213342d 2963 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2964
05394f39
CW
2965 old_write_domain = obj->base.write_domain;
2966 old_read_domains = obj->base.read_domains;
1c5d22f7 2967
e47c68e9
EA
2968 /* It should now be out of any other write domains, and we can update
2969 * the domain values for our changes.
2970 */
05394f39
CW
2971 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2972 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2973 if (write) {
05394f39
CW
2974 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2975 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2976 obj->dirty = 1;
2ef7eeaa
EA
2977 }
2978
1c5d22f7
CW
2979 trace_i915_gem_object_change_domain(obj,
2980 old_read_domains,
2981 old_write_domain);
2982
8325a09d
CW
2983 /* And bump the LRU for this access */
2984 if (i915_gem_object_is_inactive(obj))
2985 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2986
e47c68e9
EA
2987 return 0;
2988}
2989
e4ffd173
CW
2990int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2991 enum i915_cache_level cache_level)
2992{
7bddb01f
DV
2993 struct drm_device *dev = obj->base.dev;
2994 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2995 int ret;
2996
2997 if (obj->cache_level == cache_level)
2998 return 0;
2999
3000 if (obj->pin_count) {
3001 DRM_DEBUG("can not change the cache level of pinned objects\n");
3002 return -EBUSY;
3003 }
3004
3005 if (obj->gtt_space) {
3006 ret = i915_gem_object_finish_gpu(obj);
3007 if (ret)
3008 return ret;
3009
3010 i915_gem_object_finish_gtt(obj);
3011
3012 /* Before SandyBridge, you could not use tiling or fence
3013 * registers with snooped memory, so relinquish any fences
3014 * currently pointing to our region in the aperture.
3015 */
3016 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3017 ret = i915_gem_object_put_fence(obj);
3018 if (ret)
3019 return ret;
3020 }
3021
74898d7e
DV
3022 if (obj->has_global_gtt_mapping)
3023 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3024 if (obj->has_aliasing_ppgtt_mapping)
3025 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3026 obj, cache_level);
e4ffd173
CW
3027 }
3028
3029 if (cache_level == I915_CACHE_NONE) {
3030 u32 old_read_domains, old_write_domain;
3031
3032 /* If we're coming from LLC cached, then we haven't
3033 * actually been tracking whether the data is in the
3034 * CPU cache or not, since we only allow one bit set
3035 * in obj->write_domain and have been skipping the clflushes.
3036 * Just set it to the CPU cache for now.
3037 */
3038 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3039 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3040
3041 old_read_domains = obj->base.read_domains;
3042 old_write_domain = obj->base.write_domain;
3043
3044 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3045 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3046
3047 trace_i915_gem_object_change_domain(obj,
3048 old_read_domains,
3049 old_write_domain);
3050 }
3051
3052 obj->cache_level = cache_level;
3053 return 0;
3054}
3055
b9241ea3 3056/*
2da3b9b9
CW
3057 * Prepare buffer for display plane (scanout, cursors, etc).
3058 * Can be called from an uninterruptible phase (modesetting) and allows
3059 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3060 */
3061int
2da3b9b9
CW
3062i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3063 u32 alignment,
919926ae 3064 struct intel_ring_buffer *pipelined)
b9241ea3 3065{
2da3b9b9 3066 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3067 int ret;
3068
88241785
CW
3069 ret = i915_gem_object_flush_gpu_write_domain(obj);
3070 if (ret)
3071 return ret;
3072
0be73284 3073 if (pipelined != obj->ring) {
2911a35b
BW
3074 ret = i915_gem_object_sync(obj, pipelined);
3075 if (ret)
b9241ea3
ZW
3076 return ret;
3077 }
3078
a7ef0640
EA
3079 /* The display engine is not coherent with the LLC cache on gen6. As
3080 * a result, we make sure that the pinning that is about to occur is
3081 * done with uncached PTEs. This is lowest common denominator for all
3082 * chipsets.
3083 *
3084 * However for gen6+, we could do better by using the GFDT bit instead
3085 * of uncaching, which would allow us to flush all the LLC-cached data
3086 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3087 */
3088 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3089 if (ret)
3090 return ret;
3091
2da3b9b9
CW
3092 /* As the user may map the buffer once pinned in the display plane
3093 * (e.g. libkms for the bootup splash), we have to ensure that we
3094 * always use map_and_fenceable for all scanout buffers.
3095 */
3096 ret = i915_gem_object_pin(obj, alignment, true);
3097 if (ret)
3098 return ret;
3099
b118c1e3
CW
3100 i915_gem_object_flush_cpu_write_domain(obj);
3101
2da3b9b9 3102 old_write_domain = obj->base.write_domain;
05394f39 3103 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3104
3105 /* It should now be out of any other write domains, and we can update
3106 * the domain values for our changes.
3107 */
e5f1d962 3108 obj->base.write_domain = 0;
05394f39 3109 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3110
3111 trace_i915_gem_object_change_domain(obj,
3112 old_read_domains,
2da3b9b9 3113 old_write_domain);
b9241ea3
ZW
3114
3115 return 0;
3116}
3117
85345517 3118int
a8198eea 3119i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3120{
88241785
CW
3121 int ret;
3122
a8198eea 3123 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3124 return 0;
3125
88241785 3126 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3127 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3128 if (ret)
3129 return ret;
3130 }
85345517 3131
0201f1ec 3132 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3133 if (ret)
3134 return ret;
3135
a8198eea
CW
3136 /* Ensure that we invalidate the GPU's caches and TLBs. */
3137 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3138 return 0;
85345517
CW
3139}
3140
e47c68e9
EA
3141/**
3142 * Moves a single object to the CPU read, and possibly write domain.
3143 *
3144 * This function returns when the move is complete, including waiting on
3145 * flushes to occur.
3146 */
dabdfe02 3147int
919926ae 3148i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3149{
1c5d22f7 3150 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3151 int ret;
3152
8d7e3de1
CW
3153 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3154 return 0;
3155
88241785
CW
3156 ret = i915_gem_object_flush_gpu_write_domain(obj);
3157 if (ret)
3158 return ret;
3159
0201f1ec
CW
3160 ret = i915_gem_object_wait_rendering(obj, !write);
3161 if (ret)
3162 return ret;
2ef7eeaa 3163
e47c68e9 3164 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3165
05394f39
CW
3166 old_write_domain = obj->base.write_domain;
3167 old_read_domains = obj->base.read_domains;
1c5d22f7 3168
e47c68e9 3169 /* Flush the CPU cache if it's still invalid. */
05394f39 3170 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3171 i915_gem_clflush_object(obj);
2ef7eeaa 3172
05394f39 3173 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3174 }
3175
3176 /* It should now be out of any other write domains, and we can update
3177 * the domain values for our changes.
3178 */
05394f39 3179 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3180
3181 /* If we're writing through the CPU, then the GPU read domains will
3182 * need to be invalidated at next use.
3183 */
3184 if (write) {
05394f39
CW
3185 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3186 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3187 }
2ef7eeaa 3188
1c5d22f7
CW
3189 trace_i915_gem_object_change_domain(obj,
3190 old_read_domains,
3191 old_write_domain);
3192
2ef7eeaa
EA
3193 return 0;
3194}
3195
673a394b
EA
3196/* Throttle our rendering by waiting until the ring has completed our requests
3197 * emitted over 20 msec ago.
3198 *
b962442e
EA
3199 * Note that if we were to use the current jiffies each time around the loop,
3200 * we wouldn't escape the function with any frames outstanding if the time to
3201 * render a frame was over 20ms.
3202 *
673a394b
EA
3203 * This should get us reasonable parallelism between CPU and GPU but also
3204 * relatively low latency when blocking on a particular request to finish.
3205 */
40a5f0de 3206static int
f787a5f5 3207i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3208{
f787a5f5
CW
3209 struct drm_i915_private *dev_priv = dev->dev_private;
3210 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3211 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3212 struct drm_i915_gem_request *request;
3213 struct intel_ring_buffer *ring = NULL;
3214 u32 seqno = 0;
3215 int ret;
93533c29 3216
e110e8d6
CW
3217 if (atomic_read(&dev_priv->mm.wedged))
3218 return -EIO;
3219
1c25595f 3220 spin_lock(&file_priv->mm.lock);
f787a5f5 3221 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3222 if (time_after_eq(request->emitted_jiffies, recent_enough))
3223 break;
40a5f0de 3224
f787a5f5
CW
3225 ring = request->ring;
3226 seqno = request->seqno;
b962442e 3227 }
1c25595f 3228 spin_unlock(&file_priv->mm.lock);
40a5f0de 3229
f787a5f5
CW
3230 if (seqno == 0)
3231 return 0;
2bc43b5c 3232
5c81fe85 3233 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3234 if (ret == 0)
3235 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3236
3237 return ret;
3238}
3239
673a394b 3240int
05394f39
CW
3241i915_gem_object_pin(struct drm_i915_gem_object *obj,
3242 uint32_t alignment,
75e9e915 3243 bool map_and_fenceable)
673a394b 3244{
673a394b
EA
3245 int ret;
3246
05394f39 3247 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3248
05394f39
CW
3249 if (obj->gtt_space != NULL) {
3250 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3251 (map_and_fenceable && !obj->map_and_fenceable)) {
3252 WARN(obj->pin_count,
ae7d49d8 3253 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3254 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3255 " obj->map_and_fenceable=%d\n",
05394f39 3256 obj->gtt_offset, alignment,
75e9e915 3257 map_and_fenceable,
05394f39 3258 obj->map_and_fenceable);
ac0c6b5a
CW
3259 ret = i915_gem_object_unbind(obj);
3260 if (ret)
3261 return ret;
3262 }
3263 }
3264
05394f39 3265 if (obj->gtt_space == NULL) {
a00b10c3 3266 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3267 map_and_fenceable);
9731129c 3268 if (ret)
673a394b 3269 return ret;
22c344e9 3270 }
76446cac 3271
74898d7e
DV
3272 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3273 i915_gem_gtt_bind_object(obj, obj->cache_level);
3274
1b50247a 3275 obj->pin_count++;
6299f992 3276 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3277
3278 return 0;
3279}
3280
3281void
05394f39 3282i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3283{
05394f39
CW
3284 BUG_ON(obj->pin_count == 0);
3285 BUG_ON(obj->gtt_space == NULL);
673a394b 3286
1b50247a 3287 if (--obj->pin_count == 0)
6299f992 3288 obj->pin_mappable = false;
673a394b
EA
3289}
3290
3291int
3292i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3293 struct drm_file *file)
673a394b
EA
3294{
3295 struct drm_i915_gem_pin *args = data;
05394f39 3296 struct drm_i915_gem_object *obj;
673a394b
EA
3297 int ret;
3298
1d7cfea1
CW
3299 ret = i915_mutex_lock_interruptible(dev);
3300 if (ret)
3301 return ret;
673a394b 3302
05394f39 3303 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3304 if (&obj->base == NULL) {
1d7cfea1
CW
3305 ret = -ENOENT;
3306 goto unlock;
673a394b 3307 }
673a394b 3308
05394f39 3309 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3310 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3311 ret = -EINVAL;
3312 goto out;
3ef94daa
CW
3313 }
3314
05394f39 3315 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3316 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3317 args->handle);
1d7cfea1
CW
3318 ret = -EINVAL;
3319 goto out;
79e53945
JB
3320 }
3321
05394f39
CW
3322 obj->user_pin_count++;
3323 obj->pin_filp = file;
3324 if (obj->user_pin_count == 1) {
75e9e915 3325 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3326 if (ret)
3327 goto out;
673a394b
EA
3328 }
3329
3330 /* XXX - flush the CPU caches for pinned objects
3331 * as the X server doesn't manage domains yet
3332 */
e47c68e9 3333 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3334 args->offset = obj->gtt_offset;
1d7cfea1 3335out:
05394f39 3336 drm_gem_object_unreference(&obj->base);
1d7cfea1 3337unlock:
673a394b 3338 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3339 return ret;
673a394b
EA
3340}
3341
3342int
3343i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3344 struct drm_file *file)
673a394b
EA
3345{
3346 struct drm_i915_gem_pin *args = data;
05394f39 3347 struct drm_i915_gem_object *obj;
76c1dec1 3348 int ret;
673a394b 3349
1d7cfea1
CW
3350 ret = i915_mutex_lock_interruptible(dev);
3351 if (ret)
3352 return ret;
673a394b 3353
05394f39 3354 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3355 if (&obj->base == NULL) {
1d7cfea1
CW
3356 ret = -ENOENT;
3357 goto unlock;
673a394b 3358 }
76c1dec1 3359
05394f39 3360 if (obj->pin_filp != file) {
79e53945
JB
3361 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3362 args->handle);
1d7cfea1
CW
3363 ret = -EINVAL;
3364 goto out;
79e53945 3365 }
05394f39
CW
3366 obj->user_pin_count--;
3367 if (obj->user_pin_count == 0) {
3368 obj->pin_filp = NULL;
79e53945
JB
3369 i915_gem_object_unpin(obj);
3370 }
673a394b 3371
1d7cfea1 3372out:
05394f39 3373 drm_gem_object_unreference(&obj->base);
1d7cfea1 3374unlock:
673a394b 3375 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3376 return ret;
673a394b
EA
3377}
3378
3379int
3380i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3381 struct drm_file *file)
673a394b
EA
3382{
3383 struct drm_i915_gem_busy *args = data;
05394f39 3384 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3385 int ret;
3386
76c1dec1 3387 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3388 if (ret)
76c1dec1 3389 return ret;
673a394b 3390
05394f39 3391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3392 if (&obj->base == NULL) {
1d7cfea1
CW
3393 ret = -ENOENT;
3394 goto unlock;
673a394b 3395 }
d1b851fc 3396
0be555b6
CW
3397 /* Count all active objects as busy, even if they are currently not used
3398 * by the gpu. Users of this interface expect objects to eventually
3399 * become non-busy without any further actions, therefore emit any
3400 * necessary flushes here.
c4de0a5d 3401 */
30dfebf3 3402 ret = i915_gem_object_flush_active(obj);
0be555b6 3403
30dfebf3 3404 args->busy = obj->active;
e9808edd
CW
3405 if (obj->ring) {
3406 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3407 args->busy |= intel_ring_flag(obj->ring) << 16;
3408 }
673a394b 3409
05394f39 3410 drm_gem_object_unreference(&obj->base);
1d7cfea1 3411unlock:
673a394b 3412 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3413 return ret;
673a394b
EA
3414}
3415
3416int
3417i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3418 struct drm_file *file_priv)
3419{
0206e353 3420 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3421}
3422
3ef94daa
CW
3423int
3424i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3425 struct drm_file *file_priv)
3426{
3427 struct drm_i915_gem_madvise *args = data;
05394f39 3428 struct drm_i915_gem_object *obj;
76c1dec1 3429 int ret;
3ef94daa
CW
3430
3431 switch (args->madv) {
3432 case I915_MADV_DONTNEED:
3433 case I915_MADV_WILLNEED:
3434 break;
3435 default:
3436 return -EINVAL;
3437 }
3438
1d7cfea1
CW
3439 ret = i915_mutex_lock_interruptible(dev);
3440 if (ret)
3441 return ret;
3442
05394f39 3443 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3444 if (&obj->base == NULL) {
1d7cfea1
CW
3445 ret = -ENOENT;
3446 goto unlock;
3ef94daa 3447 }
3ef94daa 3448
05394f39 3449 if (obj->pin_count) {
1d7cfea1
CW
3450 ret = -EINVAL;
3451 goto out;
3ef94daa
CW
3452 }
3453
05394f39
CW
3454 if (obj->madv != __I915_MADV_PURGED)
3455 obj->madv = args->madv;
3ef94daa 3456
2d7ef395 3457 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3458 if (i915_gem_object_is_purgeable(obj) &&
3459 obj->gtt_space == NULL)
2d7ef395
CW
3460 i915_gem_object_truncate(obj);
3461
05394f39 3462 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3463
1d7cfea1 3464out:
05394f39 3465 drm_gem_object_unreference(&obj->base);
1d7cfea1 3466unlock:
3ef94daa 3467 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3468 return ret;
3ef94daa
CW
3469}
3470
05394f39
CW
3471struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3472 size_t size)
ac52bc56 3473{
73aa808f 3474 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3475 struct drm_i915_gem_object *obj;
5949eac4 3476 struct address_space *mapping;
bed1ea95 3477 u32 mask;
ac52bc56 3478
c397b908
DV
3479 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3480 if (obj == NULL)
3481 return NULL;
673a394b 3482
c397b908
DV
3483 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3484 kfree(obj);
3485 return NULL;
3486 }
673a394b 3487
bed1ea95
CW
3488 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3489 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3490 /* 965gm cannot relocate objects above 4GiB. */
3491 mask &= ~__GFP_HIGHMEM;
3492 mask |= __GFP_DMA32;
3493 }
3494
5949eac4 3495 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3496 mapping_set_gfp_mask(mapping, mask);
5949eac4 3497
73aa808f
CW
3498 i915_gem_info_add_obj(dev_priv, size);
3499
c397b908
DV
3500 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3501 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3502
3d29b842
ED
3503 if (HAS_LLC(dev)) {
3504 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3505 * cache) for about a 10% performance improvement
3506 * compared to uncached. Graphics requests other than
3507 * display scanout are coherent with the CPU in
3508 * accessing this cache. This means in this mode we
3509 * don't need to clflush on the CPU side, and on the
3510 * GPU side we only need to flush internal caches to
3511 * get data visible to the CPU.
3512 *
3513 * However, we maintain the display planes as UC, and so
3514 * need to rebind when first used as such.
3515 */
3516 obj->cache_level = I915_CACHE_LLC;
3517 } else
3518 obj->cache_level = I915_CACHE_NONE;
3519
62b8b215 3520 obj->base.driver_private = NULL;
c397b908 3521 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3522 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3523 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3524 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3525 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3526 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3527 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3528 /* Avoid an unnecessary call to unbind on the first bind. */
3529 obj->map_and_fenceable = true;
de151cf6 3530
05394f39 3531 return obj;
c397b908
DV
3532}
3533
3534int i915_gem_init_object(struct drm_gem_object *obj)
3535{
3536 BUG();
de151cf6 3537
673a394b
EA
3538 return 0;
3539}
3540
1488fc08 3541void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3542{
1488fc08 3543 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3544 struct drm_device *dev = obj->base.dev;
be72615b 3545 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3546
26e12f89
CW
3547 trace_i915_gem_object_destroy(obj);
3548
1286ff73
DV
3549 if (gem_obj->import_attach)
3550 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3551
1488fc08
CW
3552 if (obj->phys_obj)
3553 i915_gem_detach_phys_object(dev, obj);
3554
3555 obj->pin_count = 0;
3556 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3557 bool was_interruptible;
3558
3559 was_interruptible = dev_priv->mm.interruptible;
3560 dev_priv->mm.interruptible = false;
3561
3562 WARN_ON(i915_gem_object_unbind(obj));
3563
3564 dev_priv->mm.interruptible = was_interruptible;
3565 }
3566
05394f39 3567 if (obj->base.map_list.map)
b464e9a2 3568 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3569
05394f39
CW
3570 drm_gem_object_release(&obj->base);
3571 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3572
05394f39
CW
3573 kfree(obj->bit_17);
3574 kfree(obj);
673a394b
EA
3575}
3576
29105ccc
CW
3577int
3578i915_gem_idle(struct drm_device *dev)
3579{
3580 drm_i915_private_t *dev_priv = dev->dev_private;
3581 int ret;
28dfe52a 3582
29105ccc 3583 mutex_lock(&dev->struct_mutex);
1c5d22f7 3584
87acb0a5 3585 if (dev_priv->mm.suspended) {
29105ccc
CW
3586 mutex_unlock(&dev->struct_mutex);
3587 return 0;
28dfe52a
EA
3588 }
3589
b2da9fe5 3590 ret = i915_gpu_idle(dev);
6dbe2772
KP
3591 if (ret) {
3592 mutex_unlock(&dev->struct_mutex);
673a394b 3593 return ret;
6dbe2772 3594 }
b2da9fe5 3595 i915_gem_retire_requests(dev);
673a394b 3596
29105ccc 3597 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3598 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3599 i915_gem_evict_everything(dev, false);
29105ccc 3600
312817a3
CW
3601 i915_gem_reset_fences(dev);
3602
29105ccc
CW
3603 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3604 * We need to replace this with a semaphore, or something.
3605 * And not confound mm.suspended!
3606 */
3607 dev_priv->mm.suspended = 1;
bc0c7f14 3608 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3609
3610 i915_kernel_lost_context(dev);
6dbe2772 3611 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3612
6dbe2772
KP
3613 mutex_unlock(&dev->struct_mutex);
3614
29105ccc
CW
3615 /* Cancel the retire work handler, which should be idle now. */
3616 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3617
673a394b
EA
3618 return 0;
3619}
3620
b9524a1e
BW
3621void i915_gem_l3_remap(struct drm_device *dev)
3622{
3623 drm_i915_private_t *dev_priv = dev->dev_private;
3624 u32 misccpctl;
3625 int i;
3626
3627 if (!IS_IVYBRIDGE(dev))
3628 return;
3629
3630 if (!dev_priv->mm.l3_remap_info)
3631 return;
3632
3633 misccpctl = I915_READ(GEN7_MISCCPCTL);
3634 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3635 POSTING_READ(GEN7_MISCCPCTL);
3636
3637 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3638 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3639 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3640 DRM_DEBUG("0x%x was already programmed to %x\n",
3641 GEN7_L3LOG_BASE + i, remap);
3642 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3643 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3644 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3645 }
3646
3647 /* Make sure all the writes land before disabling dop clock gating */
3648 POSTING_READ(GEN7_L3LOG_BASE);
3649
3650 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3651}
3652
f691e2f4
DV
3653void i915_gem_init_swizzling(struct drm_device *dev)
3654{
3655 drm_i915_private_t *dev_priv = dev->dev_private;
3656
11782b02 3657 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3658 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3659 return;
3660
3661 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3662 DISP_TILE_SURFACE_SWIZZLING);
3663
11782b02
DV
3664 if (IS_GEN5(dev))
3665 return;
3666
f691e2f4
DV
3667 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3668 if (IS_GEN6(dev))
6b26c86d 3669 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3670 else
6b26c86d 3671 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3672}
e21af88d
DV
3673
3674void i915_gem_init_ppgtt(struct drm_device *dev)
3675{
3676 drm_i915_private_t *dev_priv = dev->dev_private;
3677 uint32_t pd_offset;
3678 struct intel_ring_buffer *ring;
55a254ac
DV
3679 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3680 uint32_t __iomem *pd_addr;
3681 uint32_t pd_entry;
e21af88d
DV
3682 int i;
3683
3684 if (!dev_priv->mm.aliasing_ppgtt)
3685 return;
3686
55a254ac
DV
3687
3688 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3689 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3690 dma_addr_t pt_addr;
3691
3692 if (dev_priv->mm.gtt->needs_dmar)
3693 pt_addr = ppgtt->pt_dma_addr[i];
3694 else
3695 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3696
3697 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3698 pd_entry |= GEN6_PDE_VALID;
3699
3700 writel(pd_entry, pd_addr + i);
3701 }
3702 readl(pd_addr);
3703
3704 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3705 pd_offset /= 64; /* in cachelines, */
3706 pd_offset <<= 16;
3707
3708 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3709 uint32_t ecochk, gab_ctl, ecobits;
3710
3711 ecobits = I915_READ(GAC_ECO_BITS);
3712 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3713
3714 gab_ctl = I915_READ(GAB_CTL);
3715 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3716
3717 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3718 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3719 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3720 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3721 } else if (INTEL_INFO(dev)->gen >= 7) {
3722 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3723 /* GFX_MODE is per-ring on gen7+ */
3724 }
3725
b4519513 3726 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3727 if (INTEL_INFO(dev)->gen >= 7)
3728 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3729 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3730
3731 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3732 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3733 }
3734}
3735
67b1b571
CW
3736static bool
3737intel_enable_blt(struct drm_device *dev)
3738{
3739 if (!HAS_BLT(dev))
3740 return false;
3741
3742 /* The blitter was dysfunctional on early prototypes */
3743 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3744 DRM_INFO("BLT not supported on this pre-production hardware;"
3745 " graphics performance will be degraded.\n");
3746 return false;
3747 }
3748
3749 return true;
3750}
3751
8187a2b7 3752int
f691e2f4 3753i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3754{
3755 drm_i915_private_t *dev_priv = dev->dev_private;
3756 int ret;
68f95ba9 3757
8ecd1a66
DV
3758 if (!intel_enable_gtt())
3759 return -EIO;
3760
b9524a1e
BW
3761 i915_gem_l3_remap(dev);
3762
f691e2f4
DV
3763 i915_gem_init_swizzling(dev);
3764
5c1143bb 3765 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3766 if (ret)
b6913e4b 3767 return ret;
68f95ba9
CW
3768
3769 if (HAS_BSD(dev)) {
5c1143bb 3770 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3771 if (ret)
3772 goto cleanup_render_ring;
d1b851fc 3773 }
68f95ba9 3774
67b1b571 3775 if (intel_enable_blt(dev)) {
549f7365
CW
3776 ret = intel_init_blt_ring_buffer(dev);
3777 if (ret)
3778 goto cleanup_bsd_ring;
3779 }
3780
6f392d54
CW
3781 dev_priv->next_seqno = 1;
3782
254f965c
BW
3783 /*
3784 * XXX: There was some w/a described somewhere suggesting loading
3785 * contexts before PPGTT.
3786 */
3787 i915_gem_context_init(dev);
e21af88d
DV
3788 i915_gem_init_ppgtt(dev);
3789
68f95ba9
CW
3790 return 0;
3791
549f7365 3792cleanup_bsd_ring:
1ec14ad3 3793 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3794cleanup_render_ring:
1ec14ad3 3795 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3796 return ret;
3797}
3798
1070a42b
CW
3799static bool
3800intel_enable_ppgtt(struct drm_device *dev)
3801{
3802 if (i915_enable_ppgtt >= 0)
3803 return i915_enable_ppgtt;
3804
3805#ifdef CONFIG_INTEL_IOMMU
3806 /* Disable ppgtt on SNB if VT-d is on. */
3807 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3808 return false;
3809#endif
3810
3811 return true;
3812}
3813
3814int i915_gem_init(struct drm_device *dev)
3815{
3816 struct drm_i915_private *dev_priv = dev->dev_private;
3817 unsigned long gtt_size, mappable_size;
3818 int ret;
3819
3820 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3821 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3822
3823 mutex_lock(&dev->struct_mutex);
3824 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3825 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3826 * aperture accordingly when using aliasing ppgtt. */
3827 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3828
3829 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3830
3831 ret = i915_gem_init_aliasing_ppgtt(dev);
3832 if (ret) {
3833 mutex_unlock(&dev->struct_mutex);
3834 return ret;
3835 }
3836 } else {
3837 /* Let GEM Manage all of the aperture.
3838 *
3839 * However, leave one page at the end still bound to the scratch
3840 * page. There are a number of places where the hardware
3841 * apparently prefetches past the end of the object, and we've
3842 * seen multiple hangs with the GPU head pointer stuck in a
3843 * batchbuffer bound at the last page of the aperture. One page
3844 * should be enough to keep any prefetching inside of the
3845 * aperture.
3846 */
3847 i915_gem_init_global_gtt(dev, 0, mappable_size,
3848 gtt_size);
3849 }
3850
3851 ret = i915_gem_init_hw(dev);
3852 mutex_unlock(&dev->struct_mutex);
3853 if (ret) {
3854 i915_gem_cleanup_aliasing_ppgtt(dev);
3855 return ret;
3856 }
3857
53ca26ca
DV
3858 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3859 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3860 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3861 return 0;
3862}
3863
8187a2b7
ZN
3864void
3865i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3866{
3867 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3868 struct intel_ring_buffer *ring;
1ec14ad3 3869 int i;
8187a2b7 3870
b4519513
CW
3871 for_each_ring(ring, dev_priv, i)
3872 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3873}
3874
673a394b
EA
3875int
3876i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3877 struct drm_file *file_priv)
3878{
3879 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3880 int ret;
673a394b 3881
79e53945
JB
3882 if (drm_core_check_feature(dev, DRIVER_MODESET))
3883 return 0;
3884
ba1234d1 3885 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3886 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3887 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3888 }
3889
673a394b 3890 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3891 dev_priv->mm.suspended = 0;
3892
f691e2f4 3893 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3894 if (ret != 0) {
3895 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3896 return ret;
d816f6ac 3897 }
9bb2d6f9 3898
69dc4987 3899 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3900 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3901 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3902 mutex_unlock(&dev->struct_mutex);
dbb19d30 3903
5f35308b
CW
3904 ret = drm_irq_install(dev);
3905 if (ret)
3906 goto cleanup_ringbuffer;
dbb19d30 3907
673a394b 3908 return 0;
5f35308b
CW
3909
3910cleanup_ringbuffer:
3911 mutex_lock(&dev->struct_mutex);
3912 i915_gem_cleanup_ringbuffer(dev);
3913 dev_priv->mm.suspended = 1;
3914 mutex_unlock(&dev->struct_mutex);
3915
3916 return ret;
673a394b
EA
3917}
3918
3919int
3920i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3921 struct drm_file *file_priv)
3922{
79e53945
JB
3923 if (drm_core_check_feature(dev, DRIVER_MODESET))
3924 return 0;
3925
dbb19d30 3926 drm_irq_uninstall(dev);
e6890f6f 3927 return i915_gem_idle(dev);
673a394b
EA
3928}
3929
3930void
3931i915_gem_lastclose(struct drm_device *dev)
3932{
3933 int ret;
673a394b 3934
e806b495
EA
3935 if (drm_core_check_feature(dev, DRIVER_MODESET))
3936 return;
3937
6dbe2772
KP
3938 ret = i915_gem_idle(dev);
3939 if (ret)
3940 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3941}
3942
64193406
CW
3943static void
3944init_ring_lists(struct intel_ring_buffer *ring)
3945{
3946 INIT_LIST_HEAD(&ring->active_list);
3947 INIT_LIST_HEAD(&ring->request_list);
3948 INIT_LIST_HEAD(&ring->gpu_write_list);
3949}
3950
673a394b
EA
3951void
3952i915_gem_load(struct drm_device *dev)
3953{
b5aa8a0f 3954 int i;
673a394b
EA
3955 drm_i915_private_t *dev_priv = dev->dev_private;
3956
69dc4987 3957 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3958 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3959 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3960 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3961 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3962 for (i = 0; i < I915_NUM_RINGS; i++)
3963 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3964 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3965 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3966 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3967 i915_gem_retire_work_handler);
30dbf0c0 3968 init_completion(&dev_priv->error_completion);
31169714 3969
94400120
DA
3970 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3971 if (IS_GEN3(dev)) {
50743298
DV
3972 I915_WRITE(MI_ARB_STATE,
3973 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3974 }
3975
72bfa19c
CW
3976 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3977
de151cf6 3978 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3979 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3980 dev_priv->fence_reg_start = 3;
de151cf6 3981
a6c45cf0 3982 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3983 dev_priv->num_fence_regs = 16;
3984 else
3985 dev_priv->num_fence_regs = 8;
3986
b5aa8a0f 3987 /* Initialize fence registers to zero */
ada726c7 3988 i915_gem_reset_fences(dev);
10ed13e4 3989
673a394b 3990 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3991 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3992
ce453d81
CW
3993 dev_priv->mm.interruptible = true;
3994
17250b71
CW
3995 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3996 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3997 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3998}
71acb5eb
DA
3999
4000/*
4001 * Create a physically contiguous memory object for this object
4002 * e.g. for cursor + overlay regs
4003 */
995b6762
CW
4004static int i915_gem_init_phys_object(struct drm_device *dev,
4005 int id, int size, int align)
71acb5eb
DA
4006{
4007 drm_i915_private_t *dev_priv = dev->dev_private;
4008 struct drm_i915_gem_phys_object *phys_obj;
4009 int ret;
4010
4011 if (dev_priv->mm.phys_objs[id - 1] || !size)
4012 return 0;
4013
9a298b2a 4014 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4015 if (!phys_obj)
4016 return -ENOMEM;
4017
4018 phys_obj->id = id;
4019
6eeefaf3 4020 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4021 if (!phys_obj->handle) {
4022 ret = -ENOMEM;
4023 goto kfree_obj;
4024 }
4025#ifdef CONFIG_X86
4026 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4027#endif
4028
4029 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4030
4031 return 0;
4032kfree_obj:
9a298b2a 4033 kfree(phys_obj);
71acb5eb
DA
4034 return ret;
4035}
4036
995b6762 4037static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4038{
4039 drm_i915_private_t *dev_priv = dev->dev_private;
4040 struct drm_i915_gem_phys_object *phys_obj;
4041
4042 if (!dev_priv->mm.phys_objs[id - 1])
4043 return;
4044
4045 phys_obj = dev_priv->mm.phys_objs[id - 1];
4046 if (phys_obj->cur_obj) {
4047 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4048 }
4049
4050#ifdef CONFIG_X86
4051 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4052#endif
4053 drm_pci_free(dev, phys_obj->handle);
4054 kfree(phys_obj);
4055 dev_priv->mm.phys_objs[id - 1] = NULL;
4056}
4057
4058void i915_gem_free_all_phys_object(struct drm_device *dev)
4059{
4060 int i;
4061
260883c8 4062 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4063 i915_gem_free_phys_object(dev, i);
4064}
4065
4066void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4067 struct drm_i915_gem_object *obj)
71acb5eb 4068{
05394f39 4069 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4070 char *vaddr;
71acb5eb 4071 int i;
71acb5eb
DA
4072 int page_count;
4073
05394f39 4074 if (!obj->phys_obj)
71acb5eb 4075 return;
05394f39 4076 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4077
05394f39 4078 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4079 for (i = 0; i < page_count; i++) {
5949eac4 4080 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4081 if (!IS_ERR(page)) {
4082 char *dst = kmap_atomic(page);
4083 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4084 kunmap_atomic(dst);
4085
4086 drm_clflush_pages(&page, 1);
4087
4088 set_page_dirty(page);
4089 mark_page_accessed(page);
4090 page_cache_release(page);
4091 }
71acb5eb 4092 }
40ce6575 4093 intel_gtt_chipset_flush();
d78b47b9 4094
05394f39
CW
4095 obj->phys_obj->cur_obj = NULL;
4096 obj->phys_obj = NULL;
71acb5eb
DA
4097}
4098
4099int
4100i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4101 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4102 int id,
4103 int align)
71acb5eb 4104{
05394f39 4105 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4106 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4107 int ret = 0;
4108 int page_count;
4109 int i;
4110
4111 if (id > I915_MAX_PHYS_OBJECT)
4112 return -EINVAL;
4113
05394f39
CW
4114 if (obj->phys_obj) {
4115 if (obj->phys_obj->id == id)
71acb5eb
DA
4116 return 0;
4117 i915_gem_detach_phys_object(dev, obj);
4118 }
4119
71acb5eb
DA
4120 /* create a new object */
4121 if (!dev_priv->mm.phys_objs[id - 1]) {
4122 ret = i915_gem_init_phys_object(dev, id,
05394f39 4123 obj->base.size, align);
71acb5eb 4124 if (ret) {
05394f39
CW
4125 DRM_ERROR("failed to init phys object %d size: %zu\n",
4126 id, obj->base.size);
e5281ccd 4127 return ret;
71acb5eb
DA
4128 }
4129 }
4130
4131 /* bind to the object */
05394f39
CW
4132 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4133 obj->phys_obj->cur_obj = obj;
71acb5eb 4134
05394f39 4135 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4136
4137 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4138 struct page *page;
4139 char *dst, *src;
4140
5949eac4 4141 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4142 if (IS_ERR(page))
4143 return PTR_ERR(page);
71acb5eb 4144
ff75b9bc 4145 src = kmap_atomic(page);
05394f39 4146 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4147 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4148 kunmap_atomic(src);
71acb5eb 4149
e5281ccd
CW
4150 mark_page_accessed(page);
4151 page_cache_release(page);
4152 }
d78b47b9 4153
71acb5eb 4154 return 0;
71acb5eb
DA
4155}
4156
4157static int
05394f39
CW
4158i915_gem_phys_pwrite(struct drm_device *dev,
4159 struct drm_i915_gem_object *obj,
71acb5eb
DA
4160 struct drm_i915_gem_pwrite *args,
4161 struct drm_file *file_priv)
4162{
05394f39 4163 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4164 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4165
b47b30cc
CW
4166 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4167 unsigned long unwritten;
4168
4169 /* The physical object once assigned is fixed for the lifetime
4170 * of the obj, so we can safely drop the lock and continue
4171 * to access vaddr.
4172 */
4173 mutex_unlock(&dev->struct_mutex);
4174 unwritten = copy_from_user(vaddr, user_data, args->size);
4175 mutex_lock(&dev->struct_mutex);
4176 if (unwritten)
4177 return -EFAULT;
4178 }
71acb5eb 4179
40ce6575 4180 intel_gtt_chipset_flush();
71acb5eb
DA
4181 return 0;
4182}
b962442e 4183
f787a5f5 4184void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4185{
f787a5f5 4186 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4187
4188 /* Clean up our request list when the client is going away, so that
4189 * later retire_requests won't dereference our soon-to-be-gone
4190 * file_priv.
4191 */
1c25595f 4192 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4193 while (!list_empty(&file_priv->mm.request_list)) {
4194 struct drm_i915_gem_request *request;
4195
4196 request = list_first_entry(&file_priv->mm.request_list,
4197 struct drm_i915_gem_request,
4198 client_list);
4199 list_del(&request->client_list);
4200 request->file_priv = NULL;
4201 }
1c25595f 4202 spin_unlock(&file_priv->mm.lock);
b962442e 4203}
31169714 4204
1637ef41
CW
4205static int
4206i915_gpu_is_active(struct drm_device *dev)
4207{
4208 drm_i915_private_t *dev_priv = dev->dev_private;
4209 int lists_empty;
4210
1637ef41 4211 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4212 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4213
4214 return !lists_empty;
4215}
4216
31169714 4217static int
1495f230 4218i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4219{
17250b71
CW
4220 struct drm_i915_private *dev_priv =
4221 container_of(shrinker,
4222 struct drm_i915_private,
4223 mm.inactive_shrinker);
4224 struct drm_device *dev = dev_priv->dev;
4225 struct drm_i915_gem_object *obj, *next;
1495f230 4226 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4227 int cnt;
4228
4229 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4230 return 0;
31169714
CW
4231
4232 /* "fast-path" to count number of available objects */
4233 if (nr_to_scan == 0) {
17250b71
CW
4234 cnt = 0;
4235 list_for_each_entry(obj,
4236 &dev_priv->mm.inactive_list,
4237 mm_list)
4238 cnt++;
4239 mutex_unlock(&dev->struct_mutex);
4240 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4241 }
4242
1637ef41 4243rescan:
31169714 4244 /* first scan for clean buffers */
17250b71 4245 i915_gem_retire_requests(dev);
31169714 4246
17250b71
CW
4247 list_for_each_entry_safe(obj, next,
4248 &dev_priv->mm.inactive_list,
4249 mm_list) {
4250 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4251 if (i915_gem_object_unbind(obj) == 0 &&
4252 --nr_to_scan == 0)
17250b71 4253 break;
31169714 4254 }
31169714
CW
4255 }
4256
4257 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4258 cnt = 0;
4259 list_for_each_entry_safe(obj, next,
4260 &dev_priv->mm.inactive_list,
4261 mm_list) {
2021746e
CW
4262 if (nr_to_scan &&
4263 i915_gem_object_unbind(obj) == 0)
17250b71 4264 nr_to_scan--;
2021746e 4265 else
17250b71
CW
4266 cnt++;
4267 }
4268
4269 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4270 /*
4271 * We are desperate for pages, so as a last resort, wait
4272 * for the GPU to finish and discard whatever we can.
4273 * This has a dramatic impact to reduce the number of
4274 * OOM-killer events whilst running the GPU aggressively.
4275 */
b2da9fe5 4276 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4277 goto rescan;
4278 }
17250b71
CW
4279 mutex_unlock(&dev->struct_mutex);
4280 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4281}