]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Split the batch pool by engine
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
c8725f3d
CW
46static void
47i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
063e4e6b 353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 381 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->slab, obj);
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
c8725f3d
CW
521
522 i915_gem_object_retire(obj);
4c914c0c
BV
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532}
533
d174bd64
DV
534/* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
eb01459f 537static int
d174bd64
DV
538shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541{
542 char *vaddr;
543 int ret;
544
e7e58eb5 545 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
f60d7f0c 557 return ret ? -EFAULT : 0;
d174bd64
DV
558}
559
23c18c71
DV
560static void
561shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563{
e7e58eb5 564 if (unlikely(swizzled)) {
23c18c71
DV
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580}
581
d174bd64
DV
582/* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584static int
585shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588{
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
23c18c71
DV
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
d174bd64
DV
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
f60d7f0c 608 return ret ? - EFAULT : 0;
d174bd64
DV
609}
610
eb01459f 611static int
dbf7bff0
DV
612i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
eb01459f 616{
8461d226 617 char __user *user_data;
eb01459f 618 ssize_t remain;
8461d226 619 loff_t offset;
eb2c0c81 620 int shmem_page_offset, page_length, ret = 0;
8461d226 621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 622 int prefaulted = 0;
8489731c 623 int needs_clflush = 0;
67d5a50c 624 struct sg_page_iter sg_iter;
eb01459f 625
2bb4629a 626 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
627 remain = args->size;
628
8461d226 629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 630
4c914c0c 631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
632 if (ret)
633 return ret;
634
8461d226 635 offset = args->offset;
eb01459f 636
67d5a50c
ID
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
2db76d7c 639 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
640
641 if (remain <= 0)
642 break;
643
eb01459f
EA
644 /* Operation in this page
645 *
eb01459f 646 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
647 * page_length = bytes to copy for this page
648 */
c8cbbb8b 649 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 653
8461d226
DV
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
d174bd64
DV
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
dbf7bff0 662
dbf7bff0
DV
663 mutex_unlock(&dev->struct_mutex);
664
d330a953 665 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 666 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
eb01459f 674
d174bd64
DV
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
eb01459f 678
dbf7bff0 679 mutex_lock(&dev->struct_mutex);
f60d7f0c 680
f60d7f0c 681 if (ret)
8461d226 682 goto out;
8461d226 683
17793c9a 684next_page:
eb01459f 685 remain -= page_length;
8461d226 686 user_data += page_length;
eb01459f
EA
687 offset += page_length;
688 }
689
4f27b75d 690out:
f60d7f0c
CW
691 i915_gem_object_unpin_pages(obj);
692
eb01459f
EA
693 return ret;
694}
695
673a394b
EA
696/**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701int
702i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 703 struct drm_file *file)
673a394b
EA
704{
705 struct drm_i915_gem_pread *args = data;
05394f39 706 struct drm_i915_gem_object *obj;
35b62a89 707 int ret = 0;
673a394b 708
51311d0a
CW
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
2bb4629a 713 to_user_ptr(args->data_ptr),
51311d0a
CW
714 args->size))
715 return -EFAULT;
716
4f27b75d 717 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 718 if (ret)
4f27b75d 719 return ret;
673a394b 720
05394f39 721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 722 if (&obj->base == NULL) {
1d7cfea1
CW
723 ret = -ENOENT;
724 goto unlock;
4f27b75d 725 }
673a394b 726
7dcd2499 727 /* Bounds check source. */
05394f39
CW
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
ce9d419d 730 ret = -EINVAL;
35b62a89 731 goto out;
ce9d419d
CW
732 }
733
1286ff73
DV
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
db53a302
CW
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
dbf7bff0 744 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 745
35b62a89 746out:
05394f39 747 drm_gem_object_unreference(&obj->base);
1d7cfea1 748unlock:
4f27b75d 749 mutex_unlock(&dev->struct_mutex);
eb01459f 750 return ret;
673a394b
EA
751}
752
0839ccb8
KP
753/* This is the fast write path which cannot handle
754 * page faults in the source data
9b7530cc 755 */
0839ccb8
KP
756
757static inline int
758fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
9b7530cc 762{
4f0c7cfb
BW
763 void __iomem *vaddr_atomic;
764 void *vaddr;
0839ccb8 765 unsigned long unwritten;
9b7530cc 766
3e4d3af5 767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 771 user_data, length);
3e4d3af5 772 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 773 return unwritten;
0839ccb8
KP
774}
775
3de09aa3
EA
776/**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
673a394b 780static int
05394f39
CW
781i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
3de09aa3 783 struct drm_i915_gem_pwrite *args,
05394f39 784 struct drm_file *file)
673a394b 785{
3e31c6c0 786 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 787 ssize_t remain;
0839ccb8 788 loff_t offset, page_base;
673a394b 789 char __user *user_data;
935aaa69
DV
790 int page_offset, page_length, ret;
791
1ec9e26d 792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
673a394b 803
2bb4629a 804 user_data = to_user_ptr(args->data_ptr);
673a394b 805 remain = args->size;
673a394b 806
f343c5f6 807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 808
063e4e6b
PZ
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
673a394b
EA
811 while (remain > 0) {
812 /* Operation in this page
813 *
0839ccb8
KP
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
673a394b 817 */
c8cbbb8b
CW
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
0839ccb8
KP
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
0839ccb8 824 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
0839ccb8 827 */
5d4545ae 828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
063e4e6b 831 goto out_flush;
935aaa69 832 }
673a394b 833
0839ccb8
KP
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
673a394b 837 }
673a394b 838
063e4e6b
PZ
839out_flush:
840 intel_fb_obj_flush(obj, false);
935aaa69 841out_unpin:
d7f46fc4 842 i915_gem_object_ggtt_unpin(obj);
935aaa69 843out:
3de09aa3 844 return ret;
673a394b
EA
845}
846
d174bd64
DV
847/* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
3043c60c 851static int
d174bd64
DV
852shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
673a394b 857{
d174bd64 858 char *vaddr;
673a394b 859 int ret;
3de09aa3 860
e7e58eb5 861 if (unlikely(page_do_bit17_swizzling))
d174bd64 862 return -EINVAL;
3de09aa3 863
d174bd64
DV
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
c2831a94
CW
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
d174bd64
DV
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
3de09aa3 874
755d2218 875 return ret ? -EFAULT : 0;
3de09aa3
EA
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
3043c60c 880static int
d174bd64
DV
881shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
673a394b 886{
d174bd64
DV
887 char *vaddr;
888 int ret;
e5281ccd 889
d174bd64 890 vaddr = kmap(page);
e7e58eb5 891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
d174bd64
DV
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
897 user_data,
898 page_length);
d174bd64
DV
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
23c18c71
DV
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
d174bd64 907 kunmap(page);
40123c1f 908
755d2218 909 return ret ? -EFAULT : 0;
40123c1f
EA
910}
911
40123c1f 912static int
e244a443
DV
913i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
40123c1f 917{
40123c1f 918 ssize_t remain;
8c59967c
DV
919 loff_t offset;
920 char __user *user_data;
eb2c0c81 921 int shmem_page_offset, page_length, ret = 0;
8c59967c 922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 923 int hit_slowpath = 0;
58642885
DV
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
67d5a50c 926 struct sg_page_iter sg_iter;
40123c1f 927
2bb4629a 928 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
929 remain = args->size;
930
8c59967c 931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 932
58642885
DV
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
2c22569b 938 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
c8725f3d
CW
942
943 i915_gem_object_retire(obj);
58642885 944 }
c76ce038
CW
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 950
755d2218
CW
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
063e4e6b
PZ
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
755d2218
CW
957 i915_gem_object_pin_pages(obj);
958
673a394b 959 offset = args->offset;
05394f39 960 obj->dirty = 1;
673a394b 961
67d5a50c
ID
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
2db76d7c 964 struct page *page = sg_page_iter_page(&sg_iter);
58642885 965 int partial_cacheline_write;
e5281ccd 966
9da3da66
CW
967 if (remain <= 0)
968 break;
969
40123c1f
EA
970 /* Operation in this page
971 *
40123c1f 972 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
973 * page_length = bytes to copy for this page
974 */
c8cbbb8b 975 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 980
58642885
DV
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
8c59967c
DV
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
d174bd64
DV
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
e244a443
DV
997
998 hit_slowpath = 1;
e244a443 999 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
40123c1f 1004
e244a443 1005 mutex_lock(&dev->struct_mutex);
755d2218 1006
755d2218 1007 if (ret)
8c59967c 1008 goto out;
8c59967c 1009
17793c9a 1010next_page:
40123c1f 1011 remain -= page_length;
8c59967c 1012 user_data += page_length;
40123c1f 1013 offset += page_length;
673a394b
EA
1014 }
1015
fbd5a26d 1016out:
755d2218
CW
1017 i915_gem_object_unpin_pages(obj);
1018
e244a443 1019 if (hit_slowpath) {
8dcf015e
DV
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
e244a443 1029 }
8c59967c 1030 }
673a394b 1031
58642885 1032 if (needs_clflush_after)
e76e9aeb 1033 i915_gem_chipset_flush(dev);
58642885 1034
063e4e6b 1035 intel_fb_obj_flush(obj, false);
40123c1f 1036 return ret;
673a394b
EA
1037}
1038
1039/**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044int
1045i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1046 struct drm_file *file)
673a394b 1047{
5d77d9c5 1048 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1049 struct drm_i915_gem_pwrite *args = data;
05394f39 1050 struct drm_i915_gem_object *obj;
51311d0a
CW
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
2bb4629a 1057 to_user_ptr(args->data_ptr),
51311d0a
CW
1058 args->size))
1059 return -EFAULT;
1060
d330a953 1061 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
673a394b 1067
5d77d9c5
ID
1068 intel_runtime_pm_get(dev_priv);
1069
fbd5a26d 1070 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1071 if (ret)
5d77d9c5 1072 goto put_rpm;
1d7cfea1 1073
05394f39 1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1075 if (&obj->base == NULL) {
1d7cfea1
CW
1076 ret = -ENOENT;
1077 goto unlock;
fbd5a26d 1078 }
673a394b 1079
7dcd2499 1080 /* Bounds check destination. */
05394f39
CW
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
ce9d419d 1083 ret = -EINVAL;
35b62a89 1084 goto out;
ce9d419d
CW
1085 }
1086
1286ff73
DV
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
db53a302
CW
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
935aaa69 1097 ret = -EFAULT;
673a394b
EA
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
2c22569b
CW
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
fbd5a26d 1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1111 }
673a394b 1112
6a2c4232
CW
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
5c0480f2 1119
35b62a89 1120out:
05394f39 1121 drm_gem_object_unreference(&obj->base);
1d7cfea1 1122unlock:
fbd5a26d 1123 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1124put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
673a394b
EA
1127 return ret;
1128}
1129
b361237b 1130int
33196ded 1131i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1132 bool interruptible)
1133{
1f83fee0 1134 if (i915_reset_in_progress(error)) {
b361237b
CW
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1f83fee0
DV
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
b361237b
CW
1142 return -EIO;
1143
6689c167
MA
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
b361237b
CW
1151 }
1152
1153 return 0;
1154}
1155
1156/*
b6660d59 1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1158 */
84c33a64 1159int
b6660d59 1160i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1161{
1162 int ret;
1163
b6660d59 1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1165
1166 ret = 0;
b6660d59 1167 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1168 ret = i915_add_request(req->ring);
b361237b
CW
1169
1170 return ret;
1171}
1172
094f9a54
CW
1173static void fake_irq(unsigned long data)
1174{
1175 wake_up_process((struct task_struct *)data);
1176}
1177
1178static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1179 struct intel_engine_cs *ring)
094f9a54
CW
1180{
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182}
1183
b361237b 1184/**
9c654818
JH
1185 * __i915_wait_request - wait until execution of request has finished
1186 * @req: duh!
1187 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1188 * @interruptible: do an interruptible wait (normally yes)
1189 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1190 *
f69061be
DV
1191 * Note: It is of utmost importance that the passed in seqno and reset_counter
1192 * values have been read by the caller in an smp safe manner. Where read-side
1193 * locks are involved, it is sufficient to read the reset_counter before
1194 * unlocking the lock that protects the seqno. For lockless tricks, the
1195 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1196 * inserted.
1197 *
9c654818 1198 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1199 * errno with remaining time filled in timeout argument.
1200 */
9c654818 1201int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1202 unsigned reset_counter,
b29c19b6 1203 bool interruptible,
5ed0bdf2 1204 s64 *timeout,
b29c19b6 1205 struct drm_i915_file_private *file_priv)
b361237b 1206{
9c654818 1207 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1208 struct drm_device *dev = ring->dev;
3e31c6c0 1209 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1210 const bool irq_test_in_progress =
1211 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1212 DEFINE_WAIT(wait);
47e9766d 1213 unsigned long timeout_expire;
5ed0bdf2 1214 s64 before, now;
b361237b
CW
1215 int ret;
1216
9df7575f 1217 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1218
1b5a433a 1219 if (i915_gem_request_completed(req, true))
b361237b
CW
1220 return 0;
1221
7bd0e226
DV
1222 timeout_expire = timeout ?
1223 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1224
7c27f525 1225 if (INTEL_INFO(dev)->gen >= 6)
1854d5ca 1226 gen6_rps_boost(dev_priv, file_priv);
b29c19b6 1227
168c3f21 1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1229 return -ENODEV;
1230
094f9a54 1231 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1232 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1233 before = ktime_get_raw_ns();
094f9a54
CW
1234 for (;;) {
1235 struct timer_list timer;
b361237b 1236
094f9a54
CW
1237 prepare_to_wait(&ring->irq_queue, &wait,
1238 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1239
f69061be
DV
1240 /* We need to check whether any gpu reset happened in between
1241 * the caller grabbing the seqno and now ... */
094f9a54
CW
1242 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1243 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1244 * is truely gone. */
1245 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1246 if (ret == 0)
1247 ret = -EAGAIN;
1248 break;
1249 }
f69061be 1250
1b5a433a 1251 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1252 ret = 0;
1253 break;
1254 }
b361237b 1255
094f9a54
CW
1256 if (interruptible && signal_pending(current)) {
1257 ret = -ERESTARTSYS;
1258 break;
1259 }
1260
47e9766d 1261 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1262 ret = -ETIME;
1263 break;
1264 }
1265
1266 timer.function = NULL;
1267 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1268 unsigned long expire;
1269
094f9a54 1270 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1271 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1272 mod_timer(&timer, expire);
1273 }
1274
5035c275 1275 io_schedule();
094f9a54 1276
094f9a54
CW
1277 if (timer.function) {
1278 del_singleshot_timer_sync(&timer);
1279 destroy_timer_on_stack(&timer);
1280 }
1281 }
5ed0bdf2 1282 now = ktime_get_raw_ns();
74328ee5 1283 trace_i915_gem_request_wait_end(req);
b361237b 1284
168c3f21
MK
1285 if (!irq_test_in_progress)
1286 ring->irq_put(ring);
094f9a54
CW
1287
1288 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1289
1290 if (timeout) {
5ed0bdf2
TG
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
b361237b
CW
1304 }
1305
094f9a54 1306 return ret;
b361237b
CW
1307}
1308
1309/**
a4b3a571 1310 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1311 * request and object lists appropriately for that event.
1312 */
1313int
a4b3a571 1314i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1315{
a4b3a571
DV
1316 struct drm_device *dev;
1317 struct drm_i915_private *dev_priv;
1318 bool interruptible;
16e9a21f 1319 unsigned reset_counter;
b361237b
CW
1320 int ret;
1321
a4b3a571
DV
1322 BUG_ON(req == NULL);
1323
1324 dev = req->ring->dev;
1325 dev_priv = dev->dev_private;
1326 interruptible = dev_priv->mm.interruptible;
1327
b361237b 1328 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1329
33196ded 1330 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1331 if (ret)
1332 return ret;
1333
a4b3a571 1334 ret = i915_gem_check_olr(req);
b361237b
CW
1335 if (ret)
1336 return ret;
1337
16e9a21f 1338 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1339 i915_gem_request_reference(req);
9c654818
JH
1340 ret = __i915_wait_request(req, reset_counter,
1341 interruptible, NULL, NULL);
a4b3a571
DV
1342 i915_gem_request_unreference(req);
1343 return ret;
b361237b
CW
1344}
1345
d26e3af8 1346static int
8e639549 1347i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1348{
c8725f3d
CW
1349 if (!obj->active)
1350 return 0;
d26e3af8
CW
1351
1352 /* Manually manage the write flush as we may have not yet
1353 * retired the buffer.
1354 *
97b2a6a1
JH
1355 * Note that the last_write_req is always the earlier of
1356 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1357 * we know we have passed the last write.
1358 */
97b2a6a1 1359 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1360
1361 return 0;
1362}
1363
b361237b
CW
1364/**
1365 * Ensures that all rendering to the object has completed and the object is
1366 * safe to unbind from the GTT or access from the CPU.
1367 */
1368static __must_check int
1369i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1370 bool readonly)
1371{
97b2a6a1 1372 struct drm_i915_gem_request *req;
b361237b
CW
1373 int ret;
1374
97b2a6a1
JH
1375 req = readonly ? obj->last_write_req : obj->last_read_req;
1376 if (!req)
b361237b
CW
1377 return 0;
1378
a4b3a571 1379 ret = i915_wait_request(req);
b361237b
CW
1380 if (ret)
1381 return ret;
1382
8e639549 1383 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1384}
1385
3236f57a
CW
1386/* A nonblocking variant of the above wait. This is a highly dangerous routine
1387 * as the object state may change during this call.
1388 */
1389static __must_check int
1390i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1391 struct drm_i915_file_private *file_priv,
3236f57a
CW
1392 bool readonly)
1393{
97b2a6a1 1394 struct drm_i915_gem_request *req;
3236f57a
CW
1395 struct drm_device *dev = obj->base.dev;
1396 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1397 unsigned reset_counter;
3236f57a
CW
1398 int ret;
1399
1400 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1401 BUG_ON(!dev_priv->mm.interruptible);
1402
97b2a6a1
JH
1403 req = readonly ? obj->last_write_req : obj->last_read_req;
1404 if (!req)
3236f57a
CW
1405 return 0;
1406
33196ded 1407 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1408 if (ret)
1409 return ret;
1410
b6660d59 1411 ret = i915_gem_check_olr(req);
3236f57a
CW
1412 if (ret)
1413 return ret;
1414
f69061be 1415 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1416 i915_gem_request_reference(req);
3236f57a 1417 mutex_unlock(&dev->struct_mutex);
9c654818 1418 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1419 mutex_lock(&dev->struct_mutex);
ff865885 1420 i915_gem_request_unreference(req);
d26e3af8
CW
1421 if (ret)
1422 return ret;
3236f57a 1423
8e639549 1424 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1425}
1426
673a394b 1427/**
2ef7eeaa
EA
1428 * Called when user space prepares to use an object with the CPU, either
1429 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1430 */
1431int
1432i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1433 struct drm_file *file)
673a394b
EA
1434{
1435 struct drm_i915_gem_set_domain *args = data;
05394f39 1436 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1437 uint32_t read_domains = args->read_domains;
1438 uint32_t write_domain = args->write_domain;
673a394b
EA
1439 int ret;
1440
2ef7eeaa 1441 /* Only handle setting domains to types used by the CPU. */
21d509e3 1442 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1443 return -EINVAL;
1444
21d509e3 1445 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1446 return -EINVAL;
1447
1448 /* Having something in the write domain implies it's in the read
1449 * domain, and only that read domain. Enforce that in the request.
1450 */
1451 if (write_domain != 0 && read_domains != write_domain)
1452 return -EINVAL;
1453
76c1dec1 1454 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1455 if (ret)
76c1dec1 1456 return ret;
1d7cfea1 1457
05394f39 1458 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1459 if (&obj->base == NULL) {
1d7cfea1
CW
1460 ret = -ENOENT;
1461 goto unlock;
76c1dec1 1462 }
673a394b 1463
3236f57a
CW
1464 /* Try to flush the object off the GPU without holding the lock.
1465 * We will repeat the flush holding the lock in the normal manner
1466 * to catch cases where we are gazumped.
1467 */
6e4930f6
CW
1468 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1469 file->driver_priv,
1470 !write_domain);
3236f57a
CW
1471 if (ret)
1472 goto unref;
1473
43566ded 1474 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1475 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1476 else
e47c68e9 1477 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1478
3236f57a 1479unref:
05394f39 1480 drm_gem_object_unreference(&obj->base);
1d7cfea1 1481unlock:
673a394b
EA
1482 mutex_unlock(&dev->struct_mutex);
1483 return ret;
1484}
1485
1486/**
1487 * Called when user space has done writes to this buffer
1488 */
1489int
1490i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1491 struct drm_file *file)
673a394b
EA
1492{
1493 struct drm_i915_gem_sw_finish *args = data;
05394f39 1494 struct drm_i915_gem_object *obj;
673a394b
EA
1495 int ret = 0;
1496
76c1dec1 1497 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1498 if (ret)
76c1dec1 1499 return ret;
1d7cfea1 1500
05394f39 1501 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1502 if (&obj->base == NULL) {
1d7cfea1
CW
1503 ret = -ENOENT;
1504 goto unlock;
673a394b
EA
1505 }
1506
673a394b 1507 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1508 if (obj->pin_display)
e62b59e4 1509 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1510
05394f39 1511 drm_gem_object_unreference(&obj->base);
1d7cfea1 1512unlock:
673a394b
EA
1513 mutex_unlock(&dev->struct_mutex);
1514 return ret;
1515}
1516
1517/**
1518 * Maps the contents of an object, returning the address it is mapped
1519 * into.
1520 *
1521 * While the mapping holds a reference on the contents of the object, it doesn't
1522 * imply a ref on the object itself.
34367381
DV
1523 *
1524 * IMPORTANT:
1525 *
1526 * DRM driver writers who look a this function as an example for how to do GEM
1527 * mmap support, please don't implement mmap support like here. The modern way
1528 * to implement DRM mmap support is with an mmap offset ioctl (like
1529 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1530 * That way debug tooling like valgrind will understand what's going on, hiding
1531 * the mmap call in a driver private ioctl will break that. The i915 driver only
1532 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1533 */
1534int
1535i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1536 struct drm_file *file)
673a394b
EA
1537{
1538 struct drm_i915_gem_mmap *args = data;
1539 struct drm_gem_object *obj;
673a394b
EA
1540 unsigned long addr;
1541
1816f923
AG
1542 if (args->flags & ~(I915_MMAP_WC))
1543 return -EINVAL;
1544
1545 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1546 return -ENODEV;
1547
05394f39 1548 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1549 if (obj == NULL)
bf79cb91 1550 return -ENOENT;
673a394b 1551
1286ff73
DV
1552 /* prime objects have no backing filp to GEM mmap
1553 * pages from.
1554 */
1555 if (!obj->filp) {
1556 drm_gem_object_unreference_unlocked(obj);
1557 return -EINVAL;
1558 }
1559
6be5ceb0 1560 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1561 PROT_READ | PROT_WRITE, MAP_SHARED,
1562 args->offset);
1816f923
AG
1563 if (args->flags & I915_MMAP_WC) {
1564 struct mm_struct *mm = current->mm;
1565 struct vm_area_struct *vma;
1566
1567 down_write(&mm->mmap_sem);
1568 vma = find_vma(mm, addr);
1569 if (vma)
1570 vma->vm_page_prot =
1571 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1572 else
1573 addr = -ENOMEM;
1574 up_write(&mm->mmap_sem);
1575 }
bc9025bd 1576 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1577 if (IS_ERR((void *)addr))
1578 return addr;
1579
1580 args->addr_ptr = (uint64_t) addr;
1581
1582 return 0;
1583}
1584
de151cf6
JB
1585/**
1586 * i915_gem_fault - fault a page into the GTT
1587 * vma: VMA in question
1588 * vmf: fault info
1589 *
1590 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1591 * from userspace. The fault handler takes care of binding the object to
1592 * the GTT (if needed), allocating and programming a fence register (again,
1593 * only if needed based on whether the old reg is still valid or the object
1594 * is tiled) and inserting a new PTE into the faulting process.
1595 *
1596 * Note that the faulting process may involve evicting existing objects
1597 * from the GTT and/or fence registers to make room. So performance may
1598 * suffer if the GTT working set is large or there are few fence registers
1599 * left.
1600 */
1601int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1602{
05394f39
CW
1603 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1604 struct drm_device *dev = obj->base.dev;
3e31c6c0 1605 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1606 pgoff_t page_offset;
1607 unsigned long pfn;
1608 int ret = 0;
0f973f27 1609 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1610
f65c9168
PZ
1611 intel_runtime_pm_get(dev_priv);
1612
de151cf6
JB
1613 /* We don't use vmf->pgoff since that has the fake offset */
1614 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1615 PAGE_SHIFT;
1616
d9bc7e9f
CW
1617 ret = i915_mutex_lock_interruptible(dev);
1618 if (ret)
1619 goto out;
a00b10c3 1620
db53a302
CW
1621 trace_i915_gem_object_fault(obj, page_offset, true, write);
1622
6e4930f6
CW
1623 /* Try to flush the object off the GPU first without holding the lock.
1624 * Upon reacquiring the lock, we will perform our sanity checks and then
1625 * repeat the flush holding the lock in the normal manner to catch cases
1626 * where we are gazumped.
1627 */
1628 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1629 if (ret)
1630 goto unlock;
1631
eb119bd6
CW
1632 /* Access to snoopable pages through the GTT is incoherent. */
1633 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1634 ret = -EFAULT;
eb119bd6
CW
1635 goto unlock;
1636 }
1637
d9bc7e9f 1638 /* Now bind it into the GTT if needed */
1ec9e26d 1639 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1640 if (ret)
1641 goto unlock;
4a684a41 1642
c9839303
CW
1643 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1644 if (ret)
1645 goto unpin;
74898d7e 1646
06d98131 1647 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1648 if (ret)
c9839303 1649 goto unpin;
7d1c4804 1650
b90b91d8 1651 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1652 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1653 pfn >>= PAGE_SHIFT;
de151cf6 1654
b90b91d8 1655 if (!obj->fault_mappable) {
beff0d0f
VS
1656 unsigned long size = min_t(unsigned long,
1657 vma->vm_end - vma->vm_start,
1658 obj->base.size);
b90b91d8
CW
1659 int i;
1660
beff0d0f 1661 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1662 ret = vm_insert_pfn(vma,
1663 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1664 pfn + i);
1665 if (ret)
1666 break;
1667 }
1668
1669 obj->fault_mappable = true;
1670 } else
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vmf->virtual_address,
1673 pfn + page_offset);
c9839303 1674unpin:
d7f46fc4 1675 i915_gem_object_ggtt_unpin(obj);
c715089f 1676unlock:
de151cf6 1677 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1678out:
de151cf6 1679 switch (ret) {
d9bc7e9f 1680 case -EIO:
2232f031
DV
1681 /*
1682 * We eat errors when the gpu is terminally wedged to avoid
1683 * userspace unduly crashing (gl has no provisions for mmaps to
1684 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1685 * and so needs to be reported.
1686 */
1687 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1688 ret = VM_FAULT_SIGBUS;
1689 break;
1690 }
045e769a 1691 case -EAGAIN:
571c608d
DV
1692 /*
1693 * EAGAIN means the gpu is hung and we'll wait for the error
1694 * handler to reset everything when re-faulting in
1695 * i915_mutex_lock_interruptible.
d9bc7e9f 1696 */
c715089f
CW
1697 case 0:
1698 case -ERESTARTSYS:
bed636ab 1699 case -EINTR:
e79e0fe3
DR
1700 case -EBUSY:
1701 /*
1702 * EBUSY is ok: this just means that another thread
1703 * already did the job.
1704 */
f65c9168
PZ
1705 ret = VM_FAULT_NOPAGE;
1706 break;
de151cf6 1707 case -ENOMEM:
f65c9168
PZ
1708 ret = VM_FAULT_OOM;
1709 break;
a7c2e1aa 1710 case -ENOSPC:
45d67817 1711 case -EFAULT:
f65c9168
PZ
1712 ret = VM_FAULT_SIGBUS;
1713 break;
de151cf6 1714 default:
a7c2e1aa 1715 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1716 ret = VM_FAULT_SIGBUS;
1717 break;
de151cf6 1718 }
f65c9168
PZ
1719
1720 intel_runtime_pm_put(dev_priv);
1721 return ret;
de151cf6
JB
1722}
1723
901782b2
CW
1724/**
1725 * i915_gem_release_mmap - remove physical page mappings
1726 * @obj: obj in question
1727 *
af901ca1 1728 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1729 * relinquish ownership of the pages back to the system.
1730 *
1731 * It is vital that we remove the page mapping if we have mapped a tiled
1732 * object through the GTT and then lose the fence register due to
1733 * resource pressure. Similarly if the object has been moved out of the
1734 * aperture, than pages mapped into userspace must be revoked. Removing the
1735 * mapping will then trigger a page fault on the next user access, allowing
1736 * fixup by i915_gem_fault().
1737 */
d05ca301 1738void
05394f39 1739i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1740{
6299f992
CW
1741 if (!obj->fault_mappable)
1742 return;
901782b2 1743
6796cb16
DH
1744 drm_vma_node_unmap(&obj->base.vma_node,
1745 obj->base.dev->anon_inode->i_mapping);
6299f992 1746 obj->fault_mappable = false;
901782b2
CW
1747}
1748
eedd10f4
CW
1749void
1750i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1751{
1752 struct drm_i915_gem_object *obj;
1753
1754 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1755 i915_gem_release_mmap(obj);
1756}
1757
0fa87796 1758uint32_t
e28f8711 1759i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1760{
e28f8711 1761 uint32_t gtt_size;
92b88aeb
CW
1762
1763 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1764 tiling_mode == I915_TILING_NONE)
1765 return size;
92b88aeb
CW
1766
1767 /* Previous chips need a power-of-two fence region when tiling */
1768 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1769 gtt_size = 1024*1024;
92b88aeb 1770 else
e28f8711 1771 gtt_size = 512*1024;
92b88aeb 1772
e28f8711
CW
1773 while (gtt_size < size)
1774 gtt_size <<= 1;
92b88aeb 1775
e28f8711 1776 return gtt_size;
92b88aeb
CW
1777}
1778
de151cf6
JB
1779/**
1780 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1781 * @obj: object to check
1782 *
1783 * Return the required GTT alignment for an object, taking into account
5e783301 1784 * potential fence register mapping.
de151cf6 1785 */
d865110c
ID
1786uint32_t
1787i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1788 int tiling_mode, bool fenced)
de151cf6 1789{
de151cf6
JB
1790 /*
1791 * Minimum alignment is 4k (GTT page size), but might be greater
1792 * if a fence register is needed for the object.
1793 */
d865110c 1794 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1795 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1796 return 4096;
1797
a00b10c3
CW
1798 /*
1799 * Previous chips need to be aligned to the size of the smallest
1800 * fence register that can contain the object.
1801 */
e28f8711 1802 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1803}
1804
d8cb5086
CW
1805static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1806{
1807 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1808 int ret;
1809
0de23977 1810 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1811 return 0;
1812
da494d7c
DV
1813 dev_priv->mm.shrinker_no_lock_stealing = true;
1814
d8cb5086
CW
1815 ret = drm_gem_create_mmap_offset(&obj->base);
1816 if (ret != -ENOSPC)
da494d7c 1817 goto out;
d8cb5086
CW
1818
1819 /* Badly fragmented mmap space? The only way we can recover
1820 * space is by destroying unwanted objects. We can't randomly release
1821 * mmap_offsets as userspace expects them to be persistent for the
1822 * lifetime of the objects. The closest we can is to release the
1823 * offsets on purgeable objects by truncating it and marking it purged,
1824 * which prevents userspace from ever using that object again.
1825 */
21ab4e74
CW
1826 i915_gem_shrink(dev_priv,
1827 obj->base.size >> PAGE_SHIFT,
1828 I915_SHRINK_BOUND |
1829 I915_SHRINK_UNBOUND |
1830 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1831 ret = drm_gem_create_mmap_offset(&obj->base);
1832 if (ret != -ENOSPC)
da494d7c 1833 goto out;
d8cb5086
CW
1834
1835 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1836 ret = drm_gem_create_mmap_offset(&obj->base);
1837out:
1838 dev_priv->mm.shrinker_no_lock_stealing = false;
1839
1840 return ret;
d8cb5086
CW
1841}
1842
1843static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1844{
d8cb5086
CW
1845 drm_gem_free_mmap_offset(&obj->base);
1846}
1847
da6b51d0 1848int
ff72145b
DA
1849i915_gem_mmap_gtt(struct drm_file *file,
1850 struct drm_device *dev,
da6b51d0 1851 uint32_t handle,
ff72145b 1852 uint64_t *offset)
de151cf6 1853{
da761a6e 1854 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1855 struct drm_i915_gem_object *obj;
de151cf6
JB
1856 int ret;
1857
76c1dec1 1858 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1859 if (ret)
76c1dec1 1860 return ret;
de151cf6 1861
ff72145b 1862 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1863 if (&obj->base == NULL) {
1d7cfea1
CW
1864 ret = -ENOENT;
1865 goto unlock;
1866 }
de151cf6 1867
5d4545ae 1868 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1869 ret = -E2BIG;
ff56b0bc 1870 goto out;
da761a6e
CW
1871 }
1872
05394f39 1873 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1874 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1875 ret = -EFAULT;
1d7cfea1 1876 goto out;
ab18282d
CW
1877 }
1878
d8cb5086
CW
1879 ret = i915_gem_object_create_mmap_offset(obj);
1880 if (ret)
1881 goto out;
de151cf6 1882
0de23977 1883 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1884
1d7cfea1 1885out:
05394f39 1886 drm_gem_object_unreference(&obj->base);
1d7cfea1 1887unlock:
de151cf6 1888 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1889 return ret;
de151cf6
JB
1890}
1891
ff72145b
DA
1892/**
1893 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1894 * @dev: DRM device
1895 * @data: GTT mapping ioctl data
1896 * @file: GEM object info
1897 *
1898 * Simply returns the fake offset to userspace so it can mmap it.
1899 * The mmap call will end up in drm_gem_mmap(), which will set things
1900 * up so we can get faults in the handler above.
1901 *
1902 * The fault handler will take care of binding the object into the GTT
1903 * (since it may have been evicted to make room for something), allocating
1904 * a fence register, and mapping the appropriate aperture address into
1905 * userspace.
1906 */
1907int
1908i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1909 struct drm_file *file)
1910{
1911 struct drm_i915_gem_mmap_gtt *args = data;
1912
da6b51d0 1913 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1914}
1915
225067ee
DV
1916/* Immediately discard the backing storage */
1917static void
1918i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1919{
4d6294bf 1920 i915_gem_object_free_mmap_offset(obj);
1286ff73 1921
4d6294bf
CW
1922 if (obj->base.filp == NULL)
1923 return;
e5281ccd 1924
225067ee
DV
1925 /* Our goal here is to return as much of the memory as
1926 * is possible back to the system as we are called from OOM.
1927 * To do this we must instruct the shmfs to drop all of its
1928 * backing pages, *now*.
1929 */
5537252b 1930 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1931 obj->madv = __I915_MADV_PURGED;
1932}
e5281ccd 1933
5537252b
CW
1934/* Try to discard unwanted pages */
1935static void
1936i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1937{
5537252b
CW
1938 struct address_space *mapping;
1939
1940 switch (obj->madv) {
1941 case I915_MADV_DONTNEED:
1942 i915_gem_object_truncate(obj);
1943 case __I915_MADV_PURGED:
1944 return;
1945 }
1946
1947 if (obj->base.filp == NULL)
1948 return;
1949
1950 mapping = file_inode(obj->base.filp)->i_mapping,
1951 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1952}
1953
5cdf5881 1954static void
05394f39 1955i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1956{
90797e6d
ID
1957 struct sg_page_iter sg_iter;
1958 int ret;
1286ff73 1959
05394f39 1960 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1961
6c085a72
CW
1962 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1963 if (ret) {
1964 /* In the event of a disaster, abandon all caches and
1965 * hope for the best.
1966 */
1967 WARN_ON(ret != -EIO);
2c22569b 1968 i915_gem_clflush_object(obj, true);
6c085a72
CW
1969 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1970 }
1971
6dacfd2f 1972 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1973 i915_gem_object_save_bit_17_swizzle(obj);
1974
05394f39
CW
1975 if (obj->madv == I915_MADV_DONTNEED)
1976 obj->dirty = 0;
3ef94daa 1977
90797e6d 1978 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1979 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1980
05394f39 1981 if (obj->dirty)
9da3da66 1982 set_page_dirty(page);
3ef94daa 1983
05394f39 1984 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1985 mark_page_accessed(page);
3ef94daa 1986
9da3da66 1987 page_cache_release(page);
3ef94daa 1988 }
05394f39 1989 obj->dirty = 0;
673a394b 1990
9da3da66
CW
1991 sg_free_table(obj->pages);
1992 kfree(obj->pages);
37e680a1 1993}
6c085a72 1994
dd624afd 1995int
37e680a1
CW
1996i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1997{
1998 const struct drm_i915_gem_object_ops *ops = obj->ops;
1999
2f745ad3 2000 if (obj->pages == NULL)
37e680a1
CW
2001 return 0;
2002
a5570178
CW
2003 if (obj->pages_pin_count)
2004 return -EBUSY;
2005
9843877d 2006 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2007
a2165e31
CW
2008 /* ->put_pages might need to allocate memory for the bit17 swizzle
2009 * array, hence protect them from being reaped by removing them from gtt
2010 * lists early. */
35c20a60 2011 list_del(&obj->global_list);
a2165e31 2012
37e680a1 2013 ops->put_pages(obj);
05394f39 2014 obj->pages = NULL;
37e680a1 2015
5537252b 2016 i915_gem_object_invalidate(obj);
6c085a72
CW
2017
2018 return 0;
2019}
2020
37e680a1 2021static int
6c085a72 2022i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2023{
6c085a72 2024 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2025 int page_count, i;
2026 struct address_space *mapping;
9da3da66
CW
2027 struct sg_table *st;
2028 struct scatterlist *sg;
90797e6d 2029 struct sg_page_iter sg_iter;
e5281ccd 2030 struct page *page;
90797e6d 2031 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2032 gfp_t gfp;
e5281ccd 2033
6c085a72
CW
2034 /* Assert that the object is not currently in any GPU domain. As it
2035 * wasn't in the GTT, there shouldn't be any way it could have been in
2036 * a GPU cache
2037 */
2038 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2039 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2040
9da3da66
CW
2041 st = kmalloc(sizeof(*st), GFP_KERNEL);
2042 if (st == NULL)
2043 return -ENOMEM;
2044
05394f39 2045 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2046 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2047 kfree(st);
e5281ccd 2048 return -ENOMEM;
9da3da66 2049 }
e5281ccd 2050
9da3da66
CW
2051 /* Get the list of pages out of our struct file. They'll be pinned
2052 * at this point until we release them.
2053 *
2054 * Fail silently without starting the shrinker
2055 */
496ad9aa 2056 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2057 gfp = mapping_gfp_mask(mapping);
caf49191 2058 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2059 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2060 sg = st->sgl;
2061 st->nents = 0;
2062 for (i = 0; i < page_count; i++) {
6c085a72
CW
2063 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2064 if (IS_ERR(page)) {
21ab4e74
CW
2065 i915_gem_shrink(dev_priv,
2066 page_count,
2067 I915_SHRINK_BOUND |
2068 I915_SHRINK_UNBOUND |
2069 I915_SHRINK_PURGEABLE);
6c085a72
CW
2070 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2071 }
2072 if (IS_ERR(page)) {
2073 /* We've tried hard to allocate the memory by reaping
2074 * our own buffer, now let the real VM do its job and
2075 * go down in flames if truly OOM.
2076 */
6c085a72 2077 i915_gem_shrink_all(dev_priv);
f461d1be 2078 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2079 if (IS_ERR(page))
2080 goto err_pages;
6c085a72 2081 }
426729dc
KRW
2082#ifdef CONFIG_SWIOTLB
2083 if (swiotlb_nr_tbl()) {
2084 st->nents++;
2085 sg_set_page(sg, page, PAGE_SIZE, 0);
2086 sg = sg_next(sg);
2087 continue;
2088 }
2089#endif
90797e6d
ID
2090 if (!i || page_to_pfn(page) != last_pfn + 1) {
2091 if (i)
2092 sg = sg_next(sg);
2093 st->nents++;
2094 sg_set_page(sg, page, PAGE_SIZE, 0);
2095 } else {
2096 sg->length += PAGE_SIZE;
2097 }
2098 last_pfn = page_to_pfn(page);
3bbbe706
DV
2099
2100 /* Check that the i965g/gm workaround works. */
2101 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2102 }
426729dc
KRW
2103#ifdef CONFIG_SWIOTLB
2104 if (!swiotlb_nr_tbl())
2105#endif
2106 sg_mark_end(sg);
74ce6b6c
CW
2107 obj->pages = st;
2108
6dacfd2f 2109 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2110 i915_gem_object_do_bit_17_swizzle(obj);
2111
656bfa3a
DV
2112 if (obj->tiling_mode != I915_TILING_NONE &&
2113 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2114 i915_gem_object_pin_pages(obj);
2115
e5281ccd
CW
2116 return 0;
2117
2118err_pages:
90797e6d
ID
2119 sg_mark_end(sg);
2120 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2121 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2122 sg_free_table(st);
2123 kfree(st);
0820baf3
CW
2124
2125 /* shmemfs first checks if there is enough memory to allocate the page
2126 * and reports ENOSPC should there be insufficient, along with the usual
2127 * ENOMEM for a genuine allocation failure.
2128 *
2129 * We use ENOSPC in our driver to mean that we have run out of aperture
2130 * space and so want to translate the error from shmemfs back to our
2131 * usual understanding of ENOMEM.
2132 */
2133 if (PTR_ERR(page) == -ENOSPC)
2134 return -ENOMEM;
2135 else
2136 return PTR_ERR(page);
673a394b
EA
2137}
2138
37e680a1
CW
2139/* Ensure that the associated pages are gathered from the backing storage
2140 * and pinned into our object. i915_gem_object_get_pages() may be called
2141 * multiple times before they are released by a single call to
2142 * i915_gem_object_put_pages() - once the pages are no longer referenced
2143 * either as a result of memory pressure (reaping pages under the shrinker)
2144 * or as the object is itself released.
2145 */
2146int
2147i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2148{
2149 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2150 const struct drm_i915_gem_object_ops *ops = obj->ops;
2151 int ret;
2152
2f745ad3 2153 if (obj->pages)
37e680a1
CW
2154 return 0;
2155
43e28f09 2156 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2157 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2158 return -EFAULT;
43e28f09
CW
2159 }
2160
a5570178
CW
2161 BUG_ON(obj->pages_pin_count);
2162
37e680a1
CW
2163 ret = ops->get_pages(obj);
2164 if (ret)
2165 return ret;
2166
35c20a60 2167 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2168
2169 obj->get_page.sg = obj->pages->sgl;
2170 obj->get_page.last = 0;
2171
37e680a1 2172 return 0;
673a394b
EA
2173}
2174
e2d05a8b 2175static void
05394f39 2176i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2177 struct intel_engine_cs *ring)
673a394b 2178{
41c52415
JH
2179 struct drm_i915_gem_request *req;
2180 struct intel_engine_cs *old_ring;
617dbe27 2181
852835f3 2182 BUG_ON(ring == NULL);
41c52415
JH
2183
2184 req = intel_ring_get_request(ring);
2185 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2186
2187 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2188 /* Keep the request relative to the current ring */
2189 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2190 }
673a394b
EA
2191
2192 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2193 if (!obj->active) {
2194 drm_gem_object_reference(&obj->base);
2195 obj->active = 1;
673a394b 2196 }
e35a41de 2197
05394f39 2198 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2199
97b2a6a1 2200 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2201}
2202
e2d05a8b 2203void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2204 struct intel_engine_cs *ring)
e2d05a8b
BW
2205{
2206 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207 return i915_gem_object_move_to_active(vma->obj, ring);
2208}
2209
caea7476 2210static void
caea7476 2211i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2212{
feb822cf 2213 struct i915_vma *vma;
ce44b0ea 2214
65ce3027 2215 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2216 BUG_ON(!obj->active);
caea7476 2217
fe14d5f4
TU
2218 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2219 if (!list_empty(&vma->mm_list))
2220 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2221 }
caea7476 2222
f99d7069
DV
2223 intel_fb_obj_flush(obj, true);
2224
65ce3027 2225 list_del_init(&obj->ring_list);
caea7476 2226
97b2a6a1
JH
2227 i915_gem_request_assign(&obj->last_read_req, NULL);
2228 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2229 obj->base.write_domain = 0;
2230
97b2a6a1 2231 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2232
2233 obj->active = 0;
2234 drm_gem_object_unreference(&obj->base);
2235
2236 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2237}
673a394b 2238
c8725f3d
CW
2239static void
2240i915_gem_object_retire(struct drm_i915_gem_object *obj)
2241{
41c52415 2242 if (obj->last_read_req == NULL)
c8725f3d
CW
2243 return;
2244
1b5a433a 2245 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2246 i915_gem_object_move_to_inactive(obj);
2247}
2248
9d773091 2249static int
fca26bb4 2250i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2251{
9d773091 2252 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2253 struct intel_engine_cs *ring;
9d773091 2254 int ret, i, j;
53d227f2 2255
107f27a5 2256 /* Carefully retire all requests without writing to the rings */
9d773091 2257 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2258 ret = intel_ring_idle(ring);
2259 if (ret)
2260 return ret;
9d773091 2261 }
9d773091 2262 i915_gem_retire_requests(dev);
107f27a5
CW
2263
2264 /* Finally reset hw state */
9d773091 2265 for_each_ring(ring, dev_priv, i) {
fca26bb4 2266 intel_ring_init_seqno(ring, seqno);
498d2ac1 2267
ebc348b2
BW
2268 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2269 ring->semaphore.sync_seqno[j] = 0;
9d773091 2270 }
53d227f2 2271
9d773091 2272 return 0;
53d227f2
DV
2273}
2274
fca26bb4
MK
2275int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2276{
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 int ret;
2279
2280 if (seqno == 0)
2281 return -EINVAL;
2282
2283 /* HWS page needs to be set less than what we
2284 * will inject to ring
2285 */
2286 ret = i915_gem_init_seqno(dev, seqno - 1);
2287 if (ret)
2288 return ret;
2289
2290 /* Carefully set the last_seqno value so that wrap
2291 * detection still works
2292 */
2293 dev_priv->next_seqno = seqno;
2294 dev_priv->last_seqno = seqno - 1;
2295 if (dev_priv->last_seqno == 0)
2296 dev_priv->last_seqno--;
2297
2298 return 0;
2299}
2300
9d773091
CW
2301int
2302i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2303{
9d773091
CW
2304 struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306 /* reserve 0 for non-seqno */
2307 if (dev_priv->next_seqno == 0) {
fca26bb4 2308 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2309 if (ret)
2310 return ret;
53d227f2 2311
9d773091
CW
2312 dev_priv->next_seqno = 1;
2313 }
53d227f2 2314
f72b3435 2315 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2316 return 0;
53d227f2
DV
2317}
2318
a4872ba6 2319int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2320 struct drm_file *file,
9400ae5c 2321 struct drm_i915_gem_object *obj)
673a394b 2322{
3e31c6c0 2323 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2324 struct drm_i915_gem_request *request;
48e29f55 2325 struct intel_ringbuffer *ringbuf;
6d3d8274 2326 u32 request_start;
3cce469c
CW
2327 int ret;
2328
6259cead 2329 request = ring->outstanding_lazy_request;
48e29f55
OM
2330 if (WARN_ON(request == NULL))
2331 return -ENOMEM;
2332
2333 if (i915.enable_execlists) {
21076372 2334 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2335 } else
2336 ringbuf = ring->buffer;
2337
2338 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2339 /*
2340 * Emit any outstanding flushes - execbuf can fail to emit the flush
2341 * after having emitted the batchbuffer command. Hence we need to fix
2342 * things up similar to emitting the lazy request. The difference here
2343 * is that the flush _must_ happen before the next request, no matter
2344 * what.
2345 */
48e29f55 2346 if (i915.enable_execlists) {
21076372 2347 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2348 if (ret)
2349 return ret;
2350 } else {
2351 ret = intel_ring_flush_all_caches(ring);
2352 if (ret)
2353 return ret;
2354 }
cc889e0f 2355
a71d8d94
CW
2356 /* Record the position of the start of the request so that
2357 * should we detect the updated seqno part-way through the
2358 * GPU processing the request, we never over-estimate the
2359 * position of the head.
2360 */
6d3d8274 2361 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2362
48e29f55 2363 if (i915.enable_execlists) {
72f95afa 2364 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2365 if (ret)
2366 return ret;
2367 } else {
2368 ret = ring->add_request(ring);
2369 if (ret)
2370 return ret;
2371 }
673a394b 2372
7d736f4f 2373 request->head = request_start;
6d3d8274 2374 request->tail = intel_ring_get_tail(ringbuf);
7d736f4f
MK
2375
2376 /* Whilst this request exists, batch_obj will be on the
2377 * active_list, and so will hold the active reference. Only when this
2378 * request is retired will the the batch_obj be moved onto the
2379 * inactive_list and lose its active reference. Hence we do not need
2380 * to explicitly hold another reference here.
2381 */
9a7e0c2a 2382 request->batch_obj = obj;
0e50e96b 2383
48e29f55
OM
2384 if (!i915.enable_execlists) {
2385 /* Hold a reference to the current context so that we can inspect
2386 * it later in case a hangcheck error event fires.
2387 */
2388 request->ctx = ring->last_context;
2389 if (request->ctx)
2390 i915_gem_context_reference(request->ctx);
2391 }
0e50e96b 2392
673a394b 2393 request->emitted_jiffies = jiffies;
852835f3 2394 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2395 request->file_priv = NULL;
852835f3 2396
db53a302
CW
2397 if (file) {
2398 struct drm_i915_file_private *file_priv = file->driver_priv;
2399
1c25595f 2400 spin_lock(&file_priv->mm.lock);
f787a5f5 2401 request->file_priv = file_priv;
b962442e 2402 list_add_tail(&request->client_list,
f787a5f5 2403 &file_priv->mm.request_list);
1c25595f 2404 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2405
2406 request->pid = get_pid(task_pid(current));
b962442e 2407 }
673a394b 2408
74328ee5 2409 trace_i915_gem_request_add(request);
6259cead 2410 ring->outstanding_lazy_request = NULL;
db53a302 2411
87255483 2412 i915_queue_hangcheck(ring->dev);
10cd45b6 2413
87255483
DV
2414 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2415 queue_delayed_work(dev_priv->wq,
2416 &dev_priv->mm.retire_work,
2417 round_jiffies_up_relative(HZ));
2418 intel_mark_busy(dev_priv->dev);
cc889e0f 2419
3cce469c 2420 return 0;
673a394b
EA
2421}
2422
f787a5f5
CW
2423static inline void
2424i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2425{
1c25595f 2426 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2427
1c25595f
CW
2428 if (!file_priv)
2429 return;
1c5d22f7 2430
1c25595f 2431 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2432 list_del(&request->client_list);
2433 request->file_priv = NULL;
1c25595f 2434 spin_unlock(&file_priv->mm.lock);
673a394b 2435}
673a394b 2436
939fd762 2437static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2438 const struct intel_context *ctx)
be62acb4 2439{
44e2c070 2440 unsigned long elapsed;
be62acb4 2441
44e2c070
MK
2442 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2443
2444 if (ctx->hang_stats.banned)
be62acb4
MK
2445 return true;
2446
676fa572
CW
2447 if (ctx->hang_stats.ban_period_seconds &&
2448 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2449 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2450 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2451 return true;
88b4aa87
MK
2452 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2453 if (i915_stop_ring_allow_warn(dev_priv))
2454 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2455 return true;
3fac8978 2456 }
be62acb4
MK
2457 }
2458
2459 return false;
2460}
2461
939fd762 2462static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2463 struct intel_context *ctx,
b6b0fac0 2464 const bool guilty)
aa60c664 2465{
44e2c070
MK
2466 struct i915_ctx_hang_stats *hs;
2467
2468 if (WARN_ON(!ctx))
2469 return;
aa60c664 2470
44e2c070
MK
2471 hs = &ctx->hang_stats;
2472
2473 if (guilty) {
939fd762 2474 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2475 hs->batch_active++;
2476 hs->guilty_ts = get_seconds();
2477 } else {
2478 hs->batch_pending++;
aa60c664
MK
2479 }
2480}
2481
0e50e96b
MK
2482static void i915_gem_free_request(struct drm_i915_gem_request *request)
2483{
2484 list_del(&request->list);
2485 i915_gem_request_remove_from_client(request);
2486
071c92de
MK
2487 put_pid(request->pid);
2488
abfe262a
JH
2489 i915_gem_request_unreference(request);
2490}
2491
2492void i915_gem_request_free(struct kref *req_ref)
2493{
2494 struct drm_i915_gem_request *req = container_of(req_ref,
2495 typeof(*req), ref);
2496 struct intel_context *ctx = req->ctx;
2497
0794aed3
TD
2498 if (ctx) {
2499 if (i915.enable_execlists) {
abfe262a 2500 struct intel_engine_cs *ring = req->ring;
0e50e96b 2501
0794aed3
TD
2502 if (ctx != ring->default_context)
2503 intel_lr_context_unpin(ring, ctx);
2504 }
abfe262a 2505
dcb4c12a
OM
2506 i915_gem_context_unreference(ctx);
2507 }
abfe262a
JH
2508
2509 kfree(req);
0e50e96b
MK
2510}
2511
6689cb2b
JH
2512int i915_gem_request_alloc(struct intel_engine_cs *ring,
2513 struct intel_context *ctx)
2514{
2515 int ret;
2516 struct drm_i915_gem_request *request;
2517 struct drm_i915_private *dev_private = ring->dev->dev_private;
2518
2519 if (ring->outstanding_lazy_request)
2520 return 0;
2521
2522 request = kzalloc(sizeof(*request), GFP_KERNEL);
2523 if (request == NULL)
2524 return -ENOMEM;
2525
2526 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2527 if (ret) {
2528 kfree(request);
2529 return ret;
2530 }
2531
2532 kref_init(&request->ref);
2533 request->ring = ring;
2534 request->uniq = dev_private->request_uniq++;
2535
2536 if (i915.enable_execlists)
2537 ret = intel_logical_ring_alloc_request_extras(request, ctx);
2538 else
2539 ret = intel_ring_alloc_request_extras(request);
2540 if (ret) {
2541 kfree(request);
2542 return ret;
2543 }
2544
2545 ring->outstanding_lazy_request = request;
2546 return 0;
2547}
2548
8d9fc7fd 2549struct drm_i915_gem_request *
a4872ba6 2550i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2551{
4db080f9
CW
2552 struct drm_i915_gem_request *request;
2553
2554 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2555 if (i915_gem_request_completed(request, false))
4db080f9 2556 continue;
aa60c664 2557
b6b0fac0 2558 return request;
4db080f9 2559 }
b6b0fac0
MK
2560
2561 return NULL;
2562}
2563
2564static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2565 struct intel_engine_cs *ring)
b6b0fac0
MK
2566{
2567 struct drm_i915_gem_request *request;
2568 bool ring_hung;
2569
8d9fc7fd 2570 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2571
2572 if (request == NULL)
2573 return;
2574
2575 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2576
939fd762 2577 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2578
2579 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2580 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2581}
aa60c664 2582
4db080f9 2583static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2584 struct intel_engine_cs *ring)
4db080f9 2585{
dfaae392 2586 while (!list_empty(&ring->active_list)) {
05394f39 2587 struct drm_i915_gem_object *obj;
9375e446 2588
05394f39
CW
2589 obj = list_first_entry(&ring->active_list,
2590 struct drm_i915_gem_object,
2591 ring_list);
9375e446 2592
05394f39 2593 i915_gem_object_move_to_inactive(obj);
673a394b 2594 }
1d62beea 2595
dcb4c12a
OM
2596 /*
2597 * Clear the execlists queue up before freeing the requests, as those
2598 * are the ones that keep the context and ringbuffer backing objects
2599 * pinned in place.
2600 */
2601 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2602 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2603
2604 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2605 struct drm_i915_gem_request,
dcb4c12a
OM
2606 execlist_link);
2607 list_del(&submit_req->execlist_link);
2608 intel_runtime_pm_put(dev_priv);
1197b4f2
MK
2609
2610 if (submit_req->ctx != ring->default_context)
2611 intel_lr_context_unpin(ring, submit_req->ctx);
2612
b3a38998 2613 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2614 }
2615
1d62beea
BW
2616 /*
2617 * We must free the requests after all the corresponding objects have
2618 * been moved off active lists. Which is the same order as the normal
2619 * retire_requests function does. This is important if object hold
2620 * implicit references on things like e.g. ppgtt address spaces through
2621 * the request.
2622 */
2623 while (!list_empty(&ring->request_list)) {
2624 struct drm_i915_gem_request *request;
2625
2626 request = list_first_entry(&ring->request_list,
2627 struct drm_i915_gem_request,
2628 list);
2629
2630 i915_gem_free_request(request);
2631 }
e3efda49 2632
6259cead
JH
2633 /* This may not have been flushed before the reset, so clean it now */
2634 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2635}
2636
19b2dbde 2637void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2638{
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 int i;
2641
4b9de737 2642 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2643 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2644
94a335db
DV
2645 /*
2646 * Commit delayed tiling changes if we have an object still
2647 * attached to the fence, otherwise just clear the fence.
2648 */
2649 if (reg->obj) {
2650 i915_gem_object_update_fence(reg->obj, reg,
2651 reg->obj->tiling_mode);
2652 } else {
2653 i915_gem_write_fence(dev, i, NULL);
2654 }
312817a3
CW
2655 }
2656}
2657
069efc1d 2658void i915_gem_reset(struct drm_device *dev)
673a394b 2659{
77f01230 2660 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2661 struct intel_engine_cs *ring;
1ec14ad3 2662 int i;
673a394b 2663
4db080f9
CW
2664 /*
2665 * Before we free the objects from the requests, we need to inspect
2666 * them for finding the guilty party. As the requests only borrow
2667 * their reference to the objects, the inspection must be done first.
2668 */
2669 for_each_ring(ring, dev_priv, i)
2670 i915_gem_reset_ring_status(dev_priv, ring);
2671
b4519513 2672 for_each_ring(ring, dev_priv, i)
4db080f9 2673 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2674
acce9ffa
BW
2675 i915_gem_context_reset(dev);
2676
19b2dbde 2677 i915_gem_restore_fences(dev);
673a394b
EA
2678}
2679
2680/**
2681 * This function clears the request list as sequence numbers are passed.
2682 */
1cf0ba14 2683void
a4872ba6 2684i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2685{
db53a302 2686 if (list_empty(&ring->request_list))
6c0594a3
KW
2687 return;
2688
db53a302 2689 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2690
832a3aad
CW
2691 /* Retire requests first as we use it above for the early return.
2692 * If we retire requests last, we may use a later seqno and so clear
2693 * the requests lists without clearing the active list, leading to
2694 * confusion.
e9103038 2695 */
852835f3 2696 while (!list_empty(&ring->request_list)) {
673a394b 2697 struct drm_i915_gem_request *request;
673a394b 2698
852835f3 2699 request = list_first_entry(&ring->request_list,
673a394b
EA
2700 struct drm_i915_gem_request,
2701 list);
673a394b 2702
1b5a433a 2703 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2704 break;
2705
74328ee5 2706 trace_i915_gem_request_retire(request);
48e29f55 2707
a71d8d94
CW
2708 /* We know the GPU must have read the request to have
2709 * sent us the seqno + interrupt, so use the position
2710 * of tail of the request to update the last known position
2711 * of the GPU head.
2712 */
98e1bd4a 2713 request->ringbuf->last_retired_head = request->postfix;
b84d5f0c 2714
0e50e96b 2715 i915_gem_free_request(request);
b84d5f0c 2716 }
673a394b 2717
832a3aad
CW
2718 /* Move any buffers on the active list that are no longer referenced
2719 * by the ringbuffer to the flushing/inactive lists as appropriate,
2720 * before we free the context associated with the requests.
2721 */
2722 while (!list_empty(&ring->active_list)) {
2723 struct drm_i915_gem_object *obj;
2724
2725 obj = list_first_entry(&ring->active_list,
2726 struct drm_i915_gem_object,
2727 ring_list);
2728
2729 if (!i915_gem_request_completed(obj->last_read_req, true))
2730 break;
2731
2732 i915_gem_object_move_to_inactive(obj);
2733 }
2734
581c26e8
JH
2735 if (unlikely(ring->trace_irq_req &&
2736 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2737 ring->irq_put(ring);
581c26e8 2738 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2739 }
23bc5982 2740
db53a302 2741 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2742}
2743
b29c19b6 2744bool
b09a1fec
CW
2745i915_gem_retire_requests(struct drm_device *dev)
2746{
3e31c6c0 2747 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2748 struct intel_engine_cs *ring;
b29c19b6 2749 bool idle = true;
1ec14ad3 2750 int i;
b09a1fec 2751
b29c19b6 2752 for_each_ring(ring, dev_priv, i) {
b4519513 2753 i915_gem_retire_requests_ring(ring);
b29c19b6 2754 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2755 if (i915.enable_execlists) {
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&ring->execlist_lock, flags);
2759 idle &= list_empty(&ring->execlist_queue);
2760 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2761
2762 intel_execlists_retire_requests(ring);
2763 }
b29c19b6
CW
2764 }
2765
2766 if (idle)
2767 mod_delayed_work(dev_priv->wq,
2768 &dev_priv->mm.idle_work,
2769 msecs_to_jiffies(100));
2770
2771 return idle;
b09a1fec
CW
2772}
2773
75ef9da2 2774static void
673a394b
EA
2775i915_gem_retire_work_handler(struct work_struct *work)
2776{
b29c19b6
CW
2777 struct drm_i915_private *dev_priv =
2778 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2779 struct drm_device *dev = dev_priv->dev;
0a58705b 2780 bool idle;
673a394b 2781
891b48cf 2782 /* Come back later if the device is busy... */
b29c19b6
CW
2783 idle = false;
2784 if (mutex_trylock(&dev->struct_mutex)) {
2785 idle = i915_gem_retire_requests(dev);
2786 mutex_unlock(&dev->struct_mutex);
673a394b 2787 }
b29c19b6 2788 if (!idle)
bcb45086
CW
2789 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2790 round_jiffies_up_relative(HZ));
b29c19b6 2791}
0a58705b 2792
b29c19b6
CW
2793static void
2794i915_gem_idle_work_handler(struct work_struct *work)
2795{
2796 struct drm_i915_private *dev_priv =
2797 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2798
2799 intel_mark_idle(dev_priv->dev);
673a394b
EA
2800}
2801
30dfebf3
DV
2802/**
2803 * Ensures that an object will eventually get non-busy by flushing any required
2804 * write domains, emitting any outstanding lazy request and retiring and
2805 * completed requests.
2806 */
2807static int
2808i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2809{
41c52415 2810 struct intel_engine_cs *ring;
30dfebf3
DV
2811 int ret;
2812
2813 if (obj->active) {
41c52415
JH
2814 ring = i915_gem_request_get_ring(obj->last_read_req);
2815
b6660d59 2816 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2817 if (ret)
2818 return ret;
2819
41c52415 2820 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2821 }
2822
2823 return 0;
2824}
2825
23ba4fd0
BW
2826/**
2827 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2828 * @DRM_IOCTL_ARGS: standard ioctl arguments
2829 *
2830 * Returns 0 if successful, else an error is returned with the remaining time in
2831 * the timeout parameter.
2832 * -ETIME: object is still busy after timeout
2833 * -ERESTARTSYS: signal interrupted the wait
2834 * -ENONENT: object doesn't exist
2835 * Also possible, but rare:
2836 * -EAGAIN: GPU wedged
2837 * -ENOMEM: damn
2838 * -ENODEV: Internal IRQ fail
2839 * -E?: The add request failed
2840 *
2841 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2842 * non-zero timeout parameter the wait ioctl will wait for the given number of
2843 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2844 * without holding struct_mutex the object may become re-busied before this
2845 * function completes. A similar but shorter * race condition exists in the busy
2846 * ioctl
2847 */
2848int
2849i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2850{
3e31c6c0 2851 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2852 struct drm_i915_gem_wait *args = data;
2853 struct drm_i915_gem_object *obj;
ff865885 2854 struct drm_i915_gem_request *req;
f69061be 2855 unsigned reset_counter;
23ba4fd0
BW
2856 int ret = 0;
2857
11b5d511
DV
2858 if (args->flags != 0)
2859 return -EINVAL;
2860
23ba4fd0
BW
2861 ret = i915_mutex_lock_interruptible(dev);
2862 if (ret)
2863 return ret;
2864
2865 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2866 if (&obj->base == NULL) {
2867 mutex_unlock(&dev->struct_mutex);
2868 return -ENOENT;
2869 }
2870
30dfebf3
DV
2871 /* Need to make sure the object gets inactive eventually. */
2872 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2873 if (ret)
2874 goto out;
2875
97b2a6a1
JH
2876 if (!obj->active || !obj->last_read_req)
2877 goto out;
23ba4fd0 2878
ff865885 2879 req = obj->last_read_req;
23ba4fd0 2880
23ba4fd0 2881 /* Do this after OLR check to make sure we make forward progress polling
762e4583 2882 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 2883 */
762e4583 2884 if (args->timeout_ns == 0) {
23ba4fd0
BW
2885 ret = -ETIME;
2886 goto out;
2887 }
2888
2889 drm_gem_object_unreference(&obj->base);
f69061be 2890 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2891 i915_gem_request_reference(req);
23ba4fd0
BW
2892 mutex_unlock(&dev->struct_mutex);
2893
762e4583
CW
2894 ret = __i915_wait_request(req, reset_counter, true,
2895 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
9c654818 2896 file->driver_priv);
41037f9f 2897 i915_gem_request_unreference__unlocked(req);
ff865885 2898 return ret;
23ba4fd0
BW
2899
2900out:
2901 drm_gem_object_unreference(&obj->base);
2902 mutex_unlock(&dev->struct_mutex);
2903 return ret;
2904}
2905
5816d648
BW
2906/**
2907 * i915_gem_object_sync - sync an object to a ring.
2908 *
2909 * @obj: object which may be in use on another ring.
2910 * @to: ring we wish to use the object on. May be NULL.
2911 *
2912 * This code is meant to abstract object synchronization with the GPU.
2913 * Calling with NULL implies synchronizing the object with the CPU
2914 * rather than a particular GPU ring.
2915 *
2916 * Returns 0 if successful, else propagates up the lower layer error.
2917 */
2911a35b
BW
2918int
2919i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2920 struct intel_engine_cs *to)
2911a35b 2921{
41c52415 2922 struct intel_engine_cs *from;
2911a35b
BW
2923 u32 seqno;
2924 int ret, idx;
2925
41c52415
JH
2926 from = i915_gem_request_get_ring(obj->last_read_req);
2927
2911a35b
BW
2928 if (from == NULL || to == from)
2929 return 0;
2930
5816d648 2931 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2932 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2933
2934 idx = intel_ring_sync_index(from, to);
2935
97b2a6a1 2936 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2937 /* Optimization: Avoid semaphore sync when we are sure we already
2938 * waited for an object with higher seqno */
ebc348b2 2939 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2940 return 0;
2941
b6660d59 2942 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
2943 if (ret)
2944 return ret;
2911a35b 2945
74328ee5 2946 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 2947 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2948 if (!ret)
97b2a6a1 2949 /* We use last_read_req because sync_to()
7b01e260
MK
2950 * might have just caused seqno wrap under
2951 * the radar.
2952 */
97b2a6a1
JH
2953 from->semaphore.sync_seqno[idx] =
2954 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 2955
e3a5a225 2956 return ret;
2911a35b
BW
2957}
2958
b5ffc9bc
CW
2959static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2960{
2961 u32 old_write_domain, old_read_domains;
2962
b5ffc9bc
CW
2963 /* Force a pagefault for domain tracking on next user access */
2964 i915_gem_release_mmap(obj);
2965
b97c3d9c
KP
2966 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2967 return;
2968
97c809fd
CW
2969 /* Wait for any direct GTT access to complete */
2970 mb();
2971
b5ffc9bc
CW
2972 old_read_domains = obj->base.read_domains;
2973 old_write_domain = obj->base.write_domain;
2974
2975 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2976 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2977
2978 trace_i915_gem_object_change_domain(obj,
2979 old_read_domains,
2980 old_write_domain);
2981}
2982
07fe0b12 2983int i915_vma_unbind(struct i915_vma *vma)
673a394b 2984{
07fe0b12 2985 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2986 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2987 int ret;
673a394b 2988
07fe0b12 2989 if (list_empty(&vma->vma_link))
673a394b
EA
2990 return 0;
2991
0ff501cb
DV
2992 if (!drm_mm_node_allocated(&vma->node)) {
2993 i915_gem_vma_destroy(vma);
0ff501cb
DV
2994 return 0;
2995 }
433544bd 2996
d7f46fc4 2997 if (vma->pin_count)
31d8d651 2998 return -EBUSY;
673a394b 2999
c4670ad0
CW
3000 BUG_ON(obj->pages == NULL);
3001
a8198eea 3002 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3003 if (ret)
a8198eea
CW
3004 return ret;
3005 /* Continue on if we fail due to EIO, the GPU is hung so we
3006 * should be safe and we need to cleanup or else we might
3007 * cause memory corruption through use-after-free.
3008 */
3009
fe14d5f4
TU
3010 if (i915_is_ggtt(vma->vm) &&
3011 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3012 i915_gem_object_finish_gtt(obj);
5323fd04 3013
8b1bc9b4
DV
3014 /* release the fence reg _after_ flushing */
3015 ret = i915_gem_object_put_fence(obj);
3016 if (ret)
3017 return ret;
3018 }
96b47b65 3019
07fe0b12 3020 trace_i915_vma_unbind(vma);
db53a302 3021
6f65e29a
BW
3022 vma->unbind_vma(vma);
3023
64bf9303 3024 list_del_init(&vma->mm_list);
fe14d5f4
TU
3025 if (i915_is_ggtt(vma->vm)) {
3026 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3027 obj->map_and_fenceable = false;
3028 } else if (vma->ggtt_view.pages) {
3029 sg_free_table(vma->ggtt_view.pages);
3030 kfree(vma->ggtt_view.pages);
3031 vma->ggtt_view.pages = NULL;
3032 }
3033 }
673a394b 3034
2f633156
BW
3035 drm_mm_remove_node(&vma->node);
3036 i915_gem_vma_destroy(vma);
3037
3038 /* Since the unbound list is global, only move to that list if
b93dab6e 3039 * no more VMAs exist. */
9490edb5 3040 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3041 /* Throw away the active reference before
3042 * moving to the unbound list. */
3043 i915_gem_object_retire(obj);
3044
9490edb5 3045 i915_gem_gtt_finish_object(obj);
2f633156 3046 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3047 }
673a394b 3048
70903c3b
CW
3049 /* And finally now the object is completely decoupled from this vma,
3050 * we can drop its hold on the backing storage and allow it to be
3051 * reaped by the shrinker.
3052 */
3053 i915_gem_object_unpin_pages(obj);
3054
88241785 3055 return 0;
54cf91dc
CW
3056}
3057
b2da9fe5 3058int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3059{
3e31c6c0 3060 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3061 struct intel_engine_cs *ring;
1ec14ad3 3062 int ret, i;
4df2faf4 3063
4df2faf4 3064 /* Flush everything onto the inactive list. */
b4519513 3065 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3066 if (!i915.enable_execlists) {
3067 ret = i915_switch_context(ring, ring->default_context);
3068 if (ret)
3069 return ret;
3070 }
b6c7488d 3071
3e960501 3072 ret = intel_ring_idle(ring);
1ec14ad3
CW
3073 if (ret)
3074 return ret;
3075 }
4df2faf4 3076
8a1a49f9 3077 return 0;
4df2faf4
DV
3078}
3079
9ce079e4
CW
3080static void i965_write_fence_reg(struct drm_device *dev, int reg,
3081 struct drm_i915_gem_object *obj)
de151cf6 3082{
3e31c6c0 3083 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3084 int fence_reg;
3085 int fence_pitch_shift;
de151cf6 3086
56c844e5
ID
3087 if (INTEL_INFO(dev)->gen >= 6) {
3088 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3089 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3090 } else {
3091 fence_reg = FENCE_REG_965_0;
3092 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3093 }
3094
d18b9619
CW
3095 fence_reg += reg * 8;
3096
3097 /* To w/a incoherency with non-atomic 64-bit register updates,
3098 * we split the 64-bit update into two 32-bit writes. In order
3099 * for a partial fence not to be evaluated between writes, we
3100 * precede the update with write to turn off the fence register,
3101 * and only enable the fence as the last step.
3102 *
3103 * For extra levels of paranoia, we make sure each step lands
3104 * before applying the next step.
3105 */
3106 I915_WRITE(fence_reg, 0);
3107 POSTING_READ(fence_reg);
3108
9ce079e4 3109 if (obj) {
f343c5f6 3110 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3111 uint64_t val;
de151cf6 3112
af1a7301
BP
3113 /* Adjust fence size to match tiled area */
3114 if (obj->tiling_mode != I915_TILING_NONE) {
3115 uint32_t row_size = obj->stride *
3116 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3117 size = (size / row_size) * row_size;
3118 }
3119
f343c5f6 3120 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3121 0xfffff000) << 32;
f343c5f6 3122 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3123 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3124 if (obj->tiling_mode == I915_TILING_Y)
3125 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3126 val |= I965_FENCE_REG_VALID;
c6642782 3127
d18b9619
CW
3128 I915_WRITE(fence_reg + 4, val >> 32);
3129 POSTING_READ(fence_reg + 4);
3130
3131 I915_WRITE(fence_reg + 0, val);
3132 POSTING_READ(fence_reg);
3133 } else {
3134 I915_WRITE(fence_reg + 4, 0);
3135 POSTING_READ(fence_reg + 4);
3136 }
de151cf6
JB
3137}
3138
9ce079e4
CW
3139static void i915_write_fence_reg(struct drm_device *dev, int reg,
3140 struct drm_i915_gem_object *obj)
de151cf6 3141{
3e31c6c0 3142 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3143 u32 val;
de151cf6 3144
9ce079e4 3145 if (obj) {
f343c5f6 3146 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3147 int pitch_val;
3148 int tile_width;
c6642782 3149
f343c5f6 3150 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3151 (size & -size) != size ||
f343c5f6
BW
3152 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3153 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3154 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3155
9ce079e4
CW
3156 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3157 tile_width = 128;
3158 else
3159 tile_width = 512;
3160
3161 /* Note: pitch better be a power of two tile widths */
3162 pitch_val = obj->stride / tile_width;
3163 pitch_val = ffs(pitch_val) - 1;
3164
f343c5f6 3165 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3166 if (obj->tiling_mode == I915_TILING_Y)
3167 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3168 val |= I915_FENCE_SIZE_BITS(size);
3169 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3170 val |= I830_FENCE_REG_VALID;
3171 } else
3172 val = 0;
3173
3174 if (reg < 8)
3175 reg = FENCE_REG_830_0 + reg * 4;
3176 else
3177 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3178
3179 I915_WRITE(reg, val);
3180 POSTING_READ(reg);
de151cf6
JB
3181}
3182
9ce079e4
CW
3183static void i830_write_fence_reg(struct drm_device *dev, int reg,
3184 struct drm_i915_gem_object *obj)
de151cf6 3185{
3e31c6c0 3186 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3187 uint32_t val;
de151cf6 3188
9ce079e4 3189 if (obj) {
f343c5f6 3190 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3191 uint32_t pitch_val;
de151cf6 3192
f343c5f6 3193 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3194 (size & -size) != size ||
f343c5f6
BW
3195 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3196 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3197 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3198
9ce079e4
CW
3199 pitch_val = obj->stride / 128;
3200 pitch_val = ffs(pitch_val) - 1;
de151cf6 3201
f343c5f6 3202 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3203 if (obj->tiling_mode == I915_TILING_Y)
3204 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3205 val |= I830_FENCE_SIZE_BITS(size);
3206 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3207 val |= I830_FENCE_REG_VALID;
3208 } else
3209 val = 0;
c6642782 3210
9ce079e4
CW
3211 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3212 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3213}
3214
d0a57789
CW
3215inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3216{
3217 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3218}
3219
9ce079e4
CW
3220static void i915_gem_write_fence(struct drm_device *dev, int reg,
3221 struct drm_i915_gem_object *obj)
3222{
d0a57789
CW
3223 struct drm_i915_private *dev_priv = dev->dev_private;
3224
3225 /* Ensure that all CPU reads are completed before installing a fence
3226 * and all writes before removing the fence.
3227 */
3228 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3229 mb();
3230
94a335db
DV
3231 WARN(obj && (!obj->stride || !obj->tiling_mode),
3232 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3233 obj->stride, obj->tiling_mode);
3234
ce38ab05
RV
3235 if (IS_GEN2(dev))
3236 i830_write_fence_reg(dev, reg, obj);
3237 else if (IS_GEN3(dev))
3238 i915_write_fence_reg(dev, reg, obj);
3239 else if (INTEL_INFO(dev)->gen >= 4)
3240 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3241
3242 /* And similarly be paranoid that no direct access to this region
3243 * is reordered to before the fence is installed.
3244 */
3245 if (i915_gem_object_needs_mb(obj))
3246 mb();
de151cf6
JB
3247}
3248
61050808
CW
3249static inline int fence_number(struct drm_i915_private *dev_priv,
3250 struct drm_i915_fence_reg *fence)
3251{
3252 return fence - dev_priv->fence_regs;
3253}
3254
3255static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3256 struct drm_i915_fence_reg *fence,
3257 bool enable)
3258{
2dc8aae0 3259 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3260 int reg = fence_number(dev_priv, fence);
3261
3262 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3263
3264 if (enable) {
46a0b638 3265 obj->fence_reg = reg;
61050808
CW
3266 fence->obj = obj;
3267 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3268 } else {
3269 obj->fence_reg = I915_FENCE_REG_NONE;
3270 fence->obj = NULL;
3271 list_del_init(&fence->lru_list);
3272 }
94a335db 3273 obj->fence_dirty = false;
61050808
CW
3274}
3275
d9e86c0e 3276static int
d0a57789 3277i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3278{
97b2a6a1 3279 if (obj->last_fenced_req) {
a4b3a571 3280 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3281 if (ret)
3282 return ret;
d9e86c0e 3283
97b2a6a1 3284 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3285 }
3286
3287 return 0;
3288}
3289
3290int
3291i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3292{
61050808 3293 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3294 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3295 int ret;
3296
d0a57789 3297 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3298 if (ret)
3299 return ret;
3300
61050808
CW
3301 if (obj->fence_reg == I915_FENCE_REG_NONE)
3302 return 0;
d9e86c0e 3303
f9c513e9
CW
3304 fence = &dev_priv->fence_regs[obj->fence_reg];
3305
aff10b30
DV
3306 if (WARN_ON(fence->pin_count))
3307 return -EBUSY;
3308
61050808 3309 i915_gem_object_fence_lost(obj);
f9c513e9 3310 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3311
3312 return 0;
3313}
3314
3315static struct drm_i915_fence_reg *
a360bb1a 3316i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3317{
ae3db24a 3318 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3319 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3320 int i;
ae3db24a
DV
3321
3322 /* First try to find a free reg */
d9e86c0e 3323 avail = NULL;
ae3db24a
DV
3324 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3325 reg = &dev_priv->fence_regs[i];
3326 if (!reg->obj)
d9e86c0e 3327 return reg;
ae3db24a 3328
1690e1eb 3329 if (!reg->pin_count)
d9e86c0e 3330 avail = reg;
ae3db24a
DV
3331 }
3332
d9e86c0e 3333 if (avail == NULL)
5dce5b93 3334 goto deadlock;
ae3db24a
DV
3335
3336 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3337 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3338 if (reg->pin_count)
ae3db24a
DV
3339 continue;
3340
8fe301ad 3341 return reg;
ae3db24a
DV
3342 }
3343
5dce5b93
CW
3344deadlock:
3345 /* Wait for completion of pending flips which consume fences */
3346 if (intel_has_pending_fb_unpin(dev))
3347 return ERR_PTR(-EAGAIN);
3348
3349 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3350}
3351
de151cf6 3352/**
9a5a53b3 3353 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3354 * @obj: object to map through a fence reg
3355 *
3356 * When mapping objects through the GTT, userspace wants to be able to write
3357 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3358 * This function walks the fence regs looking for a free one for @obj,
3359 * stealing one if it can't find any.
3360 *
3361 * It then sets up the reg based on the object's properties: address, pitch
3362 * and tiling format.
9a5a53b3
CW
3363 *
3364 * For an untiled surface, this removes any existing fence.
de151cf6 3365 */
8c4b8c3f 3366int
06d98131 3367i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3368{
05394f39 3369 struct drm_device *dev = obj->base.dev;
79e53945 3370 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3371 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3372 struct drm_i915_fence_reg *reg;
ae3db24a 3373 int ret;
de151cf6 3374
14415745
CW
3375 /* Have we updated the tiling parameters upon the object and so
3376 * will need to serialise the write to the associated fence register?
3377 */
5d82e3e6 3378 if (obj->fence_dirty) {
d0a57789 3379 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3380 if (ret)
3381 return ret;
3382 }
9a5a53b3 3383
d9e86c0e 3384 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3385 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3386 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3387 if (!obj->fence_dirty) {
14415745
CW
3388 list_move_tail(&reg->lru_list,
3389 &dev_priv->mm.fence_list);
3390 return 0;
3391 }
3392 } else if (enable) {
e6a84468
CW
3393 if (WARN_ON(!obj->map_and_fenceable))
3394 return -EINVAL;
3395
14415745 3396 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3397 if (IS_ERR(reg))
3398 return PTR_ERR(reg);
d9e86c0e 3399
14415745
CW
3400 if (reg->obj) {
3401 struct drm_i915_gem_object *old = reg->obj;
3402
d0a57789 3403 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3404 if (ret)
3405 return ret;
3406
14415745 3407 i915_gem_object_fence_lost(old);
29c5a587 3408 }
14415745 3409 } else
a09ba7fa 3410 return 0;
a09ba7fa 3411
14415745 3412 i915_gem_object_update_fence(obj, reg, enable);
14415745 3413
9ce079e4 3414 return 0;
de151cf6
JB
3415}
3416
4144f9b5 3417static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3418 unsigned long cache_level)
3419{
4144f9b5 3420 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3421 struct drm_mm_node *other;
3422
4144f9b5
CW
3423 /*
3424 * On some machines we have to be careful when putting differing types
3425 * of snoopable memory together to avoid the prefetcher crossing memory
3426 * domains and dying. During vm initialisation, we decide whether or not
3427 * these constraints apply and set the drm_mm.color_adjust
3428 * appropriately.
42d6ab48 3429 */
4144f9b5 3430 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3431 return true;
3432
c6cfb325 3433 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3434 return true;
3435
3436 if (list_empty(&gtt_space->node_list))
3437 return true;
3438
3439 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3440 if (other->allocated && !other->hole_follows && other->color != cache_level)
3441 return false;
3442
3443 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3444 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3445 return false;
3446
3447 return true;
3448}
3449
673a394b
EA
3450/**
3451 * Finds free space in the GTT aperture and binds the object there.
3452 */
262de145 3453static struct i915_vma *
07fe0b12
BW
3454i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3455 struct i915_address_space *vm,
ec7adb6e 3456 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3457 unsigned alignment,
ec7adb6e 3458 uint64_t flags)
673a394b 3459{
05394f39 3460 struct drm_device *dev = obj->base.dev;
3e31c6c0 3461 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3462 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3463 unsigned long start =
3464 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3465 unsigned long end =
1ec9e26d 3466 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3467 struct i915_vma *vma;
07f73f69 3468 int ret;
673a394b 3469
ec7adb6e
JL
3470 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3471 return ERR_PTR(-EINVAL);
3472
e28f8711
CW
3473 fence_size = i915_gem_get_gtt_size(dev,
3474 obj->base.size,
3475 obj->tiling_mode);
3476 fence_alignment = i915_gem_get_gtt_alignment(dev,
3477 obj->base.size,
d865110c 3478 obj->tiling_mode, true);
e28f8711 3479 unfenced_alignment =
d865110c 3480 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3481 obj->base.size,
3482 obj->tiling_mode, false);
a00b10c3 3483
673a394b 3484 if (alignment == 0)
1ec9e26d 3485 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3486 unfenced_alignment;
1ec9e26d 3487 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3488 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3489 return ERR_PTR(-EINVAL);
673a394b
EA
3490 }
3491
1ec9e26d 3492 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3493
654fc607
CW
3494 /* If the object is bigger than the entire aperture, reject it early
3495 * before evicting everything in a vain attempt to find space.
3496 */
d23db88c
CW
3497 if (obj->base.size > end) {
3498 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3499 obj->base.size,
1ec9e26d 3500 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3501 end);
262de145 3502 return ERR_PTR(-E2BIG);
654fc607
CW
3503 }
3504
37e680a1 3505 ret = i915_gem_object_get_pages(obj);
6c085a72 3506 if (ret)
262de145 3507 return ERR_PTR(ret);
6c085a72 3508
fbdda6fb
CW
3509 i915_gem_object_pin_pages(obj);
3510
ec7adb6e
JL
3511 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3512 i915_gem_obj_lookup_or_create_vma(obj, vm);
3513
262de145 3514 if (IS_ERR(vma))
bc6bc15b 3515 goto err_unpin;
2f633156 3516
0a9ae0d7 3517search_free:
07fe0b12 3518 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3519 size, alignment,
d23db88c
CW
3520 obj->cache_level,
3521 start, end,
62347f9e
LK
3522 DRM_MM_SEARCH_DEFAULT,
3523 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3524 if (ret) {
f6cd1f15 3525 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3526 obj->cache_level,
3527 start, end,
3528 flags);
dc9dd7a2
CW
3529 if (ret == 0)
3530 goto search_free;
9731129c 3531
bc6bc15b 3532 goto err_free_vma;
673a394b 3533 }
4144f9b5 3534 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3535 ret = -EINVAL;
bc6bc15b 3536 goto err_remove_node;
673a394b
EA
3537 }
3538
74163907 3539 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3540 if (ret)
bc6bc15b 3541 goto err_remove_node;
673a394b 3542
678d96fb
BW
3543 /* allocate before insert / bind */
3544 if (vma->vm->allocate_va_range) {
72744cb1
MT
3545 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3546 VM_TO_TRACE_NAME(vma->vm));
678d96fb
BW
3547 ret = vma->vm->allocate_va_range(vma->vm,
3548 vma->node.start,
3549 vma->node.size);
3550 if (ret)
3551 goto err_remove_node;
3552 }
3553
fe14d5f4
TU
3554 trace_i915_vma_bind(vma, flags);
3555 ret = i915_vma_bind(vma, obj->cache_level,
3556 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3557 if (ret)
3558 goto err_finish_gtt;
3559
35c20a60 3560 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3561 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3562
262de145 3563 return vma;
2f633156 3564
fe14d5f4
TU
3565err_finish_gtt:
3566 i915_gem_gtt_finish_object(obj);
bc6bc15b 3567err_remove_node:
6286ef9b 3568 drm_mm_remove_node(&vma->node);
bc6bc15b 3569err_free_vma:
2f633156 3570 i915_gem_vma_destroy(vma);
262de145 3571 vma = ERR_PTR(ret);
bc6bc15b 3572err_unpin:
2f633156 3573 i915_gem_object_unpin_pages(obj);
262de145 3574 return vma;
673a394b
EA
3575}
3576
000433b6 3577bool
2c22569b
CW
3578i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3579 bool force)
673a394b 3580{
673a394b
EA
3581 /* If we don't have a page list set up, then we're not pinned
3582 * to GPU, and we can ignore the cache flush because it'll happen
3583 * again at bind time.
3584 */
05394f39 3585 if (obj->pages == NULL)
000433b6 3586 return false;
673a394b 3587
769ce464
ID
3588 /*
3589 * Stolen memory is always coherent with the GPU as it is explicitly
3590 * marked as wc by the system, or the system is cache-coherent.
3591 */
6a2c4232 3592 if (obj->stolen || obj->phys_handle)
000433b6 3593 return false;
769ce464 3594
9c23f7fc
CW
3595 /* If the GPU is snooping the contents of the CPU cache,
3596 * we do not need to manually clear the CPU cache lines. However,
3597 * the caches are only snooped when the render cache is
3598 * flushed/invalidated. As we always have to emit invalidations
3599 * and flushes when moving into and out of the RENDER domain, correct
3600 * snooping behaviour occurs naturally as the result of our domain
3601 * tracking.
3602 */
0f71979a
CW
3603 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3604 obj->cache_dirty = true;
000433b6 3605 return false;
0f71979a 3606 }
9c23f7fc 3607
1c5d22f7 3608 trace_i915_gem_object_clflush(obj);
9da3da66 3609 drm_clflush_sg(obj->pages);
0f71979a 3610 obj->cache_dirty = false;
000433b6
CW
3611
3612 return true;
e47c68e9
EA
3613}
3614
3615/** Flushes the GTT write domain for the object if it's dirty. */
3616static void
05394f39 3617i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3618{
1c5d22f7
CW
3619 uint32_t old_write_domain;
3620
05394f39 3621 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3622 return;
3623
63256ec5 3624 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3625 * to it immediately go to main memory as far as we know, so there's
3626 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3627 *
3628 * However, we do have to enforce the order so that all writes through
3629 * the GTT land before any writes to the device, such as updates to
3630 * the GATT itself.
e47c68e9 3631 */
63256ec5
CW
3632 wmb();
3633
05394f39
CW
3634 old_write_domain = obj->base.write_domain;
3635 obj->base.write_domain = 0;
1c5d22f7 3636
f99d7069
DV
3637 intel_fb_obj_flush(obj, false);
3638
1c5d22f7 3639 trace_i915_gem_object_change_domain(obj,
05394f39 3640 obj->base.read_domains,
1c5d22f7 3641 old_write_domain);
e47c68e9
EA
3642}
3643
3644/** Flushes the CPU write domain for the object if it's dirty. */
3645static void
e62b59e4 3646i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3647{
1c5d22f7 3648 uint32_t old_write_domain;
e47c68e9 3649
05394f39 3650 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3651 return;
3652
e62b59e4 3653 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3654 i915_gem_chipset_flush(obj->base.dev);
3655
05394f39
CW
3656 old_write_domain = obj->base.write_domain;
3657 obj->base.write_domain = 0;
1c5d22f7 3658
f99d7069
DV
3659 intel_fb_obj_flush(obj, false);
3660
1c5d22f7 3661 trace_i915_gem_object_change_domain(obj,
05394f39 3662 obj->base.read_domains,
1c5d22f7 3663 old_write_domain);
e47c68e9
EA
3664}
3665
2ef7eeaa
EA
3666/**
3667 * Moves a single object to the GTT read, and possibly write domain.
3668 *
3669 * This function returns when the move is complete, including waiting on
3670 * flushes to occur.
3671 */
79e53945 3672int
2021746e 3673i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3674{
1c5d22f7 3675 uint32_t old_write_domain, old_read_domains;
43566ded 3676 struct i915_vma *vma;
e47c68e9 3677 int ret;
2ef7eeaa 3678
8d7e3de1
CW
3679 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3680 return 0;
3681
0201f1ec 3682 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3683 if (ret)
3684 return ret;
3685
c8725f3d 3686 i915_gem_object_retire(obj);
43566ded
CW
3687
3688 /* Flush and acquire obj->pages so that we are coherent through
3689 * direct access in memory with previous cached writes through
3690 * shmemfs and that our cache domain tracking remains valid.
3691 * For example, if the obj->filp was moved to swap without us
3692 * being notified and releasing the pages, we would mistakenly
3693 * continue to assume that the obj remained out of the CPU cached
3694 * domain.
3695 */
3696 ret = i915_gem_object_get_pages(obj);
3697 if (ret)
3698 return ret;
3699
e62b59e4 3700 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3701
d0a57789
CW
3702 /* Serialise direct access to this object with the barriers for
3703 * coherent writes from the GPU, by effectively invalidating the
3704 * GTT domain upon first access.
3705 */
3706 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3707 mb();
3708
05394f39
CW
3709 old_write_domain = obj->base.write_domain;
3710 old_read_domains = obj->base.read_domains;
1c5d22f7 3711
e47c68e9
EA
3712 /* It should now be out of any other write domains, and we can update
3713 * the domain values for our changes.
3714 */
05394f39
CW
3715 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3716 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3717 if (write) {
05394f39
CW
3718 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3719 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3720 obj->dirty = 1;
2ef7eeaa
EA
3721 }
3722
f99d7069 3723 if (write)
a4001f1b 3724 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
f99d7069 3725
1c5d22f7
CW
3726 trace_i915_gem_object_change_domain(obj,
3727 old_read_domains,
3728 old_write_domain);
3729
8325a09d 3730 /* And bump the LRU for this access */
43566ded
CW
3731 vma = i915_gem_obj_to_ggtt(obj);
3732 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3733 list_move_tail(&vma->mm_list,
43566ded 3734 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3735
e47c68e9
EA
3736 return 0;
3737}
3738
e4ffd173
CW
3739int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3740 enum i915_cache_level cache_level)
3741{
7bddb01f 3742 struct drm_device *dev = obj->base.dev;
df6f783a 3743 struct i915_vma *vma, *next;
e4ffd173
CW
3744 int ret;
3745
3746 if (obj->cache_level == cache_level)
3747 return 0;
3748
d7f46fc4 3749 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3750 DRM_DEBUG("can not change the cache level of pinned objects\n");
3751 return -EBUSY;
3752 }
3753
df6f783a 3754 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3755 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3756 ret = i915_vma_unbind(vma);
3089c6f2
BW
3757 if (ret)
3758 return ret;
3089c6f2 3759 }
42d6ab48
CW
3760 }
3761
3089c6f2 3762 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3763 ret = i915_gem_object_finish_gpu(obj);
3764 if (ret)
3765 return ret;
3766
3767 i915_gem_object_finish_gtt(obj);
3768
3769 /* Before SandyBridge, you could not use tiling or fence
3770 * registers with snooped memory, so relinquish any fences
3771 * currently pointing to our region in the aperture.
3772 */
42d6ab48 3773 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3774 ret = i915_gem_object_put_fence(obj);
3775 if (ret)
3776 return ret;
3777 }
3778
6f65e29a 3779 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3780 if (drm_mm_node_allocated(&vma->node)) {
3781 ret = i915_vma_bind(vma, cache_level,
3782 vma->bound & GLOBAL_BIND);
3783 if (ret)
3784 return ret;
3785 }
e4ffd173
CW
3786 }
3787
2c22569b
CW
3788 list_for_each_entry(vma, &obj->vma_list, vma_link)
3789 vma->node.color = cache_level;
3790 obj->cache_level = cache_level;
3791
0f71979a
CW
3792 if (obj->cache_dirty &&
3793 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3794 cpu_write_needs_clflush(obj)) {
3795 if (i915_gem_clflush_object(obj, true))
3796 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3797 }
3798
e4ffd173
CW
3799 return 0;
3800}
3801
199adf40
BW
3802int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3803 struct drm_file *file)
e6994aee 3804{
199adf40 3805 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3806 struct drm_i915_gem_object *obj;
3807 int ret;
3808
3809 ret = i915_mutex_lock_interruptible(dev);
3810 if (ret)
3811 return ret;
3812
3813 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3814 if (&obj->base == NULL) {
3815 ret = -ENOENT;
3816 goto unlock;
3817 }
3818
651d794f
CW
3819 switch (obj->cache_level) {
3820 case I915_CACHE_LLC:
3821 case I915_CACHE_L3_LLC:
3822 args->caching = I915_CACHING_CACHED;
3823 break;
3824
4257d3ba
CW
3825 case I915_CACHE_WT:
3826 args->caching = I915_CACHING_DISPLAY;
3827 break;
3828
651d794f
CW
3829 default:
3830 args->caching = I915_CACHING_NONE;
3831 break;
3832 }
e6994aee
CW
3833
3834 drm_gem_object_unreference(&obj->base);
3835unlock:
3836 mutex_unlock(&dev->struct_mutex);
3837 return ret;
3838}
3839
199adf40
BW
3840int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3841 struct drm_file *file)
e6994aee 3842{
199adf40 3843 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3844 struct drm_i915_gem_object *obj;
3845 enum i915_cache_level level;
3846 int ret;
3847
199adf40
BW
3848 switch (args->caching) {
3849 case I915_CACHING_NONE:
e6994aee
CW
3850 level = I915_CACHE_NONE;
3851 break;
199adf40 3852 case I915_CACHING_CACHED:
e6994aee
CW
3853 level = I915_CACHE_LLC;
3854 break;
4257d3ba
CW
3855 case I915_CACHING_DISPLAY:
3856 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3857 break;
e6994aee
CW
3858 default:
3859 return -EINVAL;
3860 }
3861
3bc2913e
BW
3862 ret = i915_mutex_lock_interruptible(dev);
3863 if (ret)
3864 return ret;
3865
e6994aee
CW
3866 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3867 if (&obj->base == NULL) {
3868 ret = -ENOENT;
3869 goto unlock;
3870 }
3871
3872 ret = i915_gem_object_set_cache_level(obj, level);
3873
3874 drm_gem_object_unreference(&obj->base);
3875unlock:
3876 mutex_unlock(&dev->struct_mutex);
3877 return ret;
3878}
3879
cc98b413
CW
3880static bool is_pin_display(struct drm_i915_gem_object *obj)
3881{
19656430
OM
3882 struct i915_vma *vma;
3883
19656430
OM
3884 vma = i915_gem_obj_to_ggtt(obj);
3885 if (!vma)
3886 return false;
3887
4feb7659 3888 /* There are 2 sources that pin objects:
cc98b413
CW
3889 * 1. The display engine (scanouts, sprites, cursors);
3890 * 2. Reservations for execbuffer;
cc98b413
CW
3891 *
3892 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3893 * are only called outside of the reservation path.
cc98b413 3894 */
4feb7659 3895 return vma->pin_count;
cc98b413
CW
3896}
3897
b9241ea3 3898/*
2da3b9b9
CW
3899 * Prepare buffer for display plane (scanout, cursors, etc).
3900 * Can be called from an uninterruptible phase (modesetting) and allows
3901 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3902 */
3903int
2da3b9b9
CW
3904i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3905 u32 alignment,
e6617330
TU
3906 struct intel_engine_cs *pipelined,
3907 const struct i915_ggtt_view *view)
b9241ea3 3908{
2da3b9b9 3909 u32 old_read_domains, old_write_domain;
19656430 3910 bool was_pin_display;
b9241ea3
ZW
3911 int ret;
3912
41c52415 3913 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3914 ret = i915_gem_object_sync(obj, pipelined);
3915 if (ret)
b9241ea3
ZW
3916 return ret;
3917 }
3918
cc98b413
CW
3919 /* Mark the pin_display early so that we account for the
3920 * display coherency whilst setting up the cache domains.
3921 */
19656430 3922 was_pin_display = obj->pin_display;
cc98b413
CW
3923 obj->pin_display = true;
3924
a7ef0640
EA
3925 /* The display engine is not coherent with the LLC cache on gen6. As
3926 * a result, we make sure that the pinning that is about to occur is
3927 * done with uncached PTEs. This is lowest common denominator for all
3928 * chipsets.
3929 *
3930 * However for gen6+, we could do better by using the GFDT bit instead
3931 * of uncaching, which would allow us to flush all the LLC-cached data
3932 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3933 */
651d794f
CW
3934 ret = i915_gem_object_set_cache_level(obj,
3935 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3936 if (ret)
cc98b413 3937 goto err_unpin_display;
a7ef0640 3938
2da3b9b9
CW
3939 /* As the user may map the buffer once pinned in the display plane
3940 * (e.g. libkms for the bootup splash), we have to ensure that we
3941 * always use map_and_fenceable for all scanout buffers.
3942 */
50470bb0
TU
3943 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3944 view->type == I915_GGTT_VIEW_NORMAL ?
3945 PIN_MAPPABLE : 0);
2da3b9b9 3946 if (ret)
cc98b413 3947 goto err_unpin_display;
2da3b9b9 3948
e62b59e4 3949 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3950
2da3b9b9 3951 old_write_domain = obj->base.write_domain;
05394f39 3952 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3953
3954 /* It should now be out of any other write domains, and we can update
3955 * the domain values for our changes.
3956 */
e5f1d962 3957 obj->base.write_domain = 0;
05394f39 3958 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3959
3960 trace_i915_gem_object_change_domain(obj,
3961 old_read_domains,
2da3b9b9 3962 old_write_domain);
b9241ea3
ZW
3963
3964 return 0;
cc98b413
CW
3965
3966err_unpin_display:
19656430
OM
3967 WARN_ON(was_pin_display != is_pin_display(obj));
3968 obj->pin_display = was_pin_display;
cc98b413
CW
3969 return ret;
3970}
3971
3972void
e6617330
TU
3973i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3974 const struct i915_ggtt_view *view)
cc98b413 3975{
e6617330
TU
3976 i915_gem_object_ggtt_unpin_view(obj, view);
3977
cc98b413 3978 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3979}
3980
85345517 3981int
a8198eea 3982i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3983{
88241785
CW
3984 int ret;
3985
a8198eea 3986 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3987 return 0;
3988
0201f1ec 3989 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3990 if (ret)
3991 return ret;
3992
a8198eea
CW
3993 /* Ensure that we invalidate the GPU's caches and TLBs. */
3994 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3995 return 0;
85345517
CW
3996}
3997
e47c68e9
EA
3998/**
3999 * Moves a single object to the CPU read, and possibly write domain.
4000 *
4001 * This function returns when the move is complete, including waiting on
4002 * flushes to occur.
4003 */
dabdfe02 4004int
919926ae 4005i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4006{
1c5d22f7 4007 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4008 int ret;
4009
8d7e3de1
CW
4010 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4011 return 0;
4012
0201f1ec 4013 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4014 if (ret)
4015 return ret;
4016
c8725f3d 4017 i915_gem_object_retire(obj);
e47c68e9 4018 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4019
05394f39
CW
4020 old_write_domain = obj->base.write_domain;
4021 old_read_domains = obj->base.read_domains;
1c5d22f7 4022
e47c68e9 4023 /* Flush the CPU cache if it's still invalid. */
05394f39 4024 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4025 i915_gem_clflush_object(obj, false);
2ef7eeaa 4026
05394f39 4027 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4028 }
4029
4030 /* It should now be out of any other write domains, and we can update
4031 * the domain values for our changes.
4032 */
05394f39 4033 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4034
4035 /* If we're writing through the CPU, then the GPU read domains will
4036 * need to be invalidated at next use.
4037 */
4038 if (write) {
05394f39
CW
4039 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4040 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4041 }
2ef7eeaa 4042
f99d7069 4043 if (write)
a4001f1b 4044 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
f99d7069 4045
1c5d22f7
CW
4046 trace_i915_gem_object_change_domain(obj,
4047 old_read_domains,
4048 old_write_domain);
4049
2ef7eeaa
EA
4050 return 0;
4051}
4052
673a394b
EA
4053/* Throttle our rendering by waiting until the ring has completed our requests
4054 * emitted over 20 msec ago.
4055 *
b962442e
EA
4056 * Note that if we were to use the current jiffies each time around the loop,
4057 * we wouldn't escape the function with any frames outstanding if the time to
4058 * render a frame was over 20ms.
4059 *
673a394b
EA
4060 * This should get us reasonable parallelism between CPU and GPU but also
4061 * relatively low latency when blocking on a particular request to finish.
4062 */
40a5f0de 4063static int
f787a5f5 4064i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4065{
f787a5f5
CW
4066 struct drm_i915_private *dev_priv = dev->dev_private;
4067 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4068 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4069 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4070 unsigned reset_counter;
f787a5f5 4071 int ret;
93533c29 4072
308887aa
DV
4073 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4074 if (ret)
4075 return ret;
4076
4077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4078 if (ret)
4079 return ret;
e110e8d6 4080
1c25595f 4081 spin_lock(&file_priv->mm.lock);
f787a5f5 4082 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4083 if (time_after_eq(request->emitted_jiffies, recent_enough))
4084 break;
40a5f0de 4085
54fb2411 4086 target = request;
b962442e 4087 }
f69061be 4088 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4089 if (target)
4090 i915_gem_request_reference(target);
1c25595f 4091 spin_unlock(&file_priv->mm.lock);
40a5f0de 4092
54fb2411 4093 if (target == NULL)
f787a5f5 4094 return 0;
2bc43b5c 4095
9c654818 4096 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4097 if (ret == 0)
4098 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4099
41037f9f 4100 i915_gem_request_unreference__unlocked(target);
ff865885 4101
40a5f0de
EA
4102 return ret;
4103}
4104
d23db88c
CW
4105static bool
4106i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4107{
4108 struct drm_i915_gem_object *obj = vma->obj;
4109
4110 if (alignment &&
4111 vma->node.start & (alignment - 1))
4112 return true;
4113
4114 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4115 return true;
4116
4117 if (flags & PIN_OFFSET_BIAS &&
4118 vma->node.start < (flags & PIN_OFFSET_MASK))
4119 return true;
4120
4121 return false;
4122}
4123
ec7adb6e
JL
4124static int
4125i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4126 struct i915_address_space *vm,
4127 const struct i915_ggtt_view *ggtt_view,
4128 uint32_t alignment,
4129 uint64_t flags)
673a394b 4130{
6e7186af 4131 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4132 struct i915_vma *vma;
ef79e17c 4133 unsigned bound;
673a394b
EA
4134 int ret;
4135
6e7186af
BW
4136 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4137 return -ENODEV;
4138
bf3d149b 4139 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4140 return -EINVAL;
07fe0b12 4141
c826c449
CW
4142 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4143 return -EINVAL;
4144
ec7adb6e
JL
4145 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4146 return -EINVAL;
4147
4148 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4149 i915_gem_obj_to_vma(obj, vm);
4150
4151 if (IS_ERR(vma))
4152 return PTR_ERR(vma);
4153
07fe0b12 4154 if (vma) {
d7f46fc4
BW
4155 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4156 return -EBUSY;
4157
d23db88c 4158 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4159 unsigned long offset;
9abc4648 4160 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4161 i915_gem_obj_offset(obj, vm);
d7f46fc4 4162 WARN(vma->pin_count,
ec7adb6e 4163 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4164 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4165 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4166 ggtt_view ? "ggtt" : "ppgtt",
4167 offset,
fe14d5f4 4168 alignment,
d23db88c 4169 !!(flags & PIN_MAPPABLE),
05394f39 4170 obj->map_and_fenceable);
07fe0b12 4171 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4172 if (ret)
4173 return ret;
8ea99c92
DV
4174
4175 vma = NULL;
ac0c6b5a
CW
4176 }
4177 }
4178
ef79e17c 4179 bound = vma ? vma->bound : 0;
8ea99c92 4180 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
563222a7
BW
4181 /* In true PPGTT, bind has possibly changed PDEs, which
4182 * means we must do a context switch before the GPU can
4183 * accurately read some of the VMAs.
4184 */
ec7adb6e
JL
4185 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4186 flags);
262de145
DV
4187 if (IS_ERR(vma))
4188 return PTR_ERR(vma);
22c344e9 4189 }
76446cac 4190
fe14d5f4
TU
4191 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4192 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4193 if (ret)
4194 return ret;
4195 }
74898d7e 4196
ef79e17c
CW
4197 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4198 bool mappable, fenceable;
4199 u32 fence_size, fence_alignment;
4200
4201 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4202 obj->base.size,
4203 obj->tiling_mode);
4204 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4205 obj->base.size,
4206 obj->tiling_mode,
4207 true);
4208
4209 fenceable = (vma->node.size == fence_size &&
4210 (vma->node.start & (fence_alignment - 1)) == 0);
4211
e8dec1dd 4212 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4213 dev_priv->gtt.mappable_end);
4214
4215 obj->map_and_fenceable = mappable && fenceable;
4216 }
4217
4218 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4219
8ea99c92 4220 vma->pin_count++;
1ec9e26d
DV
4221 if (flags & PIN_MAPPABLE)
4222 obj->pin_mappable |= true;
673a394b
EA
4223
4224 return 0;
4225}
4226
ec7adb6e
JL
4227int
4228i915_gem_object_pin(struct drm_i915_gem_object *obj,
4229 struct i915_address_space *vm,
4230 uint32_t alignment,
4231 uint64_t flags)
4232{
4233 return i915_gem_object_do_pin(obj, vm,
4234 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4235 alignment, flags);
4236}
4237
4238int
4239i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4240 const struct i915_ggtt_view *view,
4241 uint32_t alignment,
4242 uint64_t flags)
4243{
4244 if (WARN_ONCE(!view, "no view specified"))
4245 return -EINVAL;
4246
4247 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4248 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4249}
4250
673a394b 4251void
e6617330
TU
4252i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4253 const struct i915_ggtt_view *view)
673a394b 4254{
e6617330 4255 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4256
d7f46fc4 4257 BUG_ON(!vma);
e6617330 4258 WARN_ON(vma->pin_count == 0);
9abc4648 4259 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4260
e6617330 4261 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
6299f992 4262 obj->pin_mappable = false;
673a394b
EA
4263}
4264
d8ffa60b
DV
4265bool
4266i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4267{
4268 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4269 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4270 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4271
4272 WARN_ON(!ggtt_vma ||
4273 dev_priv->fence_regs[obj->fence_reg].pin_count >
4274 ggtt_vma->pin_count);
4275 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4276 return true;
4277 } else
4278 return false;
4279}
4280
4281void
4282i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4283{
4284 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4285 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4286 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4287 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4288 }
4289}
4290
673a394b
EA
4291int
4292i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4293 struct drm_file *file)
673a394b
EA
4294{
4295 struct drm_i915_gem_busy *args = data;
05394f39 4296 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4297 int ret;
4298
76c1dec1 4299 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4300 if (ret)
76c1dec1 4301 return ret;
673a394b 4302
05394f39 4303 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4304 if (&obj->base == NULL) {
1d7cfea1
CW
4305 ret = -ENOENT;
4306 goto unlock;
673a394b 4307 }
d1b851fc 4308
0be555b6
CW
4309 /* Count all active objects as busy, even if they are currently not used
4310 * by the gpu. Users of this interface expect objects to eventually
4311 * become non-busy without any further actions, therefore emit any
4312 * necessary flushes here.
c4de0a5d 4313 */
30dfebf3 4314 ret = i915_gem_object_flush_active(obj);
0be555b6 4315
30dfebf3 4316 args->busy = obj->active;
41c52415
JH
4317 if (obj->last_read_req) {
4318 struct intel_engine_cs *ring;
e9808edd 4319 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4320 ring = i915_gem_request_get_ring(obj->last_read_req);
4321 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4322 }
673a394b 4323
05394f39 4324 drm_gem_object_unreference(&obj->base);
1d7cfea1 4325unlock:
673a394b 4326 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4327 return ret;
673a394b
EA
4328}
4329
4330int
4331i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4332 struct drm_file *file_priv)
4333{
0206e353 4334 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4335}
4336
3ef94daa
CW
4337int
4338i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4339 struct drm_file *file_priv)
4340{
656bfa3a 4341 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4342 struct drm_i915_gem_madvise *args = data;
05394f39 4343 struct drm_i915_gem_object *obj;
76c1dec1 4344 int ret;
3ef94daa
CW
4345
4346 switch (args->madv) {
4347 case I915_MADV_DONTNEED:
4348 case I915_MADV_WILLNEED:
4349 break;
4350 default:
4351 return -EINVAL;
4352 }
4353
1d7cfea1
CW
4354 ret = i915_mutex_lock_interruptible(dev);
4355 if (ret)
4356 return ret;
4357
05394f39 4358 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4359 if (&obj->base == NULL) {
1d7cfea1
CW
4360 ret = -ENOENT;
4361 goto unlock;
3ef94daa 4362 }
3ef94daa 4363
d7f46fc4 4364 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4365 ret = -EINVAL;
4366 goto out;
3ef94daa
CW
4367 }
4368
656bfa3a
DV
4369 if (obj->pages &&
4370 obj->tiling_mode != I915_TILING_NONE &&
4371 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4372 if (obj->madv == I915_MADV_WILLNEED)
4373 i915_gem_object_unpin_pages(obj);
4374 if (args->madv == I915_MADV_WILLNEED)
4375 i915_gem_object_pin_pages(obj);
4376 }
4377
05394f39
CW
4378 if (obj->madv != __I915_MADV_PURGED)
4379 obj->madv = args->madv;
3ef94daa 4380
6c085a72 4381 /* if the object is no longer attached, discard its backing storage */
be6a0376 4382 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4383 i915_gem_object_truncate(obj);
4384
05394f39 4385 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4386
1d7cfea1 4387out:
05394f39 4388 drm_gem_object_unreference(&obj->base);
1d7cfea1 4389unlock:
3ef94daa 4390 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4391 return ret;
3ef94daa
CW
4392}
4393
37e680a1
CW
4394void i915_gem_object_init(struct drm_i915_gem_object *obj,
4395 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4396{
35c20a60 4397 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4398 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4399 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4400 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4401 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4402
37e680a1
CW
4403 obj->ops = ops;
4404
0327d6ba
CW
4405 obj->fence_reg = I915_FENCE_REG_NONE;
4406 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4407
4408 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4409}
4410
37e680a1
CW
4411static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4412 .get_pages = i915_gem_object_get_pages_gtt,
4413 .put_pages = i915_gem_object_put_pages_gtt,
4414};
4415
05394f39
CW
4416struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4417 size_t size)
ac52bc56 4418{
c397b908 4419 struct drm_i915_gem_object *obj;
5949eac4 4420 struct address_space *mapping;
1a240d4d 4421 gfp_t mask;
ac52bc56 4422
42dcedd4 4423 obj = i915_gem_object_alloc(dev);
c397b908
DV
4424 if (obj == NULL)
4425 return NULL;
673a394b 4426
c397b908 4427 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4428 i915_gem_object_free(obj);
c397b908
DV
4429 return NULL;
4430 }
673a394b 4431
bed1ea95
CW
4432 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4433 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4434 /* 965gm cannot relocate objects above 4GiB. */
4435 mask &= ~__GFP_HIGHMEM;
4436 mask |= __GFP_DMA32;
4437 }
4438
496ad9aa 4439 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4440 mapping_set_gfp_mask(mapping, mask);
5949eac4 4441
37e680a1 4442 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4443
c397b908
DV
4444 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4445 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4446
3d29b842
ED
4447 if (HAS_LLC(dev)) {
4448 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4449 * cache) for about a 10% performance improvement
4450 * compared to uncached. Graphics requests other than
4451 * display scanout are coherent with the CPU in
4452 * accessing this cache. This means in this mode we
4453 * don't need to clflush on the CPU side, and on the
4454 * GPU side we only need to flush internal caches to
4455 * get data visible to the CPU.
4456 *
4457 * However, we maintain the display planes as UC, and so
4458 * need to rebind when first used as such.
4459 */
4460 obj->cache_level = I915_CACHE_LLC;
4461 } else
4462 obj->cache_level = I915_CACHE_NONE;
4463
d861e338
DV
4464 trace_i915_gem_object_create(obj);
4465
05394f39 4466 return obj;
c397b908
DV
4467}
4468
340fbd8c
CW
4469static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4470{
4471 /* If we are the last user of the backing storage (be it shmemfs
4472 * pages or stolen etc), we know that the pages are going to be
4473 * immediately released. In this case, we can then skip copying
4474 * back the contents from the GPU.
4475 */
4476
4477 if (obj->madv != I915_MADV_WILLNEED)
4478 return false;
4479
4480 if (obj->base.filp == NULL)
4481 return true;
4482
4483 /* At first glance, this looks racy, but then again so would be
4484 * userspace racing mmap against close. However, the first external
4485 * reference to the filp can only be obtained through the
4486 * i915_gem_mmap_ioctl() which safeguards us against the user
4487 * acquiring such a reference whilst we are in the middle of
4488 * freeing the object.
4489 */
4490 return atomic_long_read(&obj->base.filp->f_count) == 1;
4491}
4492
1488fc08 4493void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4494{
1488fc08 4495 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4496 struct drm_device *dev = obj->base.dev;
3e31c6c0 4497 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4498 struct i915_vma *vma, *next;
673a394b 4499
f65c9168
PZ
4500 intel_runtime_pm_get(dev_priv);
4501
26e12f89
CW
4502 trace_i915_gem_object_destroy(obj);
4503
07fe0b12 4504 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4505 int ret;
4506
4507 vma->pin_count = 0;
4508 ret = i915_vma_unbind(vma);
07fe0b12
BW
4509 if (WARN_ON(ret == -ERESTARTSYS)) {
4510 bool was_interruptible;
1488fc08 4511
07fe0b12
BW
4512 was_interruptible = dev_priv->mm.interruptible;
4513 dev_priv->mm.interruptible = false;
1488fc08 4514
07fe0b12 4515 WARN_ON(i915_vma_unbind(vma));
1488fc08 4516
07fe0b12
BW
4517 dev_priv->mm.interruptible = was_interruptible;
4518 }
1488fc08
CW
4519 }
4520
1d64ae71
BW
4521 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4522 * before progressing. */
4523 if (obj->stolen)
4524 i915_gem_object_unpin_pages(obj);
4525
a071fa00
DV
4526 WARN_ON(obj->frontbuffer_bits);
4527
656bfa3a
DV
4528 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4529 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4530 obj->tiling_mode != I915_TILING_NONE)
4531 i915_gem_object_unpin_pages(obj);
4532
401c29f6
BW
4533 if (WARN_ON(obj->pages_pin_count))
4534 obj->pages_pin_count = 0;
340fbd8c 4535 if (discard_backing_storage(obj))
5537252b 4536 obj->madv = I915_MADV_DONTNEED;
37e680a1 4537 i915_gem_object_put_pages(obj);
d8cb5086 4538 i915_gem_object_free_mmap_offset(obj);
de151cf6 4539
9da3da66
CW
4540 BUG_ON(obj->pages);
4541
2f745ad3
CW
4542 if (obj->base.import_attach)
4543 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4544
5cc9ed4b
CW
4545 if (obj->ops->release)
4546 obj->ops->release(obj);
4547
05394f39
CW
4548 drm_gem_object_release(&obj->base);
4549 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4550
05394f39 4551 kfree(obj->bit_17);
42dcedd4 4552 i915_gem_object_free(obj);
f65c9168
PZ
4553
4554 intel_runtime_pm_put(dev_priv);
673a394b
EA
4555}
4556
ec7adb6e
JL
4557struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4558 struct i915_address_space *vm)
e656a6cb
DV
4559{
4560 struct i915_vma *vma;
ec7adb6e
JL
4561 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4562 if (i915_is_ggtt(vma->vm) &&
4563 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4564 continue;
4565 if (vma->vm == vm)
e656a6cb 4566 return vma;
ec7adb6e
JL
4567 }
4568 return NULL;
4569}
4570
4571struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4572 const struct i915_ggtt_view *view)
4573{
4574 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4575 struct i915_vma *vma;
e656a6cb 4576
ec7adb6e
JL
4577 if (WARN_ONCE(!view, "no view specified"))
4578 return ERR_PTR(-EINVAL);
4579
4580 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4581 if (vma->vm == ggtt &&
4582 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4583 return vma;
e656a6cb
DV
4584 return NULL;
4585}
4586
2f633156
BW
4587void i915_gem_vma_destroy(struct i915_vma *vma)
4588{
b9d06dd9 4589 struct i915_address_space *vm = NULL;
2f633156 4590 WARN_ON(vma->node.allocated);
aaa05667
CW
4591
4592 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4593 if (!list_empty(&vma->exec_list))
4594 return;
4595
b9d06dd9 4596 vm = vma->vm;
b9d06dd9 4597
841cd773
DV
4598 if (!i915_is_ggtt(vm))
4599 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4600
8b9c2b94 4601 list_del(&vma->vma_link);
b93dab6e 4602
2f633156
BW
4603 kfree(vma);
4604}
4605
e3efda49
CW
4606static void
4607i915_gem_stop_ringbuffers(struct drm_device *dev)
4608{
4609 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4610 struct intel_engine_cs *ring;
e3efda49
CW
4611 int i;
4612
4613 for_each_ring(ring, dev_priv, i)
a83014d3 4614 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4615}
4616
29105ccc 4617int
45c5f202 4618i915_gem_suspend(struct drm_device *dev)
29105ccc 4619{
3e31c6c0 4620 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4621 int ret = 0;
28dfe52a 4622
45c5f202 4623 mutex_lock(&dev->struct_mutex);
b2da9fe5 4624 ret = i915_gpu_idle(dev);
f7403347 4625 if (ret)
45c5f202 4626 goto err;
f7403347 4627
b2da9fe5 4628 i915_gem_retire_requests(dev);
673a394b 4629
e3efda49 4630 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4631 mutex_unlock(&dev->struct_mutex);
4632
737b1506 4633 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4634 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4635 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4636
bdcf120b
CW
4637 /* Assert that we sucessfully flushed all the work and
4638 * reset the GPU back to its idle, low power state.
4639 */
4640 WARN_ON(dev_priv->mm.busy);
4641
673a394b 4642 return 0;
45c5f202
CW
4643
4644err:
4645 mutex_unlock(&dev->struct_mutex);
4646 return ret;
673a394b
EA
4647}
4648
a4872ba6 4649int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4650{
c3787e2e 4651 struct drm_device *dev = ring->dev;
3e31c6c0 4652 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4653 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4654 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4655 int i, ret;
b9524a1e 4656
040d2baa 4657 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4658 return 0;
b9524a1e 4659
c3787e2e
BW
4660 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4661 if (ret)
4662 return ret;
b9524a1e 4663
c3787e2e
BW
4664 /*
4665 * Note: We do not worry about the concurrent register cacheline hang
4666 * here because no other code should access these registers other than
4667 * at initialization time.
4668 */
b9524a1e 4669 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4670 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4671 intel_ring_emit(ring, reg_base + i);
4672 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4673 }
4674
c3787e2e 4675 intel_ring_advance(ring);
b9524a1e 4676
c3787e2e 4677 return ret;
b9524a1e
BW
4678}
4679
f691e2f4
DV
4680void i915_gem_init_swizzling(struct drm_device *dev)
4681{
3e31c6c0 4682 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4683
11782b02 4684 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4685 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4686 return;
4687
4688 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4689 DISP_TILE_SURFACE_SWIZZLING);
4690
11782b02
DV
4691 if (IS_GEN5(dev))
4692 return;
4693
f691e2f4
DV
4694 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4695 if (IS_GEN6(dev))
6b26c86d 4696 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4697 else if (IS_GEN7(dev))
6b26c86d 4698 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4699 else if (IS_GEN8(dev))
4700 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4701 else
4702 BUG();
f691e2f4 4703}
e21af88d 4704
67b1b571
CW
4705static bool
4706intel_enable_blt(struct drm_device *dev)
4707{
4708 if (!HAS_BLT(dev))
4709 return false;
4710
4711 /* The blitter was dysfunctional on early prototypes */
4712 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4713 DRM_INFO("BLT not supported on this pre-production hardware;"
4714 " graphics performance will be degraded.\n");
4715 return false;
4716 }
4717
4718 return true;
4719}
4720
81e7f200
VS
4721static void init_unused_ring(struct drm_device *dev, u32 base)
4722{
4723 struct drm_i915_private *dev_priv = dev->dev_private;
4724
4725 I915_WRITE(RING_CTL(base), 0);
4726 I915_WRITE(RING_HEAD(base), 0);
4727 I915_WRITE(RING_TAIL(base), 0);
4728 I915_WRITE(RING_START(base), 0);
4729}
4730
4731static void init_unused_rings(struct drm_device *dev)
4732{
4733 if (IS_I830(dev)) {
4734 init_unused_ring(dev, PRB1_BASE);
4735 init_unused_ring(dev, SRB0_BASE);
4736 init_unused_ring(dev, SRB1_BASE);
4737 init_unused_ring(dev, SRB2_BASE);
4738 init_unused_ring(dev, SRB3_BASE);
4739 } else if (IS_GEN2(dev)) {
4740 init_unused_ring(dev, SRB0_BASE);
4741 init_unused_ring(dev, SRB1_BASE);
4742 } else if (IS_GEN3(dev)) {
4743 init_unused_ring(dev, PRB1_BASE);
4744 init_unused_ring(dev, PRB2_BASE);
4745 }
4746}
4747
a83014d3 4748int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4749{
4fc7c971 4750 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4751 int ret;
68f95ba9 4752
5c1143bb 4753 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4754 if (ret)
b6913e4b 4755 return ret;
68f95ba9
CW
4756
4757 if (HAS_BSD(dev)) {
5c1143bb 4758 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4759 if (ret)
4760 goto cleanup_render_ring;
d1b851fc 4761 }
68f95ba9 4762
67b1b571 4763 if (intel_enable_blt(dev)) {
549f7365
CW
4764 ret = intel_init_blt_ring_buffer(dev);
4765 if (ret)
4766 goto cleanup_bsd_ring;
4767 }
4768
9a8a2213
BW
4769 if (HAS_VEBOX(dev)) {
4770 ret = intel_init_vebox_ring_buffer(dev);
4771 if (ret)
4772 goto cleanup_blt_ring;
4773 }
4774
845f74a7
ZY
4775 if (HAS_BSD2(dev)) {
4776 ret = intel_init_bsd2_ring_buffer(dev);
4777 if (ret)
4778 goto cleanup_vebox_ring;
4779 }
9a8a2213 4780
99433931 4781 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4782 if (ret)
845f74a7 4783 goto cleanup_bsd2_ring;
4fc7c971
BW
4784
4785 return 0;
4786
845f74a7
ZY
4787cleanup_bsd2_ring:
4788 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4789cleanup_vebox_ring:
4790 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4791cleanup_blt_ring:
4792 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4793cleanup_bsd_ring:
4794 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4795cleanup_render_ring:
4796 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4797
4798 return ret;
4799}
4800
4801int
4802i915_gem_init_hw(struct drm_device *dev)
4803{
3e31c6c0 4804 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4805 struct intel_engine_cs *ring;
35a85ac6 4806 int ret, i;
4fc7c971
BW
4807
4808 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4809 return -EIO;
4810
5e4f5189
CW
4811 /* Double layer security blanket, see i915_gem_init() */
4812 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4813
59124506 4814 if (dev_priv->ellc_size)
05e21cc4 4815 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4816
0bf21347
VS
4817 if (IS_HASWELL(dev))
4818 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4819 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4820
88a2b2a3 4821 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4822 if (IS_IVYBRIDGE(dev)) {
4823 u32 temp = I915_READ(GEN7_MSG_CTL);
4824 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4825 I915_WRITE(GEN7_MSG_CTL, temp);
4826 } else if (INTEL_INFO(dev)->gen >= 7) {
4827 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4828 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4829 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4830 }
88a2b2a3
BW
4831 }
4832
4fc7c971
BW
4833 i915_gem_init_swizzling(dev);
4834
d5abdfda
DV
4835 /*
4836 * At least 830 can leave some of the unused rings
4837 * "active" (ie. head != tail) after resume which
4838 * will prevent c3 entry. Makes sure all unused rings
4839 * are totally idle.
4840 */
4841 init_unused_rings(dev);
4842
35a57ffb
DV
4843 for_each_ring(ring, dev_priv, i) {
4844 ret = ring->init_hw(ring);
4845 if (ret)
5e4f5189 4846 goto out;
35a57ffb 4847 }
99433931 4848
c3787e2e
BW
4849 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4850 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4851
f48a0165 4852 ret = i915_ppgtt_init_hw(dev);
60990320 4853 if (ret && ret != -EIO) {
f48a0165 4854 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 4855 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4856 }
4857
f48a0165 4858 ret = i915_gem_context_enable(dev_priv);
82460d97 4859 if (ret && ret != -EIO) {
f48a0165 4860 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 4861 i915_gem_cleanup_ringbuffer(dev);
f48a0165 4862
5e4f5189 4863 goto out;
b7c36d25 4864 }
e21af88d 4865
5e4f5189
CW
4866out:
4867 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4868 return ret;
8187a2b7
ZN
4869}
4870
1070a42b
CW
4871int i915_gem_init(struct drm_device *dev)
4872{
4873 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4874 int ret;
4875
127f1003
OM
4876 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4877 i915.enable_execlists);
4878
1070a42b 4879 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4880
4881 if (IS_VALLEYVIEW(dev)) {
4882 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4883 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4884 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4885 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4886 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4887 }
4888
a83014d3 4889 if (!i915.enable_execlists) {
f3dc74c0 4890 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4891 dev_priv->gt.init_rings = i915_gem_init_rings;
4892 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4893 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4894 } else {
f3dc74c0 4895 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4896 dev_priv->gt.init_rings = intel_logical_rings_init;
4897 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4898 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4899 }
4900
5e4f5189
CW
4901 /* This is just a security blanket to placate dragons.
4902 * On some systems, we very sporadically observe that the first TLBs
4903 * used by the CS may be stale, despite us poking the TLB reset. If
4904 * we hold the forcewake during initialisation these problems
4905 * just magically go away.
4906 */
4907 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4908
6c5566a8 4909 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4910 if (ret)
4911 goto out_unlock;
6c5566a8 4912
d7e5008f 4913 i915_gem_init_global_gtt(dev);
d62b4892 4914
2fa48d8d 4915 ret = i915_gem_context_init(dev);
7bcc3777
JN
4916 if (ret)
4917 goto out_unlock;
2fa48d8d 4918
35a57ffb
DV
4919 ret = dev_priv->gt.init_rings(dev);
4920 if (ret)
7bcc3777 4921 goto out_unlock;
2fa48d8d 4922
1070a42b 4923 ret = i915_gem_init_hw(dev);
60990320
CW
4924 if (ret == -EIO) {
4925 /* Allow ring initialisation to fail by marking the GPU as
4926 * wedged. But we only want to do this where the GPU is angry,
4927 * for all other failure, such as an allocation failure, bail.
4928 */
4929 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4930 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4931 ret = 0;
1070a42b 4932 }
7bcc3777
JN
4933
4934out_unlock:
5e4f5189 4935 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4936 mutex_unlock(&dev->struct_mutex);
1070a42b 4937
60990320 4938 return ret;
1070a42b
CW
4939}
4940
8187a2b7
ZN
4941void
4942i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4943{
3e31c6c0 4944 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4945 struct intel_engine_cs *ring;
1ec14ad3 4946 int i;
8187a2b7 4947
b4519513 4948 for_each_ring(ring, dev_priv, i)
a83014d3 4949 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4950}
4951
64193406 4952static void
a4872ba6 4953init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4954{
4955 INIT_LIST_HEAD(&ring->active_list);
4956 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4957}
4958
7e0d96bc
BW
4959void i915_init_vm(struct drm_i915_private *dev_priv,
4960 struct i915_address_space *vm)
fc8c067e 4961{
7e0d96bc
BW
4962 if (!i915_is_ggtt(vm))
4963 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4964 vm->dev = dev_priv->dev;
4965 INIT_LIST_HEAD(&vm->active_list);
4966 INIT_LIST_HEAD(&vm->inactive_list);
4967 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4968 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4969}
4970
673a394b
EA
4971void
4972i915_gem_load(struct drm_device *dev)
4973{
3e31c6c0 4974 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4975 int i;
4976
4977 dev_priv->slab =
4978 kmem_cache_create("i915_gem_object",
4979 sizeof(struct drm_i915_gem_object), 0,
4980 SLAB_HWCACHE_ALIGN,
4981 NULL);
673a394b 4982
fc8c067e
BW
4983 INIT_LIST_HEAD(&dev_priv->vm_list);
4984 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4985
a33afea5 4986 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4987 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4988 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4989 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4990 for (i = 0; i < I915_NUM_RINGS; i++)
4991 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4992 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4993 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4994 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4995 i915_gem_retire_work_handler);
b29c19b6
CW
4996 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4997 i915_gem_idle_work_handler);
1f83fee0 4998 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4999
72bfa19c
CW
5000 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5001
42b5aeab
VS
5002 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5003 dev_priv->num_fence_regs = 32;
5004 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5005 dev_priv->num_fence_regs = 16;
5006 else
5007 dev_priv->num_fence_regs = 8;
5008
eb82289a
YZ
5009 if (intel_vgpu_active(dev))
5010 dev_priv->num_fence_regs =
5011 I915_READ(vgtif_reg(avail_rs.fence_num));
5012
b5aa8a0f 5013 /* Initialize fence registers to zero */
19b2dbde
CW
5014 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5015 i915_gem_restore_fences(dev);
10ed13e4 5016
673a394b 5017 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5018 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5019
ce453d81
CW
5020 dev_priv->mm.interruptible = true;
5021
be6a0376 5022 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5023
5024 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5025}
71acb5eb 5026
f787a5f5 5027void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5028{
f787a5f5 5029 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5030
5031 /* Clean up our request list when the client is going away, so that
5032 * later retire_requests won't dereference our soon-to-be-gone
5033 * file_priv.
5034 */
1c25595f 5035 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5036 while (!list_empty(&file_priv->mm.request_list)) {
5037 struct drm_i915_gem_request *request;
5038
5039 request = list_first_entry(&file_priv->mm.request_list,
5040 struct drm_i915_gem_request,
5041 client_list);
5042 list_del(&request->client_list);
5043 request->file_priv = NULL;
5044 }
1c25595f 5045 spin_unlock(&file_priv->mm.lock);
b29c19b6 5046
1854d5ca
CW
5047 if (!list_empty(&file_priv->rps_boost)) {
5048 mutex_lock(&to_i915(dev)->rps.hw_lock);
5049 list_del(&file_priv->rps_boost);
5050 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5051 }
b29c19b6
CW
5052}
5053
5054int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5055{
5056 struct drm_i915_file_private *file_priv;
e422b888 5057 int ret;
b29c19b6
CW
5058
5059 DRM_DEBUG_DRIVER("\n");
5060
5061 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5062 if (!file_priv)
5063 return -ENOMEM;
5064
5065 file->driver_priv = file_priv;
5066 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5067 file_priv->file = file;
1854d5ca 5068 INIT_LIST_HEAD(&file_priv->rps_boost);
b29c19b6
CW
5069
5070 spin_lock_init(&file_priv->mm.lock);
5071 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5072
e422b888
BW
5073 ret = i915_gem_context_open(dev, file);
5074 if (ret)
5075 kfree(file_priv);
b29c19b6 5076
e422b888 5077 return ret;
b29c19b6
CW
5078}
5079
b680c37a
DV
5080/**
5081 * i915_gem_track_fb - update frontbuffer tracking
5082 * old: current GEM buffer for the frontbuffer slots
5083 * new: new GEM buffer for the frontbuffer slots
5084 * frontbuffer_bits: bitmask of frontbuffer slots
5085 *
5086 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5087 * from @old and setting them in @new. Both @old and @new can be NULL.
5088 */
a071fa00
DV
5089void i915_gem_track_fb(struct drm_i915_gem_object *old,
5090 struct drm_i915_gem_object *new,
5091 unsigned frontbuffer_bits)
5092{
5093 if (old) {
5094 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5095 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5096 old->frontbuffer_bits &= ~frontbuffer_bits;
5097 }
5098
5099 if (new) {
5100 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5101 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5102 new->frontbuffer_bits |= frontbuffer_bits;
5103 }
5104}
5105
a70a3148 5106/* All the new VM stuff */
ec7adb6e
JL
5107unsigned long
5108i915_gem_obj_offset(struct drm_i915_gem_object *o,
5109 struct i915_address_space *vm)
a70a3148
BW
5110{
5111 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5112 struct i915_vma *vma;
5113
896ab1a5 5114 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5115
a70a3148 5116 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5117 if (i915_is_ggtt(vma->vm) &&
5118 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5119 continue;
5120 if (vma->vm == vm)
a70a3148 5121 return vma->node.start;
a70a3148 5122 }
ec7adb6e 5123
f25748ea
DV
5124 WARN(1, "%s vma for this object not found.\n",
5125 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5126 return -1;
5127}
5128
ec7adb6e
JL
5129unsigned long
5130i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5131 const struct i915_ggtt_view *view)
a70a3148 5132{
ec7adb6e 5133 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5134 struct i915_vma *vma;
5135
5136 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5137 if (vma->vm == ggtt &&
5138 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5139 return vma->node.start;
5140
5141 WARN(1, "global vma for this object not found.\n");
5142 return -1;
5143}
5144
5145bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5146 struct i915_address_space *vm)
5147{
5148 struct i915_vma *vma;
5149
5150 list_for_each_entry(vma, &o->vma_list, vma_link) {
5151 if (i915_is_ggtt(vma->vm) &&
5152 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5153 continue;
5154 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5155 return true;
5156 }
5157
5158 return false;
5159}
5160
5161bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5162 const struct i915_ggtt_view *view)
ec7adb6e
JL
5163{
5164 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5165 struct i915_vma *vma;
5166
5167 list_for_each_entry(vma, &o->vma_list, vma_link)
5168 if (vma->vm == ggtt &&
9abc4648 5169 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5170 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5171 return true;
5172
5173 return false;
5174}
5175
5176bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5177{
5a1d5eb0 5178 struct i915_vma *vma;
a70a3148 5179
5a1d5eb0
CW
5180 list_for_each_entry(vma, &o->vma_list, vma_link)
5181 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5182 return true;
5183
5184 return false;
5185}
5186
5187unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5188 struct i915_address_space *vm)
5189{
5190 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5191 struct i915_vma *vma;
5192
896ab1a5 5193 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5194
5195 BUG_ON(list_empty(&o->vma_list));
5196
ec7adb6e
JL
5197 list_for_each_entry(vma, &o->vma_list, vma_link) {
5198 if (i915_is_ggtt(vma->vm) &&
5199 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5200 continue;
a70a3148
BW
5201 if (vma->vm == vm)
5202 return vma->node.size;
ec7adb6e 5203 }
a70a3148
BW
5204 return 0;
5205}
5206
ec7adb6e 5207bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5208{
5209 struct i915_vma *vma;
ec7adb6e
JL
5210 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5211 if (i915_is_ggtt(vma->vm) &&
5212 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5213 continue;
5214 if (vma->pin_count > 0)
5215 return true;
5216 }
5217 return false;
5c2abbea 5218}
ec7adb6e 5219