]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Hold struct_mutex for per-file stats in debugfs/i915_gem_object
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
6b5e90f5 38#include <linux/dma-fence-array.h>
fe3288b5 39#include <linux/kthread.h>
c13d87ea 40#include <linux/reservation.h>
5949eac4 41#include <linux/shmem_fs.h>
5a0e3ad6 42#include <linux/slab.h>
20e4933c 43#include <linux/stop_machine.h>
673a394b 44#include <linux/swap.h>
79e53945 45#include <linux/pci.h>
1286ff73 46#include <linux/dma-buf.h>
673a394b 47
fbbd37b3 48static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 49
2c22569b
CW
50static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51{
e27ab73d 52 if (obj->cache_dirty)
b50a5371
AS
53 return false;
54
7fc92e96 55 if (!obj->cache_coherent)
2c22569b
CW
56 return true;
57
58 return obj->pin_display;
59}
60
4f1959ee 61static int
bb6dc8d9 62insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
63 struct drm_mm_node *node, u32 size)
64{
65 memset(node, 0, sizeof(*node));
4e64e553
CW
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
4f1959ee
AS
70}
71
72static void
73remove_mappable_node(struct drm_mm_node *node)
74{
75 drm_mm_remove_node(node);
76}
77
73aa808f
CW
78/* some bookkeeping */
79static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 80 u64 size)
73aa808f 81{
c20e8355 82 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
c20e8355 85 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86}
87
88static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 89 u64 size)
73aa808f 90{
c20e8355 91 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
c20e8355 94 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95}
96
21dd3734 97static int
33196ded 98i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 99{
30dbf0c0
CW
100 int ret;
101
4c7d62c6
CW
102 might_sleep();
103
0a6759c6
DV
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
1f83fee0 109 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 110 !i915_reset_backoff(error),
b52992c0 111 I915_RESET_TIMEOUT);
0a6759c6
DV
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
30dbf0c0 116 return ret;
d98c52cf
CW
117 } else {
118 return 0;
0a6759c6 119 }
30dbf0c0
CW
120}
121
54cf91dc 122int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 123{
fac5e23e 124 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
125 int ret;
126
33196ded 127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
76c1dec1
CW
135 return 0;
136}
30dbf0c0 137
5a125c3c
EA
138int
139i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 140 struct drm_file *file)
5a125c3c 141{
72e96d64 142 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 144 struct drm_i915_gem_get_aperture *args = data;
ca1543be 145 struct i915_vma *vma;
ff8f7975 146 u64 pinned;
5a125c3c 147
ff8f7975 148 pinned = ggtt->base.reserved;
73aa808f 149 mutex_lock(&dev->struct_mutex);
1c7f4bca 150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 151 if (i915_vma_is_pinned(vma))
ca1543be 152 pinned += vma->node.size;
1c7f4bca 153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 154 if (i915_vma_is_pinned(vma))
ca1543be 155 pinned += vma->node.size;
73aa808f 156 mutex_unlock(&dev->struct_mutex);
5a125c3c 157
72e96d64 158 args->aper_size = ggtt->base.total;
0206e353 159 args->aper_available_size = args->aper_size - pinned;
6299f992 160
5a125c3c
EA
161 return 0;
162}
163
03ac84f1 164static struct sg_table *
6a2c4232 165i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 166{
93c76a3d 167 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 168 drm_dma_handle_t *phys;
6a2c4232
CW
169 struct sg_table *st;
170 struct scatterlist *sg;
dbb4351b 171 char *vaddr;
6a2c4232 172 int i;
00731155 173
6a2c4232 174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 175 return ERR_PTR(-EINVAL);
6a2c4232 176
dbb4351b
CW
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
6a2c4232
CW
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
dbb4351b
CW
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
6a2c4232
CW
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
09cbfeaf 203 put_page(page);
6a2c4232
CW
204 vaddr += PAGE_SIZE;
205 }
206
c033666a 207 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b
CW
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
6a2c4232
CW
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
dbb4351b
CW
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
6a2c4232
CW
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
00731155 224
dbb4351b 225 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
226 sg_dma_len(sg) = obj->base.size;
227
dbb4351b
CW
228 obj->phys_handle = phys;
229 return st;
230
231err_phys:
232 drm_pci_free(obj->base.dev, phys);
03ac84f1 233 return st;
6a2c4232
CW
234}
235
e27ab73d
CW
236static void __start_cpu_write(struct drm_i915_gem_object *obj)
237{
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242}
243
6a2c4232 244static void
2b3c8317 245__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
246 struct sg_table *pages,
247 bool needs_clflush)
6a2c4232 248{
a4f5ea64 249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 250
a4f5ea64
CW
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
6a2c4232 253
e5facdf9
CW
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
7fc92e96 256 !obj->cache_coherent)
2b3c8317 257 drm_clflush_sg(pages);
03ac84f1 258
e27ab73d 259 __start_cpu_write(obj);
03ac84f1
CW
260}
261
262static void
263i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265{
e5facdf9 266 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 267
a4f5ea64 268 if (obj->mm.dirty) {
93c76a3d 269 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 270 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
a4f5ea64 287 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 288 mark_page_accessed(page);
09cbfeaf 289 put_page(page);
00731155
CW
290 vaddr += PAGE_SIZE;
291 }
a4f5ea64 292 obj->mm.dirty = false;
00731155
CW
293 }
294
03ac84f1
CW
295 sg_free_table(pages);
296 kfree(pages);
dbb4351b
CW
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
299}
300
301static void
302i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303{
a4f5ea64 304 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
305}
306
307static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311};
312
581ab1fe
CW
313static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
35a9611c 315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
316{
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
02bef8f9
CW
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 322
02bef8f9
CW
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
aa653a68 327 */
e95433c7
CW
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
02bef8f9
CW
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
aa653a68
CW
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350}
351
e95433c7
CW
352static long
353i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
00e60f26 357{
e95433c7 358 struct drm_i915_gem_request *rq;
00e60f26 359
e95433c7 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 361
e95433c7
CW
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
00e60f26
CW
394 }
395
e95433c7
CW
396 timeout = i915_wait_request(rq, flags, timeout);
397
398out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
754c9fd5 402 if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419}
420
421static long
422i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426{
e54ca977 427 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 428 struct dma_fence *excl;
e54ca977 429 bool prune_fences = false;
e95433c7
CW
430
431 if (flags & I915_WAIT_ALL) {
432 struct dma_fence **shared;
433 unsigned int count, i;
00e60f26
CW
434 int ret;
435
e95433c7
CW
436 ret = reservation_object_get_fences_rcu(resv,
437 &excl, &count, &shared);
00e60f26
CW
438 if (ret)
439 return ret;
00e60f26 440
e95433c7
CW
441 for (i = 0; i < count; i++) {
442 timeout = i915_gem_object_wait_fence(shared[i],
443 flags, timeout,
444 rps);
d892e939 445 if (timeout < 0)
e95433c7 446 break;
00e60f26 447
e95433c7
CW
448 dma_fence_put(shared[i]);
449 }
450
451 for (; i < count; i++)
452 dma_fence_put(shared[i]);
453 kfree(shared);
e54ca977
CW
454
455 prune_fences = count && timeout >= 0;
e95433c7
CW
456 } else {
457 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
458 }
459
e54ca977 460 if (excl && timeout >= 0) {
e95433c7 461 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
e54ca977
CW
462 prune_fences = timeout >= 0;
463 }
e95433c7
CW
464
465 dma_fence_put(excl);
466
03d1cac6
CW
467 /* Oportunistically prune the fences iff we know they have *all* been
468 * signaled and that the reservation object has not been changed (i.e.
469 * no new fences have been added).
470 */
e54ca977 471 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
472 if (reservation_object_trylock(resv)) {
473 if (!__read_seqcount_retry(&resv->seq, seq))
474 reservation_object_add_excl_fence(resv, NULL);
475 reservation_object_unlock(resv);
476 }
e54ca977
CW
477 }
478
e95433c7 479 return timeout;
00e60f26
CW
480}
481
6b5e90f5
CW
482static void __fence_set_priority(struct dma_fence *fence, int prio)
483{
484 struct drm_i915_gem_request *rq;
485 struct intel_engine_cs *engine;
486
487 if (!dma_fence_is_i915(fence))
488 return;
489
490 rq = to_request(fence);
491 engine = rq->engine;
492 if (!engine->schedule)
493 return;
494
495 engine->schedule(rq, prio);
496}
497
498static void fence_set_priority(struct dma_fence *fence, int prio)
499{
500 /* Recurse once into a fence-array */
501 if (dma_fence_is_array(fence)) {
502 struct dma_fence_array *array = to_dma_fence_array(fence);
503 int i;
504
505 for (i = 0; i < array->num_fences; i++)
506 __fence_set_priority(array->fences[i], prio);
507 } else {
508 __fence_set_priority(fence, prio);
509 }
510}
511
512int
513i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
514 unsigned int flags,
515 int prio)
516{
517 struct dma_fence *excl;
518
519 if (flags & I915_WAIT_ALL) {
520 struct dma_fence **shared;
521 unsigned int count, i;
522 int ret;
523
524 ret = reservation_object_get_fences_rcu(obj->resv,
525 &excl, &count, &shared);
526 if (ret)
527 return ret;
528
529 for (i = 0; i < count; i++) {
530 fence_set_priority(shared[i], prio);
531 dma_fence_put(shared[i]);
532 }
533
534 kfree(shared);
535 } else {
536 excl = reservation_object_get_excl_rcu(obj->resv);
537 }
538
539 if (excl) {
540 fence_set_priority(excl, prio);
541 dma_fence_put(excl);
542 }
543 return 0;
544}
545
e95433c7
CW
546/**
547 * Waits for rendering to the object to be completed
548 * @obj: i915 gem object
549 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
550 * @timeout: how long to wait
551 * @rps: client (user process) to charge for any waitboosting
00e60f26 552 */
e95433c7
CW
553int
554i915_gem_object_wait(struct drm_i915_gem_object *obj,
555 unsigned int flags,
556 long timeout,
557 struct intel_rps_client *rps)
00e60f26 558{
e95433c7
CW
559 might_sleep();
560#if IS_ENABLED(CONFIG_LOCKDEP)
561 GEM_BUG_ON(debug_locks &&
562 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
563 !!(flags & I915_WAIT_LOCKED));
564#endif
565 GEM_BUG_ON(timeout < 0);
00e60f26 566
d07f0e59
CW
567 timeout = i915_gem_object_wait_reservation(obj->resv,
568 flags, timeout,
569 rps);
e95433c7 570 return timeout < 0 ? timeout : 0;
00e60f26
CW
571}
572
573static struct intel_rps_client *to_rps_client(struct drm_file *file)
574{
575 struct drm_i915_file_private *fpriv = file->driver_priv;
576
577 return &fpriv->rps;
578}
579
00731155
CW
580int
581i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
582 int align)
583{
6a2c4232 584 int ret;
00731155 585
dbb4351b
CW
586 if (align > obj->base.size)
587 return -EINVAL;
00731155 588
dbb4351b 589 if (obj->ops == &i915_gem_phys_ops)
00731155 590 return 0;
00731155 591
a4f5ea64 592 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
593 return -EFAULT;
594
595 if (obj->base.filp == NULL)
596 return -EINVAL;
597
4717ca9e
CW
598 ret = i915_gem_object_unbind(obj);
599 if (ret)
600 return ret;
601
548625ee 602 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
603 if (obj->mm.pages)
604 return -EBUSY;
6a2c4232 605
581ab1fe 606 GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
6a2c4232
CW
607 obj->ops = &i915_gem_phys_ops;
608
581ab1fe
CW
609 ret = i915_gem_object_pin_pages(obj);
610 if (ret)
611 goto err_xfer;
612
613 return 0;
614
615err_xfer:
616 obj->ops = &i915_gem_object_ops;
617 return ret;
00731155
CW
618}
619
620static int
621i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
622 struct drm_i915_gem_pwrite *args,
03ac84f1 623 struct drm_file *file)
00731155 624{
00731155 625 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 626 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
627
628 /* We manually control the domain here and pretend that it
629 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
630 */
77a0d1ca 631 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
632 if (copy_from_user(vaddr, user_data, args->size))
633 return -EFAULT;
00731155 634
6a2c4232 635 drm_clflush_virt_range(vaddr, args->size);
10466d2a 636 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 637
d59b21ec 638 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 639 return 0;
00731155
CW
640}
641
187685cb 642void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 643{
efab6d8d 644 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
645}
646
647void i915_gem_object_free(struct drm_i915_gem_object *obj)
648{
fac5e23e 649 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 650 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
651}
652
ff72145b
DA
653static int
654i915_gem_create(struct drm_file *file,
12d79d78 655 struct drm_i915_private *dev_priv,
ff72145b
DA
656 uint64_t size,
657 uint32_t *handle_p)
673a394b 658{
05394f39 659 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
660 int ret;
661 u32 handle;
673a394b 662
ff72145b 663 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
664 if (size == 0)
665 return -EINVAL;
673a394b
EA
666
667 /* Allocate the new object */
12d79d78 668 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
669 if (IS_ERR(obj))
670 return PTR_ERR(obj);
673a394b 671
05394f39 672 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 673 /* drop reference from allocate - handle holds it now */
f0cd5182 674 i915_gem_object_put(obj);
d861e338
DV
675 if (ret)
676 return ret;
202f2fef 677
ff72145b 678 *handle_p = handle;
673a394b
EA
679 return 0;
680}
681
ff72145b
DA
682int
683i915_gem_dumb_create(struct drm_file *file,
684 struct drm_device *dev,
685 struct drm_mode_create_dumb *args)
686{
687 /* have to work out size/pitch and return them */
de45eaf7 688 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 689 args->size = args->pitch * args->height;
12d79d78 690 return i915_gem_create(file, to_i915(dev),
da6b51d0 691 args->size, &args->handle);
ff72145b
DA
692}
693
e27ab73d
CW
694static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
695{
696 return !(obj->cache_level == I915_CACHE_NONE ||
697 obj->cache_level == I915_CACHE_WT);
698}
699
ff72145b
DA
700/**
701 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
702 * @dev: drm device pointer
703 * @data: ioctl data blob
704 * @file: drm file pointer
ff72145b
DA
705 */
706int
707i915_gem_create_ioctl(struct drm_device *dev, void *data,
708 struct drm_file *file)
709{
12d79d78 710 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 711 struct drm_i915_gem_create *args = data;
63ed2cb2 712
12d79d78 713 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 714
12d79d78 715 return i915_gem_create(file, dev_priv,
da6b51d0 716 args->size, &args->handle);
ff72145b
DA
717}
718
ef74921b
CW
719static inline enum fb_op_origin
720fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
721{
722 return (domain == I915_GEM_DOMAIN_GTT ?
723 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
724}
725
726static void
727flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
728{
729 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
730
731 if (!(obj->base.write_domain & flush_domains))
732 return;
733
734 /* No actual flushing is required for the GTT write domain. Writes
735 * to it "immediately" go to main memory as far as we know, so there's
736 * no chipset flush. It also doesn't land in render cache.
737 *
738 * However, we do have to enforce the order so that all writes through
739 * the GTT land before any writes to the device, such as updates to
740 * the GATT itself.
741 *
742 * We also have to wait a bit for the writes to land from the GTT.
743 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
744 * timing. This issue has only been observed when switching quickly
745 * between GTT writes and CPU reads from inside the kernel on recent hw,
746 * and it appears to only affect discrete GTT blocks (i.e. on LLC
747 * system agents we cannot reproduce this behaviour).
748 */
749 wmb();
750
751 switch (obj->base.write_domain) {
752 case I915_GEM_DOMAIN_GTT:
753 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
754 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
755 spin_lock_irq(&dev_priv->uncore.lock);
756 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
757 spin_unlock_irq(&dev_priv->uncore.lock);
758 intel_runtime_pm_put(dev_priv);
759 }
760 }
761
762 intel_fb_obj_flush(obj,
763 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
764 break;
765
766 case I915_GEM_DOMAIN_CPU:
767 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
768 break;
e27ab73d
CW
769
770 case I915_GEM_DOMAIN_RENDER:
771 if (gpu_write_needs_clflush(obj))
772 obj->cache_dirty = true;
773 break;
ef74921b
CW
774 }
775
776 obj->base.write_domain = 0;
777}
778
8461d226
DV
779static inline int
780__copy_to_user_swizzled(char __user *cpu_vaddr,
781 const char *gpu_vaddr, int gpu_offset,
782 int length)
783{
784 int ret, cpu_offset = 0;
785
786 while (length > 0) {
787 int cacheline_end = ALIGN(gpu_offset + 1, 64);
788 int this_length = min(cacheline_end - gpu_offset, length);
789 int swizzled_gpu_offset = gpu_offset ^ 64;
790
791 ret = __copy_to_user(cpu_vaddr + cpu_offset,
792 gpu_vaddr + swizzled_gpu_offset,
793 this_length);
794 if (ret)
795 return ret + length;
796
797 cpu_offset += this_length;
798 gpu_offset += this_length;
799 length -= this_length;
800 }
801
802 return 0;
803}
804
8c59967c 805static inline int
4f0c7cfb
BW
806__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
807 const char __user *cpu_vaddr,
8c59967c
DV
808 int length)
809{
810 int ret, cpu_offset = 0;
811
812 while (length > 0) {
813 int cacheline_end = ALIGN(gpu_offset + 1, 64);
814 int this_length = min(cacheline_end - gpu_offset, length);
815 int swizzled_gpu_offset = gpu_offset ^ 64;
816
817 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
818 cpu_vaddr + cpu_offset,
819 this_length);
820 if (ret)
821 return ret + length;
822
823 cpu_offset += this_length;
824 gpu_offset += this_length;
825 length -= this_length;
826 }
827
828 return 0;
829}
830
4c914c0c
BV
831/*
832 * Pins the specified object's pages and synchronizes the object with
833 * GPU accesses. Sets needs_clflush to non-zero if the caller should
834 * flush the object from the CPU cache.
835 */
836int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 837 unsigned int *needs_clflush)
4c914c0c
BV
838{
839 int ret;
840
e95433c7 841 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 842
e95433c7 843 *needs_clflush = 0;
43394c7d
CW
844 if (!i915_gem_object_has_struct_page(obj))
845 return -ENODEV;
4c914c0c 846
e95433c7
CW
847 ret = i915_gem_object_wait(obj,
848 I915_WAIT_INTERRUPTIBLE |
849 I915_WAIT_LOCKED,
850 MAX_SCHEDULE_TIMEOUT,
851 NULL);
c13d87ea
CW
852 if (ret)
853 return ret;
854
a4f5ea64 855 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
856 if (ret)
857 return ret;
858
7fc92e96 859 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
860 ret = i915_gem_object_set_to_cpu_domain(obj, false);
861 if (ret)
862 goto err_unpin;
863 else
864 goto out;
865 }
866
ef74921b 867 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 868
43394c7d
CW
869 /* If we're not in the cpu read domain, set ourself into the gtt
870 * read domain and manually flush cachelines (if required). This
871 * optimizes for the case when the gpu will dirty the data
872 * anyway again before the next pread happens.
873 */
e27ab73d
CW
874 if (!obj->cache_dirty &&
875 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 876 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 877
7f5f95d8 878out:
9764951e 879 /* return with the pages pinned */
43394c7d 880 return 0;
9764951e
CW
881
882err_unpin:
883 i915_gem_object_unpin_pages(obj);
884 return ret;
43394c7d
CW
885}
886
887int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
888 unsigned int *needs_clflush)
889{
890 int ret;
891
e95433c7
CW
892 lockdep_assert_held(&obj->base.dev->struct_mutex);
893
43394c7d
CW
894 *needs_clflush = 0;
895 if (!i915_gem_object_has_struct_page(obj))
896 return -ENODEV;
897
e95433c7
CW
898 ret = i915_gem_object_wait(obj,
899 I915_WAIT_INTERRUPTIBLE |
900 I915_WAIT_LOCKED |
901 I915_WAIT_ALL,
902 MAX_SCHEDULE_TIMEOUT,
903 NULL);
43394c7d
CW
904 if (ret)
905 return ret;
906
a4f5ea64 907 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
908 if (ret)
909 return ret;
910
7fc92e96 911 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
912 ret = i915_gem_object_set_to_cpu_domain(obj, true);
913 if (ret)
914 goto err_unpin;
915 else
916 goto out;
917 }
918
ef74921b 919 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 920
43394c7d
CW
921 /* If we're not in the cpu write domain, set ourself into the
922 * gtt write domain and manually flush cachelines (as required).
923 * This optimizes for the case when the gpu will use the data
924 * right away and we therefore have to clflush anyway.
925 */
e27ab73d 926 if (!obj->cache_dirty) {
7f5f95d8 927 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 928
e27ab73d
CW
929 /*
930 * Same trick applies to invalidate partially written
931 * cachelines read before writing.
932 */
933 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
934 *needs_clflush |= CLFLUSH_BEFORE;
935 }
43394c7d 936
7f5f95d8 937out:
43394c7d 938 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 939 obj->mm.dirty = true;
9764951e 940 /* return with the pages pinned */
43394c7d 941 return 0;
9764951e
CW
942
943err_unpin:
944 i915_gem_object_unpin_pages(obj);
945 return ret;
4c914c0c
BV
946}
947
23c18c71
DV
948static void
949shmem_clflush_swizzled_range(char *addr, unsigned long length,
950 bool swizzled)
951{
e7e58eb5 952 if (unlikely(swizzled)) {
23c18c71
DV
953 unsigned long start = (unsigned long) addr;
954 unsigned long end = (unsigned long) addr + length;
955
956 /* For swizzling simply ensure that we always flush both
957 * channels. Lame, but simple and it works. Swizzled
958 * pwrite/pread is far from a hotpath - current userspace
959 * doesn't use it at all. */
960 start = round_down(start, 128);
961 end = round_up(end, 128);
962
963 drm_clflush_virt_range((void *)start, end - start);
964 } else {
965 drm_clflush_virt_range(addr, length);
966 }
967
968}
969
d174bd64
DV
970/* Only difference to the fast-path function is that this can handle bit17
971 * and uses non-atomic copy and kmap functions. */
972static int
bb6dc8d9 973shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
974 char __user *user_data,
975 bool page_do_bit17_swizzling, bool needs_clflush)
976{
977 char *vaddr;
978 int ret;
979
980 vaddr = kmap(page);
981 if (needs_clflush)
bb6dc8d9 982 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 983 page_do_bit17_swizzling);
d174bd64
DV
984
985 if (page_do_bit17_swizzling)
bb6dc8d9 986 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 987 else
bb6dc8d9 988 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
989 kunmap(page);
990
f60d7f0c 991 return ret ? - EFAULT : 0;
d174bd64
DV
992}
993
bb6dc8d9
CW
994static int
995shmem_pread(struct page *page, int offset, int length, char __user *user_data,
996 bool page_do_bit17_swizzling, bool needs_clflush)
997{
998 int ret;
999
1000 ret = -ENODEV;
1001 if (!page_do_bit17_swizzling) {
1002 char *vaddr = kmap_atomic(page);
1003
1004 if (needs_clflush)
1005 drm_clflush_virt_range(vaddr + offset, length);
1006 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1007 kunmap_atomic(vaddr);
1008 }
1009 if (ret == 0)
1010 return 0;
1011
1012 return shmem_pread_slow(page, offset, length, user_data,
1013 page_do_bit17_swizzling, needs_clflush);
1014}
1015
1016static int
1017i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1018 struct drm_i915_gem_pread *args)
1019{
1020 char __user *user_data;
1021 u64 remain;
1022 unsigned int obj_do_bit17_swizzling;
1023 unsigned int needs_clflush;
1024 unsigned int idx, offset;
1025 int ret;
1026
1027 obj_do_bit17_swizzling = 0;
1028 if (i915_gem_object_needs_bit17_swizzle(obj))
1029 obj_do_bit17_swizzling = BIT(17);
1030
1031 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1032 if (ret)
1033 return ret;
1034
1035 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1036 mutex_unlock(&obj->base.dev->struct_mutex);
1037 if (ret)
1038 return ret;
1039
1040 remain = args->size;
1041 user_data = u64_to_user_ptr(args->data_ptr);
1042 offset = offset_in_page(args->offset);
1043 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1044 struct page *page = i915_gem_object_get_page(obj, idx);
1045 int length;
1046
1047 length = remain;
1048 if (offset + length > PAGE_SIZE)
1049 length = PAGE_SIZE - offset;
1050
1051 ret = shmem_pread(page, offset, length, user_data,
1052 page_to_phys(page) & obj_do_bit17_swizzling,
1053 needs_clflush);
1054 if (ret)
1055 break;
1056
1057 remain -= length;
1058 user_data += length;
1059 offset = 0;
1060 }
1061
1062 i915_gem_obj_finish_shmem_access(obj);
1063 return ret;
1064}
1065
1066static inline bool
1067gtt_user_read(struct io_mapping *mapping,
1068 loff_t base, int offset,
1069 char __user *user_data, int length)
b50a5371 1070{
b50a5371 1071 void *vaddr;
bb6dc8d9 1072 unsigned long unwritten;
b50a5371 1073
b50a5371 1074 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
1075 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1076 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1077 io_mapping_unmap_atomic(vaddr);
1078 if (unwritten) {
1079 vaddr = (void __force *)
1080 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1081 unwritten = copy_to_user(user_data, vaddr + offset, length);
1082 io_mapping_unmap(vaddr);
1083 }
b50a5371
AS
1084 return unwritten;
1085}
1086
1087static int
bb6dc8d9
CW
1088i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1089 const struct drm_i915_gem_pread *args)
b50a5371 1090{
bb6dc8d9
CW
1091 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1092 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1093 struct drm_mm_node node;
bb6dc8d9
CW
1094 struct i915_vma *vma;
1095 void __user *user_data;
1096 u64 remain, offset;
b50a5371
AS
1097 int ret;
1098
bb6dc8d9
CW
1099 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1100 if (ret)
1101 return ret;
1102
1103 intel_runtime_pm_get(i915);
1104 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1105 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1106 if (!IS_ERR(vma)) {
1107 node.start = i915_ggtt_offset(vma);
1108 node.allocated = false;
49ef5294 1109 ret = i915_vma_put_fence(vma);
18034584
CW
1110 if (ret) {
1111 i915_vma_unpin(vma);
1112 vma = ERR_PTR(ret);
1113 }
1114 }
058d88c4 1115 if (IS_ERR(vma)) {
bb6dc8d9 1116 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1117 if (ret)
bb6dc8d9
CW
1118 goto out_unlock;
1119 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1120 }
1121
1122 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1123 if (ret)
1124 goto out_unpin;
1125
bb6dc8d9 1126 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1127
bb6dc8d9
CW
1128 user_data = u64_to_user_ptr(args->data_ptr);
1129 remain = args->size;
1130 offset = args->offset;
b50a5371
AS
1131
1132 while (remain > 0) {
1133 /* Operation in this page
1134 *
1135 * page_base = page offset within aperture
1136 * page_offset = offset within page
1137 * page_length = bytes to copy for this page
1138 */
1139 u32 page_base = node.start;
1140 unsigned page_offset = offset_in_page(offset);
1141 unsigned page_length = PAGE_SIZE - page_offset;
1142 page_length = remain < page_length ? remain : page_length;
1143 if (node.allocated) {
1144 wmb();
1145 ggtt->base.insert_page(&ggtt->base,
1146 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1147 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1148 wmb();
1149 } else {
1150 page_base += offset & PAGE_MASK;
1151 }
bb6dc8d9
CW
1152
1153 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1154 user_data, page_length)) {
b50a5371
AS
1155 ret = -EFAULT;
1156 break;
1157 }
1158
1159 remain -= page_length;
1160 user_data += page_length;
1161 offset += page_length;
1162 }
1163
bb6dc8d9 1164 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1165out_unpin:
1166 if (node.allocated) {
1167 wmb();
1168 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1169 node.start, node.size);
b50a5371
AS
1170 remove_mappable_node(&node);
1171 } else {
058d88c4 1172 i915_vma_unpin(vma);
b50a5371 1173 }
bb6dc8d9
CW
1174out_unlock:
1175 intel_runtime_pm_put(i915);
1176 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1177
eb01459f
EA
1178 return ret;
1179}
1180
673a394b
EA
1181/**
1182 * Reads data from the object referenced by handle.
14bb2c11
TU
1183 * @dev: drm device pointer
1184 * @data: ioctl data blob
1185 * @file: drm file pointer
673a394b
EA
1186 *
1187 * On error, the contents of *data are undefined.
1188 */
1189int
1190i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1191 struct drm_file *file)
673a394b
EA
1192{
1193 struct drm_i915_gem_pread *args = data;
05394f39 1194 struct drm_i915_gem_object *obj;
bb6dc8d9 1195 int ret;
673a394b 1196
51311d0a
CW
1197 if (args->size == 0)
1198 return 0;
1199
1200 if (!access_ok(VERIFY_WRITE,
3ed605bc 1201 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1202 args->size))
1203 return -EFAULT;
1204
03ac0642 1205 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1206 if (!obj)
1207 return -ENOENT;
673a394b 1208
7dcd2499 1209 /* Bounds check source. */
966d5bf5 1210 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1211 ret = -EINVAL;
bb6dc8d9 1212 goto out;
ce9d419d
CW
1213 }
1214
db53a302
CW
1215 trace_i915_gem_object_pread(obj, args->offset, args->size);
1216
e95433c7
CW
1217 ret = i915_gem_object_wait(obj,
1218 I915_WAIT_INTERRUPTIBLE,
1219 MAX_SCHEDULE_TIMEOUT,
1220 to_rps_client(file));
258a5ede 1221 if (ret)
bb6dc8d9 1222 goto out;
258a5ede 1223
bb6dc8d9 1224 ret = i915_gem_object_pin_pages(obj);
258a5ede 1225 if (ret)
bb6dc8d9 1226 goto out;
673a394b 1227
bb6dc8d9 1228 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1229 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1230 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1231
bb6dc8d9
CW
1232 i915_gem_object_unpin_pages(obj);
1233out:
f0cd5182 1234 i915_gem_object_put(obj);
eb01459f 1235 return ret;
673a394b
EA
1236}
1237
0839ccb8
KP
1238/* This is the fast write path which cannot handle
1239 * page faults in the source data
9b7530cc 1240 */
0839ccb8 1241
fe115628
CW
1242static inline bool
1243ggtt_write(struct io_mapping *mapping,
1244 loff_t base, int offset,
1245 char __user *user_data, int length)
9b7530cc 1246{
4f0c7cfb 1247 void *vaddr;
0839ccb8 1248 unsigned long unwritten;
9b7530cc 1249
4f0c7cfb 1250 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1251 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1252 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1253 user_data, length);
fe115628
CW
1254 io_mapping_unmap_atomic(vaddr);
1255 if (unwritten) {
1256 vaddr = (void __force *)
1257 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1258 unwritten = copy_from_user(vaddr + offset, user_data, length);
1259 io_mapping_unmap(vaddr);
1260 }
bb6dc8d9 1261
bb6dc8d9
CW
1262 return unwritten;
1263}
1264
3de09aa3
EA
1265/**
1266 * This is the fast pwrite path, where we copy the data directly from the
1267 * user into the GTT, uncached.
fe115628 1268 * @obj: i915 GEM object
14bb2c11 1269 * @args: pwrite arguments structure
3de09aa3 1270 */
673a394b 1271static int
fe115628
CW
1272i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1273 const struct drm_i915_gem_pwrite *args)
673a394b 1274{
fe115628 1275 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1276 struct i915_ggtt *ggtt = &i915->ggtt;
1277 struct drm_mm_node node;
fe115628
CW
1278 struct i915_vma *vma;
1279 u64 remain, offset;
1280 void __user *user_data;
4f1959ee 1281 int ret;
b50a5371 1282
fe115628
CW
1283 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1284 if (ret)
1285 return ret;
935aaa69 1286
9c870d03 1287 intel_runtime_pm_get(i915);
058d88c4 1288 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1289 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1290 if (!IS_ERR(vma)) {
1291 node.start = i915_ggtt_offset(vma);
1292 node.allocated = false;
49ef5294 1293 ret = i915_vma_put_fence(vma);
18034584
CW
1294 if (ret) {
1295 i915_vma_unpin(vma);
1296 vma = ERR_PTR(ret);
1297 }
1298 }
058d88c4 1299 if (IS_ERR(vma)) {
bb6dc8d9 1300 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1301 if (ret)
fe115628
CW
1302 goto out_unlock;
1303 GEM_BUG_ON(!node.allocated);
4f1959ee 1304 }
935aaa69
DV
1305
1306 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1307 if (ret)
1308 goto out_unpin;
1309
fe115628
CW
1310 mutex_unlock(&i915->drm.struct_mutex);
1311
b19482d7 1312 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1313
4f1959ee
AS
1314 user_data = u64_to_user_ptr(args->data_ptr);
1315 offset = args->offset;
1316 remain = args->size;
1317 while (remain) {
673a394b
EA
1318 /* Operation in this page
1319 *
0839ccb8
KP
1320 * page_base = page offset within aperture
1321 * page_offset = offset within page
1322 * page_length = bytes to copy for this page
673a394b 1323 */
4f1959ee 1324 u32 page_base = node.start;
bb6dc8d9
CW
1325 unsigned int page_offset = offset_in_page(offset);
1326 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1327 page_length = remain < page_length ? remain : page_length;
1328 if (node.allocated) {
1329 wmb(); /* flush the write before we modify the GGTT */
1330 ggtt->base.insert_page(&ggtt->base,
1331 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1332 node.start, I915_CACHE_NONE, 0);
1333 wmb(); /* flush modifications to the GGTT (insert_page) */
1334 } else {
1335 page_base += offset & PAGE_MASK;
1336 }
0839ccb8 1337 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1338 * source page isn't available. Return the error and we'll
1339 * retry in the slow path.
b50a5371
AS
1340 * If the object is non-shmem backed, we retry again with the
1341 * path that handles page fault.
0839ccb8 1342 */
fe115628
CW
1343 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1344 user_data, page_length)) {
1345 ret = -EFAULT;
1346 break;
935aaa69 1347 }
673a394b 1348
0839ccb8
KP
1349 remain -= page_length;
1350 user_data += page_length;
1351 offset += page_length;
673a394b 1352 }
d59b21ec 1353 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1354
1355 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1356out_unpin:
4f1959ee
AS
1357 if (node.allocated) {
1358 wmb();
1359 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1360 node.start, node.size);
4f1959ee
AS
1361 remove_mappable_node(&node);
1362 } else {
058d88c4 1363 i915_vma_unpin(vma);
4f1959ee 1364 }
fe115628 1365out_unlock:
9c870d03 1366 intel_runtime_pm_put(i915);
fe115628 1367 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1368 return ret;
673a394b
EA
1369}
1370
3043c60c 1371static int
fe115628 1372shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1373 char __user *user_data,
1374 bool page_do_bit17_swizzling,
1375 bool needs_clflush_before,
1376 bool needs_clflush_after)
673a394b 1377{
d174bd64
DV
1378 char *vaddr;
1379 int ret;
e5281ccd 1380
d174bd64 1381 vaddr = kmap(page);
e7e58eb5 1382 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1383 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1384 page_do_bit17_swizzling);
d174bd64 1385 if (page_do_bit17_swizzling)
fe115628
CW
1386 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1387 length);
d174bd64 1388 else
fe115628 1389 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1390 if (needs_clflush_after)
fe115628 1391 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1392 page_do_bit17_swizzling);
d174bd64 1393 kunmap(page);
40123c1f 1394
755d2218 1395 return ret ? -EFAULT : 0;
40123c1f
EA
1396}
1397
fe115628
CW
1398/* Per-page copy function for the shmem pwrite fastpath.
1399 * Flushes invalid cachelines before writing to the target if
1400 * needs_clflush_before is set and flushes out any written cachelines after
1401 * writing if needs_clflush is set.
1402 */
40123c1f 1403static int
fe115628
CW
1404shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1405 bool page_do_bit17_swizzling,
1406 bool needs_clflush_before,
1407 bool needs_clflush_after)
40123c1f 1408{
fe115628
CW
1409 int ret;
1410
1411 ret = -ENODEV;
1412 if (!page_do_bit17_swizzling) {
1413 char *vaddr = kmap_atomic(page);
1414
1415 if (needs_clflush_before)
1416 drm_clflush_virt_range(vaddr + offset, len);
1417 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1418 if (needs_clflush_after)
1419 drm_clflush_virt_range(vaddr + offset, len);
1420
1421 kunmap_atomic(vaddr);
1422 }
1423 if (ret == 0)
1424 return ret;
1425
1426 return shmem_pwrite_slow(page, offset, len, user_data,
1427 page_do_bit17_swizzling,
1428 needs_clflush_before,
1429 needs_clflush_after);
1430}
1431
1432static int
1433i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1434 const struct drm_i915_gem_pwrite *args)
1435{
1436 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1437 void __user *user_data;
1438 u64 remain;
1439 unsigned int obj_do_bit17_swizzling;
1440 unsigned int partial_cacheline_write;
43394c7d 1441 unsigned int needs_clflush;
fe115628
CW
1442 unsigned int offset, idx;
1443 int ret;
40123c1f 1444
fe115628 1445 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1446 if (ret)
1447 return ret;
1448
fe115628
CW
1449 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1450 mutex_unlock(&i915->drm.struct_mutex);
1451 if (ret)
1452 return ret;
673a394b 1453
fe115628
CW
1454 obj_do_bit17_swizzling = 0;
1455 if (i915_gem_object_needs_bit17_swizzle(obj))
1456 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1457
fe115628
CW
1458 /* If we don't overwrite a cacheline completely we need to be
1459 * careful to have up-to-date data by first clflushing. Don't
1460 * overcomplicate things and flush the entire patch.
1461 */
1462 partial_cacheline_write = 0;
1463 if (needs_clflush & CLFLUSH_BEFORE)
1464 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1465
fe115628
CW
1466 user_data = u64_to_user_ptr(args->data_ptr);
1467 remain = args->size;
1468 offset = offset_in_page(args->offset);
1469 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1470 struct page *page = i915_gem_object_get_page(obj, idx);
1471 int length;
40123c1f 1472
fe115628
CW
1473 length = remain;
1474 if (offset + length > PAGE_SIZE)
1475 length = PAGE_SIZE - offset;
755d2218 1476
fe115628
CW
1477 ret = shmem_pwrite(page, offset, length, user_data,
1478 page_to_phys(page) & obj_do_bit17_swizzling,
1479 (offset | length) & partial_cacheline_write,
1480 needs_clflush & CLFLUSH_AFTER);
755d2218 1481 if (ret)
fe115628 1482 break;
755d2218 1483
fe115628
CW
1484 remain -= length;
1485 user_data += length;
1486 offset = 0;
8c59967c 1487 }
673a394b 1488
d59b21ec 1489 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1490 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1491 return ret;
673a394b
EA
1492}
1493
1494/**
1495 * Writes data to the object referenced by handle.
14bb2c11
TU
1496 * @dev: drm device
1497 * @data: ioctl data blob
1498 * @file: drm file
673a394b
EA
1499 *
1500 * On error, the contents of the buffer that were to be modified are undefined.
1501 */
1502int
1503i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1504 struct drm_file *file)
673a394b
EA
1505{
1506 struct drm_i915_gem_pwrite *args = data;
05394f39 1507 struct drm_i915_gem_object *obj;
51311d0a
CW
1508 int ret;
1509
1510 if (args->size == 0)
1511 return 0;
1512
1513 if (!access_ok(VERIFY_READ,
3ed605bc 1514 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1515 args->size))
1516 return -EFAULT;
1517
03ac0642 1518 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1519 if (!obj)
1520 return -ENOENT;
673a394b 1521
7dcd2499 1522 /* Bounds check destination. */
966d5bf5 1523 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1524 ret = -EINVAL;
258a5ede 1525 goto err;
ce9d419d
CW
1526 }
1527
db53a302
CW
1528 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1529
7c55e2c5
CW
1530 ret = -ENODEV;
1531 if (obj->ops->pwrite)
1532 ret = obj->ops->pwrite(obj, args);
1533 if (ret != -ENODEV)
1534 goto err;
1535
e95433c7
CW
1536 ret = i915_gem_object_wait(obj,
1537 I915_WAIT_INTERRUPTIBLE |
1538 I915_WAIT_ALL,
1539 MAX_SCHEDULE_TIMEOUT,
1540 to_rps_client(file));
258a5ede
CW
1541 if (ret)
1542 goto err;
1543
fe115628 1544 ret = i915_gem_object_pin_pages(obj);
258a5ede 1545 if (ret)
fe115628 1546 goto err;
258a5ede 1547
935aaa69 1548 ret = -EFAULT;
673a394b
EA
1549 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1550 * it would end up going through the fenced access, and we'll get
1551 * different detiling behavior between reading and writing.
1552 * pread/pwrite currently are reading and writing from the CPU
1553 * perspective, requiring manual detiling by the client.
1554 */
6eae0059 1555 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1556 cpu_write_needs_clflush(obj))
935aaa69
DV
1557 /* Note that the gtt paths might fail with non-page-backed user
1558 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1559 * textures). Fallback to the shmem path in that case.
1560 */
fe115628 1561 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1562
d1054ee4 1563 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1564 if (obj->phys_handle)
1565 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1566 else
fe115628 1567 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1568 }
5c0480f2 1569
fe115628 1570 i915_gem_object_unpin_pages(obj);
258a5ede 1571err:
f0cd5182 1572 i915_gem_object_put(obj);
258a5ede 1573 return ret;
673a394b
EA
1574}
1575
40e62d5d
CW
1576static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1577{
1578 struct drm_i915_private *i915;
1579 struct list_head *list;
1580 struct i915_vma *vma;
1581
1582 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1583 if (!i915_vma_is_ggtt(vma))
28f412e0 1584 break;
40e62d5d
CW
1585
1586 if (i915_vma_is_active(vma))
1587 continue;
1588
1589 if (!drm_mm_node_allocated(&vma->node))
1590 continue;
1591
1592 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1593 }
1594
1595 i915 = to_i915(obj->base.dev);
1596 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1597 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1598}
1599
673a394b 1600/**
2ef7eeaa
EA
1601 * Called when user space prepares to use an object with the CPU, either
1602 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1603 * @dev: drm device
1604 * @data: ioctl data blob
1605 * @file: drm file
673a394b
EA
1606 */
1607int
1608i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1609 struct drm_file *file)
673a394b
EA
1610{
1611 struct drm_i915_gem_set_domain *args = data;
05394f39 1612 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1613 uint32_t read_domains = args->read_domains;
1614 uint32_t write_domain = args->write_domain;
40e62d5d 1615 int err;
673a394b 1616
2ef7eeaa 1617 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1618 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1619 return -EINVAL;
1620
1621 /* Having something in the write domain implies it's in the read
1622 * domain, and only that read domain. Enforce that in the request.
1623 */
1624 if (write_domain != 0 && read_domains != write_domain)
1625 return -EINVAL;
1626
03ac0642 1627 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1628 if (!obj)
1629 return -ENOENT;
673a394b 1630
3236f57a
CW
1631 /* Try to flush the object off the GPU without holding the lock.
1632 * We will repeat the flush holding the lock in the normal manner
1633 * to catch cases where we are gazumped.
1634 */
40e62d5d 1635 err = i915_gem_object_wait(obj,
e95433c7
CW
1636 I915_WAIT_INTERRUPTIBLE |
1637 (write_domain ? I915_WAIT_ALL : 0),
1638 MAX_SCHEDULE_TIMEOUT,
1639 to_rps_client(file));
40e62d5d 1640 if (err)
f0cd5182 1641 goto out;
b8f9096d 1642
40e62d5d
CW
1643 /* Flush and acquire obj->pages so that we are coherent through
1644 * direct access in memory with previous cached writes through
1645 * shmemfs and that our cache domain tracking remains valid.
1646 * For example, if the obj->filp was moved to swap without us
1647 * being notified and releasing the pages, we would mistakenly
1648 * continue to assume that the obj remained out of the CPU cached
1649 * domain.
1650 */
1651 err = i915_gem_object_pin_pages(obj);
1652 if (err)
f0cd5182 1653 goto out;
40e62d5d
CW
1654
1655 err = i915_mutex_lock_interruptible(dev);
1656 if (err)
f0cd5182 1657 goto out_unpin;
3236f57a 1658
e22d8e3c
CW
1659 if (read_domains & I915_GEM_DOMAIN_WC)
1660 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1661 else if (read_domains & I915_GEM_DOMAIN_GTT)
1662 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1663 else
e22d8e3c 1664 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1665
40e62d5d
CW
1666 /* And bump the LRU for this access */
1667 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1668
673a394b 1669 mutex_unlock(&dev->struct_mutex);
b8f9096d 1670
40e62d5d 1671 if (write_domain != 0)
ef74921b
CW
1672 intel_fb_obj_invalidate(obj,
1673 fb_write_origin(obj, write_domain));
40e62d5d 1674
f0cd5182 1675out_unpin:
40e62d5d 1676 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1677out:
1678 i915_gem_object_put(obj);
40e62d5d 1679 return err;
673a394b
EA
1680}
1681
1682/**
1683 * Called when user space has done writes to this buffer
14bb2c11
TU
1684 * @dev: drm device
1685 * @data: ioctl data blob
1686 * @file: drm file
673a394b
EA
1687 */
1688int
1689i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1690 struct drm_file *file)
673a394b
EA
1691{
1692 struct drm_i915_gem_sw_finish *args = data;
05394f39 1693 struct drm_i915_gem_object *obj;
1d7cfea1 1694
03ac0642 1695 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1696 if (!obj)
1697 return -ENOENT;
673a394b 1698
673a394b 1699 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1700 i915_gem_object_flush_if_display(obj);
f0cd5182 1701 i915_gem_object_put(obj);
5a97bcc6
CW
1702
1703 return 0;
673a394b
EA
1704}
1705
1706/**
14bb2c11
TU
1707 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1708 * it is mapped to.
1709 * @dev: drm device
1710 * @data: ioctl data blob
1711 * @file: drm file
673a394b
EA
1712 *
1713 * While the mapping holds a reference on the contents of the object, it doesn't
1714 * imply a ref on the object itself.
34367381
DV
1715 *
1716 * IMPORTANT:
1717 *
1718 * DRM driver writers who look a this function as an example for how to do GEM
1719 * mmap support, please don't implement mmap support like here. The modern way
1720 * to implement DRM mmap support is with an mmap offset ioctl (like
1721 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1722 * That way debug tooling like valgrind will understand what's going on, hiding
1723 * the mmap call in a driver private ioctl will break that. The i915 driver only
1724 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1725 */
1726int
1727i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1728 struct drm_file *file)
673a394b
EA
1729{
1730 struct drm_i915_gem_mmap *args = data;
03ac0642 1731 struct drm_i915_gem_object *obj;
673a394b
EA
1732 unsigned long addr;
1733
1816f923
AG
1734 if (args->flags & ~(I915_MMAP_WC))
1735 return -EINVAL;
1736
568a58e5 1737 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1738 return -ENODEV;
1739
03ac0642
CW
1740 obj = i915_gem_object_lookup(file, args->handle);
1741 if (!obj)
bf79cb91 1742 return -ENOENT;
673a394b 1743
1286ff73
DV
1744 /* prime objects have no backing filp to GEM mmap
1745 * pages from.
1746 */
03ac0642 1747 if (!obj->base.filp) {
f0cd5182 1748 i915_gem_object_put(obj);
1286ff73
DV
1749 return -EINVAL;
1750 }
1751
03ac0642 1752 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1753 PROT_READ | PROT_WRITE, MAP_SHARED,
1754 args->offset);
1816f923
AG
1755 if (args->flags & I915_MMAP_WC) {
1756 struct mm_struct *mm = current->mm;
1757 struct vm_area_struct *vma;
1758
80a89a5e 1759 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1760 i915_gem_object_put(obj);
80a89a5e
MH
1761 return -EINTR;
1762 }
1816f923
AG
1763 vma = find_vma(mm, addr);
1764 if (vma)
1765 vma->vm_page_prot =
1766 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1767 else
1768 addr = -ENOMEM;
1769 up_write(&mm->mmap_sem);
aeecc969
CW
1770
1771 /* This may race, but that's ok, it only gets set */
50349247 1772 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1773 }
f0cd5182 1774 i915_gem_object_put(obj);
673a394b
EA
1775 if (IS_ERR((void *)addr))
1776 return addr;
1777
1778 args->addr_ptr = (uint64_t) addr;
1779
1780 return 0;
1781}
1782
03af84fe
CW
1783static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1784{
6649a0b6 1785 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1786}
1787
4cc69075
CW
1788/**
1789 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1790 *
1791 * A history of the GTT mmap interface:
1792 *
1793 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1794 * aligned and suitable for fencing, and still fit into the available
1795 * mappable space left by the pinned display objects. A classic problem
1796 * we called the page-fault-of-doom where we would ping-pong between
1797 * two objects that could not fit inside the GTT and so the memcpy
1798 * would page one object in at the expense of the other between every
1799 * single byte.
1800 *
1801 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1802 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1803 * object is too large for the available space (or simply too large
1804 * for the mappable aperture!), a view is created instead and faulted
1805 * into userspace. (This view is aligned and sized appropriately for
1806 * fenced access.)
1807 *
e22d8e3c
CW
1808 * 2 - Recognise WC as a separate cache domain so that we can flush the
1809 * delayed writes via GTT before performing direct access via WC.
1810 *
4cc69075
CW
1811 * Restrictions:
1812 *
1813 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1814 * hangs on some architectures, corruption on others. An attempt to service
1815 * a GTT page fault from a snoopable object will generate a SIGBUS.
1816 *
1817 * * the object must be able to fit into RAM (physical memory, though no
1818 * limited to the mappable aperture).
1819 *
1820 *
1821 * Caveats:
1822 *
1823 * * a new GTT page fault will synchronize rendering from the GPU and flush
1824 * all data to system memory. Subsequent access will not be synchronized.
1825 *
1826 * * all mappings are revoked on runtime device suspend.
1827 *
1828 * * there are only 8, 16 or 32 fence registers to share between all users
1829 * (older machines require fence register for display and blitter access
1830 * as well). Contention of the fence registers will cause the previous users
1831 * to be unmapped and any new access will generate new page faults.
1832 *
1833 * * running out of memory while servicing a fault may generate a SIGBUS,
1834 * rather than the expected SIGSEGV.
1835 */
1836int i915_gem_mmap_gtt_version(void)
1837{
e22d8e3c 1838 return 2;
4cc69075
CW
1839}
1840
2d4281bb
CW
1841static inline struct i915_ggtt_view
1842compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1843 pgoff_t page_offset,
1844 unsigned int chunk)
1845{
1846 struct i915_ggtt_view view;
1847
1848 if (i915_gem_object_is_tiled(obj))
1849 chunk = roundup(chunk, tile_row_pages(obj));
1850
2d4281bb 1851 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1852 view.partial.offset = rounddown(page_offset, chunk);
1853 view.partial.size =
2d4281bb 1854 min_t(unsigned int, chunk,
8bab1193 1855 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1856
1857 /* If the partial covers the entire object, just create a normal VMA. */
1858 if (chunk >= obj->base.size >> PAGE_SHIFT)
1859 view.type = I915_GGTT_VIEW_NORMAL;
1860
1861 return view;
1862}
1863
de151cf6
JB
1864/**
1865 * i915_gem_fault - fault a page into the GTT
d9072a3e 1866 * @vmf: fault info
de151cf6
JB
1867 *
1868 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1869 * from userspace. The fault handler takes care of binding the object to
1870 * the GTT (if needed), allocating and programming a fence register (again,
1871 * only if needed based on whether the old reg is still valid or the object
1872 * is tiled) and inserting a new PTE into the faulting process.
1873 *
1874 * Note that the faulting process may involve evicting existing objects
1875 * from the GTT and/or fence registers to make room. So performance may
1876 * suffer if the GTT working set is large or there are few fence registers
1877 * left.
4cc69075
CW
1878 *
1879 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1880 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1881 */
11bac800 1882int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1883{
03af84fe 1884#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1885 struct vm_area_struct *area = vmf->vma;
058d88c4 1886 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1887 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1888 struct drm_i915_private *dev_priv = to_i915(dev);
1889 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1890 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1891 struct i915_vma *vma;
de151cf6 1892 pgoff_t page_offset;
82118877 1893 unsigned int flags;
b8f9096d 1894 int ret;
f65c9168 1895
de151cf6 1896 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1897 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1898
db53a302
CW
1899 trace_i915_gem_object_fault(obj, page_offset, true, write);
1900
6e4930f6 1901 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1902 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1903 * repeat the flush holding the lock in the normal manner to catch cases
1904 * where we are gazumped.
1905 */
e95433c7
CW
1906 ret = i915_gem_object_wait(obj,
1907 I915_WAIT_INTERRUPTIBLE,
1908 MAX_SCHEDULE_TIMEOUT,
1909 NULL);
6e4930f6 1910 if (ret)
b8f9096d
CW
1911 goto err;
1912
40e62d5d
CW
1913 ret = i915_gem_object_pin_pages(obj);
1914 if (ret)
1915 goto err;
1916
b8f9096d
CW
1917 intel_runtime_pm_get(dev_priv);
1918
1919 ret = i915_mutex_lock_interruptible(dev);
1920 if (ret)
1921 goto err_rpm;
6e4930f6 1922
eb119bd6 1923 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1924 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1925 ret = -EFAULT;
b8f9096d 1926 goto err_unlock;
eb119bd6
CW
1927 }
1928
82118877
CW
1929 /* If the object is smaller than a couple of partial vma, it is
1930 * not worth only creating a single partial vma - we may as well
1931 * clear enough space for the full object.
1932 */
1933 flags = PIN_MAPPABLE;
1934 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1935 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1936
a61007a8 1937 /* Now pin it into the GTT as needed */
82118877 1938 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1939 if (IS_ERR(vma)) {
a61007a8 1940 /* Use a partial view if it is bigger than available space */
2d4281bb 1941 struct i915_ggtt_view view =
8201c1fa 1942 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1943
50349247
CW
1944 /* Userspace is now writing through an untracked VMA, abandon
1945 * all hope that the hardware is able to track future writes.
1946 */
1947 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1948
a61007a8
CW
1949 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1950 }
058d88c4
CW
1951 if (IS_ERR(vma)) {
1952 ret = PTR_ERR(vma);
b8f9096d 1953 goto err_unlock;
058d88c4 1954 }
4a684a41 1955
c9839303
CW
1956 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1957 if (ret)
b8f9096d 1958 goto err_unpin;
74898d7e 1959
49ef5294 1960 ret = i915_vma_get_fence(vma);
d9e86c0e 1961 if (ret)
b8f9096d 1962 goto err_unpin;
7d1c4804 1963
275f039d 1964 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1965 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1966 if (list_empty(&obj->userfault_link))
1967 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1968
b90b91d8 1969 /* Finally, remap it using the new GTT offset */
c58305af 1970 ret = remap_io_mapping(area,
8bab1193 1971 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1972 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1973 min_t(u64, vma->size, area->vm_end - area->vm_start),
1974 &ggtt->mappable);
a61007a8 1975
b8f9096d 1976err_unpin:
058d88c4 1977 __i915_vma_unpin(vma);
b8f9096d 1978err_unlock:
de151cf6 1979 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1980err_rpm:
1981 intel_runtime_pm_put(dev_priv);
40e62d5d 1982 i915_gem_object_unpin_pages(obj);
b8f9096d 1983err:
de151cf6 1984 switch (ret) {
d9bc7e9f 1985 case -EIO:
2232f031
DV
1986 /*
1987 * We eat errors when the gpu is terminally wedged to avoid
1988 * userspace unduly crashing (gl has no provisions for mmaps to
1989 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1990 * and so needs to be reported.
1991 */
1992 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1993 ret = VM_FAULT_SIGBUS;
1994 break;
1995 }
045e769a 1996 case -EAGAIN:
571c608d
DV
1997 /*
1998 * EAGAIN means the gpu is hung and we'll wait for the error
1999 * handler to reset everything when re-faulting in
2000 * i915_mutex_lock_interruptible.
d9bc7e9f 2001 */
c715089f
CW
2002 case 0:
2003 case -ERESTARTSYS:
bed636ab 2004 case -EINTR:
e79e0fe3
DR
2005 case -EBUSY:
2006 /*
2007 * EBUSY is ok: this just means that another thread
2008 * already did the job.
2009 */
f65c9168
PZ
2010 ret = VM_FAULT_NOPAGE;
2011 break;
de151cf6 2012 case -ENOMEM:
f65c9168
PZ
2013 ret = VM_FAULT_OOM;
2014 break;
a7c2e1aa 2015 case -ENOSPC:
45d67817 2016 case -EFAULT:
f65c9168
PZ
2017 ret = VM_FAULT_SIGBUS;
2018 break;
de151cf6 2019 default:
a7c2e1aa 2020 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
2021 ret = VM_FAULT_SIGBUS;
2022 break;
de151cf6 2023 }
f65c9168 2024 return ret;
de151cf6
JB
2025}
2026
901782b2
CW
2027/**
2028 * i915_gem_release_mmap - remove physical page mappings
2029 * @obj: obj in question
2030 *
af901ca1 2031 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2032 * relinquish ownership of the pages back to the system.
2033 *
2034 * It is vital that we remove the page mapping if we have mapped a tiled
2035 * object through the GTT and then lose the fence register due to
2036 * resource pressure. Similarly if the object has been moved out of the
2037 * aperture, than pages mapped into userspace must be revoked. Removing the
2038 * mapping will then trigger a page fault on the next user access, allowing
2039 * fixup by i915_gem_fault().
2040 */
d05ca301 2041void
05394f39 2042i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2043{
275f039d 2044 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2045
349f2ccf
CW
2046 /* Serialisation between user GTT access and our code depends upon
2047 * revoking the CPU's PTE whilst the mutex is held. The next user
2048 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2049 *
2050 * Note that RPM complicates somewhat by adding an additional
2051 * requirement that operations to the GGTT be made holding the RPM
2052 * wakeref.
349f2ccf 2053 */
275f039d 2054 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2055 intel_runtime_pm_get(i915);
349f2ccf 2056
3594a3e2 2057 if (list_empty(&obj->userfault_link))
9c870d03 2058 goto out;
901782b2 2059
3594a3e2 2060 list_del_init(&obj->userfault_link);
6796cb16
DH
2061 drm_vma_node_unmap(&obj->base.vma_node,
2062 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
2063
2064 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2065 * memory transactions from userspace before we return. The TLB
2066 * flushing implied above by changing the PTE above *should* be
2067 * sufficient, an extra barrier here just provides us with a bit
2068 * of paranoid documentation about our requirement to serialise
2069 * memory writes before touching registers / GSM.
2070 */
2071 wmb();
9c870d03
CW
2072
2073out:
2074 intel_runtime_pm_put(i915);
901782b2
CW
2075}
2076
7c108fd8 2077void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2078{
3594a3e2 2079 struct drm_i915_gem_object *obj, *on;
7c108fd8 2080 int i;
eedd10f4 2081
3594a3e2
CW
2082 /*
2083 * Only called during RPM suspend. All users of the userfault_list
2084 * must be holding an RPM wakeref to ensure that this can not
2085 * run concurrently with themselves (and use the struct_mutex for
2086 * protection between themselves).
2087 */
275f039d 2088
3594a3e2
CW
2089 list_for_each_entry_safe(obj, on,
2090 &dev_priv->mm.userfault_list, userfault_link) {
2091 list_del_init(&obj->userfault_link);
275f039d
CW
2092 drm_vma_node_unmap(&obj->base.vma_node,
2093 obj->base.dev->anon_inode->i_mapping);
275f039d 2094 }
7c108fd8
CW
2095
2096 /* The fence will be lost when the device powers down. If any were
2097 * in use by hardware (i.e. they are pinned), we should not be powering
2098 * down! All other fences will be reacquired by the user upon waking.
2099 */
2100 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2101 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2102
e0ec3ec6
CW
2103 /* Ideally we want to assert that the fence register is not
2104 * live at this point (i.e. that no piece of code will be
2105 * trying to write through fence + GTT, as that both violates
2106 * our tracking of activity and associated locking/barriers,
2107 * but also is illegal given that the hw is powered down).
2108 *
2109 * Previously we used reg->pin_count as a "liveness" indicator.
2110 * That is not sufficient, and we need a more fine-grained
2111 * tool if we want to have a sanity check here.
2112 */
7c108fd8
CW
2113
2114 if (!reg->vma)
2115 continue;
2116
2117 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2118 reg->dirty = true;
2119 }
eedd10f4
CW
2120}
2121
d8cb5086
CW
2122static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2123{
fac5e23e 2124 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2125 int err;
da494d7c 2126
f3f6184c 2127 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2128 if (likely(!err))
f3f6184c 2129 return 0;
d8cb5086 2130
b42a13d9
CW
2131 /* Attempt to reap some mmap space from dead objects */
2132 do {
2133 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2134 if (err)
2135 break;
f3f6184c 2136
b42a13d9 2137 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2138 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2139 if (!err)
2140 break;
2141
2142 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2143
f3f6184c 2144 return err;
d8cb5086
CW
2145}
2146
2147static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2148{
d8cb5086
CW
2149 drm_gem_free_mmap_offset(&obj->base);
2150}
2151
da6b51d0 2152int
ff72145b
DA
2153i915_gem_mmap_gtt(struct drm_file *file,
2154 struct drm_device *dev,
da6b51d0 2155 uint32_t handle,
ff72145b 2156 uint64_t *offset)
de151cf6 2157{
05394f39 2158 struct drm_i915_gem_object *obj;
de151cf6
JB
2159 int ret;
2160
03ac0642 2161 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2162 if (!obj)
2163 return -ENOENT;
ab18282d 2164
d8cb5086 2165 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2166 if (ret == 0)
2167 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2168
f0cd5182 2169 i915_gem_object_put(obj);
1d7cfea1 2170 return ret;
de151cf6
JB
2171}
2172
ff72145b
DA
2173/**
2174 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2175 * @dev: DRM device
2176 * @data: GTT mapping ioctl data
2177 * @file: GEM object info
2178 *
2179 * Simply returns the fake offset to userspace so it can mmap it.
2180 * The mmap call will end up in drm_gem_mmap(), which will set things
2181 * up so we can get faults in the handler above.
2182 *
2183 * The fault handler will take care of binding the object into the GTT
2184 * (since it may have been evicted to make room for something), allocating
2185 * a fence register, and mapping the appropriate aperture address into
2186 * userspace.
2187 */
2188int
2189i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2190 struct drm_file *file)
2191{
2192 struct drm_i915_gem_mmap_gtt *args = data;
2193
da6b51d0 2194 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2195}
2196
225067ee
DV
2197/* Immediately discard the backing storage */
2198static void
2199i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2200{
4d6294bf 2201 i915_gem_object_free_mmap_offset(obj);
1286ff73 2202
4d6294bf
CW
2203 if (obj->base.filp == NULL)
2204 return;
e5281ccd 2205
225067ee
DV
2206 /* Our goal here is to return as much of the memory as
2207 * is possible back to the system as we are called from OOM.
2208 * To do this we must instruct the shmfs to drop all of its
2209 * backing pages, *now*.
2210 */
5537252b 2211 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2212 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2213 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2214}
e5281ccd 2215
5537252b 2216/* Try to discard unwanted pages */
03ac84f1 2217void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2218{
5537252b
CW
2219 struct address_space *mapping;
2220
1233e2db
CW
2221 lockdep_assert_held(&obj->mm.lock);
2222 GEM_BUG_ON(obj->mm.pages);
2223
a4f5ea64 2224 switch (obj->mm.madv) {
5537252b
CW
2225 case I915_MADV_DONTNEED:
2226 i915_gem_object_truncate(obj);
2227 case __I915_MADV_PURGED:
2228 return;
2229 }
2230
2231 if (obj->base.filp == NULL)
2232 return;
2233
93c76a3d 2234 mapping = obj->base.filp->f_mapping,
5537252b 2235 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2236}
2237
5cdf5881 2238static void
03ac84f1
CW
2239i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2240 struct sg_table *pages)
673a394b 2241{
85d1225e
DG
2242 struct sgt_iter sgt_iter;
2243 struct page *page;
1286ff73 2244
e5facdf9 2245 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2246
03ac84f1 2247 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2248
6dacfd2f 2249 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2250 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2251
03ac84f1 2252 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2253 if (obj->mm.dirty)
9da3da66 2254 set_page_dirty(page);
3ef94daa 2255
a4f5ea64 2256 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2257 mark_page_accessed(page);
3ef94daa 2258
09cbfeaf 2259 put_page(page);
3ef94daa 2260 }
a4f5ea64 2261 obj->mm.dirty = false;
673a394b 2262
03ac84f1
CW
2263 sg_free_table(pages);
2264 kfree(pages);
37e680a1 2265}
6c085a72 2266
96d77634
CW
2267static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2268{
2269 struct radix_tree_iter iter;
2270 void **slot;
2271
a4f5ea64
CW
2272 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2273 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2274}
2275
548625ee
CW
2276void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2277 enum i915_mm_subclass subclass)
37e680a1 2278{
03ac84f1 2279 struct sg_table *pages;
37e680a1 2280
a4f5ea64 2281 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2282 return;
a5570178 2283
15717de2 2284 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2285 if (!READ_ONCE(obj->mm.pages))
2286 return;
2287
2288 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2289 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2290 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2291 goto unlock;
3e123027 2292
a2165e31
CW
2293 /* ->put_pages might need to allocate memory for the bit17 swizzle
2294 * array, hence protect them from being reaped by removing them from gtt
2295 * lists early. */
03ac84f1
CW
2296 pages = fetch_and_zero(&obj->mm.pages);
2297 GEM_BUG_ON(!pages);
a2165e31 2298
a4f5ea64 2299 if (obj->mm.mapping) {
4b30cb23
CW
2300 void *ptr;
2301
0ce81788 2302 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2303 if (is_vmalloc_addr(ptr))
2304 vunmap(ptr);
fb8621d3 2305 else
4b30cb23
CW
2306 kunmap(kmap_to_page(ptr));
2307
a4f5ea64 2308 obj->mm.mapping = NULL;
0a798eb9
CW
2309 }
2310
96d77634
CW
2311 __i915_gem_object_reset_page_iter(obj);
2312
4e5462ee
CW
2313 if (!IS_ERR(pages))
2314 obj->ops->put_pages(obj, pages);
2315
1233e2db
CW
2316unlock:
2317 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2318}
2319
935a2f77 2320static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2321{
2322 struct sg_table new_st;
2323 struct scatterlist *sg, *new_sg;
2324 unsigned int i;
2325
2326 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2327 return false;
0c40ce13 2328
8bfc478f 2329 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2330 return false;
0c40ce13
TU
2331
2332 new_sg = new_st.sgl;
2333 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2334 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2335 /* called before being DMA mapped, no need to copy sg->dma_* */
2336 new_sg = sg_next(new_sg);
2337 }
c2dc6cc9 2338 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2339
2340 sg_free_table(orig_st);
2341
2342 *orig_st = new_st;
935a2f77 2343 return true;
0c40ce13
TU
2344}
2345
03ac84f1 2346static struct sg_table *
6c085a72 2347i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2348{
fac5e23e 2349 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2350 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2351 unsigned long i;
e5281ccd 2352 struct address_space *mapping;
9da3da66
CW
2353 struct sg_table *st;
2354 struct scatterlist *sg;
85d1225e 2355 struct sgt_iter sgt_iter;
e5281ccd 2356 struct page *page;
90797e6d 2357 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2358 unsigned int max_segment;
4846bf0c 2359 gfp_t noreclaim;
e2273302 2360 int ret;
e5281ccd 2361
6c085a72
CW
2362 /* Assert that the object is not currently in any GPU domain. As it
2363 * wasn't in the GTT, there shouldn't be any way it could have been in
2364 * a GPU cache
2365 */
03ac84f1
CW
2366 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2367 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2368
7453c549 2369 max_segment = swiotlb_max_segment();
871dfbd6 2370 if (!max_segment)
4ff340f0 2371 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2372
9da3da66
CW
2373 st = kmalloc(sizeof(*st), GFP_KERNEL);
2374 if (st == NULL)
03ac84f1 2375 return ERR_PTR(-ENOMEM);
9da3da66 2376
d766ef53 2377rebuild_st:
9da3da66 2378 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2379 kfree(st);
03ac84f1 2380 return ERR_PTR(-ENOMEM);
9da3da66 2381 }
e5281ccd 2382
9da3da66
CW
2383 /* Get the list of pages out of our struct file. They'll be pinned
2384 * at this point until we release them.
2385 *
2386 * Fail silently without starting the shrinker
2387 */
93c76a3d 2388 mapping = obj->base.filp->f_mapping;
0f6ab55d 2389 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2390 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2391
90797e6d
ID
2392 sg = st->sgl;
2393 st->nents = 0;
2394 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2395 const unsigned int shrink[] = {
2396 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2397 0,
2398 }, *s = shrink;
2399 gfp_t gfp = noreclaim;
2400
2401 do {
6c085a72 2402 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2403 if (likely(!IS_ERR(page)))
2404 break;
2405
2406 if (!*s) {
2407 ret = PTR_ERR(page);
2408 goto err_sg;
2409 }
2410
2411 i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2412 cond_resched();
24f8e00a 2413
6c085a72
CW
2414 /* We've tried hard to allocate the memory by reaping
2415 * our own buffer, now let the real VM do its job and
2416 * go down in flames if truly OOM.
24f8e00a
CW
2417 *
2418 * However, since graphics tend to be disposable,
2419 * defer the oom here by reporting the ENOMEM back
2420 * to userspace.
6c085a72 2421 */
4846bf0c
CW
2422 if (!*s) {
2423 /* reclaim and warn, but no oom */
2424 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2425
2426 /* Our bo are always dirty and so we require
2427 * kswapd to reclaim our pages (direct reclaim
2428 * does not effectively begin pageout of our
2429 * buffers on its own). However, direct reclaim
2430 * only waits for kswapd when under allocation
2431 * congestion. So as a result __GFP_RECLAIM is
2432 * unreliable and fails to actually reclaim our
2433 * dirty pages -- unless you try over and over
2434 * again with !__GFP_NORETRY. However, we still
2435 * want to fail this allocation rather than
2436 * trigger the out-of-memory killer and for
2437 * this we want the future __GFP_MAYFAIL.
2438 */
e2273302 2439 }
4846bf0c
CW
2440 } while (1);
2441
871dfbd6
CW
2442 if (!i ||
2443 sg->length >= max_segment ||
2444 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2445 if (i)
2446 sg = sg_next(sg);
2447 st->nents++;
2448 sg_set_page(sg, page, PAGE_SIZE, 0);
2449 } else {
2450 sg->length += PAGE_SIZE;
2451 }
2452 last_pfn = page_to_pfn(page);
3bbbe706
DV
2453
2454 /* Check that the i965g/gm workaround works. */
2455 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2456 }
871dfbd6 2457 if (sg) /* loop terminated early; short sg table */
426729dc 2458 sg_mark_end(sg);
74ce6b6c 2459
0c40ce13
TU
2460 /* Trim unused sg entries to avoid wasting memory. */
2461 i915_sg_trim(st);
2462
03ac84f1 2463 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2464 if (ret) {
2465 /* DMA remapping failed? One possible cause is that
2466 * it could not reserve enough large entries, asking
2467 * for PAGE_SIZE chunks instead may be helpful.
2468 */
2469 if (max_segment > PAGE_SIZE) {
2470 for_each_sgt_page(page, sgt_iter, st)
2471 put_page(page);
2472 sg_free_table(st);
2473
2474 max_segment = PAGE_SIZE;
2475 goto rebuild_st;
2476 } else {
2477 dev_warn(&dev_priv->drm.pdev->dev,
2478 "Failed to DMA remap %lu pages\n",
2479 page_count);
2480 goto err_pages;
2481 }
2482 }
e2273302 2483
6dacfd2f 2484 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2485 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2486
03ac84f1 2487 return st;
e5281ccd 2488
b17993b7 2489err_sg:
90797e6d 2490 sg_mark_end(sg);
b17993b7 2491err_pages:
85d1225e
DG
2492 for_each_sgt_page(page, sgt_iter, st)
2493 put_page(page);
9da3da66
CW
2494 sg_free_table(st);
2495 kfree(st);
0820baf3
CW
2496
2497 /* shmemfs first checks if there is enough memory to allocate the page
2498 * and reports ENOSPC should there be insufficient, along with the usual
2499 * ENOMEM for a genuine allocation failure.
2500 *
2501 * We use ENOSPC in our driver to mean that we have run out of aperture
2502 * space and so want to translate the error from shmemfs back to our
2503 * usual understanding of ENOMEM.
2504 */
e2273302
ID
2505 if (ret == -ENOSPC)
2506 ret = -ENOMEM;
2507
03ac84f1
CW
2508 return ERR_PTR(ret);
2509}
2510
2511void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2512 struct sg_table *pages)
2513{
1233e2db 2514 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2515
2516 obj->mm.get_page.sg_pos = pages->sgl;
2517 obj->mm.get_page.sg_idx = 0;
2518
2519 obj->mm.pages = pages;
2c3a3f44
CW
2520
2521 if (i915_gem_object_is_tiled(obj) &&
2522 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2523 GEM_BUG_ON(obj->mm.quirked);
2524 __i915_gem_object_pin_pages(obj);
2525 obj->mm.quirked = true;
2526 }
03ac84f1
CW
2527}
2528
2529static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2530{
2531 struct sg_table *pages;
2532
2c3a3f44
CW
2533 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2534
03ac84f1
CW
2535 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2536 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2537 return -EFAULT;
2538 }
2539
2540 pages = obj->ops->get_pages(obj);
2541 if (unlikely(IS_ERR(pages)))
2542 return PTR_ERR(pages);
2543
2544 __i915_gem_object_set_pages(obj, pages);
2545 return 0;
673a394b
EA
2546}
2547
37e680a1 2548/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2549 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2550 * multiple times before they are released by a single call to
1233e2db 2551 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2552 * either as a result of memory pressure (reaping pages under the shrinker)
2553 * or as the object is itself released.
2554 */
a4f5ea64 2555int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2556{
03ac84f1 2557 int err;
37e680a1 2558
1233e2db
CW
2559 err = mutex_lock_interruptible(&obj->mm.lock);
2560 if (err)
2561 return err;
4c7d62c6 2562
4e5462ee 2563 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2564 err = ____i915_gem_object_get_pages(obj);
2565 if (err)
2566 goto unlock;
37e680a1 2567
2c3a3f44
CW
2568 smp_mb__before_atomic();
2569 }
2570 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2571
1233e2db
CW
2572unlock:
2573 mutex_unlock(&obj->mm.lock);
03ac84f1 2574 return err;
673a394b
EA
2575}
2576
dd6034c6 2577/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2578static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2579 enum i915_map_type type)
dd6034c6
DG
2580{
2581 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2582 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2583 struct sgt_iter sgt_iter;
2584 struct page *page;
b338fa47
DG
2585 struct page *stack_pages[32];
2586 struct page **pages = stack_pages;
dd6034c6 2587 unsigned long i = 0;
d31d7cb1 2588 pgprot_t pgprot;
dd6034c6
DG
2589 void *addr;
2590
2591 /* A single page can always be kmapped */
d31d7cb1 2592 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2593 return kmap(sg_page(sgt->sgl));
2594
b338fa47
DG
2595 if (n_pages > ARRAY_SIZE(stack_pages)) {
2596 /* Too big for stack -- allocate temporary array instead */
2098105e 2597 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
b338fa47
DG
2598 if (!pages)
2599 return NULL;
2600 }
dd6034c6 2601
85d1225e
DG
2602 for_each_sgt_page(page, sgt_iter, sgt)
2603 pages[i++] = page;
dd6034c6
DG
2604
2605 /* Check that we have the expected number of pages */
2606 GEM_BUG_ON(i != n_pages);
2607
d31d7cb1
CW
2608 switch (type) {
2609 case I915_MAP_WB:
2610 pgprot = PAGE_KERNEL;
2611 break;
2612 case I915_MAP_WC:
2613 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2614 break;
2615 }
2616 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2617
b338fa47 2618 if (pages != stack_pages)
2098105e 2619 kvfree(pages);
dd6034c6
DG
2620
2621 return addr;
2622}
2623
2624/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2625void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2626 enum i915_map_type type)
0a798eb9 2627{
d31d7cb1
CW
2628 enum i915_map_type has_type;
2629 bool pinned;
2630 void *ptr;
0a798eb9
CW
2631 int ret;
2632
d31d7cb1 2633 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2634
1233e2db 2635 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2636 if (ret)
2637 return ERR_PTR(ret);
2638
1233e2db
CW
2639 pinned = true;
2640 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
4e5462ee 2641 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2642 ret = ____i915_gem_object_get_pages(obj);
2643 if (ret)
2644 goto err_unlock;
1233e2db 2645
2c3a3f44
CW
2646 smp_mb__before_atomic();
2647 }
2648 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2649 pinned = false;
2650 }
2651 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2652
0ce81788 2653 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2654 if (ptr && has_type != type) {
2655 if (pinned) {
2656 ret = -EBUSY;
1233e2db 2657 goto err_unpin;
0a798eb9 2658 }
d31d7cb1
CW
2659
2660 if (is_vmalloc_addr(ptr))
2661 vunmap(ptr);
2662 else
2663 kunmap(kmap_to_page(ptr));
2664
a4f5ea64 2665 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2666 }
2667
d31d7cb1
CW
2668 if (!ptr) {
2669 ptr = i915_gem_object_map(obj, type);
2670 if (!ptr) {
2671 ret = -ENOMEM;
1233e2db 2672 goto err_unpin;
d31d7cb1
CW
2673 }
2674
0ce81788 2675 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2676 }
2677
1233e2db
CW
2678out_unlock:
2679 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2680 return ptr;
2681
1233e2db
CW
2682err_unpin:
2683 atomic_dec(&obj->mm.pages_pin_count);
2684err_unlock:
2685 ptr = ERR_PTR(ret);
2686 goto out_unlock;
0a798eb9
CW
2687}
2688
7c55e2c5
CW
2689static int
2690i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2691 const struct drm_i915_gem_pwrite *arg)
2692{
2693 struct address_space *mapping = obj->base.filp->f_mapping;
2694 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2695 u64 remain, offset;
2696 unsigned int pg;
2697
2698 /* Before we instantiate/pin the backing store for our use, we
2699 * can prepopulate the shmemfs filp efficiently using a write into
2700 * the pagecache. We avoid the penalty of instantiating all the
2701 * pages, important if the user is just writing to a few and never
2702 * uses the object on the GPU, and using a direct write into shmemfs
2703 * allows it to avoid the cost of retrieving a page (either swapin
2704 * or clearing-before-use) before it is overwritten.
2705 */
2706 if (READ_ONCE(obj->mm.pages))
2707 return -ENODEV;
2708
2709 /* Before the pages are instantiated the object is treated as being
2710 * in the CPU domain. The pages will be clflushed as required before
2711 * use, and we can freely write into the pages directly. If userspace
2712 * races pwrite with any other operation; corruption will ensue -
2713 * that is userspace's prerogative!
2714 */
2715
2716 remain = arg->size;
2717 offset = arg->offset;
2718 pg = offset_in_page(offset);
2719
2720 do {
2721 unsigned int len, unwritten;
2722 struct page *page;
2723 void *data, *vaddr;
2724 int err;
2725
2726 len = PAGE_SIZE - pg;
2727 if (len > remain)
2728 len = remain;
2729
2730 err = pagecache_write_begin(obj->base.filp, mapping,
2731 offset, len, 0,
2732 &page, &data);
2733 if (err < 0)
2734 return err;
2735
2736 vaddr = kmap(page);
2737 unwritten = copy_from_user(vaddr + pg, user_data, len);
2738 kunmap(page);
2739
2740 err = pagecache_write_end(obj->base.filp, mapping,
2741 offset, len, len - unwritten,
2742 page, data);
2743 if (err < 0)
2744 return err;
2745
2746 if (unwritten)
2747 return -EFAULT;
2748
2749 remain -= len;
2750 user_data += len;
2751 offset += len;
2752 pg = 0;
2753 } while (remain);
2754
2755 return 0;
2756}
2757
6095868a 2758static bool ban_context(const struct i915_gem_context *ctx)
be62acb4 2759{
6095868a
CW
2760 return (i915_gem_context_is_bannable(ctx) &&
2761 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2762}
2763
e5e1fc47 2764static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2765{
bc1d53c6 2766 ctx->guilty_count++;
6095868a
CW
2767 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2768 if (ban_context(ctx))
2769 i915_gem_context_set_banned(ctx);
b083a087
MK
2770
2771 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
bc1d53c6 2772 ctx->name, ctx->ban_score,
6095868a 2773 yesno(i915_gem_context_is_banned(ctx)));
b083a087 2774
6095868a 2775 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
b083a087
MK
2776 return;
2777
d9e9da64
CW
2778 ctx->file_priv->context_bans++;
2779 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2780 ctx->name, ctx->file_priv->context_bans);
e5e1fc47
MK
2781}
2782
2783static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2784{
bc1d53c6 2785 ctx->active_count++;
aa60c664
MK
2786}
2787
8d9fc7fd 2788struct drm_i915_gem_request *
0bc40be8 2789i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2790{
754c9fd5
CW
2791 struct drm_i915_gem_request *request, *active = NULL;
2792 unsigned long flags;
4db080f9 2793
f69a02c9
CW
2794 /* We are called by the error capture and reset at a random
2795 * point in time. In particular, note that neither is crucially
2796 * ordered with an interrupt. After a hang, the GPU is dead and we
2797 * assume that no more writes can happen (we waited long enough for
2798 * all writes that were in transaction to be flushed) - adding an
2799 * extra delay for a recent interrupt is pointless. Hence, we do
2800 * not need an engine->irq_seqno_barrier() before the seqno reads.
2801 */
754c9fd5 2802 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2803 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2804 if (__i915_gem_request_completed(request,
2805 request->global_seqno))
4db080f9 2806 continue;
aa60c664 2807
36193acd 2808 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2809 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2810 &request->fence.flags));
754c9fd5
CW
2811
2812 active = request;
2813 break;
4db080f9 2814 }
754c9fd5 2815 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2816
754c9fd5 2817 return active;
b6b0fac0
MK
2818}
2819
bf2f0436
MK
2820static bool engine_stalled(struct intel_engine_cs *engine)
2821{
2822 if (!engine->hangcheck.stalled)
2823 return false;
2824
2825 /* Check for possible seqno movement after hang declaration */
2826 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2827 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2828 return false;
2829 }
2830
2831 return true;
2832}
2833
a1ef70e1
MT
2834/*
2835 * Ensure irq handler finishes, and not run again.
2836 * Also return the active request so that we only search for it once.
2837 */
2838struct drm_i915_gem_request *
2839i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2840{
2841 struct drm_i915_gem_request *request = NULL;
2842
2843 /* Prevent the signaler thread from updating the request
2844 * state (by calling dma_fence_signal) as we are processing
2845 * the reset. The write from the GPU of the seqno is
2846 * asynchronous and the signaler thread may see a different
2847 * value to us and declare the request complete, even though
2848 * the reset routine have picked that request as the active
2849 * (incomplete) request. This conflict is not handled
2850 * gracefully!
2851 */
2852 kthread_park(engine->breadcrumbs.signaler);
2853
2854 /* Prevent request submission to the hardware until we have
2855 * completed the reset in i915_gem_reset_finish(). If a request
2856 * is completed by one engine, it may then queue a request
2857 * to a second via its engine->irq_tasklet *just* as we are
2858 * calling engine->init_hw() and also writing the ELSP.
2859 * Turning off the engine->irq_tasklet until the reset is over
2860 * prevents the race.
2861 */
2862 tasklet_kill(&engine->irq_tasklet);
2863 tasklet_disable(&engine->irq_tasklet);
2864
2865 if (engine->irq_seqno_barrier)
2866 engine->irq_seqno_barrier(engine);
2867
2868 if (engine_stalled(engine)) {
2869 request = i915_gem_find_active_request(engine);
2870 if (request && request->fence.error == -EIO)
2871 request = ERR_PTR(-EIO); /* Previous reset failed! */
2872 }
2873
2874 return request;
2875}
2876
0e178aef 2877int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2878{
2879 struct intel_engine_cs *engine;
a1ef70e1 2880 struct drm_i915_gem_request *request;
4c965543 2881 enum intel_engine_id id;
0e178aef 2882 int err = 0;
4c965543 2883
0e178aef 2884 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
2885 request = i915_gem_reset_prepare_engine(engine);
2886 if (IS_ERR(request)) {
2887 err = PTR_ERR(request);
2888 continue;
0e178aef 2889 }
c64992e0
MT
2890
2891 engine->hangcheck.active_request = request;
0e178aef
CW
2892 }
2893
4c965543 2894 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2895
2896 return err;
4c965543
CW
2897}
2898
36193acd 2899static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2900{
2901 void *vaddr = request->ring->vaddr;
2902 u32 head;
2903
2904 /* As this request likely depends on state from the lost
2905 * context, clear out all the user operations leaving the
2906 * breadcrumb at the end (so we get the fence notifications).
2907 */
2908 head = request->head;
2909 if (request->postfix < head) {
2910 memset(vaddr + head, 0, request->ring->size - head);
2911 head = 0;
2912 }
2913 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2914
2915 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2916}
2917
36193acd
MK
2918static void engine_skip_context(struct drm_i915_gem_request *request)
2919{
2920 struct intel_engine_cs *engine = request->engine;
2921 struct i915_gem_context *hung_ctx = request->ctx;
2922 struct intel_timeline *timeline;
2923 unsigned long flags;
2924
2925 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2926
2927 spin_lock_irqsave(&engine->timeline->lock, flags);
2928 spin_lock(&timeline->lock);
2929
2930 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2931 if (request->ctx == hung_ctx)
2932 skip_request(request);
2933
2934 list_for_each_entry(request, &timeline->requests, link)
2935 skip_request(request);
2936
2937 spin_unlock(&timeline->lock);
2938 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2939}
2940
61da5362
MK
2941/* Returns true if the request was guilty of hang */
2942static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2943{
2944 /* Read once and return the resolution */
c64992e0 2945 const bool guilty = !i915_gem_request_completed(request);
61da5362 2946
71895a08
MK
2947 /* The guilty request will get skipped on a hung engine.
2948 *
2949 * Users of client default contexts do not rely on logical
2950 * state preserved between batches so it is safe to execute
2951 * queued requests following the hang. Non default contexts
2952 * rely on preserved state, so skipping a batch loses the
2953 * evolution of the state and it needs to be considered corrupted.
2954 * Executing more queued batches on top of corrupted state is
2955 * risky. But we take the risk by trying to advance through
2956 * the queued requests in order to make the client behaviour
2957 * more predictable around resets, by not throwing away random
2958 * amount of batches it has prepared for execution. Sophisticated
2959 * clients can use gem_reset_stats_ioctl and dma fence status
2960 * (exported via sync_file info ioctl on explicit fences) to observe
2961 * when it loses the context state and should rebuild accordingly.
2962 *
2963 * The context ban, and ultimately the client ban, mechanism are safety
2964 * valves if client submission ends up resulting in nothing more than
2965 * subsequent hangs.
2966 */
2967
61da5362
MK
2968 if (guilty) {
2969 i915_gem_context_mark_guilty(request->ctx);
2970 skip_request(request);
2971 } else {
2972 i915_gem_context_mark_innocent(request->ctx);
2973 dma_fence_set_error(&request->fence, -EAGAIN);
2974 }
2975
2976 return guilty;
2977}
2978
a1ef70e1
MT
2979void i915_gem_reset_engine(struct intel_engine_cs *engine,
2980 struct drm_i915_gem_request *request)
b6b0fac0 2981{
c0dcb203
CW
2982 if (request && i915_gem_reset_request(request)) {
2983 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2984 engine->name, request->global_seqno);
821ed7df 2985
c0dcb203
CW
2986 /* If this context is now banned, skip all pending requests. */
2987 if (i915_gem_context_is_banned(request->ctx))
2988 engine_skip_context(request);
2989 }
821ed7df
CW
2990
2991 /* Setup the CS to resume from the breadcrumb of the hung request */
2992 engine->reset_hw(engine, request);
4db080f9 2993}
aa60c664 2994
d8027093 2995void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2996{
821ed7df 2997 struct intel_engine_cs *engine;
3b3f1650 2998 enum intel_engine_id id;
608c1a52 2999
4c7d62c6
CW
3000 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3001
821ed7df
CW
3002 i915_gem_retire_requests(dev_priv);
3003
2ae55738
CW
3004 for_each_engine(engine, dev_priv, id) {
3005 struct i915_gem_context *ctx;
3006
c64992e0 3007 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2ae55738
CW
3008 ctx = fetch_and_zero(&engine->last_retired_context);
3009 if (ctx)
3010 engine->context_unpin(engine, ctx);
3011 }
821ed7df 3012
4362f4f6 3013 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
3014
3015 if (dev_priv->gt.awake) {
3016 intel_sanitize_gt_powersave(dev_priv);
3017 intel_enable_gt_powersave(dev_priv);
3018 if (INTEL_GEN(dev_priv) >= 6)
3019 gen6_rps_busy(dev_priv);
3020 }
821ed7df
CW
3021}
3022
a1ef70e1
MT
3023void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3024{
3025 tasklet_enable(&engine->irq_tasklet);
3026 kthread_unpark(engine->breadcrumbs.signaler);
3027}
3028
d8027093
CW
3029void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3030{
1f7b847d
CW
3031 struct intel_engine_cs *engine;
3032 enum intel_engine_id id;
3033
d8027093 3034 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3035
fe3288b5 3036 for_each_engine(engine, dev_priv, id) {
c64992e0 3037 engine->hangcheck.active_request = NULL;
a1ef70e1 3038 i915_gem_reset_finish_engine(engine);
fe3288b5 3039 }
d8027093
CW
3040}
3041
821ed7df
CW
3042static void nop_submit_request(struct drm_i915_gem_request *request)
3043{
3cd9442f 3044 dma_fence_set_error(&request->fence, -EIO);
3dcf93f7
CW
3045 i915_gem_request_submit(request);
3046 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
3047}
3048
2a20d6f8 3049static void engine_set_wedged(struct intel_engine_cs *engine)
821ed7df 3050{
3cd9442f
CW
3051 struct drm_i915_gem_request *request;
3052 unsigned long flags;
3053
20e4933c
CW
3054 /* We need to be sure that no thread is running the old callback as
3055 * we install the nop handler (otherwise we would submit a request
3056 * to hardware that will never complete). In order to prevent this
3057 * race, we wait until the machine is idle before making the swap
3058 * (using stop_machine()).
3059 */
821ed7df 3060 engine->submit_request = nop_submit_request;
70c2a24d 3061
3cd9442f
CW
3062 /* Mark all executing requests as skipped */
3063 spin_lock_irqsave(&engine->timeline->lock, flags);
3064 list_for_each_entry(request, &engine->timeline->requests, link)
3065 dma_fence_set_error(&request->fence, -EIO);
3066 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3067
c4b0930b
CW
3068 /* Mark all pending requests as complete so that any concurrent
3069 * (lockless) lookup doesn't try and wait upon the request as we
3070 * reset it.
3071 */
73cb9701 3072 intel_engine_init_global_seqno(engine,
cb399eab 3073 intel_engine_last_submit(engine));
c4b0930b 3074
dcb4c12a
OM
3075 /*
3076 * Clear the execlists queue up before freeing the requests, as those
3077 * are the ones that keep the context and ringbuffer backing objects
3078 * pinned in place.
3079 */
dcb4c12a 3080
7de1691a 3081 if (i915.enable_execlists) {
77f0d0e9 3082 struct execlist_port *port = engine->execlist_port;
663f71e7 3083 unsigned long flags;
77f0d0e9 3084 unsigned int n;
663f71e7
CW
3085
3086 spin_lock_irqsave(&engine->timeline->lock, flags);
3087
77f0d0e9
CW
3088 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3089 i915_gem_request_put(port_request(&port[n]));
70c2a24d 3090 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
3091 engine->execlist_queue = RB_ROOT;
3092 engine->execlist_first = NULL;
663f71e7
CW
3093
3094 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 3095 }
673a394b
EA
3096}
3097
20e4933c 3098static int __i915_gem_set_wedged_BKL(void *data)
673a394b 3099{
20e4933c 3100 struct drm_i915_private *i915 = data;
e2f80391 3101 struct intel_engine_cs *engine;
3b3f1650 3102 enum intel_engine_id id;
673a394b 3103
20e4933c 3104 for_each_engine(engine, i915, id)
2a20d6f8 3105 engine_set_wedged(engine);
20e4933c
CW
3106
3107 return 0;
3108}
3109
3110void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3111{
821ed7df
CW
3112 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3113 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 3114
2c170af7
CW
3115 /* Retire completed requests first so the list of inflight/incomplete
3116 * requests is accurate and we don't try and mark successful requests
3117 * as in error during __i915_gem_set_wedged_BKL().
3118 */
3119 i915_gem_retire_requests(dev_priv);
3120
20e4933c 3121 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
dfaae392 3122
829a0af2 3123 i915_gem_contexts_lost(dev_priv);
20e4933c
CW
3124
3125 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
673a394b
EA
3126}
3127
2e8f9d32
CW
3128bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3129{
3130 struct i915_gem_timeline *tl;
3131 int i;
3132
3133 lockdep_assert_held(&i915->drm.struct_mutex);
3134 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3135 return true;
3136
3137 /* Before unwedging, make sure that all pending operations
3138 * are flushed and errored out - we may have requests waiting upon
3139 * third party fences. We marked all inflight requests as EIO, and
3140 * every execbuf since returned EIO, for consistency we want all
3141 * the currently pending requests to also be marked as EIO, which
3142 * is done inside our nop_submit_request - and so we must wait.
3143 *
3144 * No more can be submitted until we reset the wedged bit.
3145 */
3146 list_for_each_entry(tl, &i915->gt.timelines, link) {
3147 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3148 struct drm_i915_gem_request *rq;
3149
3150 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3151 &i915->drm.struct_mutex);
3152 if (!rq)
3153 continue;
3154
3155 /* We can't use our normal waiter as we want to
3156 * avoid recursively trying to handle the current
3157 * reset. The basic dma_fence_default_wait() installs
3158 * a callback for dma_fence_signal(), which is
3159 * triggered by our nop handler (indirectly, the
3160 * callback enables the signaler thread which is
3161 * woken by the nop_submit_request() advancing the seqno
3162 * and when the seqno passes the fence, the signaler
3163 * then signals the fence waking us up).
3164 */
3165 if (dma_fence_default_wait(&rq->fence, true,
3166 MAX_SCHEDULE_TIMEOUT) < 0)
3167 return false;
3168 }
3169 }
3170
3171 /* Undo nop_submit_request. We prevent all new i915 requests from
3172 * being queued (by disallowing execbuf whilst wedged) so having
3173 * waited for all active requests above, we know the system is idle
3174 * and do not have to worry about a thread being inside
3175 * engine->submit_request() as we swap over. So unlike installing
3176 * the nop_submit_request on reset, we can do this from normal
3177 * context and do not require stop_machine().
3178 */
3179 intel_engines_reset_default_submission(i915);
3180
3181 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3182 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3183
3184 return true;
3185}
3186
75ef9da2 3187static void
673a394b
EA
3188i915_gem_retire_work_handler(struct work_struct *work)
3189{
b29c19b6 3190 struct drm_i915_private *dev_priv =
67d97da3 3191 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3192 struct drm_device *dev = &dev_priv->drm;
673a394b 3193
891b48cf 3194 /* Come back later if the device is busy... */
b29c19b6 3195 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3196 i915_gem_retire_requests(dev_priv);
b29c19b6 3197 mutex_unlock(&dev->struct_mutex);
673a394b 3198 }
67d97da3
CW
3199
3200 /* Keep the retire handler running until we are finally idle.
3201 * We do not need to do this test under locking as in the worst-case
3202 * we queue the retire worker once too often.
3203 */
c9615613
CW
3204 if (READ_ONCE(dev_priv->gt.awake)) {
3205 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3206 queue_delayed_work(dev_priv->wq,
3207 &dev_priv->gt.retire_work,
bcb45086 3208 round_jiffies_up_relative(HZ));
c9615613 3209 }
b29c19b6 3210}
0a58705b 3211
b29c19b6
CW
3212static void
3213i915_gem_idle_work_handler(struct work_struct *work)
3214{
3215 struct drm_i915_private *dev_priv =
67d97da3 3216 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3217 struct drm_device *dev = &dev_priv->drm;
67d97da3
CW
3218 bool rearm_hangcheck;
3219
3220 if (!READ_ONCE(dev_priv->gt.awake))
3221 return;
3222
0cb5670b
ID
3223 /*
3224 * Wait for last execlists context complete, but bail out in case a
3225 * new request is submitted.
3226 */
8490ae20 3227 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3228 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3229 return;
3230
3231 rearm_hangcheck =
3232 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3233
3234 if (!mutex_trylock(&dev->struct_mutex)) {
3235 /* Currently busy, come back later */
3236 mod_delayed_work(dev_priv->wq,
3237 &dev_priv->gt.idle_work,
3238 msecs_to_jiffies(50));
3239 goto out_rearm;
3240 }
3241
93c97dc1
ID
3242 /*
3243 * New request retired after this work handler started, extend active
3244 * period until next instance of the work.
3245 */
3246 if (work_pending(work))
3247 goto out_unlock;
3248
28176ef4 3249 if (dev_priv->gt.active_requests)
67d97da3 3250 goto out_unlock;
b29c19b6 3251
05425249 3252 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3253 DRM_ERROR("Timeout waiting for engines to idle\n");
3254
6c067579 3255 intel_engines_mark_idle(dev_priv);
47979480 3256 i915_gem_timelines_mark_idle(dev_priv);
35c94185 3257
67d97da3
CW
3258 GEM_BUG_ON(!dev_priv->gt.awake);
3259 dev_priv->gt.awake = false;
3260 rearm_hangcheck = false;
30ecad77 3261
67d97da3
CW
3262 if (INTEL_GEN(dev_priv) >= 6)
3263 gen6_rps_idle(dev_priv);
3264 intel_runtime_pm_put(dev_priv);
3265out_unlock:
3266 mutex_unlock(&dev->struct_mutex);
b29c19b6 3267
67d97da3
CW
3268out_rearm:
3269 if (rearm_hangcheck) {
3270 GEM_BUG_ON(!dev_priv->gt.awake);
3271 i915_queue_hangcheck(dev_priv);
35c94185 3272 }
673a394b
EA
3273}
3274
b1f788c6
CW
3275void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3276{
3277 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3278 struct drm_i915_file_private *fpriv = file->driver_priv;
3279 struct i915_vma *vma, *vn;
3280
3281 mutex_lock(&obj->base.dev->struct_mutex);
3282 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3283 if (vma->vm->file == fpriv)
3284 i915_vma_close(vma);
f8a7fde4 3285
4ff4b44c
CW
3286 vma = obj->vma_hashed;
3287 if (vma && vma->ctx->file_priv == fpriv)
3288 i915_vma_unlink_ctx(vma);
3289
f8a7fde4
CW
3290 if (i915_gem_object_is_active(obj) &&
3291 !i915_gem_object_has_active_reference(obj)) {
3292 i915_gem_object_set_active_reference(obj);
3293 i915_gem_object_get(obj);
3294 }
b1f788c6
CW
3295 mutex_unlock(&obj->base.dev->struct_mutex);
3296}
3297
e95433c7
CW
3298static unsigned long to_wait_timeout(s64 timeout_ns)
3299{
3300 if (timeout_ns < 0)
3301 return MAX_SCHEDULE_TIMEOUT;
3302
3303 if (timeout_ns == 0)
3304 return 0;
3305
3306 return nsecs_to_jiffies_timeout(timeout_ns);
3307}
3308
23ba4fd0
BW
3309/**
3310 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3311 * @dev: drm device pointer
3312 * @data: ioctl data blob
3313 * @file: drm file pointer
23ba4fd0
BW
3314 *
3315 * Returns 0 if successful, else an error is returned with the remaining time in
3316 * the timeout parameter.
3317 * -ETIME: object is still busy after timeout
3318 * -ERESTARTSYS: signal interrupted the wait
3319 * -ENONENT: object doesn't exist
3320 * Also possible, but rare:
3321 * -EAGAIN: GPU wedged
3322 * -ENOMEM: damn
3323 * -ENODEV: Internal IRQ fail
3324 * -E?: The add request failed
3325 *
3326 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3327 * non-zero timeout parameter the wait ioctl will wait for the given number of
3328 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3329 * without holding struct_mutex the object may become re-busied before this
3330 * function completes. A similar but shorter * race condition exists in the busy
3331 * ioctl
3332 */
3333int
3334i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3335{
3336 struct drm_i915_gem_wait *args = data;
3337 struct drm_i915_gem_object *obj;
e95433c7
CW
3338 ktime_t start;
3339 long ret;
23ba4fd0 3340
11b5d511
DV
3341 if (args->flags != 0)
3342 return -EINVAL;
3343
03ac0642 3344 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3345 if (!obj)
23ba4fd0 3346 return -ENOENT;
23ba4fd0 3347
e95433c7
CW
3348 start = ktime_get();
3349
3350 ret = i915_gem_object_wait(obj,
3351 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3352 to_wait_timeout(args->timeout_ns),
3353 to_rps_client(file));
3354
3355 if (args->timeout_ns > 0) {
3356 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3357 if (args->timeout_ns < 0)
3358 args->timeout_ns = 0;
c1d2061b
CW
3359
3360 /*
3361 * Apparently ktime isn't accurate enough and occasionally has a
3362 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3363 * things up to make the test happy. We allow up to 1 jiffy.
3364 *
3365 * This is a regression from the timespec->ktime conversion.
3366 */
3367 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3368 args->timeout_ns = 0;
b4716185
CW
3369 }
3370
f0cd5182 3371 i915_gem_object_put(obj);
ff865885 3372 return ret;
23ba4fd0
BW
3373}
3374
73cb9701 3375static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3376{
73cb9701 3377 int ret, i;
4df2faf4 3378
73cb9701
CW
3379 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3380 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3381 if (ret)
3382 return ret;
3383 }
62e63007 3384
73cb9701
CW
3385 return 0;
3386}
3387
25112b64
CW
3388static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3389{
3390 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3391}
3392
3393static int wait_for_engines(struct drm_i915_private *i915)
3394{
3395 struct intel_engine_cs *engine;
3396 enum intel_engine_id id;
3397
3398 for_each_engine(engine, i915, id) {
3399 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3400 i915_gem_set_wedged(i915);
3401 return -EIO;
3402 }
3403
3404 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3405 intel_engine_last_submit(engine));
3406 }
3407
3408 return 0;
3409}
3410
73cb9701
CW
3411int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3412{
73cb9701
CW
3413 int ret;
3414
863e9fde
CW
3415 /* If the device is asleep, we have no requests outstanding */
3416 if (!READ_ONCE(i915->gt.awake))
3417 return 0;
3418
9caa34aa
CW
3419 if (flags & I915_WAIT_LOCKED) {
3420 struct i915_gem_timeline *tl;
3421
3422 lockdep_assert_held(&i915->drm.struct_mutex);
3423
3424 list_for_each_entry(tl, &i915->gt.timelines, link) {
3425 ret = wait_for_timeline(tl, flags);
3426 if (ret)
3427 return ret;
3428 }
72022a70
CW
3429
3430 i915_gem_retire_requests(i915);
3431 GEM_BUG_ON(i915->gt.active_requests);
25112b64
CW
3432
3433 ret = wait_for_engines(i915);
9caa34aa
CW
3434 } else {
3435 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3 3436 }
4df2faf4 3437
25112b64 3438 return ret;
4df2faf4
DV
3439}
3440
5a97bcc6
CW
3441static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3442{
e27ab73d
CW
3443 /*
3444 * We manually flush the CPU domain so that we can override and
3445 * force the flush for the display, and perform it asyncrhonously.
3446 */
3447 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3448 if (obj->cache_dirty)
3449 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3450 obj->base.write_domain = 0;
3451}
3452
3453void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3454{
3455 if (!READ_ONCE(obj->pin_display))
3456 return;
3457
3458 mutex_lock(&obj->base.dev->struct_mutex);
3459 __i915_gem_object_flush_for_display(obj);
3460 mutex_unlock(&obj->base.dev->struct_mutex);
3461}
3462
e22d8e3c
CW
3463/**
3464 * Moves a single object to the WC read, and possibly write domain.
3465 * @obj: object to act on
3466 * @write: ask for write access or read only
3467 *
3468 * This function returns when the move is complete, including waiting on
3469 * flushes to occur.
3470 */
3471int
3472i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3473{
3474 int ret;
3475
3476 lockdep_assert_held(&obj->base.dev->struct_mutex);
3477
3478 ret = i915_gem_object_wait(obj,
3479 I915_WAIT_INTERRUPTIBLE |
3480 I915_WAIT_LOCKED |
3481 (write ? I915_WAIT_ALL : 0),
3482 MAX_SCHEDULE_TIMEOUT,
3483 NULL);
3484 if (ret)
3485 return ret;
3486
3487 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3488 return 0;
3489
3490 /* Flush and acquire obj->pages so that we are coherent through
3491 * direct access in memory with previous cached writes through
3492 * shmemfs and that our cache domain tracking remains valid.
3493 * For example, if the obj->filp was moved to swap without us
3494 * being notified and releasing the pages, we would mistakenly
3495 * continue to assume that the obj remained out of the CPU cached
3496 * domain.
3497 */
3498 ret = i915_gem_object_pin_pages(obj);
3499 if (ret)
3500 return ret;
3501
3502 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3503
3504 /* Serialise direct access to this object with the barriers for
3505 * coherent writes from the GPU, by effectively invalidating the
3506 * WC domain upon first access.
3507 */
3508 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3509 mb();
3510
3511 /* It should now be out of any other write domains, and we can update
3512 * the domain values for our changes.
3513 */
3514 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3515 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3516 if (write) {
3517 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3518 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3519 obj->mm.dirty = true;
3520 }
3521
3522 i915_gem_object_unpin_pages(obj);
3523 return 0;
3524}
3525
2ef7eeaa
EA
3526/**
3527 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3528 * @obj: object to act on
3529 * @write: ask for write access or read only
2ef7eeaa
EA
3530 *
3531 * This function returns when the move is complete, including waiting on
3532 * flushes to occur.
3533 */
79e53945 3534int
2021746e 3535i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3536{
e47c68e9 3537 int ret;
2ef7eeaa 3538
e95433c7 3539 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3540
e95433c7
CW
3541 ret = i915_gem_object_wait(obj,
3542 I915_WAIT_INTERRUPTIBLE |
3543 I915_WAIT_LOCKED |
3544 (write ? I915_WAIT_ALL : 0),
3545 MAX_SCHEDULE_TIMEOUT,
3546 NULL);
88241785
CW
3547 if (ret)
3548 return ret;
3549
c13d87ea
CW
3550 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3551 return 0;
3552
43566ded
CW
3553 /* Flush and acquire obj->pages so that we are coherent through
3554 * direct access in memory with previous cached writes through
3555 * shmemfs and that our cache domain tracking remains valid.
3556 * For example, if the obj->filp was moved to swap without us
3557 * being notified and releasing the pages, we would mistakenly
3558 * continue to assume that the obj remained out of the CPU cached
3559 * domain.
3560 */
a4f5ea64 3561 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3562 if (ret)
3563 return ret;
3564
ef74921b 3565 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3566
d0a57789
CW
3567 /* Serialise direct access to this object with the barriers for
3568 * coherent writes from the GPU, by effectively invalidating the
3569 * GTT domain upon first access.
3570 */
3571 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3572 mb();
3573
e47c68e9
EA
3574 /* It should now be out of any other write domains, and we can update
3575 * the domain values for our changes.
3576 */
40e62d5d 3577 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3578 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3579 if (write) {
05394f39
CW
3580 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3581 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3582 obj->mm.dirty = true;
2ef7eeaa
EA
3583 }
3584
a4f5ea64 3585 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3586 return 0;
3587}
3588
ef55f92a
CW
3589/**
3590 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3591 * @obj: object to act on
3592 * @cache_level: new cache level to set for the object
ef55f92a
CW
3593 *
3594 * After this function returns, the object will be in the new cache-level
3595 * across all GTT and the contents of the backing storage will be coherent,
3596 * with respect to the new cache-level. In order to keep the backing storage
3597 * coherent for all users, we only allow a single cache level to be set
3598 * globally on the object and prevent it from being changed whilst the
3599 * hardware is reading from the object. That is if the object is currently
3600 * on the scanout it will be set to uncached (or equivalent display
3601 * cache coherency) and all non-MOCS GPU access will also be uncached so
3602 * that all direct access to the scanout remains coherent.
3603 */
e4ffd173
CW
3604int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3605 enum i915_cache_level cache_level)
3606{
aa653a68 3607 struct i915_vma *vma;
a6a7cc4b 3608 int ret;
e4ffd173 3609
4c7d62c6
CW
3610 lockdep_assert_held(&obj->base.dev->struct_mutex);
3611
e4ffd173 3612 if (obj->cache_level == cache_level)
a6a7cc4b 3613 return 0;
e4ffd173 3614
ef55f92a
CW
3615 /* Inspect the list of currently bound VMA and unbind any that would
3616 * be invalid given the new cache-level. This is principally to
3617 * catch the issue of the CS prefetch crossing page boundaries and
3618 * reading an invalid PTE on older architectures.
3619 */
aa653a68
CW
3620restart:
3621 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3622 if (!drm_mm_node_allocated(&vma->node))
3623 continue;
3624
20dfbde4 3625 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3626 DRM_DEBUG("can not change the cache level of pinned objects\n");
3627 return -EBUSY;
3628 }
3629
aa653a68
CW
3630 if (i915_gem_valid_gtt_space(vma, cache_level))
3631 continue;
3632
3633 ret = i915_vma_unbind(vma);
3634 if (ret)
3635 return ret;
3636
3637 /* As unbinding may affect other elements in the
3638 * obj->vma_list (due to side-effects from retiring
3639 * an active vma), play safe and restart the iterator.
3640 */
3641 goto restart;
42d6ab48
CW
3642 }
3643
ef55f92a
CW
3644 /* We can reuse the existing drm_mm nodes but need to change the
3645 * cache-level on the PTE. We could simply unbind them all and
3646 * rebind with the correct cache-level on next use. However since
3647 * we already have a valid slot, dma mapping, pages etc, we may as
3648 * rewrite the PTE in the belief that doing so tramples upon less
3649 * state and so involves less work.
3650 */
15717de2 3651 if (obj->bind_count) {
ef55f92a
CW
3652 /* Before we change the PTE, the GPU must not be accessing it.
3653 * If we wait upon the object, we know that all the bound
3654 * VMA are no longer active.
3655 */
e95433c7
CW
3656 ret = i915_gem_object_wait(obj,
3657 I915_WAIT_INTERRUPTIBLE |
3658 I915_WAIT_LOCKED |
3659 I915_WAIT_ALL,
3660 MAX_SCHEDULE_TIMEOUT,
3661 NULL);
e4ffd173
CW
3662 if (ret)
3663 return ret;
3664
0031fb96
TU
3665 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3666 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3667 /* Access to snoopable pages through the GTT is
3668 * incoherent and on some machines causes a hard
3669 * lockup. Relinquish the CPU mmaping to force
3670 * userspace to refault in the pages and we can
3671 * then double check if the GTT mapping is still
3672 * valid for that pointer access.
3673 */
3674 i915_gem_release_mmap(obj);
3675
3676 /* As we no longer need a fence for GTT access,
3677 * we can relinquish it now (and so prevent having
3678 * to steal a fence from someone else on the next
3679 * fence request). Note GPU activity would have
3680 * dropped the fence as all snoopable access is
3681 * supposed to be linear.
3682 */
49ef5294
CW
3683 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3684 ret = i915_vma_put_fence(vma);
3685 if (ret)
3686 return ret;
3687 }
ef55f92a
CW
3688 } else {
3689 /* We either have incoherent backing store and
3690 * so no GTT access or the architecture is fully
3691 * coherent. In such cases, existing GTT mmaps
3692 * ignore the cache bit in the PTE and we can
3693 * rewrite it without confusing the GPU or having
3694 * to force userspace to fault back in its mmaps.
3695 */
e4ffd173
CW
3696 }
3697
1c7f4bca 3698 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3699 if (!drm_mm_node_allocated(&vma->node))
3700 continue;
3701
3702 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3703 if (ret)
3704 return ret;
3705 }
e4ffd173
CW
3706 }
3707
1c7f4bca 3708 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3709 vma->node.color = cache_level;
3710 obj->cache_level = cache_level;
7fc92e96 3711 obj->cache_coherent = i915_gem_object_is_coherent(obj);
e27ab73d 3712 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 3713
e4ffd173
CW
3714 return 0;
3715}
3716
199adf40
BW
3717int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3718 struct drm_file *file)
e6994aee 3719{
199adf40 3720 struct drm_i915_gem_caching *args = data;
e6994aee 3721 struct drm_i915_gem_object *obj;
fbbd37b3 3722 int err = 0;
e6994aee 3723
fbbd37b3
CW
3724 rcu_read_lock();
3725 obj = i915_gem_object_lookup_rcu(file, args->handle);
3726 if (!obj) {
3727 err = -ENOENT;
3728 goto out;
3729 }
e6994aee 3730
651d794f
CW
3731 switch (obj->cache_level) {
3732 case I915_CACHE_LLC:
3733 case I915_CACHE_L3_LLC:
3734 args->caching = I915_CACHING_CACHED;
3735 break;
3736
4257d3ba
CW
3737 case I915_CACHE_WT:
3738 args->caching = I915_CACHING_DISPLAY;
3739 break;
3740
651d794f
CW
3741 default:
3742 args->caching = I915_CACHING_NONE;
3743 break;
3744 }
fbbd37b3
CW
3745out:
3746 rcu_read_unlock();
3747 return err;
e6994aee
CW
3748}
3749
199adf40
BW
3750int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3751 struct drm_file *file)
e6994aee 3752{
9c870d03 3753 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3754 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3755 struct drm_i915_gem_object *obj;
3756 enum i915_cache_level level;
d65415df 3757 int ret = 0;
e6994aee 3758
199adf40
BW
3759 switch (args->caching) {
3760 case I915_CACHING_NONE:
e6994aee
CW
3761 level = I915_CACHE_NONE;
3762 break;
199adf40 3763 case I915_CACHING_CACHED:
e5756c10
ID
3764 /*
3765 * Due to a HW issue on BXT A stepping, GPU stores via a
3766 * snooped mapping may leave stale data in a corresponding CPU
3767 * cacheline, whereas normally such cachelines would get
3768 * invalidated.
3769 */
9c870d03 3770 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3771 return -ENODEV;
3772
e6994aee
CW
3773 level = I915_CACHE_LLC;
3774 break;
4257d3ba 3775 case I915_CACHING_DISPLAY:
9c870d03 3776 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3777 break;
e6994aee
CW
3778 default:
3779 return -EINVAL;
3780 }
3781
d65415df
CW
3782 obj = i915_gem_object_lookup(file, args->handle);
3783 if (!obj)
3784 return -ENOENT;
3785
3786 if (obj->cache_level == level)
3787 goto out;
3788
3789 ret = i915_gem_object_wait(obj,
3790 I915_WAIT_INTERRUPTIBLE,
3791 MAX_SCHEDULE_TIMEOUT,
3792 to_rps_client(file));
3bc2913e 3793 if (ret)
d65415df 3794 goto out;
3bc2913e 3795
d65415df
CW
3796 ret = i915_mutex_lock_interruptible(dev);
3797 if (ret)
3798 goto out;
e6994aee
CW
3799
3800 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3801 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3802
3803out:
3804 i915_gem_object_put(obj);
e6994aee
CW
3805 return ret;
3806}
3807
b9241ea3 3808/*
2da3b9b9
CW
3809 * Prepare buffer for display plane (scanout, cursors, etc).
3810 * Can be called from an uninterruptible phase (modesetting) and allows
3811 * any flushes to be pipelined (for pageflips).
b9241ea3 3812 */
058d88c4 3813struct i915_vma *
2da3b9b9
CW
3814i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3815 u32 alignment,
e6617330 3816 const struct i915_ggtt_view *view)
b9241ea3 3817{
058d88c4 3818 struct i915_vma *vma;
b9241ea3
ZW
3819 int ret;
3820
4c7d62c6
CW
3821 lockdep_assert_held(&obj->base.dev->struct_mutex);
3822
cc98b413
CW
3823 /* Mark the pin_display early so that we account for the
3824 * display coherency whilst setting up the cache domains.
3825 */
8a0c39b1 3826 obj->pin_display++;
cc98b413 3827
a7ef0640
EA
3828 /* The display engine is not coherent with the LLC cache on gen6. As
3829 * a result, we make sure that the pinning that is about to occur is
3830 * done with uncached PTEs. This is lowest common denominator for all
3831 * chipsets.
3832 *
3833 * However for gen6+, we could do better by using the GFDT bit instead
3834 * of uncaching, which would allow us to flush all the LLC-cached data
3835 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3836 */
651d794f 3837 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3838 HAS_WT(to_i915(obj->base.dev)) ?
3839 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3840 if (ret) {
3841 vma = ERR_PTR(ret);
cc98b413 3842 goto err_unpin_display;
058d88c4 3843 }
a7ef0640 3844
2da3b9b9
CW
3845 /* As the user may map the buffer once pinned in the display plane
3846 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3847 * always use map_and_fenceable for all scanout buffers. However,
3848 * it may simply be too big to fit into mappable, in which case
3849 * put it anyway and hope that userspace can cope (but always first
3850 * try to preserve the existing ABI).
2da3b9b9 3851 */
2efb813d 3852 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3853 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3854 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3855 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3856 if (IS_ERR(vma)) {
3857 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3858 unsigned int flags;
3859
3860 /* Valleyview is definitely limited to scanning out the first
3861 * 512MiB. Lets presume this behaviour was inherited from the
3862 * g4x display engine and that all earlier gen are similarly
3863 * limited. Testing suggests that it is a little more
3864 * complicated than this. For example, Cherryview appears quite
3865 * happy to scanout from anywhere within its global aperture.
3866 */
3867 flags = 0;
3868 if (HAS_GMCH_DISPLAY(i915))
3869 flags = PIN_MAPPABLE;
3870 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3871 }
058d88c4 3872 if (IS_ERR(vma))
cc98b413 3873 goto err_unpin_display;
2da3b9b9 3874
d8923dcf
CW
3875 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3876
a6a7cc4b 3877 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3878 __i915_gem_object_flush_for_display(obj);
d59b21ec 3879 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3880
2da3b9b9
CW
3881 /* It should now be out of any other write domains, and we can update
3882 * the domain values for our changes.
3883 */
05394f39 3884 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3885
058d88c4 3886 return vma;
cc98b413
CW
3887
3888err_unpin_display:
8a0c39b1 3889 obj->pin_display--;
058d88c4 3890 return vma;
cc98b413
CW
3891}
3892
3893void
058d88c4 3894i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3895{
49d73912 3896 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3897
058d88c4 3898 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3899 return;
3900
d8923dcf 3901 if (--vma->obj->pin_display == 0)
f51455d4 3902 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3903
383d5823 3904 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3905 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3906
058d88c4 3907 i915_vma_unpin(vma);
b9241ea3
ZW
3908}
3909
e47c68e9
EA
3910/**
3911 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3912 * @obj: object to act on
3913 * @write: requesting write or read-only access
e47c68e9
EA
3914 *
3915 * This function returns when the move is complete, including waiting on
3916 * flushes to occur.
3917 */
dabdfe02 3918int
919926ae 3919i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3920{
e47c68e9
EA
3921 int ret;
3922
e95433c7 3923 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3924
e95433c7
CW
3925 ret = i915_gem_object_wait(obj,
3926 I915_WAIT_INTERRUPTIBLE |
3927 I915_WAIT_LOCKED |
3928 (write ? I915_WAIT_ALL : 0),
3929 MAX_SCHEDULE_TIMEOUT,
3930 NULL);
88241785
CW
3931 if (ret)
3932 return ret;
3933
ef74921b 3934 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 3935
e47c68e9 3936 /* Flush the CPU cache if it's still invalid. */
05394f39 3937 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 3938 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 3939 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3940 }
3941
3942 /* It should now be out of any other write domains, and we can update
3943 * the domain values for our changes.
3944 */
e27ab73d 3945 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3946
3947 /* If we're writing through the CPU, then the GPU read domains will
3948 * need to be invalidated at next use.
3949 */
e27ab73d
CW
3950 if (write)
3951 __start_cpu_write(obj);
2ef7eeaa
EA
3952
3953 return 0;
3954}
3955
673a394b
EA
3956/* Throttle our rendering by waiting until the ring has completed our requests
3957 * emitted over 20 msec ago.
3958 *
b962442e
EA
3959 * Note that if we were to use the current jiffies each time around the loop,
3960 * we wouldn't escape the function with any frames outstanding if the time to
3961 * render a frame was over 20ms.
3962 *
673a394b
EA
3963 * This should get us reasonable parallelism between CPU and GPU but also
3964 * relatively low latency when blocking on a particular request to finish.
3965 */
40a5f0de 3966static int
f787a5f5 3967i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3968{
fac5e23e 3969 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3970 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3971 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3972 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3973 long ret;
93533c29 3974
f4457ae7
CW
3975 /* ABI: return -EIO if already wedged */
3976 if (i915_terminally_wedged(&dev_priv->gpu_error))
3977 return -EIO;
e110e8d6 3978
1c25595f 3979 spin_lock(&file_priv->mm.lock);
c8659efa 3980 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
3981 if (time_after_eq(request->emitted_jiffies, recent_enough))
3982 break;
40a5f0de 3983
c8659efa
CW
3984 if (target) {
3985 list_del(&target->client_link);
3986 target->file_priv = NULL;
3987 }
fcfa423c 3988
54fb2411 3989 target = request;
b962442e 3990 }
ff865885 3991 if (target)
e8a261ea 3992 i915_gem_request_get(target);
1c25595f 3993 spin_unlock(&file_priv->mm.lock);
40a5f0de 3994
54fb2411 3995 if (target == NULL)
f787a5f5 3996 return 0;
2bc43b5c 3997
e95433c7
CW
3998 ret = i915_wait_request(target,
3999 I915_WAIT_INTERRUPTIBLE,
4000 MAX_SCHEDULE_TIMEOUT);
e8a261ea 4001 i915_gem_request_put(target);
ff865885 4002
e95433c7 4003 return ret < 0 ? ret : 0;
40a5f0de
EA
4004}
4005
058d88c4 4006struct i915_vma *
ec7adb6e
JL
4007i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4008 const struct i915_ggtt_view *view,
91b2db6f 4009 u64 size,
2ffffd0f
CW
4010 u64 alignment,
4011 u64 flags)
ec7adb6e 4012{
ad16d2ed
CW
4013 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4014 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
4015 struct i915_vma *vma;
4016 int ret;
72e96d64 4017
4c7d62c6
CW
4018 lockdep_assert_held(&obj->base.dev->struct_mutex);
4019
718659a6 4020 vma = i915_vma_instance(obj, vm, view);
e0216b76 4021 if (unlikely(IS_ERR(vma)))
058d88c4 4022 return vma;
59bfa124
CW
4023
4024 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4025 if (flags & PIN_NONBLOCK &&
4026 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 4027 return ERR_PTR(-ENOSPC);
59bfa124 4028
ad16d2ed 4029 if (flags & PIN_MAPPABLE) {
ad16d2ed
CW
4030 /* If the required space is larger than the available
4031 * aperture, we will not able to find a slot for the
4032 * object and unbinding the object now will be in
4033 * vain. Worse, doing so may cause us to ping-pong
4034 * the object in and out of the Global GTT and
4035 * waste a lot of cycles under the mutex.
4036 */
944397f0 4037 if (vma->fence_size > dev_priv->ggtt.mappable_end)
ad16d2ed
CW
4038 return ERR_PTR(-E2BIG);
4039
4040 /* If NONBLOCK is set the caller is optimistically
4041 * trying to cache the full object within the mappable
4042 * aperture, and *must* have a fallback in place for
4043 * situations where we cannot bind the object. We
4044 * can be a little more lax here and use the fallback
4045 * more often to avoid costly migrations of ourselves
4046 * and other objects within the aperture.
4047 *
4048 * Half-the-aperture is used as a simple heuristic.
4049 * More interesting would to do search for a free
4050 * block prior to making the commitment to unbind.
4051 * That caters for the self-harm case, and with a
4052 * little more heuristics (e.g. NOFAULT, NOEVICT)
4053 * we could try to minimise harm to others.
4054 */
4055 if (flags & PIN_NONBLOCK &&
944397f0 4056 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4057 return ERR_PTR(-ENOSPC);
4058 }
4059
59bfa124
CW
4060 WARN(i915_vma_is_pinned(vma),
4061 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4062 " offset=%08x, req.alignment=%llx,"
4063 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4064 i915_ggtt_offset(vma), alignment,
59bfa124 4065 !!(flags & PIN_MAPPABLE),
05a20d09 4066 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4067 ret = i915_vma_unbind(vma);
4068 if (ret)
058d88c4 4069 return ERR_PTR(ret);
59bfa124
CW
4070 }
4071
058d88c4
CW
4072 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4073 if (ret)
4074 return ERR_PTR(ret);
ec7adb6e 4075
058d88c4 4076 return vma;
673a394b
EA
4077}
4078
edf6b76f 4079static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4080{
4081 /* Note that we could alias engines in the execbuf API, but
4082 * that would be very unwise as it prevents userspace from
4083 * fine control over engine selection. Ahem.
4084 *
4085 * This should be something like EXEC_MAX_ENGINE instead of
4086 * I915_NUM_ENGINES.
4087 */
4088 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4089 return 0x10000 << id;
4090}
4091
4092static __always_inline unsigned int __busy_write_id(unsigned int id)
4093{
70cb472c
CW
4094 /* The uABI guarantees an active writer is also amongst the read
4095 * engines. This would be true if we accessed the activity tracking
4096 * under the lock, but as we perform the lookup of the object and
4097 * its activity locklessly we can not guarantee that the last_write
4098 * being active implies that we have set the same engine flag from
4099 * last_read - hence we always set both read and write busy for
4100 * last_write.
4101 */
4102 return id | __busy_read_flag(id);
3fdc13c7
CW
4103}
4104
edf6b76f 4105static __always_inline unsigned int
d07f0e59 4106__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4107 unsigned int (*flag)(unsigned int id))
4108{
d07f0e59 4109 struct drm_i915_gem_request *rq;
3fdc13c7 4110
d07f0e59
CW
4111 /* We have to check the current hw status of the fence as the uABI
4112 * guarantees forward progress. We could rely on the idle worker
4113 * to eventually flush us, but to minimise latency just ask the
4114 * hardware.
1255501d 4115 *
d07f0e59 4116 * Note we only report on the status of native fences.
1255501d 4117 */
d07f0e59
CW
4118 if (!dma_fence_is_i915(fence))
4119 return 0;
4120
4121 /* opencode to_request() in order to avoid const warnings */
4122 rq = container_of(fence, struct drm_i915_gem_request, fence);
4123 if (i915_gem_request_completed(rq))
4124 return 0;
4125
1d39f281 4126 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4127}
4128
edf6b76f 4129static __always_inline unsigned int
d07f0e59 4130busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4131{
d07f0e59 4132 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4133}
4134
edf6b76f 4135static __always_inline unsigned int
d07f0e59 4136busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4137{
d07f0e59
CW
4138 if (!fence)
4139 return 0;
4140
4141 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4142}
4143
673a394b
EA
4144int
4145i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4146 struct drm_file *file)
673a394b
EA
4147{
4148 struct drm_i915_gem_busy *args = data;
05394f39 4149 struct drm_i915_gem_object *obj;
d07f0e59
CW
4150 struct reservation_object_list *list;
4151 unsigned int seq;
fbbd37b3 4152 int err;
673a394b 4153
d07f0e59 4154 err = -ENOENT;
fbbd37b3
CW
4155 rcu_read_lock();
4156 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4157 if (!obj)
fbbd37b3 4158 goto out;
d1b851fc 4159
d07f0e59
CW
4160 /* A discrepancy here is that we do not report the status of
4161 * non-i915 fences, i.e. even though we may report the object as idle,
4162 * a call to set-domain may still stall waiting for foreign rendering.
4163 * This also means that wait-ioctl may report an object as busy,
4164 * where busy-ioctl considers it idle.
4165 *
4166 * We trade the ability to warn of foreign fences to report on which
4167 * i915 engines are active for the object.
4168 *
4169 * Alternatively, we can trade that extra information on read/write
4170 * activity with
4171 * args->busy =
4172 * !reservation_object_test_signaled_rcu(obj->resv, true);
4173 * to report the overall busyness. This is what the wait-ioctl does.
4174 *
4175 */
4176retry:
4177 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4178
d07f0e59
CW
4179 /* Translate the exclusive fence to the READ *and* WRITE engine */
4180 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4181
d07f0e59
CW
4182 /* Translate shared fences to READ set of engines */
4183 list = rcu_dereference(obj->resv->fence);
4184 if (list) {
4185 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4186
d07f0e59
CW
4187 for (i = 0; i < shared_count; ++i) {
4188 struct dma_fence *fence =
4189 rcu_dereference(list->shared[i]);
4190
4191 args->busy |= busy_check_reader(fence);
4192 }
426960be 4193 }
673a394b 4194
d07f0e59
CW
4195 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4196 goto retry;
4197
4198 err = 0;
fbbd37b3
CW
4199out:
4200 rcu_read_unlock();
4201 return err;
673a394b
EA
4202}
4203
4204int
4205i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4206 struct drm_file *file_priv)
4207{
0206e353 4208 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4209}
4210
3ef94daa
CW
4211int
4212i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4213 struct drm_file *file_priv)
4214{
fac5e23e 4215 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4216 struct drm_i915_gem_madvise *args = data;
05394f39 4217 struct drm_i915_gem_object *obj;
1233e2db 4218 int err;
3ef94daa
CW
4219
4220 switch (args->madv) {
4221 case I915_MADV_DONTNEED:
4222 case I915_MADV_WILLNEED:
4223 break;
4224 default:
4225 return -EINVAL;
4226 }
4227
03ac0642 4228 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4229 if (!obj)
4230 return -ENOENT;
4231
4232 err = mutex_lock_interruptible(&obj->mm.lock);
4233 if (err)
4234 goto out;
3ef94daa 4235
a4f5ea64 4236 if (obj->mm.pages &&
3e510a8e 4237 i915_gem_object_is_tiled(obj) &&
656bfa3a 4238 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4239 if (obj->mm.madv == I915_MADV_WILLNEED) {
4240 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4241 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4242 obj->mm.quirked = false;
4243 }
4244 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4245 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4246 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4247 obj->mm.quirked = true;
4248 }
656bfa3a
DV
4249 }
4250
a4f5ea64
CW
4251 if (obj->mm.madv != __I915_MADV_PURGED)
4252 obj->mm.madv = args->madv;
3ef94daa 4253
6c085a72 4254 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4255 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4256 i915_gem_object_truncate(obj);
4257
a4f5ea64 4258 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4259 mutex_unlock(&obj->mm.lock);
bb6baf76 4260
1233e2db 4261out:
f8c417cd 4262 i915_gem_object_put(obj);
1233e2db 4263 return err;
3ef94daa
CW
4264}
4265
5b8c8aec
CW
4266static void
4267frontbuffer_retire(struct i915_gem_active *active,
4268 struct drm_i915_gem_request *request)
4269{
4270 struct drm_i915_gem_object *obj =
4271 container_of(active, typeof(*obj), frontbuffer_write);
4272
d59b21ec 4273 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4274}
4275
37e680a1
CW
4276void i915_gem_object_init(struct drm_i915_gem_object *obj,
4277 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4278{
1233e2db
CW
4279 mutex_init(&obj->mm.lock);
4280
56cea323 4281 INIT_LIST_HEAD(&obj->global_link);
275f039d 4282 INIT_LIST_HEAD(&obj->userfault_link);
2f633156 4283 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4284 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4285
37e680a1
CW
4286 obj->ops = ops;
4287
d07f0e59
CW
4288 reservation_object_init(&obj->__builtin_resv);
4289 obj->resv = &obj->__builtin_resv;
4290
50349247 4291 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4292 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4293
4294 obj->mm.madv = I915_MADV_WILLNEED;
4295 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4296 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4297
f19ec8cb 4298 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4299}
4300
37e680a1 4301static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4302 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4303 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4304
37e680a1
CW
4305 .get_pages = i915_gem_object_get_pages_gtt,
4306 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4307
4308 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4309};
4310
b4bcbe2a 4311struct drm_i915_gem_object *
12d79d78 4312i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4313{
c397b908 4314 struct drm_i915_gem_object *obj;
5949eac4 4315 struct address_space *mapping;
1a240d4d 4316 gfp_t mask;
fe3db79b 4317 int ret;
ac52bc56 4318
b4bcbe2a
CW
4319 /* There is a prevalence of the assumption that we fit the object's
4320 * page count inside a 32bit _signed_ variable. Let's document this and
4321 * catch if we ever need to fix it. In the meantime, if you do spot
4322 * such a local variable, please consider fixing!
4323 */
7a3ee5de 4324 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4325 return ERR_PTR(-E2BIG);
4326
4327 if (overflows_type(size, obj->base.size))
4328 return ERR_PTR(-E2BIG);
4329
187685cb 4330 obj = i915_gem_object_alloc(dev_priv);
c397b908 4331 if (obj == NULL)
fe3db79b 4332 return ERR_PTR(-ENOMEM);
673a394b 4333
12d79d78 4334 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4335 if (ret)
4336 goto fail;
673a394b 4337
bed1ea95 4338 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4339 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4340 /* 965gm cannot relocate objects above 4GiB. */
4341 mask &= ~__GFP_HIGHMEM;
4342 mask |= __GFP_DMA32;
4343 }
4344
93c76a3d 4345 mapping = obj->base.filp->f_mapping;
bed1ea95 4346 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4347 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4348
37e680a1 4349 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4350
c397b908
DV
4351 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4352 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4353
0031fb96 4354 if (HAS_LLC(dev_priv)) {
3d29b842 4355 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4356 * cache) for about a 10% performance improvement
4357 * compared to uncached. Graphics requests other than
4358 * display scanout are coherent with the CPU in
4359 * accessing this cache. This means in this mode we
4360 * don't need to clflush on the CPU side, and on the
4361 * GPU side we only need to flush internal caches to
4362 * get data visible to the CPU.
4363 *
4364 * However, we maintain the display planes as UC, and so
4365 * need to rebind when first used as such.
4366 */
4367 obj->cache_level = I915_CACHE_LLC;
4368 } else
4369 obj->cache_level = I915_CACHE_NONE;
4370
7fc92e96
CW
4371 obj->cache_coherent = i915_gem_object_is_coherent(obj);
4372 obj->cache_dirty = !obj->cache_coherent;
e27ab73d 4373
d861e338
DV
4374 trace_i915_gem_object_create(obj);
4375
05394f39 4376 return obj;
fe3db79b
CW
4377
4378fail:
4379 i915_gem_object_free(obj);
fe3db79b 4380 return ERR_PTR(ret);
c397b908
DV
4381}
4382
340fbd8c
CW
4383static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4384{
4385 /* If we are the last user of the backing storage (be it shmemfs
4386 * pages or stolen etc), we know that the pages are going to be
4387 * immediately released. In this case, we can then skip copying
4388 * back the contents from the GPU.
4389 */
4390
a4f5ea64 4391 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4392 return false;
4393
4394 if (obj->base.filp == NULL)
4395 return true;
4396
4397 /* At first glance, this looks racy, but then again so would be
4398 * userspace racing mmap against close. However, the first external
4399 * reference to the filp can only be obtained through the
4400 * i915_gem_mmap_ioctl() which safeguards us against the user
4401 * acquiring such a reference whilst we are in the middle of
4402 * freeing the object.
4403 */
4404 return atomic_long_read(&obj->base.filp->f_count) == 1;
4405}
4406
fbbd37b3
CW
4407static void __i915_gem_free_objects(struct drm_i915_private *i915,
4408 struct llist_node *freed)
673a394b 4409{
fbbd37b3 4410 struct drm_i915_gem_object *obj, *on;
673a394b 4411
fbbd37b3
CW
4412 mutex_lock(&i915->drm.struct_mutex);
4413 intel_runtime_pm_get(i915);
4414 llist_for_each_entry(obj, freed, freed) {
4415 struct i915_vma *vma, *vn;
4416
4417 trace_i915_gem_object_destroy(obj);
4418
4419 GEM_BUG_ON(i915_gem_object_is_active(obj));
4420 list_for_each_entry_safe(vma, vn,
4421 &obj->vma_list, obj_link) {
fbbd37b3
CW
4422 GEM_BUG_ON(i915_vma_is_active(vma));
4423 vma->flags &= ~I915_VMA_PIN_MASK;
4424 i915_vma_close(vma);
4425 }
db6c2b41
CW
4426 GEM_BUG_ON(!list_empty(&obj->vma_list));
4427 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4428
56cea323 4429 list_del(&obj->global_link);
fbbd37b3
CW
4430 }
4431 intel_runtime_pm_put(i915);
4432 mutex_unlock(&i915->drm.struct_mutex);
4433
f2be9d68
CW
4434 cond_resched();
4435
fbbd37b3
CW
4436 llist_for_each_entry_safe(obj, on, freed, freed) {
4437 GEM_BUG_ON(obj->bind_count);
4438 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4439
4440 if (obj->ops->release)
4441 obj->ops->release(obj);
f65c9168 4442
fbbd37b3
CW
4443 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4444 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4445 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4446 GEM_BUG_ON(obj->mm.pages);
4447
4448 if (obj->base.import_attach)
4449 drm_prime_gem_destroy(&obj->base, NULL);
4450
d07f0e59 4451 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4452 drm_gem_object_release(&obj->base);
4453 i915_gem_info_remove_obj(i915, obj->base.size);
4454
4455 kfree(obj->bit_17);
4456 i915_gem_object_free(obj);
4457 }
4458}
4459
4460static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4461{
4462 struct llist_node *freed;
4463
4464 freed = llist_del_all(&i915->mm.free_list);
4465 if (unlikely(freed))
4466 __i915_gem_free_objects(i915, freed);
4467}
4468
4469static void __i915_gem_free_work(struct work_struct *work)
4470{
4471 struct drm_i915_private *i915 =
4472 container_of(work, struct drm_i915_private, mm.free_work);
4473 struct llist_node *freed;
26e12f89 4474
b1f788c6
CW
4475 /* All file-owned VMA should have been released by this point through
4476 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4477 * However, the object may also be bound into the global GTT (e.g.
4478 * older GPUs without per-process support, or for direct access through
4479 * the GTT either for the user or for scanout). Those VMA still need to
4480 * unbound now.
4481 */
1488fc08 4482
5ad08be7 4483 while ((freed = llist_del_all(&i915->mm.free_list))) {
fbbd37b3 4484 __i915_gem_free_objects(i915, freed);
5ad08be7
CW
4485 if (need_resched())
4486 break;
4487 }
fbbd37b3 4488}
a071fa00 4489
fbbd37b3
CW
4490static void __i915_gem_free_object_rcu(struct rcu_head *head)
4491{
4492 struct drm_i915_gem_object *obj =
4493 container_of(head, typeof(*obj), rcu);
4494 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4495
4496 /* We can't simply use call_rcu() from i915_gem_free_object()
4497 * as we need to block whilst unbinding, and the call_rcu
4498 * task may be called from softirq context. So we take a
4499 * detour through a worker.
4500 */
4501 if (llist_add(&obj->freed, &i915->mm.free_list))
4502 schedule_work(&i915->mm.free_work);
4503}
656bfa3a 4504
fbbd37b3
CW
4505void i915_gem_free_object(struct drm_gem_object *gem_obj)
4506{
4507 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4508
bc0629a7
CW
4509 if (obj->mm.quirked)
4510 __i915_gem_object_unpin_pages(obj);
4511
340fbd8c 4512 if (discard_backing_storage(obj))
a4f5ea64 4513 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4514
fbbd37b3
CW
4515 /* Before we free the object, make sure any pure RCU-only
4516 * read-side critical sections are complete, e.g.
4517 * i915_gem_busy_ioctl(). For the corresponding synchronized
4518 * lookup see i915_gem_object_lookup_rcu().
4519 */
4520 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4521}
4522
f8a7fde4
CW
4523void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4524{
4525 lockdep_assert_held(&obj->base.dev->struct_mutex);
4526
4527 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4528 if (i915_gem_object_is_active(obj))
4529 i915_gem_object_set_active_reference(obj);
4530 else
4531 i915_gem_object_put(obj);
4532}
4533
3033acab
CW
4534static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4535{
4536 struct intel_engine_cs *engine;
4537 enum intel_engine_id id;
4538
4539 for_each_engine(engine, dev_priv, id)
f131e356
CW
4540 GEM_BUG_ON(engine->last_retired_context &&
4541 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4542}
4543
24145517
CW
4544void i915_gem_sanitize(struct drm_i915_private *i915)
4545{
4546 /*
4547 * If we inherit context state from the BIOS or earlier occupants
4548 * of the GPU, the GPU may be in an inconsistent state when we
4549 * try to take over. The only way to remove the earlier state
4550 * is by resetting. However, resetting on earlier gen is tricky as
4551 * it may impact the display and we are uncertain about the stability
ea117b8d 4552 * of the reset, so this could be applied to even earlier gen.
24145517 4553 */
ea117b8d 4554 if (INTEL_GEN(i915) >= 5) {
24145517
CW
4555 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4556 WARN_ON(reset && reset != -ENODEV);
4557 }
4558}
4559
bf9e8429 4560int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4561{
bf9e8429 4562 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4563 int ret;
28dfe52a 4564
c998e8a0 4565 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4566 intel_suspend_gt_powersave(dev_priv);
4567
45c5f202 4568 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4569
4570 /* We have to flush all the executing contexts to main memory so
4571 * that they can saved in the hibernation image. To ensure the last
4572 * context image is coherent, we have to switch away from it. That
4573 * leaves the dev_priv->kernel_context still active when
4574 * we actually suspend, and its image in memory may not match the GPU
4575 * state. Fortunately, the kernel_context is disposable and we do
4576 * not rely on its state.
4577 */
4578 ret = i915_gem_switch_to_kernel_context(dev_priv);
4579 if (ret)
c998e8a0 4580 goto err_unlock;
5ab57c70 4581
22dd3bb9
CW
4582 ret = i915_gem_wait_for_idle(dev_priv,
4583 I915_WAIT_INTERRUPTIBLE |
4584 I915_WAIT_LOCKED);
f7403347 4585 if (ret)
c998e8a0 4586 goto err_unlock;
f7403347 4587
3033acab 4588 assert_kernel_context_is_current(dev_priv);
829a0af2 4589 i915_gem_contexts_lost(dev_priv);
45c5f202
CW
4590 mutex_unlock(&dev->struct_mutex);
4591
63987bfe
SAK
4592 intel_guc_suspend(dev_priv);
4593
737b1506 4594 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4595 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4596
4597 /* As the idle_work is rearming if it detects a race, play safe and
4598 * repeat the flush until it is definitely idle.
4599 */
4600 while (flush_delayed_work(&dev_priv->gt.idle_work))
4601 ;
4602
4603 i915_gem_drain_freed_objects(dev_priv);
29105ccc 4604
bdcf120b
CW
4605 /* Assert that we sucessfully flushed all the work and
4606 * reset the GPU back to its idle, low power state.
4607 */
67d97da3 4608 WARN_ON(dev_priv->gt.awake);
05425249 4609 WARN_ON(!intel_engines_are_idle(dev_priv));
bdcf120b 4610
1c777c5d
ID
4611 /*
4612 * Neither the BIOS, ourselves or any other kernel
4613 * expects the system to be in execlists mode on startup,
4614 * so we need to reset the GPU back to legacy mode. And the only
4615 * known way to disable logical contexts is through a GPU reset.
4616 *
4617 * So in order to leave the system in a known default configuration,
4618 * always reset the GPU upon unload and suspend. Afterwards we then
4619 * clean up the GEM state tracking, flushing off the requests and
4620 * leaving the system in a known idle state.
4621 *
4622 * Note that is of the upmost importance that the GPU is idle and
4623 * all stray writes are flushed *before* we dismantle the backing
4624 * storage for the pinned objects.
4625 *
4626 * However, since we are uncertain that resetting the GPU on older
4627 * machines is a good idea, we don't - just in case it leaves the
4628 * machine in an unusable condition.
4629 */
24145517 4630 i915_gem_sanitize(dev_priv);
c998e8a0 4631 goto out_rpm_put;
1c777c5d 4632
c998e8a0 4633err_unlock:
45c5f202 4634 mutex_unlock(&dev->struct_mutex);
c998e8a0
CW
4635out_rpm_put:
4636 intel_runtime_pm_put(dev_priv);
45c5f202 4637 return ret;
673a394b
EA
4638}
4639
bf9e8429 4640void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4641{
bf9e8429 4642 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4643
31ab49ab
ID
4644 WARN_ON(dev_priv->gt.awake);
4645
5ab57c70 4646 mutex_lock(&dev->struct_mutex);
275a991c 4647 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4648
4649 /* As we didn't flush the kernel context before suspend, we cannot
4650 * guarantee that the context image is complete. So let's just reset
4651 * it and start again.
4652 */
821ed7df 4653 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4654
4655 mutex_unlock(&dev->struct_mutex);
4656}
4657
c6be607a 4658void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4659{
c6be607a 4660 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4661 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4662 return;
4663
4664 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4665 DISP_TILE_SURFACE_SWIZZLING);
4666
5db94019 4667 if (IS_GEN5(dev_priv))
11782b02
DV
4668 return;
4669
f691e2f4 4670 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4671 if (IS_GEN6(dev_priv))
6b26c86d 4672 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4673 else if (IS_GEN7(dev_priv))
6b26c86d 4674 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4675 else if (IS_GEN8(dev_priv))
31a5336e 4676 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4677 else
4678 BUG();
f691e2f4 4679}
e21af88d 4680
50a0bc90 4681static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4682{
81e7f200
VS
4683 I915_WRITE(RING_CTL(base), 0);
4684 I915_WRITE(RING_HEAD(base), 0);
4685 I915_WRITE(RING_TAIL(base), 0);
4686 I915_WRITE(RING_START(base), 0);
4687}
4688
50a0bc90 4689static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4690{
50a0bc90
TU
4691 if (IS_I830(dev_priv)) {
4692 init_unused_ring(dev_priv, PRB1_BASE);
4693 init_unused_ring(dev_priv, SRB0_BASE);
4694 init_unused_ring(dev_priv, SRB1_BASE);
4695 init_unused_ring(dev_priv, SRB2_BASE);
4696 init_unused_ring(dev_priv, SRB3_BASE);
4697 } else if (IS_GEN2(dev_priv)) {
4698 init_unused_ring(dev_priv, SRB0_BASE);
4699 init_unused_ring(dev_priv, SRB1_BASE);
4700 } else if (IS_GEN3(dev_priv)) {
4701 init_unused_ring(dev_priv, PRB1_BASE);
4702 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4703 }
4704}
4705
20a8a74a 4706static int __i915_gem_restart_engines(void *data)
4fc7c971 4707{
20a8a74a 4708 struct drm_i915_private *i915 = data;
e2f80391 4709 struct intel_engine_cs *engine;
3b3f1650 4710 enum intel_engine_id id;
20a8a74a
CW
4711 int err;
4712
4713 for_each_engine(engine, i915, id) {
4714 err = engine->init_hw(engine);
4715 if (err)
4716 return err;
4717 }
4718
4719 return 0;
4720}
4721
4722int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4723{
d200cda6 4724 int ret;
4fc7c971 4725
de867c20
CW
4726 dev_priv->gt.last_init_time = ktime_get();
4727
5e4f5189
CW
4728 /* Double layer security blanket, see i915_gem_init() */
4729 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4730
0031fb96 4731 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4732 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4733
772c2a51 4734 if (IS_HASWELL(dev_priv))
50a0bc90 4735 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4736 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4737
6e266956 4738 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4739 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4740 u32 temp = I915_READ(GEN7_MSG_CTL);
4741 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4742 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4743 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4744 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4745 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4746 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4747 }
88a2b2a3
BW
4748 }
4749
c6be607a 4750 i915_gem_init_swizzling(dev_priv);
4fc7c971 4751
d5abdfda
DV
4752 /*
4753 * At least 830 can leave some of the unused rings
4754 * "active" (ie. head != tail) after resume which
4755 * will prevent c3 entry. Makes sure all unused rings
4756 * are totally idle.
4757 */
50a0bc90 4758 init_unused_rings(dev_priv);
d5abdfda 4759
ed54c1a1 4760 BUG_ON(!dev_priv->kernel_context);
90638cc1 4761
c6be607a 4762 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4763 if (ret) {
4764 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4765 goto out;
4766 }
4767
4768 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4769 ret = __i915_gem_restart_engines(dev_priv);
4770 if (ret)
4771 goto out;
99433931 4772
bf9e8429 4773 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4774
b8991403
OM
4775 /* We can't enable contexts until all firmware is loaded */
4776 ret = intel_uc_init_hw(dev_priv);
4777 if (ret)
4778 goto out;
33a732f4 4779
5e4f5189
CW
4780out:
4781 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4782 return ret;
8187a2b7
ZN
4783}
4784
39df9190
CW
4785bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4786{
4787 if (INTEL_INFO(dev_priv)->gen < 6)
4788 return false;
4789
4790 /* TODO: make semaphores and Execlists play nicely together */
4791 if (i915.enable_execlists)
4792 return false;
4793
4794 if (value >= 0)
4795 return value;
4796
39df9190 4797 /* Enable semaphores on SNB when IO remapping is off */
80debff8 4798 if (IS_GEN6(dev_priv) && intel_vtd_active())
39df9190 4799 return false;
39df9190
CW
4800
4801 return true;
4802}
4803
bf9e8429 4804int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4805{
1070a42b
CW
4806 int ret;
4807
bf9e8429 4808 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4809
94312828 4810 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 4811
a83014d3 4812 if (!i915.enable_execlists) {
821ed7df 4813 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4814 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4815 } else {
821ed7df 4816 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4817 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4818 }
4819
5e4f5189
CW
4820 /* This is just a security blanket to placate dragons.
4821 * On some systems, we very sporadically observe that the first TLBs
4822 * used by the CS may be stale, despite us poking the TLB reset. If
4823 * we hold the forcewake during initialisation these problems
4824 * just magically go away.
4825 */
4826 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4827
8a2421bd
CW
4828 ret = i915_gem_init_userptr(dev_priv);
4829 if (ret)
4830 goto out_unlock;
f6b9d5ca
CW
4831
4832 ret = i915_gem_init_ggtt(dev_priv);
4833 if (ret)
4834 goto out_unlock;
d62b4892 4835
829a0af2 4836 ret = i915_gem_contexts_init(dev_priv);
7bcc3777
JN
4837 if (ret)
4838 goto out_unlock;
2fa48d8d 4839
bf9e8429 4840 ret = intel_engines_init(dev_priv);
35a57ffb 4841 if (ret)
7bcc3777 4842 goto out_unlock;
2fa48d8d 4843
bf9e8429 4844 ret = i915_gem_init_hw(dev_priv);
60990320 4845 if (ret == -EIO) {
7e21d648 4846 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4847 * wedged. But we only want to do this where the GPU is angry,
4848 * for all other failure, such as an allocation failure, bail.
4849 */
4850 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4851 i915_gem_set_wedged(dev_priv);
60990320 4852 ret = 0;
1070a42b 4853 }
7bcc3777
JN
4854
4855out_unlock:
5e4f5189 4856 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4857 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4858
60990320 4859 return ret;
1070a42b
CW
4860}
4861
24145517
CW
4862void i915_gem_init_mmio(struct drm_i915_private *i915)
4863{
4864 i915_gem_sanitize(i915);
4865}
4866
8187a2b7 4867void
cb15d9f8 4868i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4869{
e2f80391 4870 struct intel_engine_cs *engine;
3b3f1650 4871 enum intel_engine_id id;
8187a2b7 4872
3b3f1650 4873 for_each_engine(engine, dev_priv, id)
117897f4 4874 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4875}
4876
40ae4e16
ID
4877void
4878i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4879{
49ef5294 4880 int i;
40ae4e16
ID
4881
4882 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4883 !IS_CHERRYVIEW(dev_priv))
4884 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4885 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4886 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4887 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4888 dev_priv->num_fence_regs = 16;
4889 else
4890 dev_priv->num_fence_regs = 8;
4891
c033666a 4892 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4893 dev_priv->num_fence_regs =
4894 I915_READ(vgtif_reg(avail_rs.fence_num));
4895
4896 /* Initialize fence registers to zero */
49ef5294
CW
4897 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4898 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4899
4900 fence->i915 = dev_priv;
4901 fence->id = i;
4902 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4903 }
4362f4f6 4904 i915_gem_restore_fences(dev_priv);
40ae4e16 4905
4362f4f6 4906 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4907}
4908
73cb9701 4909int
cb15d9f8 4910i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4911{
a933568e 4912 int err = -ENOMEM;
42dcedd4 4913
a933568e
TU
4914 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4915 if (!dev_priv->objects)
73cb9701 4916 goto err_out;
73cb9701 4917
a933568e
TU
4918 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4919 if (!dev_priv->vmas)
73cb9701 4920 goto err_objects;
73cb9701 4921
a933568e
TU
4922 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4923 SLAB_HWCACHE_ALIGN |
4924 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 4925 SLAB_TYPESAFE_BY_RCU);
a933568e 4926 if (!dev_priv->requests)
73cb9701 4927 goto err_vmas;
73cb9701 4928
52e54209
CW
4929 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4930 SLAB_HWCACHE_ALIGN |
4931 SLAB_RECLAIM_ACCOUNT);
4932 if (!dev_priv->dependencies)
4933 goto err_requests;
4934
c5cf9a91
CW
4935 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4936 if (!dev_priv->priorities)
4937 goto err_dependencies;
4938
73cb9701
CW
4939 mutex_lock(&dev_priv->drm.struct_mutex);
4940 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4941 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4942 mutex_unlock(&dev_priv->drm.struct_mutex);
4943 if (err)
c5cf9a91 4944 goto err_priorities;
673a394b 4945
fbbd37b3
CW
4946 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4947 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4948 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4949 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4950 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4951 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4952 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4953 i915_gem_retire_work_handler);
67d97da3 4954 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4955 i915_gem_idle_work_handler);
1f15b76f 4956 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4957 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4958
6b95a207 4959 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4960
6f633402
JL
4961 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4962
b5add959 4963 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4964
4965 return 0;
4966
c5cf9a91
CW
4967err_priorities:
4968 kmem_cache_destroy(dev_priv->priorities);
52e54209
CW
4969err_dependencies:
4970 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4971err_requests:
4972 kmem_cache_destroy(dev_priv->requests);
4973err_vmas:
4974 kmem_cache_destroy(dev_priv->vmas);
4975err_objects:
4976 kmem_cache_destroy(dev_priv->objects);
4977err_out:
4978 return err;
673a394b 4979}
71acb5eb 4980
cb15d9f8 4981void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4982{
c4d4c1c6 4983 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 4984 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 4985 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 4986
ea84aa77
MA
4987 mutex_lock(&dev_priv->drm.struct_mutex);
4988 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4989 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4990 mutex_unlock(&dev_priv->drm.struct_mutex);
4991
c5cf9a91 4992 kmem_cache_destroy(dev_priv->priorities);
52e54209 4993 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4994 kmem_cache_destroy(dev_priv->requests);
4995 kmem_cache_destroy(dev_priv->vmas);
4996 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4997
4998 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4999 rcu_barrier();
d64aa096
ID
5000}
5001
6a800eab
CW
5002int i915_gem_freeze(struct drm_i915_private *dev_priv)
5003{
d0aa301a
CW
5004 /* Discard all purgeable objects, let userspace recover those as
5005 * required after resuming.
5006 */
6a800eab 5007 i915_gem_shrink_all(dev_priv);
6a800eab 5008
6a800eab
CW
5009 return 0;
5010}
5011
461fb99c
CW
5012int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5013{
5014 struct drm_i915_gem_object *obj;
7aab2d53
CW
5015 struct list_head *phases[] = {
5016 &dev_priv->mm.unbound_list,
5017 &dev_priv->mm.bound_list,
5018 NULL
5019 }, **p;
461fb99c
CW
5020
5021 /* Called just before we write the hibernation image.
5022 *
5023 * We need to update the domain tracking to reflect that the CPU
5024 * will be accessing all the pages to create and restore from the
5025 * hibernation, and so upon restoration those pages will be in the
5026 * CPU domain.
5027 *
5028 * To make sure the hibernation image contains the latest state,
5029 * we update that state just before writing out the image.
7aab2d53
CW
5030 *
5031 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5032 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5033 */
5034
6a800eab 5035 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
17b93c40 5036 i915_gem_drain_freed_objects(dev_priv);
461fb99c 5037
d0aa301a 5038 mutex_lock(&dev_priv->drm.struct_mutex);
7aab2d53 5039 for (p = phases; *p; p++) {
e27ab73d
CW
5040 list_for_each_entry(obj, *p, global_link)
5041 __start_cpu_write(obj);
461fb99c 5042 }
6a800eab 5043 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
5044
5045 return 0;
5046}
5047
f787a5f5 5048void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5049{
f787a5f5 5050 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 5051 struct drm_i915_gem_request *request;
b962442e
EA
5052
5053 /* Clean up our request list when the client is going away, so that
5054 * later retire_requests won't dereference our soon-to-be-gone
5055 * file_priv.
5056 */
1c25595f 5057 spin_lock(&file_priv->mm.lock);
c8659efa 5058 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5059 request->file_priv = NULL;
1c25595f 5060 spin_unlock(&file_priv->mm.lock);
b29c19b6 5061
2e1b8730 5062 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5063 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5064 list_del(&file_priv->rps.link);
8d3afd7d 5065 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5066 }
b29c19b6
CW
5067}
5068
829a0af2 5069int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5070{
5071 struct drm_i915_file_private *file_priv;
e422b888 5072 int ret;
b29c19b6 5073
c4c29d7b 5074 DRM_DEBUG("\n");
b29c19b6
CW
5075
5076 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5077 if (!file_priv)
5078 return -ENOMEM;
5079
5080 file->driver_priv = file_priv;
829a0af2 5081 file_priv->dev_priv = i915;
ab0e7ff9 5082 file_priv->file = file;
2e1b8730 5083 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5084
5085 spin_lock_init(&file_priv->mm.lock);
5086 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5087
c80ff16e 5088 file_priv->bsd_engine = -1;
de1add36 5089
829a0af2 5090 ret = i915_gem_context_open(i915, file);
e422b888
BW
5091 if (ret)
5092 kfree(file_priv);
b29c19b6 5093
e422b888 5094 return ret;
b29c19b6
CW
5095}
5096
b680c37a
DV
5097/**
5098 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5099 * @old: current GEM buffer for the frontbuffer slots
5100 * @new: new GEM buffer for the frontbuffer slots
5101 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5102 *
5103 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5104 * from @old and setting them in @new. Both @old and @new can be NULL.
5105 */
a071fa00
DV
5106void i915_gem_track_fb(struct drm_i915_gem_object *old,
5107 struct drm_i915_gem_object *new,
5108 unsigned frontbuffer_bits)
5109{
faf5bf0a
CW
5110 /* Control of individual bits within the mask are guarded by
5111 * the owning plane->mutex, i.e. we can never see concurrent
5112 * manipulation of individual bits. But since the bitfield as a whole
5113 * is updated using RMW, we need to use atomics in order to update
5114 * the bits.
5115 */
5116 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5117 sizeof(atomic_t) * BITS_PER_BYTE);
5118
a071fa00 5119 if (old) {
faf5bf0a
CW
5120 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5121 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5122 }
5123
5124 if (new) {
faf5bf0a
CW
5125 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5126 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5127 }
5128}
5129
ea70299d
DG
5130/* Allocate a new GEM object and fill it with the supplied data */
5131struct drm_i915_gem_object *
12d79d78 5132i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5133 const void *data, size_t size)
5134{
5135 struct drm_i915_gem_object *obj;
be062fa4
CW
5136 struct file *file;
5137 size_t offset;
5138 int err;
ea70299d 5139
12d79d78 5140 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5141 if (IS_ERR(obj))
ea70299d
DG
5142 return obj;
5143
ce8ff099 5144 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5145
be062fa4
CW
5146 file = obj->base.filp;
5147 offset = 0;
5148 do {
5149 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5150 struct page *page;
5151 void *pgdata, *vaddr;
ea70299d 5152
be062fa4
CW
5153 err = pagecache_write_begin(file, file->f_mapping,
5154 offset, len, 0,
5155 &page, &pgdata);
5156 if (err < 0)
5157 goto fail;
ea70299d 5158
be062fa4
CW
5159 vaddr = kmap(page);
5160 memcpy(vaddr, data, len);
5161 kunmap(page);
5162
5163 err = pagecache_write_end(file, file->f_mapping,
5164 offset, len, len,
5165 page, pgdata);
5166 if (err < 0)
5167 goto fail;
5168
5169 size -= len;
5170 data += len;
5171 offset += len;
5172 } while (size);
ea70299d
DG
5173
5174 return obj;
5175
5176fail:
f8c417cd 5177 i915_gem_object_put(obj);
be062fa4 5178 return ERR_PTR(err);
ea70299d 5179}
96d77634
CW
5180
5181struct scatterlist *
5182i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5183 unsigned int n,
5184 unsigned int *offset)
5185{
a4f5ea64 5186 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5187 struct scatterlist *sg;
5188 unsigned int idx, count;
5189
5190 might_sleep();
5191 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5192 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5193
5194 /* As we iterate forward through the sg, we record each entry in a
5195 * radixtree for quick repeated (backwards) lookups. If we have seen
5196 * this index previously, we will have an entry for it.
5197 *
5198 * Initial lookup is O(N), but this is amortized to O(1) for
5199 * sequential page access (where each new request is consecutive
5200 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5201 * i.e. O(1) with a large constant!
5202 */
5203 if (n < READ_ONCE(iter->sg_idx))
5204 goto lookup;
5205
5206 mutex_lock(&iter->lock);
5207
5208 /* We prefer to reuse the last sg so that repeated lookup of this
5209 * (or the subsequent) sg are fast - comparing against the last
5210 * sg is faster than going through the radixtree.
5211 */
5212
5213 sg = iter->sg_pos;
5214 idx = iter->sg_idx;
5215 count = __sg_page_count(sg);
5216
5217 while (idx + count <= n) {
5218 unsigned long exception, i;
5219 int ret;
5220
5221 /* If we cannot allocate and insert this entry, or the
5222 * individual pages from this range, cancel updating the
5223 * sg_idx so that on this lookup we are forced to linearly
5224 * scan onwards, but on future lookups we will try the
5225 * insertion again (in which case we need to be careful of
5226 * the error return reporting that we have already inserted
5227 * this index).
5228 */
5229 ret = radix_tree_insert(&iter->radix, idx, sg);
5230 if (ret && ret != -EEXIST)
5231 goto scan;
5232
5233 exception =
5234 RADIX_TREE_EXCEPTIONAL_ENTRY |
5235 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5236 for (i = 1; i < count; i++) {
5237 ret = radix_tree_insert(&iter->radix, idx + i,
5238 (void *)exception);
5239 if (ret && ret != -EEXIST)
5240 goto scan;
5241 }
5242
5243 idx += count;
5244 sg = ____sg_next(sg);
5245 count = __sg_page_count(sg);
5246 }
5247
5248scan:
5249 iter->sg_pos = sg;
5250 iter->sg_idx = idx;
5251
5252 mutex_unlock(&iter->lock);
5253
5254 if (unlikely(n < idx)) /* insertion completed by another thread */
5255 goto lookup;
5256
5257 /* In case we failed to insert the entry into the radixtree, we need
5258 * to look beyond the current sg.
5259 */
5260 while (idx + count <= n) {
5261 idx += count;
5262 sg = ____sg_next(sg);
5263 count = __sg_page_count(sg);
5264 }
5265
5266 *offset = n - idx;
5267 return sg;
5268
5269lookup:
5270 rcu_read_lock();
5271
5272 sg = radix_tree_lookup(&iter->radix, n);
5273 GEM_BUG_ON(!sg);
5274
5275 /* If this index is in the middle of multi-page sg entry,
5276 * the radixtree will contain an exceptional entry that points
5277 * to the start of that range. We will return the pointer to
5278 * the base page and the offset of this page within the
5279 * sg entry's range.
5280 */
5281 *offset = 0;
5282 if (unlikely(radix_tree_exception(sg))) {
5283 unsigned long base =
5284 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5285
5286 sg = radix_tree_lookup(&iter->radix, base);
5287 GEM_BUG_ON(!sg);
5288
5289 *offset = n - base;
5290 }
5291
5292 rcu_read_unlock();
5293
5294 return sg;
5295}
5296
5297struct page *
5298i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5299{
5300 struct scatterlist *sg;
5301 unsigned int offset;
5302
5303 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5304
5305 sg = i915_gem_object_get_sg(obj, n, &offset);
5306 return nth_page(sg_page(sg), offset);
5307}
5308
5309/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5310struct page *
5311i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5312 unsigned int n)
5313{
5314 struct page *page;
5315
5316 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5317 if (!obj->mm.dirty)
96d77634
CW
5318 set_page_dirty(page);
5319
5320 return page;
5321}
5322
5323dma_addr_t
5324i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5325 unsigned long n)
5326{
5327 struct scatterlist *sg;
5328 unsigned int offset;
5329
5330 sg = i915_gem_object_get_sg(obj, n, &offset);
5331 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5332}
935a2f77
CW
5333
5334#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5335#include "selftests/scatterlist.c"
66d9cb5d 5336#include "selftests/mock_gem_device.c"
44653988 5337#include "selftests/huge_gem_object.c"
8335fd65 5338#include "selftests/i915_gem_object.c"
17059450 5339#include "selftests/i915_gem_coherency.c"
935a2f77 5340#endif