]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Do both mt and gen6 style forcewake reset on ivb probe
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
c8725f3d
CW
46static void
47i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
ceabbba5 55static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 56 struct shrink_control *sc);
ceabbba5 57static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 58 struct shrink_control *sc);
2cfcd32a
CW
59static int i915_gem_shrinker_oom(struct notifier_block *nb,
60 unsigned long event,
61 void *ptr);
d9973b43 62static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 63
c76ce038
CW
64static bool cpu_cache_is_coherent(struct drm_device *dev,
65 enum i915_cache_level level)
66{
67 return HAS_LLC(dev) || level != I915_CACHE_NONE;
68}
69
2c22569b
CW
70static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
71{
72 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
73 return true;
74
75 return obj->pin_display;
76}
77
61050808
CW
78static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
79{
80 if (obj->tiling_mode)
81 i915_gem_release_mmap(obj);
82
83 /* As we do not have an associated fence register, we will force
84 * a tiling change if we ever need to acquire one.
85 */
5d82e3e6 86 obj->fence_dirty = false;
61050808
CW
87 obj->fence_reg = I915_FENCE_REG_NONE;
88}
89
73aa808f
CW
90/* some bookkeeping */
91static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count++;
96 dev_priv->mm.object_memory += size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
100static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
101 size_t size)
102{
c20e8355 103 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
104 dev_priv->mm.object_count--;
105 dev_priv->mm.object_memory -= size;
c20e8355 106 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
107}
108
21dd3734 109static int
33196ded 110i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 111{
30dbf0c0
CW
112 int ret;
113
7abb690a
DV
114#define EXIT_COND (!i915_reset_in_progress(error) || \
115 i915_terminally_wedged(error))
1f83fee0 116 if (EXIT_COND)
30dbf0c0
CW
117 return 0;
118
0a6759c6
DV
119 /*
120 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
121 * userspace. If it takes that long something really bad is going on and
122 * we should simply try to bail out and fail as gracefully as possible.
123 */
1f83fee0
DV
124 ret = wait_event_interruptible_timeout(error->reset_queue,
125 EXIT_COND,
126 10*HZ);
0a6759c6
DV
127 if (ret == 0) {
128 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
129 return -EIO;
130 } else if (ret < 0) {
30dbf0c0 131 return ret;
0a6759c6 132 }
1f83fee0 133#undef EXIT_COND
30dbf0c0 134
21dd3734 135 return 0;
30dbf0c0
CW
136}
137
54cf91dc 138int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 139{
33196ded 140 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
141 int ret;
142
33196ded 143 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
144 if (ret)
145 return ret;
146
147 ret = mutex_lock_interruptible(&dev->struct_mutex);
148 if (ret)
149 return ret;
150
23bc5982 151 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
152 return 0;
153}
30dbf0c0 154
5a125c3c
EA
155int
156i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 157 struct drm_file *file)
5a125c3c 158{
73aa808f 159 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 160 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
161 struct drm_i915_gem_object *obj;
162 size_t pinned;
5a125c3c 163
6299f992 164 pinned = 0;
73aa808f 165 mutex_lock(&dev->struct_mutex);
35c20a60 166 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 167 if (i915_gem_obj_is_pinned(obj))
f343c5f6 168 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 169 mutex_unlock(&dev->struct_mutex);
5a125c3c 170
853ba5d2 171 args->aper_size = dev_priv->gtt.base.total;
0206e353 172 args->aper_available_size = args->aper_size - pinned;
6299f992 173
5a125c3c
EA
174 return 0;
175}
176
6a2c4232
CW
177static int
178i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 179{
6a2c4232
CW
180 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
181 char *vaddr = obj->phys_handle->vaddr;
182 struct sg_table *st;
183 struct scatterlist *sg;
184 int i;
00731155 185
6a2c4232
CW
186 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
187 return -EINVAL;
188
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
194 if (IS_ERR(page))
195 return PTR_ERR(page);
196
197 src = kmap_atomic(page);
198 memcpy(vaddr, src, PAGE_SIZE);
199 drm_clflush_virt_range(vaddr, PAGE_SIZE);
200 kunmap_atomic(src);
201
202 page_cache_release(page);
203 vaddr += PAGE_SIZE;
204 }
205
206 i915_gem_chipset_flush(obj->base.dev);
207
208 st = kmalloc(sizeof(*st), GFP_KERNEL);
209 if (st == NULL)
210 return -ENOMEM;
211
212 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
213 kfree(st);
214 return -ENOMEM;
215 }
216
217 sg = st->sgl;
218 sg->offset = 0;
219 sg->length = obj->base.size;
00731155 220
6a2c4232
CW
221 sg_dma_address(sg) = obj->phys_handle->busaddr;
222 sg_dma_len(sg) = obj->base.size;
223
224 obj->pages = st;
225 obj->has_dma_mapping = true;
226 return 0;
227}
228
229static void
230i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
231{
232 int ret;
233
234 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 235
6a2c4232
CW
236 ret = i915_gem_object_set_to_cpu_domain(obj, true);
237 if (ret) {
238 /* In the event of a disaster, abandon all caches and
239 * hope for the best.
240 */
241 WARN_ON(ret != -EIO);
242 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
243 }
244
245 if (obj->madv == I915_MADV_DONTNEED)
246 obj->dirty = 0;
247
248 if (obj->dirty) {
00731155 249 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 250 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
251 int i;
252
253 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
254 struct page *page;
255 char *dst;
256
257 page = shmem_read_mapping_page(mapping, i);
258 if (IS_ERR(page))
259 continue;
260
261 dst = kmap_atomic(page);
262 drm_clflush_virt_range(vaddr, PAGE_SIZE);
263 memcpy(dst, vaddr, PAGE_SIZE);
264 kunmap_atomic(dst);
265
266 set_page_dirty(page);
267 if (obj->madv == I915_MADV_WILLNEED)
00731155 268 mark_page_accessed(page);
6a2c4232 269 page_cache_release(page);
00731155
CW
270 vaddr += PAGE_SIZE;
271 }
6a2c4232 272 obj->dirty = 0;
00731155
CW
273 }
274
6a2c4232
CW
275 sg_free_table(obj->pages);
276 kfree(obj->pages);
277
278 obj->has_dma_mapping = false;
279}
280
281static void
282i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
283{
284 drm_pci_free(obj->base.dev, obj->phys_handle);
285}
286
287static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
288 .get_pages = i915_gem_object_get_pages_phys,
289 .put_pages = i915_gem_object_put_pages_phys,
290 .release = i915_gem_object_release_phys,
291};
292
293static int
294drop_pages(struct drm_i915_gem_object *obj)
295{
296 struct i915_vma *vma, *next;
297 int ret;
298
299 drm_gem_object_reference(&obj->base);
300 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
301 if (i915_vma_unbind(vma))
302 break;
303
304 ret = i915_gem_object_put_pages(obj);
305 drm_gem_object_unreference(&obj->base);
306
307 return ret;
00731155
CW
308}
309
310int
311i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
312 int align)
313{
314 drm_dma_handle_t *phys;
6a2c4232 315 int ret;
00731155
CW
316
317 if (obj->phys_handle) {
318 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
319 return -EBUSY;
320
321 return 0;
322 }
323
324 if (obj->madv != I915_MADV_WILLNEED)
325 return -EFAULT;
326
327 if (obj->base.filp == NULL)
328 return -EINVAL;
329
6a2c4232
CW
330 ret = drop_pages(obj);
331 if (ret)
332 return ret;
333
00731155
CW
334 /* create a new object */
335 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
336 if (!phys)
337 return -ENOMEM;
338
00731155 339 obj->phys_handle = phys;
6a2c4232
CW
340 obj->ops = &i915_gem_phys_ops;
341
342 return i915_gem_object_get_pages(obj);
00731155
CW
343}
344
345static int
346i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
347 struct drm_i915_gem_pwrite *args,
348 struct drm_file *file_priv)
349{
350 struct drm_device *dev = obj->base.dev;
351 void *vaddr = obj->phys_handle->vaddr + args->offset;
352 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
353 int ret;
354
355 /* We manually control the domain here and pretend that it
356 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
357 */
358 ret = i915_gem_object_wait_rendering(obj, false);
359 if (ret)
360 return ret;
00731155
CW
361
362 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
363 unsigned long unwritten;
364
365 /* The physical object once assigned is fixed for the lifetime
366 * of the obj, so we can safely drop the lock and continue
367 * to access vaddr.
368 */
369 mutex_unlock(&dev->struct_mutex);
370 unwritten = copy_from_user(vaddr, user_data, args->size);
371 mutex_lock(&dev->struct_mutex);
372 if (unwritten)
373 return -EFAULT;
374 }
375
6a2c4232 376 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
377 i915_gem_chipset_flush(dev);
378 return 0;
379}
380
42dcedd4
CW
381void *i915_gem_object_alloc(struct drm_device *dev)
382{
383 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 384 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
385}
386
387void i915_gem_object_free(struct drm_i915_gem_object *obj)
388{
389 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
390 kmem_cache_free(dev_priv->slab, obj);
391}
392
ff72145b
DA
393static int
394i915_gem_create(struct drm_file *file,
395 struct drm_device *dev,
396 uint64_t size,
397 uint32_t *handle_p)
673a394b 398{
05394f39 399 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
400 int ret;
401 u32 handle;
673a394b 402
ff72145b 403 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
404 if (size == 0)
405 return -EINVAL;
673a394b
EA
406
407 /* Allocate the new object */
ff72145b 408 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
409 if (obj == NULL)
410 return -ENOMEM;
411
05394f39 412 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 413 /* drop reference from allocate - handle holds it now */
d861e338
DV
414 drm_gem_object_unreference_unlocked(&obj->base);
415 if (ret)
416 return ret;
202f2fef 417
ff72145b 418 *handle_p = handle;
673a394b
EA
419 return 0;
420}
421
ff72145b
DA
422int
423i915_gem_dumb_create(struct drm_file *file,
424 struct drm_device *dev,
425 struct drm_mode_create_dumb *args)
426{
427 /* have to work out size/pitch and return them */
de45eaf7 428 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
429 args->size = args->pitch * args->height;
430 return i915_gem_create(file, dev,
da6b51d0 431 args->size, &args->handle);
ff72145b
DA
432}
433
ff72145b
DA
434/**
435 * Creates a new mm object and returns a handle to it.
436 */
437int
438i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440{
441 struct drm_i915_gem_create *args = data;
63ed2cb2 442
ff72145b 443 return i915_gem_create(file, dev,
da6b51d0 444 args->size, &args->handle);
ff72145b
DA
445}
446
8461d226
DV
447static inline int
448__copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451{
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471}
472
8c59967c 473static inline int
4f0c7cfb
BW
474__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
8c59967c
DV
476 int length)
477{
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497}
498
4c914c0c
BV
499/*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506{
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (!obj->base.filp)
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
c8725f3d
CW
524
525 i915_gem_object_retire(obj);
4c914c0c
BV
526 }
527
528 ret = i915_gem_object_get_pages(obj);
529 if (ret)
530 return ret;
531
532 i915_gem_object_pin_pages(obj);
533
534 return ret;
535}
536
d174bd64
DV
537/* Per-page copy function for the shmem pread fastpath.
538 * Flushes invalid cachelines before reading the target if
539 * needs_clflush is set. */
eb01459f 540static int
d174bd64
DV
541shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
e7e58eb5 548 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
549 return -EINVAL;
550
551 vaddr = kmap_atomic(page);
552 if (needs_clflush)
553 drm_clflush_virt_range(vaddr + shmem_page_offset,
554 page_length);
555 ret = __copy_to_user_inatomic(user_data,
556 vaddr + shmem_page_offset,
557 page_length);
558 kunmap_atomic(vaddr);
559
f60d7f0c 560 return ret ? -EFAULT : 0;
d174bd64
DV
561}
562
23c18c71
DV
563static void
564shmem_clflush_swizzled_range(char *addr, unsigned long length,
565 bool swizzled)
566{
e7e58eb5 567 if (unlikely(swizzled)) {
23c18c71
DV
568 unsigned long start = (unsigned long) addr;
569 unsigned long end = (unsigned long) addr + length;
570
571 /* For swizzling simply ensure that we always flush both
572 * channels. Lame, but simple and it works. Swizzled
573 * pwrite/pread is far from a hotpath - current userspace
574 * doesn't use it at all. */
575 start = round_down(start, 128);
576 end = round_up(end, 128);
577
578 drm_clflush_virt_range((void *)start, end - start);
579 } else {
580 drm_clflush_virt_range(addr, length);
581 }
582
583}
584
d174bd64
DV
585/* Only difference to the fast-path function is that this can handle bit17
586 * and uses non-atomic copy and kmap functions. */
587static int
588shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
589 char __user *user_data,
590 bool page_do_bit17_swizzling, bool needs_clflush)
591{
592 char *vaddr;
593 int ret;
594
595 vaddr = kmap(page);
596 if (needs_clflush)
23c18c71
DV
597 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
598 page_length,
599 page_do_bit17_swizzling);
d174bd64
DV
600
601 if (page_do_bit17_swizzling)
602 ret = __copy_to_user_swizzled(user_data,
603 vaddr, shmem_page_offset,
604 page_length);
605 else
606 ret = __copy_to_user(user_data,
607 vaddr + shmem_page_offset,
608 page_length);
609 kunmap(page);
610
f60d7f0c 611 return ret ? - EFAULT : 0;
d174bd64
DV
612}
613
eb01459f 614static int
dbf7bff0
DV
615i915_gem_shmem_pread(struct drm_device *dev,
616 struct drm_i915_gem_object *obj,
617 struct drm_i915_gem_pread *args,
618 struct drm_file *file)
eb01459f 619{
8461d226 620 char __user *user_data;
eb01459f 621 ssize_t remain;
8461d226 622 loff_t offset;
eb2c0c81 623 int shmem_page_offset, page_length, ret = 0;
8461d226 624 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 625 int prefaulted = 0;
8489731c 626 int needs_clflush = 0;
67d5a50c 627 struct sg_page_iter sg_iter;
eb01459f 628
2bb4629a 629 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
630 remain = args->size;
631
8461d226 632 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 633
4c914c0c 634 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
635 if (ret)
636 return ret;
637
8461d226 638 offset = args->offset;
eb01459f 639
67d5a50c
ID
640 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
641 offset >> PAGE_SHIFT) {
2db76d7c 642 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
643
644 if (remain <= 0)
645 break;
646
eb01459f
EA
647 /* Operation in this page
648 *
eb01459f 649 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
650 * page_length = bytes to copy for this page
651 */
c8cbbb8b 652 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
653 page_length = remain;
654 if ((shmem_page_offset + page_length) > PAGE_SIZE)
655 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 656
8461d226
DV
657 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
658 (page_to_phys(page) & (1 << 17)) != 0;
659
d174bd64
DV
660 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
661 user_data, page_do_bit17_swizzling,
662 needs_clflush);
663 if (ret == 0)
664 goto next_page;
dbf7bff0 665
dbf7bff0
DV
666 mutex_unlock(&dev->struct_mutex);
667
d330a953 668 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 669 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
670 /* Userspace is tricking us, but we've already clobbered
671 * its pages with the prefault and promised to write the
672 * data up to the first fault. Hence ignore any errors
673 * and just continue. */
674 (void)ret;
675 prefaulted = 1;
676 }
eb01459f 677
d174bd64
DV
678 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
679 user_data, page_do_bit17_swizzling,
680 needs_clflush);
eb01459f 681
dbf7bff0 682 mutex_lock(&dev->struct_mutex);
f60d7f0c 683
f60d7f0c 684 if (ret)
8461d226 685 goto out;
8461d226 686
17793c9a 687next_page:
eb01459f 688 remain -= page_length;
8461d226 689 user_data += page_length;
eb01459f
EA
690 offset += page_length;
691 }
692
4f27b75d 693out:
f60d7f0c
CW
694 i915_gem_object_unpin_pages(obj);
695
eb01459f
EA
696 return ret;
697}
698
673a394b
EA
699/**
700 * Reads data from the object referenced by handle.
701 *
702 * On error, the contents of *data are undefined.
703 */
704int
705i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 706 struct drm_file *file)
673a394b
EA
707{
708 struct drm_i915_gem_pread *args = data;
05394f39 709 struct drm_i915_gem_object *obj;
35b62a89 710 int ret = 0;
673a394b 711
51311d0a
CW
712 if (args->size == 0)
713 return 0;
714
715 if (!access_ok(VERIFY_WRITE,
2bb4629a 716 to_user_ptr(args->data_ptr),
51311d0a
CW
717 args->size))
718 return -EFAULT;
719
4f27b75d 720 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 721 if (ret)
4f27b75d 722 return ret;
673a394b 723
05394f39 724 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 725 if (&obj->base == NULL) {
1d7cfea1
CW
726 ret = -ENOENT;
727 goto unlock;
4f27b75d 728 }
673a394b 729
7dcd2499 730 /* Bounds check source. */
05394f39
CW
731 if (args->offset > obj->base.size ||
732 args->size > obj->base.size - args->offset) {
ce9d419d 733 ret = -EINVAL;
35b62a89 734 goto out;
ce9d419d
CW
735 }
736
1286ff73
DV
737 /* prime objects have no backing filp to GEM pread/pwrite
738 * pages from.
739 */
740 if (!obj->base.filp) {
741 ret = -EINVAL;
742 goto out;
743 }
744
db53a302
CW
745 trace_i915_gem_object_pread(obj, args->offset, args->size);
746
dbf7bff0 747 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 748
35b62a89 749out:
05394f39 750 drm_gem_object_unreference(&obj->base);
1d7cfea1 751unlock:
4f27b75d 752 mutex_unlock(&dev->struct_mutex);
eb01459f 753 return ret;
673a394b
EA
754}
755
0839ccb8
KP
756/* This is the fast write path which cannot handle
757 * page faults in the source data
9b7530cc 758 */
0839ccb8
KP
759
760static inline int
761fast_user_write(struct io_mapping *mapping,
762 loff_t page_base, int page_offset,
763 char __user *user_data,
764 int length)
9b7530cc 765{
4f0c7cfb
BW
766 void __iomem *vaddr_atomic;
767 void *vaddr;
0839ccb8 768 unsigned long unwritten;
9b7530cc 769
3e4d3af5 770 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
771 /* We can use the cpu mem copy function because this is X86. */
772 vaddr = (void __force*)vaddr_atomic + page_offset;
773 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 774 user_data, length);
3e4d3af5 775 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 776 return unwritten;
0839ccb8
KP
777}
778
3de09aa3
EA
779/**
780 * This is the fast pwrite path, where we copy the data directly from the
781 * user into the GTT, uncached.
782 */
673a394b 783static int
05394f39
CW
784i915_gem_gtt_pwrite_fast(struct drm_device *dev,
785 struct drm_i915_gem_object *obj,
3de09aa3 786 struct drm_i915_gem_pwrite *args,
05394f39 787 struct drm_file *file)
673a394b 788{
3e31c6c0 789 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 790 ssize_t remain;
0839ccb8 791 loff_t offset, page_base;
673a394b 792 char __user *user_data;
935aaa69
DV
793 int page_offset, page_length, ret;
794
1ec9e26d 795 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
796 if (ret)
797 goto out;
798
799 ret = i915_gem_object_set_to_gtt_domain(obj, true);
800 if (ret)
801 goto out_unpin;
802
803 ret = i915_gem_object_put_fence(obj);
804 if (ret)
805 goto out_unpin;
673a394b 806
2bb4629a 807 user_data = to_user_ptr(args->data_ptr);
673a394b 808 remain = args->size;
673a394b 809
f343c5f6 810 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
811
812 while (remain > 0) {
813 /* Operation in this page
814 *
0839ccb8
KP
815 * page_base = page offset within aperture
816 * page_offset = offset within page
817 * page_length = bytes to copy for this page
673a394b 818 */
c8cbbb8b
CW
819 page_base = offset & PAGE_MASK;
820 page_offset = offset_in_page(offset);
0839ccb8
KP
821 page_length = remain;
822 if ((page_offset + remain) > PAGE_SIZE)
823 page_length = PAGE_SIZE - page_offset;
824
0839ccb8 825 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
826 * source page isn't available. Return the error and we'll
827 * retry in the slow path.
0839ccb8 828 */
5d4545ae 829 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
830 page_offset, user_data, page_length)) {
831 ret = -EFAULT;
832 goto out_unpin;
833 }
673a394b 834
0839ccb8
KP
835 remain -= page_length;
836 user_data += page_length;
837 offset += page_length;
673a394b 838 }
673a394b 839
935aaa69 840out_unpin:
d7f46fc4 841 i915_gem_object_ggtt_unpin(obj);
935aaa69 842out:
3de09aa3 843 return ret;
673a394b
EA
844}
845
d174bd64
DV
846/* Per-page copy function for the shmem pwrite fastpath.
847 * Flushes invalid cachelines before writing to the target if
848 * needs_clflush_before is set and flushes out any written cachelines after
849 * writing if needs_clflush is set. */
3043c60c 850static int
d174bd64
DV
851shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
852 char __user *user_data,
853 bool page_do_bit17_swizzling,
854 bool needs_clflush_before,
855 bool needs_clflush_after)
673a394b 856{
d174bd64 857 char *vaddr;
673a394b 858 int ret;
3de09aa3 859
e7e58eb5 860 if (unlikely(page_do_bit17_swizzling))
d174bd64 861 return -EINVAL;
3de09aa3 862
d174bd64
DV
863 vaddr = kmap_atomic(page);
864 if (needs_clflush_before)
865 drm_clflush_virt_range(vaddr + shmem_page_offset,
866 page_length);
c2831a94
CW
867 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
868 user_data, page_length);
d174bd64
DV
869 if (needs_clflush_after)
870 drm_clflush_virt_range(vaddr + shmem_page_offset,
871 page_length);
872 kunmap_atomic(vaddr);
3de09aa3 873
755d2218 874 return ret ? -EFAULT : 0;
3de09aa3
EA
875}
876
d174bd64
DV
877/* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
3043c60c 879static int
d174bd64
DV
880shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling,
883 bool needs_clflush_before,
884 bool needs_clflush_after)
673a394b 885{
d174bd64
DV
886 char *vaddr;
887 int ret;
e5281ccd 888
d174bd64 889 vaddr = kmap(page);
e7e58eb5 890 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
891 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
892 page_length,
893 page_do_bit17_swizzling);
d174bd64
DV
894 if (page_do_bit17_swizzling)
895 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
896 user_data,
897 page_length);
d174bd64
DV
898 else
899 ret = __copy_from_user(vaddr + shmem_page_offset,
900 user_data,
901 page_length);
902 if (needs_clflush_after)
23c18c71
DV
903 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
904 page_length,
905 page_do_bit17_swizzling);
d174bd64 906 kunmap(page);
40123c1f 907
755d2218 908 return ret ? -EFAULT : 0;
40123c1f
EA
909}
910
40123c1f 911static int
e244a443
DV
912i915_gem_shmem_pwrite(struct drm_device *dev,
913 struct drm_i915_gem_object *obj,
914 struct drm_i915_gem_pwrite *args,
915 struct drm_file *file)
40123c1f 916{
40123c1f 917 ssize_t remain;
8c59967c
DV
918 loff_t offset;
919 char __user *user_data;
eb2c0c81 920 int shmem_page_offset, page_length, ret = 0;
8c59967c 921 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 922 int hit_slowpath = 0;
58642885
DV
923 int needs_clflush_after = 0;
924 int needs_clflush_before = 0;
67d5a50c 925 struct sg_page_iter sg_iter;
40123c1f 926
2bb4629a 927 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
928 remain = args->size;
929
8c59967c 930 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 931
58642885
DV
932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
933 /* If we're not in the cpu write domain, set ourself into the gtt
934 * write domain and manually flush cachelines (if required). This
935 * optimizes for the case when the gpu will use the data
936 * right away and we therefore have to clflush anyway. */
2c22569b 937 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
938 ret = i915_gem_object_wait_rendering(obj, false);
939 if (ret)
940 return ret;
c8725f3d
CW
941
942 i915_gem_object_retire(obj);
58642885 943 }
c76ce038
CW
944 /* Same trick applies to invalidate partially written cachelines read
945 * before writing. */
946 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
947 needs_clflush_before =
948 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 949
755d2218
CW
950 ret = i915_gem_object_get_pages(obj);
951 if (ret)
952 return ret;
953
954 i915_gem_object_pin_pages(obj);
955
673a394b 956 offset = args->offset;
05394f39 957 obj->dirty = 1;
673a394b 958
67d5a50c
ID
959 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
960 offset >> PAGE_SHIFT) {
2db76d7c 961 struct page *page = sg_page_iter_page(&sg_iter);
58642885 962 int partial_cacheline_write;
e5281ccd 963
9da3da66
CW
964 if (remain <= 0)
965 break;
966
40123c1f
EA
967 /* Operation in this page
968 *
40123c1f 969 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
970 * page_length = bytes to copy for this page
971 */
c8cbbb8b 972 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
973
974 page_length = remain;
975 if ((shmem_page_offset + page_length) > PAGE_SIZE)
976 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 977
58642885
DV
978 /* If we don't overwrite a cacheline completely we need to be
979 * careful to have up-to-date data by first clflushing. Don't
980 * overcomplicate things and flush the entire patch. */
981 partial_cacheline_write = needs_clflush_before &&
982 ((shmem_page_offset | page_length)
983 & (boot_cpu_data.x86_clflush_size - 1));
984
8c59967c
DV
985 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
986 (page_to_phys(page) & (1 << 17)) != 0;
987
d174bd64
DV
988 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
989 user_data, page_do_bit17_swizzling,
990 partial_cacheline_write,
991 needs_clflush_after);
992 if (ret == 0)
993 goto next_page;
e244a443
DV
994
995 hit_slowpath = 1;
e244a443 996 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
997 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
40123c1f 1001
e244a443 1002 mutex_lock(&dev->struct_mutex);
755d2218 1003
755d2218 1004 if (ret)
8c59967c 1005 goto out;
8c59967c 1006
17793c9a 1007next_page:
40123c1f 1008 remain -= page_length;
8c59967c 1009 user_data += page_length;
40123c1f 1010 offset += page_length;
673a394b
EA
1011 }
1012
fbd5a26d 1013out:
755d2218
CW
1014 i915_gem_object_unpin_pages(obj);
1015
e244a443 1016 if (hit_slowpath) {
8dcf015e
DV
1017 /*
1018 * Fixup: Flush cpu caches in case we didn't flush the dirty
1019 * cachelines in-line while writing and the object moved
1020 * out of the cpu write domain while we've dropped the lock.
1021 */
1022 if (!needs_clflush_after &&
1023 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1024 if (i915_gem_clflush_object(obj, obj->pin_display))
1025 i915_gem_chipset_flush(dev);
e244a443 1026 }
8c59967c 1027 }
673a394b 1028
58642885 1029 if (needs_clflush_after)
e76e9aeb 1030 i915_gem_chipset_flush(dev);
58642885 1031
40123c1f 1032 return ret;
673a394b
EA
1033}
1034
1035/**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040int
1041i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1042 struct drm_file *file)
673a394b 1043{
5d77d9c5 1044 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1045 struct drm_i915_gem_pwrite *args = data;
05394f39 1046 struct drm_i915_gem_object *obj;
51311d0a
CW
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
2bb4629a 1053 to_user_ptr(args->data_ptr),
51311d0a
CW
1054 args->size))
1055 return -EFAULT;
1056
d330a953 1057 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
673a394b 1063
5d77d9c5
ID
1064 intel_runtime_pm_get(dev_priv);
1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
5d77d9c5 1068 goto put_rpm;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1120put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
673a394b
EA
1123 return ret;
1124}
1125
b361237b 1126int
33196ded 1127i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1128 bool interruptible)
1129{
1f83fee0 1130 if (i915_reset_in_progress(error)) {
b361237b
CW
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1f83fee0
DV
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
b361237b
CW
1138 return -EIO;
1139
6689c167
MA
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
b361237b
CW
1147 }
1148
1149 return 0;
1150}
1151
1152/*
b6660d59 1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1154 */
84c33a64 1155int
b6660d59 1156i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1157{
1158 int ret;
1159
b6660d59 1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1161
1162 ret = 0;
b6660d59 1163 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1164 ret = i915_add_request(req->ring);
b361237b
CW
1165
1166 return ret;
1167}
1168
094f9a54
CW
1169static void fake_irq(unsigned long data)
1170{
1171 wake_up_process((struct task_struct *)data);
1172}
1173
1174static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1175 struct intel_engine_cs *ring)
094f9a54
CW
1176{
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178}
1179
b29c19b6
CW
1180static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1181{
1182 if (file_priv == NULL)
1183 return true;
1184
1185 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1186}
1187
b361237b 1188/**
9c654818
JH
1189 * __i915_wait_request - wait until execution of request has finished
1190 * @req: duh!
1191 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1192 * @interruptible: do an interruptible wait (normally yes)
1193 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1194 *
f69061be
DV
1195 * Note: It is of utmost importance that the passed in seqno and reset_counter
1196 * values have been read by the caller in an smp safe manner. Where read-side
1197 * locks are involved, it is sufficient to read the reset_counter before
1198 * unlocking the lock that protects the seqno. For lockless tricks, the
1199 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1200 * inserted.
1201 *
9c654818 1202 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1203 * errno with remaining time filled in timeout argument.
1204 */
9c654818 1205int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1206 unsigned reset_counter,
b29c19b6 1207 bool interruptible,
5ed0bdf2 1208 s64 *timeout,
b29c19b6 1209 struct drm_i915_file_private *file_priv)
b361237b 1210{
9c654818 1211 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1212 struct drm_device *dev = ring->dev;
3e31c6c0 1213 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1214 const bool irq_test_in_progress =
1215 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1216 DEFINE_WAIT(wait);
47e9766d 1217 unsigned long timeout_expire;
5ed0bdf2 1218 s64 before, now;
b361237b
CW
1219 int ret;
1220
9df7575f 1221 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1222
1b5a433a 1223 if (i915_gem_request_completed(req, true))
b361237b
CW
1224 return 0;
1225
7bd0e226
DV
1226 timeout_expire = timeout ?
1227 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1228
ec5cc0f9 1229 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1230 gen6_rps_boost(dev_priv);
1231 if (file_priv)
1232 mod_delayed_work(dev_priv->wq,
1233 &file_priv->mm.idle_work,
1234 msecs_to_jiffies(100));
1235 }
1236
168c3f21 1237 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1238 return -ENODEV;
1239
094f9a54 1240 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1241 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1242 before = ktime_get_raw_ns();
094f9a54
CW
1243 for (;;) {
1244 struct timer_list timer;
b361237b 1245
094f9a54
CW
1246 prepare_to_wait(&ring->irq_queue, &wait,
1247 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1248
f69061be
DV
1249 /* We need to check whether any gpu reset happened in between
1250 * the caller grabbing the seqno and now ... */
094f9a54
CW
1251 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1252 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1253 * is truely gone. */
1254 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1255 if (ret == 0)
1256 ret = -EAGAIN;
1257 break;
1258 }
f69061be 1259
1b5a433a 1260 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1261 ret = 0;
1262 break;
1263 }
b361237b 1264
094f9a54
CW
1265 if (interruptible && signal_pending(current)) {
1266 ret = -ERESTARTSYS;
1267 break;
1268 }
1269
47e9766d 1270 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1271 ret = -ETIME;
1272 break;
1273 }
1274
1275 timer.function = NULL;
1276 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1277 unsigned long expire;
1278
094f9a54 1279 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1280 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1281 mod_timer(&timer, expire);
1282 }
1283
5035c275 1284 io_schedule();
094f9a54 1285
094f9a54
CW
1286 if (timer.function) {
1287 del_singleshot_timer_sync(&timer);
1288 destroy_timer_on_stack(&timer);
1289 }
1290 }
5ed0bdf2 1291 now = ktime_get_raw_ns();
74328ee5 1292 trace_i915_gem_request_wait_end(req);
b361237b 1293
168c3f21
MK
1294 if (!irq_test_in_progress)
1295 ring->irq_put(ring);
094f9a54
CW
1296
1297 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1298
1299 if (timeout) {
5ed0bdf2
TG
1300 s64 tres = *timeout - (now - before);
1301
1302 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1303
1304 /*
1305 * Apparently ktime isn't accurate enough and occasionally has a
1306 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1307 * things up to make the test happy. We allow up to 1 jiffy.
1308 *
1309 * This is a regrssion from the timespec->ktime conversion.
1310 */
1311 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1312 *timeout = 0;
b361237b
CW
1313 }
1314
094f9a54 1315 return ret;
b361237b
CW
1316}
1317
1318/**
a4b3a571 1319 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1320 * request and object lists appropriately for that event.
1321 */
1322int
a4b3a571 1323i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1324{
a4b3a571
DV
1325 struct drm_device *dev;
1326 struct drm_i915_private *dev_priv;
1327 bool interruptible;
16e9a21f 1328 unsigned reset_counter;
b361237b
CW
1329 int ret;
1330
a4b3a571
DV
1331 BUG_ON(req == NULL);
1332
1333 dev = req->ring->dev;
1334 dev_priv = dev->dev_private;
1335 interruptible = dev_priv->mm.interruptible;
1336
b361237b 1337 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1338
33196ded 1339 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1340 if (ret)
1341 return ret;
1342
a4b3a571 1343 ret = i915_gem_check_olr(req);
b361237b
CW
1344 if (ret)
1345 return ret;
1346
16e9a21f 1347 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1348 i915_gem_request_reference(req);
9c654818
JH
1349 ret = __i915_wait_request(req, reset_counter,
1350 interruptible, NULL, NULL);
a4b3a571
DV
1351 i915_gem_request_unreference(req);
1352 return ret;
b361237b
CW
1353}
1354
d26e3af8 1355static int
8e639549 1356i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1357{
c8725f3d
CW
1358 if (!obj->active)
1359 return 0;
d26e3af8
CW
1360
1361 /* Manually manage the write flush as we may have not yet
1362 * retired the buffer.
1363 *
97b2a6a1
JH
1364 * Note that the last_write_req is always the earlier of
1365 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1366 * we know we have passed the last write.
1367 */
97b2a6a1 1368 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1369
1370 return 0;
1371}
1372
b361237b
CW
1373/**
1374 * Ensures that all rendering to the object has completed and the object is
1375 * safe to unbind from the GTT or access from the CPU.
1376 */
1377static __must_check int
1378i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1379 bool readonly)
1380{
97b2a6a1 1381 struct drm_i915_gem_request *req;
b361237b
CW
1382 int ret;
1383
97b2a6a1
JH
1384 req = readonly ? obj->last_write_req : obj->last_read_req;
1385 if (!req)
b361237b
CW
1386 return 0;
1387
a4b3a571 1388 ret = i915_wait_request(req);
b361237b
CW
1389 if (ret)
1390 return ret;
1391
8e639549 1392 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1393}
1394
3236f57a
CW
1395/* A nonblocking variant of the above wait. This is a highly dangerous routine
1396 * as the object state may change during this call.
1397 */
1398static __must_check int
1399i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1400 struct drm_i915_file_private *file_priv,
3236f57a
CW
1401 bool readonly)
1402{
97b2a6a1 1403 struct drm_i915_gem_request *req;
3236f57a
CW
1404 struct drm_device *dev = obj->base.dev;
1405 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1406 unsigned reset_counter;
3236f57a
CW
1407 int ret;
1408
1409 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1410 BUG_ON(!dev_priv->mm.interruptible);
1411
97b2a6a1
JH
1412 req = readonly ? obj->last_write_req : obj->last_read_req;
1413 if (!req)
3236f57a
CW
1414 return 0;
1415
33196ded 1416 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1417 if (ret)
1418 return ret;
1419
b6660d59 1420 ret = i915_gem_check_olr(req);
3236f57a
CW
1421 if (ret)
1422 return ret;
1423
f69061be 1424 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1425 i915_gem_request_reference(req);
3236f57a 1426 mutex_unlock(&dev->struct_mutex);
9c654818 1427 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1428 mutex_lock(&dev->struct_mutex);
ff865885 1429 i915_gem_request_unreference(req);
d26e3af8
CW
1430 if (ret)
1431 return ret;
3236f57a 1432
8e639549 1433 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1434}
1435
673a394b 1436/**
2ef7eeaa
EA
1437 * Called when user space prepares to use an object with the CPU, either
1438 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1439 */
1440int
1441i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1442 struct drm_file *file)
673a394b
EA
1443{
1444 struct drm_i915_gem_set_domain *args = data;
05394f39 1445 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1446 uint32_t read_domains = args->read_domains;
1447 uint32_t write_domain = args->write_domain;
673a394b
EA
1448 int ret;
1449
2ef7eeaa 1450 /* Only handle setting domains to types used by the CPU. */
21d509e3 1451 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1452 return -EINVAL;
1453
21d509e3 1454 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1455 return -EINVAL;
1456
1457 /* Having something in the write domain implies it's in the read
1458 * domain, and only that read domain. Enforce that in the request.
1459 */
1460 if (write_domain != 0 && read_domains != write_domain)
1461 return -EINVAL;
1462
76c1dec1 1463 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1464 if (ret)
76c1dec1 1465 return ret;
1d7cfea1 1466
05394f39 1467 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1468 if (&obj->base == NULL) {
1d7cfea1
CW
1469 ret = -ENOENT;
1470 goto unlock;
76c1dec1 1471 }
673a394b 1472
3236f57a
CW
1473 /* Try to flush the object off the GPU without holding the lock.
1474 * We will repeat the flush holding the lock in the normal manner
1475 * to catch cases where we are gazumped.
1476 */
6e4930f6
CW
1477 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1478 file->driver_priv,
1479 !write_domain);
3236f57a
CW
1480 if (ret)
1481 goto unref;
1482
43566ded 1483 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1484 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1485 else
e47c68e9 1486 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1487
3236f57a 1488unref:
05394f39 1489 drm_gem_object_unreference(&obj->base);
1d7cfea1 1490unlock:
673a394b
EA
1491 mutex_unlock(&dev->struct_mutex);
1492 return ret;
1493}
1494
1495/**
1496 * Called when user space has done writes to this buffer
1497 */
1498int
1499i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1500 struct drm_file *file)
673a394b
EA
1501{
1502 struct drm_i915_gem_sw_finish *args = data;
05394f39 1503 struct drm_i915_gem_object *obj;
673a394b
EA
1504 int ret = 0;
1505
76c1dec1 1506 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1507 if (ret)
76c1dec1 1508 return ret;
1d7cfea1 1509
05394f39 1510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1511 if (&obj->base == NULL) {
1d7cfea1
CW
1512 ret = -ENOENT;
1513 goto unlock;
673a394b
EA
1514 }
1515
673a394b 1516 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1517 if (obj->pin_display)
e62b59e4 1518 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1519
05394f39 1520 drm_gem_object_unreference(&obj->base);
1d7cfea1 1521unlock:
673a394b
EA
1522 mutex_unlock(&dev->struct_mutex);
1523 return ret;
1524}
1525
1526/**
1527 * Maps the contents of an object, returning the address it is mapped
1528 * into.
1529 *
1530 * While the mapping holds a reference on the contents of the object, it doesn't
1531 * imply a ref on the object itself.
34367381
DV
1532 *
1533 * IMPORTANT:
1534 *
1535 * DRM driver writers who look a this function as an example for how to do GEM
1536 * mmap support, please don't implement mmap support like here. The modern way
1537 * to implement DRM mmap support is with an mmap offset ioctl (like
1538 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539 * That way debug tooling like valgrind will understand what's going on, hiding
1540 * the mmap call in a driver private ioctl will break that. The i915 driver only
1541 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1542 */
1543int
1544i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1545 struct drm_file *file)
673a394b
EA
1546{
1547 struct drm_i915_gem_mmap *args = data;
1548 struct drm_gem_object *obj;
673a394b
EA
1549 unsigned long addr;
1550
1816f923
AG
1551 if (args->flags & ~(I915_MMAP_WC))
1552 return -EINVAL;
1553
1554 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1555 return -ENODEV;
1556
05394f39 1557 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1558 if (obj == NULL)
bf79cb91 1559 return -ENOENT;
673a394b 1560
1286ff73
DV
1561 /* prime objects have no backing filp to GEM mmap
1562 * pages from.
1563 */
1564 if (!obj->filp) {
1565 drm_gem_object_unreference_unlocked(obj);
1566 return -EINVAL;
1567 }
1568
6be5ceb0 1569 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1570 PROT_READ | PROT_WRITE, MAP_SHARED,
1571 args->offset);
1816f923
AG
1572 if (args->flags & I915_MMAP_WC) {
1573 struct mm_struct *mm = current->mm;
1574 struct vm_area_struct *vma;
1575
1576 down_write(&mm->mmap_sem);
1577 vma = find_vma(mm, addr);
1578 if (vma)
1579 vma->vm_page_prot =
1580 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1581 else
1582 addr = -ENOMEM;
1583 up_write(&mm->mmap_sem);
1584 }
bc9025bd 1585 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1586 if (IS_ERR((void *)addr))
1587 return addr;
1588
1589 args->addr_ptr = (uint64_t) addr;
1590
1591 return 0;
1592}
1593
de151cf6
JB
1594/**
1595 * i915_gem_fault - fault a page into the GTT
1596 * vma: VMA in question
1597 * vmf: fault info
1598 *
1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600 * from userspace. The fault handler takes care of binding the object to
1601 * the GTT (if needed), allocating and programming a fence register (again,
1602 * only if needed based on whether the old reg is still valid or the object
1603 * is tiled) and inserting a new PTE into the faulting process.
1604 *
1605 * Note that the faulting process may involve evicting existing objects
1606 * from the GTT and/or fence registers to make room. So performance may
1607 * suffer if the GTT working set is large or there are few fence registers
1608 * left.
1609 */
1610int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611{
05394f39
CW
1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 struct drm_device *dev = obj->base.dev;
3e31c6c0 1614 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1615 pgoff_t page_offset;
1616 unsigned long pfn;
1617 int ret = 0;
0f973f27 1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1619
f65c9168
PZ
1620 intel_runtime_pm_get(dev_priv);
1621
de151cf6
JB
1622 /* We don't use vmf->pgoff since that has the fake offset */
1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 PAGE_SHIFT;
1625
d9bc7e9f
CW
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 goto out;
a00b10c3 1629
db53a302
CW
1630 trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
6e4930f6
CW
1632 /* Try to flush the object off the GPU first without holding the lock.
1633 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 * repeat the flush holding the lock in the normal manner to catch cases
1635 * where we are gazumped.
1636 */
1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 if (ret)
1639 goto unlock;
1640
eb119bd6
CW
1641 /* Access to snoopable pages through the GTT is incoherent. */
1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1643 ret = -EFAULT;
eb119bd6
CW
1644 goto unlock;
1645 }
1646
d9bc7e9f 1647 /* Now bind it into the GTT if needed */
1ec9e26d 1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1649 if (ret)
1650 goto unlock;
4a684a41 1651
c9839303
CW
1652 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 if (ret)
1654 goto unpin;
74898d7e 1655
06d98131 1656 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1657 if (ret)
c9839303 1658 goto unpin;
7d1c4804 1659
b90b91d8 1660 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 pfn >>= PAGE_SHIFT;
de151cf6 1663
b90b91d8 1664 if (!obj->fault_mappable) {
beff0d0f
VS
1665 unsigned long size = min_t(unsigned long,
1666 vma->vm_end - vma->vm_start,
1667 obj->base.size);
b90b91d8
CW
1668 int i;
1669
beff0d0f 1670 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 pfn + i);
1674 if (ret)
1675 break;
1676 }
1677
1678 obj->fault_mappable = true;
1679 } else
1680 ret = vm_insert_pfn(vma,
1681 (unsigned long)vmf->virtual_address,
1682 pfn + page_offset);
c9839303 1683unpin:
d7f46fc4 1684 i915_gem_object_ggtt_unpin(obj);
c715089f 1685unlock:
de151cf6 1686 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1687out:
de151cf6 1688 switch (ret) {
d9bc7e9f 1689 case -EIO:
2232f031
DV
1690 /*
1691 * We eat errors when the gpu is terminally wedged to avoid
1692 * userspace unduly crashing (gl has no provisions for mmaps to
1693 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 * and so needs to be reported.
1695 */
1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1697 ret = VM_FAULT_SIGBUS;
1698 break;
1699 }
045e769a 1700 case -EAGAIN:
571c608d
DV
1701 /*
1702 * EAGAIN means the gpu is hung and we'll wait for the error
1703 * handler to reset everything when re-faulting in
1704 * i915_mutex_lock_interruptible.
d9bc7e9f 1705 */
c715089f
CW
1706 case 0:
1707 case -ERESTARTSYS:
bed636ab 1708 case -EINTR:
e79e0fe3
DR
1709 case -EBUSY:
1710 /*
1711 * EBUSY is ok: this just means that another thread
1712 * already did the job.
1713 */
f65c9168
PZ
1714 ret = VM_FAULT_NOPAGE;
1715 break;
de151cf6 1716 case -ENOMEM:
f65c9168
PZ
1717 ret = VM_FAULT_OOM;
1718 break;
a7c2e1aa 1719 case -ENOSPC:
45d67817 1720 case -EFAULT:
f65c9168
PZ
1721 ret = VM_FAULT_SIGBUS;
1722 break;
de151cf6 1723 default:
a7c2e1aa 1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1725 ret = VM_FAULT_SIGBUS;
1726 break;
de151cf6 1727 }
f65c9168
PZ
1728
1729 intel_runtime_pm_put(dev_priv);
1730 return ret;
de151cf6
JB
1731}
1732
901782b2
CW
1733/**
1734 * i915_gem_release_mmap - remove physical page mappings
1735 * @obj: obj in question
1736 *
af901ca1 1737 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1738 * relinquish ownership of the pages back to the system.
1739 *
1740 * It is vital that we remove the page mapping if we have mapped a tiled
1741 * object through the GTT and then lose the fence register due to
1742 * resource pressure. Similarly if the object has been moved out of the
1743 * aperture, than pages mapped into userspace must be revoked. Removing the
1744 * mapping will then trigger a page fault on the next user access, allowing
1745 * fixup by i915_gem_fault().
1746 */
d05ca301 1747void
05394f39 1748i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1749{
6299f992
CW
1750 if (!obj->fault_mappable)
1751 return;
901782b2 1752
6796cb16
DH
1753 drm_vma_node_unmap(&obj->base.vma_node,
1754 obj->base.dev->anon_inode->i_mapping);
6299f992 1755 obj->fault_mappable = false;
901782b2
CW
1756}
1757
eedd10f4
CW
1758void
1759i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760{
1761 struct drm_i915_gem_object *obj;
1762
1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 i915_gem_release_mmap(obj);
1765}
1766
0fa87796 1767uint32_t
e28f8711 1768i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1769{
e28f8711 1770 uint32_t gtt_size;
92b88aeb
CW
1771
1772 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1773 tiling_mode == I915_TILING_NONE)
1774 return size;
92b88aeb
CW
1775
1776 /* Previous chips need a power-of-two fence region when tiling */
1777 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1778 gtt_size = 1024*1024;
92b88aeb 1779 else
e28f8711 1780 gtt_size = 512*1024;
92b88aeb 1781
e28f8711
CW
1782 while (gtt_size < size)
1783 gtt_size <<= 1;
92b88aeb 1784
e28f8711 1785 return gtt_size;
92b88aeb
CW
1786}
1787
de151cf6
JB
1788/**
1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790 * @obj: object to check
1791 *
1792 * Return the required GTT alignment for an object, taking into account
5e783301 1793 * potential fence register mapping.
de151cf6 1794 */
d865110c
ID
1795uint32_t
1796i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 int tiling_mode, bool fenced)
de151cf6 1798{
de151cf6
JB
1799 /*
1800 * Minimum alignment is 4k (GTT page size), but might be greater
1801 * if a fence register is needed for the object.
1802 */
d865110c 1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1804 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1805 return 4096;
1806
a00b10c3
CW
1807 /*
1808 * Previous chips need to be aligned to the size of the smallest
1809 * fence register that can contain the object.
1810 */
e28f8711 1811 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1812}
1813
d8cb5086
CW
1814static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815{
1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 int ret;
1818
0de23977 1819 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1820 return 0;
1821
da494d7c
DV
1822 dev_priv->mm.shrinker_no_lock_stealing = true;
1823
d8cb5086
CW
1824 ret = drm_gem_create_mmap_offset(&obj->base);
1825 if (ret != -ENOSPC)
da494d7c 1826 goto out;
d8cb5086
CW
1827
1828 /* Badly fragmented mmap space? The only way we can recover
1829 * space is by destroying unwanted objects. We can't randomly release
1830 * mmap_offsets as userspace expects them to be persistent for the
1831 * lifetime of the objects. The closest we can is to release the
1832 * offsets on purgeable objects by truncating it and marking it purged,
1833 * which prevents userspace from ever using that object again.
1834 */
21ab4e74
CW
1835 i915_gem_shrink(dev_priv,
1836 obj->base.size >> PAGE_SHIFT,
1837 I915_SHRINK_BOUND |
1838 I915_SHRINK_UNBOUND |
1839 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1840 ret = drm_gem_create_mmap_offset(&obj->base);
1841 if (ret != -ENOSPC)
da494d7c 1842 goto out;
d8cb5086
CW
1843
1844 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1845 ret = drm_gem_create_mmap_offset(&obj->base);
1846out:
1847 dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849 return ret;
d8cb5086
CW
1850}
1851
1852static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853{
d8cb5086
CW
1854 drm_gem_free_mmap_offset(&obj->base);
1855}
1856
da6b51d0 1857int
ff72145b
DA
1858i915_gem_mmap_gtt(struct drm_file *file,
1859 struct drm_device *dev,
da6b51d0 1860 uint32_t handle,
ff72145b 1861 uint64_t *offset)
de151cf6 1862{
da761a6e 1863 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1864 struct drm_i915_gem_object *obj;
de151cf6
JB
1865 int ret;
1866
76c1dec1 1867 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1868 if (ret)
76c1dec1 1869 return ret;
de151cf6 1870
ff72145b 1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1872 if (&obj->base == NULL) {
1d7cfea1
CW
1873 ret = -ENOENT;
1874 goto unlock;
1875 }
de151cf6 1876
5d4545ae 1877 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1878 ret = -E2BIG;
ff56b0bc 1879 goto out;
da761a6e
CW
1880 }
1881
05394f39 1882 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1884 ret = -EFAULT;
1d7cfea1 1885 goto out;
ab18282d
CW
1886 }
1887
d8cb5086
CW
1888 ret = i915_gem_object_create_mmap_offset(obj);
1889 if (ret)
1890 goto out;
de151cf6 1891
0de23977 1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1893
1d7cfea1 1894out:
05394f39 1895 drm_gem_object_unreference(&obj->base);
1d7cfea1 1896unlock:
de151cf6 1897 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1898 return ret;
de151cf6
JB
1899}
1900
ff72145b
DA
1901/**
1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903 * @dev: DRM device
1904 * @data: GTT mapping ioctl data
1905 * @file: GEM object info
1906 *
1907 * Simply returns the fake offset to userspace so it can mmap it.
1908 * The mmap call will end up in drm_gem_mmap(), which will set things
1909 * up so we can get faults in the handler above.
1910 *
1911 * The fault handler will take care of binding the object into the GTT
1912 * (since it may have been evicted to make room for something), allocating
1913 * a fence register, and mapping the appropriate aperture address into
1914 * userspace.
1915 */
1916int
1917i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 struct drm_file *file)
1919{
1920 struct drm_i915_gem_mmap_gtt *args = data;
1921
da6b51d0 1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1923}
1924
5537252b
CW
1925static inline int
1926i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927{
1928 return obj->madv == I915_MADV_DONTNEED;
1929}
1930
225067ee
DV
1931/* Immediately discard the backing storage */
1932static void
1933i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1934{
4d6294bf 1935 i915_gem_object_free_mmap_offset(obj);
1286ff73 1936
4d6294bf
CW
1937 if (obj->base.filp == NULL)
1938 return;
e5281ccd 1939
225067ee
DV
1940 /* Our goal here is to return as much of the memory as
1941 * is possible back to the system as we are called from OOM.
1942 * To do this we must instruct the shmfs to drop all of its
1943 * backing pages, *now*.
1944 */
5537252b 1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1946 obj->madv = __I915_MADV_PURGED;
1947}
e5281ccd 1948
5537252b
CW
1949/* Try to discard unwanted pages */
1950static void
1951i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1952{
5537252b
CW
1953 struct address_space *mapping;
1954
1955 switch (obj->madv) {
1956 case I915_MADV_DONTNEED:
1957 i915_gem_object_truncate(obj);
1958 case __I915_MADV_PURGED:
1959 return;
1960 }
1961
1962 if (obj->base.filp == NULL)
1963 return;
1964
1965 mapping = file_inode(obj->base.filp)->i_mapping,
1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1967}
1968
5cdf5881 1969static void
05394f39 1970i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1971{
90797e6d
ID
1972 struct sg_page_iter sg_iter;
1973 int ret;
1286ff73 1974
05394f39 1975 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1976
6c085a72
CW
1977 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 if (ret) {
1979 /* In the event of a disaster, abandon all caches and
1980 * hope for the best.
1981 */
1982 WARN_ON(ret != -EIO);
2c22569b 1983 i915_gem_clflush_object(obj, true);
6c085a72
CW
1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 }
1986
6dacfd2f 1987 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1988 i915_gem_object_save_bit_17_swizzle(obj);
1989
05394f39
CW
1990 if (obj->madv == I915_MADV_DONTNEED)
1991 obj->dirty = 0;
3ef94daa 1992
90797e6d 1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1994 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1995
05394f39 1996 if (obj->dirty)
9da3da66 1997 set_page_dirty(page);
3ef94daa 1998
05394f39 1999 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2000 mark_page_accessed(page);
3ef94daa 2001
9da3da66 2002 page_cache_release(page);
3ef94daa 2003 }
05394f39 2004 obj->dirty = 0;
673a394b 2005
9da3da66
CW
2006 sg_free_table(obj->pages);
2007 kfree(obj->pages);
37e680a1 2008}
6c085a72 2009
dd624afd 2010int
37e680a1
CW
2011i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012{
2013 const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2f745ad3 2015 if (obj->pages == NULL)
37e680a1
CW
2016 return 0;
2017
a5570178
CW
2018 if (obj->pages_pin_count)
2019 return -EBUSY;
2020
9843877d 2021 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2022
a2165e31
CW
2023 /* ->put_pages might need to allocate memory for the bit17 swizzle
2024 * array, hence protect them from being reaped by removing them from gtt
2025 * lists early. */
35c20a60 2026 list_del(&obj->global_list);
a2165e31 2027
37e680a1 2028 ops->put_pages(obj);
05394f39 2029 obj->pages = NULL;
37e680a1 2030
5537252b 2031 i915_gem_object_invalidate(obj);
6c085a72
CW
2032
2033 return 0;
2034}
2035
21ab4e74
CW
2036unsigned long
2037i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 long target, unsigned flags)
6c085a72 2039{
60a53727
CW
2040 const struct {
2041 struct list_head *list;
2042 unsigned int bit;
2043 } phases[] = {
2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 { NULL, 0 },
2047 }, *phase;
d9973b43 2048 unsigned long count = 0;
6c085a72 2049
57094f82 2050 /*
c8725f3d 2051 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2052 * (due to retiring requests) we have to strictly process only
2053 * one element of the list at the time, and recheck the list
2054 * on every iteration.
c8725f3d
CW
2055 *
2056 * In particular, we must hold a reference whilst removing the
2057 * object as we may end up waiting for and/or retiring the objects.
2058 * This might release the final reference (held by the active list)
2059 * and result in the object being freed from under us. This is
2060 * similar to the precautions the eviction code must take whilst
2061 * removing objects.
2062 *
2063 * Also note that although these lists do not hold a reference to
2064 * the object we can safely grab one here: The final object
2065 * unreferencing and the bound_list are both protected by the
2066 * dev->struct_mutex and so we won't ever be able to observe an
2067 * object on the bound_list with a reference count equals 0.
57094f82 2068 */
60a53727 2069 for (phase = phases; phase->list; phase++) {
21ab4e74 2070 struct list_head still_in_list;
c8725f3d 2071
60a53727
CW
2072 if ((flags & phase->bit) == 0)
2073 continue;
80dcfdbd 2074
21ab4e74 2075 INIT_LIST_HEAD(&still_in_list);
60a53727 2076 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2077 struct drm_i915_gem_object *obj;
2078 struct i915_vma *vma, *v;
57094f82 2079
60a53727 2080 obj = list_first_entry(phase->list,
21ab4e74
CW
2081 typeof(*obj), global_list);
2082 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2083
60a53727
CW
2084 if (flags & I915_SHRINK_PURGEABLE &&
2085 !i915_gem_object_is_purgeable(obj))
21ab4e74 2086 continue;
57094f82 2087
21ab4e74 2088 drm_gem_object_reference(&obj->base);
80dcfdbd 2089
60a53727
CW
2090 /* For the unbound phase, this should be a no-op! */
2091 list_for_each_entry_safe(vma, v,
2092 &obj->vma_list, vma_link)
21ab4e74
CW
2093 if (i915_vma_unbind(vma))
2094 break;
57094f82 2095
21ab4e74
CW
2096 if (i915_gem_object_put_pages(obj) == 0)
2097 count += obj->base.size >> PAGE_SHIFT;
2098
2099 drm_gem_object_unreference(&obj->base);
2100 }
60a53727 2101 list_splice(&still_in_list, phase->list);
6c085a72
CW
2102 }
2103
2104 return count;
2105}
2106
d9973b43 2107static unsigned long
6c085a72
CW
2108i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109{
6c085a72 2110 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2111 return i915_gem_shrink(dev_priv, LONG_MAX,
2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2113}
2114
37e680a1 2115static int
6c085a72 2116i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2117{
6c085a72 2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2119 int page_count, i;
2120 struct address_space *mapping;
9da3da66
CW
2121 struct sg_table *st;
2122 struct scatterlist *sg;
90797e6d 2123 struct sg_page_iter sg_iter;
e5281ccd 2124 struct page *page;
90797e6d 2125 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2126 gfp_t gfp;
e5281ccd 2127
6c085a72
CW
2128 /* Assert that the object is not currently in any GPU domain. As it
2129 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 * a GPU cache
2131 */
2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
9da3da66
CW
2135 st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 if (st == NULL)
2137 return -ENOMEM;
2138
05394f39 2139 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2141 kfree(st);
e5281ccd 2142 return -ENOMEM;
9da3da66 2143 }
e5281ccd 2144
9da3da66
CW
2145 /* Get the list of pages out of our struct file. They'll be pinned
2146 * at this point until we release them.
2147 *
2148 * Fail silently without starting the shrinker
2149 */
496ad9aa 2150 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2151 gfp = mapping_gfp_mask(mapping);
caf49191 2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2153 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
6c085a72
CW
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
21ab4e74
CW
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
6c085a72
CW
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
6c085a72 2171 i915_gem_shrink_all(dev_priv);
f461d1be 2172 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2173 if (IS_ERR(page))
2174 goto err_pages;
6c085a72 2175 }
426729dc
KRW
2176#ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183#endif
90797e6d
ID
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
3bbbe706
DV
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2196 }
426729dc
KRW
2197#ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199#endif
2200 sg_mark_end(sg);
74ce6b6c
CW
2201 obj->pages = st;
2202
6dacfd2f 2203 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2204 i915_gem_object_do_bit_17_swizzle(obj);
2205
656bfa3a
DV
2206 if (obj->tiling_mode != I915_TILING_NONE &&
2207 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2208 i915_gem_object_pin_pages(obj);
2209
e5281ccd
CW
2210 return 0;
2211
2212err_pages:
90797e6d
ID
2213 sg_mark_end(sg);
2214 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2215 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2216 sg_free_table(st);
2217 kfree(st);
0820baf3
CW
2218
2219 /* shmemfs first checks if there is enough memory to allocate the page
2220 * and reports ENOSPC should there be insufficient, along with the usual
2221 * ENOMEM for a genuine allocation failure.
2222 *
2223 * We use ENOSPC in our driver to mean that we have run out of aperture
2224 * space and so want to translate the error from shmemfs back to our
2225 * usual understanding of ENOMEM.
2226 */
2227 if (PTR_ERR(page) == -ENOSPC)
2228 return -ENOMEM;
2229 else
2230 return PTR_ERR(page);
673a394b
EA
2231}
2232
37e680a1
CW
2233/* Ensure that the associated pages are gathered from the backing storage
2234 * and pinned into our object. i915_gem_object_get_pages() may be called
2235 * multiple times before they are released by a single call to
2236 * i915_gem_object_put_pages() - once the pages are no longer referenced
2237 * either as a result of memory pressure (reaping pages under the shrinker)
2238 * or as the object is itself released.
2239 */
2240int
2241i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2242{
2243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244 const struct drm_i915_gem_object_ops *ops = obj->ops;
2245 int ret;
2246
2f745ad3 2247 if (obj->pages)
37e680a1
CW
2248 return 0;
2249
43e28f09 2250 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2251 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2252 return -EFAULT;
43e28f09
CW
2253 }
2254
a5570178
CW
2255 BUG_ON(obj->pages_pin_count);
2256
37e680a1
CW
2257 ret = ops->get_pages(obj);
2258 if (ret)
2259 return ret;
2260
35c20a60 2261 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2262 return 0;
673a394b
EA
2263}
2264
e2d05a8b 2265static void
05394f39 2266i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2267 struct intel_engine_cs *ring)
673a394b 2268{
41c52415
JH
2269 struct drm_i915_gem_request *req;
2270 struct intel_engine_cs *old_ring;
617dbe27 2271
852835f3 2272 BUG_ON(ring == NULL);
41c52415
JH
2273
2274 req = intel_ring_get_request(ring);
2275 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2276
2277 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2278 /* Keep the request relative to the current ring */
2279 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2280 }
673a394b
EA
2281
2282 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2283 if (!obj->active) {
2284 drm_gem_object_reference(&obj->base);
2285 obj->active = 1;
673a394b 2286 }
e35a41de 2287
05394f39 2288 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2289
97b2a6a1 2290 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2291}
2292
e2d05a8b 2293void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2294 struct intel_engine_cs *ring)
e2d05a8b
BW
2295{
2296 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2297 return i915_gem_object_move_to_active(vma->obj, ring);
2298}
2299
caea7476 2300static void
caea7476 2301i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2302{
feb822cf 2303 struct i915_vma *vma;
ce44b0ea 2304
65ce3027 2305 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2306 BUG_ON(!obj->active);
caea7476 2307
fe14d5f4
TU
2308 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2309 if (!list_empty(&vma->mm_list))
2310 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2311 }
caea7476 2312
f99d7069
DV
2313 intel_fb_obj_flush(obj, true);
2314
65ce3027 2315 list_del_init(&obj->ring_list);
caea7476 2316
97b2a6a1
JH
2317 i915_gem_request_assign(&obj->last_read_req, NULL);
2318 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2319 obj->base.write_domain = 0;
2320
97b2a6a1 2321 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2322
2323 obj->active = 0;
2324 drm_gem_object_unreference(&obj->base);
2325
2326 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2327}
673a394b 2328
c8725f3d
CW
2329static void
2330i915_gem_object_retire(struct drm_i915_gem_object *obj)
2331{
41c52415 2332 if (obj->last_read_req == NULL)
c8725f3d
CW
2333 return;
2334
1b5a433a 2335 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2336 i915_gem_object_move_to_inactive(obj);
2337}
2338
9d773091 2339static int
fca26bb4 2340i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2341{
9d773091 2342 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2343 struct intel_engine_cs *ring;
9d773091 2344 int ret, i, j;
53d227f2 2345
107f27a5 2346 /* Carefully retire all requests without writing to the rings */
9d773091 2347 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2348 ret = intel_ring_idle(ring);
2349 if (ret)
2350 return ret;
9d773091 2351 }
9d773091 2352 i915_gem_retire_requests(dev);
107f27a5
CW
2353
2354 /* Finally reset hw state */
9d773091 2355 for_each_ring(ring, dev_priv, i) {
fca26bb4 2356 intel_ring_init_seqno(ring, seqno);
498d2ac1 2357
ebc348b2
BW
2358 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2359 ring->semaphore.sync_seqno[j] = 0;
9d773091 2360 }
53d227f2 2361
9d773091 2362 return 0;
53d227f2
DV
2363}
2364
fca26bb4
MK
2365int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2366{
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 int ret;
2369
2370 if (seqno == 0)
2371 return -EINVAL;
2372
2373 /* HWS page needs to be set less than what we
2374 * will inject to ring
2375 */
2376 ret = i915_gem_init_seqno(dev, seqno - 1);
2377 if (ret)
2378 return ret;
2379
2380 /* Carefully set the last_seqno value so that wrap
2381 * detection still works
2382 */
2383 dev_priv->next_seqno = seqno;
2384 dev_priv->last_seqno = seqno - 1;
2385 if (dev_priv->last_seqno == 0)
2386 dev_priv->last_seqno--;
2387
2388 return 0;
2389}
2390
9d773091
CW
2391int
2392i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2393{
9d773091
CW
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395
2396 /* reserve 0 for non-seqno */
2397 if (dev_priv->next_seqno == 0) {
fca26bb4 2398 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2399 if (ret)
2400 return ret;
53d227f2 2401
9d773091
CW
2402 dev_priv->next_seqno = 1;
2403 }
53d227f2 2404
f72b3435 2405 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2406 return 0;
53d227f2
DV
2407}
2408
a4872ba6 2409int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2410 struct drm_file *file,
9400ae5c 2411 struct drm_i915_gem_object *obj)
673a394b 2412{
3e31c6c0 2413 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2414 struct drm_i915_gem_request *request;
48e29f55 2415 struct intel_ringbuffer *ringbuf;
6d3d8274 2416 u32 request_start;
3cce469c
CW
2417 int ret;
2418
6259cead 2419 request = ring->outstanding_lazy_request;
48e29f55
OM
2420 if (WARN_ON(request == NULL))
2421 return -ENOMEM;
2422
2423 if (i915.enable_execlists) {
21076372 2424 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2425 } else
2426 ringbuf = ring->buffer;
2427
2428 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2429 /*
2430 * Emit any outstanding flushes - execbuf can fail to emit the flush
2431 * after having emitted the batchbuffer command. Hence we need to fix
2432 * things up similar to emitting the lazy request. The difference here
2433 * is that the flush _must_ happen before the next request, no matter
2434 * what.
2435 */
48e29f55 2436 if (i915.enable_execlists) {
21076372 2437 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2438 if (ret)
2439 return ret;
2440 } else {
2441 ret = intel_ring_flush_all_caches(ring);
2442 if (ret)
2443 return ret;
2444 }
cc889e0f 2445
a71d8d94
CW
2446 /* Record the position of the start of the request so that
2447 * should we detect the updated seqno part-way through the
2448 * GPU processing the request, we never over-estimate the
2449 * position of the head.
2450 */
6d3d8274 2451 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2452
48e29f55 2453 if (i915.enable_execlists) {
72f95afa 2454 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2455 if (ret)
2456 return ret;
2457 } else {
2458 ret = ring->add_request(ring);
2459 if (ret)
2460 return ret;
2461 }
673a394b 2462
7d736f4f 2463 request->head = request_start;
6d3d8274 2464 request->tail = intel_ring_get_tail(ringbuf);
7d736f4f
MK
2465
2466 /* Whilst this request exists, batch_obj will be on the
2467 * active_list, and so will hold the active reference. Only when this
2468 * request is retired will the the batch_obj be moved onto the
2469 * inactive_list and lose its active reference. Hence we do not need
2470 * to explicitly hold another reference here.
2471 */
9a7e0c2a 2472 request->batch_obj = obj;
0e50e96b 2473
48e29f55
OM
2474 if (!i915.enable_execlists) {
2475 /* Hold a reference to the current context so that we can inspect
2476 * it later in case a hangcheck error event fires.
2477 */
2478 request->ctx = ring->last_context;
2479 if (request->ctx)
2480 i915_gem_context_reference(request->ctx);
2481 }
0e50e96b 2482
673a394b 2483 request->emitted_jiffies = jiffies;
852835f3 2484 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2485 request->file_priv = NULL;
852835f3 2486
db53a302
CW
2487 if (file) {
2488 struct drm_i915_file_private *file_priv = file->driver_priv;
2489
1c25595f 2490 spin_lock(&file_priv->mm.lock);
f787a5f5 2491 request->file_priv = file_priv;
b962442e 2492 list_add_tail(&request->client_list,
f787a5f5 2493 &file_priv->mm.request_list);
1c25595f 2494 spin_unlock(&file_priv->mm.lock);
b962442e 2495 }
673a394b 2496
74328ee5 2497 trace_i915_gem_request_add(request);
6259cead 2498 ring->outstanding_lazy_request = NULL;
db53a302 2499
87255483 2500 i915_queue_hangcheck(ring->dev);
10cd45b6 2501
87255483
DV
2502 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2503 queue_delayed_work(dev_priv->wq,
2504 &dev_priv->mm.retire_work,
2505 round_jiffies_up_relative(HZ));
2506 intel_mark_busy(dev_priv->dev);
cc889e0f 2507
3cce469c 2508 return 0;
673a394b
EA
2509}
2510
f787a5f5
CW
2511static inline void
2512i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2513{
1c25595f 2514 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2515
1c25595f
CW
2516 if (!file_priv)
2517 return;
1c5d22f7 2518
1c25595f 2519 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2520 list_del(&request->client_list);
2521 request->file_priv = NULL;
1c25595f 2522 spin_unlock(&file_priv->mm.lock);
673a394b 2523}
673a394b 2524
939fd762 2525static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2526 const struct intel_context *ctx)
be62acb4 2527{
44e2c070 2528 unsigned long elapsed;
be62acb4 2529
44e2c070
MK
2530 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2531
2532 if (ctx->hang_stats.banned)
be62acb4
MK
2533 return true;
2534
676fa572
CW
2535 if (ctx->hang_stats.ban_period_seconds &&
2536 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2537 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2538 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2539 return true;
88b4aa87
MK
2540 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2541 if (i915_stop_ring_allow_warn(dev_priv))
2542 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2543 return true;
3fac8978 2544 }
be62acb4
MK
2545 }
2546
2547 return false;
2548}
2549
939fd762 2550static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2551 struct intel_context *ctx,
b6b0fac0 2552 const bool guilty)
aa60c664 2553{
44e2c070
MK
2554 struct i915_ctx_hang_stats *hs;
2555
2556 if (WARN_ON(!ctx))
2557 return;
aa60c664 2558
44e2c070
MK
2559 hs = &ctx->hang_stats;
2560
2561 if (guilty) {
939fd762 2562 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2563 hs->batch_active++;
2564 hs->guilty_ts = get_seconds();
2565 } else {
2566 hs->batch_pending++;
aa60c664
MK
2567 }
2568}
2569
0e50e96b
MK
2570static void i915_gem_free_request(struct drm_i915_gem_request *request)
2571{
2572 list_del(&request->list);
2573 i915_gem_request_remove_from_client(request);
2574
abfe262a
JH
2575 i915_gem_request_unreference(request);
2576}
2577
2578void i915_gem_request_free(struct kref *req_ref)
2579{
2580 struct drm_i915_gem_request *req = container_of(req_ref,
2581 typeof(*req), ref);
2582 struct intel_context *ctx = req->ctx;
2583
0794aed3
TD
2584 if (ctx) {
2585 if (i915.enable_execlists) {
abfe262a 2586 struct intel_engine_cs *ring = req->ring;
0e50e96b 2587
0794aed3
TD
2588 if (ctx != ring->default_context)
2589 intel_lr_context_unpin(ring, ctx);
2590 }
abfe262a 2591
dcb4c12a
OM
2592 i915_gem_context_unreference(ctx);
2593 }
abfe262a
JH
2594
2595 kfree(req);
0e50e96b
MK
2596}
2597
8d9fc7fd 2598struct drm_i915_gem_request *
a4872ba6 2599i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2600{
4db080f9
CW
2601 struct drm_i915_gem_request *request;
2602
2603 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2604 if (i915_gem_request_completed(request, false))
4db080f9 2605 continue;
aa60c664 2606
b6b0fac0 2607 return request;
4db080f9 2608 }
b6b0fac0
MK
2609
2610 return NULL;
2611}
2612
2613static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2614 struct intel_engine_cs *ring)
b6b0fac0
MK
2615{
2616 struct drm_i915_gem_request *request;
2617 bool ring_hung;
2618
8d9fc7fd 2619 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2620
2621 if (request == NULL)
2622 return;
2623
2624 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2625
939fd762 2626 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2627
2628 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2629 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2630}
aa60c664 2631
4db080f9 2632static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2633 struct intel_engine_cs *ring)
4db080f9 2634{
dfaae392 2635 while (!list_empty(&ring->active_list)) {
05394f39 2636 struct drm_i915_gem_object *obj;
9375e446 2637
05394f39
CW
2638 obj = list_first_entry(&ring->active_list,
2639 struct drm_i915_gem_object,
2640 ring_list);
9375e446 2641
05394f39 2642 i915_gem_object_move_to_inactive(obj);
673a394b 2643 }
1d62beea 2644
dcb4c12a
OM
2645 /*
2646 * Clear the execlists queue up before freeing the requests, as those
2647 * are the ones that keep the context and ringbuffer backing objects
2648 * pinned in place.
2649 */
2650 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2651 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2652
2653 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2654 struct drm_i915_gem_request,
dcb4c12a
OM
2655 execlist_link);
2656 list_del(&submit_req->execlist_link);
2657 intel_runtime_pm_put(dev_priv);
1197b4f2
MK
2658
2659 if (submit_req->ctx != ring->default_context)
2660 intel_lr_context_unpin(ring, submit_req->ctx);
2661
b3a38998 2662 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2663 }
2664
1d62beea
BW
2665 /*
2666 * We must free the requests after all the corresponding objects have
2667 * been moved off active lists. Which is the same order as the normal
2668 * retire_requests function does. This is important if object hold
2669 * implicit references on things like e.g. ppgtt address spaces through
2670 * the request.
2671 */
2672 while (!list_empty(&ring->request_list)) {
2673 struct drm_i915_gem_request *request;
2674
2675 request = list_first_entry(&ring->request_list,
2676 struct drm_i915_gem_request,
2677 list);
2678
2679 i915_gem_free_request(request);
2680 }
e3efda49 2681
6259cead
JH
2682 /* This may not have been flushed before the reset, so clean it now */
2683 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2684}
2685
19b2dbde 2686void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2687{
2688 struct drm_i915_private *dev_priv = dev->dev_private;
2689 int i;
2690
4b9de737 2691 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2692 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2693
94a335db
DV
2694 /*
2695 * Commit delayed tiling changes if we have an object still
2696 * attached to the fence, otherwise just clear the fence.
2697 */
2698 if (reg->obj) {
2699 i915_gem_object_update_fence(reg->obj, reg,
2700 reg->obj->tiling_mode);
2701 } else {
2702 i915_gem_write_fence(dev, i, NULL);
2703 }
312817a3
CW
2704 }
2705}
2706
069efc1d 2707void i915_gem_reset(struct drm_device *dev)
673a394b 2708{
77f01230 2709 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2710 struct intel_engine_cs *ring;
1ec14ad3 2711 int i;
673a394b 2712
4db080f9
CW
2713 /*
2714 * Before we free the objects from the requests, we need to inspect
2715 * them for finding the guilty party. As the requests only borrow
2716 * their reference to the objects, the inspection must be done first.
2717 */
2718 for_each_ring(ring, dev_priv, i)
2719 i915_gem_reset_ring_status(dev_priv, ring);
2720
b4519513 2721 for_each_ring(ring, dev_priv, i)
4db080f9 2722 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2723
acce9ffa
BW
2724 i915_gem_context_reset(dev);
2725
19b2dbde 2726 i915_gem_restore_fences(dev);
673a394b
EA
2727}
2728
2729/**
2730 * This function clears the request list as sequence numbers are passed.
2731 */
1cf0ba14 2732void
a4872ba6 2733i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2734{
db53a302 2735 if (list_empty(&ring->request_list))
6c0594a3
KW
2736 return;
2737
db53a302 2738 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2739
e9103038
CW
2740 /* Move any buffers on the active list that are no longer referenced
2741 * by the ringbuffer to the flushing/inactive lists as appropriate,
2742 * before we free the context associated with the requests.
2743 */
2744 while (!list_empty(&ring->active_list)) {
2745 struct drm_i915_gem_object *obj;
2746
2747 obj = list_first_entry(&ring->active_list,
2748 struct drm_i915_gem_object,
2749 ring_list);
2750
1b5a433a 2751 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2752 break;
2753
2754 i915_gem_object_move_to_inactive(obj);
2755 }
2756
2757
852835f3 2758 while (!list_empty(&ring->request_list)) {
673a394b 2759 struct drm_i915_gem_request *request;
48e29f55 2760 struct intel_ringbuffer *ringbuf;
673a394b 2761
852835f3 2762 request = list_first_entry(&ring->request_list,
673a394b
EA
2763 struct drm_i915_gem_request,
2764 list);
673a394b 2765
1b5a433a 2766 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2767 break;
2768
74328ee5 2769 trace_i915_gem_request_retire(request);
48e29f55
OM
2770
2771 /* This is one of the few common intersection points
2772 * between legacy ringbuffer submission and execlists:
2773 * we need to tell them apart in order to find the correct
2774 * ringbuffer to which the request belongs to.
2775 */
2776 if (i915.enable_execlists) {
2777 struct intel_context *ctx = request->ctx;
2778 ringbuf = ctx->engine[ring->id].ringbuf;
2779 } else
2780 ringbuf = ring->buffer;
2781
a71d8d94
CW
2782 /* We know the GPU must have read the request to have
2783 * sent us the seqno + interrupt, so use the position
2784 * of tail of the request to update the last known position
2785 * of the GPU head.
2786 */
72f95afa 2787 ringbuf->last_retired_head = request->postfix;
b84d5f0c 2788
0e50e96b 2789 i915_gem_free_request(request);
b84d5f0c 2790 }
673a394b 2791
581c26e8
JH
2792 if (unlikely(ring->trace_irq_req &&
2793 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2794 ring->irq_put(ring);
581c26e8 2795 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2796 }
23bc5982 2797
db53a302 2798 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2799}
2800
b29c19b6 2801bool
b09a1fec
CW
2802i915_gem_retire_requests(struct drm_device *dev)
2803{
3e31c6c0 2804 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2805 struct intel_engine_cs *ring;
b29c19b6 2806 bool idle = true;
1ec14ad3 2807 int i;
b09a1fec 2808
b29c19b6 2809 for_each_ring(ring, dev_priv, i) {
b4519513 2810 i915_gem_retire_requests_ring(ring);
b29c19b6 2811 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2812 if (i915.enable_execlists) {
2813 unsigned long flags;
2814
2815 spin_lock_irqsave(&ring->execlist_lock, flags);
2816 idle &= list_empty(&ring->execlist_queue);
2817 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2818
2819 intel_execlists_retire_requests(ring);
2820 }
b29c19b6
CW
2821 }
2822
2823 if (idle)
2824 mod_delayed_work(dev_priv->wq,
2825 &dev_priv->mm.idle_work,
2826 msecs_to_jiffies(100));
2827
2828 return idle;
b09a1fec
CW
2829}
2830
75ef9da2 2831static void
673a394b
EA
2832i915_gem_retire_work_handler(struct work_struct *work)
2833{
b29c19b6
CW
2834 struct drm_i915_private *dev_priv =
2835 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2836 struct drm_device *dev = dev_priv->dev;
0a58705b 2837 bool idle;
673a394b 2838
891b48cf 2839 /* Come back later if the device is busy... */
b29c19b6
CW
2840 idle = false;
2841 if (mutex_trylock(&dev->struct_mutex)) {
2842 idle = i915_gem_retire_requests(dev);
2843 mutex_unlock(&dev->struct_mutex);
673a394b 2844 }
b29c19b6 2845 if (!idle)
bcb45086
CW
2846 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2847 round_jiffies_up_relative(HZ));
b29c19b6 2848}
0a58705b 2849
b29c19b6
CW
2850static void
2851i915_gem_idle_work_handler(struct work_struct *work)
2852{
2853 struct drm_i915_private *dev_priv =
2854 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2855
2856 intel_mark_idle(dev_priv->dev);
673a394b
EA
2857}
2858
30dfebf3
DV
2859/**
2860 * Ensures that an object will eventually get non-busy by flushing any required
2861 * write domains, emitting any outstanding lazy request and retiring and
2862 * completed requests.
2863 */
2864static int
2865i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2866{
41c52415 2867 struct intel_engine_cs *ring;
30dfebf3
DV
2868 int ret;
2869
2870 if (obj->active) {
41c52415
JH
2871 ring = i915_gem_request_get_ring(obj->last_read_req);
2872
b6660d59 2873 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2874 if (ret)
2875 return ret;
2876
41c52415 2877 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2878 }
2879
2880 return 0;
2881}
2882
23ba4fd0
BW
2883/**
2884 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2885 * @DRM_IOCTL_ARGS: standard ioctl arguments
2886 *
2887 * Returns 0 if successful, else an error is returned with the remaining time in
2888 * the timeout parameter.
2889 * -ETIME: object is still busy after timeout
2890 * -ERESTARTSYS: signal interrupted the wait
2891 * -ENONENT: object doesn't exist
2892 * Also possible, but rare:
2893 * -EAGAIN: GPU wedged
2894 * -ENOMEM: damn
2895 * -ENODEV: Internal IRQ fail
2896 * -E?: The add request failed
2897 *
2898 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2899 * non-zero timeout parameter the wait ioctl will wait for the given number of
2900 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2901 * without holding struct_mutex the object may become re-busied before this
2902 * function completes. A similar but shorter * race condition exists in the busy
2903 * ioctl
2904 */
2905int
2906i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2907{
3e31c6c0 2908 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2909 struct drm_i915_gem_wait *args = data;
2910 struct drm_i915_gem_object *obj;
ff865885 2911 struct drm_i915_gem_request *req;
f69061be 2912 unsigned reset_counter;
23ba4fd0
BW
2913 int ret = 0;
2914
11b5d511
DV
2915 if (args->flags != 0)
2916 return -EINVAL;
2917
23ba4fd0
BW
2918 ret = i915_mutex_lock_interruptible(dev);
2919 if (ret)
2920 return ret;
2921
2922 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2923 if (&obj->base == NULL) {
2924 mutex_unlock(&dev->struct_mutex);
2925 return -ENOENT;
2926 }
2927
30dfebf3
DV
2928 /* Need to make sure the object gets inactive eventually. */
2929 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2930 if (ret)
2931 goto out;
2932
97b2a6a1
JH
2933 if (!obj->active || !obj->last_read_req)
2934 goto out;
23ba4fd0 2935
ff865885 2936 req = obj->last_read_req;
23ba4fd0 2937
23ba4fd0 2938 /* Do this after OLR check to make sure we make forward progress polling
762e4583 2939 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 2940 */
762e4583 2941 if (args->timeout_ns == 0) {
23ba4fd0
BW
2942 ret = -ETIME;
2943 goto out;
2944 }
2945
2946 drm_gem_object_unreference(&obj->base);
f69061be 2947 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2948 i915_gem_request_reference(req);
23ba4fd0
BW
2949 mutex_unlock(&dev->struct_mutex);
2950
762e4583
CW
2951 ret = __i915_wait_request(req, reset_counter, true,
2952 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
9c654818 2953 file->driver_priv);
ff865885
JH
2954 mutex_lock(&dev->struct_mutex);
2955 i915_gem_request_unreference(req);
2956 mutex_unlock(&dev->struct_mutex);
2957 return ret;
23ba4fd0
BW
2958
2959out:
2960 drm_gem_object_unreference(&obj->base);
2961 mutex_unlock(&dev->struct_mutex);
2962 return ret;
2963}
2964
5816d648
BW
2965/**
2966 * i915_gem_object_sync - sync an object to a ring.
2967 *
2968 * @obj: object which may be in use on another ring.
2969 * @to: ring we wish to use the object on. May be NULL.
2970 *
2971 * This code is meant to abstract object synchronization with the GPU.
2972 * Calling with NULL implies synchronizing the object with the CPU
2973 * rather than a particular GPU ring.
2974 *
2975 * Returns 0 if successful, else propagates up the lower layer error.
2976 */
2911a35b
BW
2977int
2978i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2979 struct intel_engine_cs *to)
2911a35b 2980{
41c52415 2981 struct intel_engine_cs *from;
2911a35b
BW
2982 u32 seqno;
2983 int ret, idx;
2984
41c52415
JH
2985 from = i915_gem_request_get_ring(obj->last_read_req);
2986
2911a35b
BW
2987 if (from == NULL || to == from)
2988 return 0;
2989
5816d648 2990 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2991 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2992
2993 idx = intel_ring_sync_index(from, to);
2994
97b2a6a1 2995 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2996 /* Optimization: Avoid semaphore sync when we are sure we already
2997 * waited for an object with higher seqno */
ebc348b2 2998 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2999 return 0;
3000
b6660d59 3001 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
3002 if (ret)
3003 return ret;
2911a35b 3004
74328ee5 3005 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 3006 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3007 if (!ret)
97b2a6a1 3008 /* We use last_read_req because sync_to()
7b01e260
MK
3009 * might have just caused seqno wrap under
3010 * the radar.
3011 */
97b2a6a1
JH
3012 from->semaphore.sync_seqno[idx] =
3013 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3014
e3a5a225 3015 return ret;
2911a35b
BW
3016}
3017
b5ffc9bc
CW
3018static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3019{
3020 u32 old_write_domain, old_read_domains;
3021
b5ffc9bc
CW
3022 /* Force a pagefault for domain tracking on next user access */
3023 i915_gem_release_mmap(obj);
3024
b97c3d9c
KP
3025 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3026 return;
3027
97c809fd
CW
3028 /* Wait for any direct GTT access to complete */
3029 mb();
3030
b5ffc9bc
CW
3031 old_read_domains = obj->base.read_domains;
3032 old_write_domain = obj->base.write_domain;
3033
3034 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3035 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3036
3037 trace_i915_gem_object_change_domain(obj,
3038 old_read_domains,
3039 old_write_domain);
3040}
3041
07fe0b12 3042int i915_vma_unbind(struct i915_vma *vma)
673a394b 3043{
07fe0b12 3044 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3045 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3046 int ret;
673a394b 3047
07fe0b12 3048 if (list_empty(&vma->vma_link))
673a394b
EA
3049 return 0;
3050
0ff501cb
DV
3051 if (!drm_mm_node_allocated(&vma->node)) {
3052 i915_gem_vma_destroy(vma);
0ff501cb
DV
3053 return 0;
3054 }
433544bd 3055
d7f46fc4 3056 if (vma->pin_count)
31d8d651 3057 return -EBUSY;
673a394b 3058
c4670ad0
CW
3059 BUG_ON(obj->pages == NULL);
3060
a8198eea 3061 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3062 if (ret)
a8198eea
CW
3063 return ret;
3064 /* Continue on if we fail due to EIO, the GPU is hung so we
3065 * should be safe and we need to cleanup or else we might
3066 * cause memory corruption through use-after-free.
3067 */
3068
fe14d5f4
TU
3069 if (i915_is_ggtt(vma->vm) &&
3070 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3071 i915_gem_object_finish_gtt(obj);
5323fd04 3072
8b1bc9b4
DV
3073 /* release the fence reg _after_ flushing */
3074 ret = i915_gem_object_put_fence(obj);
3075 if (ret)
3076 return ret;
3077 }
96b47b65 3078
07fe0b12 3079 trace_i915_vma_unbind(vma);
db53a302 3080
6f65e29a
BW
3081 vma->unbind_vma(vma);
3082
64bf9303 3083 list_del_init(&vma->mm_list);
fe14d5f4
TU
3084 if (i915_is_ggtt(vma->vm)) {
3085 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3086 obj->map_and_fenceable = false;
3087 } else if (vma->ggtt_view.pages) {
3088 sg_free_table(vma->ggtt_view.pages);
3089 kfree(vma->ggtt_view.pages);
3090 vma->ggtt_view.pages = NULL;
3091 }
3092 }
673a394b 3093
2f633156
BW
3094 drm_mm_remove_node(&vma->node);
3095 i915_gem_vma_destroy(vma);
3096
3097 /* Since the unbound list is global, only move to that list if
b93dab6e 3098 * no more VMAs exist. */
9490edb5 3099 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3100 /* Throw away the active reference before
3101 * moving to the unbound list. */
3102 i915_gem_object_retire(obj);
3103
9490edb5 3104 i915_gem_gtt_finish_object(obj);
2f633156 3105 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3106 }
673a394b 3107
70903c3b
CW
3108 /* And finally now the object is completely decoupled from this vma,
3109 * we can drop its hold on the backing storage and allow it to be
3110 * reaped by the shrinker.
3111 */
3112 i915_gem_object_unpin_pages(obj);
3113
88241785 3114 return 0;
54cf91dc
CW
3115}
3116
b2da9fe5 3117int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3118{
3e31c6c0 3119 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3120 struct intel_engine_cs *ring;
1ec14ad3 3121 int ret, i;
4df2faf4 3122
4df2faf4 3123 /* Flush everything onto the inactive list. */
b4519513 3124 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3125 if (!i915.enable_execlists) {
3126 ret = i915_switch_context(ring, ring->default_context);
3127 if (ret)
3128 return ret;
3129 }
b6c7488d 3130
3e960501 3131 ret = intel_ring_idle(ring);
1ec14ad3
CW
3132 if (ret)
3133 return ret;
3134 }
4df2faf4 3135
8a1a49f9 3136 return 0;
4df2faf4
DV
3137}
3138
9ce079e4
CW
3139static void i965_write_fence_reg(struct drm_device *dev, int reg,
3140 struct drm_i915_gem_object *obj)
de151cf6 3141{
3e31c6c0 3142 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3143 int fence_reg;
3144 int fence_pitch_shift;
de151cf6 3145
56c844e5
ID
3146 if (INTEL_INFO(dev)->gen >= 6) {
3147 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3148 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3149 } else {
3150 fence_reg = FENCE_REG_965_0;
3151 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3152 }
3153
d18b9619
CW
3154 fence_reg += reg * 8;
3155
3156 /* To w/a incoherency with non-atomic 64-bit register updates,
3157 * we split the 64-bit update into two 32-bit writes. In order
3158 * for a partial fence not to be evaluated between writes, we
3159 * precede the update with write to turn off the fence register,
3160 * and only enable the fence as the last step.
3161 *
3162 * For extra levels of paranoia, we make sure each step lands
3163 * before applying the next step.
3164 */
3165 I915_WRITE(fence_reg, 0);
3166 POSTING_READ(fence_reg);
3167
9ce079e4 3168 if (obj) {
f343c5f6 3169 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3170 uint64_t val;
de151cf6 3171
af1a7301
BP
3172 /* Adjust fence size to match tiled area */
3173 if (obj->tiling_mode != I915_TILING_NONE) {
3174 uint32_t row_size = obj->stride *
3175 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3176 size = (size / row_size) * row_size;
3177 }
3178
f343c5f6 3179 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3180 0xfffff000) << 32;
f343c5f6 3181 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3182 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3183 if (obj->tiling_mode == I915_TILING_Y)
3184 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3185 val |= I965_FENCE_REG_VALID;
c6642782 3186
d18b9619
CW
3187 I915_WRITE(fence_reg + 4, val >> 32);
3188 POSTING_READ(fence_reg + 4);
3189
3190 I915_WRITE(fence_reg + 0, val);
3191 POSTING_READ(fence_reg);
3192 } else {
3193 I915_WRITE(fence_reg + 4, 0);
3194 POSTING_READ(fence_reg + 4);
3195 }
de151cf6
JB
3196}
3197
9ce079e4
CW
3198static void i915_write_fence_reg(struct drm_device *dev, int reg,
3199 struct drm_i915_gem_object *obj)
de151cf6 3200{
3e31c6c0 3201 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3202 u32 val;
de151cf6 3203
9ce079e4 3204 if (obj) {
f343c5f6 3205 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3206 int pitch_val;
3207 int tile_width;
c6642782 3208
f343c5f6 3209 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3210 (size & -size) != size ||
f343c5f6
BW
3211 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3212 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3213 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3214
9ce079e4
CW
3215 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3216 tile_width = 128;
3217 else
3218 tile_width = 512;
3219
3220 /* Note: pitch better be a power of two tile widths */
3221 pitch_val = obj->stride / tile_width;
3222 pitch_val = ffs(pitch_val) - 1;
3223
f343c5f6 3224 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3225 if (obj->tiling_mode == I915_TILING_Y)
3226 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3227 val |= I915_FENCE_SIZE_BITS(size);
3228 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3229 val |= I830_FENCE_REG_VALID;
3230 } else
3231 val = 0;
3232
3233 if (reg < 8)
3234 reg = FENCE_REG_830_0 + reg * 4;
3235 else
3236 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3237
3238 I915_WRITE(reg, val);
3239 POSTING_READ(reg);
de151cf6
JB
3240}
3241
9ce079e4
CW
3242static void i830_write_fence_reg(struct drm_device *dev, int reg,
3243 struct drm_i915_gem_object *obj)
de151cf6 3244{
3e31c6c0 3245 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3246 uint32_t val;
de151cf6 3247
9ce079e4 3248 if (obj) {
f343c5f6 3249 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3250 uint32_t pitch_val;
de151cf6 3251
f343c5f6 3252 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3253 (size & -size) != size ||
f343c5f6
BW
3254 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3255 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3256 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3257
9ce079e4
CW
3258 pitch_val = obj->stride / 128;
3259 pitch_val = ffs(pitch_val) - 1;
de151cf6 3260
f343c5f6 3261 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3262 if (obj->tiling_mode == I915_TILING_Y)
3263 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3264 val |= I830_FENCE_SIZE_BITS(size);
3265 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3266 val |= I830_FENCE_REG_VALID;
3267 } else
3268 val = 0;
c6642782 3269
9ce079e4
CW
3270 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3271 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3272}
3273
d0a57789
CW
3274inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3275{
3276 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3277}
3278
9ce079e4
CW
3279static void i915_gem_write_fence(struct drm_device *dev, int reg,
3280 struct drm_i915_gem_object *obj)
3281{
d0a57789
CW
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283
3284 /* Ensure that all CPU reads are completed before installing a fence
3285 * and all writes before removing the fence.
3286 */
3287 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3288 mb();
3289
94a335db
DV
3290 WARN(obj && (!obj->stride || !obj->tiling_mode),
3291 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3292 obj->stride, obj->tiling_mode);
3293
ce38ab05
RV
3294 if (IS_GEN2(dev))
3295 i830_write_fence_reg(dev, reg, obj);
3296 else if (IS_GEN3(dev))
3297 i915_write_fence_reg(dev, reg, obj);
3298 else if (INTEL_INFO(dev)->gen >= 4)
3299 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3300
3301 /* And similarly be paranoid that no direct access to this region
3302 * is reordered to before the fence is installed.
3303 */
3304 if (i915_gem_object_needs_mb(obj))
3305 mb();
de151cf6
JB
3306}
3307
61050808
CW
3308static inline int fence_number(struct drm_i915_private *dev_priv,
3309 struct drm_i915_fence_reg *fence)
3310{
3311 return fence - dev_priv->fence_regs;
3312}
3313
3314static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3315 struct drm_i915_fence_reg *fence,
3316 bool enable)
3317{
2dc8aae0 3318 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3319 int reg = fence_number(dev_priv, fence);
3320
3321 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3322
3323 if (enable) {
46a0b638 3324 obj->fence_reg = reg;
61050808
CW
3325 fence->obj = obj;
3326 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3327 } else {
3328 obj->fence_reg = I915_FENCE_REG_NONE;
3329 fence->obj = NULL;
3330 list_del_init(&fence->lru_list);
3331 }
94a335db 3332 obj->fence_dirty = false;
61050808
CW
3333}
3334
d9e86c0e 3335static int
d0a57789 3336i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3337{
97b2a6a1 3338 if (obj->last_fenced_req) {
a4b3a571 3339 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3340 if (ret)
3341 return ret;
d9e86c0e 3342
97b2a6a1 3343 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3344 }
3345
3346 return 0;
3347}
3348
3349int
3350i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3351{
61050808 3352 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3353 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3354 int ret;
3355
d0a57789 3356 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3357 if (ret)
3358 return ret;
3359
61050808
CW
3360 if (obj->fence_reg == I915_FENCE_REG_NONE)
3361 return 0;
d9e86c0e 3362
f9c513e9
CW
3363 fence = &dev_priv->fence_regs[obj->fence_reg];
3364
aff10b30
DV
3365 if (WARN_ON(fence->pin_count))
3366 return -EBUSY;
3367
61050808 3368 i915_gem_object_fence_lost(obj);
f9c513e9 3369 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3370
3371 return 0;
3372}
3373
3374static struct drm_i915_fence_reg *
a360bb1a 3375i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3376{
ae3db24a 3377 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3378 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3379 int i;
ae3db24a
DV
3380
3381 /* First try to find a free reg */
d9e86c0e 3382 avail = NULL;
ae3db24a
DV
3383 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3384 reg = &dev_priv->fence_regs[i];
3385 if (!reg->obj)
d9e86c0e 3386 return reg;
ae3db24a 3387
1690e1eb 3388 if (!reg->pin_count)
d9e86c0e 3389 avail = reg;
ae3db24a
DV
3390 }
3391
d9e86c0e 3392 if (avail == NULL)
5dce5b93 3393 goto deadlock;
ae3db24a
DV
3394
3395 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3396 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3397 if (reg->pin_count)
ae3db24a
DV
3398 continue;
3399
8fe301ad 3400 return reg;
ae3db24a
DV
3401 }
3402
5dce5b93
CW
3403deadlock:
3404 /* Wait for completion of pending flips which consume fences */
3405 if (intel_has_pending_fb_unpin(dev))
3406 return ERR_PTR(-EAGAIN);
3407
3408 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3409}
3410
de151cf6 3411/**
9a5a53b3 3412 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3413 * @obj: object to map through a fence reg
3414 *
3415 * When mapping objects through the GTT, userspace wants to be able to write
3416 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3417 * This function walks the fence regs looking for a free one for @obj,
3418 * stealing one if it can't find any.
3419 *
3420 * It then sets up the reg based on the object's properties: address, pitch
3421 * and tiling format.
9a5a53b3
CW
3422 *
3423 * For an untiled surface, this removes any existing fence.
de151cf6 3424 */
8c4b8c3f 3425int
06d98131 3426i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3427{
05394f39 3428 struct drm_device *dev = obj->base.dev;
79e53945 3429 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3430 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3431 struct drm_i915_fence_reg *reg;
ae3db24a 3432 int ret;
de151cf6 3433
14415745
CW
3434 /* Have we updated the tiling parameters upon the object and so
3435 * will need to serialise the write to the associated fence register?
3436 */
5d82e3e6 3437 if (obj->fence_dirty) {
d0a57789 3438 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3439 if (ret)
3440 return ret;
3441 }
9a5a53b3 3442
d9e86c0e 3443 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3444 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3445 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3446 if (!obj->fence_dirty) {
14415745
CW
3447 list_move_tail(&reg->lru_list,
3448 &dev_priv->mm.fence_list);
3449 return 0;
3450 }
3451 } else if (enable) {
e6a84468
CW
3452 if (WARN_ON(!obj->map_and_fenceable))
3453 return -EINVAL;
3454
14415745 3455 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3456 if (IS_ERR(reg))
3457 return PTR_ERR(reg);
d9e86c0e 3458
14415745
CW
3459 if (reg->obj) {
3460 struct drm_i915_gem_object *old = reg->obj;
3461
d0a57789 3462 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3463 if (ret)
3464 return ret;
3465
14415745 3466 i915_gem_object_fence_lost(old);
29c5a587 3467 }
14415745 3468 } else
a09ba7fa 3469 return 0;
a09ba7fa 3470
14415745 3471 i915_gem_object_update_fence(obj, reg, enable);
14415745 3472
9ce079e4 3473 return 0;
de151cf6
JB
3474}
3475
4144f9b5 3476static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3477 unsigned long cache_level)
3478{
4144f9b5 3479 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3480 struct drm_mm_node *other;
3481
4144f9b5
CW
3482 /*
3483 * On some machines we have to be careful when putting differing types
3484 * of snoopable memory together to avoid the prefetcher crossing memory
3485 * domains and dying. During vm initialisation, we decide whether or not
3486 * these constraints apply and set the drm_mm.color_adjust
3487 * appropriately.
42d6ab48 3488 */
4144f9b5 3489 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3490 return true;
3491
c6cfb325 3492 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3493 return true;
3494
3495 if (list_empty(&gtt_space->node_list))
3496 return true;
3497
3498 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3499 if (other->allocated && !other->hole_follows && other->color != cache_level)
3500 return false;
3501
3502 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3503 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3504 return false;
3505
3506 return true;
3507}
3508
673a394b
EA
3509/**
3510 * Finds free space in the GTT aperture and binds the object there.
3511 */
262de145 3512static struct i915_vma *
07fe0b12
BW
3513i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3514 struct i915_address_space *vm,
3515 unsigned alignment,
fe14d5f4
TU
3516 uint64_t flags,
3517 const struct i915_ggtt_view *view)
673a394b 3518{
05394f39 3519 struct drm_device *dev = obj->base.dev;
3e31c6c0 3520 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3521 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3522 unsigned long start =
3523 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3524 unsigned long end =
1ec9e26d 3525 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3526 struct i915_vma *vma;
07f73f69 3527 int ret;
673a394b 3528
e28f8711
CW
3529 fence_size = i915_gem_get_gtt_size(dev,
3530 obj->base.size,
3531 obj->tiling_mode);
3532 fence_alignment = i915_gem_get_gtt_alignment(dev,
3533 obj->base.size,
d865110c 3534 obj->tiling_mode, true);
e28f8711 3535 unfenced_alignment =
d865110c 3536 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3537 obj->base.size,
3538 obj->tiling_mode, false);
a00b10c3 3539
673a394b 3540 if (alignment == 0)
1ec9e26d 3541 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3542 unfenced_alignment;
1ec9e26d 3543 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3544 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3545 return ERR_PTR(-EINVAL);
673a394b
EA
3546 }
3547
1ec9e26d 3548 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3549
654fc607
CW
3550 /* If the object is bigger than the entire aperture, reject it early
3551 * before evicting everything in a vain attempt to find space.
3552 */
d23db88c
CW
3553 if (obj->base.size > end) {
3554 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3555 obj->base.size,
1ec9e26d 3556 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3557 end);
262de145 3558 return ERR_PTR(-E2BIG);
654fc607
CW
3559 }
3560
37e680a1 3561 ret = i915_gem_object_get_pages(obj);
6c085a72 3562 if (ret)
262de145 3563 return ERR_PTR(ret);
6c085a72 3564
fbdda6fb
CW
3565 i915_gem_object_pin_pages(obj);
3566
fe14d5f4 3567 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
262de145 3568 if (IS_ERR(vma))
bc6bc15b 3569 goto err_unpin;
2f633156 3570
0a9ae0d7 3571search_free:
07fe0b12 3572 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3573 size, alignment,
d23db88c
CW
3574 obj->cache_level,
3575 start, end,
62347f9e
LK
3576 DRM_MM_SEARCH_DEFAULT,
3577 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3578 if (ret) {
f6cd1f15 3579 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3580 obj->cache_level,
3581 start, end,
3582 flags);
dc9dd7a2
CW
3583 if (ret == 0)
3584 goto search_free;
9731129c 3585
bc6bc15b 3586 goto err_free_vma;
673a394b 3587 }
4144f9b5 3588 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3589 ret = -EINVAL;
bc6bc15b 3590 goto err_remove_node;
673a394b
EA
3591 }
3592
74163907 3593 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3594 if (ret)
bc6bc15b 3595 goto err_remove_node;
673a394b 3596
fe14d5f4
TU
3597 trace_i915_vma_bind(vma, flags);
3598 ret = i915_vma_bind(vma, obj->cache_level,
3599 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3600 if (ret)
3601 goto err_finish_gtt;
3602
35c20a60 3603 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3604 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3605
262de145 3606 return vma;
2f633156 3607
fe14d5f4
TU
3608err_finish_gtt:
3609 i915_gem_gtt_finish_object(obj);
bc6bc15b 3610err_remove_node:
6286ef9b 3611 drm_mm_remove_node(&vma->node);
bc6bc15b 3612err_free_vma:
2f633156 3613 i915_gem_vma_destroy(vma);
262de145 3614 vma = ERR_PTR(ret);
bc6bc15b 3615err_unpin:
2f633156 3616 i915_gem_object_unpin_pages(obj);
262de145 3617 return vma;
673a394b
EA
3618}
3619
000433b6 3620bool
2c22569b
CW
3621i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3622 bool force)
673a394b 3623{
673a394b
EA
3624 /* If we don't have a page list set up, then we're not pinned
3625 * to GPU, and we can ignore the cache flush because it'll happen
3626 * again at bind time.
3627 */
05394f39 3628 if (obj->pages == NULL)
000433b6 3629 return false;
673a394b 3630
769ce464
ID
3631 /*
3632 * Stolen memory is always coherent with the GPU as it is explicitly
3633 * marked as wc by the system, or the system is cache-coherent.
3634 */
6a2c4232 3635 if (obj->stolen || obj->phys_handle)
000433b6 3636 return false;
769ce464 3637
9c23f7fc
CW
3638 /* If the GPU is snooping the contents of the CPU cache,
3639 * we do not need to manually clear the CPU cache lines. However,
3640 * the caches are only snooped when the render cache is
3641 * flushed/invalidated. As we always have to emit invalidations
3642 * and flushes when moving into and out of the RENDER domain, correct
3643 * snooping behaviour occurs naturally as the result of our domain
3644 * tracking.
3645 */
0f71979a
CW
3646 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3647 obj->cache_dirty = true;
000433b6 3648 return false;
0f71979a 3649 }
9c23f7fc 3650
1c5d22f7 3651 trace_i915_gem_object_clflush(obj);
9da3da66 3652 drm_clflush_sg(obj->pages);
0f71979a 3653 obj->cache_dirty = false;
000433b6
CW
3654
3655 return true;
e47c68e9
EA
3656}
3657
3658/** Flushes the GTT write domain for the object if it's dirty. */
3659static void
05394f39 3660i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3661{
1c5d22f7
CW
3662 uint32_t old_write_domain;
3663
05394f39 3664 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3665 return;
3666
63256ec5 3667 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3668 * to it immediately go to main memory as far as we know, so there's
3669 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3670 *
3671 * However, we do have to enforce the order so that all writes through
3672 * the GTT land before any writes to the device, such as updates to
3673 * the GATT itself.
e47c68e9 3674 */
63256ec5
CW
3675 wmb();
3676
05394f39
CW
3677 old_write_domain = obj->base.write_domain;
3678 obj->base.write_domain = 0;
1c5d22f7 3679
f99d7069
DV
3680 intel_fb_obj_flush(obj, false);
3681
1c5d22f7 3682 trace_i915_gem_object_change_domain(obj,
05394f39 3683 obj->base.read_domains,
1c5d22f7 3684 old_write_domain);
e47c68e9
EA
3685}
3686
3687/** Flushes the CPU write domain for the object if it's dirty. */
3688static void
e62b59e4 3689i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3690{
1c5d22f7 3691 uint32_t old_write_domain;
e47c68e9 3692
05394f39 3693 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3694 return;
3695
e62b59e4 3696 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3697 i915_gem_chipset_flush(obj->base.dev);
3698
05394f39
CW
3699 old_write_domain = obj->base.write_domain;
3700 obj->base.write_domain = 0;
1c5d22f7 3701
f99d7069
DV
3702 intel_fb_obj_flush(obj, false);
3703
1c5d22f7 3704 trace_i915_gem_object_change_domain(obj,
05394f39 3705 obj->base.read_domains,
1c5d22f7 3706 old_write_domain);
e47c68e9
EA
3707}
3708
2ef7eeaa
EA
3709/**
3710 * Moves a single object to the GTT read, and possibly write domain.
3711 *
3712 * This function returns when the move is complete, including waiting on
3713 * flushes to occur.
3714 */
79e53945 3715int
2021746e 3716i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3717{
1c5d22f7 3718 uint32_t old_write_domain, old_read_domains;
43566ded 3719 struct i915_vma *vma;
e47c68e9 3720 int ret;
2ef7eeaa 3721
8d7e3de1
CW
3722 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3723 return 0;
3724
0201f1ec 3725 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3726 if (ret)
3727 return ret;
3728
c8725f3d 3729 i915_gem_object_retire(obj);
43566ded
CW
3730
3731 /* Flush and acquire obj->pages so that we are coherent through
3732 * direct access in memory with previous cached writes through
3733 * shmemfs and that our cache domain tracking remains valid.
3734 * For example, if the obj->filp was moved to swap without us
3735 * being notified and releasing the pages, we would mistakenly
3736 * continue to assume that the obj remained out of the CPU cached
3737 * domain.
3738 */
3739 ret = i915_gem_object_get_pages(obj);
3740 if (ret)
3741 return ret;
3742
e62b59e4 3743 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3744
d0a57789
CW
3745 /* Serialise direct access to this object with the barriers for
3746 * coherent writes from the GPU, by effectively invalidating the
3747 * GTT domain upon first access.
3748 */
3749 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3750 mb();
3751
05394f39
CW
3752 old_write_domain = obj->base.write_domain;
3753 old_read_domains = obj->base.read_domains;
1c5d22f7 3754
e47c68e9
EA
3755 /* It should now be out of any other write domains, and we can update
3756 * the domain values for our changes.
3757 */
05394f39
CW
3758 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3759 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3760 if (write) {
05394f39
CW
3761 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3762 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3763 obj->dirty = 1;
2ef7eeaa
EA
3764 }
3765
f99d7069
DV
3766 if (write)
3767 intel_fb_obj_invalidate(obj, NULL);
3768
1c5d22f7
CW
3769 trace_i915_gem_object_change_domain(obj,
3770 old_read_domains,
3771 old_write_domain);
3772
8325a09d 3773 /* And bump the LRU for this access */
43566ded
CW
3774 vma = i915_gem_obj_to_ggtt(obj);
3775 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3776 list_move_tail(&vma->mm_list,
43566ded 3777 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3778
e47c68e9
EA
3779 return 0;
3780}
3781
e4ffd173
CW
3782int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3783 enum i915_cache_level cache_level)
3784{
7bddb01f 3785 struct drm_device *dev = obj->base.dev;
df6f783a 3786 struct i915_vma *vma, *next;
e4ffd173
CW
3787 int ret;
3788
3789 if (obj->cache_level == cache_level)
3790 return 0;
3791
d7f46fc4 3792 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3793 DRM_DEBUG("can not change the cache level of pinned objects\n");
3794 return -EBUSY;
3795 }
3796
df6f783a 3797 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3798 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3799 ret = i915_vma_unbind(vma);
3089c6f2
BW
3800 if (ret)
3801 return ret;
3089c6f2 3802 }
42d6ab48
CW
3803 }
3804
3089c6f2 3805 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3806 ret = i915_gem_object_finish_gpu(obj);
3807 if (ret)
3808 return ret;
3809
3810 i915_gem_object_finish_gtt(obj);
3811
3812 /* Before SandyBridge, you could not use tiling or fence
3813 * registers with snooped memory, so relinquish any fences
3814 * currently pointing to our region in the aperture.
3815 */
42d6ab48 3816 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3817 ret = i915_gem_object_put_fence(obj);
3818 if (ret)
3819 return ret;
3820 }
3821
6f65e29a 3822 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3823 if (drm_mm_node_allocated(&vma->node)) {
3824 ret = i915_vma_bind(vma, cache_level,
3825 vma->bound & GLOBAL_BIND);
3826 if (ret)
3827 return ret;
3828 }
e4ffd173
CW
3829 }
3830
2c22569b
CW
3831 list_for_each_entry(vma, &obj->vma_list, vma_link)
3832 vma->node.color = cache_level;
3833 obj->cache_level = cache_level;
3834
0f71979a
CW
3835 if (obj->cache_dirty &&
3836 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3837 cpu_write_needs_clflush(obj)) {
3838 if (i915_gem_clflush_object(obj, true))
3839 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3840 }
3841
e4ffd173
CW
3842 return 0;
3843}
3844
199adf40
BW
3845int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3846 struct drm_file *file)
e6994aee 3847{
199adf40 3848 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3849 struct drm_i915_gem_object *obj;
3850 int ret;
3851
3852 ret = i915_mutex_lock_interruptible(dev);
3853 if (ret)
3854 return ret;
3855
3856 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3857 if (&obj->base == NULL) {
3858 ret = -ENOENT;
3859 goto unlock;
3860 }
3861
651d794f
CW
3862 switch (obj->cache_level) {
3863 case I915_CACHE_LLC:
3864 case I915_CACHE_L3_LLC:
3865 args->caching = I915_CACHING_CACHED;
3866 break;
3867
4257d3ba
CW
3868 case I915_CACHE_WT:
3869 args->caching = I915_CACHING_DISPLAY;
3870 break;
3871
651d794f
CW
3872 default:
3873 args->caching = I915_CACHING_NONE;
3874 break;
3875 }
e6994aee
CW
3876
3877 drm_gem_object_unreference(&obj->base);
3878unlock:
3879 mutex_unlock(&dev->struct_mutex);
3880 return ret;
3881}
3882
199adf40
BW
3883int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3884 struct drm_file *file)
e6994aee 3885{
199adf40 3886 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3887 struct drm_i915_gem_object *obj;
3888 enum i915_cache_level level;
3889 int ret;
3890
199adf40
BW
3891 switch (args->caching) {
3892 case I915_CACHING_NONE:
e6994aee
CW
3893 level = I915_CACHE_NONE;
3894 break;
199adf40 3895 case I915_CACHING_CACHED:
e6994aee
CW
3896 level = I915_CACHE_LLC;
3897 break;
4257d3ba
CW
3898 case I915_CACHING_DISPLAY:
3899 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3900 break;
e6994aee
CW
3901 default:
3902 return -EINVAL;
3903 }
3904
3bc2913e
BW
3905 ret = i915_mutex_lock_interruptible(dev);
3906 if (ret)
3907 return ret;
3908
e6994aee
CW
3909 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910 if (&obj->base == NULL) {
3911 ret = -ENOENT;
3912 goto unlock;
3913 }
3914
3915 ret = i915_gem_object_set_cache_level(obj, level);
3916
3917 drm_gem_object_unreference(&obj->base);
3918unlock:
3919 mutex_unlock(&dev->struct_mutex);
3920 return ret;
3921}
3922
cc98b413
CW
3923static bool is_pin_display(struct drm_i915_gem_object *obj)
3924{
19656430
OM
3925 struct i915_vma *vma;
3926
19656430
OM
3927 vma = i915_gem_obj_to_ggtt(obj);
3928 if (!vma)
3929 return false;
3930
4feb7659 3931 /* There are 2 sources that pin objects:
cc98b413
CW
3932 * 1. The display engine (scanouts, sprites, cursors);
3933 * 2. Reservations for execbuffer;
cc98b413
CW
3934 *
3935 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3936 * are only called outside of the reservation path.
cc98b413 3937 */
4feb7659 3938 return vma->pin_count;
cc98b413
CW
3939}
3940
b9241ea3 3941/*
2da3b9b9
CW
3942 * Prepare buffer for display plane (scanout, cursors, etc).
3943 * Can be called from an uninterruptible phase (modesetting) and allows
3944 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3945 */
3946int
2da3b9b9
CW
3947i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3948 u32 alignment,
a4872ba6 3949 struct intel_engine_cs *pipelined)
b9241ea3 3950{
2da3b9b9 3951 u32 old_read_domains, old_write_domain;
19656430 3952 bool was_pin_display;
b9241ea3
ZW
3953 int ret;
3954
41c52415 3955 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3956 ret = i915_gem_object_sync(obj, pipelined);
3957 if (ret)
b9241ea3
ZW
3958 return ret;
3959 }
3960
cc98b413
CW
3961 /* Mark the pin_display early so that we account for the
3962 * display coherency whilst setting up the cache domains.
3963 */
19656430 3964 was_pin_display = obj->pin_display;
cc98b413
CW
3965 obj->pin_display = true;
3966
a7ef0640
EA
3967 /* The display engine is not coherent with the LLC cache on gen6. As
3968 * a result, we make sure that the pinning that is about to occur is
3969 * done with uncached PTEs. This is lowest common denominator for all
3970 * chipsets.
3971 *
3972 * However for gen6+, we could do better by using the GFDT bit instead
3973 * of uncaching, which would allow us to flush all the LLC-cached data
3974 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3975 */
651d794f
CW
3976 ret = i915_gem_object_set_cache_level(obj,
3977 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3978 if (ret)
cc98b413 3979 goto err_unpin_display;
a7ef0640 3980
2da3b9b9
CW
3981 /* As the user may map the buffer once pinned in the display plane
3982 * (e.g. libkms for the bootup splash), we have to ensure that we
3983 * always use map_and_fenceable for all scanout buffers.
3984 */
1ec9e26d 3985 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3986 if (ret)
cc98b413 3987 goto err_unpin_display;
2da3b9b9 3988
e62b59e4 3989 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3990
2da3b9b9 3991 old_write_domain = obj->base.write_domain;
05394f39 3992 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3993
3994 /* It should now be out of any other write domains, and we can update
3995 * the domain values for our changes.
3996 */
e5f1d962 3997 obj->base.write_domain = 0;
05394f39 3998 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3999
4000 trace_i915_gem_object_change_domain(obj,
4001 old_read_domains,
2da3b9b9 4002 old_write_domain);
b9241ea3
ZW
4003
4004 return 0;
cc98b413
CW
4005
4006err_unpin_display:
19656430
OM
4007 WARN_ON(was_pin_display != is_pin_display(obj));
4008 obj->pin_display = was_pin_display;
cc98b413
CW
4009 return ret;
4010}
4011
4012void
4013i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4014{
d7f46fc4 4015 i915_gem_object_ggtt_unpin(obj);
cc98b413 4016 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4017}
4018
85345517 4019int
a8198eea 4020i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4021{
88241785
CW
4022 int ret;
4023
a8198eea 4024 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4025 return 0;
4026
0201f1ec 4027 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4028 if (ret)
4029 return ret;
4030
a8198eea
CW
4031 /* Ensure that we invalidate the GPU's caches and TLBs. */
4032 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4033 return 0;
85345517
CW
4034}
4035
e47c68e9
EA
4036/**
4037 * Moves a single object to the CPU read, and possibly write domain.
4038 *
4039 * This function returns when the move is complete, including waiting on
4040 * flushes to occur.
4041 */
dabdfe02 4042int
919926ae 4043i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4044{
1c5d22f7 4045 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4046 int ret;
4047
8d7e3de1
CW
4048 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4049 return 0;
4050
0201f1ec 4051 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4052 if (ret)
4053 return ret;
4054
c8725f3d 4055 i915_gem_object_retire(obj);
e47c68e9 4056 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4057
05394f39
CW
4058 old_write_domain = obj->base.write_domain;
4059 old_read_domains = obj->base.read_domains;
1c5d22f7 4060
e47c68e9 4061 /* Flush the CPU cache if it's still invalid. */
05394f39 4062 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4063 i915_gem_clflush_object(obj, false);
2ef7eeaa 4064
05394f39 4065 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4066 }
4067
4068 /* It should now be out of any other write domains, and we can update
4069 * the domain values for our changes.
4070 */
05394f39 4071 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4072
4073 /* If we're writing through the CPU, then the GPU read domains will
4074 * need to be invalidated at next use.
4075 */
4076 if (write) {
05394f39
CW
4077 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4078 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4079 }
2ef7eeaa 4080
f99d7069
DV
4081 if (write)
4082 intel_fb_obj_invalidate(obj, NULL);
4083
1c5d22f7
CW
4084 trace_i915_gem_object_change_domain(obj,
4085 old_read_domains,
4086 old_write_domain);
4087
2ef7eeaa
EA
4088 return 0;
4089}
4090
673a394b
EA
4091/* Throttle our rendering by waiting until the ring has completed our requests
4092 * emitted over 20 msec ago.
4093 *
b962442e
EA
4094 * Note that if we were to use the current jiffies each time around the loop,
4095 * we wouldn't escape the function with any frames outstanding if the time to
4096 * render a frame was over 20ms.
4097 *
673a394b
EA
4098 * This should get us reasonable parallelism between CPU and GPU but also
4099 * relatively low latency when blocking on a particular request to finish.
4100 */
40a5f0de 4101static int
f787a5f5 4102i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4103{
f787a5f5
CW
4104 struct drm_i915_private *dev_priv = dev->dev_private;
4105 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4106 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4107 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4108 unsigned reset_counter;
f787a5f5 4109 int ret;
93533c29 4110
308887aa
DV
4111 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4112 if (ret)
4113 return ret;
4114
4115 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4116 if (ret)
4117 return ret;
e110e8d6 4118
1c25595f 4119 spin_lock(&file_priv->mm.lock);
f787a5f5 4120 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4121 if (time_after_eq(request->emitted_jiffies, recent_enough))
4122 break;
40a5f0de 4123
54fb2411 4124 target = request;
b962442e 4125 }
f69061be 4126 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4127 if (target)
4128 i915_gem_request_reference(target);
1c25595f 4129 spin_unlock(&file_priv->mm.lock);
40a5f0de 4130
54fb2411 4131 if (target == NULL)
f787a5f5 4132 return 0;
2bc43b5c 4133
9c654818 4134 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4135 if (ret == 0)
4136 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4137
ff865885
JH
4138 mutex_lock(&dev->struct_mutex);
4139 i915_gem_request_unreference(target);
4140 mutex_unlock(&dev->struct_mutex);
4141
40a5f0de
EA
4142 return ret;
4143}
4144
d23db88c
CW
4145static bool
4146i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4147{
4148 struct drm_i915_gem_object *obj = vma->obj;
4149
4150 if (alignment &&
4151 vma->node.start & (alignment - 1))
4152 return true;
4153
4154 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4155 return true;
4156
4157 if (flags & PIN_OFFSET_BIAS &&
4158 vma->node.start < (flags & PIN_OFFSET_MASK))
4159 return true;
4160
4161 return false;
4162}
4163
673a394b 4164int
fe14d5f4
TU
4165i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4166 struct i915_address_space *vm,
4167 uint32_t alignment,
4168 uint64_t flags,
4169 const struct i915_ggtt_view *view)
673a394b 4170{
6e7186af 4171 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4172 struct i915_vma *vma;
ef79e17c 4173 unsigned bound;
673a394b
EA
4174 int ret;
4175
6e7186af
BW
4176 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4177 return -ENODEV;
4178
bf3d149b 4179 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4180 return -EINVAL;
07fe0b12 4181
c826c449
CW
4182 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4183 return -EINVAL;
4184
fe14d5f4 4185 vma = i915_gem_obj_to_vma_view(obj, vm, view);
07fe0b12 4186 if (vma) {
d7f46fc4
BW
4187 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4188 return -EBUSY;
4189
d23db88c 4190 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4191 WARN(vma->pin_count,
ae7d49d8 4192 "bo is already pinned with incorrect alignment:"
f343c5f6 4193 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4194 " obj->map_and_fenceable=%d\n",
fe14d5f4
TU
4195 i915_gem_obj_offset_view(obj, vm, view->type),
4196 alignment,
d23db88c 4197 !!(flags & PIN_MAPPABLE),
05394f39 4198 obj->map_and_fenceable);
07fe0b12 4199 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4200 if (ret)
4201 return ret;
8ea99c92
DV
4202
4203 vma = NULL;
ac0c6b5a
CW
4204 }
4205 }
4206
ef79e17c 4207 bound = vma ? vma->bound : 0;
8ea99c92 4208 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
fe14d5f4
TU
4209 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4210 flags, view);
262de145
DV
4211 if (IS_ERR(vma))
4212 return PTR_ERR(vma);
22c344e9 4213 }
76446cac 4214
fe14d5f4
TU
4215 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4216 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4217 if (ret)
4218 return ret;
4219 }
74898d7e 4220
ef79e17c
CW
4221 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4222 bool mappable, fenceable;
4223 u32 fence_size, fence_alignment;
4224
4225 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4226 obj->base.size,
4227 obj->tiling_mode);
4228 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4229 obj->base.size,
4230 obj->tiling_mode,
4231 true);
4232
4233 fenceable = (vma->node.size == fence_size &&
4234 (vma->node.start & (fence_alignment - 1)) == 0);
4235
4236 mappable = (vma->node.start + obj->base.size <=
4237 dev_priv->gtt.mappable_end);
4238
4239 obj->map_and_fenceable = mappable && fenceable;
4240 }
4241
4242 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4243
8ea99c92 4244 vma->pin_count++;
1ec9e26d
DV
4245 if (flags & PIN_MAPPABLE)
4246 obj->pin_mappable |= true;
673a394b
EA
4247
4248 return 0;
4249}
4250
4251void
d7f46fc4 4252i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4253{
d7f46fc4 4254 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4255
d7f46fc4
BW
4256 BUG_ON(!vma);
4257 BUG_ON(vma->pin_count == 0);
4258 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4259
4260 if (--vma->pin_count == 0)
6299f992 4261 obj->pin_mappable = false;
673a394b
EA
4262}
4263
d8ffa60b
DV
4264bool
4265i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4266{
4267 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4268 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4269 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4270
4271 WARN_ON(!ggtt_vma ||
4272 dev_priv->fence_regs[obj->fence_reg].pin_count >
4273 ggtt_vma->pin_count);
4274 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4275 return true;
4276 } else
4277 return false;
4278}
4279
4280void
4281i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4282{
4283 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4284 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4285 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4286 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4287 }
4288}
4289
673a394b
EA
4290int
4291i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4292 struct drm_file *file)
673a394b
EA
4293{
4294 struct drm_i915_gem_busy *args = data;
05394f39 4295 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4296 int ret;
4297
76c1dec1 4298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4299 if (ret)
76c1dec1 4300 return ret;
673a394b 4301
05394f39 4302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4303 if (&obj->base == NULL) {
1d7cfea1
CW
4304 ret = -ENOENT;
4305 goto unlock;
673a394b 4306 }
d1b851fc 4307
0be555b6
CW
4308 /* Count all active objects as busy, even if they are currently not used
4309 * by the gpu. Users of this interface expect objects to eventually
4310 * become non-busy without any further actions, therefore emit any
4311 * necessary flushes here.
c4de0a5d 4312 */
30dfebf3 4313 ret = i915_gem_object_flush_active(obj);
0be555b6 4314
30dfebf3 4315 args->busy = obj->active;
41c52415
JH
4316 if (obj->last_read_req) {
4317 struct intel_engine_cs *ring;
e9808edd 4318 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4319 ring = i915_gem_request_get_ring(obj->last_read_req);
4320 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4321 }
673a394b 4322
05394f39 4323 drm_gem_object_unreference(&obj->base);
1d7cfea1 4324unlock:
673a394b 4325 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4326 return ret;
673a394b
EA
4327}
4328
4329int
4330i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4331 struct drm_file *file_priv)
4332{
0206e353 4333 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4334}
4335
3ef94daa
CW
4336int
4337i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4338 struct drm_file *file_priv)
4339{
656bfa3a 4340 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4341 struct drm_i915_gem_madvise *args = data;
05394f39 4342 struct drm_i915_gem_object *obj;
76c1dec1 4343 int ret;
3ef94daa
CW
4344
4345 switch (args->madv) {
4346 case I915_MADV_DONTNEED:
4347 case I915_MADV_WILLNEED:
4348 break;
4349 default:
4350 return -EINVAL;
4351 }
4352
1d7cfea1
CW
4353 ret = i915_mutex_lock_interruptible(dev);
4354 if (ret)
4355 return ret;
4356
05394f39 4357 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4358 if (&obj->base == NULL) {
1d7cfea1
CW
4359 ret = -ENOENT;
4360 goto unlock;
3ef94daa 4361 }
3ef94daa 4362
d7f46fc4 4363 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4364 ret = -EINVAL;
4365 goto out;
3ef94daa
CW
4366 }
4367
656bfa3a
DV
4368 if (obj->pages &&
4369 obj->tiling_mode != I915_TILING_NONE &&
4370 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4371 if (obj->madv == I915_MADV_WILLNEED)
4372 i915_gem_object_unpin_pages(obj);
4373 if (args->madv == I915_MADV_WILLNEED)
4374 i915_gem_object_pin_pages(obj);
4375 }
4376
05394f39
CW
4377 if (obj->madv != __I915_MADV_PURGED)
4378 obj->madv = args->madv;
3ef94daa 4379
6c085a72
CW
4380 /* if the object is no longer attached, discard its backing storage */
4381 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4382 i915_gem_object_truncate(obj);
4383
05394f39 4384 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4385
1d7cfea1 4386out:
05394f39 4387 drm_gem_object_unreference(&obj->base);
1d7cfea1 4388unlock:
3ef94daa 4389 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4390 return ret;
3ef94daa
CW
4391}
4392
37e680a1
CW
4393void i915_gem_object_init(struct drm_i915_gem_object *obj,
4394 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4395{
35c20a60 4396 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4397 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4398 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4399 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4400 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4401
37e680a1
CW
4402 obj->ops = ops;
4403
0327d6ba
CW
4404 obj->fence_reg = I915_FENCE_REG_NONE;
4405 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4406
4407 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4408}
4409
37e680a1
CW
4410static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4411 .get_pages = i915_gem_object_get_pages_gtt,
4412 .put_pages = i915_gem_object_put_pages_gtt,
4413};
4414
05394f39
CW
4415struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4416 size_t size)
ac52bc56 4417{
c397b908 4418 struct drm_i915_gem_object *obj;
5949eac4 4419 struct address_space *mapping;
1a240d4d 4420 gfp_t mask;
ac52bc56 4421
42dcedd4 4422 obj = i915_gem_object_alloc(dev);
c397b908
DV
4423 if (obj == NULL)
4424 return NULL;
673a394b 4425
c397b908 4426 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4427 i915_gem_object_free(obj);
c397b908
DV
4428 return NULL;
4429 }
673a394b 4430
bed1ea95
CW
4431 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4432 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4433 /* 965gm cannot relocate objects above 4GiB. */
4434 mask &= ~__GFP_HIGHMEM;
4435 mask |= __GFP_DMA32;
4436 }
4437
496ad9aa 4438 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4439 mapping_set_gfp_mask(mapping, mask);
5949eac4 4440
37e680a1 4441 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4442
c397b908
DV
4443 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4444 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4445
3d29b842
ED
4446 if (HAS_LLC(dev)) {
4447 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4448 * cache) for about a 10% performance improvement
4449 * compared to uncached. Graphics requests other than
4450 * display scanout are coherent with the CPU in
4451 * accessing this cache. This means in this mode we
4452 * don't need to clflush on the CPU side, and on the
4453 * GPU side we only need to flush internal caches to
4454 * get data visible to the CPU.
4455 *
4456 * However, we maintain the display planes as UC, and so
4457 * need to rebind when first used as such.
4458 */
4459 obj->cache_level = I915_CACHE_LLC;
4460 } else
4461 obj->cache_level = I915_CACHE_NONE;
4462
d861e338
DV
4463 trace_i915_gem_object_create(obj);
4464
05394f39 4465 return obj;
c397b908
DV
4466}
4467
340fbd8c
CW
4468static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4469{
4470 /* If we are the last user of the backing storage (be it shmemfs
4471 * pages or stolen etc), we know that the pages are going to be
4472 * immediately released. In this case, we can then skip copying
4473 * back the contents from the GPU.
4474 */
4475
4476 if (obj->madv != I915_MADV_WILLNEED)
4477 return false;
4478
4479 if (obj->base.filp == NULL)
4480 return true;
4481
4482 /* At first glance, this looks racy, but then again so would be
4483 * userspace racing mmap against close. However, the first external
4484 * reference to the filp can only be obtained through the
4485 * i915_gem_mmap_ioctl() which safeguards us against the user
4486 * acquiring such a reference whilst we are in the middle of
4487 * freeing the object.
4488 */
4489 return atomic_long_read(&obj->base.filp->f_count) == 1;
4490}
4491
1488fc08 4492void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4493{
1488fc08 4494 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4495 struct drm_device *dev = obj->base.dev;
3e31c6c0 4496 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4497 struct i915_vma *vma, *next;
673a394b 4498
f65c9168
PZ
4499 intel_runtime_pm_get(dev_priv);
4500
26e12f89
CW
4501 trace_i915_gem_object_destroy(obj);
4502
07fe0b12 4503 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4504 int ret;
4505
4506 vma->pin_count = 0;
4507 ret = i915_vma_unbind(vma);
07fe0b12
BW
4508 if (WARN_ON(ret == -ERESTARTSYS)) {
4509 bool was_interruptible;
1488fc08 4510
07fe0b12
BW
4511 was_interruptible = dev_priv->mm.interruptible;
4512 dev_priv->mm.interruptible = false;
1488fc08 4513
07fe0b12 4514 WARN_ON(i915_vma_unbind(vma));
1488fc08 4515
07fe0b12
BW
4516 dev_priv->mm.interruptible = was_interruptible;
4517 }
1488fc08
CW
4518 }
4519
1d64ae71
BW
4520 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4521 * before progressing. */
4522 if (obj->stolen)
4523 i915_gem_object_unpin_pages(obj);
4524
a071fa00
DV
4525 WARN_ON(obj->frontbuffer_bits);
4526
656bfa3a
DV
4527 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4528 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4529 obj->tiling_mode != I915_TILING_NONE)
4530 i915_gem_object_unpin_pages(obj);
4531
401c29f6
BW
4532 if (WARN_ON(obj->pages_pin_count))
4533 obj->pages_pin_count = 0;
340fbd8c 4534 if (discard_backing_storage(obj))
5537252b 4535 obj->madv = I915_MADV_DONTNEED;
37e680a1 4536 i915_gem_object_put_pages(obj);
d8cb5086 4537 i915_gem_object_free_mmap_offset(obj);
de151cf6 4538
9da3da66
CW
4539 BUG_ON(obj->pages);
4540
2f745ad3
CW
4541 if (obj->base.import_attach)
4542 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4543
5cc9ed4b
CW
4544 if (obj->ops->release)
4545 obj->ops->release(obj);
4546
05394f39
CW
4547 drm_gem_object_release(&obj->base);
4548 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4549
05394f39 4550 kfree(obj->bit_17);
42dcedd4 4551 i915_gem_object_free(obj);
f65c9168
PZ
4552
4553 intel_runtime_pm_put(dev_priv);
673a394b
EA
4554}
4555
fe14d5f4
TU
4556struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4557 struct i915_address_space *vm,
4558 const struct i915_ggtt_view *view)
e656a6cb
DV
4559{
4560 struct i915_vma *vma;
4561 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4 4562 if (vma->vm == vm && vma->ggtt_view.type == view->type)
e656a6cb
DV
4563 return vma;
4564
4565 return NULL;
4566}
4567
2f633156
BW
4568void i915_gem_vma_destroy(struct i915_vma *vma)
4569{
b9d06dd9 4570 struct i915_address_space *vm = NULL;
2f633156 4571 WARN_ON(vma->node.allocated);
aaa05667
CW
4572
4573 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4574 if (!list_empty(&vma->exec_list))
4575 return;
4576
b9d06dd9 4577 vm = vma->vm;
b9d06dd9 4578
841cd773
DV
4579 if (!i915_is_ggtt(vm))
4580 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4581
8b9c2b94 4582 list_del(&vma->vma_link);
b93dab6e 4583
2f633156
BW
4584 kfree(vma);
4585}
4586
e3efda49
CW
4587static void
4588i915_gem_stop_ringbuffers(struct drm_device *dev)
4589{
4590 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4591 struct intel_engine_cs *ring;
e3efda49
CW
4592 int i;
4593
4594 for_each_ring(ring, dev_priv, i)
a83014d3 4595 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4596}
4597
29105ccc 4598int
45c5f202 4599i915_gem_suspend(struct drm_device *dev)
29105ccc 4600{
3e31c6c0 4601 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4602 int ret = 0;
28dfe52a 4603
45c5f202 4604 mutex_lock(&dev->struct_mutex);
b2da9fe5 4605 ret = i915_gpu_idle(dev);
f7403347 4606 if (ret)
45c5f202 4607 goto err;
f7403347 4608
b2da9fe5 4609 i915_gem_retire_requests(dev);
673a394b 4610
29105ccc 4611 /* Under UMS, be paranoid and evict. */
a39d7efc 4612 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4613 i915_gem_evict_everything(dev);
29105ccc 4614
e3efda49 4615 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4616 mutex_unlock(&dev->struct_mutex);
4617
737b1506 4618 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4619 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4620 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4621
bdcf120b
CW
4622 /* Assert that we sucessfully flushed all the work and
4623 * reset the GPU back to its idle, low power state.
4624 */
4625 WARN_ON(dev_priv->mm.busy);
4626
673a394b 4627 return 0;
45c5f202
CW
4628
4629err:
4630 mutex_unlock(&dev->struct_mutex);
4631 return ret;
673a394b
EA
4632}
4633
a4872ba6 4634int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4635{
c3787e2e 4636 struct drm_device *dev = ring->dev;
3e31c6c0 4637 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4638 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4639 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4640 int i, ret;
b9524a1e 4641
040d2baa 4642 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4643 return 0;
b9524a1e 4644
c3787e2e
BW
4645 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4646 if (ret)
4647 return ret;
b9524a1e 4648
c3787e2e
BW
4649 /*
4650 * Note: We do not worry about the concurrent register cacheline hang
4651 * here because no other code should access these registers other than
4652 * at initialization time.
4653 */
b9524a1e 4654 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4655 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4656 intel_ring_emit(ring, reg_base + i);
4657 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4658 }
4659
c3787e2e 4660 intel_ring_advance(ring);
b9524a1e 4661
c3787e2e 4662 return ret;
b9524a1e
BW
4663}
4664
f691e2f4
DV
4665void i915_gem_init_swizzling(struct drm_device *dev)
4666{
3e31c6c0 4667 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4668
11782b02 4669 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4670 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4671 return;
4672
4673 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4674 DISP_TILE_SURFACE_SWIZZLING);
4675
11782b02
DV
4676 if (IS_GEN5(dev))
4677 return;
4678
f691e2f4
DV
4679 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4680 if (IS_GEN6(dev))
6b26c86d 4681 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4682 else if (IS_GEN7(dev))
6b26c86d 4683 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4684 else if (IS_GEN8(dev))
4685 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4686 else
4687 BUG();
f691e2f4 4688}
e21af88d 4689
67b1b571
CW
4690static bool
4691intel_enable_blt(struct drm_device *dev)
4692{
4693 if (!HAS_BLT(dev))
4694 return false;
4695
4696 /* The blitter was dysfunctional on early prototypes */
4697 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4698 DRM_INFO("BLT not supported on this pre-production hardware;"
4699 " graphics performance will be degraded.\n");
4700 return false;
4701 }
4702
4703 return true;
4704}
4705
81e7f200
VS
4706static void init_unused_ring(struct drm_device *dev, u32 base)
4707{
4708 struct drm_i915_private *dev_priv = dev->dev_private;
4709
4710 I915_WRITE(RING_CTL(base), 0);
4711 I915_WRITE(RING_HEAD(base), 0);
4712 I915_WRITE(RING_TAIL(base), 0);
4713 I915_WRITE(RING_START(base), 0);
4714}
4715
4716static void init_unused_rings(struct drm_device *dev)
4717{
4718 if (IS_I830(dev)) {
4719 init_unused_ring(dev, PRB1_BASE);
4720 init_unused_ring(dev, SRB0_BASE);
4721 init_unused_ring(dev, SRB1_BASE);
4722 init_unused_ring(dev, SRB2_BASE);
4723 init_unused_ring(dev, SRB3_BASE);
4724 } else if (IS_GEN2(dev)) {
4725 init_unused_ring(dev, SRB0_BASE);
4726 init_unused_ring(dev, SRB1_BASE);
4727 } else if (IS_GEN3(dev)) {
4728 init_unused_ring(dev, PRB1_BASE);
4729 init_unused_ring(dev, PRB2_BASE);
4730 }
4731}
4732
a83014d3 4733int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4734{
4fc7c971 4735 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4736 int ret;
68f95ba9 4737
5c1143bb 4738 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4739 if (ret)
b6913e4b 4740 return ret;
68f95ba9
CW
4741
4742 if (HAS_BSD(dev)) {
5c1143bb 4743 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4744 if (ret)
4745 goto cleanup_render_ring;
d1b851fc 4746 }
68f95ba9 4747
67b1b571 4748 if (intel_enable_blt(dev)) {
549f7365
CW
4749 ret = intel_init_blt_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_bsd_ring;
4752 }
4753
9a8a2213
BW
4754 if (HAS_VEBOX(dev)) {
4755 ret = intel_init_vebox_ring_buffer(dev);
4756 if (ret)
4757 goto cleanup_blt_ring;
4758 }
4759
845f74a7
ZY
4760 if (HAS_BSD2(dev)) {
4761 ret = intel_init_bsd2_ring_buffer(dev);
4762 if (ret)
4763 goto cleanup_vebox_ring;
4764 }
9a8a2213 4765
99433931 4766 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4767 if (ret)
845f74a7 4768 goto cleanup_bsd2_ring;
4fc7c971
BW
4769
4770 return 0;
4771
845f74a7
ZY
4772cleanup_bsd2_ring:
4773 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4774cleanup_vebox_ring:
4775 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4776cleanup_blt_ring:
4777 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4778cleanup_bsd_ring:
4779 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4780cleanup_render_ring:
4781 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4782
4783 return ret;
4784}
4785
4786int
4787i915_gem_init_hw(struct drm_device *dev)
4788{
3e31c6c0 4789 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4790 struct intel_engine_cs *ring;
35a85ac6 4791 int ret, i;
4fc7c971
BW
4792
4793 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4794 return -EIO;
4795
59124506 4796 if (dev_priv->ellc_size)
05e21cc4 4797 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4798
0bf21347
VS
4799 if (IS_HASWELL(dev))
4800 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4801 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4802
88a2b2a3 4803 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4804 if (IS_IVYBRIDGE(dev)) {
4805 u32 temp = I915_READ(GEN7_MSG_CTL);
4806 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4807 I915_WRITE(GEN7_MSG_CTL, temp);
4808 } else if (INTEL_INFO(dev)->gen >= 7) {
4809 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4810 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4811 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4812 }
88a2b2a3
BW
4813 }
4814
4fc7c971
BW
4815 i915_gem_init_swizzling(dev);
4816
d5abdfda
DV
4817 /*
4818 * At least 830 can leave some of the unused rings
4819 * "active" (ie. head != tail) after resume which
4820 * will prevent c3 entry. Makes sure all unused rings
4821 * are totally idle.
4822 */
4823 init_unused_rings(dev);
4824
35a57ffb
DV
4825 for_each_ring(ring, dev_priv, i) {
4826 ret = ring->init_hw(ring);
4827 if (ret)
4828 return ret;
4829 }
99433931 4830
c3787e2e
BW
4831 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4832 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4833
f48a0165 4834 ret = i915_ppgtt_init_hw(dev);
60990320 4835 if (ret && ret != -EIO) {
f48a0165 4836 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 4837 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4838 }
4839
f48a0165 4840 ret = i915_gem_context_enable(dev_priv);
82460d97 4841 if (ret && ret != -EIO) {
f48a0165 4842 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 4843 i915_gem_cleanup_ringbuffer(dev);
f48a0165
DW
4844
4845 return ret;
b7c36d25 4846 }
e21af88d 4847
2fa48d8d 4848 return ret;
8187a2b7
ZN
4849}
4850
1070a42b
CW
4851int i915_gem_init(struct drm_device *dev)
4852{
4853 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4854 int ret;
4855
127f1003
OM
4856 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4857 i915.enable_execlists);
4858
1070a42b 4859 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4860
4861 if (IS_VALLEYVIEW(dev)) {
4862 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4863 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4864 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4865 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4866 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4867 }
4868
a83014d3
OM
4869 if (!i915.enable_execlists) {
4870 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4871 dev_priv->gt.init_rings = i915_gem_init_rings;
4872 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4873 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4874 } else {
4875 dev_priv->gt.do_execbuf = intel_execlists_submission;
4876 dev_priv->gt.init_rings = intel_logical_rings_init;
4877 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4878 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4879 }
4880
6c5566a8 4881 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4882 if (ret)
4883 goto out_unlock;
6c5566a8 4884
d7e5008f 4885 i915_gem_init_global_gtt(dev);
d62b4892 4886
2fa48d8d 4887 ret = i915_gem_context_init(dev);
7bcc3777
JN
4888 if (ret)
4889 goto out_unlock;
2fa48d8d 4890
35a57ffb
DV
4891 ret = dev_priv->gt.init_rings(dev);
4892 if (ret)
7bcc3777 4893 goto out_unlock;
2fa48d8d 4894
1070a42b 4895 ret = i915_gem_init_hw(dev);
60990320
CW
4896 if (ret == -EIO) {
4897 /* Allow ring initialisation to fail by marking the GPU as
4898 * wedged. But we only want to do this where the GPU is angry,
4899 * for all other failure, such as an allocation failure, bail.
4900 */
4901 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4902 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4903 ret = 0;
1070a42b 4904 }
7bcc3777
JN
4905
4906out_unlock:
60990320 4907 mutex_unlock(&dev->struct_mutex);
1070a42b 4908
60990320 4909 return ret;
1070a42b
CW
4910}
4911
8187a2b7
ZN
4912void
4913i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4914{
3e31c6c0 4915 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4916 struct intel_engine_cs *ring;
1ec14ad3 4917 int i;
8187a2b7 4918
b4519513 4919 for_each_ring(ring, dev_priv, i)
a83014d3 4920 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4921}
4922
64193406 4923static void
a4872ba6 4924init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4925{
4926 INIT_LIST_HEAD(&ring->active_list);
4927 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4928}
4929
7e0d96bc
BW
4930void i915_init_vm(struct drm_i915_private *dev_priv,
4931 struct i915_address_space *vm)
fc8c067e 4932{
7e0d96bc
BW
4933 if (!i915_is_ggtt(vm))
4934 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4935 vm->dev = dev_priv->dev;
4936 INIT_LIST_HEAD(&vm->active_list);
4937 INIT_LIST_HEAD(&vm->inactive_list);
4938 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4939 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4940}
4941
673a394b
EA
4942void
4943i915_gem_load(struct drm_device *dev)
4944{
3e31c6c0 4945 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4946 int i;
4947
4948 dev_priv->slab =
4949 kmem_cache_create("i915_gem_object",
4950 sizeof(struct drm_i915_gem_object), 0,
4951 SLAB_HWCACHE_ALIGN,
4952 NULL);
673a394b 4953
fc8c067e
BW
4954 INIT_LIST_HEAD(&dev_priv->vm_list);
4955 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4956
a33afea5 4957 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4958 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4959 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4960 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4961 for (i = 0; i < I915_NUM_RINGS; i++)
4962 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4963 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4964 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4965 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4966 i915_gem_retire_work_handler);
b29c19b6
CW
4967 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4968 i915_gem_idle_work_handler);
1f83fee0 4969 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4970
94400120 4971 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4972 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4973 I915_WRITE(MI_ARB_STATE,
4974 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4975 }
4976
72bfa19c
CW
4977 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4978
de151cf6 4979 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4980 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4981 dev_priv->fence_reg_start = 3;
de151cf6 4982
42b5aeab
VS
4983 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4984 dev_priv->num_fence_regs = 32;
4985 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4986 dev_priv->num_fence_regs = 16;
4987 else
4988 dev_priv->num_fence_regs = 8;
4989
b5aa8a0f 4990 /* Initialize fence registers to zero */
19b2dbde
CW
4991 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4992 i915_gem_restore_fences(dev);
10ed13e4 4993
673a394b 4994 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4995 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4996
ce453d81
CW
4997 dev_priv->mm.interruptible = true;
4998
ceabbba5
CW
4999 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5000 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5001 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5002 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5003
5004 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5005 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069 5006
78a42377
BV
5007 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5008
f99d7069 5009 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5010}
71acb5eb 5011
f787a5f5 5012void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5013{
f787a5f5 5014 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5015
b29c19b6
CW
5016 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5017
b962442e
EA
5018 /* Clean up our request list when the client is going away, so that
5019 * later retire_requests won't dereference our soon-to-be-gone
5020 * file_priv.
5021 */
1c25595f 5022 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5023 while (!list_empty(&file_priv->mm.request_list)) {
5024 struct drm_i915_gem_request *request;
5025
5026 request = list_first_entry(&file_priv->mm.request_list,
5027 struct drm_i915_gem_request,
5028 client_list);
5029 list_del(&request->client_list);
5030 request->file_priv = NULL;
5031 }
1c25595f 5032 spin_unlock(&file_priv->mm.lock);
b962442e 5033}
31169714 5034
b29c19b6
CW
5035static void
5036i915_gem_file_idle_work_handler(struct work_struct *work)
5037{
5038 struct drm_i915_file_private *file_priv =
5039 container_of(work, typeof(*file_priv), mm.idle_work.work);
5040
5041 atomic_set(&file_priv->rps_wait_boost, false);
5042}
5043
5044int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5045{
5046 struct drm_i915_file_private *file_priv;
e422b888 5047 int ret;
b29c19b6
CW
5048
5049 DRM_DEBUG_DRIVER("\n");
5050
5051 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5052 if (!file_priv)
5053 return -ENOMEM;
5054
5055 file->driver_priv = file_priv;
5056 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5057 file_priv->file = file;
b29c19b6
CW
5058
5059 spin_lock_init(&file_priv->mm.lock);
5060 INIT_LIST_HEAD(&file_priv->mm.request_list);
5061 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5062 i915_gem_file_idle_work_handler);
5063
e422b888
BW
5064 ret = i915_gem_context_open(dev, file);
5065 if (ret)
5066 kfree(file_priv);
b29c19b6 5067
e422b888 5068 return ret;
b29c19b6
CW
5069}
5070
b680c37a
DV
5071/**
5072 * i915_gem_track_fb - update frontbuffer tracking
5073 * old: current GEM buffer for the frontbuffer slots
5074 * new: new GEM buffer for the frontbuffer slots
5075 * frontbuffer_bits: bitmask of frontbuffer slots
5076 *
5077 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5078 * from @old and setting them in @new. Both @old and @new can be NULL.
5079 */
a071fa00
DV
5080void i915_gem_track_fb(struct drm_i915_gem_object *old,
5081 struct drm_i915_gem_object *new,
5082 unsigned frontbuffer_bits)
5083{
5084 if (old) {
5085 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5086 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5087 old->frontbuffer_bits &= ~frontbuffer_bits;
5088 }
5089
5090 if (new) {
5091 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5092 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5093 new->frontbuffer_bits |= frontbuffer_bits;
5094 }
5095}
5096
5774506f
CW
5097static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5098{
5099 if (!mutex_is_locked(mutex))
5100 return false;
5101
a5094051 5102#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5774506f
CW
5103 return mutex->owner == task;
5104#else
5105 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5106 return false;
5107#endif
5108}
5109
b453c4db
CW
5110static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5111{
5112 if (!mutex_trylock(&dev->struct_mutex)) {
5113 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5114 return false;
5115
5116 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5117 return false;
5118
5119 *unlock = false;
5120 } else
5121 *unlock = true;
5122
5123 return true;
5124}
5125
ceabbba5
CW
5126static int num_vma_bound(struct drm_i915_gem_object *obj)
5127{
5128 struct i915_vma *vma;
5129 int count = 0;
5130
5131 list_for_each_entry(vma, &obj->vma_list, vma_link)
5132 if (drm_mm_node_allocated(&vma->node))
5133 count++;
5134
5135 return count;
5136}
5137
7dc19d5a 5138static unsigned long
ceabbba5 5139i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5140{
17250b71 5141 struct drm_i915_private *dev_priv =
ceabbba5 5142 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5143 struct drm_device *dev = dev_priv->dev;
6c085a72 5144 struct drm_i915_gem_object *obj;
7dc19d5a 5145 unsigned long count;
b453c4db 5146 bool unlock;
17250b71 5147
b453c4db
CW
5148 if (!i915_gem_shrinker_lock(dev, &unlock))
5149 return 0;
31169714 5150
7dc19d5a 5151 count = 0;
35c20a60 5152 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5153 if (obj->pages_pin_count == 0)
7dc19d5a 5154 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5155
5156 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5157 if (!i915_gem_obj_is_pinned(obj) &&
5158 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5159 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5160 }
17250b71 5161
5774506f
CW
5162 if (unlock)
5163 mutex_unlock(&dev->struct_mutex);
d9973b43 5164
7dc19d5a 5165 return count;
31169714 5166}
a70a3148
BW
5167
5168/* All the new VM stuff */
fe14d5f4
TU
5169unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5170 struct i915_address_space *vm,
5171 enum i915_ggtt_view_type view)
a70a3148
BW
5172{
5173 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5174 struct i915_vma *vma;
5175
896ab1a5 5176 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5177
a70a3148 5178 list_for_each_entry(vma, &o->vma_list, vma_link) {
fe14d5f4 5179 if (vma->vm == vm && vma->ggtt_view.type == view)
a70a3148
BW
5180 return vma->node.start;
5181
5182 }
f25748ea
DV
5183 WARN(1, "%s vma for this object not found.\n",
5184 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5185 return -1;
5186}
5187
fe14d5f4
TU
5188bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5189 struct i915_address_space *vm,
5190 enum i915_ggtt_view_type view)
a70a3148
BW
5191{
5192 struct i915_vma *vma;
5193
5194 list_for_each_entry(vma, &o->vma_list, vma_link)
fe14d5f4
TU
5195 if (vma->vm == vm &&
5196 vma->ggtt_view.type == view &&
5197 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5198 return true;
5199
5200 return false;
5201}
5202
5203bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5204{
5a1d5eb0 5205 struct i915_vma *vma;
a70a3148 5206
5a1d5eb0
CW
5207 list_for_each_entry(vma, &o->vma_list, vma_link)
5208 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5209 return true;
5210
5211 return false;
5212}
5213
5214unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5215 struct i915_address_space *vm)
5216{
5217 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5218 struct i915_vma *vma;
5219
896ab1a5 5220 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5221
5222 BUG_ON(list_empty(&o->vma_list));
5223
5224 list_for_each_entry(vma, &o->vma_list, vma_link)
5225 if (vma->vm == vm)
5226 return vma->node.size;
5227
5228 return 0;
5229}
5230
7dc19d5a 5231static unsigned long
ceabbba5 5232i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5233{
5234 struct drm_i915_private *dev_priv =
ceabbba5 5235 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5236 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5237 unsigned long freed;
b453c4db 5238 bool unlock;
7dc19d5a 5239
b453c4db
CW
5240 if (!i915_gem_shrinker_lock(dev, &unlock))
5241 return SHRINK_STOP;
7dc19d5a 5242
21ab4e74
CW
5243 freed = i915_gem_shrink(dev_priv,
5244 sc->nr_to_scan,
5245 I915_SHRINK_BOUND |
5246 I915_SHRINK_UNBOUND |
5247 I915_SHRINK_PURGEABLE);
d9973b43 5248 if (freed < sc->nr_to_scan)
21ab4e74
CW
5249 freed += i915_gem_shrink(dev_priv,
5250 sc->nr_to_scan - freed,
5251 I915_SHRINK_BOUND |
5252 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5253 if (unlock)
5254 mutex_unlock(&dev->struct_mutex);
d9973b43 5255
7dc19d5a
DC
5256 return freed;
5257}
5c2abbea 5258
2cfcd32a
CW
5259static int
5260i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5261{
5262 struct drm_i915_private *dev_priv =
5263 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5264 struct drm_device *dev = dev_priv->dev;
5265 struct drm_i915_gem_object *obj;
5266 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5267 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5268 bool was_interruptible;
5269 bool unlock;
5270
a1db2fa7 5271 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5272 schedule_timeout_killable(1);
a1db2fa7
CW
5273 if (fatal_signal_pending(current))
5274 return NOTIFY_DONE;
5275 }
2cfcd32a
CW
5276 if (timeout == 0) {
5277 pr_err("Unable to purge GPU memory due lock contention.\n");
5278 return NOTIFY_DONE;
5279 }
5280
5281 was_interruptible = dev_priv->mm.interruptible;
5282 dev_priv->mm.interruptible = false;
5283
005445c5 5284 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5285
5286 dev_priv->mm.interruptible = was_interruptible;
5287
5288 /* Because we may be allocating inside our own driver, we cannot
5289 * assert that there are no objects with pinned pages that are not
5290 * being pointed to by hardware.
5291 */
5292 unbound = bound = pinned = 0;
5293 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5294 if (!obj->base.filp) /* not backed by a freeable object */
5295 continue;
5296
5297 if (obj->pages_pin_count)
5298 pinned += obj->base.size;
5299 else
5300 unbound += obj->base.size;
5301 }
5302 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5303 if (!obj->base.filp)
5304 continue;
5305
5306 if (obj->pages_pin_count)
5307 pinned += obj->base.size;
5308 else
5309 bound += obj->base.size;
5310 }
5311
5312 if (unlock)
5313 mutex_unlock(&dev->struct_mutex);
5314
bb9059d3
CW
5315 if (freed_pages || unbound || bound)
5316 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5317 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5318 if (unbound || bound)
5319 pr_err("%lu and %lu bytes still available in the "
5320 "bound and unbound GPU page lists.\n",
5321 bound, unbound);
5322
005445c5 5323 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5324 return NOTIFY_DONE;
5325}
5326
5c2abbea
BW
5327struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5328{
f7635669 5329 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5c2abbea
BW
5330 struct i915_vma *vma;
5331
fe14d5f4
TU
5332 list_for_each_entry(vma, &obj->vma_list, vma_link)
5333 if (vma->vm == ggtt &&
5334 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
f7635669 5335 return vma;
5c2abbea 5336
f7635669 5337 return NULL;
5c2abbea 5338}