]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-intel-fixes-2013-06-24' of git://people.freedesktop.org/~danvet/drm...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734 89static int
33196ded 90i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 91{
30dbf0c0
CW
92 int ret;
93
7abb690a
DV
94#define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
1f83fee0 96 if (EXIT_COND)
30dbf0c0
CW
97 return 0;
98
0a6759c6
DV
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
1f83fee0
DV
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
0a6759c6
DV
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
1f83fee0 113#undef EXIT_COND
30dbf0c0 114
21dd3734 115 return 0;
30dbf0c0
CW
116}
117
54cf91dc 118int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 119{
33196ded 120 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
121 int ret;
122
33196ded 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
23bc5982 131 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
132 return 0;
133}
30dbf0c0 134
7d1c4804 135static inline bool
05394f39 136i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 137{
6c085a72 138 return obj->gtt_space && !obj->active;
7d1c4804
CW
139}
140
79e53945
JB
141int
142i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 143 struct drm_file *file)
79e53945 144{
93d18799 145 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 146 struct drm_i915_gem_init *args = data;
2021746e 147
7bb6fb8d
DV
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
2021746e
CW
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
79e53945 154
f534bc0b
DV
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
79e53945 159 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
93d18799 162 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
163 mutex_unlock(&dev->struct_mutex);
164
2021746e 165 return 0;
673a394b
EA
166}
167
5a125c3c
EA
168int
169i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
5a125c3c 171{
73aa808f 172 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 173 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
5a125c3c 176
6299f992 177 pinned = 0;
73aa808f 178 mutex_lock(&dev->struct_mutex);
6c085a72 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
73aa808f 182 mutex_unlock(&dev->struct_mutex);
5a125c3c 183
5d4545ae 184 args->aper_size = dev_priv->gtt.total;
0206e353 185 args->aper_available_size = args->aper_size - pinned;
6299f992 186
5a125c3c
EA
187 return 0;
188}
189
42dcedd4
CW
190void *i915_gem_object_alloc(struct drm_device *dev)
191{
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194}
195
196void i915_gem_object_free(struct drm_i915_gem_object *obj)
197{
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200}
201
ff72145b
DA
202static int
203i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
673a394b 207{
05394f39 208 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
209 int ret;
210 u32 handle;
673a394b 211
ff72145b 212 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
213 if (size == 0)
214 return -EINVAL;
673a394b
EA
215
216 /* Allocate the new object */
ff72145b 217 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
218 if (obj == NULL)
219 return -ENOMEM;
220
05394f39 221 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 222 if (ret) {
05394f39
CW
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 225 i915_gem_object_free(obj);
673a394b 226 return ret;
1dfd9754 227 }
673a394b 228
202f2fef 229 /* drop reference from allocate - handle holds it now */
05394f39 230 drm_gem_object_unreference(&obj->base);
202f2fef
CW
231 trace_i915_gem_object_create(obj);
232
ff72145b 233 *handle_p = handle;
673a394b
EA
234 return 0;
235}
236
ff72145b
DA
237int
238i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241{
242 /* have to work out size/pitch and return them */
ed0291fd 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247}
248
249int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252{
253 return drm_gem_handle_delete(file, handle);
254}
255
256/**
257 * Creates a new mm object and returns a handle to it.
258 */
259int
260i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262{
263 struct drm_i915_gem_create *args = data;
63ed2cb2 264
ff72145b
DA
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267}
268
8461d226
DV
269static inline int
270__copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273{
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293}
294
8c59967c 295static inline int
4f0c7cfb
BW
296__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
8c59967c
DV
298 int length)
299{
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319}
320
d174bd64
DV
321/* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
eb01459f 324static int
d174bd64
DV
325shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328{
329 char *vaddr;
330 int ret;
331
e7e58eb5 332 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
f60d7f0c 344 return ret ? -EFAULT : 0;
d174bd64
DV
345}
346
23c18c71
DV
347static void
348shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350{
e7e58eb5 351 if (unlikely(swizzled)) {
23c18c71
DV
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367}
368
d174bd64
DV
369/* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371static int
372shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375{
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
23c18c71
DV
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
d174bd64
DV
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
f60d7f0c 395 return ret ? - EFAULT : 0;
d174bd64
DV
396}
397
eb01459f 398static int
dbf7bff0
DV
399i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
eb01459f 403{
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 409 int prefaulted = 0;
8489731c 410 int needs_clflush = 0;
67d5a50c 411 struct sg_page_iter sg_iter;
eb01459f 412
2bb4629a 413 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
414 remain = args->size;
415
8461d226 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 417
8489731c
DV
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
6c085a72
CW
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
8489731c 430 }
eb01459f 431
f60d7f0c
CW
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
8461d226 438 offset = args->offset;
eb01459f 439
67d5a50c
ID
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
2db76d7c 442 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
443
444 if (remain <= 0)
445 break;
446
eb01459f
EA
447 /* Operation in this page
448 *
eb01459f 449 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
450 * page_length = bytes to copy for this page
451 */
c8cbbb8b 452 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 456
8461d226
DV
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
d174bd64
DV
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
dbf7bff0 465
dbf7bff0
DV
466 mutex_unlock(&dev->struct_mutex);
467
96d79b52 468 if (!prefaulted) {
f56f821f 469 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
eb01459f 477
d174bd64
DV
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
eb01459f 481
dbf7bff0 482 mutex_lock(&dev->struct_mutex);
f60d7f0c 483
dbf7bff0 484next_page:
e5281ccd 485 mark_page_accessed(page);
e5281ccd 486
f60d7f0c 487 if (ret)
8461d226 488 goto out;
8461d226 489
eb01459f 490 remain -= page_length;
8461d226 491 user_data += page_length;
eb01459f
EA
492 offset += page_length;
493 }
494
4f27b75d 495out:
f60d7f0c
CW
496 i915_gem_object_unpin_pages(obj);
497
eb01459f
EA
498 return ret;
499}
500
673a394b
EA
501/**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506int
507i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 508 struct drm_file *file)
673a394b
EA
509{
510 struct drm_i915_gem_pread *args = data;
05394f39 511 struct drm_i915_gem_object *obj;
35b62a89 512 int ret = 0;
673a394b 513
51311d0a
CW
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
2bb4629a 518 to_user_ptr(args->data_ptr),
51311d0a
CW
519 args->size))
520 return -EFAULT;
521
4f27b75d 522 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 523 if (ret)
4f27b75d 524 return ret;
673a394b 525
05394f39 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 527 if (&obj->base == NULL) {
1d7cfea1
CW
528 ret = -ENOENT;
529 goto unlock;
4f27b75d 530 }
673a394b 531
7dcd2499 532 /* Bounds check source. */
05394f39
CW
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
ce9d419d 535 ret = -EINVAL;
35b62a89 536 goto out;
ce9d419d
CW
537 }
538
1286ff73
DV
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
db53a302
CW
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
dbf7bff0 549 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 550
35b62a89 551out:
05394f39 552 drm_gem_object_unreference(&obj->base);
1d7cfea1 553unlock:
4f27b75d 554 mutex_unlock(&dev->struct_mutex);
eb01459f 555 return ret;
673a394b
EA
556}
557
0839ccb8
KP
558/* This is the fast write path which cannot handle
559 * page faults in the source data
9b7530cc 560 */
0839ccb8
KP
561
562static inline int
563fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
9b7530cc 567{
4f0c7cfb
BW
568 void __iomem *vaddr_atomic;
569 void *vaddr;
0839ccb8 570 unsigned long unwritten;
9b7530cc 571
3e4d3af5 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 576 user_data, length);
3e4d3af5 577 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 578 return unwritten;
0839ccb8
KP
579}
580
3de09aa3
EA
581/**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
673a394b 585static int
05394f39
CW
586i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
3de09aa3 588 struct drm_i915_gem_pwrite *args,
05394f39 589 struct drm_file *file)
673a394b 590{
0839ccb8 591 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 592 ssize_t remain;
0839ccb8 593 loff_t offset, page_base;
673a394b 594 char __user *user_data;
935aaa69
DV
595 int page_offset, page_length, ret;
596
86a1ee26 597 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
673a394b 608
2bb4629a 609 user_data = to_user_ptr(args->data_ptr);
673a394b 610 remain = args->size;
673a394b 611
05394f39 612 offset = obj->gtt_offset + args->offset;
673a394b
EA
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
0839ccb8
KP
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
673a394b 620 */
c8cbbb8b
CW
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
0839ccb8
KP
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
0839ccb8 627 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
0839ccb8 630 */
5d4545ae 631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
673a394b 636
0839ccb8
KP
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
673a394b 640 }
673a394b 641
935aaa69
DV
642out_unpin:
643 i915_gem_object_unpin(obj);
644out:
3de09aa3 645 return ret;
673a394b
EA
646}
647
d174bd64
DV
648/* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
3043c60c 652static int
d174bd64
DV
653shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
673a394b 658{
d174bd64 659 char *vaddr;
673a394b 660 int ret;
3de09aa3 661
e7e58eb5 662 if (unlikely(page_do_bit17_swizzling))
d174bd64 663 return -EINVAL;
3de09aa3 664
d174bd64
DV
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
3de09aa3 676
755d2218 677 return ret ? -EFAULT : 0;
3de09aa3
EA
678}
679
d174bd64
DV
680/* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
3043c60c 682static int
d174bd64
DV
683shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
673a394b 688{
d174bd64
DV
689 char *vaddr;
690 int ret;
e5281ccd 691
d174bd64 692 vaddr = kmap(page);
e7e58eb5 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
d174bd64
DV
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
699 user_data,
700 page_length);
d174bd64
DV
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
23c18c71
DV
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
d174bd64 709 kunmap(page);
40123c1f 710
755d2218 711 return ret ? -EFAULT : 0;
40123c1f
EA
712}
713
40123c1f 714static int
e244a443
DV
715i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
40123c1f 719{
40123c1f 720 ssize_t remain;
8c59967c
DV
721 loff_t offset;
722 char __user *user_data;
eb2c0c81 723 int shmem_page_offset, page_length, ret = 0;
8c59967c 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 725 int hit_slowpath = 0;
58642885
DV
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
67d5a50c 728 struct sg_page_iter sg_iter;
40123c1f 729
2bb4629a 730 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
731 remain = args->size;
732
8c59967c 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 734
58642885
DV
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
6c085a72
CW
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
58642885
DV
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
755d2218
CW
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
673a394b 760 offset = args->offset;
05394f39 761 obj->dirty = 1;
673a394b 762
67d5a50c
ID
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
2db76d7c 765 struct page *page = sg_page_iter_page(&sg_iter);
58642885 766 int partial_cacheline_write;
e5281ccd 767
9da3da66
CW
768 if (remain <= 0)
769 break;
770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
8c59967c
DV
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
d174bd64
DV
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
e244a443
DV
798
799 hit_slowpath = 1;
e244a443 800 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
40123c1f 805
e244a443 806 mutex_lock(&dev->struct_mutex);
755d2218 807
e244a443 808next_page:
e5281ccd
CW
809 set_page_dirty(page);
810 mark_page_accessed(page);
e5281ccd 811
755d2218 812 if (ret)
8c59967c 813 goto out;
8c59967c 814
40123c1f 815 remain -= page_length;
8c59967c 816 user_data += page_length;
40123c1f 817 offset += page_length;
673a394b
EA
818 }
819
fbd5a26d 820out:
755d2218
CW
821 i915_gem_object_unpin_pages(obj);
822
e244a443 823 if (hit_slowpath) {
8dcf015e
DV
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 831 i915_gem_clflush_object(obj);
e76e9aeb 832 i915_gem_chipset_flush(dev);
e244a443 833 }
8c59967c 834 }
673a394b 835
58642885 836 if (needs_clflush_after)
e76e9aeb 837 i915_gem_chipset_flush(dev);
58642885 838
40123c1f 839 return ret;
673a394b
EA
840}
841
842/**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847int
848i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 849 struct drm_file *file)
673a394b
EA
850{
851 struct drm_i915_gem_pwrite *args = data;
05394f39 852 struct drm_i915_gem_object *obj;
51311d0a
CW
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
2bb4629a 859 to_user_ptr(args->data_ptr),
51311d0a
CW
860 args->size))
861 return -EFAULT;
862
2bb4629a 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
f56f821f 864 args->size);
51311d0a
CW
865 if (ret)
866 return -EFAULT;
673a394b 867
fbd5a26d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
fbd5a26d 870 return ret;
1d7cfea1 871
05394f39 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 873 if (&obj->base == NULL) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
fbd5a26d 876 }
673a394b 877
7dcd2499 878 /* Bounds check destination. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
1286ff73
DV
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
db53a302
CW
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
935aaa69 895 ret = -EFAULT;
673a394b
EA
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
5c0480f2 902 if (obj->phys_obj) {
fbd5a26d 903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
904 goto out;
905 }
906
86a1ee26 907 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 908 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
fbd5a26d 914 }
673a394b 915
86a1ee26 916 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 918
35b62a89 919out:
05394f39 920 drm_gem_object_unreference(&obj->base);
1d7cfea1 921unlock:
fbd5a26d 922 mutex_unlock(&dev->struct_mutex);
673a394b
EA
923 return ret;
924}
925
b361237b 926int
33196ded 927i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
928 bool interruptible)
929{
1f83fee0 930 if (i915_reset_in_progress(error)) {
b361237b
CW
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
1f83fee0
DV
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
b361237b
CW
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944}
945
946/*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950static int
951i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952{
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL, NULL);
960
961 return ret;
962}
963
964/**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
f69061be 968 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
f69061be
DV
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
b361237b
CW
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 983 unsigned reset_counter,
b361237b
CW
984 bool interruptible, struct timespec *timeout)
985{
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
e054cc39 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011#define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
f69061be
DV
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
33196ded 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040#undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
b361237b
CW
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060}
1061
1062/**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066int
1067i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068{
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
33196ded 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
f69061be
DV
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
b361237b
CW
1088}
1089
1090/**
1091 * Ensures that all rendering to the object has completed and the object is
1092 * safe to unbind from the GTT or access from the CPU.
1093 */
1094static __must_check int
1095i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096 bool readonly)
1097{
1098 struct intel_ring_buffer *ring = obj->ring;
1099 u32 seqno;
1100 int ret;
1101
1102 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103 if (seqno == 0)
1104 return 0;
1105
1106 ret = i915_wait_seqno(ring, seqno);
1107 if (ret)
1108 return ret;
1109
1110 i915_gem_retire_requests_ring(ring);
1111
1112 /* Manually manage the write flush as we may have not yet
1113 * retired the buffer.
1114 */
1115 if (obj->last_write_seqno &&
1116 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117 obj->last_write_seqno = 0;
1118 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119 }
1120
1121 return 0;
1122}
1123
3236f57a
CW
1124/* A nonblocking variant of the above wait. This is a highly dangerous routine
1125 * as the object state may change during this call.
1126 */
1127static __must_check int
1128i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129 bool readonly)
1130{
1131 struct drm_device *dev = obj->base.dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 struct intel_ring_buffer *ring = obj->ring;
f69061be 1134 unsigned reset_counter;
3236f57a
CW
1135 u32 seqno;
1136 int ret;
1137
1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 BUG_ON(!dev_priv->mm.interruptible);
1140
1141 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142 if (seqno == 0)
1143 return 0;
1144
33196ded 1145 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1146 if (ret)
1147 return ret;
1148
1149 ret = i915_gem_check_olr(ring, seqno);
1150 if (ret)
1151 return ret;
1152
f69061be 1153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1154 mutex_unlock(&dev->struct_mutex);
f69061be 1155 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a
CW
1156 mutex_lock(&dev->struct_mutex);
1157
1158 i915_gem_retire_requests_ring(ring);
1159
1160 /* Manually manage the write flush as we may have not yet
1161 * retired the buffer.
1162 */
1163 if (obj->last_write_seqno &&
1164 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165 obj->last_write_seqno = 0;
1166 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167 }
1168
1169 return ret;
1170}
1171
673a394b 1172/**
2ef7eeaa
EA
1173 * Called when user space prepares to use an object with the CPU, either
1174 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1175 */
1176int
1177i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1178 struct drm_file *file)
673a394b
EA
1179{
1180 struct drm_i915_gem_set_domain *args = data;
05394f39 1181 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1182 uint32_t read_domains = args->read_domains;
1183 uint32_t write_domain = args->write_domain;
673a394b
EA
1184 int ret;
1185
2ef7eeaa 1186 /* Only handle setting domains to types used by the CPU. */
21d509e3 1187 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1188 return -EINVAL;
1189
21d509e3 1190 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1191 return -EINVAL;
1192
1193 /* Having something in the write domain implies it's in the read
1194 * domain, and only that read domain. Enforce that in the request.
1195 */
1196 if (write_domain != 0 && read_domains != write_domain)
1197 return -EINVAL;
1198
76c1dec1 1199 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1200 if (ret)
76c1dec1 1201 return ret;
1d7cfea1 1202
05394f39 1203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1204 if (&obj->base == NULL) {
1d7cfea1
CW
1205 ret = -ENOENT;
1206 goto unlock;
76c1dec1 1207 }
673a394b 1208
3236f57a
CW
1209 /* Try to flush the object off the GPU without holding the lock.
1210 * We will repeat the flush holding the lock in the normal manner
1211 * to catch cases where we are gazumped.
1212 */
1213 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214 if (ret)
1215 goto unref;
1216
2ef7eeaa
EA
1217 if (read_domains & I915_GEM_DOMAIN_GTT) {
1218 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1219
1220 /* Silently promote "you're not bound, there was nothing to do"
1221 * to success, since the client was just asking us to
1222 * make sure everything was done.
1223 */
1224 if (ret == -EINVAL)
1225 ret = 0;
2ef7eeaa 1226 } else {
e47c68e9 1227 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1228 }
1229
3236f57a 1230unref:
05394f39 1231 drm_gem_object_unreference(&obj->base);
1d7cfea1 1232unlock:
673a394b
EA
1233 mutex_unlock(&dev->struct_mutex);
1234 return ret;
1235}
1236
1237/**
1238 * Called when user space has done writes to this buffer
1239 */
1240int
1241i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1242 struct drm_file *file)
673a394b
EA
1243{
1244 struct drm_i915_gem_sw_finish *args = data;
05394f39 1245 struct drm_i915_gem_object *obj;
673a394b
EA
1246 int ret = 0;
1247
76c1dec1 1248 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1249 if (ret)
76c1dec1 1250 return ret;
1d7cfea1 1251
05394f39 1252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1253 if (&obj->base == NULL) {
1d7cfea1
CW
1254 ret = -ENOENT;
1255 goto unlock;
673a394b
EA
1256 }
1257
673a394b 1258 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1259 if (obj->pin_count)
e47c68e9
EA
1260 i915_gem_object_flush_cpu_write_domain(obj);
1261
05394f39 1262 drm_gem_object_unreference(&obj->base);
1d7cfea1 1263unlock:
673a394b
EA
1264 mutex_unlock(&dev->struct_mutex);
1265 return ret;
1266}
1267
1268/**
1269 * Maps the contents of an object, returning the address it is mapped
1270 * into.
1271 *
1272 * While the mapping holds a reference on the contents of the object, it doesn't
1273 * imply a ref on the object itself.
1274 */
1275int
1276i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1277 struct drm_file *file)
673a394b
EA
1278{
1279 struct drm_i915_gem_mmap *args = data;
1280 struct drm_gem_object *obj;
673a394b
EA
1281 unsigned long addr;
1282
05394f39 1283 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1284 if (obj == NULL)
bf79cb91 1285 return -ENOENT;
673a394b 1286
1286ff73
DV
1287 /* prime objects have no backing filp to GEM mmap
1288 * pages from.
1289 */
1290 if (!obj->filp) {
1291 drm_gem_object_unreference_unlocked(obj);
1292 return -EINVAL;
1293 }
1294
6be5ceb0 1295 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1296 PROT_READ | PROT_WRITE, MAP_SHARED,
1297 args->offset);
bc9025bd 1298 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1299 if (IS_ERR((void *)addr))
1300 return addr;
1301
1302 args->addr_ptr = (uint64_t) addr;
1303
1304 return 0;
1305}
1306
de151cf6
JB
1307/**
1308 * i915_gem_fault - fault a page into the GTT
1309 * vma: VMA in question
1310 * vmf: fault info
1311 *
1312 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313 * from userspace. The fault handler takes care of binding the object to
1314 * the GTT (if needed), allocating and programming a fence register (again,
1315 * only if needed based on whether the old reg is still valid or the object
1316 * is tiled) and inserting a new PTE into the faulting process.
1317 *
1318 * Note that the faulting process may involve evicting existing objects
1319 * from the GTT and/or fence registers to make room. So performance may
1320 * suffer if the GTT working set is large or there are few fence registers
1321 * left.
1322 */
1323int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324{
05394f39
CW
1325 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326 struct drm_device *dev = obj->base.dev;
7d1c4804 1327 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1328 pgoff_t page_offset;
1329 unsigned long pfn;
1330 int ret = 0;
0f973f27 1331 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1332
1333 /* We don't use vmf->pgoff since that has the fake offset */
1334 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335 PAGE_SHIFT;
1336
d9bc7e9f
CW
1337 ret = i915_mutex_lock_interruptible(dev);
1338 if (ret)
1339 goto out;
a00b10c3 1340
db53a302
CW
1341 trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
eb119bd6
CW
1343 /* Access to snoopable pages through the GTT is incoherent. */
1344 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345 ret = -EINVAL;
1346 goto unlock;
1347 }
1348
d9bc7e9f 1349 /* Now bind it into the GTT if needed */
c9839303
CW
1350 ret = i915_gem_object_pin(obj, 0, true, false);
1351 if (ret)
1352 goto unlock;
4a684a41 1353
c9839303
CW
1354 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355 if (ret)
1356 goto unpin;
74898d7e 1357
06d98131 1358 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1359 if (ret)
c9839303 1360 goto unpin;
7d1c4804 1361
6299f992
CW
1362 obj->fault_mappable = true;
1363
5d4545ae 1364 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1365 page_offset;
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1369unpin:
1370 i915_gem_object_unpin(obj);
c715089f 1371unlock:
de151cf6 1372 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1373out:
de151cf6 1374 switch (ret) {
d9bc7e9f 1375 case -EIO:
a9340cca
DV
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1f83fee0 1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1380 return VM_FAULT_SIGBUS;
045e769a 1381 case -EAGAIN:
d9bc7e9f
CW
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
045e769a 1389 set_need_resched();
c715089f
CW
1390 case 0:
1391 case -ERESTARTSYS:
bed636ab 1392 case -EINTR:
e79e0fe3
DR
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
c715089f 1398 return VM_FAULT_NOPAGE;
de151cf6 1399 case -ENOMEM:
de151cf6 1400 return VM_FAULT_OOM;
a7c2e1aa
DV
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
de151cf6 1403 default:
a7c2e1aa 1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1405 return VM_FAULT_SIGBUS;
de151cf6
JB
1406 }
1407}
1408
901782b2
CW
1409/**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
af901ca1 1413 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
d05ca301 1423void
05394f39 1424i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1425{
6299f992
CW
1426 if (!obj->fault_mappable)
1427 return;
901782b2 1428
f6e47884
CW
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
fb7d516a 1433
6299f992 1434 obj->fault_mappable = false;
901782b2
CW
1435}
1436
0fa87796 1437uint32_t
e28f8711 1438i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1439{
e28f8711 1440 uint32_t gtt_size;
92b88aeb
CW
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
92b88aeb
CW
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1448 gtt_size = 1024*1024;
92b88aeb 1449 else
e28f8711 1450 gtt_size = 512*1024;
92b88aeb 1451
e28f8711
CW
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
92b88aeb 1454
e28f8711 1455 return gtt_size;
92b88aeb
CW
1456}
1457
de151cf6
JB
1458/**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
5e783301 1463 * potential fence register mapping.
de151cf6 1464 */
d865110c
ID
1465uint32_t
1466i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
de151cf6 1468{
de151cf6
JB
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
d865110c 1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1474 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1475 return 4096;
1476
a00b10c3
CW
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
e28f8711 1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1482}
1483
d8cb5086
CW
1484static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485{
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
da494d7c
DV
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
d8cb5086
CW
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
da494d7c 1496 goto out;
d8cb5086
CW
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
da494d7c 1508 goto out;
d8cb5086
CW
1509
1510 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
d8cb5086
CW
1516}
1517
1518static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519{
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524}
1525
de151cf6 1526int
ff72145b
DA
1527i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
de151cf6 1531{
da761a6e 1532 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1533 struct drm_i915_gem_object *obj;
de151cf6
JB
1534 int ret;
1535
76c1dec1 1536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1537 if (ret)
76c1dec1 1538 return ret;
de151cf6 1539
ff72145b 1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1541 if (&obj->base == NULL) {
1d7cfea1
CW
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
de151cf6 1545
5d4545ae 1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1547 ret = -E2BIG;
ff56b0bc 1548 goto out;
da761a6e
CW
1549 }
1550
05394f39 1551 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1553 ret = -EINVAL;
1554 goto out;
ab18282d
CW
1555 }
1556
d8cb5086
CW
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
de151cf6 1560
ff72145b 1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1562
1d7cfea1 1563out:
05394f39 1564 drm_gem_object_unreference(&obj->base);
1d7cfea1 1565unlock:
de151cf6 1566 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1567 return ret;
de151cf6
JB
1568}
1569
ff72145b
DA
1570/**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585int
1586i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588{
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
ff72145b
DA
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592}
1593
225067ee
DV
1594/* Immediately discard the backing storage */
1595static void
1596i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1597{
e5281ccd 1598 struct inode *inode;
e5281ccd 1599
4d6294bf 1600 i915_gem_object_free_mmap_offset(obj);
1286ff73 1601
4d6294bf
CW
1602 if (obj->base.filp == NULL)
1603 return;
e5281ccd 1604
225067ee
DV
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
496ad9aa 1610 inode = file_inode(obj->base.filp);
225067ee 1611 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1612
225067ee
DV
1613 obj->madv = __I915_MADV_PURGED;
1614}
e5281ccd 1615
225067ee
DV
1616static inline int
1617i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618{
1619 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1620}
1621
5cdf5881 1622static void
05394f39 1623i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1624{
90797e6d
ID
1625 struct sg_page_iter sg_iter;
1626 int ret;
1286ff73 1627
05394f39 1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1629
6c085a72
CW
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
6dacfd2f 1640 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
05394f39
CW
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
3ef94daa 1645
90797e6d 1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1647 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1648
05394f39 1649 if (obj->dirty)
9da3da66 1650 set_page_dirty(page);
3ef94daa 1651
05394f39 1652 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1653 mark_page_accessed(page);
3ef94daa 1654
9da3da66 1655 page_cache_release(page);
3ef94daa 1656 }
05394f39 1657 obj->dirty = 0;
673a394b 1658
9da3da66
CW
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
37e680a1 1661}
6c085a72 1662
dd624afd 1663int
37e680a1
CW
1664i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665{
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
2f745ad3 1668 if (obj->pages == NULL)
37e680a1
CW
1669 return 0;
1670
1671 BUG_ON(obj->gtt_space);
6c085a72 1672
a5570178
CW
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
a2165e31
CW
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
1679 list_del(&obj->gtt_list);
1680
37e680a1 1681 ops->put_pages(obj);
05394f39 1682 obj->pages = NULL;
37e680a1 1683
6c085a72
CW
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688}
1689
1690static long
93927ca5
DV
1691__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
6c085a72
CW
1693{
1694 struct drm_i915_gem_object *obj, *next;
1695 long count = 0;
1696
1697 list_for_each_entry_safe(obj, next,
1698 &dev_priv->mm.unbound_list,
1699 gtt_list) {
93927ca5 1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1701 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1702 count += obj->base.size >> PAGE_SHIFT;
1703 if (count >= target)
1704 return count;
1705 }
1706 }
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.inactive_list,
1710 mm_list) {
93927ca5 1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
6c085a72 1712 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1713 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1714 count += obj->base.size >> PAGE_SHIFT;
1715 if (count >= target)
1716 return count;
1717 }
1718 }
1719
1720 return count;
1721}
1722
93927ca5
DV
1723static long
1724i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725{
1726 return __i915_gem_shrink(dev_priv, target, true);
1727}
1728
6c085a72
CW
1729static void
1730i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731{
1732 struct drm_i915_gem_object *obj, *next;
1733
1734 i915_gem_evict_everything(dev_priv->dev);
1735
1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1737 i915_gem_object_put_pages(obj);
225067ee
DV
1738}
1739
37e680a1 1740static int
6c085a72 1741i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1742{
6c085a72 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1744 int page_count, i;
1745 struct address_space *mapping;
9da3da66
CW
1746 struct sg_table *st;
1747 struct scatterlist *sg;
90797e6d 1748 struct sg_page_iter sg_iter;
e5281ccd 1749 struct page *page;
90797e6d 1750 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1751 gfp_t gfp;
e5281ccd 1752
6c085a72
CW
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
9da3da66
CW
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
05394f39 1764 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
e5281ccd 1768 return -ENOMEM;
9da3da66 1769 }
e5281ccd 1770
9da3da66
CW
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
496ad9aa 1776 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1777 gfp = mapping_gfp_mask(mapping);
caf49191 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
6c085a72
CW
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
caf49191 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
caf49191 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
e5281ccd 1804
90797e6d
ID
1805 if (!i || page_to_pfn(page) != last_pfn + 1) {
1806 if (i)
1807 sg = sg_next(sg);
1808 st->nents++;
1809 sg_set_page(sg, page, PAGE_SIZE, 0);
1810 } else {
1811 sg->length += PAGE_SIZE;
1812 }
1813 last_pfn = page_to_pfn(page);
e5281ccd
CW
1814 }
1815
90797e6d 1816 sg_mark_end(sg);
74ce6b6c
CW
1817 obj->pages = st;
1818
6dacfd2f 1819 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1820 i915_gem_object_do_bit_17_swizzle(obj);
1821
1822 return 0;
1823
1824err_pages:
90797e6d
ID
1825 sg_mark_end(sg);
1826 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1827 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1828 sg_free_table(st);
1829 kfree(st);
e5281ccd 1830 return PTR_ERR(page);
673a394b
EA
1831}
1832
37e680a1
CW
1833/* Ensure that the associated pages are gathered from the backing storage
1834 * and pinned into our object. i915_gem_object_get_pages() may be called
1835 * multiple times before they are released by a single call to
1836 * i915_gem_object_put_pages() - once the pages are no longer referenced
1837 * either as a result of memory pressure (reaping pages under the shrinker)
1838 * or as the object is itself released.
1839 */
1840int
1841i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1842{
1843 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1844 const struct drm_i915_gem_object_ops *ops = obj->ops;
1845 int ret;
1846
2f745ad3 1847 if (obj->pages)
37e680a1
CW
1848 return 0;
1849
43e28f09
CW
1850 if (obj->madv != I915_MADV_WILLNEED) {
1851 DRM_ERROR("Attempting to obtain a purgeable object\n");
1852 return -EINVAL;
1853 }
1854
a5570178
CW
1855 BUG_ON(obj->pages_pin_count);
1856
37e680a1
CW
1857 ret = ops->get_pages(obj);
1858 if (ret)
1859 return ret;
1860
1861 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1862 return 0;
673a394b
EA
1863}
1864
54cf91dc 1865void
05394f39 1866i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1867 struct intel_ring_buffer *ring)
673a394b 1868{
05394f39 1869 struct drm_device *dev = obj->base.dev;
69dc4987 1870 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1871 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1872
852835f3 1873 BUG_ON(ring == NULL);
05394f39 1874 obj->ring = ring;
673a394b
EA
1875
1876 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1877 if (!obj->active) {
1878 drm_gem_object_reference(&obj->base);
1879 obj->active = 1;
673a394b 1880 }
e35a41de 1881
673a394b 1882 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1883 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1884 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1885
0201f1ec 1886 obj->last_read_seqno = seqno;
caea7476 1887
7dd49065 1888 if (obj->fenced_gpu_access) {
caea7476 1889 obj->last_fenced_seqno = seqno;
caea7476 1890
7dd49065
CW
1891 /* Bump MRU to take account of the delayed flush */
1892 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1893 struct drm_i915_fence_reg *reg;
1894
1895 reg = &dev_priv->fence_regs[obj->fence_reg];
1896 list_move_tail(&reg->lru_list,
1897 &dev_priv->mm.fence_list);
1898 }
caea7476
CW
1899 }
1900}
1901
1902static void
caea7476 1903i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1904{
05394f39 1905 struct drm_device *dev = obj->base.dev;
caea7476 1906 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1907
65ce3027 1908 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1909 BUG_ON(!obj->active);
caea7476 1910
1b50247a 1911 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1912
65ce3027 1913 list_del_init(&obj->ring_list);
caea7476
CW
1914 obj->ring = NULL;
1915
65ce3027
CW
1916 obj->last_read_seqno = 0;
1917 obj->last_write_seqno = 0;
1918 obj->base.write_domain = 0;
1919
1920 obj->last_fenced_seqno = 0;
caea7476 1921 obj->fenced_gpu_access = false;
caea7476
CW
1922
1923 obj->active = 0;
1924 drm_gem_object_unreference(&obj->base);
1925
1926 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1927}
673a394b 1928
9d773091 1929static int
fca26bb4 1930i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1931{
9d773091
CW
1932 struct drm_i915_private *dev_priv = dev->dev_private;
1933 struct intel_ring_buffer *ring;
1934 int ret, i, j;
53d227f2 1935
107f27a5 1936 /* Carefully retire all requests without writing to the rings */
9d773091 1937 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1938 ret = intel_ring_idle(ring);
1939 if (ret)
1940 return ret;
9d773091 1941 }
9d773091 1942 i915_gem_retire_requests(dev);
107f27a5
CW
1943
1944 /* Finally reset hw state */
9d773091 1945 for_each_ring(ring, dev_priv, i) {
fca26bb4 1946 intel_ring_init_seqno(ring, seqno);
498d2ac1 1947
9d773091
CW
1948 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1949 ring->sync_seqno[j] = 0;
1950 }
53d227f2 1951
9d773091 1952 return 0;
53d227f2
DV
1953}
1954
fca26bb4
MK
1955int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1956{
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 int ret;
1959
1960 if (seqno == 0)
1961 return -EINVAL;
1962
1963 /* HWS page needs to be set less than what we
1964 * will inject to ring
1965 */
1966 ret = i915_gem_init_seqno(dev, seqno - 1);
1967 if (ret)
1968 return ret;
1969
1970 /* Carefully set the last_seqno value so that wrap
1971 * detection still works
1972 */
1973 dev_priv->next_seqno = seqno;
1974 dev_priv->last_seqno = seqno - 1;
1975 if (dev_priv->last_seqno == 0)
1976 dev_priv->last_seqno--;
1977
1978 return 0;
1979}
1980
9d773091
CW
1981int
1982i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1983{
9d773091
CW
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986 /* reserve 0 for non-seqno */
1987 if (dev_priv->next_seqno == 0) {
fca26bb4 1988 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1989 if (ret)
1990 return ret;
53d227f2 1991
9d773091
CW
1992 dev_priv->next_seqno = 1;
1993 }
53d227f2 1994
f72b3435 1995 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 1996 return 0;
53d227f2
DV
1997}
1998
3cce469c 1999int
db53a302 2000i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 2001 struct drm_file *file,
acb868d3 2002 u32 *out_seqno)
673a394b 2003{
db53a302 2004 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2005 struct drm_i915_gem_request *request;
a71d8d94 2006 u32 request_ring_position;
673a394b 2007 int was_empty;
3cce469c
CW
2008 int ret;
2009
cc889e0f
DV
2010 /*
2011 * Emit any outstanding flushes - execbuf can fail to emit the flush
2012 * after having emitted the batchbuffer command. Hence we need to fix
2013 * things up similar to emitting the lazy request. The difference here
2014 * is that the flush _must_ happen before the next request, no matter
2015 * what.
2016 */
a7b9761d
CW
2017 ret = intel_ring_flush_all_caches(ring);
2018 if (ret)
2019 return ret;
cc889e0f 2020
acb868d3
CW
2021 request = kmalloc(sizeof(*request), GFP_KERNEL);
2022 if (request == NULL)
2023 return -ENOMEM;
cc889e0f 2024
673a394b 2025
a71d8d94
CW
2026 /* Record the position of the start of the request so that
2027 * should we detect the updated seqno part-way through the
2028 * GPU processing the request, we never over-estimate the
2029 * position of the head.
2030 */
2031 request_ring_position = intel_ring_get_tail(ring);
2032
9d773091 2033 ret = ring->add_request(ring);
3bb73aba
CW
2034 if (ret) {
2035 kfree(request);
2036 return ret;
2037 }
673a394b 2038
9d773091 2039 request->seqno = intel_ring_get_seqno(ring);
852835f3 2040 request->ring = ring;
a71d8d94 2041 request->tail = request_ring_position;
673a394b 2042 request->emitted_jiffies = jiffies;
852835f3
ZN
2043 was_empty = list_empty(&ring->request_list);
2044 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2045 request->file_priv = NULL;
852835f3 2046
db53a302
CW
2047 if (file) {
2048 struct drm_i915_file_private *file_priv = file->driver_priv;
2049
1c25595f 2050 spin_lock(&file_priv->mm.lock);
f787a5f5 2051 request->file_priv = file_priv;
b962442e 2052 list_add_tail(&request->client_list,
f787a5f5 2053 &file_priv->mm.request_list);
1c25595f 2054 spin_unlock(&file_priv->mm.lock);
b962442e 2055 }
673a394b 2056
9d773091 2057 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2058 ring->outstanding_lazy_request = 0;
db53a302 2059
f65d9421 2060 if (!dev_priv->mm.suspended) {
3e0dc6b0 2061 if (i915_enable_hangcheck) {
99584db3 2062 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
cecc21fe 2063 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2064 }
f047e395 2065 if (was_empty) {
b3b079db 2066 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2067 &dev_priv->mm.retire_work,
2068 round_jiffies_up_relative(HZ));
f047e395
CW
2069 intel_mark_busy(dev_priv->dev);
2070 }
f65d9421 2071 }
cc889e0f 2072
acb868d3 2073 if (out_seqno)
9d773091 2074 *out_seqno = request->seqno;
3cce469c 2075 return 0;
673a394b
EA
2076}
2077
f787a5f5
CW
2078static inline void
2079i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2080{
1c25595f 2081 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2082
1c25595f
CW
2083 if (!file_priv)
2084 return;
1c5d22f7 2085
1c25595f 2086 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2087 if (request->file_priv) {
2088 list_del(&request->client_list);
2089 request->file_priv = NULL;
2090 }
1c25595f 2091 spin_unlock(&file_priv->mm.lock);
673a394b 2092}
673a394b 2093
dfaae392
CW
2094static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2095 struct intel_ring_buffer *ring)
9375e446 2096{
dfaae392
CW
2097 while (!list_empty(&ring->request_list)) {
2098 struct drm_i915_gem_request *request;
673a394b 2099
dfaae392
CW
2100 request = list_first_entry(&ring->request_list,
2101 struct drm_i915_gem_request,
2102 list);
de151cf6 2103
dfaae392 2104 list_del(&request->list);
f787a5f5 2105 i915_gem_request_remove_from_client(request);
dfaae392
CW
2106 kfree(request);
2107 }
673a394b 2108
dfaae392 2109 while (!list_empty(&ring->active_list)) {
05394f39 2110 struct drm_i915_gem_object *obj;
9375e446 2111
05394f39
CW
2112 obj = list_first_entry(&ring->active_list,
2113 struct drm_i915_gem_object,
2114 ring_list);
9375e446 2115
05394f39 2116 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2117 }
2118}
2119
19b2dbde 2120void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2121{
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 int i;
2124
4b9de737 2125 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2126 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
19b2dbde 2127 i915_gem_write_fence(dev, i, reg->obj);
312817a3
CW
2128 }
2129}
2130
069efc1d 2131void i915_gem_reset(struct drm_device *dev)
673a394b 2132{
77f01230 2133 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2134 struct drm_i915_gem_object *obj;
b4519513 2135 struct intel_ring_buffer *ring;
1ec14ad3 2136 int i;
673a394b 2137
b4519513
CW
2138 for_each_ring(ring, dev_priv, i)
2139 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2140
dfaae392
CW
2141 /* Move everything out of the GPU domains to ensure we do any
2142 * necessary invalidation upon reuse.
2143 */
05394f39 2144 list_for_each_entry(obj,
77f01230 2145 &dev_priv->mm.inactive_list,
69dc4987 2146 mm_list)
77f01230 2147 {
05394f39 2148 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2149 }
069efc1d 2150
19b2dbde 2151 i915_gem_restore_fences(dev);
673a394b
EA
2152}
2153
2154/**
2155 * This function clears the request list as sequence numbers are passed.
2156 */
a71d8d94 2157void
db53a302 2158i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2159{
673a394b
EA
2160 uint32_t seqno;
2161
db53a302 2162 if (list_empty(&ring->request_list))
6c0594a3
KW
2163 return;
2164
db53a302 2165 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2166
b2eadbc8 2167 seqno = ring->get_seqno(ring, true);
1ec14ad3 2168
852835f3 2169 while (!list_empty(&ring->request_list)) {
673a394b 2170 struct drm_i915_gem_request *request;
673a394b 2171
852835f3 2172 request = list_first_entry(&ring->request_list,
673a394b
EA
2173 struct drm_i915_gem_request,
2174 list);
673a394b 2175
dfaae392 2176 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2177 break;
2178
db53a302 2179 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2180 /* We know the GPU must have read the request to have
2181 * sent us the seqno + interrupt, so use the position
2182 * of tail of the request to update the last known position
2183 * of the GPU head.
2184 */
2185 ring->last_retired_head = request->tail;
b84d5f0c
CW
2186
2187 list_del(&request->list);
f787a5f5 2188 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2189 kfree(request);
2190 }
673a394b 2191
b84d5f0c
CW
2192 /* Move any buffers on the active list that are no longer referenced
2193 * by the ringbuffer to the flushing/inactive lists as appropriate.
2194 */
2195 while (!list_empty(&ring->active_list)) {
05394f39 2196 struct drm_i915_gem_object *obj;
b84d5f0c 2197
0206e353 2198 obj = list_first_entry(&ring->active_list,
05394f39
CW
2199 struct drm_i915_gem_object,
2200 ring_list);
673a394b 2201
0201f1ec 2202 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2203 break;
b84d5f0c 2204
65ce3027 2205 i915_gem_object_move_to_inactive(obj);
673a394b 2206 }
9d34e5db 2207
db53a302
CW
2208 if (unlikely(ring->trace_irq_seqno &&
2209 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2210 ring->irq_put(ring);
db53a302 2211 ring->trace_irq_seqno = 0;
9d34e5db 2212 }
23bc5982 2213
db53a302 2214 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2215}
2216
b09a1fec
CW
2217void
2218i915_gem_retire_requests(struct drm_device *dev)
2219{
2220 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2221 struct intel_ring_buffer *ring;
1ec14ad3 2222 int i;
b09a1fec 2223
b4519513
CW
2224 for_each_ring(ring, dev_priv, i)
2225 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2226}
2227
75ef9da2 2228static void
673a394b
EA
2229i915_gem_retire_work_handler(struct work_struct *work)
2230{
2231 drm_i915_private_t *dev_priv;
2232 struct drm_device *dev;
b4519513 2233 struct intel_ring_buffer *ring;
0a58705b
CW
2234 bool idle;
2235 int i;
673a394b
EA
2236
2237 dev_priv = container_of(work, drm_i915_private_t,
2238 mm.retire_work.work);
2239 dev = dev_priv->dev;
2240
891b48cf
CW
2241 /* Come back later if the device is busy... */
2242 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2243 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2244 round_jiffies_up_relative(HZ));
891b48cf
CW
2245 return;
2246 }
673a394b 2247
b09a1fec 2248 i915_gem_retire_requests(dev);
673a394b 2249
0a58705b
CW
2250 /* Send a periodic flush down the ring so we don't hold onto GEM
2251 * objects indefinitely.
673a394b 2252 */
0a58705b 2253 idle = true;
b4519513 2254 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2255 if (ring->gpu_caches_dirty)
2256 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2257
2258 idle &= list_empty(&ring->request_list);
673a394b
EA
2259 }
2260
0a58705b 2261 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2262 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2263 round_jiffies_up_relative(HZ));
f047e395
CW
2264 if (idle)
2265 intel_mark_idle(dev);
0a58705b 2266
673a394b 2267 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2268}
2269
30dfebf3
DV
2270/**
2271 * Ensures that an object will eventually get non-busy by flushing any required
2272 * write domains, emitting any outstanding lazy request and retiring and
2273 * completed requests.
2274 */
2275static int
2276i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2277{
2278 int ret;
2279
2280 if (obj->active) {
0201f1ec 2281 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2282 if (ret)
2283 return ret;
2284
30dfebf3
DV
2285 i915_gem_retire_requests_ring(obj->ring);
2286 }
2287
2288 return 0;
2289}
2290
23ba4fd0
BW
2291/**
2292 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2293 * @DRM_IOCTL_ARGS: standard ioctl arguments
2294 *
2295 * Returns 0 if successful, else an error is returned with the remaining time in
2296 * the timeout parameter.
2297 * -ETIME: object is still busy after timeout
2298 * -ERESTARTSYS: signal interrupted the wait
2299 * -ENONENT: object doesn't exist
2300 * Also possible, but rare:
2301 * -EAGAIN: GPU wedged
2302 * -ENOMEM: damn
2303 * -ENODEV: Internal IRQ fail
2304 * -E?: The add request failed
2305 *
2306 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2307 * non-zero timeout parameter the wait ioctl will wait for the given number of
2308 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2309 * without holding struct_mutex the object may become re-busied before this
2310 * function completes. A similar but shorter * race condition exists in the busy
2311 * ioctl
2312 */
2313int
2314i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2315{
f69061be 2316 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2317 struct drm_i915_gem_wait *args = data;
2318 struct drm_i915_gem_object *obj;
2319 struct intel_ring_buffer *ring = NULL;
eac1f14f 2320 struct timespec timeout_stack, *timeout = NULL;
f69061be 2321 unsigned reset_counter;
23ba4fd0
BW
2322 u32 seqno = 0;
2323 int ret = 0;
2324
eac1f14f
BW
2325 if (args->timeout_ns >= 0) {
2326 timeout_stack = ns_to_timespec(args->timeout_ns);
2327 timeout = &timeout_stack;
2328 }
23ba4fd0
BW
2329
2330 ret = i915_mutex_lock_interruptible(dev);
2331 if (ret)
2332 return ret;
2333
2334 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2335 if (&obj->base == NULL) {
2336 mutex_unlock(&dev->struct_mutex);
2337 return -ENOENT;
2338 }
2339
30dfebf3
DV
2340 /* Need to make sure the object gets inactive eventually. */
2341 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2342 if (ret)
2343 goto out;
2344
2345 if (obj->active) {
0201f1ec 2346 seqno = obj->last_read_seqno;
23ba4fd0
BW
2347 ring = obj->ring;
2348 }
2349
2350 if (seqno == 0)
2351 goto out;
2352
23ba4fd0
BW
2353 /* Do this after OLR check to make sure we make forward progress polling
2354 * on this IOCTL with a 0 timeout (like busy ioctl)
2355 */
2356 if (!args->timeout_ns) {
2357 ret = -ETIME;
2358 goto out;
2359 }
2360
2361 drm_gem_object_unreference(&obj->base);
f69061be 2362 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2363 mutex_unlock(&dev->struct_mutex);
2364
f69061be 2365 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2366 if (timeout)
eac1f14f 2367 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2368 return ret;
2369
2370out:
2371 drm_gem_object_unreference(&obj->base);
2372 mutex_unlock(&dev->struct_mutex);
2373 return ret;
2374}
2375
5816d648
BW
2376/**
2377 * i915_gem_object_sync - sync an object to a ring.
2378 *
2379 * @obj: object which may be in use on another ring.
2380 * @to: ring we wish to use the object on. May be NULL.
2381 *
2382 * This code is meant to abstract object synchronization with the GPU.
2383 * Calling with NULL implies synchronizing the object with the CPU
2384 * rather than a particular GPU ring.
2385 *
2386 * Returns 0 if successful, else propagates up the lower layer error.
2387 */
2911a35b
BW
2388int
2389i915_gem_object_sync(struct drm_i915_gem_object *obj,
2390 struct intel_ring_buffer *to)
2391{
2392 struct intel_ring_buffer *from = obj->ring;
2393 u32 seqno;
2394 int ret, idx;
2395
2396 if (from == NULL || to == from)
2397 return 0;
2398
5816d648 2399 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2400 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2401
2402 idx = intel_ring_sync_index(from, to);
2403
0201f1ec 2404 seqno = obj->last_read_seqno;
2911a35b
BW
2405 if (seqno <= from->sync_seqno[idx])
2406 return 0;
2407
b4aca010
BW
2408 ret = i915_gem_check_olr(obj->ring, seqno);
2409 if (ret)
2410 return ret;
2911a35b 2411
1500f7ea 2412 ret = to->sync_to(to, from, seqno);
e3a5a225 2413 if (!ret)
7b01e260
MK
2414 /* We use last_read_seqno because sync_to()
2415 * might have just caused seqno wrap under
2416 * the radar.
2417 */
2418 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2419
e3a5a225 2420 return ret;
2911a35b
BW
2421}
2422
b5ffc9bc
CW
2423static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2424{
2425 u32 old_write_domain, old_read_domains;
2426
b5ffc9bc
CW
2427 /* Force a pagefault for domain tracking on next user access */
2428 i915_gem_release_mmap(obj);
2429
b97c3d9c
KP
2430 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2431 return;
2432
97c809fd
CW
2433 /* Wait for any direct GTT access to complete */
2434 mb();
2435
b5ffc9bc
CW
2436 old_read_domains = obj->base.read_domains;
2437 old_write_domain = obj->base.write_domain;
2438
2439 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2440 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2441
2442 trace_i915_gem_object_change_domain(obj,
2443 old_read_domains,
2444 old_write_domain);
2445}
2446
673a394b
EA
2447/**
2448 * Unbinds an object from the GTT aperture.
2449 */
0f973f27 2450int
05394f39 2451i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2452{
7bddb01f 2453 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2454 int ret;
673a394b 2455
05394f39 2456 if (obj->gtt_space == NULL)
673a394b
EA
2457 return 0;
2458
31d8d651
CW
2459 if (obj->pin_count)
2460 return -EBUSY;
673a394b 2461
c4670ad0
CW
2462 BUG_ON(obj->pages == NULL);
2463
a8198eea 2464 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2465 if (ret)
a8198eea
CW
2466 return ret;
2467 /* Continue on if we fail due to EIO, the GPU is hung so we
2468 * should be safe and we need to cleanup or else we might
2469 * cause memory corruption through use-after-free.
2470 */
2471
b5ffc9bc 2472 i915_gem_object_finish_gtt(obj);
5323fd04 2473
96b47b65 2474 /* release the fence reg _after_ flushing */
d9e86c0e 2475 ret = i915_gem_object_put_fence(obj);
1488fc08 2476 if (ret)
d9e86c0e 2477 return ret;
96b47b65 2478
db53a302
CW
2479 trace_i915_gem_object_unbind(obj);
2480
74898d7e
DV
2481 if (obj->has_global_gtt_mapping)
2482 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2483 if (obj->has_aliasing_ppgtt_mapping) {
2484 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2485 obj->has_aliasing_ppgtt_mapping = 0;
2486 }
74163907 2487 i915_gem_gtt_finish_object(obj);
7bddb01f 2488
6c085a72
CW
2489 list_del(&obj->mm_list);
2490 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2491 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2492 obj->map_and_fenceable = true;
673a394b 2493
05394f39
CW
2494 drm_mm_put_block(obj->gtt_space);
2495 obj->gtt_space = NULL;
2496 obj->gtt_offset = 0;
673a394b 2497
88241785 2498 return 0;
54cf91dc
CW
2499}
2500
b2da9fe5 2501int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2502{
2503 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2504 struct intel_ring_buffer *ring;
1ec14ad3 2505 int ret, i;
4df2faf4 2506
4df2faf4 2507 /* Flush everything onto the inactive list. */
b4519513 2508 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2509 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2510 if (ret)
2511 return ret;
2512
3e960501 2513 ret = intel_ring_idle(ring);
1ec14ad3
CW
2514 if (ret)
2515 return ret;
2516 }
4df2faf4 2517
8a1a49f9 2518 return 0;
4df2faf4
DV
2519}
2520
9ce079e4
CW
2521static void i965_write_fence_reg(struct drm_device *dev, int reg,
2522 struct drm_i915_gem_object *obj)
de151cf6 2523{
de151cf6 2524 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2525 int fence_reg;
2526 int fence_pitch_shift;
de151cf6
JB
2527 uint64_t val;
2528
56c844e5
ID
2529 if (INTEL_INFO(dev)->gen >= 6) {
2530 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2531 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2532 } else {
2533 fence_reg = FENCE_REG_965_0;
2534 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2535 }
2536
9ce079e4
CW
2537 if (obj) {
2538 u32 size = obj->gtt_space->size;
de151cf6 2539
9ce079e4
CW
2540 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2541 0xfffff000) << 32;
2542 val |= obj->gtt_offset & 0xfffff000;
56c844e5 2543 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2544 if (obj->tiling_mode == I915_TILING_Y)
2545 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2546 val |= I965_FENCE_REG_VALID;
2547 } else
2548 val = 0;
c6642782 2549
56c844e5
ID
2550 fence_reg += reg * 8;
2551 I915_WRITE64(fence_reg, val);
2552 POSTING_READ(fence_reg);
de151cf6
JB
2553}
2554
9ce079e4
CW
2555static void i915_write_fence_reg(struct drm_device *dev, int reg,
2556 struct drm_i915_gem_object *obj)
de151cf6 2557{
de151cf6 2558 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2559 u32 val;
de151cf6 2560
9ce079e4
CW
2561 if (obj) {
2562 u32 size = obj->gtt_space->size;
2563 int pitch_val;
2564 int tile_width;
c6642782 2565
9ce079e4
CW
2566 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2567 (size & -size) != size ||
2568 (obj->gtt_offset & (size - 1)),
2569 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2570 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2571
9ce079e4
CW
2572 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2573 tile_width = 128;
2574 else
2575 tile_width = 512;
2576
2577 /* Note: pitch better be a power of two tile widths */
2578 pitch_val = obj->stride / tile_width;
2579 pitch_val = ffs(pitch_val) - 1;
2580
2581 val = obj->gtt_offset;
2582 if (obj->tiling_mode == I915_TILING_Y)
2583 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2584 val |= I915_FENCE_SIZE_BITS(size);
2585 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2586 val |= I830_FENCE_REG_VALID;
2587 } else
2588 val = 0;
2589
2590 if (reg < 8)
2591 reg = FENCE_REG_830_0 + reg * 4;
2592 else
2593 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2594
2595 I915_WRITE(reg, val);
2596 POSTING_READ(reg);
de151cf6
JB
2597}
2598
9ce079e4
CW
2599static void i830_write_fence_reg(struct drm_device *dev, int reg,
2600 struct drm_i915_gem_object *obj)
de151cf6 2601{
de151cf6 2602 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2603 uint32_t val;
de151cf6 2604
9ce079e4
CW
2605 if (obj) {
2606 u32 size = obj->gtt_space->size;
2607 uint32_t pitch_val;
de151cf6 2608
9ce079e4
CW
2609 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2610 (size & -size) != size ||
2611 (obj->gtt_offset & (size - 1)),
2612 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2613 obj->gtt_offset, size);
e76a16de 2614
9ce079e4
CW
2615 pitch_val = obj->stride / 128;
2616 pitch_val = ffs(pitch_val) - 1;
de151cf6 2617
9ce079e4
CW
2618 val = obj->gtt_offset;
2619 if (obj->tiling_mode == I915_TILING_Y)
2620 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2621 val |= I830_FENCE_SIZE_BITS(size);
2622 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2623 val |= I830_FENCE_REG_VALID;
2624 } else
2625 val = 0;
c6642782 2626
9ce079e4
CW
2627 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2628 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2629}
2630
d0a57789
CW
2631inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2632{
2633 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2634}
2635
9ce079e4
CW
2636static void i915_gem_write_fence(struct drm_device *dev, int reg,
2637 struct drm_i915_gem_object *obj)
2638{
d0a57789
CW
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640
2641 /* Ensure that all CPU reads are completed before installing a fence
2642 * and all writes before removing the fence.
2643 */
2644 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2645 mb();
2646
9ce079e4
CW
2647 switch (INTEL_INFO(dev)->gen) {
2648 case 7:
56c844e5 2649 case 6:
9ce079e4
CW
2650 case 5:
2651 case 4: i965_write_fence_reg(dev, reg, obj); break;
2652 case 3: i915_write_fence_reg(dev, reg, obj); break;
2653 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2654 default: BUG();
9ce079e4 2655 }
d0a57789
CW
2656
2657 /* And similarly be paranoid that no direct access to this region
2658 * is reordered to before the fence is installed.
2659 */
2660 if (i915_gem_object_needs_mb(obj))
2661 mb();
de151cf6
JB
2662}
2663
61050808
CW
2664static inline int fence_number(struct drm_i915_private *dev_priv,
2665 struct drm_i915_fence_reg *fence)
2666{
2667 return fence - dev_priv->fence_regs;
2668}
2669
25ff1195
CW
2670static void i915_gem_write_fence__ipi(void *data)
2671{
2672 wbinvd();
2673}
2674
61050808
CW
2675static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2676 struct drm_i915_fence_reg *fence,
2677 bool enable)
2678{
25ff1195
CW
2679 struct drm_device *dev = obj->base.dev;
2680 struct drm_i915_private *dev_priv = dev->dev_private;
2681 int fence_reg = fence_number(dev_priv, fence);
2682
2683 /* In order to fully serialize access to the fenced region and
2684 * the update to the fence register we need to take extreme
2685 * measures on SNB+. In theory, the write to the fence register
2686 * flushes all memory transactions before, and coupled with the
2687 * mb() placed around the register write we serialise all memory
2688 * operations with respect to the changes in the tiler. Yet, on
2689 * SNB+ we need to take a step further and emit an explicit wbinvd()
2690 * on each processor in order to manually flush all memory
2691 * transactions before updating the fence register.
2692 */
2693 if (HAS_LLC(obj->base.dev))
2694 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2695 i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
61050808
CW
2696
2697 if (enable) {
25ff1195 2698 obj->fence_reg = fence_reg;
61050808
CW
2699 fence->obj = obj;
2700 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2701 } else {
2702 obj->fence_reg = I915_FENCE_REG_NONE;
2703 fence->obj = NULL;
2704 list_del_init(&fence->lru_list);
2705 }
2706}
2707
d9e86c0e 2708static int
d0a57789 2709i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2710{
1c293ea3 2711 if (obj->last_fenced_seqno) {
86d5bc37 2712 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2713 if (ret)
2714 return ret;
d9e86c0e
CW
2715
2716 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2717 }
2718
86d5bc37 2719 obj->fenced_gpu_access = false;
d9e86c0e
CW
2720 return 0;
2721}
2722
2723int
2724i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2725{
61050808 2726 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2727 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2728 int ret;
2729
d0a57789 2730 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2731 if (ret)
2732 return ret;
2733
61050808
CW
2734 if (obj->fence_reg == I915_FENCE_REG_NONE)
2735 return 0;
d9e86c0e 2736
f9c513e9
CW
2737 fence = &dev_priv->fence_regs[obj->fence_reg];
2738
61050808 2739 i915_gem_object_fence_lost(obj);
f9c513e9 2740 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2741
2742 return 0;
2743}
2744
2745static struct drm_i915_fence_reg *
a360bb1a 2746i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2747{
ae3db24a 2748 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2749 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2750 int i;
ae3db24a
DV
2751
2752 /* First try to find a free reg */
d9e86c0e 2753 avail = NULL;
ae3db24a
DV
2754 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2755 reg = &dev_priv->fence_regs[i];
2756 if (!reg->obj)
d9e86c0e 2757 return reg;
ae3db24a 2758
1690e1eb 2759 if (!reg->pin_count)
d9e86c0e 2760 avail = reg;
ae3db24a
DV
2761 }
2762
d9e86c0e
CW
2763 if (avail == NULL)
2764 return NULL;
ae3db24a
DV
2765
2766 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2767 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2768 if (reg->pin_count)
ae3db24a
DV
2769 continue;
2770
8fe301ad 2771 return reg;
ae3db24a
DV
2772 }
2773
8fe301ad 2774 return NULL;
ae3db24a
DV
2775}
2776
de151cf6 2777/**
9a5a53b3 2778 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2779 * @obj: object to map through a fence reg
2780 *
2781 * When mapping objects through the GTT, userspace wants to be able to write
2782 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2783 * This function walks the fence regs looking for a free one for @obj,
2784 * stealing one if it can't find any.
2785 *
2786 * It then sets up the reg based on the object's properties: address, pitch
2787 * and tiling format.
9a5a53b3
CW
2788 *
2789 * For an untiled surface, this removes any existing fence.
de151cf6 2790 */
8c4b8c3f 2791int
06d98131 2792i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2793{
05394f39 2794 struct drm_device *dev = obj->base.dev;
79e53945 2795 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2796 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2797 struct drm_i915_fence_reg *reg;
ae3db24a 2798 int ret;
de151cf6 2799
14415745
CW
2800 /* Have we updated the tiling parameters upon the object and so
2801 * will need to serialise the write to the associated fence register?
2802 */
5d82e3e6 2803 if (obj->fence_dirty) {
d0a57789 2804 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2805 if (ret)
2806 return ret;
2807 }
9a5a53b3 2808
d9e86c0e 2809 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2810 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2811 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2812 if (!obj->fence_dirty) {
14415745
CW
2813 list_move_tail(&reg->lru_list,
2814 &dev_priv->mm.fence_list);
2815 return 0;
2816 }
2817 } else if (enable) {
2818 reg = i915_find_fence_reg(dev);
2819 if (reg == NULL)
2820 return -EDEADLK;
d9e86c0e 2821
14415745
CW
2822 if (reg->obj) {
2823 struct drm_i915_gem_object *old = reg->obj;
2824
d0a57789 2825 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2826 if (ret)
2827 return ret;
2828
14415745 2829 i915_gem_object_fence_lost(old);
29c5a587 2830 }
14415745 2831 } else
a09ba7fa 2832 return 0;
a09ba7fa 2833
14415745 2834 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2835 obj->fence_dirty = false;
14415745 2836
9ce079e4 2837 return 0;
de151cf6
JB
2838}
2839
42d6ab48
CW
2840static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2841 struct drm_mm_node *gtt_space,
2842 unsigned long cache_level)
2843{
2844 struct drm_mm_node *other;
2845
2846 /* On non-LLC machines we have to be careful when putting differing
2847 * types of snoopable memory together to avoid the prefetcher
4239ca77 2848 * crossing memory domains and dying.
42d6ab48
CW
2849 */
2850 if (HAS_LLC(dev))
2851 return true;
2852
2853 if (gtt_space == NULL)
2854 return true;
2855
2856 if (list_empty(&gtt_space->node_list))
2857 return true;
2858
2859 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2860 if (other->allocated && !other->hole_follows && other->color != cache_level)
2861 return false;
2862
2863 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2864 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2865 return false;
2866
2867 return true;
2868}
2869
2870static void i915_gem_verify_gtt(struct drm_device *dev)
2871{
2872#if WATCH_GTT
2873 struct drm_i915_private *dev_priv = dev->dev_private;
2874 struct drm_i915_gem_object *obj;
2875 int err = 0;
2876
2877 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2878 if (obj->gtt_space == NULL) {
2879 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2880 err++;
2881 continue;
2882 }
2883
2884 if (obj->cache_level != obj->gtt_space->color) {
2885 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2886 obj->gtt_space->start,
2887 obj->gtt_space->start + obj->gtt_space->size,
2888 obj->cache_level,
2889 obj->gtt_space->color);
2890 err++;
2891 continue;
2892 }
2893
2894 if (!i915_gem_valid_gtt_space(dev,
2895 obj->gtt_space,
2896 obj->cache_level)) {
2897 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2898 obj->gtt_space->start,
2899 obj->gtt_space->start + obj->gtt_space->size,
2900 obj->cache_level);
2901 err++;
2902 continue;
2903 }
2904 }
2905
2906 WARN_ON(err);
2907#endif
2908}
2909
673a394b
EA
2910/**
2911 * Finds free space in the GTT aperture and binds the object there.
2912 */
2913static int
05394f39 2914i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2915 unsigned alignment,
86a1ee26
CW
2916 bool map_and_fenceable,
2917 bool nonblocking)
673a394b 2918{
05394f39 2919 struct drm_device *dev = obj->base.dev;
673a394b 2920 drm_i915_private_t *dev_priv = dev->dev_private;
dc9dd7a2 2921 struct drm_mm_node *node;
5e783301 2922 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2923 bool mappable, fenceable;
07f73f69 2924 int ret;
673a394b 2925
e28f8711
CW
2926 fence_size = i915_gem_get_gtt_size(dev,
2927 obj->base.size,
2928 obj->tiling_mode);
2929 fence_alignment = i915_gem_get_gtt_alignment(dev,
2930 obj->base.size,
d865110c 2931 obj->tiling_mode, true);
e28f8711 2932 unfenced_alignment =
d865110c 2933 i915_gem_get_gtt_alignment(dev,
e28f8711 2934 obj->base.size,
d865110c 2935 obj->tiling_mode, false);
a00b10c3 2936
673a394b 2937 if (alignment == 0)
5e783301
DV
2938 alignment = map_and_fenceable ? fence_alignment :
2939 unfenced_alignment;
75e9e915 2940 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2941 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2942 return -EINVAL;
2943 }
2944
05394f39 2945 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2946
654fc607
CW
2947 /* If the object is bigger than the entire aperture, reject it early
2948 * before evicting everything in a vain attempt to find space.
2949 */
05394f39 2950 if (obj->base.size >
5d4545ae 2951 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
654fc607
CW
2952 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2953 return -E2BIG;
2954 }
2955
37e680a1 2956 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2957 if (ret)
2958 return ret;
2959
fbdda6fb
CW
2960 i915_gem_object_pin_pages(obj);
2961
dc9dd7a2
CW
2962 node = kzalloc(sizeof(*node), GFP_KERNEL);
2963 if (node == NULL) {
2964 i915_gem_object_unpin_pages(obj);
2965 return -ENOMEM;
2966 }
2967
673a394b 2968 search_free:
75e9e915 2969 if (map_and_fenceable)
dc9dd7a2
CW
2970 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2971 size, alignment, obj->cache_level,
5d4545ae 2972 0, dev_priv->gtt.mappable_end);
920afa77 2973 else
dc9dd7a2
CW
2974 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2975 size, alignment, obj->cache_level);
2976 if (ret) {
75e9e915 2977 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2978 obj->cache_level,
86a1ee26
CW
2979 map_and_fenceable,
2980 nonblocking);
dc9dd7a2
CW
2981 if (ret == 0)
2982 goto search_free;
9731129c 2983
dc9dd7a2
CW
2984 i915_gem_object_unpin_pages(obj);
2985 kfree(node);
2986 return ret;
673a394b 2987 }
dc9dd7a2 2988 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
fbdda6fb 2989 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2990 drm_mm_put_block(node);
42d6ab48 2991 return -EINVAL;
673a394b
EA
2992 }
2993
74163907 2994 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2995 if (ret) {
fbdda6fb 2996 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2997 drm_mm_put_block(node);
6c085a72 2998 return ret;
673a394b 2999 }
673a394b 3000
6c085a72 3001 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 3002 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 3003
dc9dd7a2
CW
3004 obj->gtt_space = node;
3005 obj->gtt_offset = node->start;
1c5d22f7 3006
75e9e915 3007 fenceable =
dc9dd7a2
CW
3008 node->size == fence_size &&
3009 (node->start & (fence_alignment - 1)) == 0;
a00b10c3 3010
75e9e915 3011 mappable =
5d4545ae 3012 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
a00b10c3 3013
05394f39 3014 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3015
fbdda6fb 3016 i915_gem_object_unpin_pages(obj);
db53a302 3017 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3018 i915_gem_verify_gtt(dev);
673a394b
EA
3019 return 0;
3020}
3021
3022void
05394f39 3023i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3024{
673a394b
EA
3025 /* If we don't have a page list set up, then we're not pinned
3026 * to GPU, and we can ignore the cache flush because it'll happen
3027 * again at bind time.
3028 */
05394f39 3029 if (obj->pages == NULL)
673a394b
EA
3030 return;
3031
769ce464
ID
3032 /*
3033 * Stolen memory is always coherent with the GPU as it is explicitly
3034 * marked as wc by the system, or the system is cache-coherent.
3035 */
3036 if (obj->stolen)
3037 return;
3038
9c23f7fc
CW
3039 /* If the GPU is snooping the contents of the CPU cache,
3040 * we do not need to manually clear the CPU cache lines. However,
3041 * the caches are only snooped when the render cache is
3042 * flushed/invalidated. As we always have to emit invalidations
3043 * and flushes when moving into and out of the RENDER domain, correct
3044 * snooping behaviour occurs naturally as the result of our domain
3045 * tracking.
3046 */
3047 if (obj->cache_level != I915_CACHE_NONE)
3048 return;
3049
1c5d22f7 3050 trace_i915_gem_object_clflush(obj);
cfa16a0d 3051
9da3da66 3052 drm_clflush_sg(obj->pages);
e47c68e9
EA
3053}
3054
3055/** Flushes the GTT write domain for the object if it's dirty. */
3056static void
05394f39 3057i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3058{
1c5d22f7
CW
3059 uint32_t old_write_domain;
3060
05394f39 3061 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3062 return;
3063
63256ec5 3064 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3065 * to it immediately go to main memory as far as we know, so there's
3066 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3067 *
3068 * However, we do have to enforce the order so that all writes through
3069 * the GTT land before any writes to the device, such as updates to
3070 * the GATT itself.
e47c68e9 3071 */
63256ec5
CW
3072 wmb();
3073
05394f39
CW
3074 old_write_domain = obj->base.write_domain;
3075 obj->base.write_domain = 0;
1c5d22f7
CW
3076
3077 trace_i915_gem_object_change_domain(obj,
05394f39 3078 obj->base.read_domains,
1c5d22f7 3079 old_write_domain);
e47c68e9
EA
3080}
3081
3082/** Flushes the CPU write domain for the object if it's dirty. */
3083static void
05394f39 3084i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3085{
1c5d22f7 3086 uint32_t old_write_domain;
e47c68e9 3087
05394f39 3088 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3089 return;
3090
3091 i915_gem_clflush_object(obj);
e76e9aeb 3092 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3093 old_write_domain = obj->base.write_domain;
3094 obj->base.write_domain = 0;
1c5d22f7
CW
3095
3096 trace_i915_gem_object_change_domain(obj,
05394f39 3097 obj->base.read_domains,
1c5d22f7 3098 old_write_domain);
e47c68e9
EA
3099}
3100
2ef7eeaa
EA
3101/**
3102 * Moves a single object to the GTT read, and possibly write domain.
3103 *
3104 * This function returns when the move is complete, including waiting on
3105 * flushes to occur.
3106 */
79e53945 3107int
2021746e 3108i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3109{
8325a09d 3110 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3111 uint32_t old_write_domain, old_read_domains;
e47c68e9 3112 int ret;
2ef7eeaa 3113
02354392 3114 /* Not valid to be called on unbound objects. */
05394f39 3115 if (obj->gtt_space == NULL)
02354392
EA
3116 return -EINVAL;
3117
8d7e3de1
CW
3118 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3119 return 0;
3120
0201f1ec 3121 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3122 if (ret)
3123 return ret;
3124
7213342d 3125 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3126
d0a57789
CW
3127 /* Serialise direct access to this object with the barriers for
3128 * coherent writes from the GPU, by effectively invalidating the
3129 * GTT domain upon first access.
3130 */
3131 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3132 mb();
3133
05394f39
CW
3134 old_write_domain = obj->base.write_domain;
3135 old_read_domains = obj->base.read_domains;
1c5d22f7 3136
e47c68e9
EA
3137 /* It should now be out of any other write domains, and we can update
3138 * the domain values for our changes.
3139 */
05394f39
CW
3140 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3141 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3142 if (write) {
05394f39
CW
3143 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3144 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3145 obj->dirty = 1;
2ef7eeaa
EA
3146 }
3147
1c5d22f7
CW
3148 trace_i915_gem_object_change_domain(obj,
3149 old_read_domains,
3150 old_write_domain);
3151
8325a09d
CW
3152 /* And bump the LRU for this access */
3153 if (i915_gem_object_is_inactive(obj))
3154 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3155
e47c68e9
EA
3156 return 0;
3157}
3158
e4ffd173
CW
3159int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3160 enum i915_cache_level cache_level)
3161{
7bddb01f
DV
3162 struct drm_device *dev = obj->base.dev;
3163 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3164 int ret;
3165
3166 if (obj->cache_level == cache_level)
3167 return 0;
3168
3169 if (obj->pin_count) {
3170 DRM_DEBUG("can not change the cache level of pinned objects\n");
3171 return -EBUSY;
3172 }
3173
42d6ab48
CW
3174 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3175 ret = i915_gem_object_unbind(obj);
3176 if (ret)
3177 return ret;
3178 }
3179
e4ffd173
CW
3180 if (obj->gtt_space) {
3181 ret = i915_gem_object_finish_gpu(obj);
3182 if (ret)
3183 return ret;
3184
3185 i915_gem_object_finish_gtt(obj);
3186
3187 /* Before SandyBridge, you could not use tiling or fence
3188 * registers with snooped memory, so relinquish any fences
3189 * currently pointing to our region in the aperture.
3190 */
42d6ab48 3191 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3192 ret = i915_gem_object_put_fence(obj);
3193 if (ret)
3194 return ret;
3195 }
3196
74898d7e
DV
3197 if (obj->has_global_gtt_mapping)
3198 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3199 if (obj->has_aliasing_ppgtt_mapping)
3200 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3201 obj, cache_level);
42d6ab48
CW
3202
3203 obj->gtt_space->color = cache_level;
e4ffd173
CW
3204 }
3205
3206 if (cache_level == I915_CACHE_NONE) {
3207 u32 old_read_domains, old_write_domain;
3208
3209 /* If we're coming from LLC cached, then we haven't
3210 * actually been tracking whether the data is in the
3211 * CPU cache or not, since we only allow one bit set
3212 * in obj->write_domain and have been skipping the clflushes.
3213 * Just set it to the CPU cache for now.
3214 */
3215 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3216 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3217
3218 old_read_domains = obj->base.read_domains;
3219 old_write_domain = obj->base.write_domain;
3220
3221 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3222 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3223
3224 trace_i915_gem_object_change_domain(obj,
3225 old_read_domains,
3226 old_write_domain);
3227 }
3228
3229 obj->cache_level = cache_level;
42d6ab48 3230 i915_gem_verify_gtt(dev);
e4ffd173
CW
3231 return 0;
3232}
3233
199adf40
BW
3234int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3235 struct drm_file *file)
e6994aee 3236{
199adf40 3237 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3238 struct drm_i915_gem_object *obj;
3239 int ret;
3240
3241 ret = i915_mutex_lock_interruptible(dev);
3242 if (ret)
3243 return ret;
3244
3245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246 if (&obj->base == NULL) {
3247 ret = -ENOENT;
3248 goto unlock;
3249 }
3250
199adf40 3251 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3252
3253 drm_gem_object_unreference(&obj->base);
3254unlock:
3255 mutex_unlock(&dev->struct_mutex);
3256 return ret;
3257}
3258
199adf40
BW
3259int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3260 struct drm_file *file)
e6994aee 3261{
199adf40 3262 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3263 struct drm_i915_gem_object *obj;
3264 enum i915_cache_level level;
3265 int ret;
3266
199adf40
BW
3267 switch (args->caching) {
3268 case I915_CACHING_NONE:
e6994aee
CW
3269 level = I915_CACHE_NONE;
3270 break;
199adf40 3271 case I915_CACHING_CACHED:
e6994aee
CW
3272 level = I915_CACHE_LLC;
3273 break;
3274 default:
3275 return -EINVAL;
3276 }
3277
3bc2913e
BW
3278 ret = i915_mutex_lock_interruptible(dev);
3279 if (ret)
3280 return ret;
3281
e6994aee
CW
3282 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3283 if (&obj->base == NULL) {
3284 ret = -ENOENT;
3285 goto unlock;
3286 }
3287
3288 ret = i915_gem_object_set_cache_level(obj, level);
3289
3290 drm_gem_object_unreference(&obj->base);
3291unlock:
3292 mutex_unlock(&dev->struct_mutex);
3293 return ret;
3294}
3295
b9241ea3 3296/*
2da3b9b9
CW
3297 * Prepare buffer for display plane (scanout, cursors, etc).
3298 * Can be called from an uninterruptible phase (modesetting) and allows
3299 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3300 */
3301int
2da3b9b9
CW
3302i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3303 u32 alignment,
919926ae 3304 struct intel_ring_buffer *pipelined)
b9241ea3 3305{
2da3b9b9 3306 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3307 int ret;
3308
0be73284 3309 if (pipelined != obj->ring) {
2911a35b
BW
3310 ret = i915_gem_object_sync(obj, pipelined);
3311 if (ret)
b9241ea3
ZW
3312 return ret;
3313 }
3314
a7ef0640
EA
3315 /* The display engine is not coherent with the LLC cache on gen6. As
3316 * a result, we make sure that the pinning that is about to occur is
3317 * done with uncached PTEs. This is lowest common denominator for all
3318 * chipsets.
3319 *
3320 * However for gen6+, we could do better by using the GFDT bit instead
3321 * of uncaching, which would allow us to flush all the LLC-cached data
3322 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3323 */
3324 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3325 if (ret)
3326 return ret;
3327
2da3b9b9
CW
3328 /* As the user may map the buffer once pinned in the display plane
3329 * (e.g. libkms for the bootup splash), we have to ensure that we
3330 * always use map_and_fenceable for all scanout buffers.
3331 */
86a1ee26 3332 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3333 if (ret)
3334 return ret;
3335
b118c1e3
CW
3336 i915_gem_object_flush_cpu_write_domain(obj);
3337
2da3b9b9 3338 old_write_domain = obj->base.write_domain;
05394f39 3339 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3340
3341 /* It should now be out of any other write domains, and we can update
3342 * the domain values for our changes.
3343 */
e5f1d962 3344 obj->base.write_domain = 0;
05394f39 3345 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3346
3347 trace_i915_gem_object_change_domain(obj,
3348 old_read_domains,
2da3b9b9 3349 old_write_domain);
b9241ea3
ZW
3350
3351 return 0;
3352}
3353
85345517 3354int
a8198eea 3355i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3356{
88241785
CW
3357 int ret;
3358
a8198eea 3359 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3360 return 0;
3361
0201f1ec 3362 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3363 if (ret)
3364 return ret;
3365
a8198eea
CW
3366 /* Ensure that we invalidate the GPU's caches and TLBs. */
3367 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3368 return 0;
85345517
CW
3369}
3370
e47c68e9
EA
3371/**
3372 * Moves a single object to the CPU read, and possibly write domain.
3373 *
3374 * This function returns when the move is complete, including waiting on
3375 * flushes to occur.
3376 */
dabdfe02 3377int
919926ae 3378i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3379{
1c5d22f7 3380 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3381 int ret;
3382
8d7e3de1
CW
3383 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3384 return 0;
3385
0201f1ec 3386 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3387 if (ret)
3388 return ret;
3389
e47c68e9 3390 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3391
05394f39
CW
3392 old_write_domain = obj->base.write_domain;
3393 old_read_domains = obj->base.read_domains;
1c5d22f7 3394
e47c68e9 3395 /* Flush the CPU cache if it's still invalid. */
05394f39 3396 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3397 i915_gem_clflush_object(obj);
2ef7eeaa 3398
05394f39 3399 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3400 }
3401
3402 /* It should now be out of any other write domains, and we can update
3403 * the domain values for our changes.
3404 */
05394f39 3405 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3406
3407 /* If we're writing through the CPU, then the GPU read domains will
3408 * need to be invalidated at next use.
3409 */
3410 if (write) {
05394f39
CW
3411 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3412 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3413 }
2ef7eeaa 3414
1c5d22f7
CW
3415 trace_i915_gem_object_change_domain(obj,
3416 old_read_domains,
3417 old_write_domain);
3418
2ef7eeaa
EA
3419 return 0;
3420}
3421
673a394b
EA
3422/* Throttle our rendering by waiting until the ring has completed our requests
3423 * emitted over 20 msec ago.
3424 *
b962442e
EA
3425 * Note that if we were to use the current jiffies each time around the loop,
3426 * we wouldn't escape the function with any frames outstanding if the time to
3427 * render a frame was over 20ms.
3428 *
673a394b
EA
3429 * This should get us reasonable parallelism between CPU and GPU but also
3430 * relatively low latency when blocking on a particular request to finish.
3431 */
40a5f0de 3432static int
f787a5f5 3433i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3434{
f787a5f5
CW
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3437 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3438 struct drm_i915_gem_request *request;
3439 struct intel_ring_buffer *ring = NULL;
f69061be 3440 unsigned reset_counter;
f787a5f5
CW
3441 u32 seqno = 0;
3442 int ret;
93533c29 3443
308887aa
DV
3444 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3445 if (ret)
3446 return ret;
3447
3448 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3449 if (ret)
3450 return ret;
e110e8d6 3451
1c25595f 3452 spin_lock(&file_priv->mm.lock);
f787a5f5 3453 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3454 if (time_after_eq(request->emitted_jiffies, recent_enough))
3455 break;
40a5f0de 3456
f787a5f5
CW
3457 ring = request->ring;
3458 seqno = request->seqno;
b962442e 3459 }
f69061be 3460 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3461 spin_unlock(&file_priv->mm.lock);
40a5f0de 3462
f787a5f5
CW
3463 if (seqno == 0)
3464 return 0;
2bc43b5c 3465
f69061be 3466 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3467 if (ret == 0)
3468 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3469
3470 return ret;
3471}
3472
673a394b 3473int
05394f39
CW
3474i915_gem_object_pin(struct drm_i915_gem_object *obj,
3475 uint32_t alignment,
86a1ee26
CW
3476 bool map_and_fenceable,
3477 bool nonblocking)
673a394b 3478{
673a394b
EA
3479 int ret;
3480
7e81a42e
CW
3481 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3482 return -EBUSY;
ac0c6b5a 3483
05394f39
CW
3484 if (obj->gtt_space != NULL) {
3485 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3486 (map_and_fenceable && !obj->map_and_fenceable)) {
3487 WARN(obj->pin_count,
ae7d49d8 3488 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3489 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3490 " obj->map_and_fenceable=%d\n",
05394f39 3491 obj->gtt_offset, alignment,
75e9e915 3492 map_and_fenceable,
05394f39 3493 obj->map_and_fenceable);
ac0c6b5a
CW
3494 ret = i915_gem_object_unbind(obj);
3495 if (ret)
3496 return ret;
3497 }
3498 }
3499
05394f39 3500 if (obj->gtt_space == NULL) {
8742267a
CW
3501 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3502
a00b10c3 3503 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3504 map_and_fenceable,
3505 nonblocking);
9731129c 3506 if (ret)
673a394b 3507 return ret;
8742267a
CW
3508
3509 if (!dev_priv->mm.aliasing_ppgtt)
3510 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3511 }
76446cac 3512
74898d7e
DV
3513 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3514 i915_gem_gtt_bind_object(obj, obj->cache_level);
3515
1b50247a 3516 obj->pin_count++;
6299f992 3517 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3518
3519 return 0;
3520}
3521
3522void
05394f39 3523i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3524{
05394f39
CW
3525 BUG_ON(obj->pin_count == 0);
3526 BUG_ON(obj->gtt_space == NULL);
673a394b 3527
1b50247a 3528 if (--obj->pin_count == 0)
6299f992 3529 obj->pin_mappable = false;
673a394b
EA
3530}
3531
3532int
3533i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3534 struct drm_file *file)
673a394b
EA
3535{
3536 struct drm_i915_gem_pin *args = data;
05394f39 3537 struct drm_i915_gem_object *obj;
673a394b
EA
3538 int ret;
3539
1d7cfea1
CW
3540 ret = i915_mutex_lock_interruptible(dev);
3541 if (ret)
3542 return ret;
673a394b 3543
05394f39 3544 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3545 if (&obj->base == NULL) {
1d7cfea1
CW
3546 ret = -ENOENT;
3547 goto unlock;
673a394b 3548 }
673a394b 3549
05394f39 3550 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3551 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3552 ret = -EINVAL;
3553 goto out;
3ef94daa
CW
3554 }
3555
05394f39 3556 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3557 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3558 args->handle);
1d7cfea1
CW
3559 ret = -EINVAL;
3560 goto out;
79e53945
JB
3561 }
3562
93be8788 3563 if (obj->user_pin_count == 0) {
86a1ee26 3564 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3565 if (ret)
3566 goto out;
673a394b
EA
3567 }
3568
93be8788
CW
3569 obj->user_pin_count++;
3570 obj->pin_filp = file;
3571
673a394b
EA
3572 /* XXX - flush the CPU caches for pinned objects
3573 * as the X server doesn't manage domains yet
3574 */
e47c68e9 3575 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3576 args->offset = obj->gtt_offset;
1d7cfea1 3577out:
05394f39 3578 drm_gem_object_unreference(&obj->base);
1d7cfea1 3579unlock:
673a394b 3580 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3581 return ret;
673a394b
EA
3582}
3583
3584int
3585i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3586 struct drm_file *file)
673a394b
EA
3587{
3588 struct drm_i915_gem_pin *args = data;
05394f39 3589 struct drm_i915_gem_object *obj;
76c1dec1 3590 int ret;
673a394b 3591
1d7cfea1
CW
3592 ret = i915_mutex_lock_interruptible(dev);
3593 if (ret)
3594 return ret;
673a394b 3595
05394f39 3596 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3597 if (&obj->base == NULL) {
1d7cfea1
CW
3598 ret = -ENOENT;
3599 goto unlock;
673a394b 3600 }
76c1dec1 3601
05394f39 3602 if (obj->pin_filp != file) {
79e53945
JB
3603 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3604 args->handle);
1d7cfea1
CW
3605 ret = -EINVAL;
3606 goto out;
79e53945 3607 }
05394f39
CW
3608 obj->user_pin_count--;
3609 if (obj->user_pin_count == 0) {
3610 obj->pin_filp = NULL;
79e53945
JB
3611 i915_gem_object_unpin(obj);
3612 }
673a394b 3613
1d7cfea1 3614out:
05394f39 3615 drm_gem_object_unreference(&obj->base);
1d7cfea1 3616unlock:
673a394b 3617 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3618 return ret;
673a394b
EA
3619}
3620
3621int
3622i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3623 struct drm_file *file)
673a394b
EA
3624{
3625 struct drm_i915_gem_busy *args = data;
05394f39 3626 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3627 int ret;
3628
76c1dec1 3629 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3630 if (ret)
76c1dec1 3631 return ret;
673a394b 3632
05394f39 3633 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3634 if (&obj->base == NULL) {
1d7cfea1
CW
3635 ret = -ENOENT;
3636 goto unlock;
673a394b 3637 }
d1b851fc 3638
0be555b6
CW
3639 /* Count all active objects as busy, even if they are currently not used
3640 * by the gpu. Users of this interface expect objects to eventually
3641 * become non-busy without any further actions, therefore emit any
3642 * necessary flushes here.
c4de0a5d 3643 */
30dfebf3 3644 ret = i915_gem_object_flush_active(obj);
0be555b6 3645
30dfebf3 3646 args->busy = obj->active;
e9808edd
CW
3647 if (obj->ring) {
3648 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3649 args->busy |= intel_ring_flag(obj->ring) << 16;
3650 }
673a394b 3651
05394f39 3652 drm_gem_object_unreference(&obj->base);
1d7cfea1 3653unlock:
673a394b 3654 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3655 return ret;
673a394b
EA
3656}
3657
3658int
3659i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3660 struct drm_file *file_priv)
3661{
0206e353 3662 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3663}
3664
3ef94daa
CW
3665int
3666i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3667 struct drm_file *file_priv)
3668{
3669 struct drm_i915_gem_madvise *args = data;
05394f39 3670 struct drm_i915_gem_object *obj;
76c1dec1 3671 int ret;
3ef94daa
CW
3672
3673 switch (args->madv) {
3674 case I915_MADV_DONTNEED:
3675 case I915_MADV_WILLNEED:
3676 break;
3677 default:
3678 return -EINVAL;
3679 }
3680
1d7cfea1
CW
3681 ret = i915_mutex_lock_interruptible(dev);
3682 if (ret)
3683 return ret;
3684
05394f39 3685 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3686 if (&obj->base == NULL) {
1d7cfea1
CW
3687 ret = -ENOENT;
3688 goto unlock;
3ef94daa 3689 }
3ef94daa 3690
05394f39 3691 if (obj->pin_count) {
1d7cfea1
CW
3692 ret = -EINVAL;
3693 goto out;
3ef94daa
CW
3694 }
3695
05394f39
CW
3696 if (obj->madv != __I915_MADV_PURGED)
3697 obj->madv = args->madv;
3ef94daa 3698
6c085a72
CW
3699 /* if the object is no longer attached, discard its backing storage */
3700 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3701 i915_gem_object_truncate(obj);
3702
05394f39 3703 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3704
1d7cfea1 3705out:
05394f39 3706 drm_gem_object_unreference(&obj->base);
1d7cfea1 3707unlock:
3ef94daa 3708 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3709 return ret;
3ef94daa
CW
3710}
3711
37e680a1
CW
3712void i915_gem_object_init(struct drm_i915_gem_object *obj,
3713 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3714{
0327d6ba
CW
3715 INIT_LIST_HEAD(&obj->mm_list);
3716 INIT_LIST_HEAD(&obj->gtt_list);
3717 INIT_LIST_HEAD(&obj->ring_list);
3718 INIT_LIST_HEAD(&obj->exec_list);
3719
37e680a1
CW
3720 obj->ops = ops;
3721
0327d6ba
CW
3722 obj->fence_reg = I915_FENCE_REG_NONE;
3723 obj->madv = I915_MADV_WILLNEED;
3724 /* Avoid an unnecessary call to unbind on the first bind. */
3725 obj->map_and_fenceable = true;
3726
3727 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3728}
3729
37e680a1
CW
3730static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3731 .get_pages = i915_gem_object_get_pages_gtt,
3732 .put_pages = i915_gem_object_put_pages_gtt,
3733};
3734
05394f39
CW
3735struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3736 size_t size)
ac52bc56 3737{
c397b908 3738 struct drm_i915_gem_object *obj;
5949eac4 3739 struct address_space *mapping;
1a240d4d 3740 gfp_t mask;
ac52bc56 3741
42dcedd4 3742 obj = i915_gem_object_alloc(dev);
c397b908
DV
3743 if (obj == NULL)
3744 return NULL;
673a394b 3745
c397b908 3746 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3747 i915_gem_object_free(obj);
c397b908
DV
3748 return NULL;
3749 }
673a394b 3750
bed1ea95
CW
3751 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3752 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3753 /* 965gm cannot relocate objects above 4GiB. */
3754 mask &= ~__GFP_HIGHMEM;
3755 mask |= __GFP_DMA32;
3756 }
3757
496ad9aa 3758 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3759 mapping_set_gfp_mask(mapping, mask);
5949eac4 3760
37e680a1 3761 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3762
c397b908
DV
3763 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3764 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3765
3d29b842
ED
3766 if (HAS_LLC(dev)) {
3767 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3768 * cache) for about a 10% performance improvement
3769 * compared to uncached. Graphics requests other than
3770 * display scanout are coherent with the CPU in
3771 * accessing this cache. This means in this mode we
3772 * don't need to clflush on the CPU side, and on the
3773 * GPU side we only need to flush internal caches to
3774 * get data visible to the CPU.
3775 *
3776 * However, we maintain the display planes as UC, and so
3777 * need to rebind when first used as such.
3778 */
3779 obj->cache_level = I915_CACHE_LLC;
3780 } else
3781 obj->cache_level = I915_CACHE_NONE;
3782
05394f39 3783 return obj;
c397b908
DV
3784}
3785
3786int i915_gem_init_object(struct drm_gem_object *obj)
3787{
3788 BUG();
de151cf6 3789
673a394b
EA
3790 return 0;
3791}
3792
1488fc08 3793void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3794{
1488fc08 3795 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3796 struct drm_device *dev = obj->base.dev;
be72615b 3797 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3798
26e12f89
CW
3799 trace_i915_gem_object_destroy(obj);
3800
1488fc08
CW
3801 if (obj->phys_obj)
3802 i915_gem_detach_phys_object(dev, obj);
3803
3804 obj->pin_count = 0;
3805 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3806 bool was_interruptible;
3807
3808 was_interruptible = dev_priv->mm.interruptible;
3809 dev_priv->mm.interruptible = false;
3810
3811 WARN_ON(i915_gem_object_unbind(obj));
3812
3813 dev_priv->mm.interruptible = was_interruptible;
3814 }
3815
a5570178 3816 obj->pages_pin_count = 0;
37e680a1 3817 i915_gem_object_put_pages(obj);
d8cb5086 3818 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3819 i915_gem_object_release_stolen(obj);
de151cf6 3820
9da3da66
CW
3821 BUG_ON(obj->pages);
3822
2f745ad3
CW
3823 if (obj->base.import_attach)
3824 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3825
05394f39
CW
3826 drm_gem_object_release(&obj->base);
3827 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3828
05394f39 3829 kfree(obj->bit_17);
42dcedd4 3830 i915_gem_object_free(obj);
673a394b
EA
3831}
3832
29105ccc
CW
3833int
3834i915_gem_idle(struct drm_device *dev)
3835{
3836 drm_i915_private_t *dev_priv = dev->dev_private;
3837 int ret;
28dfe52a 3838
29105ccc 3839 mutex_lock(&dev->struct_mutex);
1c5d22f7 3840
87acb0a5 3841 if (dev_priv->mm.suspended) {
29105ccc
CW
3842 mutex_unlock(&dev->struct_mutex);
3843 return 0;
28dfe52a
EA
3844 }
3845
b2da9fe5 3846 ret = i915_gpu_idle(dev);
6dbe2772
KP
3847 if (ret) {
3848 mutex_unlock(&dev->struct_mutex);
673a394b 3849 return ret;
6dbe2772 3850 }
b2da9fe5 3851 i915_gem_retire_requests(dev);
673a394b 3852
29105ccc 3853 /* Under UMS, be paranoid and evict. */
a39d7efc 3854 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3855 i915_gem_evict_everything(dev);
29105ccc
CW
3856
3857 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3858 * We need to replace this with a semaphore, or something.
3859 * And not confound mm.suspended!
3860 */
3861 dev_priv->mm.suspended = 1;
99584db3 3862 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
3863
3864 i915_kernel_lost_context(dev);
6dbe2772 3865 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3866
6dbe2772
KP
3867 mutex_unlock(&dev->struct_mutex);
3868
29105ccc
CW
3869 /* Cancel the retire work handler, which should be idle now. */
3870 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3871
673a394b
EA
3872 return 0;
3873}
3874
b9524a1e
BW
3875void i915_gem_l3_remap(struct drm_device *dev)
3876{
3877 drm_i915_private_t *dev_priv = dev->dev_private;
3878 u32 misccpctl;
3879 int i;
3880
eb32e458 3881 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
3882 return;
3883
a4da4fa4 3884 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3885 return;
3886
3887 misccpctl = I915_READ(GEN7_MISCCPCTL);
3888 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3889 POSTING_READ(GEN7_MISCCPCTL);
3890
3891 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3892 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3893 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3894 DRM_DEBUG("0x%x was already programmed to %x\n",
3895 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3896 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3897 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3898 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3899 }
3900
3901 /* Make sure all the writes land before disabling dop clock gating */
3902 POSTING_READ(GEN7_L3LOG_BASE);
3903
3904 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3905}
3906
f691e2f4
DV
3907void i915_gem_init_swizzling(struct drm_device *dev)
3908{
3909 drm_i915_private_t *dev_priv = dev->dev_private;
3910
11782b02 3911 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3912 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3913 return;
3914
3915 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3916 DISP_TILE_SURFACE_SWIZZLING);
3917
11782b02
DV
3918 if (IS_GEN5(dev))
3919 return;
3920
f691e2f4
DV
3921 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3922 if (IS_GEN6(dev))
6b26c86d 3923 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 3924 else if (IS_GEN7(dev))
6b26c86d 3925 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
3926 else
3927 BUG();
f691e2f4 3928}
e21af88d 3929
67b1b571
CW
3930static bool
3931intel_enable_blt(struct drm_device *dev)
3932{
3933 if (!HAS_BLT(dev))
3934 return false;
3935
3936 /* The blitter was dysfunctional on early prototypes */
3937 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3938 DRM_INFO("BLT not supported on this pre-production hardware;"
3939 " graphics performance will be degraded.\n");
3940 return false;
3941 }
3942
3943 return true;
3944}
3945
4fc7c971 3946static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 3947{
4fc7c971 3948 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 3949 int ret;
68f95ba9 3950
5c1143bb 3951 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3952 if (ret)
b6913e4b 3953 return ret;
68f95ba9
CW
3954
3955 if (HAS_BSD(dev)) {
5c1143bb 3956 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3957 if (ret)
3958 goto cleanup_render_ring;
d1b851fc 3959 }
68f95ba9 3960
67b1b571 3961 if (intel_enable_blt(dev)) {
549f7365
CW
3962 ret = intel_init_blt_ring_buffer(dev);
3963 if (ret)
3964 goto cleanup_bsd_ring;
3965 }
3966
99433931 3967 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971
BW
3968 if (ret)
3969 goto cleanup_blt_ring;
3970
3971 return 0;
3972
3973cleanup_blt_ring:
3974 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3975cleanup_bsd_ring:
3976 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3977cleanup_render_ring:
3978 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3979
3980 return ret;
3981}
3982
3983int
3984i915_gem_init_hw(struct drm_device *dev)
3985{
3986 drm_i915_private_t *dev_priv = dev->dev_private;
3987 int ret;
3988
3989 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3990 return -EIO;
3991
3992 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3993 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3994
88a2b2a3
BW
3995 if (HAS_PCH_NOP(dev)) {
3996 u32 temp = I915_READ(GEN7_MSG_CTL);
3997 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
3998 I915_WRITE(GEN7_MSG_CTL, temp);
3999 }
4000
4fc7c971
BW
4001 i915_gem_l3_remap(dev);
4002
4003 i915_gem_init_swizzling(dev);
4004
4005 ret = i915_gem_init_rings(dev);
99433931
MK
4006 if (ret)
4007 return ret;
4008
254f965c
BW
4009 /*
4010 * XXX: There was some w/a described somewhere suggesting loading
4011 * contexts before PPGTT.
4012 */
4013 i915_gem_context_init(dev);
b7c36d25
BW
4014 if (dev_priv->mm.aliasing_ppgtt) {
4015 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4016 if (ret) {
4017 i915_gem_cleanup_aliasing_ppgtt(dev);
4018 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4019 }
4020 }
e21af88d 4021
68f95ba9 4022 return 0;
8187a2b7
ZN
4023}
4024
1070a42b
CW
4025int i915_gem_init(struct drm_device *dev)
4026{
4027 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4028 int ret;
4029
1070a42b 4030 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4031
4032 if (IS_VALLEYVIEW(dev)) {
4033 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4034 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4035 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4036 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4037 }
4038
d7e5008f 4039 i915_gem_init_global_gtt(dev);
d62b4892 4040
1070a42b
CW
4041 ret = i915_gem_init_hw(dev);
4042 mutex_unlock(&dev->struct_mutex);
4043 if (ret) {
4044 i915_gem_cleanup_aliasing_ppgtt(dev);
4045 return ret;
4046 }
4047
53ca26ca
DV
4048 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4049 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4050 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4051 return 0;
4052}
4053
8187a2b7
ZN
4054void
4055i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4056{
4057 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4058 struct intel_ring_buffer *ring;
1ec14ad3 4059 int i;
8187a2b7 4060
b4519513
CW
4061 for_each_ring(ring, dev_priv, i)
4062 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4063}
4064
673a394b
EA
4065int
4066i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4067 struct drm_file *file_priv)
4068{
4069 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4070 int ret;
673a394b 4071
79e53945
JB
4072 if (drm_core_check_feature(dev, DRIVER_MODESET))
4073 return 0;
4074
1f83fee0 4075 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4076 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4077 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4078 }
4079
673a394b 4080 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4081 dev_priv->mm.suspended = 0;
4082
f691e2f4 4083 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4084 if (ret != 0) {
4085 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4086 return ret;
d816f6ac 4087 }
9bb2d6f9 4088
69dc4987 4089 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4090 mutex_unlock(&dev->struct_mutex);
dbb19d30 4091
5f35308b
CW
4092 ret = drm_irq_install(dev);
4093 if (ret)
4094 goto cleanup_ringbuffer;
dbb19d30 4095
673a394b 4096 return 0;
5f35308b
CW
4097
4098cleanup_ringbuffer:
4099 mutex_lock(&dev->struct_mutex);
4100 i915_gem_cleanup_ringbuffer(dev);
4101 dev_priv->mm.suspended = 1;
4102 mutex_unlock(&dev->struct_mutex);
4103
4104 return ret;
673a394b
EA
4105}
4106
4107int
4108i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4109 struct drm_file *file_priv)
4110{
79e53945
JB
4111 if (drm_core_check_feature(dev, DRIVER_MODESET))
4112 return 0;
4113
dbb19d30 4114 drm_irq_uninstall(dev);
e6890f6f 4115 return i915_gem_idle(dev);
673a394b
EA
4116}
4117
4118void
4119i915_gem_lastclose(struct drm_device *dev)
4120{
4121 int ret;
673a394b 4122
e806b495
EA
4123 if (drm_core_check_feature(dev, DRIVER_MODESET))
4124 return;
4125
6dbe2772
KP
4126 ret = i915_gem_idle(dev);
4127 if (ret)
4128 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4129}
4130
64193406
CW
4131static void
4132init_ring_lists(struct intel_ring_buffer *ring)
4133{
4134 INIT_LIST_HEAD(&ring->active_list);
4135 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4136}
4137
673a394b
EA
4138void
4139i915_gem_load(struct drm_device *dev)
4140{
4141 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4142 int i;
4143
4144 dev_priv->slab =
4145 kmem_cache_create("i915_gem_object",
4146 sizeof(struct drm_i915_gem_object), 0,
4147 SLAB_HWCACHE_ALIGN,
4148 NULL);
673a394b 4149
69dc4987 4150 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4151 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4152 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4153 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4154 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4155 for (i = 0; i < I915_NUM_RINGS; i++)
4156 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4157 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4158 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4159 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4160 i915_gem_retire_work_handler);
1f83fee0 4161 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4162
94400120
DA
4163 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4164 if (IS_GEN3(dev)) {
50743298
DV
4165 I915_WRITE(MI_ARB_STATE,
4166 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4167 }
4168
72bfa19c
CW
4169 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4170
de151cf6 4171 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4172 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4173 dev_priv->fence_reg_start = 3;
de151cf6 4174
42b5aeab
VS
4175 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4176 dev_priv->num_fence_regs = 32;
4177 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4178 dev_priv->num_fence_regs = 16;
4179 else
4180 dev_priv->num_fence_regs = 8;
4181
b5aa8a0f 4182 /* Initialize fence registers to zero */
19b2dbde
CW
4183 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4184 i915_gem_restore_fences(dev);
10ed13e4 4185
673a394b 4186 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4187 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4188
ce453d81
CW
4189 dev_priv->mm.interruptible = true;
4190
17250b71
CW
4191 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4192 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4193 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4194}
71acb5eb
DA
4195
4196/*
4197 * Create a physically contiguous memory object for this object
4198 * e.g. for cursor + overlay regs
4199 */
995b6762
CW
4200static int i915_gem_init_phys_object(struct drm_device *dev,
4201 int id, int size, int align)
71acb5eb
DA
4202{
4203 drm_i915_private_t *dev_priv = dev->dev_private;
4204 struct drm_i915_gem_phys_object *phys_obj;
4205 int ret;
4206
4207 if (dev_priv->mm.phys_objs[id - 1] || !size)
4208 return 0;
4209
9a298b2a 4210 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4211 if (!phys_obj)
4212 return -ENOMEM;
4213
4214 phys_obj->id = id;
4215
6eeefaf3 4216 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4217 if (!phys_obj->handle) {
4218 ret = -ENOMEM;
4219 goto kfree_obj;
4220 }
4221#ifdef CONFIG_X86
4222 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4223#endif
4224
4225 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4226
4227 return 0;
4228kfree_obj:
9a298b2a 4229 kfree(phys_obj);
71acb5eb
DA
4230 return ret;
4231}
4232
995b6762 4233static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4234{
4235 drm_i915_private_t *dev_priv = dev->dev_private;
4236 struct drm_i915_gem_phys_object *phys_obj;
4237
4238 if (!dev_priv->mm.phys_objs[id - 1])
4239 return;
4240
4241 phys_obj = dev_priv->mm.phys_objs[id - 1];
4242 if (phys_obj->cur_obj) {
4243 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4244 }
4245
4246#ifdef CONFIG_X86
4247 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4248#endif
4249 drm_pci_free(dev, phys_obj->handle);
4250 kfree(phys_obj);
4251 dev_priv->mm.phys_objs[id - 1] = NULL;
4252}
4253
4254void i915_gem_free_all_phys_object(struct drm_device *dev)
4255{
4256 int i;
4257
260883c8 4258 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4259 i915_gem_free_phys_object(dev, i);
4260}
4261
4262void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4263 struct drm_i915_gem_object *obj)
71acb5eb 4264{
496ad9aa 4265 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4266 char *vaddr;
71acb5eb 4267 int i;
71acb5eb
DA
4268 int page_count;
4269
05394f39 4270 if (!obj->phys_obj)
71acb5eb 4271 return;
05394f39 4272 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4273
05394f39 4274 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4275 for (i = 0; i < page_count; i++) {
5949eac4 4276 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4277 if (!IS_ERR(page)) {
4278 char *dst = kmap_atomic(page);
4279 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4280 kunmap_atomic(dst);
4281
4282 drm_clflush_pages(&page, 1);
4283
4284 set_page_dirty(page);
4285 mark_page_accessed(page);
4286 page_cache_release(page);
4287 }
71acb5eb 4288 }
e76e9aeb 4289 i915_gem_chipset_flush(dev);
d78b47b9 4290
05394f39
CW
4291 obj->phys_obj->cur_obj = NULL;
4292 obj->phys_obj = NULL;
71acb5eb
DA
4293}
4294
4295int
4296i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4297 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4298 int id,
4299 int align)
71acb5eb 4300{
496ad9aa 4301 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4302 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4303 int ret = 0;
4304 int page_count;
4305 int i;
4306
4307 if (id > I915_MAX_PHYS_OBJECT)
4308 return -EINVAL;
4309
05394f39
CW
4310 if (obj->phys_obj) {
4311 if (obj->phys_obj->id == id)
71acb5eb
DA
4312 return 0;
4313 i915_gem_detach_phys_object(dev, obj);
4314 }
4315
71acb5eb
DA
4316 /* create a new object */
4317 if (!dev_priv->mm.phys_objs[id - 1]) {
4318 ret = i915_gem_init_phys_object(dev, id,
05394f39 4319 obj->base.size, align);
71acb5eb 4320 if (ret) {
05394f39
CW
4321 DRM_ERROR("failed to init phys object %d size: %zu\n",
4322 id, obj->base.size);
e5281ccd 4323 return ret;
71acb5eb
DA
4324 }
4325 }
4326
4327 /* bind to the object */
05394f39
CW
4328 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4329 obj->phys_obj->cur_obj = obj;
71acb5eb 4330
05394f39 4331 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4332
4333 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4334 struct page *page;
4335 char *dst, *src;
4336
5949eac4 4337 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4338 if (IS_ERR(page))
4339 return PTR_ERR(page);
71acb5eb 4340
ff75b9bc 4341 src = kmap_atomic(page);
05394f39 4342 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4343 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4344 kunmap_atomic(src);
71acb5eb 4345
e5281ccd
CW
4346 mark_page_accessed(page);
4347 page_cache_release(page);
4348 }
d78b47b9 4349
71acb5eb 4350 return 0;
71acb5eb
DA
4351}
4352
4353static int
05394f39
CW
4354i915_gem_phys_pwrite(struct drm_device *dev,
4355 struct drm_i915_gem_object *obj,
71acb5eb
DA
4356 struct drm_i915_gem_pwrite *args,
4357 struct drm_file *file_priv)
4358{
05394f39 4359 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4360 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4361
b47b30cc
CW
4362 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4363 unsigned long unwritten;
4364
4365 /* The physical object once assigned is fixed for the lifetime
4366 * of the obj, so we can safely drop the lock and continue
4367 * to access vaddr.
4368 */
4369 mutex_unlock(&dev->struct_mutex);
4370 unwritten = copy_from_user(vaddr, user_data, args->size);
4371 mutex_lock(&dev->struct_mutex);
4372 if (unwritten)
4373 return -EFAULT;
4374 }
71acb5eb 4375
e76e9aeb 4376 i915_gem_chipset_flush(dev);
71acb5eb
DA
4377 return 0;
4378}
b962442e 4379
f787a5f5 4380void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4381{
f787a5f5 4382 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4383
4384 /* Clean up our request list when the client is going away, so that
4385 * later retire_requests won't dereference our soon-to-be-gone
4386 * file_priv.
4387 */
1c25595f 4388 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4389 while (!list_empty(&file_priv->mm.request_list)) {
4390 struct drm_i915_gem_request *request;
4391
4392 request = list_first_entry(&file_priv->mm.request_list,
4393 struct drm_i915_gem_request,
4394 client_list);
4395 list_del(&request->client_list);
4396 request->file_priv = NULL;
4397 }
1c25595f 4398 spin_unlock(&file_priv->mm.lock);
b962442e 4399}
31169714 4400
5774506f
CW
4401static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4402{
4403 if (!mutex_is_locked(mutex))
4404 return false;
4405
4406#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4407 return mutex->owner == task;
4408#else
4409 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4410 return false;
4411#endif
4412}
4413
31169714 4414static int
1495f230 4415i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4416{
17250b71
CW
4417 struct drm_i915_private *dev_priv =
4418 container_of(shrinker,
4419 struct drm_i915_private,
4420 mm.inactive_shrinker);
4421 struct drm_device *dev = dev_priv->dev;
6c085a72 4422 struct drm_i915_gem_object *obj;
1495f230 4423 int nr_to_scan = sc->nr_to_scan;
5774506f 4424 bool unlock = true;
17250b71
CW
4425 int cnt;
4426
5774506f
CW
4427 if (!mutex_trylock(&dev->struct_mutex)) {
4428 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4429 return 0;
4430
677feac2
DV
4431 if (dev_priv->mm.shrinker_no_lock_stealing)
4432 return 0;
4433
5774506f
CW
4434 unlock = false;
4435 }
31169714 4436
6c085a72
CW
4437 if (nr_to_scan) {
4438 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4439 if (nr_to_scan > 0)
4440 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4441 false);
6c085a72
CW
4442 if (nr_to_scan > 0)
4443 i915_gem_shrink_all(dev_priv);
31169714
CW
4444 }
4445
17250b71 4446 cnt = 0;
6c085a72 4447 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4448 if (obj->pages_pin_count == 0)
4449 cnt += obj->base.size >> PAGE_SHIFT;
93927ca5 4450 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
a5570178 4451 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4452 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4453
5774506f
CW
4454 if (unlock)
4455 mutex_unlock(&dev->struct_mutex);
6c085a72 4456 return cnt;
31169714 4457}