]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: [sparse] __iomem fixes for debugfs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39
CW
48 struct drm_file *file);
49static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
8c59967c 59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 60
61050808
CW
61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62{
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->tiling_changed = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71}
72
73aa808f
CW
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
21dd3734
CW
88static int
89i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
90{
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 ret = wait_for_completion_interruptible(x);
100 if (ret)
101 return ret;
102
21dd3734
CW
103 if (atomic_read(&dev_priv->mm.wedged)) {
104 /* GPU is hung, bump the completion count to account for
105 * the token we just consumed so that we never hit zero and
106 * end up waiting upon a subsequent completion event that
107 * will never happen.
108 */
109 spin_lock_irqsave(&x->wait.lock, flags);
110 x->done++;
111 spin_unlock_irqrestore(&x->wait.lock, flags);
112 }
113 return 0;
30dbf0c0
CW
114}
115
54cf91dc 116int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 117{
76c1dec1
CW
118 int ret;
119
21dd3734 120 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
121 if (ret)
122 return ret;
123
124 ret = mutex_lock_interruptible(&dev->struct_mutex);
125 if (ret)
126 return ret;
127
23bc5982 128 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
129 return 0;
130}
30dbf0c0 131
7d1c4804 132static inline bool
05394f39 133i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 134{
05394f39 135 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
136}
137
79e53945
JB
138int
139i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 140 struct drm_file *file)
79e53945
JB
141{
142 struct drm_i915_gem_init *args = data;
2021746e
CW
143
144 if (args->gtt_start >= args->gtt_end ||
145 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
146 return -EINVAL;
79e53945 147
f534bc0b
DV
148 /* GEM with user mode setting was never supported on ilk and later. */
149 if (INTEL_INFO(dev)->gen >= 5)
150 return -ENODEV;
151
79e53945 152 mutex_lock(&dev->struct_mutex);
644ec02b
DV
153 i915_gem_init_global_gtt(dev, args->gtt_start,
154 args->gtt_end, args->gtt_end);
673a394b
EA
155 mutex_unlock(&dev->struct_mutex);
156
2021746e 157 return 0;
673a394b
EA
158}
159
5a125c3c
EA
160int
161i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 162 struct drm_file *file)
5a125c3c 163{
73aa808f 164 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 165 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
166 struct drm_i915_gem_object *obj;
167 size_t pinned;
5a125c3c
EA
168
169 if (!(dev->driver->driver_features & DRIVER_GEM))
170 return -ENODEV;
171
6299f992 172 pinned = 0;
73aa808f 173 mutex_lock(&dev->struct_mutex);
6299f992
CW
174 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
175 pinned += obj->gtt_space->size;
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
6299f992 178 args->aper_size = dev_priv->mm.gtt_total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
ff72145b
DA
184static int
185i915_gem_create(struct drm_file *file,
186 struct drm_device *dev,
187 uint64_t size,
188 uint32_t *handle_p)
673a394b 189{
05394f39 190 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
191 int ret;
192 u32 handle;
673a394b 193
ff72145b 194 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
195 if (size == 0)
196 return -EINVAL;
673a394b
EA
197
198 /* Allocate the new object */
ff72145b 199 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
200 if (obj == NULL)
201 return -ENOMEM;
202
05394f39 203 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 204 if (ret) {
05394f39
CW
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 207 kfree(obj);
673a394b 208 return ret;
1dfd9754 209 }
673a394b 210
202f2fef 211 /* drop reference from allocate - handle holds it now */
05394f39 212 drm_gem_object_unreference(&obj->base);
202f2fef
CW
213 trace_i915_gem_object_create(obj);
214
ff72145b 215 *handle_p = handle;
673a394b
EA
216 return 0;
217}
218
ff72145b
DA
219int
220i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223{
224 /* have to work out size/pitch and return them */
ed0291fd 225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229}
230
231int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234{
235 return drm_gem_handle_delete(file, handle);
236}
237
238/**
239 * Creates a new mm object and returns a handle to it.
240 */
241int
242i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244{
245 struct drm_i915_gem_create *args = data;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248}
249
05394f39 250static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 251{
05394f39 252 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
253
254 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 255 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
256}
257
8461d226
DV
258static inline int
259__copy_to_user_swizzled(char __user *cpu_vaddr,
260 const char *gpu_vaddr, int gpu_offset,
261 int length)
262{
263 int ret, cpu_offset = 0;
264
265 while (length > 0) {
266 int cacheline_end = ALIGN(gpu_offset + 1, 64);
267 int this_length = min(cacheline_end - gpu_offset, length);
268 int swizzled_gpu_offset = gpu_offset ^ 64;
269
270 ret = __copy_to_user(cpu_vaddr + cpu_offset,
271 gpu_vaddr + swizzled_gpu_offset,
272 this_length);
273 if (ret)
274 return ret + length;
275
276 cpu_offset += this_length;
277 gpu_offset += this_length;
278 length -= this_length;
279 }
280
281 return 0;
282}
283
8c59967c
DV
284static inline int
285__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
286 const char *cpu_vaddr,
287 int length)
288{
289 int ret, cpu_offset = 0;
290
291 while (length > 0) {
292 int cacheline_end = ALIGN(gpu_offset + 1, 64);
293 int this_length = min(cacheline_end - gpu_offset, length);
294 int swizzled_gpu_offset = gpu_offset ^ 64;
295
296 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
297 cpu_vaddr + cpu_offset,
298 this_length);
299 if (ret)
300 return ret + length;
301
302 cpu_offset += this_length;
303 gpu_offset += this_length;
304 length -= this_length;
305 }
306
307 return 0;
308}
309
d174bd64
DV
310/* Per-page copy function for the shmem pread fastpath.
311 * Flushes invalid cachelines before reading the target if
312 * needs_clflush is set. */
eb01459f 313static int
d174bd64
DV
314shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
315 char __user *user_data,
316 bool page_do_bit17_swizzling, bool needs_clflush)
317{
318 char *vaddr;
319 int ret;
320
e7e58eb5 321 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
322 return -EINVAL;
323
324 vaddr = kmap_atomic(page);
325 if (needs_clflush)
326 drm_clflush_virt_range(vaddr + shmem_page_offset,
327 page_length);
328 ret = __copy_to_user_inatomic(user_data,
329 vaddr + shmem_page_offset,
330 page_length);
331 kunmap_atomic(vaddr);
332
333 return ret;
334}
335
23c18c71
DV
336static void
337shmem_clflush_swizzled_range(char *addr, unsigned long length,
338 bool swizzled)
339{
e7e58eb5 340 if (unlikely(swizzled)) {
23c18c71
DV
341 unsigned long start = (unsigned long) addr;
342 unsigned long end = (unsigned long) addr + length;
343
344 /* For swizzling simply ensure that we always flush both
345 * channels. Lame, but simple and it works. Swizzled
346 * pwrite/pread is far from a hotpath - current userspace
347 * doesn't use it at all. */
348 start = round_down(start, 128);
349 end = round_up(end, 128);
350
351 drm_clflush_virt_range((void *)start, end - start);
352 } else {
353 drm_clflush_virt_range(addr, length);
354 }
355
356}
357
d174bd64
DV
358/* Only difference to the fast-path function is that this can handle bit17
359 * and uses non-atomic copy and kmap functions. */
360static int
361shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
362 char __user *user_data,
363 bool page_do_bit17_swizzling, bool needs_clflush)
364{
365 char *vaddr;
366 int ret;
367
368 vaddr = kmap(page);
369 if (needs_clflush)
23c18c71
DV
370 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
371 page_length,
372 page_do_bit17_swizzling);
d174bd64
DV
373
374 if (page_do_bit17_swizzling)
375 ret = __copy_to_user_swizzled(user_data,
376 vaddr, shmem_page_offset,
377 page_length);
378 else
379 ret = __copy_to_user(user_data,
380 vaddr + shmem_page_offset,
381 page_length);
382 kunmap(page);
383
384 return ret;
385}
386
eb01459f 387static int
dbf7bff0
DV
388i915_gem_shmem_pread(struct drm_device *dev,
389 struct drm_i915_gem_object *obj,
390 struct drm_i915_gem_pread *args,
391 struct drm_file *file)
eb01459f 392{
05394f39 393 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 394 char __user *user_data;
eb01459f 395 ssize_t remain;
8461d226 396 loff_t offset;
eb2c0c81 397 int shmem_page_offset, page_length, ret = 0;
8461d226 398 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 399 int hit_slowpath = 0;
96d79b52 400 int prefaulted = 0;
8489731c 401 int needs_clflush = 0;
692a576b 402 int release_page;
eb01459f 403
8461d226 404 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
405 remain = args->size;
406
8461d226 407 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 408
8489731c
DV
409 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
410 /* If we're not in the cpu read domain, set ourself into the gtt
411 * read domain and manually flush cachelines (if required). This
412 * optimizes for the case when the gpu will dirty the data
413 * anyway again before the next pread happens. */
414 if (obj->cache_level == I915_CACHE_NONE)
415 needs_clflush = 1;
416 ret = i915_gem_object_set_to_gtt_domain(obj, false);
417 if (ret)
418 return ret;
419 }
eb01459f 420
8461d226 421 offset = args->offset;
eb01459f
EA
422
423 while (remain > 0) {
e5281ccd
CW
424 struct page *page;
425
eb01459f
EA
426 /* Operation in this page
427 *
eb01459f 428 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
429 * page_length = bytes to copy for this page
430 */
c8cbbb8b 431 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
432 page_length = remain;
433 if ((shmem_page_offset + page_length) > PAGE_SIZE)
434 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 435
692a576b
DV
436 if (obj->pages) {
437 page = obj->pages[offset >> PAGE_SHIFT];
438 release_page = 0;
439 } else {
440 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
441 if (IS_ERR(page)) {
442 ret = PTR_ERR(page);
443 goto out;
444 }
445 release_page = 1;
b65552f0 446 }
e5281ccd 447
8461d226
DV
448 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
449 (page_to_phys(page) & (1 << 17)) != 0;
450
d174bd64
DV
451 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
452 user_data, page_do_bit17_swizzling,
453 needs_clflush);
454 if (ret == 0)
455 goto next_page;
dbf7bff0
DV
456
457 hit_slowpath = 1;
692a576b 458 page_cache_get(page);
dbf7bff0
DV
459 mutex_unlock(&dev->struct_mutex);
460
96d79b52 461 if (!prefaulted) {
f56f821f 462 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
463 /* Userspace is tricking us, but we've already clobbered
464 * its pages with the prefault and promised to write the
465 * data up to the first fault. Hence ignore any errors
466 * and just continue. */
467 (void)ret;
468 prefaulted = 1;
469 }
eb01459f 470
d174bd64
DV
471 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
eb01459f 474
dbf7bff0 475 mutex_lock(&dev->struct_mutex);
e5281ccd 476 page_cache_release(page);
dbf7bff0 477next_page:
e5281ccd 478 mark_page_accessed(page);
692a576b
DV
479 if (release_page)
480 page_cache_release(page);
e5281ccd 481
8461d226
DV
482 if (ret) {
483 ret = -EFAULT;
484 goto out;
485 }
486
eb01459f 487 remain -= page_length;
8461d226 488 user_data += page_length;
eb01459f
EA
489 offset += page_length;
490 }
491
4f27b75d 492out:
dbf7bff0
DV
493 if (hit_slowpath) {
494 /* Fixup: Kill any reinstated backing storage pages */
495 if (obj->madv == __I915_MADV_PURGED)
496 i915_gem_object_truncate(obj);
497 }
eb01459f
EA
498
499 return ret;
500}
501
673a394b
EA
502/**
503 * Reads data from the object referenced by handle.
504 *
505 * On error, the contents of *data are undefined.
506 */
507int
508i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 509 struct drm_file *file)
673a394b
EA
510{
511 struct drm_i915_gem_pread *args = data;
05394f39 512 struct drm_i915_gem_object *obj;
35b62a89 513 int ret = 0;
673a394b 514
51311d0a
CW
515 if (args->size == 0)
516 return 0;
517
518 if (!access_ok(VERIFY_WRITE,
519 (char __user *)(uintptr_t)args->data_ptr,
520 args->size))
521 return -EFAULT;
522
4f27b75d 523 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 524 if (ret)
4f27b75d 525 return ret;
673a394b 526
05394f39 527 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 528 if (&obj->base == NULL) {
1d7cfea1
CW
529 ret = -ENOENT;
530 goto unlock;
4f27b75d 531 }
673a394b 532
7dcd2499 533 /* Bounds check source. */
05394f39
CW
534 if (args->offset > obj->base.size ||
535 args->size > obj->base.size - args->offset) {
ce9d419d 536 ret = -EINVAL;
35b62a89 537 goto out;
ce9d419d
CW
538 }
539
db53a302
CW
540 trace_i915_gem_object_pread(obj, args->offset, args->size);
541
dbf7bff0 542 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 543
35b62a89 544out:
05394f39 545 drm_gem_object_unreference(&obj->base);
1d7cfea1 546unlock:
4f27b75d 547 mutex_unlock(&dev->struct_mutex);
eb01459f 548 return ret;
673a394b
EA
549}
550
0839ccb8
KP
551/* This is the fast write path which cannot handle
552 * page faults in the source data
9b7530cc 553 */
0839ccb8
KP
554
555static inline int
556fast_user_write(struct io_mapping *mapping,
557 loff_t page_base, int page_offset,
558 char __user *user_data,
559 int length)
9b7530cc 560{
9b7530cc 561 char *vaddr_atomic;
0839ccb8 562 unsigned long unwritten;
9b7530cc 563
3e4d3af5 564 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
565 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
566 user_data, length);
3e4d3af5 567 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 568 return unwritten;
0839ccb8
KP
569}
570
3de09aa3
EA
571/**
572 * This is the fast pwrite path, where we copy the data directly from the
573 * user into the GTT, uncached.
574 */
673a394b 575static int
05394f39
CW
576i915_gem_gtt_pwrite_fast(struct drm_device *dev,
577 struct drm_i915_gem_object *obj,
3de09aa3 578 struct drm_i915_gem_pwrite *args,
05394f39 579 struct drm_file *file)
673a394b 580{
0839ccb8 581 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 582 ssize_t remain;
0839ccb8 583 loff_t offset, page_base;
673a394b 584 char __user *user_data;
935aaa69
DV
585 int page_offset, page_length, ret;
586
587 ret = i915_gem_object_pin(obj, 0, true);
588 if (ret)
589 goto out;
590
591 ret = i915_gem_object_set_to_gtt_domain(obj, true);
592 if (ret)
593 goto out_unpin;
594
595 ret = i915_gem_object_put_fence(obj);
596 if (ret)
597 goto out_unpin;
673a394b
EA
598
599 user_data = (char __user *) (uintptr_t) args->data_ptr;
600 remain = args->size;
673a394b 601
05394f39 602 offset = obj->gtt_offset + args->offset;
673a394b
EA
603
604 while (remain > 0) {
605 /* Operation in this page
606 *
0839ccb8
KP
607 * page_base = page offset within aperture
608 * page_offset = offset within page
609 * page_length = bytes to copy for this page
673a394b 610 */
c8cbbb8b
CW
611 page_base = offset & PAGE_MASK;
612 page_offset = offset_in_page(offset);
0839ccb8
KP
613 page_length = remain;
614 if ((page_offset + remain) > PAGE_SIZE)
615 page_length = PAGE_SIZE - page_offset;
616
0839ccb8 617 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
0839ccb8 620 */
fbd5a26d 621 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
622 page_offset, user_data, page_length)) {
623 ret = -EFAULT;
624 goto out_unpin;
625 }
673a394b 626
0839ccb8
KP
627 remain -= page_length;
628 user_data += page_length;
629 offset += page_length;
673a394b 630 }
673a394b 631
935aaa69
DV
632out_unpin:
633 i915_gem_object_unpin(obj);
634out:
3de09aa3 635 return ret;
673a394b
EA
636}
637
d174bd64
DV
638/* Per-page copy function for the shmem pwrite fastpath.
639 * Flushes invalid cachelines before writing to the target if
640 * needs_clflush_before is set and flushes out any written cachelines after
641 * writing if needs_clflush is set. */
3043c60c 642static int
d174bd64
DV
643shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
644 char __user *user_data,
645 bool page_do_bit17_swizzling,
646 bool needs_clflush_before,
647 bool needs_clflush_after)
673a394b 648{
d174bd64 649 char *vaddr;
673a394b 650 int ret;
3de09aa3 651
e7e58eb5 652 if (unlikely(page_do_bit17_swizzling))
d174bd64 653 return -EINVAL;
3de09aa3 654
d174bd64
DV
655 vaddr = kmap_atomic(page);
656 if (needs_clflush_before)
657 drm_clflush_virt_range(vaddr + shmem_page_offset,
658 page_length);
659 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
660 user_data,
661 page_length);
662 if (needs_clflush_after)
663 drm_clflush_virt_range(vaddr + shmem_page_offset,
664 page_length);
665 kunmap_atomic(vaddr);
3de09aa3
EA
666
667 return ret;
668}
669
d174bd64
DV
670/* Only difference to the fast-path function is that this can handle bit17
671 * and uses non-atomic copy and kmap functions. */
3043c60c 672static int
d174bd64
DV
673shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
674 char __user *user_data,
675 bool page_do_bit17_swizzling,
676 bool needs_clflush_before,
677 bool needs_clflush_after)
673a394b 678{
d174bd64
DV
679 char *vaddr;
680 int ret;
e5281ccd 681
d174bd64 682 vaddr = kmap(page);
e7e58eb5 683 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
684 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
685 page_length,
686 page_do_bit17_swizzling);
d174bd64
DV
687 if (page_do_bit17_swizzling)
688 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
689 user_data,
690 page_length);
d174bd64
DV
691 else
692 ret = __copy_from_user(vaddr + shmem_page_offset,
693 user_data,
694 page_length);
695 if (needs_clflush_after)
23c18c71
DV
696 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
697 page_length,
698 page_do_bit17_swizzling);
d174bd64 699 kunmap(page);
40123c1f 700
d174bd64 701 return ret;
40123c1f
EA
702}
703
40123c1f 704static int
e244a443
DV
705i915_gem_shmem_pwrite(struct drm_device *dev,
706 struct drm_i915_gem_object *obj,
707 struct drm_i915_gem_pwrite *args,
708 struct drm_file *file)
40123c1f 709{
05394f39 710 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 711 ssize_t remain;
8c59967c
DV
712 loff_t offset;
713 char __user *user_data;
eb2c0c81 714 int shmem_page_offset, page_length, ret = 0;
8c59967c 715 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 716 int hit_slowpath = 0;
58642885
DV
717 int needs_clflush_after = 0;
718 int needs_clflush_before = 0;
692a576b 719 int release_page;
40123c1f 720
8c59967c 721 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
722 remain = args->size;
723
8c59967c 724 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 725
58642885
DV
726 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
727 /* If we're not in the cpu write domain, set ourself into the gtt
728 * write domain and manually flush cachelines (if required). This
729 * optimizes for the case when the gpu will use the data
730 * right away and we therefore have to clflush anyway. */
731 if (obj->cache_level == I915_CACHE_NONE)
732 needs_clflush_after = 1;
733 ret = i915_gem_object_set_to_gtt_domain(obj, true);
734 if (ret)
735 return ret;
736 }
737 /* Same trick applies for invalidate partially written cachelines before
738 * writing. */
739 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
740 && obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_before = 1;
742
673a394b 743 offset = args->offset;
05394f39 744 obj->dirty = 1;
673a394b 745
40123c1f 746 while (remain > 0) {
e5281ccd 747 struct page *page;
58642885 748 int partial_cacheline_write;
e5281ccd 749
40123c1f
EA
750 /* Operation in this page
751 *
40123c1f 752 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
753 * page_length = bytes to copy for this page
754 */
c8cbbb8b 755 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
756
757 page_length = remain;
758 if ((shmem_page_offset + page_length) > PAGE_SIZE)
759 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 760
58642885
DV
761 /* If we don't overwrite a cacheline completely we need to be
762 * careful to have up-to-date data by first clflushing. Don't
763 * overcomplicate things and flush the entire patch. */
764 partial_cacheline_write = needs_clflush_before &&
765 ((shmem_page_offset | page_length)
766 & (boot_cpu_data.x86_clflush_size - 1));
767
692a576b
DV
768 if (obj->pages) {
769 page = obj->pages[offset >> PAGE_SHIFT];
770 release_page = 0;
771 } else {
772 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
773 if (IS_ERR(page)) {
774 ret = PTR_ERR(page);
775 goto out;
776 }
777 release_page = 1;
e5281ccd
CW
778 }
779
8c59967c
DV
780 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
781 (page_to_phys(page) & (1 << 17)) != 0;
782
d174bd64
DV
783 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
784 user_data, page_do_bit17_swizzling,
785 partial_cacheline_write,
786 needs_clflush_after);
787 if (ret == 0)
788 goto next_page;
e244a443
DV
789
790 hit_slowpath = 1;
692a576b 791 page_cache_get(page);
e244a443
DV
792 mutex_unlock(&dev->struct_mutex);
793
d174bd64
DV
794 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
795 user_data, page_do_bit17_swizzling,
796 partial_cacheline_write,
797 needs_clflush_after);
40123c1f 798
e244a443 799 mutex_lock(&dev->struct_mutex);
692a576b 800 page_cache_release(page);
e244a443 801next_page:
e5281ccd
CW
802 set_page_dirty(page);
803 mark_page_accessed(page);
692a576b
DV
804 if (release_page)
805 page_cache_release(page);
e5281ccd 806
8c59967c
DV
807 if (ret) {
808 ret = -EFAULT;
809 goto out;
810 }
811
40123c1f 812 remain -= page_length;
8c59967c 813 user_data += page_length;
40123c1f 814 offset += page_length;
673a394b
EA
815 }
816
fbd5a26d 817out:
e244a443
DV
818 if (hit_slowpath) {
819 /* Fixup: Kill any reinstated backing storage pages */
820 if (obj->madv == __I915_MADV_PURGED)
821 i915_gem_object_truncate(obj);
822 /* and flush dirty cachelines in case the object isn't in the cpu write
823 * domain anymore. */
824 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
825 i915_gem_clflush_object(obj);
826 intel_gtt_chipset_flush();
827 }
8c59967c 828 }
673a394b 829
58642885
DV
830 if (needs_clflush_after)
831 intel_gtt_chipset_flush();
832
40123c1f 833 return ret;
673a394b
EA
834}
835
836/**
837 * Writes data to the object referenced by handle.
838 *
839 * On error, the contents of the buffer that were to be modified are undefined.
840 */
841int
842i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 843 struct drm_file *file)
673a394b
EA
844{
845 struct drm_i915_gem_pwrite *args = data;
05394f39 846 struct drm_i915_gem_object *obj;
51311d0a
CW
847 int ret;
848
849 if (args->size == 0)
850 return 0;
851
852 if (!access_ok(VERIFY_READ,
853 (char __user *)(uintptr_t)args->data_ptr,
854 args->size))
855 return -EFAULT;
856
f56f821f
DV
857 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
858 args->size);
51311d0a
CW
859 if (ret)
860 return -EFAULT;
673a394b 861
fbd5a26d 862 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 863 if (ret)
fbd5a26d 864 return ret;
1d7cfea1 865
05394f39 866 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 867 if (&obj->base == NULL) {
1d7cfea1
CW
868 ret = -ENOENT;
869 goto unlock;
fbd5a26d 870 }
673a394b 871
7dcd2499 872 /* Bounds check destination. */
05394f39
CW
873 if (args->offset > obj->base.size ||
874 args->size > obj->base.size - args->offset) {
ce9d419d 875 ret = -EINVAL;
35b62a89 876 goto out;
ce9d419d
CW
877 }
878
db53a302
CW
879 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
880
935aaa69 881 ret = -EFAULT;
673a394b
EA
882 /* We can only do the GTT pwrite on untiled buffers, as otherwise
883 * it would end up going through the fenced access, and we'll get
884 * different detiling behavior between reading and writing.
885 * pread/pwrite currently are reading and writing from the CPU
886 * perspective, requiring manual detiling by the client.
887 */
5c0480f2 888 if (obj->phys_obj) {
fbd5a26d 889 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
890 goto out;
891 }
892
893 if (obj->gtt_space &&
3ae53783 894 obj->cache_level == I915_CACHE_NONE &&
c07496fa 895 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 896 obj->map_and_fenceable &&
5c0480f2 897 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 898 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
899 /* Note that the gtt paths might fail with non-page-backed user
900 * pointers (e.g. gtt mappings when moving data between
901 * textures). Fallback to the shmem path in that case. */
fbd5a26d 902 }
673a394b 903
5c0480f2 904 if (ret == -EFAULT)
935aaa69 905 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 906
35b62a89 907out:
05394f39 908 drm_gem_object_unreference(&obj->base);
1d7cfea1 909unlock:
fbd5a26d 910 mutex_unlock(&dev->struct_mutex);
673a394b
EA
911 return ret;
912}
913
914/**
2ef7eeaa
EA
915 * Called when user space prepares to use an object with the CPU, either
916 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
917 */
918int
919i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 920 struct drm_file *file)
673a394b
EA
921{
922 struct drm_i915_gem_set_domain *args = data;
05394f39 923 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
924 uint32_t read_domains = args->read_domains;
925 uint32_t write_domain = args->write_domain;
673a394b
EA
926 int ret;
927
928 if (!(dev->driver->driver_features & DRIVER_GEM))
929 return -ENODEV;
930
2ef7eeaa 931 /* Only handle setting domains to types used by the CPU. */
21d509e3 932 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
933 return -EINVAL;
934
21d509e3 935 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
936 return -EINVAL;
937
938 /* Having something in the write domain implies it's in the read
939 * domain, and only that read domain. Enforce that in the request.
940 */
941 if (write_domain != 0 && read_domains != write_domain)
942 return -EINVAL;
943
76c1dec1 944 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 945 if (ret)
76c1dec1 946 return ret;
1d7cfea1 947
05394f39 948 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 949 if (&obj->base == NULL) {
1d7cfea1
CW
950 ret = -ENOENT;
951 goto unlock;
76c1dec1 952 }
673a394b 953
2ef7eeaa
EA
954 if (read_domains & I915_GEM_DOMAIN_GTT) {
955 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
956
957 /* Silently promote "you're not bound, there was nothing to do"
958 * to success, since the client was just asking us to
959 * make sure everything was done.
960 */
961 if (ret == -EINVAL)
962 ret = 0;
2ef7eeaa 963 } else {
e47c68e9 964 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
965 }
966
05394f39 967 drm_gem_object_unreference(&obj->base);
1d7cfea1 968unlock:
673a394b
EA
969 mutex_unlock(&dev->struct_mutex);
970 return ret;
971}
972
973/**
974 * Called when user space has done writes to this buffer
975 */
976int
977i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 978 struct drm_file *file)
673a394b
EA
979{
980 struct drm_i915_gem_sw_finish *args = data;
05394f39 981 struct drm_i915_gem_object *obj;
673a394b
EA
982 int ret = 0;
983
984 if (!(dev->driver->driver_features & DRIVER_GEM))
985 return -ENODEV;
986
76c1dec1 987 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 988 if (ret)
76c1dec1 989 return ret;
1d7cfea1 990
05394f39 991 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 992 if (&obj->base == NULL) {
1d7cfea1
CW
993 ret = -ENOENT;
994 goto unlock;
673a394b
EA
995 }
996
673a394b 997 /* Pinned buffers may be scanout, so flush the cache */
05394f39 998 if (obj->pin_count)
e47c68e9
EA
999 i915_gem_object_flush_cpu_write_domain(obj);
1000
05394f39 1001 drm_gem_object_unreference(&obj->base);
1d7cfea1 1002unlock:
673a394b
EA
1003 mutex_unlock(&dev->struct_mutex);
1004 return ret;
1005}
1006
1007/**
1008 * Maps the contents of an object, returning the address it is mapped
1009 * into.
1010 *
1011 * While the mapping holds a reference on the contents of the object, it doesn't
1012 * imply a ref on the object itself.
1013 */
1014int
1015i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1016 struct drm_file *file)
673a394b
EA
1017{
1018 struct drm_i915_gem_mmap *args = data;
1019 struct drm_gem_object *obj;
673a394b
EA
1020 unsigned long addr;
1021
1022 if (!(dev->driver->driver_features & DRIVER_GEM))
1023 return -ENODEV;
1024
05394f39 1025 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1026 if (obj == NULL)
bf79cb91 1027 return -ENOENT;
673a394b 1028
673a394b
EA
1029 down_write(&current->mm->mmap_sem);
1030 addr = do_mmap(obj->filp, 0, args->size,
1031 PROT_READ | PROT_WRITE, MAP_SHARED,
1032 args->offset);
1033 up_write(&current->mm->mmap_sem);
bc9025bd 1034 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1035 if (IS_ERR((void *)addr))
1036 return addr;
1037
1038 args->addr_ptr = (uint64_t) addr;
1039
1040 return 0;
1041}
1042
de151cf6
JB
1043/**
1044 * i915_gem_fault - fault a page into the GTT
1045 * vma: VMA in question
1046 * vmf: fault info
1047 *
1048 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1049 * from userspace. The fault handler takes care of binding the object to
1050 * the GTT (if needed), allocating and programming a fence register (again,
1051 * only if needed based on whether the old reg is still valid or the object
1052 * is tiled) and inserting a new PTE into the faulting process.
1053 *
1054 * Note that the faulting process may involve evicting existing objects
1055 * from the GTT and/or fence registers to make room. So performance may
1056 * suffer if the GTT working set is large or there are few fence registers
1057 * left.
1058 */
1059int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1060{
05394f39
CW
1061 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1062 struct drm_device *dev = obj->base.dev;
7d1c4804 1063 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1064 pgoff_t page_offset;
1065 unsigned long pfn;
1066 int ret = 0;
0f973f27 1067 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1068
1069 /* We don't use vmf->pgoff since that has the fake offset */
1070 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1071 PAGE_SHIFT;
1072
d9bc7e9f
CW
1073 ret = i915_mutex_lock_interruptible(dev);
1074 if (ret)
1075 goto out;
a00b10c3 1076
db53a302
CW
1077 trace_i915_gem_object_fault(obj, page_offset, true, write);
1078
d9bc7e9f 1079 /* Now bind it into the GTT if needed */
919926ae
CW
1080 if (!obj->map_and_fenceable) {
1081 ret = i915_gem_object_unbind(obj);
1082 if (ret)
1083 goto unlock;
a00b10c3 1084 }
05394f39 1085 if (!obj->gtt_space) {
75e9e915 1086 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1087 if (ret)
1088 goto unlock;
de151cf6 1089
e92d03bf
EA
1090 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1091 if (ret)
1092 goto unlock;
1093 }
4a684a41 1094
74898d7e
DV
1095 if (!obj->has_global_gtt_mapping)
1096 i915_gem_gtt_bind_object(obj, obj->cache_level);
1097
06d98131 1098 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1099 if (ret)
1100 goto unlock;
de151cf6 1101
05394f39
CW
1102 if (i915_gem_object_is_inactive(obj))
1103 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1104
6299f992
CW
1105 obj->fault_mappable = true;
1106
05394f39 1107 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1108 page_offset;
1109
1110 /* Finally, remap it using the new GTT offset */
1111 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1112unlock:
de151cf6 1113 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1114out:
de151cf6 1115 switch (ret) {
d9bc7e9f 1116 case -EIO:
045e769a 1117 case -EAGAIN:
d9bc7e9f
CW
1118 /* Give the error handler a chance to run and move the
1119 * objects off the GPU active list. Next time we service the
1120 * fault, we should be able to transition the page into the
1121 * GTT without touching the GPU (and so avoid further
1122 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1123 * with coherency, just lost writes.
1124 */
045e769a 1125 set_need_resched();
c715089f
CW
1126 case 0:
1127 case -ERESTARTSYS:
bed636ab 1128 case -EINTR:
c715089f 1129 return VM_FAULT_NOPAGE;
de151cf6 1130 case -ENOMEM:
de151cf6 1131 return VM_FAULT_OOM;
de151cf6 1132 default:
c715089f 1133 return VM_FAULT_SIGBUS;
de151cf6
JB
1134 }
1135}
1136
901782b2
CW
1137/**
1138 * i915_gem_release_mmap - remove physical page mappings
1139 * @obj: obj in question
1140 *
af901ca1 1141 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1142 * relinquish ownership of the pages back to the system.
1143 *
1144 * It is vital that we remove the page mapping if we have mapped a tiled
1145 * object through the GTT and then lose the fence register due to
1146 * resource pressure. Similarly if the object has been moved out of the
1147 * aperture, than pages mapped into userspace must be revoked. Removing the
1148 * mapping will then trigger a page fault on the next user access, allowing
1149 * fixup by i915_gem_fault().
1150 */
d05ca301 1151void
05394f39 1152i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1153{
6299f992
CW
1154 if (!obj->fault_mappable)
1155 return;
901782b2 1156
f6e47884
CW
1157 if (obj->base.dev->dev_mapping)
1158 unmap_mapping_range(obj->base.dev->dev_mapping,
1159 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1160 obj->base.size, 1);
fb7d516a 1161
6299f992 1162 obj->fault_mappable = false;
901782b2
CW
1163}
1164
92b88aeb 1165static uint32_t
e28f8711 1166i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1167{
e28f8711 1168 uint32_t gtt_size;
92b88aeb
CW
1169
1170 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1171 tiling_mode == I915_TILING_NONE)
1172 return size;
92b88aeb
CW
1173
1174 /* Previous chips need a power-of-two fence region when tiling */
1175 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1176 gtt_size = 1024*1024;
92b88aeb 1177 else
e28f8711 1178 gtt_size = 512*1024;
92b88aeb 1179
e28f8711
CW
1180 while (gtt_size < size)
1181 gtt_size <<= 1;
92b88aeb 1182
e28f8711 1183 return gtt_size;
92b88aeb
CW
1184}
1185
de151cf6
JB
1186/**
1187 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1188 * @obj: object to check
1189 *
1190 * Return the required GTT alignment for an object, taking into account
5e783301 1191 * potential fence register mapping.
de151cf6
JB
1192 */
1193static uint32_t
e28f8711
CW
1194i915_gem_get_gtt_alignment(struct drm_device *dev,
1195 uint32_t size,
1196 int tiling_mode)
de151cf6 1197{
de151cf6
JB
1198 /*
1199 * Minimum alignment is 4k (GTT page size), but might be greater
1200 * if a fence register is needed for the object.
1201 */
a00b10c3 1202 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1203 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1204 return 4096;
1205
a00b10c3
CW
1206 /*
1207 * Previous chips need to be aligned to the size of the smallest
1208 * fence register that can contain the object.
1209 */
e28f8711 1210 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1211}
1212
5e783301
DV
1213/**
1214 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1215 * unfenced object
e28f8711
CW
1216 * @dev: the device
1217 * @size: size of the object
1218 * @tiling_mode: tiling mode of the object
5e783301
DV
1219 *
1220 * Return the required GTT alignment for an object, only taking into account
1221 * unfenced tiled surface requirements.
1222 */
467cffba 1223uint32_t
e28f8711
CW
1224i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1225 uint32_t size,
1226 int tiling_mode)
5e783301 1227{
5e783301
DV
1228 /*
1229 * Minimum alignment is 4k (GTT page size) for sane hw.
1230 */
1231 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1232 tiling_mode == I915_TILING_NONE)
5e783301
DV
1233 return 4096;
1234
e28f8711
CW
1235 /* Previous hardware however needs to be aligned to a power-of-two
1236 * tile height. The simplest method for determining this is to reuse
1237 * the power-of-tile object size.
5e783301 1238 */
e28f8711 1239 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1240}
1241
de151cf6 1242int
ff72145b
DA
1243i915_gem_mmap_gtt(struct drm_file *file,
1244 struct drm_device *dev,
1245 uint32_t handle,
1246 uint64_t *offset)
de151cf6 1247{
da761a6e 1248 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1249 struct drm_i915_gem_object *obj;
de151cf6
JB
1250 int ret;
1251
1252 if (!(dev->driver->driver_features & DRIVER_GEM))
1253 return -ENODEV;
1254
76c1dec1 1255 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1256 if (ret)
76c1dec1 1257 return ret;
de151cf6 1258
ff72145b 1259 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1260 if (&obj->base == NULL) {
1d7cfea1
CW
1261 ret = -ENOENT;
1262 goto unlock;
1263 }
de151cf6 1264
05394f39 1265 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1266 ret = -E2BIG;
ff56b0bc 1267 goto out;
da761a6e
CW
1268 }
1269
05394f39 1270 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1271 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1272 ret = -EINVAL;
1273 goto out;
ab18282d
CW
1274 }
1275
05394f39 1276 if (!obj->base.map_list.map) {
b464e9a2 1277 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1278 if (ret)
1279 goto out;
de151cf6
JB
1280 }
1281
ff72145b 1282 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1283
1d7cfea1 1284out:
05394f39 1285 drm_gem_object_unreference(&obj->base);
1d7cfea1 1286unlock:
de151cf6 1287 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1288 return ret;
de151cf6
JB
1289}
1290
ff72145b
DA
1291/**
1292 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1293 * @dev: DRM device
1294 * @data: GTT mapping ioctl data
1295 * @file: GEM object info
1296 *
1297 * Simply returns the fake offset to userspace so it can mmap it.
1298 * The mmap call will end up in drm_gem_mmap(), which will set things
1299 * up so we can get faults in the handler above.
1300 *
1301 * The fault handler will take care of binding the object into the GTT
1302 * (since it may have been evicted to make room for something), allocating
1303 * a fence register, and mapping the appropriate aperture address into
1304 * userspace.
1305 */
1306int
1307i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1308 struct drm_file *file)
1309{
1310 struct drm_i915_gem_mmap_gtt *args = data;
1311
1312 if (!(dev->driver->driver_features & DRIVER_GEM))
1313 return -ENODEV;
1314
1315 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1316}
1317
1318
e5281ccd 1319static int
05394f39 1320i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1321 gfp_t gfpmask)
1322{
e5281ccd
CW
1323 int page_count, i;
1324 struct address_space *mapping;
1325 struct inode *inode;
1326 struct page *page;
1327
1328 /* Get the list of pages out of our struct file. They'll be pinned
1329 * at this point until we release them.
1330 */
05394f39
CW
1331 page_count = obj->base.size / PAGE_SIZE;
1332 BUG_ON(obj->pages != NULL);
1333 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1334 if (obj->pages == NULL)
e5281ccd
CW
1335 return -ENOMEM;
1336
05394f39 1337 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1338 mapping = inode->i_mapping;
5949eac4
HD
1339 gfpmask |= mapping_gfp_mask(mapping);
1340
e5281ccd 1341 for (i = 0; i < page_count; i++) {
5949eac4 1342 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1343 if (IS_ERR(page))
1344 goto err_pages;
1345
05394f39 1346 obj->pages[i] = page;
e5281ccd
CW
1347 }
1348
6dacfd2f 1349 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1350 i915_gem_object_do_bit_17_swizzle(obj);
1351
1352 return 0;
1353
1354err_pages:
1355 while (i--)
05394f39 1356 page_cache_release(obj->pages[i]);
e5281ccd 1357
05394f39
CW
1358 drm_free_large(obj->pages);
1359 obj->pages = NULL;
e5281ccd
CW
1360 return PTR_ERR(page);
1361}
1362
5cdf5881 1363static void
05394f39 1364i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1365{
05394f39 1366 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1367 int i;
1368
05394f39 1369 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1370
6dacfd2f 1371 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1372 i915_gem_object_save_bit_17_swizzle(obj);
1373
05394f39
CW
1374 if (obj->madv == I915_MADV_DONTNEED)
1375 obj->dirty = 0;
3ef94daa
CW
1376
1377 for (i = 0; i < page_count; i++) {
05394f39
CW
1378 if (obj->dirty)
1379 set_page_dirty(obj->pages[i]);
3ef94daa 1380
05394f39
CW
1381 if (obj->madv == I915_MADV_WILLNEED)
1382 mark_page_accessed(obj->pages[i]);
3ef94daa 1383
05394f39 1384 page_cache_release(obj->pages[i]);
3ef94daa 1385 }
05394f39 1386 obj->dirty = 0;
673a394b 1387
05394f39
CW
1388 drm_free_large(obj->pages);
1389 obj->pages = NULL;
673a394b
EA
1390}
1391
54cf91dc 1392void
05394f39 1393i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1394 struct intel_ring_buffer *ring,
1395 u32 seqno)
673a394b 1396{
05394f39 1397 struct drm_device *dev = obj->base.dev;
69dc4987 1398 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1399
852835f3 1400 BUG_ON(ring == NULL);
05394f39 1401 obj->ring = ring;
673a394b
EA
1402
1403 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1404 if (!obj->active) {
1405 drm_gem_object_reference(&obj->base);
1406 obj->active = 1;
673a394b 1407 }
e35a41de 1408
673a394b 1409 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1410 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1411 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1412
05394f39 1413 obj->last_rendering_seqno = seqno;
caea7476 1414
7dd49065 1415 if (obj->fenced_gpu_access) {
caea7476 1416 obj->last_fenced_seqno = seqno;
caea7476 1417
7dd49065
CW
1418 /* Bump MRU to take account of the delayed flush */
1419 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1420 struct drm_i915_fence_reg *reg;
1421
1422 reg = &dev_priv->fence_regs[obj->fence_reg];
1423 list_move_tail(&reg->lru_list,
1424 &dev_priv->mm.fence_list);
1425 }
caea7476
CW
1426 }
1427}
1428
1429static void
1430i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1431{
1432 list_del_init(&obj->ring_list);
1433 obj->last_rendering_seqno = 0;
15a13bbd 1434 obj->last_fenced_seqno = 0;
673a394b
EA
1435}
1436
ce44b0ea 1437static void
05394f39 1438i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1439{
05394f39 1440 struct drm_device *dev = obj->base.dev;
ce44b0ea 1441 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1442
05394f39
CW
1443 BUG_ON(!obj->active);
1444 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1445
1446 i915_gem_object_move_off_active(obj);
1447}
1448
1449static void
1450i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1451{
1452 struct drm_device *dev = obj->base.dev;
1453 struct drm_i915_private *dev_priv = dev->dev_private;
1454
1455 if (obj->pin_count != 0)
1456 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1457 else
1458 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1459
1460 BUG_ON(!list_empty(&obj->gpu_write_list));
1461 BUG_ON(!obj->active);
1462 obj->ring = NULL;
1463
1464 i915_gem_object_move_off_active(obj);
1465 obj->fenced_gpu_access = false;
caea7476
CW
1466
1467 obj->active = 0;
87ca9c8a 1468 obj->pending_gpu_write = false;
caea7476
CW
1469 drm_gem_object_unreference(&obj->base);
1470
1471 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1472}
673a394b 1473
963b4836
CW
1474/* Immediately discard the backing storage */
1475static void
05394f39 1476i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1477{
bb6baf76 1478 struct inode *inode;
963b4836 1479
ae9fed6b
CW
1480 /* Our goal here is to return as much of the memory as
1481 * is possible back to the system as we are called from OOM.
1482 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1483 * backing pages, *now*.
ae9fed6b 1484 */
05394f39 1485 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1486 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1487
a14917ee
CW
1488 if (obj->base.map_list.map)
1489 drm_gem_free_mmap_offset(&obj->base);
1490
05394f39 1491 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1492}
1493
1494static inline int
05394f39 1495i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1496{
05394f39 1497 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1498}
1499
63560396 1500static void
db53a302
CW
1501i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1502 uint32_t flush_domains)
63560396 1503{
05394f39 1504 struct drm_i915_gem_object *obj, *next;
63560396 1505
05394f39 1506 list_for_each_entry_safe(obj, next,
64193406 1507 &ring->gpu_write_list,
63560396 1508 gpu_write_list) {
05394f39
CW
1509 if (obj->base.write_domain & flush_domains) {
1510 uint32_t old_write_domain = obj->base.write_domain;
63560396 1511
05394f39
CW
1512 obj->base.write_domain = 0;
1513 list_del_init(&obj->gpu_write_list);
1ec14ad3 1514 i915_gem_object_move_to_active(obj, ring,
db53a302 1515 i915_gem_next_request_seqno(ring));
63560396 1516
63560396 1517 trace_i915_gem_object_change_domain(obj,
05394f39 1518 obj->base.read_domains,
63560396
DV
1519 old_write_domain);
1520 }
1521 }
1522}
8187a2b7 1523
53d227f2
DV
1524static u32
1525i915_gem_get_seqno(struct drm_device *dev)
1526{
1527 drm_i915_private_t *dev_priv = dev->dev_private;
1528 u32 seqno = dev_priv->next_seqno;
1529
1530 /* reserve 0 for non-seqno */
1531 if (++dev_priv->next_seqno == 0)
1532 dev_priv->next_seqno = 1;
1533
1534 return seqno;
1535}
1536
1537u32
1538i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1539{
1540 if (ring->outstanding_lazy_request == 0)
1541 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1542
1543 return ring->outstanding_lazy_request;
1544}
1545
3cce469c 1546int
db53a302 1547i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1548 struct drm_file *file,
db53a302 1549 struct drm_i915_gem_request *request)
673a394b 1550{
db53a302 1551 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1552 uint32_t seqno;
a71d8d94 1553 u32 request_ring_position;
673a394b 1554 int was_empty;
3cce469c
CW
1555 int ret;
1556
1557 BUG_ON(request == NULL);
53d227f2 1558 seqno = i915_gem_next_request_seqno(ring);
673a394b 1559
a71d8d94
CW
1560 /* Record the position of the start of the request so that
1561 * should we detect the updated seqno part-way through the
1562 * GPU processing the request, we never over-estimate the
1563 * position of the head.
1564 */
1565 request_ring_position = intel_ring_get_tail(ring);
1566
3cce469c
CW
1567 ret = ring->add_request(ring, &seqno);
1568 if (ret)
1569 return ret;
673a394b 1570
db53a302 1571 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1572
1573 request->seqno = seqno;
852835f3 1574 request->ring = ring;
a71d8d94 1575 request->tail = request_ring_position;
673a394b 1576 request->emitted_jiffies = jiffies;
852835f3
ZN
1577 was_empty = list_empty(&ring->request_list);
1578 list_add_tail(&request->list, &ring->request_list);
1579
db53a302
CW
1580 if (file) {
1581 struct drm_i915_file_private *file_priv = file->driver_priv;
1582
1c25595f 1583 spin_lock(&file_priv->mm.lock);
f787a5f5 1584 request->file_priv = file_priv;
b962442e 1585 list_add_tail(&request->client_list,
f787a5f5 1586 &file_priv->mm.request_list);
1c25595f 1587 spin_unlock(&file_priv->mm.lock);
b962442e 1588 }
673a394b 1589
5391d0cf 1590 ring->outstanding_lazy_request = 0;
db53a302 1591
f65d9421 1592 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1593 if (i915_enable_hangcheck) {
1594 mod_timer(&dev_priv->hangcheck_timer,
1595 jiffies +
1596 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1597 }
f65d9421 1598 if (was_empty)
b3b079db
CW
1599 queue_delayed_work(dev_priv->wq,
1600 &dev_priv->mm.retire_work, HZ);
f65d9421 1601 }
3cce469c 1602 return 0;
673a394b
EA
1603}
1604
f787a5f5
CW
1605static inline void
1606i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1607{
1c25595f 1608 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1609
1c25595f
CW
1610 if (!file_priv)
1611 return;
1c5d22f7 1612
1c25595f 1613 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1614 if (request->file_priv) {
1615 list_del(&request->client_list);
1616 request->file_priv = NULL;
1617 }
1c25595f 1618 spin_unlock(&file_priv->mm.lock);
673a394b 1619}
673a394b 1620
dfaae392
CW
1621static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1622 struct intel_ring_buffer *ring)
9375e446 1623{
dfaae392
CW
1624 while (!list_empty(&ring->request_list)) {
1625 struct drm_i915_gem_request *request;
673a394b 1626
dfaae392
CW
1627 request = list_first_entry(&ring->request_list,
1628 struct drm_i915_gem_request,
1629 list);
de151cf6 1630
dfaae392 1631 list_del(&request->list);
f787a5f5 1632 i915_gem_request_remove_from_client(request);
dfaae392
CW
1633 kfree(request);
1634 }
673a394b 1635
dfaae392 1636 while (!list_empty(&ring->active_list)) {
05394f39 1637 struct drm_i915_gem_object *obj;
9375e446 1638
05394f39
CW
1639 obj = list_first_entry(&ring->active_list,
1640 struct drm_i915_gem_object,
1641 ring_list);
9375e446 1642
05394f39
CW
1643 obj->base.write_domain = 0;
1644 list_del_init(&obj->gpu_write_list);
1645 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1646 }
1647}
1648
312817a3
CW
1649static void i915_gem_reset_fences(struct drm_device *dev)
1650{
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 int i;
1653
4b9de737 1654 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1655 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1656
ada726c7 1657 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1658
ada726c7
CW
1659 if (reg->obj)
1660 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1661
ada726c7
CW
1662 reg->pin_count = 0;
1663 reg->obj = NULL;
1664 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1665 }
ada726c7
CW
1666
1667 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1668}
1669
069efc1d 1670void i915_gem_reset(struct drm_device *dev)
673a394b 1671{
77f01230 1672 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1673 struct drm_i915_gem_object *obj;
1ec14ad3 1674 int i;
673a394b 1675
1ec14ad3
CW
1676 for (i = 0; i < I915_NUM_RINGS; i++)
1677 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1678
1679 /* Remove anything from the flushing lists. The GPU cache is likely
1680 * to be lost on reset along with the data, so simply move the
1681 * lost bo to the inactive list.
1682 */
1683 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1684 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1685 struct drm_i915_gem_object,
1686 mm_list);
dfaae392 1687
05394f39
CW
1688 obj->base.write_domain = 0;
1689 list_del_init(&obj->gpu_write_list);
1690 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1691 }
1692
1693 /* Move everything out of the GPU domains to ensure we do any
1694 * necessary invalidation upon reuse.
1695 */
05394f39 1696 list_for_each_entry(obj,
77f01230 1697 &dev_priv->mm.inactive_list,
69dc4987 1698 mm_list)
77f01230 1699 {
05394f39 1700 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1701 }
069efc1d
CW
1702
1703 /* The fence registers are invalidated so clear them out */
312817a3 1704 i915_gem_reset_fences(dev);
673a394b
EA
1705}
1706
1707/**
1708 * This function clears the request list as sequence numbers are passed.
1709 */
a71d8d94 1710void
db53a302 1711i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1712{
673a394b 1713 uint32_t seqno;
1ec14ad3 1714 int i;
673a394b 1715
db53a302 1716 if (list_empty(&ring->request_list))
6c0594a3
KW
1717 return;
1718
db53a302 1719 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1720
78501eac 1721 seqno = ring->get_seqno(ring);
1ec14ad3 1722
076e2c0e 1723 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1724 if (seqno >= ring->sync_seqno[i])
1725 ring->sync_seqno[i] = 0;
1726
852835f3 1727 while (!list_empty(&ring->request_list)) {
673a394b 1728 struct drm_i915_gem_request *request;
673a394b 1729
852835f3 1730 request = list_first_entry(&ring->request_list,
673a394b
EA
1731 struct drm_i915_gem_request,
1732 list);
673a394b 1733
dfaae392 1734 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1735 break;
1736
db53a302 1737 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1738 /* We know the GPU must have read the request to have
1739 * sent us the seqno + interrupt, so use the position
1740 * of tail of the request to update the last known position
1741 * of the GPU head.
1742 */
1743 ring->last_retired_head = request->tail;
b84d5f0c
CW
1744
1745 list_del(&request->list);
f787a5f5 1746 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1747 kfree(request);
1748 }
673a394b 1749
b84d5f0c
CW
1750 /* Move any buffers on the active list that are no longer referenced
1751 * by the ringbuffer to the flushing/inactive lists as appropriate.
1752 */
1753 while (!list_empty(&ring->active_list)) {
05394f39 1754 struct drm_i915_gem_object *obj;
b84d5f0c 1755
0206e353 1756 obj = list_first_entry(&ring->active_list,
05394f39
CW
1757 struct drm_i915_gem_object,
1758 ring_list);
673a394b 1759
05394f39 1760 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1761 break;
b84d5f0c 1762
05394f39 1763 if (obj->base.write_domain != 0)
b84d5f0c
CW
1764 i915_gem_object_move_to_flushing(obj);
1765 else
1766 i915_gem_object_move_to_inactive(obj);
673a394b 1767 }
9d34e5db 1768
db53a302
CW
1769 if (unlikely(ring->trace_irq_seqno &&
1770 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1771 ring->irq_put(ring);
db53a302 1772 ring->trace_irq_seqno = 0;
9d34e5db 1773 }
23bc5982 1774
db53a302 1775 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1776}
1777
b09a1fec
CW
1778void
1779i915_gem_retire_requests(struct drm_device *dev)
1780{
1781 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1782 int i;
b09a1fec 1783
be72615b 1784 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1785 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1786
1787 /* We must be careful that during unbind() we do not
1788 * accidentally infinitely recurse into retire requests.
1789 * Currently:
1790 * retire -> free -> unbind -> wait -> retire_ring
1791 */
05394f39 1792 list_for_each_entry_safe(obj, next,
be72615b 1793 &dev_priv->mm.deferred_free_list,
69dc4987 1794 mm_list)
05394f39 1795 i915_gem_free_object_tail(obj);
be72615b
CW
1796 }
1797
1ec14ad3 1798 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1799 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1800}
1801
75ef9da2 1802static void
673a394b
EA
1803i915_gem_retire_work_handler(struct work_struct *work)
1804{
1805 drm_i915_private_t *dev_priv;
1806 struct drm_device *dev;
0a58705b
CW
1807 bool idle;
1808 int i;
673a394b
EA
1809
1810 dev_priv = container_of(work, drm_i915_private_t,
1811 mm.retire_work.work);
1812 dev = dev_priv->dev;
1813
891b48cf
CW
1814 /* Come back later if the device is busy... */
1815 if (!mutex_trylock(&dev->struct_mutex)) {
1816 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1817 return;
1818 }
1819
b09a1fec 1820 i915_gem_retire_requests(dev);
d1b851fc 1821
0a58705b
CW
1822 /* Send a periodic flush down the ring so we don't hold onto GEM
1823 * objects indefinitely.
1824 */
1825 idle = true;
1826 for (i = 0; i < I915_NUM_RINGS; i++) {
1827 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1828
1829 if (!list_empty(&ring->gpu_write_list)) {
1830 struct drm_i915_gem_request *request;
1831 int ret;
1832
db53a302
CW
1833 ret = i915_gem_flush_ring(ring,
1834 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1835 request = kzalloc(sizeof(*request), GFP_KERNEL);
1836 if (ret || request == NULL ||
db53a302 1837 i915_add_request(ring, NULL, request))
0a58705b
CW
1838 kfree(request);
1839 }
1840
1841 idle &= list_empty(&ring->request_list);
1842 }
1843
1844 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1845 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1846
673a394b
EA
1847 mutex_unlock(&dev->struct_mutex);
1848}
1849
db53a302
CW
1850/**
1851 * Waits for a sequence number to be signaled, and cleans up the
1852 * request and object lists appropriately for that event.
1853 */
5a5a0c64 1854int
db53a302 1855i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1856 uint32_t seqno,
1857 bool do_retire)
673a394b 1858{
db53a302 1859 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1860 u32 ier;
673a394b
EA
1861 int ret = 0;
1862
1863 BUG_ON(seqno == 0);
1864
d9bc7e9f
CW
1865 if (atomic_read(&dev_priv->mm.wedged)) {
1866 struct completion *x = &dev_priv->error_completion;
1867 bool recovery_complete;
1868 unsigned long flags;
1869
1870 /* Give the error handler a chance to run. */
1871 spin_lock_irqsave(&x->wait.lock, flags);
1872 recovery_complete = x->done > 0;
1873 spin_unlock_irqrestore(&x->wait.lock, flags);
1874
1875 return recovery_complete ? -EIO : -EAGAIN;
1876 }
30dbf0c0 1877
5d97eb69 1878 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1879 struct drm_i915_gem_request *request;
1880
1881 request = kzalloc(sizeof(*request), GFP_KERNEL);
1882 if (request == NULL)
e35a41de 1883 return -ENOMEM;
3cce469c 1884
db53a302 1885 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1886 if (ret) {
1887 kfree(request);
1888 return ret;
1889 }
1890
1891 seqno = request->seqno;
e35a41de 1892 }
ffed1d09 1893
78501eac 1894 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1895 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d 1896 ier = I915_READ(DEIER) | I915_READ(GTIER);
23e3f9b3
JB
1897 else if (IS_VALLEYVIEW(ring->dev))
1898 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
036a4a7d
ZW
1899 else
1900 ier = I915_READ(IER);
802c7eb6
JB
1901 if (!ier) {
1902 DRM_ERROR("something (likely vbetool) disabled "
1903 "interrupts, re-enabling\n");
f01c22fd
CW
1904 ring->dev->driver->irq_preinstall(ring->dev);
1905 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1906 }
1907
db53a302 1908 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1909
b2223497 1910 ring->waiting_seqno = seqno;
b13c2b96 1911 if (ring->irq_get(ring)) {
ce453d81 1912 if (dev_priv->mm.interruptible)
b13c2b96
CW
1913 ret = wait_event_interruptible(ring->irq_queue,
1914 i915_seqno_passed(ring->get_seqno(ring), seqno)
1915 || atomic_read(&dev_priv->mm.wedged));
1916 else
1917 wait_event(ring->irq_queue,
1918 i915_seqno_passed(ring->get_seqno(ring), seqno)
1919 || atomic_read(&dev_priv->mm.wedged));
1920
1921 ring->irq_put(ring);
e959b5db
EA
1922 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1923 seqno) ||
1924 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1925 ret = -EBUSY;
b2223497 1926 ring->waiting_seqno = 0;
1c5d22f7 1927
db53a302 1928 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1929 }
ba1234d1 1930 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1931 ret = -EAGAIN;
673a394b 1932
673a394b
EA
1933 /* Directly dispatch request retiring. While we have the work queue
1934 * to handle this, the waiter on a request often wants an associated
1935 * buffer to have made it to the inactive list, and we would need
1936 * a separate wait queue to handle that.
1937 */
b93f9cf1 1938 if (ret == 0 && do_retire)
db53a302 1939 i915_gem_retire_requests_ring(ring);
673a394b
EA
1940
1941 return ret;
1942}
1943
673a394b
EA
1944/**
1945 * Ensures that all rendering to the object has completed and the object is
1946 * safe to unbind from the GTT or access from the CPU.
1947 */
54cf91dc 1948int
ce453d81 1949i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1950{
673a394b
EA
1951 int ret;
1952
e47c68e9
EA
1953 /* This function only exists to support waiting for existing rendering,
1954 * not for emitting required flushes.
673a394b 1955 */
05394f39 1956 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1957
1958 /* If there is rendering queued on the buffer being evicted, wait for
1959 * it.
1960 */
05394f39 1961 if (obj->active) {
b93f9cf1
BW
1962 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1963 true);
2cf34d7b 1964 if (ret)
673a394b
EA
1965 return ret;
1966 }
1967
1968 return 0;
1969}
1970
5816d648
BW
1971/**
1972 * i915_gem_object_sync - sync an object to a ring.
1973 *
1974 * @obj: object which may be in use on another ring.
1975 * @to: ring we wish to use the object on. May be NULL.
1976 *
1977 * This code is meant to abstract object synchronization with the GPU.
1978 * Calling with NULL implies synchronizing the object with the CPU
1979 * rather than a particular GPU ring.
1980 *
1981 * Returns 0 if successful, else propagates up the lower layer error.
1982 */
2911a35b
BW
1983int
1984i915_gem_object_sync(struct drm_i915_gem_object *obj,
1985 struct intel_ring_buffer *to)
1986{
1987 struct intel_ring_buffer *from = obj->ring;
1988 u32 seqno;
1989 int ret, idx;
1990
1991 if (from == NULL || to == from)
1992 return 0;
1993
5816d648 1994 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1995 return i915_gem_object_wait_rendering(obj);
1996
1997 idx = intel_ring_sync_index(from, to);
1998
1999 seqno = obj->last_rendering_seqno;
2000 if (seqno <= from->sync_seqno[idx])
2001 return 0;
2002
2003 if (seqno == from->outstanding_lazy_request) {
2004 struct drm_i915_gem_request *request;
2005
2006 request = kzalloc(sizeof(*request), GFP_KERNEL);
2007 if (request == NULL)
2008 return -ENOMEM;
2009
2010 ret = i915_add_request(from, NULL, request);
2011 if (ret) {
2012 kfree(request);
2013 return ret;
2014 }
2015
2016 seqno = request->seqno;
2017 }
2018
2911a35b 2019
1500f7ea 2020 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2021 if (!ret)
2022 from->sync_seqno[idx] = seqno;
2911a35b 2023
e3a5a225 2024 return ret;
2911a35b
BW
2025}
2026
b5ffc9bc
CW
2027static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2028{
2029 u32 old_write_domain, old_read_domains;
2030
b5ffc9bc
CW
2031 /* Act a barrier for all accesses through the GTT */
2032 mb();
2033
2034 /* Force a pagefault for domain tracking on next user access */
2035 i915_gem_release_mmap(obj);
2036
b97c3d9c
KP
2037 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2038 return;
2039
b5ffc9bc
CW
2040 old_read_domains = obj->base.read_domains;
2041 old_write_domain = obj->base.write_domain;
2042
2043 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2044 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2045
2046 trace_i915_gem_object_change_domain(obj,
2047 old_read_domains,
2048 old_write_domain);
2049}
2050
673a394b
EA
2051/**
2052 * Unbinds an object from the GTT aperture.
2053 */
0f973f27 2054int
05394f39 2055i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2056{
7bddb01f 2057 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2058 int ret = 0;
2059
05394f39 2060 if (obj->gtt_space == NULL)
673a394b
EA
2061 return 0;
2062
05394f39 2063 if (obj->pin_count != 0) {
673a394b
EA
2064 DRM_ERROR("Attempting to unbind pinned buffer\n");
2065 return -EINVAL;
2066 }
2067
a8198eea
CW
2068 ret = i915_gem_object_finish_gpu(obj);
2069 if (ret == -ERESTARTSYS)
2070 return ret;
2071 /* Continue on if we fail due to EIO, the GPU is hung so we
2072 * should be safe and we need to cleanup or else we might
2073 * cause memory corruption through use-after-free.
2074 */
2075
b5ffc9bc 2076 i915_gem_object_finish_gtt(obj);
5323fd04 2077
673a394b
EA
2078 /* Move the object to the CPU domain to ensure that
2079 * any possible CPU writes while it's not in the GTT
a8198eea 2080 * are flushed when we go to remap it.
673a394b 2081 */
a8198eea
CW
2082 if (ret == 0)
2083 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2084 if (ret == -ERESTARTSYS)
673a394b 2085 return ret;
812ed492 2086 if (ret) {
a8198eea
CW
2087 /* In the event of a disaster, abandon all caches and
2088 * hope for the best.
2089 */
812ed492 2090 i915_gem_clflush_object(obj);
05394f39 2091 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2092 }
673a394b 2093
96b47b65 2094 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2095 ret = i915_gem_object_put_fence(obj);
2096 if (ret == -ERESTARTSYS)
2097 return ret;
96b47b65 2098
db53a302
CW
2099 trace_i915_gem_object_unbind(obj);
2100
74898d7e
DV
2101 if (obj->has_global_gtt_mapping)
2102 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2103 if (obj->has_aliasing_ppgtt_mapping) {
2104 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2105 obj->has_aliasing_ppgtt_mapping = 0;
2106 }
74163907 2107 i915_gem_gtt_finish_object(obj);
7bddb01f 2108
e5281ccd 2109 i915_gem_object_put_pages_gtt(obj);
673a394b 2110
6299f992 2111 list_del_init(&obj->gtt_list);
05394f39 2112 list_del_init(&obj->mm_list);
75e9e915 2113 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2114 obj->map_and_fenceable = true;
673a394b 2115
05394f39
CW
2116 drm_mm_put_block(obj->gtt_space);
2117 obj->gtt_space = NULL;
2118 obj->gtt_offset = 0;
673a394b 2119
05394f39 2120 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2121 i915_gem_object_truncate(obj);
2122
8dc1775d 2123 return ret;
673a394b
EA
2124}
2125
88241785 2126int
db53a302 2127i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2128 uint32_t invalidate_domains,
2129 uint32_t flush_domains)
2130{
88241785
CW
2131 int ret;
2132
36d527de
CW
2133 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2134 return 0;
2135
db53a302
CW
2136 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2137
88241785
CW
2138 ret = ring->flush(ring, invalidate_domains, flush_domains);
2139 if (ret)
2140 return ret;
2141
36d527de
CW
2142 if (flush_domains & I915_GEM_GPU_DOMAINS)
2143 i915_gem_process_flushing_list(ring, flush_domains);
2144
88241785 2145 return 0;
54cf91dc
CW
2146}
2147
b93f9cf1 2148static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2149{
88241785
CW
2150 int ret;
2151
395b70be 2152 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2153 return 0;
2154
88241785 2155 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2156 ret = i915_gem_flush_ring(ring,
0ac74c6b 2157 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2158 if (ret)
2159 return ret;
2160 }
2161
b93f9cf1
BW
2162 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2163 do_retire);
a56ba56c
CW
2164}
2165
b93f9cf1 2166int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2167{
2168 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2169 int ret, i;
4df2faf4 2170
4df2faf4 2171 /* Flush everything onto the inactive list. */
1ec14ad3 2172 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2173 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2174 if (ret)
2175 return ret;
2176 }
4df2faf4 2177
8a1a49f9 2178 return 0;
4df2faf4
DV
2179}
2180
9ce079e4
CW
2181static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2182 struct drm_i915_gem_object *obj)
4e901fdc 2183{
4e901fdc 2184 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2185 uint64_t val;
2186
9ce079e4
CW
2187 if (obj) {
2188 u32 size = obj->gtt_space->size;
4e901fdc 2189
9ce079e4
CW
2190 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2191 0xfffff000) << 32;
2192 val |= obj->gtt_offset & 0xfffff000;
2193 val |= (uint64_t)((obj->stride / 128) - 1) <<
2194 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2195
9ce079e4
CW
2196 if (obj->tiling_mode == I915_TILING_Y)
2197 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2198 val |= I965_FENCE_REG_VALID;
2199 } else
2200 val = 0;
c6642782 2201
9ce079e4
CW
2202 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2203 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2204}
2205
9ce079e4
CW
2206static void i965_write_fence_reg(struct drm_device *dev, int reg,
2207 struct drm_i915_gem_object *obj)
de151cf6 2208{
de151cf6 2209 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2210 uint64_t val;
2211
9ce079e4
CW
2212 if (obj) {
2213 u32 size = obj->gtt_space->size;
de151cf6 2214
9ce079e4
CW
2215 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2216 0xfffff000) << 32;
2217 val |= obj->gtt_offset & 0xfffff000;
2218 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2219 if (obj->tiling_mode == I915_TILING_Y)
2220 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2221 val |= I965_FENCE_REG_VALID;
2222 } else
2223 val = 0;
c6642782 2224
9ce079e4
CW
2225 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2226 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2227}
2228
9ce079e4
CW
2229static void i915_write_fence_reg(struct drm_device *dev, int reg,
2230 struct drm_i915_gem_object *obj)
de151cf6 2231{
de151cf6 2232 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2233 u32 val;
de151cf6 2234
9ce079e4
CW
2235 if (obj) {
2236 u32 size = obj->gtt_space->size;
2237 int pitch_val;
2238 int tile_width;
c6642782 2239
9ce079e4
CW
2240 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2241 (size & -size) != size ||
2242 (obj->gtt_offset & (size - 1)),
2243 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2244 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2245
9ce079e4
CW
2246 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2247 tile_width = 128;
2248 else
2249 tile_width = 512;
2250
2251 /* Note: pitch better be a power of two tile widths */
2252 pitch_val = obj->stride / tile_width;
2253 pitch_val = ffs(pitch_val) - 1;
2254
2255 val = obj->gtt_offset;
2256 if (obj->tiling_mode == I915_TILING_Y)
2257 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2258 val |= I915_FENCE_SIZE_BITS(size);
2259 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2260 val |= I830_FENCE_REG_VALID;
2261 } else
2262 val = 0;
2263
2264 if (reg < 8)
2265 reg = FENCE_REG_830_0 + reg * 4;
2266 else
2267 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2268
2269 I915_WRITE(reg, val);
2270 POSTING_READ(reg);
de151cf6
JB
2271}
2272
9ce079e4
CW
2273static void i830_write_fence_reg(struct drm_device *dev, int reg,
2274 struct drm_i915_gem_object *obj)
de151cf6 2275{
de151cf6 2276 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2277 uint32_t val;
de151cf6 2278
9ce079e4
CW
2279 if (obj) {
2280 u32 size = obj->gtt_space->size;
2281 uint32_t pitch_val;
de151cf6 2282
9ce079e4
CW
2283 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2284 (size & -size) != size ||
2285 (obj->gtt_offset & (size - 1)),
2286 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2287 obj->gtt_offset, size);
e76a16de 2288
9ce079e4
CW
2289 pitch_val = obj->stride / 128;
2290 pitch_val = ffs(pitch_val) - 1;
de151cf6 2291
9ce079e4
CW
2292 val = obj->gtt_offset;
2293 if (obj->tiling_mode == I915_TILING_Y)
2294 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2295 val |= I830_FENCE_SIZE_BITS(size);
2296 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2297 val |= I830_FENCE_REG_VALID;
2298 } else
2299 val = 0;
c6642782 2300
9ce079e4
CW
2301 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2302 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2303}
2304
2305static void i915_gem_write_fence(struct drm_device *dev, int reg,
2306 struct drm_i915_gem_object *obj)
2307{
2308 switch (INTEL_INFO(dev)->gen) {
2309 case 7:
2310 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2311 case 5:
2312 case 4: i965_write_fence_reg(dev, reg, obj); break;
2313 case 3: i915_write_fence_reg(dev, reg, obj); break;
2314 case 2: i830_write_fence_reg(dev, reg, obj); break;
2315 default: break;
2316 }
de151cf6
JB
2317}
2318
61050808
CW
2319static inline int fence_number(struct drm_i915_private *dev_priv,
2320 struct drm_i915_fence_reg *fence)
2321{
2322 return fence - dev_priv->fence_regs;
2323}
2324
2325static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2326 struct drm_i915_fence_reg *fence,
2327 bool enable)
2328{
2329 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2330 int reg = fence_number(dev_priv, fence);
2331
2332 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2333
2334 if (enable) {
2335 obj->fence_reg = reg;
2336 fence->obj = obj;
2337 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2338 } else {
2339 obj->fence_reg = I915_FENCE_REG_NONE;
2340 fence->obj = NULL;
2341 list_del_init(&fence->lru_list);
2342 }
2343}
2344
d9e86c0e 2345static int
a360bb1a 2346i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2347{
2348 int ret;
2349
2350 if (obj->fenced_gpu_access) {
88241785 2351 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2352 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2353 0, obj->base.write_domain);
2354 if (ret)
2355 return ret;
2356 }
d9e86c0e
CW
2357
2358 obj->fenced_gpu_access = false;
2359 }
2360
1c293ea3 2361 if (obj->last_fenced_seqno) {
18991845
CW
2362 ret = i915_wait_request(obj->ring,
2363 obj->last_fenced_seqno,
14415745 2364 false);
18991845
CW
2365 if (ret)
2366 return ret;
d9e86c0e
CW
2367
2368 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2369 }
2370
63256ec5
CW
2371 /* Ensure that all CPU reads are completed before installing a fence
2372 * and all writes before removing the fence.
2373 */
2374 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2375 mb();
2376
d9e86c0e
CW
2377 return 0;
2378}
2379
2380int
2381i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2382{
61050808 2383 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2384 int ret;
2385
a360bb1a 2386 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2387 if (ret)
2388 return ret;
2389
61050808
CW
2390 if (obj->fence_reg == I915_FENCE_REG_NONE)
2391 return 0;
d9e86c0e 2392
61050808
CW
2393 i915_gem_object_update_fence(obj,
2394 &dev_priv->fence_regs[obj->fence_reg],
2395 false);
2396 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2397
2398 return 0;
2399}
2400
2401static struct drm_i915_fence_reg *
a360bb1a 2402i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2403{
ae3db24a 2404 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2405 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2406 int i;
ae3db24a
DV
2407
2408 /* First try to find a free reg */
d9e86c0e 2409 avail = NULL;
ae3db24a
DV
2410 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2411 reg = &dev_priv->fence_regs[i];
2412 if (!reg->obj)
d9e86c0e 2413 return reg;
ae3db24a 2414
1690e1eb 2415 if (!reg->pin_count)
d9e86c0e 2416 avail = reg;
ae3db24a
DV
2417 }
2418
d9e86c0e
CW
2419 if (avail == NULL)
2420 return NULL;
ae3db24a
DV
2421
2422 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2423 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2424 if (reg->pin_count)
ae3db24a
DV
2425 continue;
2426
8fe301ad 2427 return reg;
ae3db24a
DV
2428 }
2429
8fe301ad 2430 return NULL;
ae3db24a
DV
2431}
2432
de151cf6 2433/**
9a5a53b3 2434 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2435 * @obj: object to map through a fence reg
2436 *
2437 * When mapping objects through the GTT, userspace wants to be able to write
2438 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2439 * This function walks the fence regs looking for a free one for @obj,
2440 * stealing one if it can't find any.
2441 *
2442 * It then sets up the reg based on the object's properties: address, pitch
2443 * and tiling format.
9a5a53b3
CW
2444 *
2445 * For an untiled surface, this removes any existing fence.
de151cf6 2446 */
8c4b8c3f 2447int
06d98131 2448i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2449{
05394f39 2450 struct drm_device *dev = obj->base.dev;
79e53945 2451 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2452 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2453 struct drm_i915_fence_reg *reg;
ae3db24a 2454 int ret;
de151cf6 2455
14415745
CW
2456 /* Have we updated the tiling parameters upon the object and so
2457 * will need to serialise the write to the associated fence register?
2458 */
2459 if (obj->tiling_changed) {
2460 ret = i915_gem_object_flush_fence(obj);
2461 if (ret)
2462 return ret;
2463 }
9a5a53b3 2464
d9e86c0e 2465 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2466 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2467 reg = &dev_priv->fence_regs[obj->fence_reg];
14415745
CW
2468 if (!obj->tiling_changed) {
2469 list_move_tail(&reg->lru_list,
2470 &dev_priv->mm.fence_list);
2471 return 0;
2472 }
2473 } else if (enable) {
2474 reg = i915_find_fence_reg(dev);
2475 if (reg == NULL)
2476 return -EDEADLK;
d9e86c0e 2477
14415745
CW
2478 if (reg->obj) {
2479 struct drm_i915_gem_object *old = reg->obj;
2480
2481 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2482 if (ret)
2483 return ret;
2484
14415745 2485 i915_gem_object_fence_lost(old);
29c5a587 2486 }
14415745 2487 } else
a09ba7fa 2488 return 0;
a09ba7fa 2489
14415745 2490 i915_gem_object_update_fence(obj, reg, enable);
d9e86c0e 2491 obj->tiling_changed = false;
14415745 2492
9ce079e4 2493 return 0;
de151cf6
JB
2494}
2495
673a394b
EA
2496/**
2497 * Finds free space in the GTT aperture and binds the object there.
2498 */
2499static int
05394f39 2500i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2501 unsigned alignment,
75e9e915 2502 bool map_and_fenceable)
673a394b 2503{
05394f39 2504 struct drm_device *dev = obj->base.dev;
673a394b 2505 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2506 struct drm_mm_node *free_space;
a00b10c3 2507 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2508 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2509 bool mappable, fenceable;
07f73f69 2510 int ret;
673a394b 2511
05394f39 2512 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2513 DRM_ERROR("Attempting to bind a purgeable object\n");
2514 return -EINVAL;
2515 }
2516
e28f8711
CW
2517 fence_size = i915_gem_get_gtt_size(dev,
2518 obj->base.size,
2519 obj->tiling_mode);
2520 fence_alignment = i915_gem_get_gtt_alignment(dev,
2521 obj->base.size,
2522 obj->tiling_mode);
2523 unfenced_alignment =
2524 i915_gem_get_unfenced_gtt_alignment(dev,
2525 obj->base.size,
2526 obj->tiling_mode);
a00b10c3 2527
673a394b 2528 if (alignment == 0)
5e783301
DV
2529 alignment = map_and_fenceable ? fence_alignment :
2530 unfenced_alignment;
75e9e915 2531 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2532 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2533 return -EINVAL;
2534 }
2535
05394f39 2536 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2537
654fc607
CW
2538 /* If the object is bigger than the entire aperture, reject it early
2539 * before evicting everything in a vain attempt to find space.
2540 */
05394f39 2541 if (obj->base.size >
75e9e915 2542 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2543 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2544 return -E2BIG;
2545 }
2546
673a394b 2547 search_free:
75e9e915 2548 if (map_and_fenceable)
920afa77
DV
2549 free_space =
2550 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2551 size, alignment, 0,
920afa77
DV
2552 dev_priv->mm.gtt_mappable_end,
2553 0);
2554 else
2555 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2556 size, alignment, 0);
920afa77
DV
2557
2558 if (free_space != NULL) {
75e9e915 2559 if (map_and_fenceable)
05394f39 2560 obj->gtt_space =
920afa77 2561 drm_mm_get_block_range_generic(free_space,
a00b10c3 2562 size, alignment, 0,
920afa77
DV
2563 dev_priv->mm.gtt_mappable_end,
2564 0);
2565 else
05394f39 2566 obj->gtt_space =
a00b10c3 2567 drm_mm_get_block(free_space, size, alignment);
920afa77 2568 }
05394f39 2569 if (obj->gtt_space == NULL) {
673a394b
EA
2570 /* If the gtt is empty and we're still having trouble
2571 * fitting our object in, we're out of memory.
2572 */
75e9e915
DV
2573 ret = i915_gem_evict_something(dev, size, alignment,
2574 map_and_fenceable);
9731129c 2575 if (ret)
673a394b 2576 return ret;
9731129c 2577
673a394b
EA
2578 goto search_free;
2579 }
2580
e5281ccd 2581 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2582 if (ret) {
05394f39
CW
2583 drm_mm_put_block(obj->gtt_space);
2584 obj->gtt_space = NULL;
07f73f69
CW
2585
2586 if (ret == -ENOMEM) {
809b6334
CW
2587 /* first try to reclaim some memory by clearing the GTT */
2588 ret = i915_gem_evict_everything(dev, false);
07f73f69 2589 if (ret) {
07f73f69 2590 /* now try to shrink everyone else */
4bdadb97
CW
2591 if (gfpmask) {
2592 gfpmask = 0;
2593 goto search_free;
07f73f69
CW
2594 }
2595
809b6334 2596 return -ENOMEM;
07f73f69
CW
2597 }
2598
2599 goto search_free;
2600 }
2601
673a394b
EA
2602 return ret;
2603 }
2604
74163907 2605 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2606 if (ret) {
e5281ccd 2607 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2608 drm_mm_put_block(obj->gtt_space);
2609 obj->gtt_space = NULL;
07f73f69 2610
809b6334 2611 if (i915_gem_evict_everything(dev, false))
07f73f69 2612 return ret;
07f73f69
CW
2613
2614 goto search_free;
673a394b 2615 }
673a394b 2616
0ebb9829
DV
2617 if (!dev_priv->mm.aliasing_ppgtt)
2618 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2619
6299f992 2620 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2621 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2622
673a394b
EA
2623 /* Assert that the object is not currently in any GPU domain. As it
2624 * wasn't in the GTT, there shouldn't be any way it could have been in
2625 * a GPU cache
2626 */
05394f39
CW
2627 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2628 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2629
6299f992 2630 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2631
75e9e915 2632 fenceable =
05394f39 2633 obj->gtt_space->size == fence_size &&
0206e353 2634 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2635
75e9e915 2636 mappable =
05394f39 2637 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2638
05394f39 2639 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2640
db53a302 2641 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2642 return 0;
2643}
2644
2645void
05394f39 2646i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2647{
673a394b
EA
2648 /* If we don't have a page list set up, then we're not pinned
2649 * to GPU, and we can ignore the cache flush because it'll happen
2650 * again at bind time.
2651 */
05394f39 2652 if (obj->pages == NULL)
673a394b
EA
2653 return;
2654
9c23f7fc
CW
2655 /* If the GPU is snooping the contents of the CPU cache,
2656 * we do not need to manually clear the CPU cache lines. However,
2657 * the caches are only snooped when the render cache is
2658 * flushed/invalidated. As we always have to emit invalidations
2659 * and flushes when moving into and out of the RENDER domain, correct
2660 * snooping behaviour occurs naturally as the result of our domain
2661 * tracking.
2662 */
2663 if (obj->cache_level != I915_CACHE_NONE)
2664 return;
2665
1c5d22f7 2666 trace_i915_gem_object_clflush(obj);
cfa16a0d 2667
05394f39 2668 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2669}
2670
e47c68e9 2671/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2672static int
3619df03 2673i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2674{
05394f39 2675 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2676 return 0;
e47c68e9
EA
2677
2678 /* Queue the GPU write cache flushing we need. */
db53a302 2679 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2680}
2681
2682/** Flushes the GTT write domain for the object if it's dirty. */
2683static void
05394f39 2684i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2685{
1c5d22f7
CW
2686 uint32_t old_write_domain;
2687
05394f39 2688 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2689 return;
2690
63256ec5 2691 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2692 * to it immediately go to main memory as far as we know, so there's
2693 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2694 *
2695 * However, we do have to enforce the order so that all writes through
2696 * the GTT land before any writes to the device, such as updates to
2697 * the GATT itself.
e47c68e9 2698 */
63256ec5
CW
2699 wmb();
2700
05394f39
CW
2701 old_write_domain = obj->base.write_domain;
2702 obj->base.write_domain = 0;
1c5d22f7
CW
2703
2704 trace_i915_gem_object_change_domain(obj,
05394f39 2705 obj->base.read_domains,
1c5d22f7 2706 old_write_domain);
e47c68e9
EA
2707}
2708
2709/** Flushes the CPU write domain for the object if it's dirty. */
2710static void
05394f39 2711i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2712{
1c5d22f7 2713 uint32_t old_write_domain;
e47c68e9 2714
05394f39 2715 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2716 return;
2717
2718 i915_gem_clflush_object(obj);
40ce6575 2719 intel_gtt_chipset_flush();
05394f39
CW
2720 old_write_domain = obj->base.write_domain;
2721 obj->base.write_domain = 0;
1c5d22f7
CW
2722
2723 trace_i915_gem_object_change_domain(obj,
05394f39 2724 obj->base.read_domains,
1c5d22f7 2725 old_write_domain);
e47c68e9
EA
2726}
2727
2ef7eeaa
EA
2728/**
2729 * Moves a single object to the GTT read, and possibly write domain.
2730 *
2731 * This function returns when the move is complete, including waiting on
2732 * flushes to occur.
2733 */
79e53945 2734int
2021746e 2735i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2736{
1c5d22f7 2737 uint32_t old_write_domain, old_read_domains;
e47c68e9 2738 int ret;
2ef7eeaa 2739
02354392 2740 /* Not valid to be called on unbound objects. */
05394f39 2741 if (obj->gtt_space == NULL)
02354392
EA
2742 return -EINVAL;
2743
8d7e3de1
CW
2744 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2745 return 0;
2746
88241785
CW
2747 ret = i915_gem_object_flush_gpu_write_domain(obj);
2748 if (ret)
2749 return ret;
2750
87ca9c8a 2751 if (obj->pending_gpu_write || write) {
ce453d81 2752 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2753 if (ret)
2754 return ret;
2755 }
2dafb1e0 2756
7213342d 2757 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2758
05394f39
CW
2759 old_write_domain = obj->base.write_domain;
2760 old_read_domains = obj->base.read_domains;
1c5d22f7 2761
e47c68e9
EA
2762 /* It should now be out of any other write domains, and we can update
2763 * the domain values for our changes.
2764 */
05394f39
CW
2765 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2766 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2767 if (write) {
05394f39
CW
2768 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2769 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2770 obj->dirty = 1;
2ef7eeaa
EA
2771 }
2772
1c5d22f7
CW
2773 trace_i915_gem_object_change_domain(obj,
2774 old_read_domains,
2775 old_write_domain);
2776
e47c68e9
EA
2777 return 0;
2778}
2779
e4ffd173
CW
2780int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2781 enum i915_cache_level cache_level)
2782{
7bddb01f
DV
2783 struct drm_device *dev = obj->base.dev;
2784 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2785 int ret;
2786
2787 if (obj->cache_level == cache_level)
2788 return 0;
2789
2790 if (obj->pin_count) {
2791 DRM_DEBUG("can not change the cache level of pinned objects\n");
2792 return -EBUSY;
2793 }
2794
2795 if (obj->gtt_space) {
2796 ret = i915_gem_object_finish_gpu(obj);
2797 if (ret)
2798 return ret;
2799
2800 i915_gem_object_finish_gtt(obj);
2801
2802 /* Before SandyBridge, you could not use tiling or fence
2803 * registers with snooped memory, so relinquish any fences
2804 * currently pointing to our region in the aperture.
2805 */
2806 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2807 ret = i915_gem_object_put_fence(obj);
2808 if (ret)
2809 return ret;
2810 }
2811
74898d7e
DV
2812 if (obj->has_global_gtt_mapping)
2813 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2814 if (obj->has_aliasing_ppgtt_mapping)
2815 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2816 obj, cache_level);
e4ffd173
CW
2817 }
2818
2819 if (cache_level == I915_CACHE_NONE) {
2820 u32 old_read_domains, old_write_domain;
2821
2822 /* If we're coming from LLC cached, then we haven't
2823 * actually been tracking whether the data is in the
2824 * CPU cache or not, since we only allow one bit set
2825 * in obj->write_domain and have been skipping the clflushes.
2826 * Just set it to the CPU cache for now.
2827 */
2828 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2829 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2830
2831 old_read_domains = obj->base.read_domains;
2832 old_write_domain = obj->base.write_domain;
2833
2834 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2835 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2836
2837 trace_i915_gem_object_change_domain(obj,
2838 old_read_domains,
2839 old_write_domain);
2840 }
2841
2842 obj->cache_level = cache_level;
2843 return 0;
2844}
2845
b9241ea3 2846/*
2da3b9b9
CW
2847 * Prepare buffer for display plane (scanout, cursors, etc).
2848 * Can be called from an uninterruptible phase (modesetting) and allows
2849 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2850 */
2851int
2da3b9b9
CW
2852i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2853 u32 alignment,
919926ae 2854 struct intel_ring_buffer *pipelined)
b9241ea3 2855{
2da3b9b9 2856 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2857 int ret;
2858
88241785
CW
2859 ret = i915_gem_object_flush_gpu_write_domain(obj);
2860 if (ret)
2861 return ret;
2862
0be73284 2863 if (pipelined != obj->ring) {
2911a35b
BW
2864 ret = i915_gem_object_sync(obj, pipelined);
2865 if (ret)
b9241ea3
ZW
2866 return ret;
2867 }
2868
a7ef0640
EA
2869 /* The display engine is not coherent with the LLC cache on gen6. As
2870 * a result, we make sure that the pinning that is about to occur is
2871 * done with uncached PTEs. This is lowest common denominator for all
2872 * chipsets.
2873 *
2874 * However for gen6+, we could do better by using the GFDT bit instead
2875 * of uncaching, which would allow us to flush all the LLC-cached data
2876 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2877 */
2878 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2879 if (ret)
2880 return ret;
2881
2da3b9b9
CW
2882 /* As the user may map the buffer once pinned in the display plane
2883 * (e.g. libkms for the bootup splash), we have to ensure that we
2884 * always use map_and_fenceable for all scanout buffers.
2885 */
2886 ret = i915_gem_object_pin(obj, alignment, true);
2887 if (ret)
2888 return ret;
2889
b118c1e3
CW
2890 i915_gem_object_flush_cpu_write_domain(obj);
2891
2da3b9b9 2892 old_write_domain = obj->base.write_domain;
05394f39 2893 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2894
2895 /* It should now be out of any other write domains, and we can update
2896 * the domain values for our changes.
2897 */
2898 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2899 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2900
2901 trace_i915_gem_object_change_domain(obj,
2902 old_read_domains,
2da3b9b9 2903 old_write_domain);
b9241ea3
ZW
2904
2905 return 0;
2906}
2907
85345517 2908int
a8198eea 2909i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2910{
88241785
CW
2911 int ret;
2912
a8198eea 2913 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2914 return 0;
2915
88241785 2916 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2917 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2918 if (ret)
2919 return ret;
2920 }
85345517 2921
c501ae7f
CW
2922 ret = i915_gem_object_wait_rendering(obj);
2923 if (ret)
2924 return ret;
2925
a8198eea
CW
2926 /* Ensure that we invalidate the GPU's caches and TLBs. */
2927 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2928 return 0;
85345517
CW
2929}
2930
e47c68e9
EA
2931/**
2932 * Moves a single object to the CPU read, and possibly write domain.
2933 *
2934 * This function returns when the move is complete, including waiting on
2935 * flushes to occur.
2936 */
dabdfe02 2937int
919926ae 2938i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 2939{
1c5d22f7 2940 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2941 int ret;
2942
8d7e3de1
CW
2943 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2944 return 0;
2945
88241785
CW
2946 ret = i915_gem_object_flush_gpu_write_domain(obj);
2947 if (ret)
2948 return ret;
2949
f8413190
CW
2950 if (write || obj->pending_gpu_write) {
2951 ret = i915_gem_object_wait_rendering(obj);
2952 if (ret)
2953 return ret;
2954 }
2ef7eeaa 2955
e47c68e9 2956 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2957
05394f39
CW
2958 old_write_domain = obj->base.write_domain;
2959 old_read_domains = obj->base.read_domains;
1c5d22f7 2960
e47c68e9 2961 /* Flush the CPU cache if it's still invalid. */
05394f39 2962 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2963 i915_gem_clflush_object(obj);
2ef7eeaa 2964
05394f39 2965 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2966 }
2967
2968 /* It should now be out of any other write domains, and we can update
2969 * the domain values for our changes.
2970 */
05394f39 2971 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
2972
2973 /* If we're writing through the CPU, then the GPU read domains will
2974 * need to be invalidated at next use.
2975 */
2976 if (write) {
05394f39
CW
2977 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2978 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 2979 }
2ef7eeaa 2980
1c5d22f7
CW
2981 trace_i915_gem_object_change_domain(obj,
2982 old_read_domains,
2983 old_write_domain);
2984
2ef7eeaa
EA
2985 return 0;
2986}
2987
673a394b
EA
2988/* Throttle our rendering by waiting until the ring has completed our requests
2989 * emitted over 20 msec ago.
2990 *
b962442e
EA
2991 * Note that if we were to use the current jiffies each time around the loop,
2992 * we wouldn't escape the function with any frames outstanding if the time to
2993 * render a frame was over 20ms.
2994 *
673a394b
EA
2995 * This should get us reasonable parallelism between CPU and GPU but also
2996 * relatively low latency when blocking on a particular request to finish.
2997 */
40a5f0de 2998static int
f787a5f5 2999i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3000{
f787a5f5
CW
3001 struct drm_i915_private *dev_priv = dev->dev_private;
3002 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3003 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3004 struct drm_i915_gem_request *request;
3005 struct intel_ring_buffer *ring = NULL;
3006 u32 seqno = 0;
3007 int ret;
93533c29 3008
e110e8d6
CW
3009 if (atomic_read(&dev_priv->mm.wedged))
3010 return -EIO;
3011
1c25595f 3012 spin_lock(&file_priv->mm.lock);
f787a5f5 3013 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3014 if (time_after_eq(request->emitted_jiffies, recent_enough))
3015 break;
40a5f0de 3016
f787a5f5
CW
3017 ring = request->ring;
3018 seqno = request->seqno;
b962442e 3019 }
1c25595f 3020 spin_unlock(&file_priv->mm.lock);
40a5f0de 3021
f787a5f5
CW
3022 if (seqno == 0)
3023 return 0;
2bc43b5c 3024
f787a5f5 3025 ret = 0;
78501eac 3026 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3027 /* And wait for the seqno passing without holding any locks and
3028 * causing extra latency for others. This is safe as the irq
3029 * generation is designed to be run atomically and so is
3030 * lockless.
3031 */
b13c2b96
CW
3032 if (ring->irq_get(ring)) {
3033 ret = wait_event_interruptible(ring->irq_queue,
3034 i915_seqno_passed(ring->get_seqno(ring), seqno)
3035 || atomic_read(&dev_priv->mm.wedged));
3036 ring->irq_put(ring);
40a5f0de 3037
b13c2b96
CW
3038 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3039 ret = -EIO;
e959b5db
EA
3040 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3041 seqno) ||
7ea29b13
EA
3042 atomic_read(&dev_priv->mm.wedged), 3000)) {
3043 ret = -EBUSY;
b13c2b96 3044 }
40a5f0de
EA
3045 }
3046
f787a5f5
CW
3047 if (ret == 0)
3048 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3049
3050 return ret;
3051}
3052
673a394b 3053int
05394f39
CW
3054i915_gem_object_pin(struct drm_i915_gem_object *obj,
3055 uint32_t alignment,
75e9e915 3056 bool map_and_fenceable)
673a394b 3057{
05394f39 3058 struct drm_device *dev = obj->base.dev;
f13d3f73 3059 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3060 int ret;
3061
05394f39 3062 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3063 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3064
05394f39
CW
3065 if (obj->gtt_space != NULL) {
3066 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3067 (map_and_fenceable && !obj->map_and_fenceable)) {
3068 WARN(obj->pin_count,
ae7d49d8 3069 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3070 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3071 " obj->map_and_fenceable=%d\n",
05394f39 3072 obj->gtt_offset, alignment,
75e9e915 3073 map_and_fenceable,
05394f39 3074 obj->map_and_fenceable);
ac0c6b5a
CW
3075 ret = i915_gem_object_unbind(obj);
3076 if (ret)
3077 return ret;
3078 }
3079 }
3080
05394f39 3081 if (obj->gtt_space == NULL) {
a00b10c3 3082 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3083 map_and_fenceable);
9731129c 3084 if (ret)
673a394b 3085 return ret;
22c344e9 3086 }
76446cac 3087
74898d7e
DV
3088 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3089 i915_gem_gtt_bind_object(obj, obj->cache_level);
3090
05394f39 3091 if (obj->pin_count++ == 0) {
05394f39
CW
3092 if (!obj->active)
3093 list_move_tail(&obj->mm_list,
f13d3f73 3094 &dev_priv->mm.pinned_list);
673a394b 3095 }
6299f992 3096 obj->pin_mappable |= map_and_fenceable;
673a394b 3097
23bc5982 3098 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3099 return 0;
3100}
3101
3102void
05394f39 3103i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3104{
05394f39 3105 struct drm_device *dev = obj->base.dev;
673a394b 3106 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3107
23bc5982 3108 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3109 BUG_ON(obj->pin_count == 0);
3110 BUG_ON(obj->gtt_space == NULL);
673a394b 3111
05394f39
CW
3112 if (--obj->pin_count == 0) {
3113 if (!obj->active)
3114 list_move_tail(&obj->mm_list,
673a394b 3115 &dev_priv->mm.inactive_list);
6299f992 3116 obj->pin_mappable = false;
673a394b 3117 }
23bc5982 3118 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3119}
3120
3121int
3122i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3123 struct drm_file *file)
673a394b
EA
3124{
3125 struct drm_i915_gem_pin *args = data;
05394f39 3126 struct drm_i915_gem_object *obj;
673a394b
EA
3127 int ret;
3128
1d7cfea1
CW
3129 ret = i915_mutex_lock_interruptible(dev);
3130 if (ret)
3131 return ret;
673a394b 3132
05394f39 3133 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3134 if (&obj->base == NULL) {
1d7cfea1
CW
3135 ret = -ENOENT;
3136 goto unlock;
673a394b 3137 }
673a394b 3138
05394f39 3139 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3140 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3141 ret = -EINVAL;
3142 goto out;
3ef94daa
CW
3143 }
3144
05394f39 3145 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3146 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3147 args->handle);
1d7cfea1
CW
3148 ret = -EINVAL;
3149 goto out;
79e53945
JB
3150 }
3151
05394f39
CW
3152 obj->user_pin_count++;
3153 obj->pin_filp = file;
3154 if (obj->user_pin_count == 1) {
75e9e915 3155 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3156 if (ret)
3157 goto out;
673a394b
EA
3158 }
3159
3160 /* XXX - flush the CPU caches for pinned objects
3161 * as the X server doesn't manage domains yet
3162 */
e47c68e9 3163 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3164 args->offset = obj->gtt_offset;
1d7cfea1 3165out:
05394f39 3166 drm_gem_object_unreference(&obj->base);
1d7cfea1 3167unlock:
673a394b 3168 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3169 return ret;
673a394b
EA
3170}
3171
3172int
3173i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3174 struct drm_file *file)
673a394b
EA
3175{
3176 struct drm_i915_gem_pin *args = data;
05394f39 3177 struct drm_i915_gem_object *obj;
76c1dec1 3178 int ret;
673a394b 3179
1d7cfea1
CW
3180 ret = i915_mutex_lock_interruptible(dev);
3181 if (ret)
3182 return ret;
673a394b 3183
05394f39 3184 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3185 if (&obj->base == NULL) {
1d7cfea1
CW
3186 ret = -ENOENT;
3187 goto unlock;
673a394b 3188 }
76c1dec1 3189
05394f39 3190 if (obj->pin_filp != file) {
79e53945
JB
3191 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3192 args->handle);
1d7cfea1
CW
3193 ret = -EINVAL;
3194 goto out;
79e53945 3195 }
05394f39
CW
3196 obj->user_pin_count--;
3197 if (obj->user_pin_count == 0) {
3198 obj->pin_filp = NULL;
79e53945
JB
3199 i915_gem_object_unpin(obj);
3200 }
673a394b 3201
1d7cfea1 3202out:
05394f39 3203 drm_gem_object_unreference(&obj->base);
1d7cfea1 3204unlock:
673a394b 3205 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3206 return ret;
673a394b
EA
3207}
3208
3209int
3210i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3211 struct drm_file *file)
673a394b
EA
3212{
3213 struct drm_i915_gem_busy *args = data;
05394f39 3214 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3215 int ret;
3216
76c1dec1 3217 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3218 if (ret)
76c1dec1 3219 return ret;
673a394b 3220
05394f39 3221 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3222 if (&obj->base == NULL) {
1d7cfea1
CW
3223 ret = -ENOENT;
3224 goto unlock;
673a394b 3225 }
d1b851fc 3226
0be555b6
CW
3227 /* Count all active objects as busy, even if they are currently not used
3228 * by the gpu. Users of this interface expect objects to eventually
3229 * become non-busy without any further actions, therefore emit any
3230 * necessary flushes here.
c4de0a5d 3231 */
05394f39 3232 args->busy = obj->active;
0be555b6
CW
3233 if (args->busy) {
3234 /* Unconditionally flush objects, even when the gpu still uses this
3235 * object. Userspace calling this function indicates that it wants to
3236 * use this buffer rather sooner than later, so issuing the required
3237 * flush earlier is beneficial.
3238 */
1a1c6976 3239 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3240 ret = i915_gem_flush_ring(obj->ring,
88241785 3241 0, obj->base.write_domain);
1a1c6976
CW
3242 } else if (obj->ring->outstanding_lazy_request ==
3243 obj->last_rendering_seqno) {
3244 struct drm_i915_gem_request *request;
3245
7a194876
CW
3246 /* This ring is not being cleared by active usage,
3247 * so emit a request to do so.
3248 */
1a1c6976 3249 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3250 if (request) {
0206e353 3251 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3252 if (ret)
3253 kfree(request);
3254 } else
7a194876
CW
3255 ret = -ENOMEM;
3256 }
0be555b6
CW
3257
3258 /* Update the active list for the hardware's current position.
3259 * Otherwise this only updates on a delayed timer or when irqs
3260 * are actually unmasked, and our working set ends up being
3261 * larger than required.
3262 */
db53a302 3263 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3264
05394f39 3265 args->busy = obj->active;
0be555b6 3266 }
673a394b 3267
05394f39 3268 drm_gem_object_unreference(&obj->base);
1d7cfea1 3269unlock:
673a394b 3270 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3271 return ret;
673a394b
EA
3272}
3273
3274int
3275i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3276 struct drm_file *file_priv)
3277{
0206e353 3278 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3279}
3280
3ef94daa
CW
3281int
3282i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3283 struct drm_file *file_priv)
3284{
3285 struct drm_i915_gem_madvise *args = data;
05394f39 3286 struct drm_i915_gem_object *obj;
76c1dec1 3287 int ret;
3ef94daa
CW
3288
3289 switch (args->madv) {
3290 case I915_MADV_DONTNEED:
3291 case I915_MADV_WILLNEED:
3292 break;
3293 default:
3294 return -EINVAL;
3295 }
3296
1d7cfea1
CW
3297 ret = i915_mutex_lock_interruptible(dev);
3298 if (ret)
3299 return ret;
3300
05394f39 3301 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3302 if (&obj->base == NULL) {
1d7cfea1
CW
3303 ret = -ENOENT;
3304 goto unlock;
3ef94daa 3305 }
3ef94daa 3306
05394f39 3307 if (obj->pin_count) {
1d7cfea1
CW
3308 ret = -EINVAL;
3309 goto out;
3ef94daa
CW
3310 }
3311
05394f39
CW
3312 if (obj->madv != __I915_MADV_PURGED)
3313 obj->madv = args->madv;
3ef94daa 3314
2d7ef395 3315 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3316 if (i915_gem_object_is_purgeable(obj) &&
3317 obj->gtt_space == NULL)
2d7ef395
CW
3318 i915_gem_object_truncate(obj);
3319
05394f39 3320 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3321
1d7cfea1 3322out:
05394f39 3323 drm_gem_object_unreference(&obj->base);
1d7cfea1 3324unlock:
3ef94daa 3325 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3326 return ret;
3ef94daa
CW
3327}
3328
05394f39
CW
3329struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3330 size_t size)
ac52bc56 3331{
73aa808f 3332 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3333 struct drm_i915_gem_object *obj;
5949eac4 3334 struct address_space *mapping;
ac52bc56 3335
c397b908
DV
3336 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3337 if (obj == NULL)
3338 return NULL;
673a394b 3339
c397b908
DV
3340 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3341 kfree(obj);
3342 return NULL;
3343 }
673a394b 3344
5949eac4
HD
3345 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3346 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3347
73aa808f
CW
3348 i915_gem_info_add_obj(dev_priv, size);
3349
c397b908
DV
3350 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3351 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3352
3d29b842
ED
3353 if (HAS_LLC(dev)) {
3354 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3355 * cache) for about a 10% performance improvement
3356 * compared to uncached. Graphics requests other than
3357 * display scanout are coherent with the CPU in
3358 * accessing this cache. This means in this mode we
3359 * don't need to clflush on the CPU side, and on the
3360 * GPU side we only need to flush internal caches to
3361 * get data visible to the CPU.
3362 *
3363 * However, we maintain the display planes as UC, and so
3364 * need to rebind when first used as such.
3365 */
3366 obj->cache_level = I915_CACHE_LLC;
3367 } else
3368 obj->cache_level = I915_CACHE_NONE;
3369
62b8b215 3370 obj->base.driver_private = NULL;
c397b908 3371 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3372 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3373 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3374 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3375 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3376 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3377 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3378 /* Avoid an unnecessary call to unbind on the first bind. */
3379 obj->map_and_fenceable = true;
de151cf6 3380
05394f39 3381 return obj;
c397b908
DV
3382}
3383
3384int i915_gem_init_object(struct drm_gem_object *obj)
3385{
3386 BUG();
de151cf6 3387
673a394b
EA
3388 return 0;
3389}
3390
05394f39 3391static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3392{
05394f39 3393 struct drm_device *dev = obj->base.dev;
be72615b 3394 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3395 int ret;
673a394b 3396
be72615b
CW
3397 ret = i915_gem_object_unbind(obj);
3398 if (ret == -ERESTARTSYS) {
05394f39 3399 list_move(&obj->mm_list,
be72615b
CW
3400 &dev_priv->mm.deferred_free_list);
3401 return;
3402 }
673a394b 3403
26e12f89
CW
3404 trace_i915_gem_object_destroy(obj);
3405
05394f39 3406 if (obj->base.map_list.map)
b464e9a2 3407 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3408
05394f39
CW
3409 drm_gem_object_release(&obj->base);
3410 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3411
05394f39
CW
3412 kfree(obj->bit_17);
3413 kfree(obj);
673a394b
EA
3414}
3415
05394f39 3416void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3417{
05394f39
CW
3418 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3419 struct drm_device *dev = obj->base.dev;
be72615b 3420
05394f39 3421 while (obj->pin_count > 0)
be72615b
CW
3422 i915_gem_object_unpin(obj);
3423
05394f39 3424 if (obj->phys_obj)
be72615b
CW
3425 i915_gem_detach_phys_object(dev, obj);
3426
3427 i915_gem_free_object_tail(obj);
3428}
3429
29105ccc
CW
3430int
3431i915_gem_idle(struct drm_device *dev)
3432{
3433 drm_i915_private_t *dev_priv = dev->dev_private;
3434 int ret;
28dfe52a 3435
29105ccc 3436 mutex_lock(&dev->struct_mutex);
1c5d22f7 3437
87acb0a5 3438 if (dev_priv->mm.suspended) {
29105ccc
CW
3439 mutex_unlock(&dev->struct_mutex);
3440 return 0;
28dfe52a
EA
3441 }
3442
b93f9cf1 3443 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3444 if (ret) {
3445 mutex_unlock(&dev->struct_mutex);
673a394b 3446 return ret;
6dbe2772 3447 }
673a394b 3448
29105ccc
CW
3449 /* Under UMS, be paranoid and evict. */
3450 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3451 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3452 if (ret) {
3453 mutex_unlock(&dev->struct_mutex);
3454 return ret;
3455 }
3456 }
3457
312817a3
CW
3458 i915_gem_reset_fences(dev);
3459
29105ccc
CW
3460 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3461 * We need to replace this with a semaphore, or something.
3462 * And not confound mm.suspended!
3463 */
3464 dev_priv->mm.suspended = 1;
bc0c7f14 3465 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3466
3467 i915_kernel_lost_context(dev);
6dbe2772 3468 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3469
6dbe2772
KP
3470 mutex_unlock(&dev->struct_mutex);
3471
29105ccc
CW
3472 /* Cancel the retire work handler, which should be idle now. */
3473 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3474
673a394b
EA
3475 return 0;
3476}
3477
f691e2f4
DV
3478void i915_gem_init_swizzling(struct drm_device *dev)
3479{
3480 drm_i915_private_t *dev_priv = dev->dev_private;
3481
11782b02 3482 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3483 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3484 return;
3485
3486 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3487 DISP_TILE_SURFACE_SWIZZLING);
3488
11782b02
DV
3489 if (IS_GEN5(dev))
3490 return;
3491
f691e2f4
DV
3492 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3493 if (IS_GEN6(dev))
3494 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3495 else
3496 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3497}
e21af88d
DV
3498
3499void i915_gem_init_ppgtt(struct drm_device *dev)
3500{
3501 drm_i915_private_t *dev_priv = dev->dev_private;
3502 uint32_t pd_offset;
3503 struct intel_ring_buffer *ring;
55a254ac
DV
3504 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3505 uint32_t __iomem *pd_addr;
3506 uint32_t pd_entry;
e21af88d
DV
3507 int i;
3508
3509 if (!dev_priv->mm.aliasing_ppgtt)
3510 return;
3511
55a254ac
DV
3512
3513 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3514 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3515 dma_addr_t pt_addr;
3516
3517 if (dev_priv->mm.gtt->needs_dmar)
3518 pt_addr = ppgtt->pt_dma_addr[i];
3519 else
3520 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3521
3522 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3523 pd_entry |= GEN6_PDE_VALID;
3524
3525 writel(pd_entry, pd_addr + i);
3526 }
3527 readl(pd_addr);
3528
3529 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3530 pd_offset /= 64; /* in cachelines, */
3531 pd_offset <<= 16;
3532
3533 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3534 uint32_t ecochk, gab_ctl, ecobits;
3535
3536 ecobits = I915_READ(GAC_ECO_BITS);
3537 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3538
3539 gab_ctl = I915_READ(GAB_CTL);
3540 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3541
3542 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3543 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3544 ECOCHK_PPGTT_CACHE64B);
3545 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3546 } else if (INTEL_INFO(dev)->gen >= 7) {
3547 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3548 /* GFX_MODE is per-ring on gen7+ */
3549 }
3550
3551 for (i = 0; i < I915_NUM_RINGS; i++) {
3552 ring = &dev_priv->ring[i];
3553
3554 if (INTEL_INFO(dev)->gen >= 7)
3555 I915_WRITE(RING_MODE_GEN7(ring),
3556 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3557
3558 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3559 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3560 }
3561}
3562
8187a2b7 3563int
f691e2f4 3564i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3565{
3566 drm_i915_private_t *dev_priv = dev->dev_private;
3567 int ret;
68f95ba9 3568
f691e2f4
DV
3569 i915_gem_init_swizzling(dev);
3570
5c1143bb 3571 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3572 if (ret)
b6913e4b 3573 return ret;
68f95ba9
CW
3574
3575 if (HAS_BSD(dev)) {
5c1143bb 3576 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3577 if (ret)
3578 goto cleanup_render_ring;
d1b851fc 3579 }
68f95ba9 3580
549f7365
CW
3581 if (HAS_BLT(dev)) {
3582 ret = intel_init_blt_ring_buffer(dev);
3583 if (ret)
3584 goto cleanup_bsd_ring;
3585 }
3586
6f392d54
CW
3587 dev_priv->next_seqno = 1;
3588
e21af88d
DV
3589 i915_gem_init_ppgtt(dev);
3590
68f95ba9
CW
3591 return 0;
3592
549f7365 3593cleanup_bsd_ring:
1ec14ad3 3594 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3595cleanup_render_ring:
1ec14ad3 3596 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3597 return ret;
3598}
3599
3600void
3601i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3602{
3603 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3604 int i;
8187a2b7 3605
1ec14ad3
CW
3606 for (i = 0; i < I915_NUM_RINGS; i++)
3607 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3608}
3609
673a394b
EA
3610int
3611i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3612 struct drm_file *file_priv)
3613{
3614 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3615 int ret, i;
673a394b 3616
79e53945
JB
3617 if (drm_core_check_feature(dev, DRIVER_MODESET))
3618 return 0;
3619
ba1234d1 3620 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3621 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3622 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3623 }
3624
673a394b 3625 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3626 dev_priv->mm.suspended = 0;
3627
f691e2f4 3628 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3629 if (ret != 0) {
3630 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3631 return ret;
d816f6ac 3632 }
9bb2d6f9 3633
69dc4987 3634 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3635 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3636 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3637 for (i = 0; i < I915_NUM_RINGS; i++) {
3638 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3639 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3640 }
673a394b 3641 mutex_unlock(&dev->struct_mutex);
dbb19d30 3642
5f35308b
CW
3643 ret = drm_irq_install(dev);
3644 if (ret)
3645 goto cleanup_ringbuffer;
dbb19d30 3646
673a394b 3647 return 0;
5f35308b
CW
3648
3649cleanup_ringbuffer:
3650 mutex_lock(&dev->struct_mutex);
3651 i915_gem_cleanup_ringbuffer(dev);
3652 dev_priv->mm.suspended = 1;
3653 mutex_unlock(&dev->struct_mutex);
3654
3655 return ret;
673a394b
EA
3656}
3657
3658int
3659i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3660 struct drm_file *file_priv)
3661{
79e53945
JB
3662 if (drm_core_check_feature(dev, DRIVER_MODESET))
3663 return 0;
3664
dbb19d30 3665 drm_irq_uninstall(dev);
e6890f6f 3666 return i915_gem_idle(dev);
673a394b
EA
3667}
3668
3669void
3670i915_gem_lastclose(struct drm_device *dev)
3671{
3672 int ret;
673a394b 3673
e806b495
EA
3674 if (drm_core_check_feature(dev, DRIVER_MODESET))
3675 return;
3676
6dbe2772
KP
3677 ret = i915_gem_idle(dev);
3678 if (ret)
3679 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3680}
3681
64193406
CW
3682static void
3683init_ring_lists(struct intel_ring_buffer *ring)
3684{
3685 INIT_LIST_HEAD(&ring->active_list);
3686 INIT_LIST_HEAD(&ring->request_list);
3687 INIT_LIST_HEAD(&ring->gpu_write_list);
3688}
3689
673a394b
EA
3690void
3691i915_gem_load(struct drm_device *dev)
3692{
b5aa8a0f 3693 int i;
673a394b
EA
3694 drm_i915_private_t *dev_priv = dev->dev_private;
3695
69dc4987 3696 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3697 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3698 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3699 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3700 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3701 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3702 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3703 for (i = 0; i < I915_NUM_RINGS; i++)
3704 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3705 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3706 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3707 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3708 i915_gem_retire_work_handler);
30dbf0c0 3709 init_completion(&dev_priv->error_completion);
31169714 3710
94400120
DA
3711 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3712 if (IS_GEN3(dev)) {
3713 u32 tmp = I915_READ(MI_ARB_STATE);
3714 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3715 /* arb state is a masked write, so set bit + bit in mask */
3716 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3717 I915_WRITE(MI_ARB_STATE, tmp);
3718 }
3719 }
3720
72bfa19c
CW
3721 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3722
de151cf6 3723 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3724 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3725 dev_priv->fence_reg_start = 3;
de151cf6 3726
a6c45cf0 3727 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3728 dev_priv->num_fence_regs = 16;
3729 else
3730 dev_priv->num_fence_regs = 8;
3731
b5aa8a0f 3732 /* Initialize fence registers to zero */
ada726c7 3733 i915_gem_reset_fences(dev);
10ed13e4 3734
673a394b 3735 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3736 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3737
ce453d81
CW
3738 dev_priv->mm.interruptible = true;
3739
17250b71
CW
3740 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3741 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3742 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3743}
71acb5eb
DA
3744
3745/*
3746 * Create a physically contiguous memory object for this object
3747 * e.g. for cursor + overlay regs
3748 */
995b6762
CW
3749static int i915_gem_init_phys_object(struct drm_device *dev,
3750 int id, int size, int align)
71acb5eb
DA
3751{
3752 drm_i915_private_t *dev_priv = dev->dev_private;
3753 struct drm_i915_gem_phys_object *phys_obj;
3754 int ret;
3755
3756 if (dev_priv->mm.phys_objs[id - 1] || !size)
3757 return 0;
3758
9a298b2a 3759 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3760 if (!phys_obj)
3761 return -ENOMEM;
3762
3763 phys_obj->id = id;
3764
6eeefaf3 3765 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3766 if (!phys_obj->handle) {
3767 ret = -ENOMEM;
3768 goto kfree_obj;
3769 }
3770#ifdef CONFIG_X86
3771 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3772#endif
3773
3774 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3775
3776 return 0;
3777kfree_obj:
9a298b2a 3778 kfree(phys_obj);
71acb5eb
DA
3779 return ret;
3780}
3781
995b6762 3782static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3783{
3784 drm_i915_private_t *dev_priv = dev->dev_private;
3785 struct drm_i915_gem_phys_object *phys_obj;
3786
3787 if (!dev_priv->mm.phys_objs[id - 1])
3788 return;
3789
3790 phys_obj = dev_priv->mm.phys_objs[id - 1];
3791 if (phys_obj->cur_obj) {
3792 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3793 }
3794
3795#ifdef CONFIG_X86
3796 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3797#endif
3798 drm_pci_free(dev, phys_obj->handle);
3799 kfree(phys_obj);
3800 dev_priv->mm.phys_objs[id - 1] = NULL;
3801}
3802
3803void i915_gem_free_all_phys_object(struct drm_device *dev)
3804{
3805 int i;
3806
260883c8 3807 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3808 i915_gem_free_phys_object(dev, i);
3809}
3810
3811void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3812 struct drm_i915_gem_object *obj)
71acb5eb 3813{
05394f39 3814 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3815 char *vaddr;
71acb5eb 3816 int i;
71acb5eb
DA
3817 int page_count;
3818
05394f39 3819 if (!obj->phys_obj)
71acb5eb 3820 return;
05394f39 3821 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3822
05394f39 3823 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3824 for (i = 0; i < page_count; i++) {
5949eac4 3825 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3826 if (!IS_ERR(page)) {
3827 char *dst = kmap_atomic(page);
3828 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3829 kunmap_atomic(dst);
3830
3831 drm_clflush_pages(&page, 1);
3832
3833 set_page_dirty(page);
3834 mark_page_accessed(page);
3835 page_cache_release(page);
3836 }
71acb5eb 3837 }
40ce6575 3838 intel_gtt_chipset_flush();
d78b47b9 3839
05394f39
CW
3840 obj->phys_obj->cur_obj = NULL;
3841 obj->phys_obj = NULL;
71acb5eb
DA
3842}
3843
3844int
3845i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3846 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3847 int id,
3848 int align)
71acb5eb 3849{
05394f39 3850 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3851 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3852 int ret = 0;
3853 int page_count;
3854 int i;
3855
3856 if (id > I915_MAX_PHYS_OBJECT)
3857 return -EINVAL;
3858
05394f39
CW
3859 if (obj->phys_obj) {
3860 if (obj->phys_obj->id == id)
71acb5eb
DA
3861 return 0;
3862 i915_gem_detach_phys_object(dev, obj);
3863 }
3864
71acb5eb
DA
3865 /* create a new object */
3866 if (!dev_priv->mm.phys_objs[id - 1]) {
3867 ret = i915_gem_init_phys_object(dev, id,
05394f39 3868 obj->base.size, align);
71acb5eb 3869 if (ret) {
05394f39
CW
3870 DRM_ERROR("failed to init phys object %d size: %zu\n",
3871 id, obj->base.size);
e5281ccd 3872 return ret;
71acb5eb
DA
3873 }
3874 }
3875
3876 /* bind to the object */
05394f39
CW
3877 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3878 obj->phys_obj->cur_obj = obj;
71acb5eb 3879
05394f39 3880 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3881
3882 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3883 struct page *page;
3884 char *dst, *src;
3885
5949eac4 3886 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3887 if (IS_ERR(page))
3888 return PTR_ERR(page);
71acb5eb 3889
ff75b9bc 3890 src = kmap_atomic(page);
05394f39 3891 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3892 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3893 kunmap_atomic(src);
71acb5eb 3894
e5281ccd
CW
3895 mark_page_accessed(page);
3896 page_cache_release(page);
3897 }
d78b47b9 3898
71acb5eb 3899 return 0;
71acb5eb
DA
3900}
3901
3902static int
05394f39
CW
3903i915_gem_phys_pwrite(struct drm_device *dev,
3904 struct drm_i915_gem_object *obj,
71acb5eb
DA
3905 struct drm_i915_gem_pwrite *args,
3906 struct drm_file *file_priv)
3907{
05394f39 3908 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3909 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3910
b47b30cc
CW
3911 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3912 unsigned long unwritten;
3913
3914 /* The physical object once assigned is fixed for the lifetime
3915 * of the obj, so we can safely drop the lock and continue
3916 * to access vaddr.
3917 */
3918 mutex_unlock(&dev->struct_mutex);
3919 unwritten = copy_from_user(vaddr, user_data, args->size);
3920 mutex_lock(&dev->struct_mutex);
3921 if (unwritten)
3922 return -EFAULT;
3923 }
71acb5eb 3924
40ce6575 3925 intel_gtt_chipset_flush();
71acb5eb
DA
3926 return 0;
3927}
b962442e 3928
f787a5f5 3929void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3930{
f787a5f5 3931 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3932
3933 /* Clean up our request list when the client is going away, so that
3934 * later retire_requests won't dereference our soon-to-be-gone
3935 * file_priv.
3936 */
1c25595f 3937 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3938 while (!list_empty(&file_priv->mm.request_list)) {
3939 struct drm_i915_gem_request *request;
3940
3941 request = list_first_entry(&file_priv->mm.request_list,
3942 struct drm_i915_gem_request,
3943 client_list);
3944 list_del(&request->client_list);
3945 request->file_priv = NULL;
3946 }
1c25595f 3947 spin_unlock(&file_priv->mm.lock);
b962442e 3948}
31169714 3949
1637ef41
CW
3950static int
3951i915_gpu_is_active(struct drm_device *dev)
3952{
3953 drm_i915_private_t *dev_priv = dev->dev_private;
3954 int lists_empty;
3955
1637ef41 3956 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 3957 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
3958
3959 return !lists_empty;
3960}
3961
31169714 3962static int
1495f230 3963i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 3964{
17250b71
CW
3965 struct drm_i915_private *dev_priv =
3966 container_of(shrinker,
3967 struct drm_i915_private,
3968 mm.inactive_shrinker);
3969 struct drm_device *dev = dev_priv->dev;
3970 struct drm_i915_gem_object *obj, *next;
1495f230 3971 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
3972 int cnt;
3973
3974 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 3975 return 0;
31169714
CW
3976
3977 /* "fast-path" to count number of available objects */
3978 if (nr_to_scan == 0) {
17250b71
CW
3979 cnt = 0;
3980 list_for_each_entry(obj,
3981 &dev_priv->mm.inactive_list,
3982 mm_list)
3983 cnt++;
3984 mutex_unlock(&dev->struct_mutex);
3985 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
3986 }
3987
1637ef41 3988rescan:
31169714 3989 /* first scan for clean buffers */
17250b71 3990 i915_gem_retire_requests(dev);
31169714 3991
17250b71
CW
3992 list_for_each_entry_safe(obj, next,
3993 &dev_priv->mm.inactive_list,
3994 mm_list) {
3995 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
3996 if (i915_gem_object_unbind(obj) == 0 &&
3997 --nr_to_scan == 0)
17250b71 3998 break;
31169714 3999 }
31169714
CW
4000 }
4001
4002 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4003 cnt = 0;
4004 list_for_each_entry_safe(obj, next,
4005 &dev_priv->mm.inactive_list,
4006 mm_list) {
2021746e
CW
4007 if (nr_to_scan &&
4008 i915_gem_object_unbind(obj) == 0)
17250b71 4009 nr_to_scan--;
2021746e 4010 else
17250b71
CW
4011 cnt++;
4012 }
4013
4014 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4015 /*
4016 * We are desperate for pages, so as a last resort, wait
4017 * for the GPU to finish and discard whatever we can.
4018 * This has a dramatic impact to reduce the number of
4019 * OOM-killer events whilst running the GPU aggressively.
4020 */
b93f9cf1 4021 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4022 goto rescan;
4023 }
17250b71
CW
4024 mutex_unlock(&dev->struct_mutex);
4025 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4026}