]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Round tile chunks up for constructing partial VMAs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
c13d87ea 37#include <linux/reservation.h>
5949eac4 38#include <linux/shmem_fs.h>
5a0e3ad6 39#include <linux/slab.h>
673a394b 40#include <linux/swap.h>
79e53945 41#include <linux/pci.h>
1286ff73 42#include <linux/dma-buf.h>
673a394b 43
fbbd37b3 44static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee 65static int
bb6dc8d9 66insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
bb6dc8d9
CW
70 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
71 size, 0, -1,
72 0, ggtt->mappable_end,
4f1959ee
AS
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 85 u64 size)
73aa808f 86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 94 u64 size)
73aa808f 95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
4c7d62c6
CW
107 might_sleep();
108
d98c52cf 109 if (!i915_reset_in_progress(error))
30dbf0c0
CW
110 return 0;
111
0a6759c6
DV
112 /*
113 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
114 * userspace. If it takes that long something really bad is going on and
115 * we should simply try to bail out and fail as gracefully as possible.
116 */
1f83fee0 117 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 118 !i915_reset_in_progress(error),
b52992c0 119 I915_RESET_TIMEOUT);
0a6759c6
DV
120 if (ret == 0) {
121 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
122 return -EIO;
123 } else if (ret < 0) {
30dbf0c0 124 return ret;
d98c52cf
CW
125 } else {
126 return 0;
0a6759c6 127 }
30dbf0c0
CW
128}
129
54cf91dc 130int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 131{
fac5e23e 132 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
133 int ret;
134
33196ded 135 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
136 if (ret)
137 return ret;
138
139 ret = mutex_lock_interruptible(&dev->struct_mutex);
140 if (ret)
141 return ret;
142
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
72e96d64 150 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 152 struct drm_i915_gem_get_aperture *args = data;
ca1543be 153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 159 if (i915_vma_is_pinned(vma))
ca1543be 160 pinned += vma->node.size;
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 162 if (i915_vma_is_pinned(vma))
ca1543be 163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
72e96d64 166 args->aper_size = ggtt->base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
03ac84f1 172static struct sg_table *
6a2c4232 173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
93c76a3d 175 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232 181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 182 return ERR_PTR(-EINVAL);
6a2c4232
CW
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
03ac84f1 190 return ERR_CAST(page);
6a2c4232
CW
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
09cbfeaf 197 put_page(page);
6a2c4232
CW
198 vaddr += PAGE_SIZE;
199 }
200
c033666a 201 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
03ac84f1 205 return ERR_PTR(-ENOMEM);
6a2c4232
CW
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
03ac84f1 209 return ERR_PTR(-ENOMEM);
6a2c4232
CW
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
03ac84f1 219 return st;
6a2c4232
CW
220}
221
222static void
03ac84f1 223__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
6a2c4232 224{
a4f5ea64 225 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 226
a4f5ea64
CW
227 if (obj->mm.madv == I915_MADV_DONTNEED)
228 obj->mm.dirty = false;
6a2c4232 229
03ac84f1
CW
230 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
231 i915_gem_clflush_object(obj, false);
232
233 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
234 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
235}
236
237static void
238i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
239 struct sg_table *pages)
240{
241 __i915_gem_object_release_shmem(obj);
242
a4f5ea64 243 if (obj->mm.dirty) {
93c76a3d 244 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 245 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
246 int i;
247
248 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
249 struct page *page;
250 char *dst;
251
252 page = shmem_read_mapping_page(mapping, i);
253 if (IS_ERR(page))
254 continue;
255
256 dst = kmap_atomic(page);
257 drm_clflush_virt_range(vaddr, PAGE_SIZE);
258 memcpy(dst, vaddr, PAGE_SIZE);
259 kunmap_atomic(dst);
260
261 set_page_dirty(page);
a4f5ea64 262 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 263 mark_page_accessed(page);
09cbfeaf 264 put_page(page);
00731155
CW
265 vaddr += PAGE_SIZE;
266 }
a4f5ea64 267 obj->mm.dirty = false;
00731155
CW
268 }
269
03ac84f1
CW
270 sg_free_table(pages);
271 kfree(pages);
6a2c4232
CW
272}
273
274static void
275i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
276{
277 drm_pci_free(obj->base.dev, obj->phys_handle);
a4f5ea64 278 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
279}
280
281static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
282 .get_pages = i915_gem_object_get_pages_phys,
283 .put_pages = i915_gem_object_put_pages_phys,
284 .release = i915_gem_object_release_phys,
285};
286
35a9611c 287int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
288{
289 struct i915_vma *vma;
290 LIST_HEAD(still_in_list);
02bef8f9
CW
291 int ret;
292
293 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 294
02bef8f9
CW
295 /* Closed vma are removed from the obj->vma_list - but they may
296 * still have an active binding on the object. To remove those we
297 * must wait for all rendering to complete to the object (as unbinding
298 * must anyway), and retire the requests.
aa653a68 299 */
e95433c7
CW
300 ret = i915_gem_object_wait(obj,
301 I915_WAIT_INTERRUPTIBLE |
302 I915_WAIT_LOCKED |
303 I915_WAIT_ALL,
304 MAX_SCHEDULE_TIMEOUT,
305 NULL);
02bef8f9
CW
306 if (ret)
307 return ret;
308
309 i915_gem_retire_requests(to_i915(obj->base.dev));
310
aa653a68
CW
311 while ((vma = list_first_entry_or_null(&obj->vma_list,
312 struct i915_vma,
313 obj_link))) {
314 list_move_tail(&vma->obj_link, &still_in_list);
315 ret = i915_vma_unbind(vma);
316 if (ret)
317 break;
318 }
319 list_splice(&still_in_list, &obj->vma_list);
320
321 return ret;
322}
323
e95433c7
CW
324static long
325i915_gem_object_wait_fence(struct dma_fence *fence,
326 unsigned int flags,
327 long timeout,
328 struct intel_rps_client *rps)
00e60f26 329{
e95433c7 330 struct drm_i915_gem_request *rq;
00e60f26 331
e95433c7 332 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 333
e95433c7
CW
334 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
335 return timeout;
336
337 if (!dma_fence_is_i915(fence))
338 return dma_fence_wait_timeout(fence,
339 flags & I915_WAIT_INTERRUPTIBLE,
340 timeout);
341
342 rq = to_request(fence);
343 if (i915_gem_request_completed(rq))
344 goto out;
345
346 /* This client is about to stall waiting for the GPU. In many cases
347 * this is undesirable and limits the throughput of the system, as
348 * many clients cannot continue processing user input/output whilst
349 * blocked. RPS autotuning may take tens of milliseconds to respond
350 * to the GPU load and thus incurs additional latency for the client.
351 * We can circumvent that by promoting the GPU frequency to maximum
352 * before we wait. This makes the GPU throttle up much more quickly
353 * (good for benchmarks and user experience, e.g. window animations),
354 * but at a cost of spending more power processing the workload
355 * (bad for battery). Not all clients even want their results
356 * immediately and for them we should just let the GPU select its own
357 * frequency to maximise efficiency. To prevent a single client from
358 * forcing the clocks too high for the whole system, we only allow
359 * each client to waitboost once in a busy period.
360 */
361 if (rps) {
362 if (INTEL_GEN(rq->i915) >= 6)
363 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
364 else
365 rps = NULL;
00e60f26
CW
366 }
367
e95433c7
CW
368 timeout = i915_wait_request(rq, flags, timeout);
369
370out:
371 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
372 i915_gem_request_retire_upto(rq);
373
cb399eab 374 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
375 /* The GPU is now idle and this client has stalled.
376 * Since no other client has submitted a request in the
377 * meantime, assume that this client is the only one
378 * supplying work to the GPU but is unable to keep that
379 * work supplied because it is waiting. Since the GPU is
380 * then never kept fully busy, RPS autoclocking will
381 * keep the clocks relatively low, causing further delays.
382 * Compensate by giving the synchronous client credit for
383 * a waitboost next time.
384 */
385 spin_lock(&rq->i915->rps.client_lock);
386 list_del_init(&rps->link);
387 spin_unlock(&rq->i915->rps.client_lock);
388 }
389
390 return timeout;
391}
392
393static long
394i915_gem_object_wait_reservation(struct reservation_object *resv,
395 unsigned int flags,
396 long timeout,
397 struct intel_rps_client *rps)
398{
399 struct dma_fence *excl;
400
401 if (flags & I915_WAIT_ALL) {
402 struct dma_fence **shared;
403 unsigned int count, i;
00e60f26
CW
404 int ret;
405
e95433c7
CW
406 ret = reservation_object_get_fences_rcu(resv,
407 &excl, &count, &shared);
00e60f26
CW
408 if (ret)
409 return ret;
00e60f26 410
e95433c7
CW
411 for (i = 0; i < count; i++) {
412 timeout = i915_gem_object_wait_fence(shared[i],
413 flags, timeout,
414 rps);
415 if (timeout <= 0)
416 break;
00e60f26 417
e95433c7
CW
418 dma_fence_put(shared[i]);
419 }
420
421 for (; i < count; i++)
422 dma_fence_put(shared[i]);
423 kfree(shared);
424 } else {
425 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
426 }
427
e95433c7
CW
428 if (excl && timeout > 0)
429 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
430
431 dma_fence_put(excl);
432
433 return timeout;
00e60f26
CW
434}
435
e95433c7
CW
436/**
437 * Waits for rendering to the object to be completed
438 * @obj: i915 gem object
439 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
440 * @timeout: how long to wait
441 * @rps: client (user process) to charge for any waitboosting
00e60f26 442 */
e95433c7
CW
443int
444i915_gem_object_wait(struct drm_i915_gem_object *obj,
445 unsigned int flags,
446 long timeout,
447 struct intel_rps_client *rps)
00e60f26 448{
e95433c7
CW
449 might_sleep();
450#if IS_ENABLED(CONFIG_LOCKDEP)
451 GEM_BUG_ON(debug_locks &&
452 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
453 !!(flags & I915_WAIT_LOCKED));
454#endif
455 GEM_BUG_ON(timeout < 0);
00e60f26 456
d07f0e59
CW
457 timeout = i915_gem_object_wait_reservation(obj->resv,
458 flags, timeout,
459 rps);
e95433c7 460 return timeout < 0 ? timeout : 0;
00e60f26
CW
461}
462
463static struct intel_rps_client *to_rps_client(struct drm_file *file)
464{
465 struct drm_i915_file_private *fpriv = file->driver_priv;
466
467 return &fpriv->rps;
468}
469
00731155
CW
470int
471i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
472 int align)
473{
474 drm_dma_handle_t *phys;
6a2c4232 475 int ret;
00731155
CW
476
477 if (obj->phys_handle) {
478 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
479 return -EBUSY;
480
481 return 0;
482 }
483
a4f5ea64 484 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
485 return -EFAULT;
486
487 if (obj->base.filp == NULL)
488 return -EINVAL;
489
4717ca9e
CW
490 ret = i915_gem_object_unbind(obj);
491 if (ret)
492 return ret;
493
548625ee 494 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
495 if (obj->mm.pages)
496 return -EBUSY;
6a2c4232 497
00731155
CW
498 /* create a new object */
499 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
500 if (!phys)
501 return -ENOMEM;
502
00731155 503 obj->phys_handle = phys;
6a2c4232
CW
504 obj->ops = &i915_gem_phys_ops;
505
a4f5ea64 506 return i915_gem_object_pin_pages(obj);
00731155
CW
507}
508
509static int
510i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
511 struct drm_i915_gem_pwrite *args,
03ac84f1 512 struct drm_file *file)
00731155
CW
513{
514 struct drm_device *dev = obj->base.dev;
515 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 516 char __user *user_data = u64_to_user_ptr(args->data_ptr);
e95433c7 517 int ret;
6a2c4232
CW
518
519 /* We manually control the domain here and pretend that it
520 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
521 */
e95433c7
CW
522 lockdep_assert_held(&obj->base.dev->struct_mutex);
523 ret = i915_gem_object_wait(obj,
524 I915_WAIT_INTERRUPTIBLE |
525 I915_WAIT_LOCKED |
526 I915_WAIT_ALL,
527 MAX_SCHEDULE_TIMEOUT,
03ac84f1 528 to_rps_client(file));
6a2c4232
CW
529 if (ret)
530 return ret;
00731155 531
77a0d1ca 532 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
533 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
534 unsigned long unwritten;
535
536 /* The physical object once assigned is fixed for the lifetime
537 * of the obj, so we can safely drop the lock and continue
538 * to access vaddr.
539 */
540 mutex_unlock(&dev->struct_mutex);
541 unwritten = copy_from_user(vaddr, user_data, args->size);
542 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
543 if (unwritten) {
544 ret = -EFAULT;
545 goto out;
546 }
00731155
CW
547 }
548
6a2c4232 549 drm_clflush_virt_range(vaddr, args->size);
c033666a 550 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
551
552out:
de152b62 553 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 554 return ret;
00731155
CW
555}
556
42dcedd4
CW
557void *i915_gem_object_alloc(struct drm_device *dev)
558{
fac5e23e 559 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 560 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
561}
562
563void i915_gem_object_free(struct drm_i915_gem_object *obj)
564{
fac5e23e 565 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 566 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
567}
568
ff72145b
DA
569static int
570i915_gem_create(struct drm_file *file,
571 struct drm_device *dev,
572 uint64_t size,
573 uint32_t *handle_p)
673a394b 574{
05394f39 575 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
576 int ret;
577 u32 handle;
673a394b 578
ff72145b 579 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
580 if (size == 0)
581 return -EINVAL;
673a394b
EA
582
583 /* Allocate the new object */
d37cd8a8 584 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
585 if (IS_ERR(obj))
586 return PTR_ERR(obj);
673a394b 587
05394f39 588 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 589 /* drop reference from allocate - handle holds it now */
f0cd5182 590 i915_gem_object_put(obj);
d861e338
DV
591 if (ret)
592 return ret;
202f2fef 593
ff72145b 594 *handle_p = handle;
673a394b
EA
595 return 0;
596}
597
ff72145b
DA
598int
599i915_gem_dumb_create(struct drm_file *file,
600 struct drm_device *dev,
601 struct drm_mode_create_dumb *args)
602{
603 /* have to work out size/pitch and return them */
de45eaf7 604 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
605 args->size = args->pitch * args->height;
606 return i915_gem_create(file, dev,
da6b51d0 607 args->size, &args->handle);
ff72145b
DA
608}
609
ff72145b
DA
610/**
611 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
612 * @dev: drm device pointer
613 * @data: ioctl data blob
614 * @file: drm file pointer
ff72145b
DA
615 */
616int
617i915_gem_create_ioctl(struct drm_device *dev, void *data,
618 struct drm_file *file)
619{
620 struct drm_i915_gem_create *args = data;
63ed2cb2 621
fbbd37b3
CW
622 i915_gem_flush_free_objects(to_i915(dev));
623
ff72145b 624 return i915_gem_create(file, dev,
da6b51d0 625 args->size, &args->handle);
ff72145b
DA
626}
627
8461d226
DV
628static inline int
629__copy_to_user_swizzled(char __user *cpu_vaddr,
630 const char *gpu_vaddr, int gpu_offset,
631 int length)
632{
633 int ret, cpu_offset = 0;
634
635 while (length > 0) {
636 int cacheline_end = ALIGN(gpu_offset + 1, 64);
637 int this_length = min(cacheline_end - gpu_offset, length);
638 int swizzled_gpu_offset = gpu_offset ^ 64;
639
640 ret = __copy_to_user(cpu_vaddr + cpu_offset,
641 gpu_vaddr + swizzled_gpu_offset,
642 this_length);
643 if (ret)
644 return ret + length;
645
646 cpu_offset += this_length;
647 gpu_offset += this_length;
648 length -= this_length;
649 }
650
651 return 0;
652}
653
8c59967c 654static inline int
4f0c7cfb
BW
655__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
656 const char __user *cpu_vaddr,
8c59967c
DV
657 int length)
658{
659 int ret, cpu_offset = 0;
660
661 while (length > 0) {
662 int cacheline_end = ALIGN(gpu_offset + 1, 64);
663 int this_length = min(cacheline_end - gpu_offset, length);
664 int swizzled_gpu_offset = gpu_offset ^ 64;
665
666 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
667 cpu_vaddr + cpu_offset,
668 this_length);
669 if (ret)
670 return ret + length;
671
672 cpu_offset += this_length;
673 gpu_offset += this_length;
674 length -= this_length;
675 }
676
677 return 0;
678}
679
4c914c0c
BV
680/*
681 * Pins the specified object's pages and synchronizes the object with
682 * GPU accesses. Sets needs_clflush to non-zero if the caller should
683 * flush the object from the CPU cache.
684 */
685int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 686 unsigned int *needs_clflush)
4c914c0c
BV
687{
688 int ret;
689
e95433c7 690 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 691
e95433c7 692 *needs_clflush = 0;
43394c7d
CW
693 if (!i915_gem_object_has_struct_page(obj))
694 return -ENODEV;
4c914c0c 695
e95433c7
CW
696 ret = i915_gem_object_wait(obj,
697 I915_WAIT_INTERRUPTIBLE |
698 I915_WAIT_LOCKED,
699 MAX_SCHEDULE_TIMEOUT,
700 NULL);
c13d87ea
CW
701 if (ret)
702 return ret;
703
a4f5ea64 704 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
705 if (ret)
706 return ret;
707
a314d5cb
CW
708 i915_gem_object_flush_gtt_write_domain(obj);
709
43394c7d
CW
710 /* If we're not in the cpu read domain, set ourself into the gtt
711 * read domain and manually flush cachelines (if required). This
712 * optimizes for the case when the gpu will dirty the data
713 * anyway again before the next pread happens.
714 */
715 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
716 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
717 obj->cache_level);
43394c7d 718
43394c7d
CW
719 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
720 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
721 if (ret)
722 goto err_unpin;
723
43394c7d 724 *needs_clflush = 0;
4c914c0c
BV
725 }
726
9764951e 727 /* return with the pages pinned */
43394c7d 728 return 0;
9764951e
CW
729
730err_unpin:
731 i915_gem_object_unpin_pages(obj);
732 return ret;
43394c7d
CW
733}
734
735int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
736 unsigned int *needs_clflush)
737{
738 int ret;
739
e95433c7
CW
740 lockdep_assert_held(&obj->base.dev->struct_mutex);
741
43394c7d
CW
742 *needs_clflush = 0;
743 if (!i915_gem_object_has_struct_page(obj))
744 return -ENODEV;
745
e95433c7
CW
746 ret = i915_gem_object_wait(obj,
747 I915_WAIT_INTERRUPTIBLE |
748 I915_WAIT_LOCKED |
749 I915_WAIT_ALL,
750 MAX_SCHEDULE_TIMEOUT,
751 NULL);
43394c7d
CW
752 if (ret)
753 return ret;
754
a4f5ea64 755 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
756 if (ret)
757 return ret;
758
a314d5cb
CW
759 i915_gem_object_flush_gtt_write_domain(obj);
760
43394c7d
CW
761 /* If we're not in the cpu write domain, set ourself into the
762 * gtt write domain and manually flush cachelines (as required).
763 * This optimizes for the case when the gpu will use the data
764 * right away and we therefore have to clflush anyway.
765 */
766 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
767 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
768
769 /* Same trick applies to invalidate partially written cachelines read
770 * before writing.
771 */
772 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
773 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
774 obj->cache_level);
775
43394c7d
CW
776 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
777 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
778 if (ret)
779 goto err_unpin;
780
43394c7d
CW
781 *needs_clflush = 0;
782 }
783
784 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
785 obj->cache_dirty = true;
786
787 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 788 obj->mm.dirty = true;
9764951e 789 /* return with the pages pinned */
43394c7d 790 return 0;
9764951e
CW
791
792err_unpin:
793 i915_gem_object_unpin_pages(obj);
794 return ret;
4c914c0c
BV
795}
796
23c18c71
DV
797static void
798shmem_clflush_swizzled_range(char *addr, unsigned long length,
799 bool swizzled)
800{
e7e58eb5 801 if (unlikely(swizzled)) {
23c18c71
DV
802 unsigned long start = (unsigned long) addr;
803 unsigned long end = (unsigned long) addr + length;
804
805 /* For swizzling simply ensure that we always flush both
806 * channels. Lame, but simple and it works. Swizzled
807 * pwrite/pread is far from a hotpath - current userspace
808 * doesn't use it at all. */
809 start = round_down(start, 128);
810 end = round_up(end, 128);
811
812 drm_clflush_virt_range((void *)start, end - start);
813 } else {
814 drm_clflush_virt_range(addr, length);
815 }
816
817}
818
d174bd64
DV
819/* Only difference to the fast-path function is that this can handle bit17
820 * and uses non-atomic copy and kmap functions. */
821static int
bb6dc8d9 822shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
823 char __user *user_data,
824 bool page_do_bit17_swizzling, bool needs_clflush)
825{
826 char *vaddr;
827 int ret;
828
829 vaddr = kmap(page);
830 if (needs_clflush)
bb6dc8d9 831 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 832 page_do_bit17_swizzling);
d174bd64
DV
833
834 if (page_do_bit17_swizzling)
bb6dc8d9 835 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 836 else
bb6dc8d9 837 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
838 kunmap(page);
839
f60d7f0c 840 return ret ? - EFAULT : 0;
d174bd64
DV
841}
842
bb6dc8d9
CW
843static int
844shmem_pread(struct page *page, int offset, int length, char __user *user_data,
845 bool page_do_bit17_swizzling, bool needs_clflush)
846{
847 int ret;
848
849 ret = -ENODEV;
850 if (!page_do_bit17_swizzling) {
851 char *vaddr = kmap_atomic(page);
852
853 if (needs_clflush)
854 drm_clflush_virt_range(vaddr + offset, length);
855 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
856 kunmap_atomic(vaddr);
857 }
858 if (ret == 0)
859 return 0;
860
861 return shmem_pread_slow(page, offset, length, user_data,
862 page_do_bit17_swizzling, needs_clflush);
863}
864
865static int
866i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pread *args)
868{
869 char __user *user_data;
870 u64 remain;
871 unsigned int obj_do_bit17_swizzling;
872 unsigned int needs_clflush;
873 unsigned int idx, offset;
874 int ret;
875
876 obj_do_bit17_swizzling = 0;
877 if (i915_gem_object_needs_bit17_swizzle(obj))
878 obj_do_bit17_swizzling = BIT(17);
879
880 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
881 if (ret)
882 return ret;
883
884 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
885 mutex_unlock(&obj->base.dev->struct_mutex);
886 if (ret)
887 return ret;
888
889 remain = args->size;
890 user_data = u64_to_user_ptr(args->data_ptr);
891 offset = offset_in_page(args->offset);
892 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
893 struct page *page = i915_gem_object_get_page(obj, idx);
894 int length;
895
896 length = remain;
897 if (offset + length > PAGE_SIZE)
898 length = PAGE_SIZE - offset;
899
900 ret = shmem_pread(page, offset, length, user_data,
901 page_to_phys(page) & obj_do_bit17_swizzling,
902 needs_clflush);
903 if (ret)
904 break;
905
906 remain -= length;
907 user_data += length;
908 offset = 0;
909 }
910
911 i915_gem_obj_finish_shmem_access(obj);
912 return ret;
913}
914
915static inline bool
916gtt_user_read(struct io_mapping *mapping,
917 loff_t base, int offset,
918 char __user *user_data, int length)
b50a5371 919{
b50a5371 920 void *vaddr;
bb6dc8d9 921 unsigned long unwritten;
b50a5371 922
b50a5371 923 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
924 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
925 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
926 io_mapping_unmap_atomic(vaddr);
927 if (unwritten) {
928 vaddr = (void __force *)
929 io_mapping_map_wc(mapping, base, PAGE_SIZE);
930 unwritten = copy_to_user(user_data, vaddr + offset, length);
931 io_mapping_unmap(vaddr);
932 }
b50a5371
AS
933 return unwritten;
934}
935
936static int
bb6dc8d9
CW
937i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
938 const struct drm_i915_gem_pread *args)
b50a5371 939{
bb6dc8d9
CW
940 struct drm_i915_private *i915 = to_i915(obj->base.dev);
941 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 942 struct drm_mm_node node;
bb6dc8d9
CW
943 struct i915_vma *vma;
944 void __user *user_data;
945 u64 remain, offset;
b50a5371
AS
946 int ret;
947
bb6dc8d9
CW
948 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
949 if (ret)
950 return ret;
951
952 intel_runtime_pm_get(i915);
953 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
954 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
955 if (!IS_ERR(vma)) {
956 node.start = i915_ggtt_offset(vma);
957 node.allocated = false;
49ef5294 958 ret = i915_vma_put_fence(vma);
18034584
CW
959 if (ret) {
960 i915_vma_unpin(vma);
961 vma = ERR_PTR(ret);
962 }
963 }
058d88c4 964 if (IS_ERR(vma)) {
bb6dc8d9 965 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 966 if (ret)
bb6dc8d9
CW
967 goto out_unlock;
968 GEM_BUG_ON(!node.allocated);
b50a5371
AS
969 }
970
971 ret = i915_gem_object_set_to_gtt_domain(obj, false);
972 if (ret)
973 goto out_unpin;
974
bb6dc8d9 975 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 976
bb6dc8d9
CW
977 user_data = u64_to_user_ptr(args->data_ptr);
978 remain = args->size;
979 offset = args->offset;
b50a5371
AS
980
981 while (remain > 0) {
982 /* Operation in this page
983 *
984 * page_base = page offset within aperture
985 * page_offset = offset within page
986 * page_length = bytes to copy for this page
987 */
988 u32 page_base = node.start;
989 unsigned page_offset = offset_in_page(offset);
990 unsigned page_length = PAGE_SIZE - page_offset;
991 page_length = remain < page_length ? remain : page_length;
992 if (node.allocated) {
993 wmb();
994 ggtt->base.insert_page(&ggtt->base,
995 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 996 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
997 wmb();
998 } else {
999 page_base += offset & PAGE_MASK;
1000 }
bb6dc8d9
CW
1001
1002 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1003 user_data, page_length)) {
b50a5371
AS
1004 ret = -EFAULT;
1005 break;
1006 }
1007
1008 remain -= page_length;
1009 user_data += page_length;
1010 offset += page_length;
1011 }
1012
bb6dc8d9 1013 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1014out_unpin:
1015 if (node.allocated) {
1016 wmb();
1017 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1018 node.start, node.size);
b50a5371
AS
1019 remove_mappable_node(&node);
1020 } else {
058d88c4 1021 i915_vma_unpin(vma);
b50a5371 1022 }
bb6dc8d9
CW
1023out_unlock:
1024 intel_runtime_pm_put(i915);
1025 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1026
eb01459f
EA
1027 return ret;
1028}
1029
673a394b
EA
1030/**
1031 * Reads data from the object referenced by handle.
14bb2c11
TU
1032 * @dev: drm device pointer
1033 * @data: ioctl data blob
1034 * @file: drm file pointer
673a394b
EA
1035 *
1036 * On error, the contents of *data are undefined.
1037 */
1038int
1039i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1040 struct drm_file *file)
673a394b
EA
1041{
1042 struct drm_i915_gem_pread *args = data;
05394f39 1043 struct drm_i915_gem_object *obj;
bb6dc8d9 1044 int ret;
673a394b 1045
51311d0a
CW
1046 if (args->size == 0)
1047 return 0;
1048
1049 if (!access_ok(VERIFY_WRITE,
3ed605bc 1050 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1051 args->size))
1052 return -EFAULT;
1053
03ac0642 1054 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1055 if (!obj)
1056 return -ENOENT;
673a394b 1057
7dcd2499 1058 /* Bounds check source. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
bb6dc8d9 1062 goto out;
ce9d419d
CW
1063 }
1064
db53a302
CW
1065 trace_i915_gem_object_pread(obj, args->offset, args->size);
1066
e95433c7
CW
1067 ret = i915_gem_object_wait(obj,
1068 I915_WAIT_INTERRUPTIBLE,
1069 MAX_SCHEDULE_TIMEOUT,
1070 to_rps_client(file));
258a5ede 1071 if (ret)
bb6dc8d9 1072 goto out;
258a5ede 1073
bb6dc8d9 1074 ret = i915_gem_object_pin_pages(obj);
258a5ede 1075 if (ret)
bb6dc8d9 1076 goto out;
673a394b 1077
bb6dc8d9 1078 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1079 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1080 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1081
bb6dc8d9
CW
1082 i915_gem_object_unpin_pages(obj);
1083out:
f0cd5182 1084 i915_gem_object_put(obj);
eb01459f 1085 return ret;
673a394b
EA
1086}
1087
0839ccb8
KP
1088/* This is the fast write path which cannot handle
1089 * page faults in the source data
9b7530cc 1090 */
0839ccb8 1091
fe115628
CW
1092static inline bool
1093ggtt_write(struct io_mapping *mapping,
1094 loff_t base, int offset,
1095 char __user *user_data, int length)
9b7530cc 1096{
4f0c7cfb 1097 void *vaddr;
0839ccb8 1098 unsigned long unwritten;
9b7530cc 1099
4f0c7cfb 1100 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1101 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1102 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1103 user_data, length);
fe115628
CW
1104 io_mapping_unmap_atomic(vaddr);
1105 if (unwritten) {
1106 vaddr = (void __force *)
1107 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1108 unwritten = copy_from_user(vaddr + offset, user_data, length);
1109 io_mapping_unmap(vaddr);
1110 }
bb6dc8d9 1111
bb6dc8d9
CW
1112 return unwritten;
1113}
1114
3de09aa3
EA
1115/**
1116 * This is the fast pwrite path, where we copy the data directly from the
1117 * user into the GTT, uncached.
fe115628 1118 * @obj: i915 GEM object
14bb2c11 1119 * @args: pwrite arguments structure
3de09aa3 1120 */
673a394b 1121static int
fe115628
CW
1122i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1123 const struct drm_i915_gem_pwrite *args)
673a394b 1124{
fe115628 1125 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1126 struct i915_ggtt *ggtt = &i915->ggtt;
1127 struct drm_mm_node node;
fe115628
CW
1128 struct i915_vma *vma;
1129 u64 remain, offset;
1130 void __user *user_data;
4f1959ee 1131 int ret;
b50a5371 1132
fe115628
CW
1133 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1134 if (ret)
1135 return ret;
935aaa69 1136
9c870d03 1137 intel_runtime_pm_get(i915);
058d88c4 1138 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1139 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1140 if (!IS_ERR(vma)) {
1141 node.start = i915_ggtt_offset(vma);
1142 node.allocated = false;
49ef5294 1143 ret = i915_vma_put_fence(vma);
18034584
CW
1144 if (ret) {
1145 i915_vma_unpin(vma);
1146 vma = ERR_PTR(ret);
1147 }
1148 }
058d88c4 1149 if (IS_ERR(vma)) {
bb6dc8d9 1150 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1151 if (ret)
fe115628
CW
1152 goto out_unlock;
1153 GEM_BUG_ON(!node.allocated);
4f1959ee 1154 }
935aaa69
DV
1155
1156 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1157 if (ret)
1158 goto out_unpin;
1159
fe115628
CW
1160 mutex_unlock(&i915->drm.struct_mutex);
1161
b19482d7 1162 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1163
4f1959ee
AS
1164 user_data = u64_to_user_ptr(args->data_ptr);
1165 offset = args->offset;
1166 remain = args->size;
1167 while (remain) {
673a394b
EA
1168 /* Operation in this page
1169 *
0839ccb8
KP
1170 * page_base = page offset within aperture
1171 * page_offset = offset within page
1172 * page_length = bytes to copy for this page
673a394b 1173 */
4f1959ee 1174 u32 page_base = node.start;
bb6dc8d9
CW
1175 unsigned int page_offset = offset_in_page(offset);
1176 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1177 page_length = remain < page_length ? remain : page_length;
1178 if (node.allocated) {
1179 wmb(); /* flush the write before we modify the GGTT */
1180 ggtt->base.insert_page(&ggtt->base,
1181 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1182 node.start, I915_CACHE_NONE, 0);
1183 wmb(); /* flush modifications to the GGTT (insert_page) */
1184 } else {
1185 page_base += offset & PAGE_MASK;
1186 }
0839ccb8 1187 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1188 * source page isn't available. Return the error and we'll
1189 * retry in the slow path.
b50a5371
AS
1190 * If the object is non-shmem backed, we retry again with the
1191 * path that handles page fault.
0839ccb8 1192 */
fe115628
CW
1193 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1194 user_data, page_length)) {
1195 ret = -EFAULT;
1196 break;
935aaa69 1197 }
673a394b 1198
0839ccb8
KP
1199 remain -= page_length;
1200 user_data += page_length;
1201 offset += page_length;
673a394b 1202 }
b19482d7 1203 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1204
1205 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1206out_unpin:
4f1959ee
AS
1207 if (node.allocated) {
1208 wmb();
1209 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1210 node.start, node.size);
4f1959ee
AS
1211 remove_mappable_node(&node);
1212 } else {
058d88c4 1213 i915_vma_unpin(vma);
4f1959ee 1214 }
fe115628 1215out_unlock:
9c870d03 1216 intel_runtime_pm_put(i915);
fe115628 1217 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1218 return ret;
673a394b
EA
1219}
1220
3043c60c 1221static int
fe115628 1222shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1223 char __user *user_data,
1224 bool page_do_bit17_swizzling,
1225 bool needs_clflush_before,
1226 bool needs_clflush_after)
673a394b 1227{
d174bd64
DV
1228 char *vaddr;
1229 int ret;
e5281ccd 1230
d174bd64 1231 vaddr = kmap(page);
e7e58eb5 1232 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1233 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1234 page_do_bit17_swizzling);
d174bd64 1235 if (page_do_bit17_swizzling)
fe115628
CW
1236 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1237 length);
d174bd64 1238 else
fe115628 1239 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1240 if (needs_clflush_after)
fe115628 1241 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1242 page_do_bit17_swizzling);
d174bd64 1243 kunmap(page);
40123c1f 1244
755d2218 1245 return ret ? -EFAULT : 0;
40123c1f
EA
1246}
1247
fe115628
CW
1248/* Per-page copy function for the shmem pwrite fastpath.
1249 * Flushes invalid cachelines before writing to the target if
1250 * needs_clflush_before is set and flushes out any written cachelines after
1251 * writing if needs_clflush is set.
1252 */
40123c1f 1253static int
fe115628
CW
1254shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1255 bool page_do_bit17_swizzling,
1256 bool needs_clflush_before,
1257 bool needs_clflush_after)
40123c1f 1258{
fe115628
CW
1259 int ret;
1260
1261 ret = -ENODEV;
1262 if (!page_do_bit17_swizzling) {
1263 char *vaddr = kmap_atomic(page);
1264
1265 if (needs_clflush_before)
1266 drm_clflush_virt_range(vaddr + offset, len);
1267 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1268 if (needs_clflush_after)
1269 drm_clflush_virt_range(vaddr + offset, len);
1270
1271 kunmap_atomic(vaddr);
1272 }
1273 if (ret == 0)
1274 return ret;
1275
1276 return shmem_pwrite_slow(page, offset, len, user_data,
1277 page_do_bit17_swizzling,
1278 needs_clflush_before,
1279 needs_clflush_after);
1280}
1281
1282static int
1283i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1284 const struct drm_i915_gem_pwrite *args)
1285{
1286 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1287 void __user *user_data;
1288 u64 remain;
1289 unsigned int obj_do_bit17_swizzling;
1290 unsigned int partial_cacheline_write;
43394c7d 1291 unsigned int needs_clflush;
fe115628
CW
1292 unsigned int offset, idx;
1293 int ret;
40123c1f 1294
fe115628 1295 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1296 if (ret)
1297 return ret;
1298
fe115628
CW
1299 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1300 mutex_unlock(&i915->drm.struct_mutex);
1301 if (ret)
1302 return ret;
673a394b 1303
fe115628
CW
1304 obj_do_bit17_swizzling = 0;
1305 if (i915_gem_object_needs_bit17_swizzle(obj))
1306 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1307
fe115628
CW
1308 /* If we don't overwrite a cacheline completely we need to be
1309 * careful to have up-to-date data by first clflushing. Don't
1310 * overcomplicate things and flush the entire patch.
1311 */
1312 partial_cacheline_write = 0;
1313 if (needs_clflush & CLFLUSH_BEFORE)
1314 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1315
fe115628
CW
1316 user_data = u64_to_user_ptr(args->data_ptr);
1317 remain = args->size;
1318 offset = offset_in_page(args->offset);
1319 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1320 struct page *page = i915_gem_object_get_page(obj, idx);
1321 int length;
40123c1f 1322
fe115628
CW
1323 length = remain;
1324 if (offset + length > PAGE_SIZE)
1325 length = PAGE_SIZE - offset;
755d2218 1326
fe115628
CW
1327 ret = shmem_pwrite(page, offset, length, user_data,
1328 page_to_phys(page) & obj_do_bit17_swizzling,
1329 (offset | length) & partial_cacheline_write,
1330 needs_clflush & CLFLUSH_AFTER);
755d2218 1331 if (ret)
fe115628 1332 break;
755d2218 1333
fe115628
CW
1334 remain -= length;
1335 user_data += length;
1336 offset = 0;
8c59967c 1337 }
673a394b 1338
de152b62 1339 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1340 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1341 return ret;
673a394b
EA
1342}
1343
1344/**
1345 * Writes data to the object referenced by handle.
14bb2c11
TU
1346 * @dev: drm device
1347 * @data: ioctl data blob
1348 * @file: drm file
673a394b
EA
1349 *
1350 * On error, the contents of the buffer that were to be modified are undefined.
1351 */
1352int
1353i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1354 struct drm_file *file)
673a394b
EA
1355{
1356 struct drm_i915_gem_pwrite *args = data;
05394f39 1357 struct drm_i915_gem_object *obj;
51311d0a
CW
1358 int ret;
1359
1360 if (args->size == 0)
1361 return 0;
1362
1363 if (!access_ok(VERIFY_READ,
3ed605bc 1364 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1365 args->size))
1366 return -EFAULT;
1367
03ac0642 1368 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1369 if (!obj)
1370 return -ENOENT;
673a394b 1371
7dcd2499 1372 /* Bounds check destination. */
05394f39
CW
1373 if (args->offset > obj->base.size ||
1374 args->size > obj->base.size - args->offset) {
ce9d419d 1375 ret = -EINVAL;
258a5ede 1376 goto err;
ce9d419d
CW
1377 }
1378
db53a302
CW
1379 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1380
e95433c7
CW
1381 ret = i915_gem_object_wait(obj,
1382 I915_WAIT_INTERRUPTIBLE |
1383 I915_WAIT_ALL,
1384 MAX_SCHEDULE_TIMEOUT,
1385 to_rps_client(file));
258a5ede
CW
1386 if (ret)
1387 goto err;
1388
fe115628 1389 ret = i915_gem_object_pin_pages(obj);
258a5ede 1390 if (ret)
fe115628 1391 goto err;
258a5ede 1392
935aaa69 1393 ret = -EFAULT;
673a394b
EA
1394 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1395 * it would end up going through the fenced access, and we'll get
1396 * different detiling behavior between reading and writing.
1397 * pread/pwrite currently are reading and writing from the CPU
1398 * perspective, requiring manual detiling by the client.
1399 */
6eae0059 1400 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1401 cpu_write_needs_clflush(obj))
935aaa69
DV
1402 /* Note that the gtt paths might fail with non-page-backed user
1403 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1404 * textures). Fallback to the shmem path in that case.
1405 */
fe115628 1406 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1407
d1054ee4 1408 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1409 if (obj->phys_handle)
1410 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1411 else
fe115628 1412 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1413 }
5c0480f2 1414
fe115628 1415 i915_gem_object_unpin_pages(obj);
258a5ede 1416err:
f0cd5182 1417 i915_gem_object_put(obj);
258a5ede 1418 return ret;
673a394b
EA
1419}
1420
d243ad82 1421static inline enum fb_op_origin
aeecc969
CW
1422write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1423{
50349247
CW
1424 return (domain == I915_GEM_DOMAIN_GTT ?
1425 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1426}
1427
40e62d5d
CW
1428static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1429{
1430 struct drm_i915_private *i915;
1431 struct list_head *list;
1432 struct i915_vma *vma;
1433
1434 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1435 if (!i915_vma_is_ggtt(vma))
1436 continue;
1437
1438 if (i915_vma_is_active(vma))
1439 continue;
1440
1441 if (!drm_mm_node_allocated(&vma->node))
1442 continue;
1443
1444 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1445 }
1446
1447 i915 = to_i915(obj->base.dev);
1448 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1449 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1450}
1451
673a394b 1452/**
2ef7eeaa
EA
1453 * Called when user space prepares to use an object with the CPU, either
1454 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1455 * @dev: drm device
1456 * @data: ioctl data blob
1457 * @file: drm file
673a394b
EA
1458 */
1459int
1460i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1461 struct drm_file *file)
673a394b
EA
1462{
1463 struct drm_i915_gem_set_domain *args = data;
05394f39 1464 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1465 uint32_t read_domains = args->read_domains;
1466 uint32_t write_domain = args->write_domain;
40e62d5d 1467 int err;
673a394b 1468
2ef7eeaa 1469 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1470 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1471 return -EINVAL;
1472
1473 /* Having something in the write domain implies it's in the read
1474 * domain, and only that read domain. Enforce that in the request.
1475 */
1476 if (write_domain != 0 && read_domains != write_domain)
1477 return -EINVAL;
1478
03ac0642 1479 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1480 if (!obj)
1481 return -ENOENT;
673a394b 1482
3236f57a
CW
1483 /* Try to flush the object off the GPU without holding the lock.
1484 * We will repeat the flush holding the lock in the normal manner
1485 * to catch cases where we are gazumped.
1486 */
40e62d5d 1487 err = i915_gem_object_wait(obj,
e95433c7
CW
1488 I915_WAIT_INTERRUPTIBLE |
1489 (write_domain ? I915_WAIT_ALL : 0),
1490 MAX_SCHEDULE_TIMEOUT,
1491 to_rps_client(file));
40e62d5d 1492 if (err)
f0cd5182 1493 goto out;
b8f9096d 1494
40e62d5d
CW
1495 /* Flush and acquire obj->pages so that we are coherent through
1496 * direct access in memory with previous cached writes through
1497 * shmemfs and that our cache domain tracking remains valid.
1498 * For example, if the obj->filp was moved to swap without us
1499 * being notified and releasing the pages, we would mistakenly
1500 * continue to assume that the obj remained out of the CPU cached
1501 * domain.
1502 */
1503 err = i915_gem_object_pin_pages(obj);
1504 if (err)
f0cd5182 1505 goto out;
40e62d5d
CW
1506
1507 err = i915_mutex_lock_interruptible(dev);
1508 if (err)
f0cd5182 1509 goto out_unpin;
3236f57a 1510
43566ded 1511 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1512 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1513 else
40e62d5d 1514 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1515
40e62d5d
CW
1516 /* And bump the LRU for this access */
1517 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1518
673a394b 1519 mutex_unlock(&dev->struct_mutex);
b8f9096d 1520
40e62d5d
CW
1521 if (write_domain != 0)
1522 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1523
f0cd5182 1524out_unpin:
40e62d5d 1525 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1526out:
1527 i915_gem_object_put(obj);
40e62d5d 1528 return err;
673a394b
EA
1529}
1530
1531/**
1532 * Called when user space has done writes to this buffer
14bb2c11
TU
1533 * @dev: drm device
1534 * @data: ioctl data blob
1535 * @file: drm file
673a394b
EA
1536 */
1537int
1538i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1539 struct drm_file *file)
673a394b
EA
1540{
1541 struct drm_i915_gem_sw_finish *args = data;
05394f39 1542 struct drm_i915_gem_object *obj;
c21724cc 1543 int err = 0;
1d7cfea1 1544
03ac0642 1545 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1546 if (!obj)
1547 return -ENOENT;
673a394b 1548
673a394b 1549 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1550 if (READ_ONCE(obj->pin_display)) {
1551 err = i915_mutex_lock_interruptible(dev);
1552 if (!err) {
1553 i915_gem_object_flush_cpu_write_domain(obj);
1554 mutex_unlock(&dev->struct_mutex);
1555 }
1556 }
e47c68e9 1557
f0cd5182 1558 i915_gem_object_put(obj);
c21724cc 1559 return err;
673a394b
EA
1560}
1561
1562/**
14bb2c11
TU
1563 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1564 * it is mapped to.
1565 * @dev: drm device
1566 * @data: ioctl data blob
1567 * @file: drm file
673a394b
EA
1568 *
1569 * While the mapping holds a reference on the contents of the object, it doesn't
1570 * imply a ref on the object itself.
34367381
DV
1571 *
1572 * IMPORTANT:
1573 *
1574 * DRM driver writers who look a this function as an example for how to do GEM
1575 * mmap support, please don't implement mmap support like here. The modern way
1576 * to implement DRM mmap support is with an mmap offset ioctl (like
1577 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1578 * That way debug tooling like valgrind will understand what's going on, hiding
1579 * the mmap call in a driver private ioctl will break that. The i915 driver only
1580 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1581 */
1582int
1583i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1584 struct drm_file *file)
673a394b
EA
1585{
1586 struct drm_i915_gem_mmap *args = data;
03ac0642 1587 struct drm_i915_gem_object *obj;
673a394b
EA
1588 unsigned long addr;
1589
1816f923
AG
1590 if (args->flags & ~(I915_MMAP_WC))
1591 return -EINVAL;
1592
568a58e5 1593 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1594 return -ENODEV;
1595
03ac0642
CW
1596 obj = i915_gem_object_lookup(file, args->handle);
1597 if (!obj)
bf79cb91 1598 return -ENOENT;
673a394b 1599
1286ff73
DV
1600 /* prime objects have no backing filp to GEM mmap
1601 * pages from.
1602 */
03ac0642 1603 if (!obj->base.filp) {
f0cd5182 1604 i915_gem_object_put(obj);
1286ff73
DV
1605 return -EINVAL;
1606 }
1607
03ac0642 1608 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1609 PROT_READ | PROT_WRITE, MAP_SHARED,
1610 args->offset);
1816f923
AG
1611 if (args->flags & I915_MMAP_WC) {
1612 struct mm_struct *mm = current->mm;
1613 struct vm_area_struct *vma;
1614
80a89a5e 1615 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1616 i915_gem_object_put(obj);
80a89a5e
MH
1617 return -EINTR;
1618 }
1816f923
AG
1619 vma = find_vma(mm, addr);
1620 if (vma)
1621 vma->vm_page_prot =
1622 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1623 else
1624 addr = -ENOMEM;
1625 up_write(&mm->mmap_sem);
aeecc969
CW
1626
1627 /* This may race, but that's ok, it only gets set */
50349247 1628 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1629 }
f0cd5182 1630 i915_gem_object_put(obj);
673a394b
EA
1631 if (IS_ERR((void *)addr))
1632 return addr;
1633
1634 args->addr_ptr = (uint64_t) addr;
1635
1636 return 0;
1637}
1638
03af84fe
CW
1639static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1640{
1641 u64 size;
1642
1643 size = i915_gem_object_get_stride(obj);
1644 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1645
1646 return size >> PAGE_SHIFT;
1647}
1648
4cc69075
CW
1649/**
1650 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1651 *
1652 * A history of the GTT mmap interface:
1653 *
1654 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1655 * aligned and suitable for fencing, and still fit into the available
1656 * mappable space left by the pinned display objects. A classic problem
1657 * we called the page-fault-of-doom where we would ping-pong between
1658 * two objects that could not fit inside the GTT and so the memcpy
1659 * would page one object in at the expense of the other between every
1660 * single byte.
1661 *
1662 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1663 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1664 * object is too large for the available space (or simply too large
1665 * for the mappable aperture!), a view is created instead and faulted
1666 * into userspace. (This view is aligned and sized appropriately for
1667 * fenced access.)
1668 *
1669 * Restrictions:
1670 *
1671 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1672 * hangs on some architectures, corruption on others. An attempt to service
1673 * a GTT page fault from a snoopable object will generate a SIGBUS.
1674 *
1675 * * the object must be able to fit into RAM (physical memory, though no
1676 * limited to the mappable aperture).
1677 *
1678 *
1679 * Caveats:
1680 *
1681 * * a new GTT page fault will synchronize rendering from the GPU and flush
1682 * all data to system memory. Subsequent access will not be synchronized.
1683 *
1684 * * all mappings are revoked on runtime device suspend.
1685 *
1686 * * there are only 8, 16 or 32 fence registers to share between all users
1687 * (older machines require fence register for display and blitter access
1688 * as well). Contention of the fence registers will cause the previous users
1689 * to be unmapped and any new access will generate new page faults.
1690 *
1691 * * running out of memory while servicing a fault may generate a SIGBUS,
1692 * rather than the expected SIGSEGV.
1693 */
1694int i915_gem_mmap_gtt_version(void)
1695{
1696 return 1;
1697}
1698
de151cf6
JB
1699/**
1700 * i915_gem_fault - fault a page into the GTT
058d88c4 1701 * @area: CPU VMA in question
d9072a3e 1702 * @vmf: fault info
de151cf6
JB
1703 *
1704 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1705 * from userspace. The fault handler takes care of binding the object to
1706 * the GTT (if needed), allocating and programming a fence register (again,
1707 * only if needed based on whether the old reg is still valid or the object
1708 * is tiled) and inserting a new PTE into the faulting process.
1709 *
1710 * Note that the faulting process may involve evicting existing objects
1711 * from the GTT and/or fence registers to make room. So performance may
1712 * suffer if the GTT working set is large or there are few fence registers
1713 * left.
4cc69075
CW
1714 *
1715 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1716 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1717 */
058d88c4 1718int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1719{
03af84fe 1720#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1721 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1722 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1723 struct drm_i915_private *dev_priv = to_i915(dev);
1724 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1725 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1726 struct i915_vma *vma;
de151cf6 1727 pgoff_t page_offset;
82118877 1728 unsigned int flags;
b8f9096d 1729 int ret;
f65c9168 1730
de151cf6 1731 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1732 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1733 PAGE_SHIFT;
1734
db53a302
CW
1735 trace_i915_gem_object_fault(obj, page_offset, true, write);
1736
6e4930f6 1737 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1738 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1739 * repeat the flush holding the lock in the normal manner to catch cases
1740 * where we are gazumped.
1741 */
e95433c7
CW
1742 ret = i915_gem_object_wait(obj,
1743 I915_WAIT_INTERRUPTIBLE,
1744 MAX_SCHEDULE_TIMEOUT,
1745 NULL);
6e4930f6 1746 if (ret)
b8f9096d
CW
1747 goto err;
1748
40e62d5d
CW
1749 ret = i915_gem_object_pin_pages(obj);
1750 if (ret)
1751 goto err;
1752
b8f9096d
CW
1753 intel_runtime_pm_get(dev_priv);
1754
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto err_rpm;
6e4930f6 1758
eb119bd6
CW
1759 /* Access to snoopable pages through the GTT is incoherent. */
1760 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1761 ret = -EFAULT;
b8f9096d 1762 goto err_unlock;
eb119bd6
CW
1763 }
1764
82118877
CW
1765 /* If the object is smaller than a couple of partial vma, it is
1766 * not worth only creating a single partial vma - we may as well
1767 * clear enough space for the full object.
1768 */
1769 flags = PIN_MAPPABLE;
1770 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1771 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1772
a61007a8 1773 /* Now pin it into the GTT as needed */
82118877 1774 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1775 if (IS_ERR(vma)) {
1776 struct i915_ggtt_view view;
03af84fe
CW
1777 unsigned int chunk_size;
1778
a61007a8 1779 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1780 chunk_size = MIN_CHUNK_PAGES;
1781 if (i915_gem_object_is_tiled(obj))
0ef723cb 1782 chunk_size = roundup(chunk_size, tile_row_pages(obj));
e7ded2d7 1783
c5ad54cf
JL
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
a61007a8 1788 min_t(unsigned int, chunk_size,
908b1232 1789 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1790
aa136d9d
CW
1791 /* If the partial covers the entire object, just create a
1792 * normal VMA.
1793 */
1794 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1795 view.type = I915_GGTT_VIEW_NORMAL;
1796
50349247
CW
1797 /* Userspace is now writing through an untracked VMA, abandon
1798 * all hope that the hardware is able to track future writes.
1799 */
1800 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1801
a61007a8
CW
1802 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1803 }
058d88c4
CW
1804 if (IS_ERR(vma)) {
1805 ret = PTR_ERR(vma);
b8f9096d 1806 goto err_unlock;
058d88c4 1807 }
4a684a41 1808
c9839303
CW
1809 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1810 if (ret)
b8f9096d 1811 goto err_unpin;
74898d7e 1812
49ef5294 1813 ret = i915_vma_get_fence(vma);
d9e86c0e 1814 if (ret)
b8f9096d 1815 goto err_unpin;
7d1c4804 1816
275f039d 1817 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1818 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1819 if (list_empty(&obj->userfault_link))
1820 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1821
b90b91d8 1822 /* Finally, remap it using the new GTT offset */
c58305af
CW
1823 ret = remap_io_mapping(area,
1824 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1825 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1826 min_t(u64, vma->size, area->vm_end - area->vm_start),
1827 &ggtt->mappable);
a61007a8 1828
b8f9096d 1829err_unpin:
058d88c4 1830 __i915_vma_unpin(vma);
b8f9096d 1831err_unlock:
de151cf6 1832 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1833err_rpm:
1834 intel_runtime_pm_put(dev_priv);
40e62d5d 1835 i915_gem_object_unpin_pages(obj);
b8f9096d 1836err:
de151cf6 1837 switch (ret) {
d9bc7e9f 1838 case -EIO:
2232f031
DV
1839 /*
1840 * We eat errors when the gpu is terminally wedged to avoid
1841 * userspace unduly crashing (gl has no provisions for mmaps to
1842 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1843 * and so needs to be reported.
1844 */
1845 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1846 ret = VM_FAULT_SIGBUS;
1847 break;
1848 }
045e769a 1849 case -EAGAIN:
571c608d
DV
1850 /*
1851 * EAGAIN means the gpu is hung and we'll wait for the error
1852 * handler to reset everything when re-faulting in
1853 * i915_mutex_lock_interruptible.
d9bc7e9f 1854 */
c715089f
CW
1855 case 0:
1856 case -ERESTARTSYS:
bed636ab 1857 case -EINTR:
e79e0fe3
DR
1858 case -EBUSY:
1859 /*
1860 * EBUSY is ok: this just means that another thread
1861 * already did the job.
1862 */
f65c9168
PZ
1863 ret = VM_FAULT_NOPAGE;
1864 break;
de151cf6 1865 case -ENOMEM:
f65c9168
PZ
1866 ret = VM_FAULT_OOM;
1867 break;
a7c2e1aa 1868 case -ENOSPC:
45d67817 1869 case -EFAULT:
f65c9168
PZ
1870 ret = VM_FAULT_SIGBUS;
1871 break;
de151cf6 1872 default:
a7c2e1aa 1873 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1874 ret = VM_FAULT_SIGBUS;
1875 break;
de151cf6 1876 }
f65c9168 1877 return ret;
de151cf6
JB
1878}
1879
901782b2
CW
1880/**
1881 * i915_gem_release_mmap - remove physical page mappings
1882 * @obj: obj in question
1883 *
af901ca1 1884 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1885 * relinquish ownership of the pages back to the system.
1886 *
1887 * It is vital that we remove the page mapping if we have mapped a tiled
1888 * object through the GTT and then lose the fence register due to
1889 * resource pressure. Similarly if the object has been moved out of the
1890 * aperture, than pages mapped into userspace must be revoked. Removing the
1891 * mapping will then trigger a page fault on the next user access, allowing
1892 * fixup by i915_gem_fault().
1893 */
d05ca301 1894void
05394f39 1895i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1896{
275f039d 1897 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1898
349f2ccf
CW
1899 /* Serialisation between user GTT access and our code depends upon
1900 * revoking the CPU's PTE whilst the mutex is held. The next user
1901 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1902 *
1903 * Note that RPM complicates somewhat by adding an additional
1904 * requirement that operations to the GGTT be made holding the RPM
1905 * wakeref.
349f2ccf 1906 */
275f039d 1907 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1908 intel_runtime_pm_get(i915);
349f2ccf 1909
3594a3e2 1910 if (list_empty(&obj->userfault_link))
9c870d03 1911 goto out;
901782b2 1912
3594a3e2 1913 list_del_init(&obj->userfault_link);
6796cb16
DH
1914 drm_vma_node_unmap(&obj->base.vma_node,
1915 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1916
1917 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1918 * memory transactions from userspace before we return. The TLB
1919 * flushing implied above by changing the PTE above *should* be
1920 * sufficient, an extra barrier here just provides us with a bit
1921 * of paranoid documentation about our requirement to serialise
1922 * memory writes before touching registers / GSM.
1923 */
1924 wmb();
9c870d03
CW
1925
1926out:
1927 intel_runtime_pm_put(i915);
901782b2
CW
1928}
1929
7c108fd8 1930void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1931{
3594a3e2 1932 struct drm_i915_gem_object *obj, *on;
7c108fd8 1933 int i;
eedd10f4 1934
3594a3e2
CW
1935 /*
1936 * Only called during RPM suspend. All users of the userfault_list
1937 * must be holding an RPM wakeref to ensure that this can not
1938 * run concurrently with themselves (and use the struct_mutex for
1939 * protection between themselves).
1940 */
275f039d 1941
3594a3e2
CW
1942 list_for_each_entry_safe(obj, on,
1943 &dev_priv->mm.userfault_list, userfault_link) {
1944 list_del_init(&obj->userfault_link);
275f039d
CW
1945 drm_vma_node_unmap(&obj->base.vma_node,
1946 obj->base.dev->anon_inode->i_mapping);
275f039d 1947 }
7c108fd8
CW
1948
1949 /* The fence will be lost when the device powers down. If any were
1950 * in use by hardware (i.e. they are pinned), we should not be powering
1951 * down! All other fences will be reacquired by the user upon waking.
1952 */
1953 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1954 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1955
1956 if (WARN_ON(reg->pin_count))
1957 continue;
1958
1959 if (!reg->vma)
1960 continue;
1961
1962 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
1963 reg->dirty = true;
1964 }
eedd10f4
CW
1965}
1966
ad1a7d20
CW
1967/**
1968 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1969 * @dev_priv: i915 device
ad1a7d20
CW
1970 * @size: object size
1971 * @tiling_mode: tiling mode
1972 *
1973 * Return the required global GTT size for an object, taking into account
1974 * potential fence register mapping.
1975 */
a9f1481f
CW
1976u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1977 u64 size, int tiling_mode)
92b88aeb 1978{
ad1a7d20 1979 u64 ggtt_size;
92b88aeb 1980
ad1a7d20
CW
1981 GEM_BUG_ON(size == 0);
1982
a9f1481f 1983 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1984 tiling_mode == I915_TILING_NONE)
1985 return size;
92b88aeb
CW
1986
1987 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1988 if (IS_GEN3(dev_priv))
ad1a7d20 1989 ggtt_size = 1024*1024;
92b88aeb 1990 else
ad1a7d20 1991 ggtt_size = 512*1024;
92b88aeb 1992
ad1a7d20
CW
1993 while (ggtt_size < size)
1994 ggtt_size <<= 1;
92b88aeb 1995
ad1a7d20 1996 return ggtt_size;
92b88aeb
CW
1997}
1998
de151cf6 1999/**
ad1a7d20 2000 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 2001 * @dev_priv: i915 device
14bb2c11
TU
2002 * @size: object size
2003 * @tiling_mode: tiling mode
ad1a7d20 2004 * @fenced: is fenced alignment required or not
de151cf6 2005 *
ad1a7d20 2006 * Return the required global GTT alignment for an object, taking into account
5e783301 2007 * potential fence register mapping.
de151cf6 2008 */
a9f1481f 2009u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 2010 int tiling_mode, bool fenced)
de151cf6 2011{
ad1a7d20
CW
2012 GEM_BUG_ON(size == 0);
2013
de151cf6
JB
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
a9f1481f 2018 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2019 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2020 return 4096;
2021
a00b10c3
CW
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
a9f1481f 2026 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2027}
2028
d8cb5086
CW
2029static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030{
fac5e23e 2031 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2032 int err;
da494d7c 2033
f3f6184c
CW
2034 err = drm_gem_create_mmap_offset(&obj->base);
2035 if (!err)
2036 return 0;
d8cb5086 2037
f3f6184c
CW
2038 /* We can idle the GPU locklessly to flush stale objects, but in order
2039 * to claim that space for ourselves, we need to take the big
2040 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2041 */
ea746f36 2042 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2043 if (err)
2044 return err;
2045
2046 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2047 if (!err) {
2048 i915_gem_retire_requests(dev_priv);
2049 err = drm_gem_create_mmap_offset(&obj->base);
2050 mutex_unlock(&dev_priv->drm.struct_mutex);
2051 }
da494d7c 2052
f3f6184c 2053 return err;
d8cb5086
CW
2054}
2055
2056static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2057{
d8cb5086
CW
2058 drm_gem_free_mmap_offset(&obj->base);
2059}
2060
da6b51d0 2061int
ff72145b
DA
2062i915_gem_mmap_gtt(struct drm_file *file,
2063 struct drm_device *dev,
da6b51d0 2064 uint32_t handle,
ff72145b 2065 uint64_t *offset)
de151cf6 2066{
05394f39 2067 struct drm_i915_gem_object *obj;
de151cf6
JB
2068 int ret;
2069
03ac0642 2070 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2071 if (!obj)
2072 return -ENOENT;
ab18282d 2073
d8cb5086 2074 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2075 if (ret == 0)
2076 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2077
f0cd5182 2078 i915_gem_object_put(obj);
1d7cfea1 2079 return ret;
de151cf6
JB
2080}
2081
ff72145b
DA
2082/**
2083 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2084 * @dev: DRM device
2085 * @data: GTT mapping ioctl data
2086 * @file: GEM object info
2087 *
2088 * Simply returns the fake offset to userspace so it can mmap it.
2089 * The mmap call will end up in drm_gem_mmap(), which will set things
2090 * up so we can get faults in the handler above.
2091 *
2092 * The fault handler will take care of binding the object into the GTT
2093 * (since it may have been evicted to make room for something), allocating
2094 * a fence register, and mapping the appropriate aperture address into
2095 * userspace.
2096 */
2097int
2098i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2099 struct drm_file *file)
2100{
2101 struct drm_i915_gem_mmap_gtt *args = data;
2102
da6b51d0 2103 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2104}
2105
225067ee
DV
2106/* Immediately discard the backing storage */
2107static void
2108i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2109{
4d6294bf 2110 i915_gem_object_free_mmap_offset(obj);
1286ff73 2111
4d6294bf
CW
2112 if (obj->base.filp == NULL)
2113 return;
e5281ccd 2114
225067ee
DV
2115 /* Our goal here is to return as much of the memory as
2116 * is possible back to the system as we are called from OOM.
2117 * To do this we must instruct the shmfs to drop all of its
2118 * backing pages, *now*.
2119 */
5537252b 2120 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2121 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2122}
e5281ccd 2123
5537252b 2124/* Try to discard unwanted pages */
03ac84f1 2125void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2126{
5537252b
CW
2127 struct address_space *mapping;
2128
1233e2db
CW
2129 lockdep_assert_held(&obj->mm.lock);
2130 GEM_BUG_ON(obj->mm.pages);
2131
a4f5ea64 2132 switch (obj->mm.madv) {
5537252b
CW
2133 case I915_MADV_DONTNEED:
2134 i915_gem_object_truncate(obj);
2135 case __I915_MADV_PURGED:
2136 return;
2137 }
2138
2139 if (obj->base.filp == NULL)
2140 return;
2141
93c76a3d 2142 mapping = obj->base.filp->f_mapping,
5537252b 2143 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2144}
2145
5cdf5881 2146static void
03ac84f1
CW
2147i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2148 struct sg_table *pages)
673a394b 2149{
85d1225e
DG
2150 struct sgt_iter sgt_iter;
2151 struct page *page;
1286ff73 2152
03ac84f1 2153 __i915_gem_object_release_shmem(obj);
673a394b 2154
03ac84f1 2155 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2156
6dacfd2f 2157 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2158 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2159
03ac84f1 2160 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2161 if (obj->mm.dirty)
9da3da66 2162 set_page_dirty(page);
3ef94daa 2163
a4f5ea64 2164 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2165 mark_page_accessed(page);
3ef94daa 2166
09cbfeaf 2167 put_page(page);
3ef94daa 2168 }
a4f5ea64 2169 obj->mm.dirty = false;
673a394b 2170
03ac84f1
CW
2171 sg_free_table(pages);
2172 kfree(pages);
37e680a1 2173}
6c085a72 2174
96d77634
CW
2175static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2176{
2177 struct radix_tree_iter iter;
2178 void **slot;
2179
a4f5ea64
CW
2180 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2181 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2182}
2183
548625ee
CW
2184void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2185 enum i915_mm_subclass subclass)
37e680a1 2186{
03ac84f1 2187 struct sg_table *pages;
37e680a1 2188
a4f5ea64 2189 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2190 return;
a5570178 2191
15717de2 2192 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2193 if (!READ_ONCE(obj->mm.pages))
2194 return;
2195
2196 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2197 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2198 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2199 goto unlock;
3e123027 2200
a2165e31
CW
2201 /* ->put_pages might need to allocate memory for the bit17 swizzle
2202 * array, hence protect them from being reaped by removing them from gtt
2203 * lists early. */
03ac84f1
CW
2204 pages = fetch_and_zero(&obj->mm.pages);
2205 GEM_BUG_ON(!pages);
a2165e31 2206
a4f5ea64 2207 if (obj->mm.mapping) {
4b30cb23
CW
2208 void *ptr;
2209
a4f5ea64 2210 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2211 if (is_vmalloc_addr(ptr))
2212 vunmap(ptr);
fb8621d3 2213 else
4b30cb23
CW
2214 kunmap(kmap_to_page(ptr));
2215
a4f5ea64 2216 obj->mm.mapping = NULL;
0a798eb9
CW
2217 }
2218
96d77634
CW
2219 __i915_gem_object_reset_page_iter(obj);
2220
03ac84f1 2221 obj->ops->put_pages(obj, pages);
1233e2db
CW
2222unlock:
2223 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2224}
2225
4ff340f0 2226static unsigned int swiotlb_max_size(void)
871dfbd6
CW
2227{
2228#if IS_ENABLED(CONFIG_SWIOTLB)
2229 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2230#else
2231 return 0;
2232#endif
2233}
2234
03ac84f1 2235static struct sg_table *
6c085a72 2236i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2237{
fac5e23e 2238 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2239 int page_count, i;
2240 struct address_space *mapping;
9da3da66
CW
2241 struct sg_table *st;
2242 struct scatterlist *sg;
85d1225e 2243 struct sgt_iter sgt_iter;
e5281ccd 2244 struct page *page;
90797e6d 2245 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2246 unsigned int max_segment;
e2273302 2247 int ret;
6c085a72 2248 gfp_t gfp;
e5281ccd 2249
6c085a72
CW
2250 /* Assert that the object is not currently in any GPU domain. As it
2251 * wasn't in the GTT, there shouldn't be any way it could have been in
2252 * a GPU cache
2253 */
03ac84f1
CW
2254 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2255 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2256
871dfbd6
CW
2257 max_segment = swiotlb_max_size();
2258 if (!max_segment)
4ff340f0 2259 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2260
9da3da66
CW
2261 st = kmalloc(sizeof(*st), GFP_KERNEL);
2262 if (st == NULL)
03ac84f1 2263 return ERR_PTR(-ENOMEM);
9da3da66 2264
05394f39 2265 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2266 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2267 kfree(st);
03ac84f1 2268 return ERR_PTR(-ENOMEM);
9da3da66 2269 }
e5281ccd 2270
9da3da66
CW
2271 /* Get the list of pages out of our struct file. They'll be pinned
2272 * at this point until we release them.
2273 *
2274 * Fail silently without starting the shrinker
2275 */
93c76a3d 2276 mapping = obj->base.filp->f_mapping;
c62d2555 2277 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2278 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2279 sg = st->sgl;
2280 st->nents = 0;
2281 for (i = 0; i < page_count; i++) {
6c085a72
CW
2282 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2283 if (IS_ERR(page)) {
21ab4e74
CW
2284 i915_gem_shrink(dev_priv,
2285 page_count,
2286 I915_SHRINK_BOUND |
2287 I915_SHRINK_UNBOUND |
2288 I915_SHRINK_PURGEABLE);
6c085a72
CW
2289 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2290 }
2291 if (IS_ERR(page)) {
2292 /* We've tried hard to allocate the memory by reaping
2293 * our own buffer, now let the real VM do its job and
2294 * go down in flames if truly OOM.
2295 */
f461d1be 2296 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2297 if (IS_ERR(page)) {
2298 ret = PTR_ERR(page);
6c085a72 2299 goto err_pages;
e2273302 2300 }
6c085a72 2301 }
871dfbd6
CW
2302 if (!i ||
2303 sg->length >= max_segment ||
2304 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2305 if (i)
2306 sg = sg_next(sg);
2307 st->nents++;
2308 sg_set_page(sg, page, PAGE_SIZE, 0);
2309 } else {
2310 sg->length += PAGE_SIZE;
2311 }
2312 last_pfn = page_to_pfn(page);
3bbbe706
DV
2313
2314 /* Check that the i965g/gm workaround works. */
2315 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2316 }
871dfbd6 2317 if (sg) /* loop terminated early; short sg table */
426729dc 2318 sg_mark_end(sg);
74ce6b6c 2319
03ac84f1 2320 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302
ID
2321 if (ret)
2322 goto err_pages;
2323
6dacfd2f 2324 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2325 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2326
03ac84f1 2327 return st;
e5281ccd
CW
2328
2329err_pages:
90797e6d 2330 sg_mark_end(sg);
85d1225e
DG
2331 for_each_sgt_page(page, sgt_iter, st)
2332 put_page(page);
9da3da66
CW
2333 sg_free_table(st);
2334 kfree(st);
0820baf3
CW
2335
2336 /* shmemfs first checks if there is enough memory to allocate the page
2337 * and reports ENOSPC should there be insufficient, along with the usual
2338 * ENOMEM for a genuine allocation failure.
2339 *
2340 * We use ENOSPC in our driver to mean that we have run out of aperture
2341 * space and so want to translate the error from shmemfs back to our
2342 * usual understanding of ENOMEM.
2343 */
e2273302
ID
2344 if (ret == -ENOSPC)
2345 ret = -ENOMEM;
2346
03ac84f1
CW
2347 return ERR_PTR(ret);
2348}
2349
2350void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2351 struct sg_table *pages)
2352{
1233e2db 2353 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2354
2355 obj->mm.get_page.sg_pos = pages->sgl;
2356 obj->mm.get_page.sg_idx = 0;
2357
2358 obj->mm.pages = pages;
2c3a3f44
CW
2359
2360 if (i915_gem_object_is_tiled(obj) &&
2361 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2362 GEM_BUG_ON(obj->mm.quirked);
2363 __i915_gem_object_pin_pages(obj);
2364 obj->mm.quirked = true;
2365 }
03ac84f1
CW
2366}
2367
2368static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2369{
2370 struct sg_table *pages;
2371
2c3a3f44
CW
2372 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2373
03ac84f1
CW
2374 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2375 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2376 return -EFAULT;
2377 }
2378
2379 pages = obj->ops->get_pages(obj);
2380 if (unlikely(IS_ERR(pages)))
2381 return PTR_ERR(pages);
2382
2383 __i915_gem_object_set_pages(obj, pages);
2384 return 0;
673a394b
EA
2385}
2386
37e680a1 2387/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2388 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2389 * multiple times before they are released by a single call to
1233e2db 2390 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2391 * either as a result of memory pressure (reaping pages under the shrinker)
2392 * or as the object is itself released.
2393 */
a4f5ea64 2394int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2395{
03ac84f1 2396 int err;
37e680a1 2397
1233e2db
CW
2398 err = mutex_lock_interruptible(&obj->mm.lock);
2399 if (err)
2400 return err;
4c7d62c6 2401
2c3a3f44
CW
2402 if (unlikely(!obj->mm.pages)) {
2403 err = ____i915_gem_object_get_pages(obj);
2404 if (err)
2405 goto unlock;
37e680a1 2406
2c3a3f44
CW
2407 smp_mb__before_atomic();
2408 }
2409 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2410
1233e2db
CW
2411unlock:
2412 mutex_unlock(&obj->mm.lock);
03ac84f1 2413 return err;
673a394b
EA
2414}
2415
dd6034c6 2416/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2417static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2418 enum i915_map_type type)
dd6034c6
DG
2419{
2420 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2421 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2422 struct sgt_iter sgt_iter;
2423 struct page *page;
b338fa47
DG
2424 struct page *stack_pages[32];
2425 struct page **pages = stack_pages;
dd6034c6 2426 unsigned long i = 0;
d31d7cb1 2427 pgprot_t pgprot;
dd6034c6
DG
2428 void *addr;
2429
2430 /* A single page can always be kmapped */
d31d7cb1 2431 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2432 return kmap(sg_page(sgt->sgl));
2433
b338fa47
DG
2434 if (n_pages > ARRAY_SIZE(stack_pages)) {
2435 /* Too big for stack -- allocate temporary array instead */
2436 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2437 if (!pages)
2438 return NULL;
2439 }
dd6034c6 2440
85d1225e
DG
2441 for_each_sgt_page(page, sgt_iter, sgt)
2442 pages[i++] = page;
dd6034c6
DG
2443
2444 /* Check that we have the expected number of pages */
2445 GEM_BUG_ON(i != n_pages);
2446
d31d7cb1
CW
2447 switch (type) {
2448 case I915_MAP_WB:
2449 pgprot = PAGE_KERNEL;
2450 break;
2451 case I915_MAP_WC:
2452 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2453 break;
2454 }
2455 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2456
b338fa47
DG
2457 if (pages != stack_pages)
2458 drm_free_large(pages);
dd6034c6
DG
2459
2460 return addr;
2461}
2462
2463/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2464void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2465 enum i915_map_type type)
0a798eb9 2466{
d31d7cb1
CW
2467 enum i915_map_type has_type;
2468 bool pinned;
2469 void *ptr;
0a798eb9
CW
2470 int ret;
2471
d31d7cb1 2472 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2473
1233e2db 2474 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2475 if (ret)
2476 return ERR_PTR(ret);
2477
1233e2db
CW
2478 pinned = true;
2479 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2480 if (unlikely(!obj->mm.pages)) {
2481 ret = ____i915_gem_object_get_pages(obj);
2482 if (ret)
2483 goto err_unlock;
1233e2db 2484
2c3a3f44
CW
2485 smp_mb__before_atomic();
2486 }
2487 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2488 pinned = false;
2489 }
2490 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2491
a4f5ea64 2492 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2493 if (ptr && has_type != type) {
2494 if (pinned) {
2495 ret = -EBUSY;
1233e2db 2496 goto err_unpin;
0a798eb9 2497 }
d31d7cb1
CW
2498
2499 if (is_vmalloc_addr(ptr))
2500 vunmap(ptr);
2501 else
2502 kunmap(kmap_to_page(ptr));
2503
a4f5ea64 2504 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2505 }
2506
d31d7cb1
CW
2507 if (!ptr) {
2508 ptr = i915_gem_object_map(obj, type);
2509 if (!ptr) {
2510 ret = -ENOMEM;
1233e2db 2511 goto err_unpin;
d31d7cb1
CW
2512 }
2513
a4f5ea64 2514 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2515 }
2516
1233e2db
CW
2517out_unlock:
2518 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2519 return ptr;
2520
1233e2db
CW
2521err_unpin:
2522 atomic_dec(&obj->mm.pages_pin_count);
2523err_unlock:
2524 ptr = ERR_PTR(ret);
2525 goto out_unlock;
0a798eb9
CW
2526}
2527
7b4d3a16 2528static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2529{
44e2c070 2530 unsigned long elapsed;
be62acb4 2531
44e2c070 2532 if (ctx->hang_stats.banned)
be62acb4
MK
2533 return true;
2534
7b4d3a16 2535 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2536 if (ctx->hang_stats.ban_period_seconds &&
2537 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2538 DRM_DEBUG("context hanging too fast, banning!\n");
2539 return true;
be62acb4
MK
2540 }
2541
2542 return false;
2543}
2544
7b4d3a16 2545static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2546 const bool guilty)
aa60c664 2547{
7b4d3a16 2548 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2549
2550 if (guilty) {
7b4d3a16 2551 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2552 hs->batch_active++;
2553 hs->guilty_ts = get_seconds();
2554 } else {
2555 hs->batch_pending++;
aa60c664
MK
2556 }
2557}
2558
8d9fc7fd 2559struct drm_i915_gem_request *
0bc40be8 2560i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2561{
4db080f9
CW
2562 struct drm_i915_gem_request *request;
2563
f69a02c9
CW
2564 /* We are called by the error capture and reset at a random
2565 * point in time. In particular, note that neither is crucially
2566 * ordered with an interrupt. After a hang, the GPU is dead and we
2567 * assume that no more writes can happen (we waited long enough for
2568 * all writes that were in transaction to be flushed) - adding an
2569 * extra delay for a recent interrupt is pointless. Hence, we do
2570 * not need an engine->irq_seqno_barrier() before the seqno reads.
2571 */
73cb9701 2572 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2573 if (__i915_gem_request_completed(request))
4db080f9 2574 continue;
aa60c664 2575
b6b0fac0 2576 return request;
4db080f9 2577 }
b6b0fac0
MK
2578
2579 return NULL;
2580}
2581
821ed7df
CW
2582static void reset_request(struct drm_i915_gem_request *request)
2583{
2584 void *vaddr = request->ring->vaddr;
2585 u32 head;
2586
2587 /* As this request likely depends on state from the lost
2588 * context, clear out all the user operations leaving the
2589 * breadcrumb at the end (so we get the fence notifications).
2590 */
2591 head = request->head;
2592 if (request->postfix < head) {
2593 memset(vaddr + head, 0, request->ring->size - head);
2594 head = 0;
2595 }
2596 memset(vaddr + head, 0, request->postfix - head);
2597}
2598
2599static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2600{
2601 struct drm_i915_gem_request *request;
821ed7df 2602 struct i915_gem_context *incomplete_ctx;
80b204bc 2603 struct intel_timeline *timeline;
b6b0fac0
MK
2604 bool ring_hung;
2605
821ed7df
CW
2606 if (engine->irq_seqno_barrier)
2607 engine->irq_seqno_barrier(engine);
2608
0bc40be8 2609 request = i915_gem_find_active_request(engine);
821ed7df 2610 if (!request)
b6b0fac0
MK
2611 return;
2612
0bc40be8 2613 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
77c60701
CW
2614 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2615 ring_hung = false;
2616
7b4d3a16 2617 i915_set_reset_status(request->ctx, ring_hung);
821ed7df
CW
2618 if (!ring_hung)
2619 return;
2620
2621 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
65e4760e 2622 engine->name, request->global_seqno);
821ed7df
CW
2623
2624 /* Setup the CS to resume from the breadcrumb of the hung request */
2625 engine->reset_hw(engine, request);
2626
2627 /* Users of the default context do not rely on logical state
2628 * preserved between batches. They have to emit full state on
2629 * every batch and so it is safe to execute queued requests following
2630 * the hang.
2631 *
2632 * Other contexts preserve state, now corrupt. We want to skip all
2633 * queued requests that reference the corrupt context.
2634 */
2635 incomplete_ctx = request->ctx;
2636 if (i915_gem_context_is_default(incomplete_ctx))
2637 return;
2638
73cb9701 2639 list_for_each_entry_continue(request, &engine->timeline->requests, link)
821ed7df
CW
2640 if (request->ctx == incomplete_ctx)
2641 reset_request(request);
80b204bc
CW
2642
2643 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2644 list_for_each_entry(request, &timeline->requests, link)
2645 reset_request(request);
4db080f9 2646}
aa60c664 2647
821ed7df 2648void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2649{
821ed7df 2650 struct intel_engine_cs *engine;
3b3f1650 2651 enum intel_engine_id id;
608c1a52 2652
4c7d62c6
CW
2653 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2654
821ed7df
CW
2655 i915_gem_retire_requests(dev_priv);
2656
3b3f1650 2657 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2658 i915_gem_reset_engine(engine);
2659
2660 i915_gem_restore_fences(&dev_priv->drm);
f2a91d1a
CW
2661
2662 if (dev_priv->gt.awake) {
2663 intel_sanitize_gt_powersave(dev_priv);
2664 intel_enable_gt_powersave(dev_priv);
2665 if (INTEL_GEN(dev_priv) >= 6)
2666 gen6_rps_busy(dev_priv);
2667 }
821ed7df
CW
2668}
2669
2670static void nop_submit_request(struct drm_i915_gem_request *request)
2671{
2672}
2673
2674static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2675{
2676 engine->submit_request = nop_submit_request;
70c2a24d 2677
c4b0930b
CW
2678 /* Mark all pending requests as complete so that any concurrent
2679 * (lockless) lookup doesn't try and wait upon the request as we
2680 * reset it.
2681 */
73cb9701 2682 intel_engine_init_global_seqno(engine,
cb399eab 2683 intel_engine_last_submit(engine));
c4b0930b 2684
dcb4c12a
OM
2685 /*
2686 * Clear the execlists queue up before freeing the requests, as those
2687 * are the ones that keep the context and ringbuffer backing objects
2688 * pinned in place.
2689 */
dcb4c12a 2690
7de1691a 2691 if (i915.enable_execlists) {
70c2a24d
CW
2692 spin_lock(&engine->execlist_lock);
2693 INIT_LIST_HEAD(&engine->execlist_queue);
2694 i915_gem_request_put(engine->execlist_port[0].request);
2695 i915_gem_request_put(engine->execlist_port[1].request);
2696 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2697 spin_unlock(&engine->execlist_lock);
dcb4c12a 2698 }
673a394b
EA
2699}
2700
821ed7df 2701void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
673a394b 2702{
e2f80391 2703 struct intel_engine_cs *engine;
3b3f1650 2704 enum intel_engine_id id;
673a394b 2705
821ed7df
CW
2706 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2707 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2708
821ed7df 2709 i915_gem_context_lost(dev_priv);
3b3f1650 2710 for_each_engine(engine, dev_priv, id)
821ed7df 2711 i915_gem_cleanup_engine(engine);
b913b33c 2712 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2713
821ed7df 2714 i915_gem_retire_requests(dev_priv);
673a394b
EA
2715}
2716
75ef9da2 2717static void
673a394b
EA
2718i915_gem_retire_work_handler(struct work_struct *work)
2719{
b29c19b6 2720 struct drm_i915_private *dev_priv =
67d97da3 2721 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2722 struct drm_device *dev = &dev_priv->drm;
673a394b 2723
891b48cf 2724 /* Come back later if the device is busy... */
b29c19b6 2725 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2726 i915_gem_retire_requests(dev_priv);
b29c19b6 2727 mutex_unlock(&dev->struct_mutex);
673a394b 2728 }
67d97da3
CW
2729
2730 /* Keep the retire handler running until we are finally idle.
2731 * We do not need to do this test under locking as in the worst-case
2732 * we queue the retire worker once too often.
2733 */
c9615613
CW
2734 if (READ_ONCE(dev_priv->gt.awake)) {
2735 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2736 queue_delayed_work(dev_priv->wq,
2737 &dev_priv->gt.retire_work,
bcb45086 2738 round_jiffies_up_relative(HZ));
c9615613 2739 }
b29c19b6 2740}
0a58705b 2741
b29c19b6
CW
2742static void
2743i915_gem_idle_work_handler(struct work_struct *work)
2744{
2745 struct drm_i915_private *dev_priv =
67d97da3 2746 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2747 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2748 struct intel_engine_cs *engine;
3b3f1650 2749 enum intel_engine_id id;
67d97da3
CW
2750 bool rearm_hangcheck;
2751
2752 if (!READ_ONCE(dev_priv->gt.awake))
2753 return;
2754
28176ef4 2755 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2756 return;
2757
2758 rearm_hangcheck =
2759 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2760
2761 if (!mutex_trylock(&dev->struct_mutex)) {
2762 /* Currently busy, come back later */
2763 mod_delayed_work(dev_priv->wq,
2764 &dev_priv->gt.idle_work,
2765 msecs_to_jiffies(50));
2766 goto out_rearm;
2767 }
2768
28176ef4 2769 if (dev_priv->gt.active_requests)
67d97da3 2770 goto out_unlock;
b29c19b6 2771
3b3f1650 2772 for_each_engine(engine, dev_priv, id)
67d97da3 2773 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2774
67d97da3
CW
2775 GEM_BUG_ON(!dev_priv->gt.awake);
2776 dev_priv->gt.awake = false;
2777 rearm_hangcheck = false;
30ecad77 2778
67d97da3
CW
2779 if (INTEL_GEN(dev_priv) >= 6)
2780 gen6_rps_idle(dev_priv);
2781 intel_runtime_pm_put(dev_priv);
2782out_unlock:
2783 mutex_unlock(&dev->struct_mutex);
b29c19b6 2784
67d97da3
CW
2785out_rearm:
2786 if (rearm_hangcheck) {
2787 GEM_BUG_ON(!dev_priv->gt.awake);
2788 i915_queue_hangcheck(dev_priv);
35c94185 2789 }
673a394b
EA
2790}
2791
b1f788c6
CW
2792void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2793{
2794 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2795 struct drm_i915_file_private *fpriv = file->driver_priv;
2796 struct i915_vma *vma, *vn;
2797
2798 mutex_lock(&obj->base.dev->struct_mutex);
2799 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2800 if (vma->vm->file == fpriv)
2801 i915_vma_close(vma);
f8a7fde4
CW
2802
2803 if (i915_gem_object_is_active(obj) &&
2804 !i915_gem_object_has_active_reference(obj)) {
2805 i915_gem_object_set_active_reference(obj);
2806 i915_gem_object_get(obj);
2807 }
b1f788c6
CW
2808 mutex_unlock(&obj->base.dev->struct_mutex);
2809}
2810
e95433c7
CW
2811static unsigned long to_wait_timeout(s64 timeout_ns)
2812{
2813 if (timeout_ns < 0)
2814 return MAX_SCHEDULE_TIMEOUT;
2815
2816 if (timeout_ns == 0)
2817 return 0;
2818
2819 return nsecs_to_jiffies_timeout(timeout_ns);
2820}
2821
23ba4fd0
BW
2822/**
2823 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2824 * @dev: drm device pointer
2825 * @data: ioctl data blob
2826 * @file: drm file pointer
23ba4fd0
BW
2827 *
2828 * Returns 0 if successful, else an error is returned with the remaining time in
2829 * the timeout parameter.
2830 * -ETIME: object is still busy after timeout
2831 * -ERESTARTSYS: signal interrupted the wait
2832 * -ENONENT: object doesn't exist
2833 * Also possible, but rare:
2834 * -EAGAIN: GPU wedged
2835 * -ENOMEM: damn
2836 * -ENODEV: Internal IRQ fail
2837 * -E?: The add request failed
2838 *
2839 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2840 * non-zero timeout parameter the wait ioctl will wait for the given number of
2841 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2842 * without holding struct_mutex the object may become re-busied before this
2843 * function completes. A similar but shorter * race condition exists in the busy
2844 * ioctl
2845 */
2846int
2847i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2848{
2849 struct drm_i915_gem_wait *args = data;
2850 struct drm_i915_gem_object *obj;
e95433c7
CW
2851 ktime_t start;
2852 long ret;
23ba4fd0 2853
11b5d511
DV
2854 if (args->flags != 0)
2855 return -EINVAL;
2856
03ac0642 2857 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2858 if (!obj)
23ba4fd0 2859 return -ENOENT;
23ba4fd0 2860
e95433c7
CW
2861 start = ktime_get();
2862
2863 ret = i915_gem_object_wait(obj,
2864 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2865 to_wait_timeout(args->timeout_ns),
2866 to_rps_client(file));
2867
2868 if (args->timeout_ns > 0) {
2869 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2870 if (args->timeout_ns < 0)
2871 args->timeout_ns = 0;
b4716185
CW
2872 }
2873
f0cd5182 2874 i915_gem_object_put(obj);
ff865885 2875 return ret;
23ba4fd0
BW
2876}
2877
8ef8561f
CW
2878static void __i915_vma_iounmap(struct i915_vma *vma)
2879{
20dfbde4 2880 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2881
2882 if (vma->iomap == NULL)
2883 return;
2884
2885 io_mapping_unmap(vma->iomap);
2886 vma->iomap = NULL;
2887}
2888
df0e9a28 2889int i915_vma_unbind(struct i915_vma *vma)
673a394b 2890{
07fe0b12 2891 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2892 unsigned long active;
43e28f09 2893 int ret;
673a394b 2894
4c7d62c6
CW
2895 lockdep_assert_held(&obj->base.dev->struct_mutex);
2896
b0decaf7
CW
2897 /* First wait upon any activity as retiring the request may
2898 * have side-effects such as unpinning or even unbinding this vma.
2899 */
2900 active = i915_vma_get_active(vma);
df0e9a28 2901 if (active) {
b0decaf7
CW
2902 int idx;
2903
b1f788c6
CW
2904 /* When a closed VMA is retired, it is unbound - eek.
2905 * In order to prevent it from being recursively closed,
2906 * take a pin on the vma so that the second unbind is
2907 * aborted.
d07f0e59
CW
2908 *
2909 * Even more scary is that the retire callback may free
2910 * the object (last active vma). To prevent the explosion
2911 * we defer the actual object free to a worker that can
2912 * only proceed once it acquires the struct_mutex (which
2913 * we currently hold, therefore it cannot free this object
2914 * before we are finished).
b1f788c6 2915 */
20dfbde4 2916 __i915_vma_pin(vma);
b1f788c6 2917
b0decaf7
CW
2918 for_each_active(active, idx) {
2919 ret = i915_gem_active_retire(&vma->last_read[idx],
2920 &vma->vm->dev->struct_mutex);
2921 if (ret)
b1f788c6 2922 break;
b0decaf7
CW
2923 }
2924
20dfbde4 2925 __i915_vma_unpin(vma);
b1f788c6
CW
2926 if (ret)
2927 return ret;
2928
b0decaf7
CW
2929 GEM_BUG_ON(i915_vma_is_active(vma));
2930 }
2931
20dfbde4 2932 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2933 return -EBUSY;
2934
b1f788c6
CW
2935 if (!drm_mm_node_allocated(&vma->node))
2936 goto destroy;
433544bd 2937
15717de2 2938 GEM_BUG_ON(obj->bind_count == 0);
2c3a3f44 2939 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
c4670ad0 2940
05a20d09 2941 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2942 /* release the fence reg _after_ flushing */
49ef5294 2943 ret = i915_vma_put_fence(vma);
8b1bc9b4
DV
2944 if (ret)
2945 return ret;
8ef8561f 2946
cd3127d6
CW
2947 /* Force a pagefault for domain tracking on next user access */
2948 i915_gem_release_mmap(obj);
2949
8ef8561f 2950 __i915_vma_iounmap(vma);
05a20d09 2951 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2952 }
96b47b65 2953
50e046b6
CW
2954 if (likely(!vma->vm->closed)) {
2955 trace_i915_vma_unbind(vma);
2956 vma->vm->unbind_vma(vma);
2957 }
3272db53 2958 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2959
50e046b6
CW
2960 drm_mm_remove_node(&vma->node);
2961 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2962
a4f5ea64 2963 if (vma->pages != obj->mm.pages) {
05a20d09
CW
2964 GEM_BUG_ON(!vma->pages);
2965 sg_free_table(vma->pages);
2966 kfree(vma->pages);
fe14d5f4 2967 }
247177dd 2968 vma->pages = NULL;
673a394b 2969
2f633156 2970 /* Since the unbound list is global, only move to that list if
b93dab6e 2971 * no more VMAs exist. */
15717de2 2972 if (--obj->bind_count == 0)
56cea323 2973 list_move_tail(&obj->global_link,
15717de2 2974 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2975
70903c3b
CW
2976 /* And finally now the object is completely decoupled from this vma,
2977 * we can drop its hold on the backing storage and allow it to be
2978 * reaped by the shrinker.
2979 */
2980 i915_gem_object_unpin_pages(obj);
2981
b1f788c6 2982destroy:
3272db53 2983 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2984 i915_vma_destroy(vma);
2985
88241785 2986 return 0;
54cf91dc
CW
2987}
2988
73cb9701 2989static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 2990{
73cb9701 2991 int ret, i;
4df2faf4 2992
73cb9701
CW
2993 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
2994 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
2995 if (ret)
2996 return ret;
2997 }
62e63007 2998
73cb9701
CW
2999 return 0;
3000}
3001
3002int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3003{
3004 struct i915_gem_timeline *tl;
3005 int ret;
3006
3007 list_for_each_entry(tl, &i915->gt.timelines, link) {
3008 ret = wait_for_timeline(tl, flags);
1ec14ad3
CW
3009 if (ret)
3010 return ret;
3011 }
4df2faf4 3012
8a1a49f9 3013 return 0;
4df2faf4
DV
3014}
3015
4144f9b5 3016static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3017 unsigned long cache_level)
3018{
4144f9b5 3019 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3020 struct drm_mm_node *other;
3021
4144f9b5
CW
3022 /*
3023 * On some machines we have to be careful when putting differing types
3024 * of snoopable memory together to avoid the prefetcher crossing memory
3025 * domains and dying. During vm initialisation, we decide whether or not
3026 * these constraints apply and set the drm_mm.color_adjust
3027 * appropriately.
42d6ab48 3028 */
4144f9b5 3029 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3030 return true;
3031
c6cfb325 3032 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3033 return true;
3034
3035 if (list_empty(&gtt_space->node_list))
3036 return true;
3037
3038 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3039 if (other->allocated && !other->hole_follows && other->color != cache_level)
3040 return false;
3041
3042 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3043 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3044 return false;
3045
3046 return true;
3047}
3048
673a394b 3049/**
59bfa124
CW
3050 * i915_vma_insert - finds a slot for the vma in its address space
3051 * @vma: the vma
91b2db6f 3052 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 3053 * @alignment: required alignment
14bb2c11 3054 * @flags: mask of PIN_* flags to use
59bfa124
CW
3055 *
3056 * First we try to allocate some free space that meets the requirements for
3057 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3058 * preferrably the oldest idle entry to make room for the new VMA.
3059 *
3060 * Returns:
3061 * 0 on success, negative error code otherwise.
673a394b 3062 */
59bfa124
CW
3063static int
3064i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3065{
59bfa124
CW
3066 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3067 struct drm_i915_gem_object *obj = vma->obj;
de180033 3068 u64 start, end;
07f73f69 3069 int ret;
673a394b 3070
3272db53 3071 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3072 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3073
3074 size = max(size, vma->size);
3075 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3076 size = i915_gem_get_ggtt_size(dev_priv, size,
3077 i915_gem_object_get_tiling(obj));
de180033 3078
d8923dcf
CW
3079 alignment = max(max(alignment, vma->display_alignment),
3080 i915_gem_get_ggtt_alignment(dev_priv, size,
3081 i915_gem_object_get_tiling(obj),
3082 flags & PIN_MAPPABLE));
a00b10c3 3083
101b506a 3084 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3085
3086 end = vma->vm->total;
101b506a 3087 if (flags & PIN_MAPPABLE)
91b2db6f 3088 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3089 if (flags & PIN_ZONE_4G)
48ea1e32 3090 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3091
91e6711e
JL
3092 /* If binding the object/GGTT view requires more space than the entire
3093 * aperture has, reject it early before evicting everything in a vain
3094 * attempt to find space.
654fc607 3095 */
91e6711e 3096 if (size > end) {
de180033 3097 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3098 size, obj->base.size,
1ec9e26d 3099 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3100 end);
59bfa124 3101 return -E2BIG;
654fc607
CW
3102 }
3103
a4f5ea64 3104 ret = i915_gem_object_pin_pages(obj);
6c085a72 3105 if (ret)
59bfa124 3106 return ret;
6c085a72 3107
506a8e87 3108 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3109 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3110 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3111 ret = -EINVAL;
de180033 3112 goto err_unpin;
506a8e87 3113 }
de180033 3114
506a8e87
CW
3115 vma->node.start = offset;
3116 vma->node.size = size;
3117 vma->node.color = obj->cache_level;
de180033 3118 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3119 if (ret) {
3120 ret = i915_gem_evict_for_vma(vma);
3121 if (ret == 0)
de180033
CW
3122 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3123 if (ret)
3124 goto err_unpin;
506a8e87 3125 }
101b506a 3126 } else {
de180033
CW
3127 u32 search_flag, alloc_flag;
3128
506a8e87
CW
3129 if (flags & PIN_HIGH) {
3130 search_flag = DRM_MM_SEARCH_BELOW;
3131 alloc_flag = DRM_MM_CREATE_TOP;
3132 } else {
3133 search_flag = DRM_MM_SEARCH_DEFAULT;
3134 alloc_flag = DRM_MM_CREATE_DEFAULT;
3135 }
101b506a 3136
954c4691
CW
3137 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3138 * so we know that we always have a minimum alignment of 4096.
3139 * The drm_mm range manager is optimised to return results
3140 * with zero alignment, so where possible use the optimal
3141 * path.
3142 */
3143 if (alignment <= 4096)
3144 alignment = 0;
3145
0a9ae0d7 3146search_free:
de180033
CW
3147 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3148 &vma->node,
506a8e87
CW
3149 size, alignment,
3150 obj->cache_level,
3151 start, end,
3152 search_flag,
3153 alloc_flag);
3154 if (ret) {
de180033 3155 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3156 obj->cache_level,
3157 start, end,
3158 flags);
3159 if (ret == 0)
3160 goto search_free;
9731129c 3161
de180033 3162 goto err_unpin;
506a8e87 3163 }
ad16d2ed
CW
3164
3165 GEM_BUG_ON(vma->node.start < start);
3166 GEM_BUG_ON(vma->node.start + vma->node.size > end);
673a394b 3167 }
37508589 3168 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3169
56cea323 3170 list_move_tail(&obj->global_link, &dev_priv->mm.bound_list);
de180033 3171 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3172 obj->bind_count++;
2c3a3f44 3173 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count) < obj->bind_count);
bf1a1092 3174
59bfa124 3175 return 0;
2f633156 3176
bc6bc15b 3177err_unpin:
2f633156 3178 i915_gem_object_unpin_pages(obj);
59bfa124 3179 return ret;
673a394b
EA
3180}
3181
000433b6 3182bool
2c22569b
CW
3183i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3184 bool force)
673a394b 3185{
673a394b
EA
3186 /* If we don't have a page list set up, then we're not pinned
3187 * to GPU, and we can ignore the cache flush because it'll happen
3188 * again at bind time.
3189 */
a4f5ea64 3190 if (!obj->mm.pages)
000433b6 3191 return false;
673a394b 3192
769ce464
ID
3193 /*
3194 * Stolen memory is always coherent with the GPU as it is explicitly
3195 * marked as wc by the system, or the system is cache-coherent.
3196 */
6a2c4232 3197 if (obj->stolen || obj->phys_handle)
000433b6 3198 return false;
769ce464 3199
9c23f7fc
CW
3200 /* If the GPU is snooping the contents of the CPU cache,
3201 * we do not need to manually clear the CPU cache lines. However,
3202 * the caches are only snooped when the render cache is
3203 * flushed/invalidated. As we always have to emit invalidations
3204 * and flushes when moving into and out of the RENDER domain, correct
3205 * snooping behaviour occurs naturally as the result of our domain
3206 * tracking.
3207 */
0f71979a
CW
3208 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3209 obj->cache_dirty = true;
000433b6 3210 return false;
0f71979a 3211 }
9c23f7fc 3212
1c5d22f7 3213 trace_i915_gem_object_clflush(obj);
a4f5ea64 3214 drm_clflush_sg(obj->mm.pages);
0f71979a 3215 obj->cache_dirty = false;
000433b6
CW
3216
3217 return true;
e47c68e9
EA
3218}
3219
3220/** Flushes the GTT write domain for the object if it's dirty. */
3221static void
05394f39 3222i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3223{
3b5724d7 3224 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3225
05394f39 3226 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3227 return;
3228
63256ec5 3229 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3230 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3231 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3232 *
3233 * However, we do have to enforce the order so that all writes through
3234 * the GTT land before any writes to the device, such as updates to
3235 * the GATT itself.
3b5724d7
CW
3236 *
3237 * We also have to wait a bit for the writes to land from the GTT.
3238 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3239 * timing. This issue has only been observed when switching quickly
3240 * between GTT writes and CPU reads from inside the kernel on recent hw,
3241 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3242 * system agents we cannot reproduce this behaviour).
e47c68e9 3243 */
63256ec5 3244 wmb();
3b5724d7 3245 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3246 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3247
d243ad82 3248 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3249
b0dc465f 3250 obj->base.write_domain = 0;
1c5d22f7 3251 trace_i915_gem_object_change_domain(obj,
05394f39 3252 obj->base.read_domains,
b0dc465f 3253 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3254}
3255
3256/** Flushes the CPU write domain for the object if it's dirty. */
3257static void
e62b59e4 3258i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3259{
05394f39 3260 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3261 return;
3262
e62b59e4 3263 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3264 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3265
de152b62 3266 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3267
b0dc465f 3268 obj->base.write_domain = 0;
1c5d22f7 3269 trace_i915_gem_object_change_domain(obj,
05394f39 3270 obj->base.read_domains,
b0dc465f 3271 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3272}
3273
2ef7eeaa
EA
3274/**
3275 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3276 * @obj: object to act on
3277 * @write: ask for write access or read only
2ef7eeaa
EA
3278 *
3279 * This function returns when the move is complete, including waiting on
3280 * flushes to occur.
3281 */
79e53945 3282int
2021746e 3283i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3284{
1c5d22f7 3285 uint32_t old_write_domain, old_read_domains;
e47c68e9 3286 int ret;
2ef7eeaa 3287
e95433c7 3288 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3289
e95433c7
CW
3290 ret = i915_gem_object_wait(obj,
3291 I915_WAIT_INTERRUPTIBLE |
3292 I915_WAIT_LOCKED |
3293 (write ? I915_WAIT_ALL : 0),
3294 MAX_SCHEDULE_TIMEOUT,
3295 NULL);
88241785
CW
3296 if (ret)
3297 return ret;
3298
c13d87ea
CW
3299 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3300 return 0;
3301
43566ded
CW
3302 /* Flush and acquire obj->pages so that we are coherent through
3303 * direct access in memory with previous cached writes through
3304 * shmemfs and that our cache domain tracking remains valid.
3305 * For example, if the obj->filp was moved to swap without us
3306 * being notified and releasing the pages, we would mistakenly
3307 * continue to assume that the obj remained out of the CPU cached
3308 * domain.
3309 */
a4f5ea64 3310 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3311 if (ret)
3312 return ret;
3313
e62b59e4 3314 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3315
d0a57789
CW
3316 /* Serialise direct access to this object with the barriers for
3317 * coherent writes from the GPU, by effectively invalidating the
3318 * GTT domain upon first access.
3319 */
3320 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3321 mb();
3322
05394f39
CW
3323 old_write_domain = obj->base.write_domain;
3324 old_read_domains = obj->base.read_domains;
1c5d22f7 3325
e47c68e9
EA
3326 /* It should now be out of any other write domains, and we can update
3327 * the domain values for our changes.
3328 */
40e62d5d 3329 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3330 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3331 if (write) {
05394f39
CW
3332 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3333 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3334 obj->mm.dirty = true;
2ef7eeaa
EA
3335 }
3336
1c5d22f7
CW
3337 trace_i915_gem_object_change_domain(obj,
3338 old_read_domains,
3339 old_write_domain);
3340
a4f5ea64 3341 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3342 return 0;
3343}
3344
ef55f92a
CW
3345/**
3346 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3347 * @obj: object to act on
3348 * @cache_level: new cache level to set for the object
ef55f92a
CW
3349 *
3350 * After this function returns, the object will be in the new cache-level
3351 * across all GTT and the contents of the backing storage will be coherent,
3352 * with respect to the new cache-level. In order to keep the backing storage
3353 * coherent for all users, we only allow a single cache level to be set
3354 * globally on the object and prevent it from being changed whilst the
3355 * hardware is reading from the object. That is if the object is currently
3356 * on the scanout it will be set to uncached (or equivalent display
3357 * cache coherency) and all non-MOCS GPU access will also be uncached so
3358 * that all direct access to the scanout remains coherent.
3359 */
e4ffd173
CW
3360int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3361 enum i915_cache_level cache_level)
3362{
aa653a68 3363 struct i915_vma *vma;
ed75a55b 3364 int ret = 0;
e4ffd173 3365
4c7d62c6
CW
3366 lockdep_assert_held(&obj->base.dev->struct_mutex);
3367
e4ffd173 3368 if (obj->cache_level == cache_level)
ed75a55b 3369 goto out;
e4ffd173 3370
ef55f92a
CW
3371 /* Inspect the list of currently bound VMA and unbind any that would
3372 * be invalid given the new cache-level. This is principally to
3373 * catch the issue of the CS prefetch crossing page boundaries and
3374 * reading an invalid PTE on older architectures.
3375 */
aa653a68
CW
3376restart:
3377 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3378 if (!drm_mm_node_allocated(&vma->node))
3379 continue;
3380
20dfbde4 3381 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3382 DRM_DEBUG("can not change the cache level of pinned objects\n");
3383 return -EBUSY;
3384 }
3385
aa653a68
CW
3386 if (i915_gem_valid_gtt_space(vma, cache_level))
3387 continue;
3388
3389 ret = i915_vma_unbind(vma);
3390 if (ret)
3391 return ret;
3392
3393 /* As unbinding may affect other elements in the
3394 * obj->vma_list (due to side-effects from retiring
3395 * an active vma), play safe and restart the iterator.
3396 */
3397 goto restart;
42d6ab48
CW
3398 }
3399
ef55f92a
CW
3400 /* We can reuse the existing drm_mm nodes but need to change the
3401 * cache-level on the PTE. We could simply unbind them all and
3402 * rebind with the correct cache-level on next use. However since
3403 * we already have a valid slot, dma mapping, pages etc, we may as
3404 * rewrite the PTE in the belief that doing so tramples upon less
3405 * state and so involves less work.
3406 */
15717de2 3407 if (obj->bind_count) {
ef55f92a
CW
3408 /* Before we change the PTE, the GPU must not be accessing it.
3409 * If we wait upon the object, we know that all the bound
3410 * VMA are no longer active.
3411 */
e95433c7
CW
3412 ret = i915_gem_object_wait(obj,
3413 I915_WAIT_INTERRUPTIBLE |
3414 I915_WAIT_LOCKED |
3415 I915_WAIT_ALL,
3416 MAX_SCHEDULE_TIMEOUT,
3417 NULL);
e4ffd173
CW
3418 if (ret)
3419 return ret;
3420
aa653a68 3421 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3422 /* Access to snoopable pages through the GTT is
3423 * incoherent and on some machines causes a hard
3424 * lockup. Relinquish the CPU mmaping to force
3425 * userspace to refault in the pages and we can
3426 * then double check if the GTT mapping is still
3427 * valid for that pointer access.
3428 */
3429 i915_gem_release_mmap(obj);
3430
3431 /* As we no longer need a fence for GTT access,
3432 * we can relinquish it now (and so prevent having
3433 * to steal a fence from someone else on the next
3434 * fence request). Note GPU activity would have
3435 * dropped the fence as all snoopable access is
3436 * supposed to be linear.
3437 */
49ef5294
CW
3438 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3439 ret = i915_vma_put_fence(vma);
3440 if (ret)
3441 return ret;
3442 }
ef55f92a
CW
3443 } else {
3444 /* We either have incoherent backing store and
3445 * so no GTT access or the architecture is fully
3446 * coherent. In such cases, existing GTT mmaps
3447 * ignore the cache bit in the PTE and we can
3448 * rewrite it without confusing the GPU or having
3449 * to force userspace to fault back in its mmaps.
3450 */
e4ffd173
CW
3451 }
3452
1c7f4bca 3453 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3454 if (!drm_mm_node_allocated(&vma->node))
3455 continue;
3456
3457 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3458 if (ret)
3459 return ret;
3460 }
e4ffd173
CW
3461 }
3462
1c7f4bca 3463 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3464 vma->node.color = cache_level;
3465 obj->cache_level = cache_level;
3466
ed75a55b 3467out:
ef55f92a
CW
3468 /* Flush the dirty CPU caches to the backing storage so that the
3469 * object is now coherent at its new cache level (with respect
3470 * to the access domain).
3471 */
b50a5371 3472 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3473 if (i915_gem_clflush_object(obj, true))
c033666a 3474 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3475 }
3476
e4ffd173
CW
3477 return 0;
3478}
3479
199adf40
BW
3480int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3481 struct drm_file *file)
e6994aee 3482{
199adf40 3483 struct drm_i915_gem_caching *args = data;
e6994aee 3484 struct drm_i915_gem_object *obj;
fbbd37b3 3485 int err = 0;
e6994aee 3486
fbbd37b3
CW
3487 rcu_read_lock();
3488 obj = i915_gem_object_lookup_rcu(file, args->handle);
3489 if (!obj) {
3490 err = -ENOENT;
3491 goto out;
3492 }
e6994aee 3493
651d794f
CW
3494 switch (obj->cache_level) {
3495 case I915_CACHE_LLC:
3496 case I915_CACHE_L3_LLC:
3497 args->caching = I915_CACHING_CACHED;
3498 break;
3499
4257d3ba
CW
3500 case I915_CACHE_WT:
3501 args->caching = I915_CACHING_DISPLAY;
3502 break;
3503
651d794f
CW
3504 default:
3505 args->caching = I915_CACHING_NONE;
3506 break;
3507 }
fbbd37b3
CW
3508out:
3509 rcu_read_unlock();
3510 return err;
e6994aee
CW
3511}
3512
199adf40
BW
3513int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3514 struct drm_file *file)
e6994aee 3515{
9c870d03 3516 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3517 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3518 struct drm_i915_gem_object *obj;
3519 enum i915_cache_level level;
3520 int ret;
3521
199adf40
BW
3522 switch (args->caching) {
3523 case I915_CACHING_NONE:
e6994aee
CW
3524 level = I915_CACHE_NONE;
3525 break;
199adf40 3526 case I915_CACHING_CACHED:
e5756c10
ID
3527 /*
3528 * Due to a HW issue on BXT A stepping, GPU stores via a
3529 * snooped mapping may leave stale data in a corresponding CPU
3530 * cacheline, whereas normally such cachelines would get
3531 * invalidated.
3532 */
9c870d03 3533 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3534 return -ENODEV;
3535
e6994aee
CW
3536 level = I915_CACHE_LLC;
3537 break;
4257d3ba 3538 case I915_CACHING_DISPLAY:
9c870d03 3539 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3540 break;
e6994aee
CW
3541 default:
3542 return -EINVAL;
3543 }
3544
3bc2913e
BW
3545 ret = i915_mutex_lock_interruptible(dev);
3546 if (ret)
9c870d03 3547 return ret;
3bc2913e 3548
03ac0642
CW
3549 obj = i915_gem_object_lookup(file, args->handle);
3550 if (!obj) {
e6994aee
CW
3551 ret = -ENOENT;
3552 goto unlock;
3553 }
3554
3555 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3556 i915_gem_object_put(obj);
e6994aee
CW
3557unlock:
3558 mutex_unlock(&dev->struct_mutex);
3559 return ret;
3560}
3561
b9241ea3 3562/*
2da3b9b9
CW
3563 * Prepare buffer for display plane (scanout, cursors, etc).
3564 * Can be called from an uninterruptible phase (modesetting) and allows
3565 * any flushes to be pipelined (for pageflips).
b9241ea3 3566 */
058d88c4 3567struct i915_vma *
2da3b9b9
CW
3568i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3569 u32 alignment,
e6617330 3570 const struct i915_ggtt_view *view)
b9241ea3 3571{
058d88c4 3572 struct i915_vma *vma;
2da3b9b9 3573 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3574 int ret;
3575
4c7d62c6
CW
3576 lockdep_assert_held(&obj->base.dev->struct_mutex);
3577
cc98b413
CW
3578 /* Mark the pin_display early so that we account for the
3579 * display coherency whilst setting up the cache domains.
3580 */
8a0c39b1 3581 obj->pin_display++;
cc98b413 3582
a7ef0640
EA
3583 /* The display engine is not coherent with the LLC cache on gen6. As
3584 * a result, we make sure that the pinning that is about to occur is
3585 * done with uncached PTEs. This is lowest common denominator for all
3586 * chipsets.
3587 *
3588 * However for gen6+, we could do better by using the GFDT bit instead
3589 * of uncaching, which would allow us to flush all the LLC-cached data
3590 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3591 */
651d794f 3592 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3593 HAS_WT(to_i915(obj->base.dev)) ?
3594 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3595 if (ret) {
3596 vma = ERR_PTR(ret);
cc98b413 3597 goto err_unpin_display;
058d88c4 3598 }
a7ef0640 3599
2da3b9b9
CW
3600 /* As the user may map the buffer once pinned in the display plane
3601 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3602 * always use map_and_fenceable for all scanout buffers. However,
3603 * it may simply be too big to fit into mappable, in which case
3604 * put it anyway and hope that userspace can cope (but always first
3605 * try to preserve the existing ABI).
2da3b9b9 3606 */
2efb813d
CW
3607 vma = ERR_PTR(-ENOSPC);
3608 if (view->type == I915_GGTT_VIEW_NORMAL)
3609 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3610 PIN_MAPPABLE | PIN_NONBLOCK);
3611 if (IS_ERR(vma))
3612 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
058d88c4 3613 if (IS_ERR(vma))
cc98b413 3614 goto err_unpin_display;
2da3b9b9 3615
d8923dcf
CW
3616 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3617
e62b59e4 3618 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3619
2da3b9b9 3620 old_write_domain = obj->base.write_domain;
05394f39 3621 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3622
3623 /* It should now be out of any other write domains, and we can update
3624 * the domain values for our changes.
3625 */
e5f1d962 3626 obj->base.write_domain = 0;
05394f39 3627 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3628
3629 trace_i915_gem_object_change_domain(obj,
3630 old_read_domains,
2da3b9b9 3631 old_write_domain);
b9241ea3 3632
058d88c4 3633 return vma;
cc98b413
CW
3634
3635err_unpin_display:
8a0c39b1 3636 obj->pin_display--;
058d88c4 3637 return vma;
cc98b413
CW
3638}
3639
3640void
058d88c4 3641i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3642{
4c7d62c6
CW
3643 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3644
058d88c4 3645 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3646 return;
3647
d8923dcf
CW
3648 if (--vma->obj->pin_display == 0)
3649 vma->display_alignment = 0;
e6617330 3650
383d5823
CW
3651 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3652 if (!i915_vma_is_active(vma))
3653 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3654
058d88c4 3655 i915_vma_unpin(vma);
b9241ea3
ZW
3656}
3657
e47c68e9
EA
3658/**
3659 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3660 * @obj: object to act on
3661 * @write: requesting write or read-only access
e47c68e9
EA
3662 *
3663 * This function returns when the move is complete, including waiting on
3664 * flushes to occur.
3665 */
dabdfe02 3666int
919926ae 3667i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3668{
1c5d22f7 3669 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3670 int ret;
3671
e95433c7 3672 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3673
e95433c7
CW
3674 ret = i915_gem_object_wait(obj,
3675 I915_WAIT_INTERRUPTIBLE |
3676 I915_WAIT_LOCKED |
3677 (write ? I915_WAIT_ALL : 0),
3678 MAX_SCHEDULE_TIMEOUT,
3679 NULL);
88241785
CW
3680 if (ret)
3681 return ret;
3682
c13d87ea
CW
3683 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3684 return 0;
3685
e47c68e9 3686 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3687
05394f39
CW
3688 old_write_domain = obj->base.write_domain;
3689 old_read_domains = obj->base.read_domains;
1c5d22f7 3690
e47c68e9 3691 /* Flush the CPU cache if it's still invalid. */
05394f39 3692 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3693 i915_gem_clflush_object(obj, false);
2ef7eeaa 3694
05394f39 3695 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3696 }
3697
3698 /* It should now be out of any other write domains, and we can update
3699 * the domain values for our changes.
3700 */
40e62d5d 3701 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3702
3703 /* If we're writing through the CPU, then the GPU read domains will
3704 * need to be invalidated at next use.
3705 */
3706 if (write) {
05394f39
CW
3707 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3708 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3709 }
2ef7eeaa 3710
1c5d22f7
CW
3711 trace_i915_gem_object_change_domain(obj,
3712 old_read_domains,
3713 old_write_domain);
3714
2ef7eeaa
EA
3715 return 0;
3716}
3717
673a394b
EA
3718/* Throttle our rendering by waiting until the ring has completed our requests
3719 * emitted over 20 msec ago.
3720 *
b962442e
EA
3721 * Note that if we were to use the current jiffies each time around the loop,
3722 * we wouldn't escape the function with any frames outstanding if the time to
3723 * render a frame was over 20ms.
3724 *
673a394b
EA
3725 * This should get us reasonable parallelism between CPU and GPU but also
3726 * relatively low latency when blocking on a particular request to finish.
3727 */
40a5f0de 3728static int
f787a5f5 3729i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3730{
fac5e23e 3731 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3732 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3733 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3734 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3735 long ret;
93533c29 3736
f4457ae7
CW
3737 /* ABI: return -EIO if already wedged */
3738 if (i915_terminally_wedged(&dev_priv->gpu_error))
3739 return -EIO;
e110e8d6 3740
1c25595f 3741 spin_lock(&file_priv->mm.lock);
f787a5f5 3742 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3743 if (time_after_eq(request->emitted_jiffies, recent_enough))
3744 break;
40a5f0de 3745
fcfa423c
JH
3746 /*
3747 * Note that the request might not have been submitted yet.
3748 * In which case emitted_jiffies will be zero.
3749 */
3750 if (!request->emitted_jiffies)
3751 continue;
3752
54fb2411 3753 target = request;
b962442e 3754 }
ff865885 3755 if (target)
e8a261ea 3756 i915_gem_request_get(target);
1c25595f 3757 spin_unlock(&file_priv->mm.lock);
40a5f0de 3758
54fb2411 3759 if (target == NULL)
f787a5f5 3760 return 0;
2bc43b5c 3761
e95433c7
CW
3762 ret = i915_wait_request(target,
3763 I915_WAIT_INTERRUPTIBLE,
3764 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3765 i915_gem_request_put(target);
ff865885 3766
e95433c7 3767 return ret < 0 ? ret : 0;
40a5f0de
EA
3768}
3769
d23db88c 3770static bool
91b2db6f 3771i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3772{
59bfa124
CW
3773 if (!drm_mm_node_allocated(&vma->node))
3774 return false;
3775
91b2db6f
CW
3776 if (vma->node.size < size)
3777 return true;
3778
3779 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3780 return true;
3781
05a20d09 3782 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3783 return true;
3784
3785 if (flags & PIN_OFFSET_BIAS &&
3786 vma->node.start < (flags & PIN_OFFSET_MASK))
3787 return true;
3788
506a8e87
CW
3789 if (flags & PIN_OFFSET_FIXED &&
3790 vma->node.start != (flags & PIN_OFFSET_MASK))
3791 return true;
3792
d23db88c
CW
3793 return false;
3794}
3795
d0710abb
CW
3796void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3797{
3798 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3799 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3800 bool mappable, fenceable;
3801 u32 fence_size, fence_alignment;
3802
a9f1481f 3803 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3804 vma->size,
3e510a8e 3805 i915_gem_object_get_tiling(obj));
a9f1481f 3806 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3807 vma->size,
3e510a8e 3808 i915_gem_object_get_tiling(obj),
ad1a7d20 3809 true);
d0710abb
CW
3810
3811 fenceable = (vma->node.size == fence_size &&
3812 (vma->node.start & (fence_alignment - 1)) == 0);
3813
3814 mappable = (vma->node.start + fence_size <=
a9f1481f 3815 dev_priv->ggtt.mappable_end);
d0710abb 3816
07ee2bce
TU
3817 /*
3818 * Explicitly disable for rotated VMA since the display does not
3819 * need the fence and the VMA is not accessible to other users.
3820 */
3821 if (mappable && fenceable &&
3822 vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
05a20d09
CW
3823 vma->flags |= I915_VMA_CAN_FENCE;
3824 else
3825 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3826}
3827
305bc234
CW
3828int __i915_vma_do_pin(struct i915_vma *vma,
3829 u64 size, u64 alignment, u64 flags)
673a394b 3830{
305bc234 3831 unsigned int bound = vma->flags;
673a394b
EA
3832 int ret;
3833
4c7d62c6 3834 lockdep_assert_held(&vma->vm->dev->struct_mutex);
59bfa124 3835 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3836 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3837
305bc234
CW
3838 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3839 ret = -EBUSY;
3840 goto err;
3841 }
ac0c6b5a 3842
de895082 3843 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3844 ret = i915_vma_insert(vma, size, alignment, flags);
3845 if (ret)
3846 goto err;
fe14d5f4 3847 }
74898d7e 3848
59bfa124 3849 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3850 if (ret)
59bfa124 3851 goto err;
3b16525c 3852
3272db53 3853 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3854 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3855
3b16525c 3856 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3857 return 0;
673a394b 3858
59bfa124
CW
3859err:
3860 __i915_vma_unpin(vma);
3861 return ret;
ec7adb6e
JL
3862}
3863
058d88c4 3864struct i915_vma *
ec7adb6e
JL
3865i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3866 const struct i915_ggtt_view *view,
91b2db6f 3867 u64 size,
2ffffd0f
CW
3868 u64 alignment,
3869 u64 flags)
ec7adb6e 3870{
ad16d2ed
CW
3871 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3872 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3873 struct i915_vma *vma;
3874 int ret;
72e96d64 3875
4c7d62c6
CW
3876 lockdep_assert_held(&obj->base.dev->struct_mutex);
3877
058d88c4 3878 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3879 if (IS_ERR(vma))
058d88c4 3880 return vma;
59bfa124
CW
3881
3882 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3883 if (flags & PIN_NONBLOCK &&
3884 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3885 return ERR_PTR(-ENOSPC);
59bfa124 3886
ad16d2ed
CW
3887 if (flags & PIN_MAPPABLE) {
3888 u32 fence_size;
3889
3890 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3891 i915_gem_object_get_tiling(obj));
3892 /* If the required space is larger than the available
3893 * aperture, we will not able to find a slot for the
3894 * object and unbinding the object now will be in
3895 * vain. Worse, doing so may cause us to ping-pong
3896 * the object in and out of the Global GTT and
3897 * waste a lot of cycles under the mutex.
3898 */
3899 if (fence_size > dev_priv->ggtt.mappable_end)
3900 return ERR_PTR(-E2BIG);
3901
3902 /* If NONBLOCK is set the caller is optimistically
3903 * trying to cache the full object within the mappable
3904 * aperture, and *must* have a fallback in place for
3905 * situations where we cannot bind the object. We
3906 * can be a little more lax here and use the fallback
3907 * more often to avoid costly migrations of ourselves
3908 * and other objects within the aperture.
3909 *
3910 * Half-the-aperture is used as a simple heuristic.
3911 * More interesting would to do search for a free
3912 * block prior to making the commitment to unbind.
3913 * That caters for the self-harm case, and with a
3914 * little more heuristics (e.g. NOFAULT, NOEVICT)
3915 * we could try to minimise harm to others.
3916 */
3917 if (flags & PIN_NONBLOCK &&
3918 fence_size > dev_priv->ggtt.mappable_end / 2)
3919 return ERR_PTR(-ENOSPC);
3920 }
3921
59bfa124
CW
3922 WARN(i915_vma_is_pinned(vma),
3923 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3924 " offset=%08x, req.alignment=%llx,"
3925 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3926 i915_ggtt_offset(vma), alignment,
59bfa124 3927 !!(flags & PIN_MAPPABLE),
05a20d09 3928 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3929 ret = i915_vma_unbind(vma);
3930 if (ret)
058d88c4 3931 return ERR_PTR(ret);
59bfa124
CW
3932 }
3933
058d88c4
CW
3934 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3935 if (ret)
3936 return ERR_PTR(ret);
ec7adb6e 3937
058d88c4 3938 return vma;
673a394b
EA
3939}
3940
edf6b76f 3941static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3942{
3943 /* Note that we could alias engines in the execbuf API, but
3944 * that would be very unwise as it prevents userspace from
3945 * fine control over engine selection. Ahem.
3946 *
3947 * This should be something like EXEC_MAX_ENGINE instead of
3948 * I915_NUM_ENGINES.
3949 */
3950 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3951 return 0x10000 << id;
3952}
3953
3954static __always_inline unsigned int __busy_write_id(unsigned int id)
3955{
70cb472c
CW
3956 /* The uABI guarantees an active writer is also amongst the read
3957 * engines. This would be true if we accessed the activity tracking
3958 * under the lock, but as we perform the lookup of the object and
3959 * its activity locklessly we can not guarantee that the last_write
3960 * being active implies that we have set the same engine flag from
3961 * last_read - hence we always set both read and write busy for
3962 * last_write.
3963 */
3964 return id | __busy_read_flag(id);
3fdc13c7
CW
3965}
3966
edf6b76f 3967static __always_inline unsigned int
d07f0e59 3968__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3969 unsigned int (*flag)(unsigned int id))
3970{
d07f0e59 3971 struct drm_i915_gem_request *rq;
3fdc13c7 3972
d07f0e59
CW
3973 /* We have to check the current hw status of the fence as the uABI
3974 * guarantees forward progress. We could rely on the idle worker
3975 * to eventually flush us, but to minimise latency just ask the
3976 * hardware.
1255501d 3977 *
d07f0e59 3978 * Note we only report on the status of native fences.
1255501d 3979 */
d07f0e59
CW
3980 if (!dma_fence_is_i915(fence))
3981 return 0;
3982
3983 /* opencode to_request() in order to avoid const warnings */
3984 rq = container_of(fence, struct drm_i915_gem_request, fence);
3985 if (i915_gem_request_completed(rq))
3986 return 0;
3987
3988 return flag(rq->engine->exec_id);
3fdc13c7
CW
3989}
3990
edf6b76f 3991static __always_inline unsigned int
d07f0e59 3992busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3993{
d07f0e59 3994 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3995}
3996
edf6b76f 3997static __always_inline unsigned int
d07f0e59 3998busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3999{
d07f0e59
CW
4000 if (!fence)
4001 return 0;
4002
4003 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4004}
4005
673a394b
EA
4006int
4007i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4008 struct drm_file *file)
673a394b
EA
4009{
4010 struct drm_i915_gem_busy *args = data;
05394f39 4011 struct drm_i915_gem_object *obj;
d07f0e59
CW
4012 struct reservation_object_list *list;
4013 unsigned int seq;
fbbd37b3 4014 int err;
673a394b 4015
d07f0e59 4016 err = -ENOENT;
fbbd37b3
CW
4017 rcu_read_lock();
4018 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4019 if (!obj)
fbbd37b3 4020 goto out;
d1b851fc 4021
d07f0e59
CW
4022 /* A discrepancy here is that we do not report the status of
4023 * non-i915 fences, i.e. even though we may report the object as idle,
4024 * a call to set-domain may still stall waiting for foreign rendering.
4025 * This also means that wait-ioctl may report an object as busy,
4026 * where busy-ioctl considers it idle.
4027 *
4028 * We trade the ability to warn of foreign fences to report on which
4029 * i915 engines are active for the object.
4030 *
4031 * Alternatively, we can trade that extra information on read/write
4032 * activity with
4033 * args->busy =
4034 * !reservation_object_test_signaled_rcu(obj->resv, true);
4035 * to report the overall busyness. This is what the wait-ioctl does.
4036 *
4037 */
4038retry:
4039 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4040
d07f0e59
CW
4041 /* Translate the exclusive fence to the READ *and* WRITE engine */
4042 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4043
d07f0e59
CW
4044 /* Translate shared fences to READ set of engines */
4045 list = rcu_dereference(obj->resv->fence);
4046 if (list) {
4047 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4048
d07f0e59
CW
4049 for (i = 0; i < shared_count; ++i) {
4050 struct dma_fence *fence =
4051 rcu_dereference(list->shared[i]);
4052
4053 args->busy |= busy_check_reader(fence);
4054 }
426960be 4055 }
673a394b 4056
d07f0e59
CW
4057 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4058 goto retry;
4059
4060 err = 0;
fbbd37b3
CW
4061out:
4062 rcu_read_unlock();
4063 return err;
673a394b
EA
4064}
4065
4066int
4067i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4068 struct drm_file *file_priv)
4069{
0206e353 4070 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4071}
4072
3ef94daa
CW
4073int
4074i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4075 struct drm_file *file_priv)
4076{
fac5e23e 4077 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4078 struct drm_i915_gem_madvise *args = data;
05394f39 4079 struct drm_i915_gem_object *obj;
1233e2db 4080 int err;
3ef94daa
CW
4081
4082 switch (args->madv) {
4083 case I915_MADV_DONTNEED:
4084 case I915_MADV_WILLNEED:
4085 break;
4086 default:
4087 return -EINVAL;
4088 }
4089
03ac0642 4090 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4091 if (!obj)
4092 return -ENOENT;
4093
4094 err = mutex_lock_interruptible(&obj->mm.lock);
4095 if (err)
4096 goto out;
3ef94daa 4097
a4f5ea64 4098 if (obj->mm.pages &&
3e510a8e 4099 i915_gem_object_is_tiled(obj) &&
656bfa3a 4100 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4101 if (obj->mm.madv == I915_MADV_WILLNEED) {
4102 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4103 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4104 obj->mm.quirked = false;
4105 }
4106 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4107 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4108 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4109 obj->mm.quirked = true;
4110 }
656bfa3a
DV
4111 }
4112
a4f5ea64
CW
4113 if (obj->mm.madv != __I915_MADV_PURGED)
4114 obj->mm.madv = args->madv;
3ef94daa 4115
6c085a72 4116 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4117 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4118 i915_gem_object_truncate(obj);
4119
a4f5ea64 4120 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4121 mutex_unlock(&obj->mm.lock);
bb6baf76 4122
1233e2db 4123out:
f8c417cd 4124 i915_gem_object_put(obj);
1233e2db 4125 return err;
3ef94daa
CW
4126}
4127
37e680a1
CW
4128void i915_gem_object_init(struct drm_i915_gem_object *obj,
4129 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4130{
1233e2db
CW
4131 mutex_init(&obj->mm.lock);
4132
56cea323 4133 INIT_LIST_HEAD(&obj->global_link);
275f039d 4134 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 4135 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4136 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4137 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4138
37e680a1
CW
4139 obj->ops = ops;
4140
d07f0e59
CW
4141 reservation_object_init(&obj->__builtin_resv);
4142 obj->resv = &obj->__builtin_resv;
4143
50349247 4144 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
a4f5ea64
CW
4145
4146 obj->mm.madv = I915_MADV_WILLNEED;
4147 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4148 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4149
f19ec8cb 4150 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4151}
4152
37e680a1 4153static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4154 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4155 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
4156 .get_pages = i915_gem_object_get_pages_gtt,
4157 .put_pages = i915_gem_object_put_pages_gtt,
4158};
4159
b4bcbe2a
CW
4160/* Note we don't consider signbits :| */
4161#define overflows_type(x, T) \
4162 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4163
4164struct drm_i915_gem_object *
4165i915_gem_object_create(struct drm_device *dev, u64 size)
ac52bc56 4166{
a26e5239 4167 struct drm_i915_private *dev_priv = to_i915(dev);
c397b908 4168 struct drm_i915_gem_object *obj;
5949eac4 4169 struct address_space *mapping;
1a240d4d 4170 gfp_t mask;
fe3db79b 4171 int ret;
ac52bc56 4172
b4bcbe2a
CW
4173 /* There is a prevalence of the assumption that we fit the object's
4174 * page count inside a 32bit _signed_ variable. Let's document this and
4175 * catch if we ever need to fix it. In the meantime, if you do spot
4176 * such a local variable, please consider fixing!
4177 */
4178 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4179 return ERR_PTR(-E2BIG);
4180
4181 if (overflows_type(size, obj->base.size))
4182 return ERR_PTR(-E2BIG);
4183
42dcedd4 4184 obj = i915_gem_object_alloc(dev);
c397b908 4185 if (obj == NULL)
fe3db79b 4186 return ERR_PTR(-ENOMEM);
673a394b 4187
fe3db79b
CW
4188 ret = drm_gem_object_init(dev, &obj->base, size);
4189 if (ret)
4190 goto fail;
673a394b 4191
bed1ea95 4192 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
a26e5239 4193 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
bed1ea95
CW
4194 /* 965gm cannot relocate objects above 4GiB. */
4195 mask &= ~__GFP_HIGHMEM;
4196 mask |= __GFP_DMA32;
4197 }
4198
93c76a3d 4199 mapping = obj->base.filp->f_mapping;
bed1ea95 4200 mapping_set_gfp_mask(mapping, mask);
5949eac4 4201
37e680a1 4202 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4203
c397b908
DV
4204 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4205 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4206
3d29b842
ED
4207 if (HAS_LLC(dev)) {
4208 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4209 * cache) for about a 10% performance improvement
4210 * compared to uncached. Graphics requests other than
4211 * display scanout are coherent with the CPU in
4212 * accessing this cache. This means in this mode we
4213 * don't need to clflush on the CPU side, and on the
4214 * GPU side we only need to flush internal caches to
4215 * get data visible to the CPU.
4216 *
4217 * However, we maintain the display planes as UC, and so
4218 * need to rebind when first used as such.
4219 */
4220 obj->cache_level = I915_CACHE_LLC;
4221 } else
4222 obj->cache_level = I915_CACHE_NONE;
4223
d861e338
DV
4224 trace_i915_gem_object_create(obj);
4225
05394f39 4226 return obj;
fe3db79b
CW
4227
4228fail:
4229 i915_gem_object_free(obj);
fe3db79b 4230 return ERR_PTR(ret);
c397b908
DV
4231}
4232
340fbd8c
CW
4233static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4234{
4235 /* If we are the last user of the backing storage (be it shmemfs
4236 * pages or stolen etc), we know that the pages are going to be
4237 * immediately released. In this case, we can then skip copying
4238 * back the contents from the GPU.
4239 */
4240
a4f5ea64 4241 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4242 return false;
4243
4244 if (obj->base.filp == NULL)
4245 return true;
4246
4247 /* At first glance, this looks racy, but then again so would be
4248 * userspace racing mmap against close. However, the first external
4249 * reference to the filp can only be obtained through the
4250 * i915_gem_mmap_ioctl() which safeguards us against the user
4251 * acquiring such a reference whilst we are in the middle of
4252 * freeing the object.
4253 */
4254 return atomic_long_read(&obj->base.filp->f_count) == 1;
4255}
4256
fbbd37b3
CW
4257static void __i915_gem_free_objects(struct drm_i915_private *i915,
4258 struct llist_node *freed)
673a394b 4259{
fbbd37b3 4260 struct drm_i915_gem_object *obj, *on;
673a394b 4261
fbbd37b3
CW
4262 mutex_lock(&i915->drm.struct_mutex);
4263 intel_runtime_pm_get(i915);
4264 llist_for_each_entry(obj, freed, freed) {
4265 struct i915_vma *vma, *vn;
4266
4267 trace_i915_gem_object_destroy(obj);
4268
4269 GEM_BUG_ON(i915_gem_object_is_active(obj));
4270 list_for_each_entry_safe(vma, vn,
4271 &obj->vma_list, obj_link) {
4272 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4273 GEM_BUG_ON(i915_vma_is_active(vma));
4274 vma->flags &= ~I915_VMA_PIN_MASK;
4275 i915_vma_close(vma);
4276 }
db6c2b41
CW
4277 GEM_BUG_ON(!list_empty(&obj->vma_list));
4278 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4279
56cea323 4280 list_del(&obj->global_link);
fbbd37b3
CW
4281 }
4282 intel_runtime_pm_put(i915);
4283 mutex_unlock(&i915->drm.struct_mutex);
4284
4285 llist_for_each_entry_safe(obj, on, freed, freed) {
4286 GEM_BUG_ON(obj->bind_count);
4287 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4288
4289 if (obj->ops->release)
4290 obj->ops->release(obj);
f65c9168 4291
fbbd37b3
CW
4292 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4293 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4294 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4295 GEM_BUG_ON(obj->mm.pages);
4296
4297 if (obj->base.import_attach)
4298 drm_prime_gem_destroy(&obj->base, NULL);
4299
d07f0e59 4300 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4301 drm_gem_object_release(&obj->base);
4302 i915_gem_info_remove_obj(i915, obj->base.size);
4303
4304 kfree(obj->bit_17);
4305 i915_gem_object_free(obj);
4306 }
4307}
4308
4309static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4310{
4311 struct llist_node *freed;
4312
4313 freed = llist_del_all(&i915->mm.free_list);
4314 if (unlikely(freed))
4315 __i915_gem_free_objects(i915, freed);
4316}
4317
4318static void __i915_gem_free_work(struct work_struct *work)
4319{
4320 struct drm_i915_private *i915 =
4321 container_of(work, struct drm_i915_private, mm.free_work);
4322 struct llist_node *freed;
26e12f89 4323
b1f788c6
CW
4324 /* All file-owned VMA should have been released by this point through
4325 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4326 * However, the object may also be bound into the global GTT (e.g.
4327 * older GPUs without per-process support, or for direct access through
4328 * the GTT either for the user or for scanout). Those VMA still need to
4329 * unbound now.
4330 */
1488fc08 4331
fbbd37b3
CW
4332 while ((freed = llist_del_all(&i915->mm.free_list)))
4333 __i915_gem_free_objects(i915, freed);
4334}
a071fa00 4335
fbbd37b3
CW
4336static void __i915_gem_free_object_rcu(struct rcu_head *head)
4337{
4338 struct drm_i915_gem_object *obj =
4339 container_of(head, typeof(*obj), rcu);
4340 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4341
4342 /* We can't simply use call_rcu() from i915_gem_free_object()
4343 * as we need to block whilst unbinding, and the call_rcu
4344 * task may be called from softirq context. So we take a
4345 * detour through a worker.
4346 */
4347 if (llist_add(&obj->freed, &i915->mm.free_list))
4348 schedule_work(&i915->mm.free_work);
4349}
656bfa3a 4350
fbbd37b3
CW
4351void i915_gem_free_object(struct drm_gem_object *gem_obj)
4352{
4353 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4354
bc0629a7
CW
4355 if (obj->mm.quirked)
4356 __i915_gem_object_unpin_pages(obj);
4357
340fbd8c 4358 if (discard_backing_storage(obj))
a4f5ea64 4359 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4360
fbbd37b3
CW
4361 /* Before we free the object, make sure any pure RCU-only
4362 * read-side critical sections are complete, e.g.
4363 * i915_gem_busy_ioctl(). For the corresponding synchronized
4364 * lookup see i915_gem_object_lookup_rcu().
4365 */
4366 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4367}
4368
f8a7fde4
CW
4369void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4370{
4371 lockdep_assert_held(&obj->base.dev->struct_mutex);
4372
4373 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4374 if (i915_gem_object_is_active(obj))
4375 i915_gem_object_set_active_reference(obj);
4376 else
4377 i915_gem_object_put(obj);
4378}
4379
3033acab
CW
4380static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4381{
4382 struct intel_engine_cs *engine;
4383 enum intel_engine_id id;
4384
4385 for_each_engine(engine, dev_priv, id)
4386 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4387}
4388
dcff85c8 4389int i915_gem_suspend(struct drm_device *dev)
29105ccc 4390{
fac5e23e 4391 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4392 int ret;
28dfe52a 4393
54b4f68f
CW
4394 intel_suspend_gt_powersave(dev_priv);
4395
45c5f202 4396 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4397
4398 /* We have to flush all the executing contexts to main memory so
4399 * that they can saved in the hibernation image. To ensure the last
4400 * context image is coherent, we have to switch away from it. That
4401 * leaves the dev_priv->kernel_context still active when
4402 * we actually suspend, and its image in memory may not match the GPU
4403 * state. Fortunately, the kernel_context is disposable and we do
4404 * not rely on its state.
4405 */
4406 ret = i915_gem_switch_to_kernel_context(dev_priv);
4407 if (ret)
4408 goto err;
4409
22dd3bb9
CW
4410 ret = i915_gem_wait_for_idle(dev_priv,
4411 I915_WAIT_INTERRUPTIBLE |
4412 I915_WAIT_LOCKED);
f7403347 4413 if (ret)
45c5f202 4414 goto err;
f7403347 4415
c033666a 4416 i915_gem_retire_requests(dev_priv);
28176ef4 4417 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4418
3033acab 4419 assert_kernel_context_is_current(dev_priv);
b2e862d0 4420 i915_gem_context_lost(dev_priv);
45c5f202
CW
4421 mutex_unlock(&dev->struct_mutex);
4422
737b1506 4423 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4424 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4425 flush_delayed_work(&dev_priv->gt.idle_work);
fbbd37b3 4426 flush_work(&dev_priv->mm.free_work);
29105ccc 4427
bdcf120b
CW
4428 /* Assert that we sucessfully flushed all the work and
4429 * reset the GPU back to its idle, low power state.
4430 */
67d97da3 4431 WARN_ON(dev_priv->gt.awake);
bdcf120b 4432
1c777c5d
ID
4433 /*
4434 * Neither the BIOS, ourselves or any other kernel
4435 * expects the system to be in execlists mode on startup,
4436 * so we need to reset the GPU back to legacy mode. And the only
4437 * known way to disable logical contexts is through a GPU reset.
4438 *
4439 * So in order to leave the system in a known default configuration,
4440 * always reset the GPU upon unload and suspend. Afterwards we then
4441 * clean up the GEM state tracking, flushing off the requests and
4442 * leaving the system in a known idle state.
4443 *
4444 * Note that is of the upmost importance that the GPU is idle and
4445 * all stray writes are flushed *before* we dismantle the backing
4446 * storage for the pinned objects.
4447 *
4448 * However, since we are uncertain that resetting the GPU on older
4449 * machines is a good idea, we don't - just in case it leaves the
4450 * machine in an unusable condition.
4451 */
4452 if (HAS_HW_CONTEXTS(dev)) {
4453 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4454 WARN_ON(reset && reset != -ENODEV);
4455 }
4456
673a394b 4457 return 0;
45c5f202
CW
4458
4459err:
4460 mutex_unlock(&dev->struct_mutex);
4461 return ret;
673a394b
EA
4462}
4463
5ab57c70
CW
4464void i915_gem_resume(struct drm_device *dev)
4465{
4466 struct drm_i915_private *dev_priv = to_i915(dev);
4467
4468 mutex_lock(&dev->struct_mutex);
4469 i915_gem_restore_gtt_mappings(dev);
4470
4471 /* As we didn't flush the kernel context before suspend, we cannot
4472 * guarantee that the context image is complete. So let's just reset
4473 * it and start again.
4474 */
821ed7df 4475 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4476
4477 mutex_unlock(&dev->struct_mutex);
4478}
4479
f691e2f4
DV
4480void i915_gem_init_swizzling(struct drm_device *dev)
4481{
fac5e23e 4482 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4483
11782b02 4484 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4485 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4486 return;
4487
4488 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4489 DISP_TILE_SURFACE_SWIZZLING);
4490
5db94019 4491 if (IS_GEN5(dev_priv))
11782b02
DV
4492 return;
4493
f691e2f4 4494 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4495 if (IS_GEN6(dev_priv))
6b26c86d 4496 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4497 else if (IS_GEN7(dev_priv))
6b26c86d 4498 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4499 else if (IS_GEN8(dev_priv))
31a5336e 4500 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4501 else
4502 BUG();
f691e2f4 4503}
e21af88d 4504
50a0bc90 4505static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4506{
81e7f200
VS
4507 I915_WRITE(RING_CTL(base), 0);
4508 I915_WRITE(RING_HEAD(base), 0);
4509 I915_WRITE(RING_TAIL(base), 0);
4510 I915_WRITE(RING_START(base), 0);
4511}
4512
50a0bc90 4513static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4514{
50a0bc90
TU
4515 if (IS_I830(dev_priv)) {
4516 init_unused_ring(dev_priv, PRB1_BASE);
4517 init_unused_ring(dev_priv, SRB0_BASE);
4518 init_unused_ring(dev_priv, SRB1_BASE);
4519 init_unused_ring(dev_priv, SRB2_BASE);
4520 init_unused_ring(dev_priv, SRB3_BASE);
4521 } else if (IS_GEN2(dev_priv)) {
4522 init_unused_ring(dev_priv, SRB0_BASE);
4523 init_unused_ring(dev_priv, SRB1_BASE);
4524 } else if (IS_GEN3(dev_priv)) {
4525 init_unused_ring(dev_priv, PRB1_BASE);
4526 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4527 }
4528}
4529
4fc7c971
BW
4530int
4531i915_gem_init_hw(struct drm_device *dev)
4532{
fac5e23e 4533 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4534 struct intel_engine_cs *engine;
3b3f1650 4535 enum intel_engine_id id;
d200cda6 4536 int ret;
4fc7c971 4537
de867c20
CW
4538 dev_priv->gt.last_init_time = ktime_get();
4539
5e4f5189
CW
4540 /* Double layer security blanket, see i915_gem_init() */
4541 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4542
3accaf7e 4543 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4544 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4545
772c2a51 4546 if (IS_HASWELL(dev_priv))
50a0bc90 4547 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4548 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4549
6e266956 4550 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4551 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4552 u32 temp = I915_READ(GEN7_MSG_CTL);
4553 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4554 I915_WRITE(GEN7_MSG_CTL, temp);
4555 } else if (INTEL_INFO(dev)->gen >= 7) {
4556 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4557 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4558 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4559 }
88a2b2a3
BW
4560 }
4561
4fc7c971
BW
4562 i915_gem_init_swizzling(dev);
4563
d5abdfda
DV
4564 /*
4565 * At least 830 can leave some of the unused rings
4566 * "active" (ie. head != tail) after resume which
4567 * will prevent c3 entry. Makes sure all unused rings
4568 * are totally idle.
4569 */
50a0bc90 4570 init_unused_rings(dev_priv);
d5abdfda 4571
ed54c1a1 4572 BUG_ON(!dev_priv->kernel_context);
90638cc1 4573
4ad2fd88
JH
4574 ret = i915_ppgtt_init_hw(dev);
4575 if (ret) {
4576 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4577 goto out;
4578 }
4579
4580 /* Need to do basic initialisation of all rings first: */
3b3f1650 4581 for_each_engine(engine, dev_priv, id) {
e2f80391 4582 ret = engine->init_hw(engine);
35a57ffb 4583 if (ret)
5e4f5189 4584 goto out;
35a57ffb 4585 }
99433931 4586
0ccdacf6
PA
4587 intel_mocs_init_l3cc_table(dev);
4588
33a732f4 4589 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4590 ret = intel_guc_setup(dev);
4591 if (ret)
4592 goto out;
33a732f4 4593
5e4f5189
CW
4594out:
4595 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4596 return ret;
8187a2b7
ZN
4597}
4598
39df9190
CW
4599bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4600{
4601 if (INTEL_INFO(dev_priv)->gen < 6)
4602 return false;
4603
4604 /* TODO: make semaphores and Execlists play nicely together */
4605 if (i915.enable_execlists)
4606 return false;
4607
4608 if (value >= 0)
4609 return value;
4610
4611#ifdef CONFIG_INTEL_IOMMU
4612 /* Enable semaphores on SNB when IO remapping is off */
4613 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4614 return false;
4615#endif
4616
4617 return true;
4618}
4619
1070a42b
CW
4620int i915_gem_init(struct drm_device *dev)
4621{
fac5e23e 4622 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4623 int ret;
4624
1070a42b 4625 mutex_lock(&dev->struct_mutex);
d62b4892 4626
a83014d3 4627 if (!i915.enable_execlists) {
821ed7df 4628 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4629 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4630 } else {
821ed7df 4631 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4632 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4633 }
4634
5e4f5189
CW
4635 /* This is just a security blanket to placate dragons.
4636 * On some systems, we very sporadically observe that the first TLBs
4637 * used by the CS may be stale, despite us poking the TLB reset. If
4638 * we hold the forcewake during initialisation these problems
4639 * just magically go away.
4640 */
4641 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4642
72778cb2 4643 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4644
4645 ret = i915_gem_init_ggtt(dev_priv);
4646 if (ret)
4647 goto out_unlock;
d62b4892 4648
2fa48d8d 4649 ret = i915_gem_context_init(dev);
7bcc3777
JN
4650 if (ret)
4651 goto out_unlock;
2fa48d8d 4652
8b3e2d36 4653 ret = intel_engines_init(dev);
35a57ffb 4654 if (ret)
7bcc3777 4655 goto out_unlock;
2fa48d8d 4656
1070a42b 4657 ret = i915_gem_init_hw(dev);
60990320 4658 if (ret == -EIO) {
7e21d648 4659 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4660 * wedged. But we only want to do this where the GPU is angry,
4661 * for all other failure, such as an allocation failure, bail.
4662 */
4663 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4664 i915_gem_set_wedged(dev_priv);
60990320 4665 ret = 0;
1070a42b 4666 }
7bcc3777
JN
4667
4668out_unlock:
5e4f5189 4669 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4670 mutex_unlock(&dev->struct_mutex);
1070a42b 4671
60990320 4672 return ret;
1070a42b
CW
4673}
4674
8187a2b7 4675void
117897f4 4676i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4677{
fac5e23e 4678 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4679 struct intel_engine_cs *engine;
3b3f1650 4680 enum intel_engine_id id;
8187a2b7 4681
3b3f1650 4682 for_each_engine(engine, dev_priv, id)
117897f4 4683 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4684}
4685
40ae4e16
ID
4686void
4687i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4688{
91c8a326 4689 struct drm_device *dev = &dev_priv->drm;
49ef5294 4690 int i;
40ae4e16
ID
4691
4692 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4693 !IS_CHERRYVIEW(dev_priv))
4694 dev_priv->num_fence_regs = 32;
4695 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4696 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4697 dev_priv->num_fence_regs = 16;
4698 else
4699 dev_priv->num_fence_regs = 8;
4700
c033666a 4701 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4702 dev_priv->num_fence_regs =
4703 I915_READ(vgtif_reg(avail_rs.fence_num));
4704
4705 /* Initialize fence registers to zero */
49ef5294
CW
4706 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4707 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4708
4709 fence->i915 = dev_priv;
4710 fence->id = i;
4711 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4712 }
40ae4e16
ID
4713 i915_gem_restore_fences(dev);
4714
4715 i915_gem_detect_bit_6_swizzle(dev);
4716}
4717
73cb9701 4718int
d64aa096 4719i915_gem_load_init(struct drm_device *dev)
673a394b 4720{
fac5e23e 4721 struct drm_i915_private *dev_priv = to_i915(dev);
a933568e 4722 int err = -ENOMEM;
42dcedd4 4723
a933568e
TU
4724 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4725 if (!dev_priv->objects)
73cb9701 4726 goto err_out;
73cb9701 4727
a933568e
TU
4728 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4729 if (!dev_priv->vmas)
73cb9701 4730 goto err_objects;
73cb9701 4731
a933568e
TU
4732 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4733 SLAB_HWCACHE_ALIGN |
4734 SLAB_RECLAIM_ACCOUNT |
4735 SLAB_DESTROY_BY_RCU);
4736 if (!dev_priv->requests)
73cb9701 4737 goto err_vmas;
73cb9701
CW
4738
4739 mutex_lock(&dev_priv->drm.struct_mutex);
4740 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4741 err = i915_gem_timeline_init(dev_priv,
4742 &dev_priv->gt.global_timeline,
4743 "[execution]");
4744 mutex_unlock(&dev_priv->drm.struct_mutex);
4745 if (err)
4746 goto err_requests;
673a394b 4747
a33afea5 4748 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4749 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4750 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4751 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4752 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4753 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4754 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4755 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4756 i915_gem_retire_work_handler);
67d97da3 4757 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4758 i915_gem_idle_work_handler);
1f15b76f 4759 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4760 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4761
72bfa19c
CW
4762 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4763
6b95a207 4764 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4765
ce453d81
CW
4766 dev_priv->mm.interruptible = true;
4767
6f633402
JL
4768 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4769
b5add959 4770 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4771
4772 return 0;
4773
4774err_requests:
4775 kmem_cache_destroy(dev_priv->requests);
4776err_vmas:
4777 kmem_cache_destroy(dev_priv->vmas);
4778err_objects:
4779 kmem_cache_destroy(dev_priv->objects);
4780err_out:
4781 return err;
673a394b 4782}
71acb5eb 4783
d64aa096
ID
4784void i915_gem_load_cleanup(struct drm_device *dev)
4785{
4786 struct drm_i915_private *dev_priv = to_i915(dev);
4787
7d5d59e5
CW
4788 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4789
d64aa096
ID
4790 kmem_cache_destroy(dev_priv->requests);
4791 kmem_cache_destroy(dev_priv->vmas);
4792 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4793
4794 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4795 rcu_barrier();
d64aa096
ID
4796}
4797
6a800eab
CW
4798int i915_gem_freeze(struct drm_i915_private *dev_priv)
4799{
4800 intel_runtime_pm_get(dev_priv);
4801
4802 mutex_lock(&dev_priv->drm.struct_mutex);
4803 i915_gem_shrink_all(dev_priv);
4804 mutex_unlock(&dev_priv->drm.struct_mutex);
4805
4806 intel_runtime_pm_put(dev_priv);
4807
4808 return 0;
4809}
4810
461fb99c
CW
4811int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4812{
4813 struct drm_i915_gem_object *obj;
7aab2d53
CW
4814 struct list_head *phases[] = {
4815 &dev_priv->mm.unbound_list,
4816 &dev_priv->mm.bound_list,
4817 NULL
4818 }, **p;
461fb99c
CW
4819
4820 /* Called just before we write the hibernation image.
4821 *
4822 * We need to update the domain tracking to reflect that the CPU
4823 * will be accessing all the pages to create and restore from the
4824 * hibernation, and so upon restoration those pages will be in the
4825 * CPU domain.
4826 *
4827 * To make sure the hibernation image contains the latest state,
4828 * we update that state just before writing out the image.
7aab2d53
CW
4829 *
4830 * To try and reduce the hibernation image, we manually shrink
4831 * the objects as well.
461fb99c
CW
4832 */
4833
6a800eab
CW
4834 mutex_lock(&dev_priv->drm.struct_mutex);
4835 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4836
7aab2d53 4837 for (p = phases; *p; p++) {
56cea323 4838 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4839 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4840 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4841 }
461fb99c 4842 }
6a800eab 4843 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4844
4845 return 0;
4846}
4847
f787a5f5 4848void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4849{
f787a5f5 4850 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4851 struct drm_i915_gem_request *request;
b962442e
EA
4852
4853 /* Clean up our request list when the client is going away, so that
4854 * later retire_requests won't dereference our soon-to-be-gone
4855 * file_priv.
4856 */
1c25595f 4857 spin_lock(&file_priv->mm.lock);
15f7bbc7 4858 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4859 request->file_priv = NULL;
1c25595f 4860 spin_unlock(&file_priv->mm.lock);
b29c19b6 4861
2e1b8730 4862 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4863 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4864 list_del(&file_priv->rps.link);
8d3afd7d 4865 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4866 }
b29c19b6
CW
4867}
4868
4869int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4870{
4871 struct drm_i915_file_private *file_priv;
e422b888 4872 int ret;
b29c19b6
CW
4873
4874 DRM_DEBUG_DRIVER("\n");
4875
4876 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4877 if (!file_priv)
4878 return -ENOMEM;
4879
4880 file->driver_priv = file_priv;
f19ec8cb 4881 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4882 file_priv->file = file;
2e1b8730 4883 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4884
4885 spin_lock_init(&file_priv->mm.lock);
4886 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4887
c80ff16e 4888 file_priv->bsd_engine = -1;
de1add36 4889
e422b888
BW
4890 ret = i915_gem_context_open(dev, file);
4891 if (ret)
4892 kfree(file_priv);
b29c19b6 4893
e422b888 4894 return ret;
b29c19b6
CW
4895}
4896
b680c37a
DV
4897/**
4898 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4899 * @old: current GEM buffer for the frontbuffer slots
4900 * @new: new GEM buffer for the frontbuffer slots
4901 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4902 *
4903 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4904 * from @old and setting them in @new. Both @old and @new can be NULL.
4905 */
a071fa00
DV
4906void i915_gem_track_fb(struct drm_i915_gem_object *old,
4907 struct drm_i915_gem_object *new,
4908 unsigned frontbuffer_bits)
4909{
faf5bf0a
CW
4910 /* Control of individual bits within the mask are guarded by
4911 * the owning plane->mutex, i.e. we can never see concurrent
4912 * manipulation of individual bits. But since the bitfield as a whole
4913 * is updated using RMW, we need to use atomics in order to update
4914 * the bits.
4915 */
4916 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4917 sizeof(atomic_t) * BITS_PER_BYTE);
4918
a071fa00 4919 if (old) {
faf5bf0a
CW
4920 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4921 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4922 }
4923
4924 if (new) {
faf5bf0a
CW
4925 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4926 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4927 }
4928}
4929
ea70299d
DG
4930/* Allocate a new GEM object and fill it with the supplied data */
4931struct drm_i915_gem_object *
4932i915_gem_object_create_from_data(struct drm_device *dev,
4933 const void *data, size_t size)
4934{
4935 struct drm_i915_gem_object *obj;
4936 struct sg_table *sg;
4937 size_t bytes;
4938 int ret;
4939
d37cd8a8 4940 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4941 if (IS_ERR(obj))
ea70299d
DG
4942 return obj;
4943
4944 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4945 if (ret)
4946 goto fail;
4947
a4f5ea64 4948 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4949 if (ret)
4950 goto fail;
4951
a4f5ea64 4952 sg = obj->mm.pages;
ea70299d 4953 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4954 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4955 i915_gem_object_unpin_pages(obj);
4956
4957 if (WARN_ON(bytes != size)) {
4958 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4959 ret = -EFAULT;
4960 goto fail;
4961 }
4962
4963 return obj;
4964
4965fail:
f8c417cd 4966 i915_gem_object_put(obj);
ea70299d
DG
4967 return ERR_PTR(ret);
4968}
96d77634
CW
4969
4970struct scatterlist *
4971i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4972 unsigned int n,
4973 unsigned int *offset)
4974{
a4f5ea64 4975 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4976 struct scatterlist *sg;
4977 unsigned int idx, count;
4978
4979 might_sleep();
4980 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4981 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4982
4983 /* As we iterate forward through the sg, we record each entry in a
4984 * radixtree for quick repeated (backwards) lookups. If we have seen
4985 * this index previously, we will have an entry for it.
4986 *
4987 * Initial lookup is O(N), but this is amortized to O(1) for
4988 * sequential page access (where each new request is consecutive
4989 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4990 * i.e. O(1) with a large constant!
4991 */
4992 if (n < READ_ONCE(iter->sg_idx))
4993 goto lookup;
4994
4995 mutex_lock(&iter->lock);
4996
4997 /* We prefer to reuse the last sg so that repeated lookup of this
4998 * (or the subsequent) sg are fast - comparing against the last
4999 * sg is faster than going through the radixtree.
5000 */
5001
5002 sg = iter->sg_pos;
5003 idx = iter->sg_idx;
5004 count = __sg_page_count(sg);
5005
5006 while (idx + count <= n) {
5007 unsigned long exception, i;
5008 int ret;
5009
5010 /* If we cannot allocate and insert this entry, or the
5011 * individual pages from this range, cancel updating the
5012 * sg_idx so that on this lookup we are forced to linearly
5013 * scan onwards, but on future lookups we will try the
5014 * insertion again (in which case we need to be careful of
5015 * the error return reporting that we have already inserted
5016 * this index).
5017 */
5018 ret = radix_tree_insert(&iter->radix, idx, sg);
5019 if (ret && ret != -EEXIST)
5020 goto scan;
5021
5022 exception =
5023 RADIX_TREE_EXCEPTIONAL_ENTRY |
5024 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5025 for (i = 1; i < count; i++) {
5026 ret = radix_tree_insert(&iter->radix, idx + i,
5027 (void *)exception);
5028 if (ret && ret != -EEXIST)
5029 goto scan;
5030 }
5031
5032 idx += count;
5033 sg = ____sg_next(sg);
5034 count = __sg_page_count(sg);
5035 }
5036
5037scan:
5038 iter->sg_pos = sg;
5039 iter->sg_idx = idx;
5040
5041 mutex_unlock(&iter->lock);
5042
5043 if (unlikely(n < idx)) /* insertion completed by another thread */
5044 goto lookup;
5045
5046 /* In case we failed to insert the entry into the radixtree, we need
5047 * to look beyond the current sg.
5048 */
5049 while (idx + count <= n) {
5050 idx += count;
5051 sg = ____sg_next(sg);
5052 count = __sg_page_count(sg);
5053 }
5054
5055 *offset = n - idx;
5056 return sg;
5057
5058lookup:
5059 rcu_read_lock();
5060
5061 sg = radix_tree_lookup(&iter->radix, n);
5062 GEM_BUG_ON(!sg);
5063
5064 /* If this index is in the middle of multi-page sg entry,
5065 * the radixtree will contain an exceptional entry that points
5066 * to the start of that range. We will return the pointer to
5067 * the base page and the offset of this page within the
5068 * sg entry's range.
5069 */
5070 *offset = 0;
5071 if (unlikely(radix_tree_exception(sg))) {
5072 unsigned long base =
5073 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5074
5075 sg = radix_tree_lookup(&iter->radix, base);
5076 GEM_BUG_ON(!sg);
5077
5078 *offset = n - base;
5079 }
5080
5081 rcu_read_unlock();
5082
5083 return sg;
5084}
5085
5086struct page *
5087i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5088{
5089 struct scatterlist *sg;
5090 unsigned int offset;
5091
5092 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5093
5094 sg = i915_gem_object_get_sg(obj, n, &offset);
5095 return nth_page(sg_page(sg), offset);
5096}
5097
5098/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5099struct page *
5100i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5101 unsigned int n)
5102{
5103 struct page *page;
5104
5105 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5106 if (!obj->mm.dirty)
96d77634
CW
5107 set_page_dirty(page);
5108
5109 return page;
5110}
5111
5112dma_addr_t
5113i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5114 unsigned long n)
5115{
5116 struct scatterlist *sg;
5117 unsigned int offset;
5118
5119 sg = i915_gem_object_get_sg(obj, n, &offset);
5120 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5121}