]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: enable parity error interrupts
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
8c59967c 58static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 59
61050808
CW
60static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61{
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
5d82e3e6 68 obj->fence_dirty = false;
61050808
CW
69 obj->fence_reg = I915_FENCE_REG_NONE;
70}
71
73aa808f
CW
72/* some bookkeeping */
73static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78}
79
80static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82{
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85}
86
21dd3734
CW
87static int
88i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
89{
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
98 ret = wait_for_completion_interruptible(x);
99 if (ret)
100 return ret;
101
21dd3734
CW
102 if (atomic_read(&dev_priv->mm.wedged)) {
103 /* GPU is hung, bump the completion count to account for
104 * the token we just consumed so that we never hit zero and
105 * end up waiting upon a subsequent completion event that
106 * will never happen.
107 */
108 spin_lock_irqsave(&x->wait.lock, flags);
109 x->done++;
110 spin_unlock_irqrestore(&x->wait.lock, flags);
111 }
112 return 0;
30dbf0c0
CW
113}
114
54cf91dc 115int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 116{
76c1dec1
CW
117 int ret;
118
21dd3734 119 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
120 if (ret)
121 return ret;
122
123 ret = mutex_lock_interruptible(&dev->struct_mutex);
124 if (ret)
125 return ret;
126
23bc5982 127 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
128 return 0;
129}
30dbf0c0 130
7d1c4804 131static inline bool
05394f39 132i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 133{
1b50247a 134 return !obj->active;
7d1c4804
CW
135}
136
79e53945
JB
137int
138i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 139 struct drm_file *file)
79e53945
JB
140{
141 struct drm_i915_gem_init *args = data;
2021746e 142
7bb6fb8d
DV
143 if (drm_core_check_feature(dev, DRIVER_MODESET))
144 return -ENODEV;
145
2021746e
CW
146 if (args->gtt_start >= args->gtt_end ||
147 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
148 return -EINVAL;
79e53945 149
f534bc0b
DV
150 /* GEM with user mode setting was never supported on ilk and later. */
151 if (INTEL_INFO(dev)->gen >= 5)
152 return -ENODEV;
153
79e53945 154 mutex_lock(&dev->struct_mutex);
644ec02b
DV
155 i915_gem_init_global_gtt(dev, args->gtt_start,
156 args->gtt_end, args->gtt_end);
673a394b
EA
157 mutex_unlock(&dev->struct_mutex);
158
2021746e 159 return 0;
673a394b
EA
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
1b50247a
CW
173 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
174 if (obj->pin_count)
175 pinned += obj->gtt_space->size;
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
6299f992 178 args->aper_size = dev_priv->mm.gtt_total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
ff72145b
DA
184static int
185i915_gem_create(struct drm_file *file,
186 struct drm_device *dev,
187 uint64_t size,
188 uint32_t *handle_p)
673a394b 189{
05394f39 190 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
191 int ret;
192 u32 handle;
673a394b 193
ff72145b 194 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
195 if (size == 0)
196 return -EINVAL;
673a394b
EA
197
198 /* Allocate the new object */
ff72145b 199 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
200 if (obj == NULL)
201 return -ENOMEM;
202
05394f39 203 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 204 if (ret) {
05394f39
CW
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 207 kfree(obj);
673a394b 208 return ret;
1dfd9754 209 }
673a394b 210
202f2fef 211 /* drop reference from allocate - handle holds it now */
05394f39 212 drm_gem_object_unreference(&obj->base);
202f2fef
CW
213 trace_i915_gem_object_create(obj);
214
ff72145b 215 *handle_p = handle;
673a394b
EA
216 return 0;
217}
218
ff72145b
DA
219int
220i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223{
224 /* have to work out size/pitch and return them */
ed0291fd 225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229}
230
231int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234{
235 return drm_gem_handle_delete(file, handle);
236}
237
238/**
239 * Creates a new mm object and returns a handle to it.
240 */
241int
242i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244{
245 struct drm_i915_gem_create *args = data;
63ed2cb2 246
ff72145b
DA
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
249}
250
05394f39 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 252{
05394f39 253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
254
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 256 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
257}
258
8461d226
DV
259static inline int
260__copy_to_user_swizzled(char __user *cpu_vaddr,
261 const char *gpu_vaddr, int gpu_offset,
262 int length)
263{
264 int ret, cpu_offset = 0;
265
266 while (length > 0) {
267 int cacheline_end = ALIGN(gpu_offset + 1, 64);
268 int this_length = min(cacheline_end - gpu_offset, length);
269 int swizzled_gpu_offset = gpu_offset ^ 64;
270
271 ret = __copy_to_user(cpu_vaddr + cpu_offset,
272 gpu_vaddr + swizzled_gpu_offset,
273 this_length);
274 if (ret)
275 return ret + length;
276
277 cpu_offset += this_length;
278 gpu_offset += this_length;
279 length -= this_length;
280 }
281
282 return 0;
283}
284
8c59967c 285static inline int
4f0c7cfb
BW
286__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
287 const char __user *cpu_vaddr,
8c59967c
DV
288 int length)
289{
290 int ret, cpu_offset = 0;
291
292 while (length > 0) {
293 int cacheline_end = ALIGN(gpu_offset + 1, 64);
294 int this_length = min(cacheline_end - gpu_offset, length);
295 int swizzled_gpu_offset = gpu_offset ^ 64;
296
297 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
298 cpu_vaddr + cpu_offset,
299 this_length);
300 if (ret)
301 return ret + length;
302
303 cpu_offset += this_length;
304 gpu_offset += this_length;
305 length -= this_length;
306 }
307
308 return 0;
309}
310
d174bd64
DV
311/* Per-page copy function for the shmem pread fastpath.
312 * Flushes invalid cachelines before reading the target if
313 * needs_clflush is set. */
eb01459f 314static int
d174bd64
DV
315shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
316 char __user *user_data,
317 bool page_do_bit17_swizzling, bool needs_clflush)
318{
319 char *vaddr;
320 int ret;
321
e7e58eb5 322 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
323 return -EINVAL;
324
325 vaddr = kmap_atomic(page);
326 if (needs_clflush)
327 drm_clflush_virt_range(vaddr + shmem_page_offset,
328 page_length);
329 ret = __copy_to_user_inatomic(user_data,
330 vaddr + shmem_page_offset,
331 page_length);
332 kunmap_atomic(vaddr);
333
334 return ret;
335}
336
23c18c71
DV
337static void
338shmem_clflush_swizzled_range(char *addr, unsigned long length,
339 bool swizzled)
340{
e7e58eb5 341 if (unlikely(swizzled)) {
23c18c71
DV
342 unsigned long start = (unsigned long) addr;
343 unsigned long end = (unsigned long) addr + length;
344
345 /* For swizzling simply ensure that we always flush both
346 * channels. Lame, but simple and it works. Swizzled
347 * pwrite/pread is far from a hotpath - current userspace
348 * doesn't use it at all. */
349 start = round_down(start, 128);
350 end = round_up(end, 128);
351
352 drm_clflush_virt_range((void *)start, end - start);
353 } else {
354 drm_clflush_virt_range(addr, length);
355 }
356
357}
358
d174bd64
DV
359/* Only difference to the fast-path function is that this can handle bit17
360 * and uses non-atomic copy and kmap functions. */
361static int
362shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
363 char __user *user_data,
364 bool page_do_bit17_swizzling, bool needs_clflush)
365{
366 char *vaddr;
367 int ret;
368
369 vaddr = kmap(page);
370 if (needs_clflush)
23c18c71
DV
371 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
372 page_length,
373 page_do_bit17_swizzling);
d174bd64
DV
374
375 if (page_do_bit17_swizzling)
376 ret = __copy_to_user_swizzled(user_data,
377 vaddr, shmem_page_offset,
378 page_length);
379 else
380 ret = __copy_to_user(user_data,
381 vaddr + shmem_page_offset,
382 page_length);
383 kunmap(page);
384
385 return ret;
386}
387
eb01459f 388static int
dbf7bff0
DV
389i915_gem_shmem_pread(struct drm_device *dev,
390 struct drm_i915_gem_object *obj,
391 struct drm_i915_gem_pread *args,
392 struct drm_file *file)
eb01459f 393{
05394f39 394 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 395 char __user *user_data;
eb01459f 396 ssize_t remain;
8461d226 397 loff_t offset;
eb2c0c81 398 int shmem_page_offset, page_length, ret = 0;
8461d226 399 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 400 int hit_slowpath = 0;
96d79b52 401 int prefaulted = 0;
8489731c 402 int needs_clflush = 0;
692a576b 403 int release_page;
eb01459f 404
8461d226 405 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
406 remain = args->size;
407
8461d226 408 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 409
8489731c
DV
410 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
411 /* If we're not in the cpu read domain, set ourself into the gtt
412 * read domain and manually flush cachelines (if required). This
413 * optimizes for the case when the gpu will dirty the data
414 * anyway again before the next pread happens. */
415 if (obj->cache_level == I915_CACHE_NONE)
416 needs_clflush = 1;
417 ret = i915_gem_object_set_to_gtt_domain(obj, false);
418 if (ret)
419 return ret;
420 }
eb01459f 421
8461d226 422 offset = args->offset;
eb01459f
EA
423
424 while (remain > 0) {
e5281ccd
CW
425 struct page *page;
426
eb01459f
EA
427 /* Operation in this page
428 *
eb01459f 429 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
430 * page_length = bytes to copy for this page
431 */
c8cbbb8b 432 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 436
692a576b
DV
437 if (obj->pages) {
438 page = obj->pages[offset >> PAGE_SHIFT];
439 release_page = 0;
440 } else {
441 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
442 if (IS_ERR(page)) {
443 ret = PTR_ERR(page);
444 goto out;
445 }
446 release_page = 1;
b65552f0 447 }
e5281ccd 448
8461d226
DV
449 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
450 (page_to_phys(page) & (1 << 17)) != 0;
451
d174bd64
DV
452 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
453 user_data, page_do_bit17_swizzling,
454 needs_clflush);
455 if (ret == 0)
456 goto next_page;
dbf7bff0
DV
457
458 hit_slowpath = 1;
692a576b 459 page_cache_get(page);
dbf7bff0
DV
460 mutex_unlock(&dev->struct_mutex);
461
96d79b52 462 if (!prefaulted) {
f56f821f 463 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
464 /* Userspace is tricking us, but we've already clobbered
465 * its pages with the prefault and promised to write the
466 * data up to the first fault. Hence ignore any errors
467 * and just continue. */
468 (void)ret;
469 prefaulted = 1;
470 }
eb01459f 471
d174bd64
DV
472 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
473 user_data, page_do_bit17_swizzling,
474 needs_clflush);
eb01459f 475
dbf7bff0 476 mutex_lock(&dev->struct_mutex);
e5281ccd 477 page_cache_release(page);
dbf7bff0 478next_page:
e5281ccd 479 mark_page_accessed(page);
692a576b
DV
480 if (release_page)
481 page_cache_release(page);
e5281ccd 482
8461d226
DV
483 if (ret) {
484 ret = -EFAULT;
485 goto out;
486 }
487
eb01459f 488 remain -= page_length;
8461d226 489 user_data += page_length;
eb01459f
EA
490 offset += page_length;
491 }
492
4f27b75d 493out:
dbf7bff0
DV
494 if (hit_slowpath) {
495 /* Fixup: Kill any reinstated backing storage pages */
496 if (obj->madv == __I915_MADV_PURGED)
497 i915_gem_object_truncate(obj);
498 }
eb01459f
EA
499
500 return ret;
501}
502
673a394b
EA
503/**
504 * Reads data from the object referenced by handle.
505 *
506 * On error, the contents of *data are undefined.
507 */
508int
509i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 510 struct drm_file *file)
673a394b
EA
511{
512 struct drm_i915_gem_pread *args = data;
05394f39 513 struct drm_i915_gem_object *obj;
35b62a89 514 int ret = 0;
673a394b 515
51311d0a
CW
516 if (args->size == 0)
517 return 0;
518
519 if (!access_ok(VERIFY_WRITE,
520 (char __user *)(uintptr_t)args->data_ptr,
521 args->size))
522 return -EFAULT;
523
4f27b75d 524 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 525 if (ret)
4f27b75d 526 return ret;
673a394b 527
05394f39 528 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 529 if (&obj->base == NULL) {
1d7cfea1
CW
530 ret = -ENOENT;
531 goto unlock;
4f27b75d 532 }
673a394b 533
7dcd2499 534 /* Bounds check source. */
05394f39
CW
535 if (args->offset > obj->base.size ||
536 args->size > obj->base.size - args->offset) {
ce9d419d 537 ret = -EINVAL;
35b62a89 538 goto out;
ce9d419d
CW
539 }
540
db53a302
CW
541 trace_i915_gem_object_pread(obj, args->offset, args->size);
542
dbf7bff0 543 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 544
35b62a89 545out:
05394f39 546 drm_gem_object_unreference(&obj->base);
1d7cfea1 547unlock:
4f27b75d 548 mutex_unlock(&dev->struct_mutex);
eb01459f 549 return ret;
673a394b
EA
550}
551
0839ccb8
KP
552/* This is the fast write path which cannot handle
553 * page faults in the source data
9b7530cc 554 */
0839ccb8
KP
555
556static inline int
557fast_user_write(struct io_mapping *mapping,
558 loff_t page_base, int page_offset,
559 char __user *user_data,
560 int length)
9b7530cc 561{
4f0c7cfb
BW
562 void __iomem *vaddr_atomic;
563 void *vaddr;
0839ccb8 564 unsigned long unwritten;
9b7530cc 565
3e4d3af5 566 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
567 /* We can use the cpu mem copy function because this is X86. */
568 vaddr = (void __force*)vaddr_atomic + page_offset;
569 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 570 user_data, length);
3e4d3af5 571 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 572 return unwritten;
0839ccb8
KP
573}
574
3de09aa3
EA
575/**
576 * This is the fast pwrite path, where we copy the data directly from the
577 * user into the GTT, uncached.
578 */
673a394b 579static int
05394f39
CW
580i915_gem_gtt_pwrite_fast(struct drm_device *dev,
581 struct drm_i915_gem_object *obj,
3de09aa3 582 struct drm_i915_gem_pwrite *args,
05394f39 583 struct drm_file *file)
673a394b 584{
0839ccb8 585 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 586 ssize_t remain;
0839ccb8 587 loff_t offset, page_base;
673a394b 588 char __user *user_data;
935aaa69
DV
589 int page_offset, page_length, ret;
590
591 ret = i915_gem_object_pin(obj, 0, true);
592 if (ret)
593 goto out;
594
595 ret = i915_gem_object_set_to_gtt_domain(obj, true);
596 if (ret)
597 goto out_unpin;
598
599 ret = i915_gem_object_put_fence(obj);
600 if (ret)
601 goto out_unpin;
673a394b
EA
602
603 user_data = (char __user *) (uintptr_t) args->data_ptr;
604 remain = args->size;
673a394b 605
05394f39 606 offset = obj->gtt_offset + args->offset;
673a394b
EA
607
608 while (remain > 0) {
609 /* Operation in this page
610 *
0839ccb8
KP
611 * page_base = page offset within aperture
612 * page_offset = offset within page
613 * page_length = bytes to copy for this page
673a394b 614 */
c8cbbb8b
CW
615 page_base = offset & PAGE_MASK;
616 page_offset = offset_in_page(offset);
0839ccb8
KP
617 page_length = remain;
618 if ((page_offset + remain) > PAGE_SIZE)
619 page_length = PAGE_SIZE - page_offset;
620
0839ccb8 621 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
622 * source page isn't available. Return the error and we'll
623 * retry in the slow path.
0839ccb8 624 */
fbd5a26d 625 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
626 page_offset, user_data, page_length)) {
627 ret = -EFAULT;
628 goto out_unpin;
629 }
673a394b 630
0839ccb8
KP
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
673a394b 634 }
673a394b 635
935aaa69
DV
636out_unpin:
637 i915_gem_object_unpin(obj);
638out:
3de09aa3 639 return ret;
673a394b
EA
640}
641
d174bd64
DV
642/* Per-page copy function for the shmem pwrite fastpath.
643 * Flushes invalid cachelines before writing to the target if
644 * needs_clflush_before is set and flushes out any written cachelines after
645 * writing if needs_clflush is set. */
3043c60c 646static int
d174bd64
DV
647shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
648 char __user *user_data,
649 bool page_do_bit17_swizzling,
650 bool needs_clflush_before,
651 bool needs_clflush_after)
673a394b 652{
d174bd64 653 char *vaddr;
673a394b 654 int ret;
3de09aa3 655
e7e58eb5 656 if (unlikely(page_do_bit17_swizzling))
d174bd64 657 return -EINVAL;
3de09aa3 658
d174bd64
DV
659 vaddr = kmap_atomic(page);
660 if (needs_clflush_before)
661 drm_clflush_virt_range(vaddr + shmem_page_offset,
662 page_length);
663 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
664 user_data,
665 page_length);
666 if (needs_clflush_after)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 kunmap_atomic(vaddr);
3de09aa3
EA
670
671 return ret;
672}
673
d174bd64
DV
674/* Only difference to the fast-path function is that this can handle bit17
675 * and uses non-atomic copy and kmap functions. */
3043c60c 676static int
d174bd64
DV
677shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
678 char __user *user_data,
679 bool page_do_bit17_swizzling,
680 bool needs_clflush_before,
681 bool needs_clflush_after)
673a394b 682{
d174bd64
DV
683 char *vaddr;
684 int ret;
e5281ccd 685
d174bd64 686 vaddr = kmap(page);
e7e58eb5 687 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
688 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
689 page_length,
690 page_do_bit17_swizzling);
d174bd64
DV
691 if (page_do_bit17_swizzling)
692 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
693 user_data,
694 page_length);
d174bd64
DV
695 else
696 ret = __copy_from_user(vaddr + shmem_page_offset,
697 user_data,
698 page_length);
699 if (needs_clflush_after)
23c18c71
DV
700 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
701 page_length,
702 page_do_bit17_swizzling);
d174bd64 703 kunmap(page);
40123c1f 704
d174bd64 705 return ret;
40123c1f
EA
706}
707
40123c1f 708static int
e244a443
DV
709i915_gem_shmem_pwrite(struct drm_device *dev,
710 struct drm_i915_gem_object *obj,
711 struct drm_i915_gem_pwrite *args,
712 struct drm_file *file)
40123c1f 713{
05394f39 714 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 715 ssize_t remain;
8c59967c
DV
716 loff_t offset;
717 char __user *user_data;
eb2c0c81 718 int shmem_page_offset, page_length, ret = 0;
8c59967c 719 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 720 int hit_slowpath = 0;
58642885
DV
721 int needs_clflush_after = 0;
722 int needs_clflush_before = 0;
692a576b 723 int release_page;
40123c1f 724
8c59967c 725 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
726 remain = args->size;
727
8c59967c 728 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 729
58642885
DV
730 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
731 /* If we're not in the cpu write domain, set ourself into the gtt
732 * write domain and manually flush cachelines (if required). This
733 * optimizes for the case when the gpu will use the data
734 * right away and we therefore have to clflush anyway. */
735 if (obj->cache_level == I915_CACHE_NONE)
736 needs_clflush_after = 1;
737 ret = i915_gem_object_set_to_gtt_domain(obj, true);
738 if (ret)
739 return ret;
740 }
741 /* Same trick applies for invalidate partially written cachelines before
742 * writing. */
743 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
744 && obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_before = 1;
746
673a394b 747 offset = args->offset;
05394f39 748 obj->dirty = 1;
673a394b 749
40123c1f 750 while (remain > 0) {
e5281ccd 751 struct page *page;
58642885 752 int partial_cacheline_write;
e5281ccd 753
40123c1f
EA
754 /* Operation in this page
755 *
40123c1f 756 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
757 * page_length = bytes to copy for this page
758 */
c8cbbb8b 759 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
760
761 page_length = remain;
762 if ((shmem_page_offset + page_length) > PAGE_SIZE)
763 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 764
58642885
DV
765 /* If we don't overwrite a cacheline completely we need to be
766 * careful to have up-to-date data by first clflushing. Don't
767 * overcomplicate things and flush the entire patch. */
768 partial_cacheline_write = needs_clflush_before &&
769 ((shmem_page_offset | page_length)
770 & (boot_cpu_data.x86_clflush_size - 1));
771
692a576b
DV
772 if (obj->pages) {
773 page = obj->pages[offset >> PAGE_SHIFT];
774 release_page = 0;
775 } else {
776 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
777 if (IS_ERR(page)) {
778 ret = PTR_ERR(page);
779 goto out;
780 }
781 release_page = 1;
e5281ccd
CW
782 }
783
8c59967c
DV
784 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
785 (page_to_phys(page) & (1 << 17)) != 0;
786
d174bd64
DV
787 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
788 user_data, page_do_bit17_swizzling,
789 partial_cacheline_write,
790 needs_clflush_after);
791 if (ret == 0)
792 goto next_page;
e244a443
DV
793
794 hit_slowpath = 1;
692a576b 795 page_cache_get(page);
e244a443
DV
796 mutex_unlock(&dev->struct_mutex);
797
d174bd64
DV
798 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
799 user_data, page_do_bit17_swizzling,
800 partial_cacheline_write,
801 needs_clflush_after);
40123c1f 802
e244a443 803 mutex_lock(&dev->struct_mutex);
692a576b 804 page_cache_release(page);
e244a443 805next_page:
e5281ccd
CW
806 set_page_dirty(page);
807 mark_page_accessed(page);
692a576b
DV
808 if (release_page)
809 page_cache_release(page);
e5281ccd 810
8c59967c
DV
811 if (ret) {
812 ret = -EFAULT;
813 goto out;
814 }
815
40123c1f 816 remain -= page_length;
8c59967c 817 user_data += page_length;
40123c1f 818 offset += page_length;
673a394b
EA
819 }
820
fbd5a26d 821out:
e244a443
DV
822 if (hit_slowpath) {
823 /* Fixup: Kill any reinstated backing storage pages */
824 if (obj->madv == __I915_MADV_PURGED)
825 i915_gem_object_truncate(obj);
826 /* and flush dirty cachelines in case the object isn't in the cpu write
827 * domain anymore. */
828 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829 i915_gem_clflush_object(obj);
830 intel_gtt_chipset_flush();
831 }
8c59967c 832 }
673a394b 833
58642885
DV
834 if (needs_clflush_after)
835 intel_gtt_chipset_flush();
836
40123c1f 837 return ret;
673a394b
EA
838}
839
840/**
841 * Writes data to the object referenced by handle.
842 *
843 * On error, the contents of the buffer that were to be modified are undefined.
844 */
845int
846i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 847 struct drm_file *file)
673a394b
EA
848{
849 struct drm_i915_gem_pwrite *args = data;
05394f39 850 struct drm_i915_gem_object *obj;
51311d0a
CW
851 int ret;
852
853 if (args->size == 0)
854 return 0;
855
856 if (!access_ok(VERIFY_READ,
857 (char __user *)(uintptr_t)args->data_ptr,
858 args->size))
859 return -EFAULT;
860
f56f821f
DV
861 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
862 args->size);
51311d0a
CW
863 if (ret)
864 return -EFAULT;
673a394b 865
fbd5a26d 866 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 867 if (ret)
fbd5a26d 868 return ret;
1d7cfea1 869
05394f39 870 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 871 if (&obj->base == NULL) {
1d7cfea1
CW
872 ret = -ENOENT;
873 goto unlock;
fbd5a26d 874 }
673a394b 875
7dcd2499 876 /* Bounds check destination. */
05394f39
CW
877 if (args->offset > obj->base.size ||
878 args->size > obj->base.size - args->offset) {
ce9d419d 879 ret = -EINVAL;
35b62a89 880 goto out;
ce9d419d
CW
881 }
882
db53a302
CW
883 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
935aaa69 885 ret = -EFAULT;
673a394b
EA
886 /* We can only do the GTT pwrite on untiled buffers, as otherwise
887 * it would end up going through the fenced access, and we'll get
888 * different detiling behavior between reading and writing.
889 * pread/pwrite currently are reading and writing from the CPU
890 * perspective, requiring manual detiling by the client.
891 */
5c0480f2 892 if (obj->phys_obj) {
fbd5a26d 893 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
894 goto out;
895 }
896
897 if (obj->gtt_space &&
3ae53783 898 obj->cache_level == I915_CACHE_NONE &&
c07496fa 899 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 900 obj->map_and_fenceable &&
5c0480f2 901 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 902 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
903 /* Note that the gtt paths might fail with non-page-backed user
904 * pointers (e.g. gtt mappings when moving data between
905 * textures). Fallback to the shmem path in that case. */
fbd5a26d 906 }
673a394b 907
5c0480f2 908 if (ret == -EFAULT)
935aaa69 909 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 910
35b62a89 911out:
05394f39 912 drm_gem_object_unreference(&obj->base);
1d7cfea1 913unlock:
fbd5a26d 914 mutex_unlock(&dev->struct_mutex);
673a394b
EA
915 return ret;
916}
917
918/**
2ef7eeaa
EA
919 * Called when user space prepares to use an object with the CPU, either
920 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
921 */
922int
923i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 924 struct drm_file *file)
673a394b
EA
925{
926 struct drm_i915_gem_set_domain *args = data;
05394f39 927 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
928 uint32_t read_domains = args->read_domains;
929 uint32_t write_domain = args->write_domain;
673a394b
EA
930 int ret;
931
2ef7eeaa 932 /* Only handle setting domains to types used by the CPU. */
21d509e3 933 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
934 return -EINVAL;
935
21d509e3 936 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
937 return -EINVAL;
938
939 /* Having something in the write domain implies it's in the read
940 * domain, and only that read domain. Enforce that in the request.
941 */
942 if (write_domain != 0 && read_domains != write_domain)
943 return -EINVAL;
944
76c1dec1 945 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 946 if (ret)
76c1dec1 947 return ret;
1d7cfea1 948
05394f39 949 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 950 if (&obj->base == NULL) {
1d7cfea1
CW
951 ret = -ENOENT;
952 goto unlock;
76c1dec1 953 }
673a394b 954
2ef7eeaa
EA
955 if (read_domains & I915_GEM_DOMAIN_GTT) {
956 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
957
958 /* Silently promote "you're not bound, there was nothing to do"
959 * to success, since the client was just asking us to
960 * make sure everything was done.
961 */
962 if (ret == -EINVAL)
963 ret = 0;
2ef7eeaa 964 } else {
e47c68e9 965 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
966 }
967
05394f39 968 drm_gem_object_unreference(&obj->base);
1d7cfea1 969unlock:
673a394b
EA
970 mutex_unlock(&dev->struct_mutex);
971 return ret;
972}
973
974/**
975 * Called when user space has done writes to this buffer
976 */
977int
978i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 979 struct drm_file *file)
673a394b
EA
980{
981 struct drm_i915_gem_sw_finish *args = data;
05394f39 982 struct drm_i915_gem_object *obj;
673a394b
EA
983 int ret = 0;
984
76c1dec1 985 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 986 if (ret)
76c1dec1 987 return ret;
1d7cfea1 988
05394f39 989 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 990 if (&obj->base == NULL) {
1d7cfea1
CW
991 ret = -ENOENT;
992 goto unlock;
673a394b
EA
993 }
994
673a394b 995 /* Pinned buffers may be scanout, so flush the cache */
05394f39 996 if (obj->pin_count)
e47c68e9
EA
997 i915_gem_object_flush_cpu_write_domain(obj);
998
05394f39 999 drm_gem_object_unreference(&obj->base);
1d7cfea1 1000unlock:
673a394b
EA
1001 mutex_unlock(&dev->struct_mutex);
1002 return ret;
1003}
1004
1005/**
1006 * Maps the contents of an object, returning the address it is mapped
1007 * into.
1008 *
1009 * While the mapping holds a reference on the contents of the object, it doesn't
1010 * imply a ref on the object itself.
1011 */
1012int
1013i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1014 struct drm_file *file)
673a394b
EA
1015{
1016 struct drm_i915_gem_mmap *args = data;
1017 struct drm_gem_object *obj;
673a394b
EA
1018 unsigned long addr;
1019
05394f39 1020 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1021 if (obj == NULL)
bf79cb91 1022 return -ENOENT;
673a394b 1023
6be5ceb0 1024 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1025 PROT_READ | PROT_WRITE, MAP_SHARED,
1026 args->offset);
bc9025bd 1027 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1028 if (IS_ERR((void *)addr))
1029 return addr;
1030
1031 args->addr_ptr = (uint64_t) addr;
1032
1033 return 0;
1034}
1035
de151cf6
JB
1036/**
1037 * i915_gem_fault - fault a page into the GTT
1038 * vma: VMA in question
1039 * vmf: fault info
1040 *
1041 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1042 * from userspace. The fault handler takes care of binding the object to
1043 * the GTT (if needed), allocating and programming a fence register (again,
1044 * only if needed based on whether the old reg is still valid or the object
1045 * is tiled) and inserting a new PTE into the faulting process.
1046 *
1047 * Note that the faulting process may involve evicting existing objects
1048 * from the GTT and/or fence registers to make room. So performance may
1049 * suffer if the GTT working set is large or there are few fence registers
1050 * left.
1051 */
1052int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1053{
05394f39
CW
1054 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1055 struct drm_device *dev = obj->base.dev;
7d1c4804 1056 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1057 pgoff_t page_offset;
1058 unsigned long pfn;
1059 int ret = 0;
0f973f27 1060 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1061
1062 /* We don't use vmf->pgoff since that has the fake offset */
1063 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1064 PAGE_SHIFT;
1065
d9bc7e9f
CW
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto out;
a00b10c3 1069
db53a302
CW
1070 trace_i915_gem_object_fault(obj, page_offset, true, write);
1071
d9bc7e9f 1072 /* Now bind it into the GTT if needed */
919926ae
CW
1073 if (!obj->map_and_fenceable) {
1074 ret = i915_gem_object_unbind(obj);
1075 if (ret)
1076 goto unlock;
a00b10c3 1077 }
05394f39 1078 if (!obj->gtt_space) {
75e9e915 1079 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1080 if (ret)
1081 goto unlock;
de151cf6 1082
e92d03bf
EA
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1084 if (ret)
1085 goto unlock;
1086 }
4a684a41 1087
74898d7e
DV
1088 if (!obj->has_global_gtt_mapping)
1089 i915_gem_gtt_bind_object(obj, obj->cache_level);
1090
06d98131 1091 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1092 if (ret)
1093 goto unlock;
de151cf6 1094
05394f39
CW
1095 if (i915_gem_object_is_inactive(obj))
1096 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1097
6299f992
CW
1098 obj->fault_mappable = true;
1099
05394f39 1100 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1101 page_offset;
1102
1103 /* Finally, remap it using the new GTT offset */
1104 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1105unlock:
de151cf6 1106 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1107out:
de151cf6 1108 switch (ret) {
d9bc7e9f 1109 case -EIO:
045e769a 1110 case -EAGAIN:
d9bc7e9f
CW
1111 /* Give the error handler a chance to run and move the
1112 * objects off the GPU active list. Next time we service the
1113 * fault, we should be able to transition the page into the
1114 * GTT without touching the GPU (and so avoid further
1115 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1116 * with coherency, just lost writes.
1117 */
045e769a 1118 set_need_resched();
c715089f
CW
1119 case 0:
1120 case -ERESTARTSYS:
bed636ab 1121 case -EINTR:
c715089f 1122 return VM_FAULT_NOPAGE;
de151cf6 1123 case -ENOMEM:
de151cf6 1124 return VM_FAULT_OOM;
de151cf6 1125 default:
c715089f 1126 return VM_FAULT_SIGBUS;
de151cf6
JB
1127 }
1128}
1129
901782b2
CW
1130/**
1131 * i915_gem_release_mmap - remove physical page mappings
1132 * @obj: obj in question
1133 *
af901ca1 1134 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1135 * relinquish ownership of the pages back to the system.
1136 *
1137 * It is vital that we remove the page mapping if we have mapped a tiled
1138 * object through the GTT and then lose the fence register due to
1139 * resource pressure. Similarly if the object has been moved out of the
1140 * aperture, than pages mapped into userspace must be revoked. Removing the
1141 * mapping will then trigger a page fault on the next user access, allowing
1142 * fixup by i915_gem_fault().
1143 */
d05ca301 1144void
05394f39 1145i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1146{
6299f992
CW
1147 if (!obj->fault_mappable)
1148 return;
901782b2 1149
f6e47884
CW
1150 if (obj->base.dev->dev_mapping)
1151 unmap_mapping_range(obj->base.dev->dev_mapping,
1152 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1153 obj->base.size, 1);
fb7d516a 1154
6299f992 1155 obj->fault_mappable = false;
901782b2
CW
1156}
1157
92b88aeb 1158static uint32_t
e28f8711 1159i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1160{
e28f8711 1161 uint32_t gtt_size;
92b88aeb
CW
1162
1163 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1164 tiling_mode == I915_TILING_NONE)
1165 return size;
92b88aeb
CW
1166
1167 /* Previous chips need a power-of-two fence region when tiling */
1168 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1169 gtt_size = 1024*1024;
92b88aeb 1170 else
e28f8711 1171 gtt_size = 512*1024;
92b88aeb 1172
e28f8711
CW
1173 while (gtt_size < size)
1174 gtt_size <<= 1;
92b88aeb 1175
e28f8711 1176 return gtt_size;
92b88aeb
CW
1177}
1178
de151cf6
JB
1179/**
1180 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1181 * @obj: object to check
1182 *
1183 * Return the required GTT alignment for an object, taking into account
5e783301 1184 * potential fence register mapping.
de151cf6
JB
1185 */
1186static uint32_t
e28f8711
CW
1187i915_gem_get_gtt_alignment(struct drm_device *dev,
1188 uint32_t size,
1189 int tiling_mode)
de151cf6 1190{
de151cf6
JB
1191 /*
1192 * Minimum alignment is 4k (GTT page size), but might be greater
1193 * if a fence register is needed for the object.
1194 */
a00b10c3 1195 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1196 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1197 return 4096;
1198
a00b10c3
CW
1199 /*
1200 * Previous chips need to be aligned to the size of the smallest
1201 * fence register that can contain the object.
1202 */
e28f8711 1203 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1204}
1205
5e783301
DV
1206/**
1207 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1208 * unfenced object
e28f8711
CW
1209 * @dev: the device
1210 * @size: size of the object
1211 * @tiling_mode: tiling mode of the object
5e783301
DV
1212 *
1213 * Return the required GTT alignment for an object, only taking into account
1214 * unfenced tiled surface requirements.
1215 */
467cffba 1216uint32_t
e28f8711
CW
1217i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1218 uint32_t size,
1219 int tiling_mode)
5e783301 1220{
5e783301
DV
1221 /*
1222 * Minimum alignment is 4k (GTT page size) for sane hw.
1223 */
1224 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1225 tiling_mode == I915_TILING_NONE)
5e783301
DV
1226 return 4096;
1227
e28f8711
CW
1228 /* Previous hardware however needs to be aligned to a power-of-two
1229 * tile height. The simplest method for determining this is to reuse
1230 * the power-of-tile object size.
5e783301 1231 */
e28f8711 1232 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1233}
1234
de151cf6 1235int
ff72145b
DA
1236i915_gem_mmap_gtt(struct drm_file *file,
1237 struct drm_device *dev,
1238 uint32_t handle,
1239 uint64_t *offset)
de151cf6 1240{
da761a6e 1241 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1242 struct drm_i915_gem_object *obj;
de151cf6
JB
1243 int ret;
1244
76c1dec1 1245 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1246 if (ret)
76c1dec1 1247 return ret;
de151cf6 1248
ff72145b 1249 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1250 if (&obj->base == NULL) {
1d7cfea1
CW
1251 ret = -ENOENT;
1252 goto unlock;
1253 }
de151cf6 1254
05394f39 1255 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1256 ret = -E2BIG;
ff56b0bc 1257 goto out;
da761a6e
CW
1258 }
1259
05394f39 1260 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1261 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1262 ret = -EINVAL;
1263 goto out;
ab18282d
CW
1264 }
1265
05394f39 1266 if (!obj->base.map_list.map) {
b464e9a2 1267 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1268 if (ret)
1269 goto out;
de151cf6
JB
1270 }
1271
ff72145b 1272 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1273
1d7cfea1 1274out:
05394f39 1275 drm_gem_object_unreference(&obj->base);
1d7cfea1 1276unlock:
de151cf6 1277 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1278 return ret;
de151cf6
JB
1279}
1280
ff72145b
DA
1281/**
1282 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1283 * @dev: DRM device
1284 * @data: GTT mapping ioctl data
1285 * @file: GEM object info
1286 *
1287 * Simply returns the fake offset to userspace so it can mmap it.
1288 * The mmap call will end up in drm_gem_mmap(), which will set things
1289 * up so we can get faults in the handler above.
1290 *
1291 * The fault handler will take care of binding the object into the GTT
1292 * (since it may have been evicted to make room for something), allocating
1293 * a fence register, and mapping the appropriate aperture address into
1294 * userspace.
1295 */
1296int
1297i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1298 struct drm_file *file)
1299{
1300 struct drm_i915_gem_mmap_gtt *args = data;
1301
ff72145b
DA
1302 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1303}
1304
1305
e5281ccd 1306static int
05394f39 1307i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1308 gfp_t gfpmask)
1309{
e5281ccd
CW
1310 int page_count, i;
1311 struct address_space *mapping;
1312 struct inode *inode;
1313 struct page *page;
1314
1315 /* Get the list of pages out of our struct file. They'll be pinned
1316 * at this point until we release them.
1317 */
05394f39
CW
1318 page_count = obj->base.size / PAGE_SIZE;
1319 BUG_ON(obj->pages != NULL);
1320 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1321 if (obj->pages == NULL)
e5281ccd
CW
1322 return -ENOMEM;
1323
05394f39 1324 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1325 mapping = inode->i_mapping;
5949eac4
HD
1326 gfpmask |= mapping_gfp_mask(mapping);
1327
e5281ccd 1328 for (i = 0; i < page_count; i++) {
5949eac4 1329 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1330 if (IS_ERR(page))
1331 goto err_pages;
1332
05394f39 1333 obj->pages[i] = page;
e5281ccd
CW
1334 }
1335
6dacfd2f 1336 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1337 i915_gem_object_do_bit_17_swizzle(obj);
1338
1339 return 0;
1340
1341err_pages:
1342 while (i--)
05394f39 1343 page_cache_release(obj->pages[i]);
e5281ccd 1344
05394f39
CW
1345 drm_free_large(obj->pages);
1346 obj->pages = NULL;
e5281ccd
CW
1347 return PTR_ERR(page);
1348}
1349
5cdf5881 1350static void
05394f39 1351i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1352{
05394f39 1353 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1354 int i;
1355
05394f39 1356 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1357
6dacfd2f 1358 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1359 i915_gem_object_save_bit_17_swizzle(obj);
1360
05394f39
CW
1361 if (obj->madv == I915_MADV_DONTNEED)
1362 obj->dirty = 0;
3ef94daa
CW
1363
1364 for (i = 0; i < page_count; i++) {
05394f39
CW
1365 if (obj->dirty)
1366 set_page_dirty(obj->pages[i]);
3ef94daa 1367
05394f39
CW
1368 if (obj->madv == I915_MADV_WILLNEED)
1369 mark_page_accessed(obj->pages[i]);
3ef94daa 1370
05394f39 1371 page_cache_release(obj->pages[i]);
3ef94daa 1372 }
05394f39 1373 obj->dirty = 0;
673a394b 1374
05394f39
CW
1375 drm_free_large(obj->pages);
1376 obj->pages = NULL;
673a394b
EA
1377}
1378
54cf91dc 1379void
05394f39 1380i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1381 struct intel_ring_buffer *ring,
1382 u32 seqno)
673a394b 1383{
05394f39 1384 struct drm_device *dev = obj->base.dev;
69dc4987 1385 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1386
852835f3 1387 BUG_ON(ring == NULL);
05394f39 1388 obj->ring = ring;
673a394b
EA
1389
1390 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1391 if (!obj->active) {
1392 drm_gem_object_reference(&obj->base);
1393 obj->active = 1;
673a394b 1394 }
e35a41de 1395
673a394b 1396 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1397 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1398 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1399
05394f39 1400 obj->last_rendering_seqno = seqno;
caea7476 1401
7dd49065 1402 if (obj->fenced_gpu_access) {
caea7476 1403 obj->last_fenced_seqno = seqno;
caea7476 1404
7dd49065
CW
1405 /* Bump MRU to take account of the delayed flush */
1406 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1407 struct drm_i915_fence_reg *reg;
1408
1409 reg = &dev_priv->fence_regs[obj->fence_reg];
1410 list_move_tail(&reg->lru_list,
1411 &dev_priv->mm.fence_list);
1412 }
caea7476
CW
1413 }
1414}
1415
1416static void
1417i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1418{
1419 list_del_init(&obj->ring_list);
1420 obj->last_rendering_seqno = 0;
15a13bbd 1421 obj->last_fenced_seqno = 0;
673a394b
EA
1422}
1423
ce44b0ea 1424static void
05394f39 1425i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1426{
05394f39 1427 struct drm_device *dev = obj->base.dev;
ce44b0ea 1428 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1429
05394f39
CW
1430 BUG_ON(!obj->active);
1431 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1432
1433 i915_gem_object_move_off_active(obj);
1434}
1435
1436static void
1437i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1438{
1439 struct drm_device *dev = obj->base.dev;
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441
1b50247a 1442 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476
CW
1443
1444 BUG_ON(!list_empty(&obj->gpu_write_list));
1445 BUG_ON(!obj->active);
1446 obj->ring = NULL;
1447
1448 i915_gem_object_move_off_active(obj);
1449 obj->fenced_gpu_access = false;
caea7476
CW
1450
1451 obj->active = 0;
87ca9c8a 1452 obj->pending_gpu_write = false;
caea7476
CW
1453 drm_gem_object_unreference(&obj->base);
1454
1455 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1456}
673a394b 1457
963b4836
CW
1458/* Immediately discard the backing storage */
1459static void
05394f39 1460i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1461{
bb6baf76 1462 struct inode *inode;
963b4836 1463
ae9fed6b
CW
1464 /* Our goal here is to return as much of the memory as
1465 * is possible back to the system as we are called from OOM.
1466 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1467 * backing pages, *now*.
ae9fed6b 1468 */
05394f39 1469 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1470 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1471
a14917ee
CW
1472 if (obj->base.map_list.map)
1473 drm_gem_free_mmap_offset(&obj->base);
1474
05394f39 1475 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1476}
1477
1478static inline int
05394f39 1479i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1480{
05394f39 1481 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1482}
1483
63560396 1484static void
db53a302
CW
1485i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1486 uint32_t flush_domains)
63560396 1487{
05394f39 1488 struct drm_i915_gem_object *obj, *next;
63560396 1489
05394f39 1490 list_for_each_entry_safe(obj, next,
64193406 1491 &ring->gpu_write_list,
63560396 1492 gpu_write_list) {
05394f39
CW
1493 if (obj->base.write_domain & flush_domains) {
1494 uint32_t old_write_domain = obj->base.write_domain;
63560396 1495
05394f39
CW
1496 obj->base.write_domain = 0;
1497 list_del_init(&obj->gpu_write_list);
1ec14ad3 1498 i915_gem_object_move_to_active(obj, ring,
db53a302 1499 i915_gem_next_request_seqno(ring));
63560396 1500
63560396 1501 trace_i915_gem_object_change_domain(obj,
05394f39 1502 obj->base.read_domains,
63560396
DV
1503 old_write_domain);
1504 }
1505 }
1506}
8187a2b7 1507
53d227f2
DV
1508static u32
1509i915_gem_get_seqno(struct drm_device *dev)
1510{
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 u32 seqno = dev_priv->next_seqno;
1513
1514 /* reserve 0 for non-seqno */
1515 if (++dev_priv->next_seqno == 0)
1516 dev_priv->next_seqno = 1;
1517
1518 return seqno;
1519}
1520
1521u32
1522i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1523{
1524 if (ring->outstanding_lazy_request == 0)
1525 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1526
1527 return ring->outstanding_lazy_request;
1528}
1529
3cce469c 1530int
db53a302 1531i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1532 struct drm_file *file,
db53a302 1533 struct drm_i915_gem_request *request)
673a394b 1534{
db53a302 1535 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1536 uint32_t seqno;
a71d8d94 1537 u32 request_ring_position;
673a394b 1538 int was_empty;
3cce469c
CW
1539 int ret;
1540
1541 BUG_ON(request == NULL);
53d227f2 1542 seqno = i915_gem_next_request_seqno(ring);
673a394b 1543
a71d8d94
CW
1544 /* Record the position of the start of the request so that
1545 * should we detect the updated seqno part-way through the
1546 * GPU processing the request, we never over-estimate the
1547 * position of the head.
1548 */
1549 request_ring_position = intel_ring_get_tail(ring);
1550
3cce469c
CW
1551 ret = ring->add_request(ring, &seqno);
1552 if (ret)
1553 return ret;
673a394b 1554
db53a302 1555 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1556
1557 request->seqno = seqno;
852835f3 1558 request->ring = ring;
a71d8d94 1559 request->tail = request_ring_position;
673a394b 1560 request->emitted_jiffies = jiffies;
852835f3
ZN
1561 was_empty = list_empty(&ring->request_list);
1562 list_add_tail(&request->list, &ring->request_list);
1563
db53a302
CW
1564 if (file) {
1565 struct drm_i915_file_private *file_priv = file->driver_priv;
1566
1c25595f 1567 spin_lock(&file_priv->mm.lock);
f787a5f5 1568 request->file_priv = file_priv;
b962442e 1569 list_add_tail(&request->client_list,
f787a5f5 1570 &file_priv->mm.request_list);
1c25595f 1571 spin_unlock(&file_priv->mm.lock);
b962442e 1572 }
673a394b 1573
5391d0cf 1574 ring->outstanding_lazy_request = 0;
db53a302 1575
f65d9421 1576 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1577 if (i915_enable_hangcheck) {
1578 mod_timer(&dev_priv->hangcheck_timer,
1579 jiffies +
1580 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1581 }
f65d9421 1582 if (was_empty)
b3b079db
CW
1583 queue_delayed_work(dev_priv->wq,
1584 &dev_priv->mm.retire_work, HZ);
f65d9421 1585 }
3cce469c 1586 return 0;
673a394b
EA
1587}
1588
f787a5f5
CW
1589static inline void
1590i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1591{
1c25595f 1592 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1593
1c25595f
CW
1594 if (!file_priv)
1595 return;
1c5d22f7 1596
1c25595f 1597 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1598 if (request->file_priv) {
1599 list_del(&request->client_list);
1600 request->file_priv = NULL;
1601 }
1c25595f 1602 spin_unlock(&file_priv->mm.lock);
673a394b 1603}
673a394b 1604
dfaae392
CW
1605static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1606 struct intel_ring_buffer *ring)
9375e446 1607{
dfaae392
CW
1608 while (!list_empty(&ring->request_list)) {
1609 struct drm_i915_gem_request *request;
673a394b 1610
dfaae392
CW
1611 request = list_first_entry(&ring->request_list,
1612 struct drm_i915_gem_request,
1613 list);
de151cf6 1614
dfaae392 1615 list_del(&request->list);
f787a5f5 1616 i915_gem_request_remove_from_client(request);
dfaae392
CW
1617 kfree(request);
1618 }
673a394b 1619
dfaae392 1620 while (!list_empty(&ring->active_list)) {
05394f39 1621 struct drm_i915_gem_object *obj;
9375e446 1622
05394f39
CW
1623 obj = list_first_entry(&ring->active_list,
1624 struct drm_i915_gem_object,
1625 ring_list);
9375e446 1626
05394f39
CW
1627 obj->base.write_domain = 0;
1628 list_del_init(&obj->gpu_write_list);
1629 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1630 }
1631}
1632
312817a3
CW
1633static void i915_gem_reset_fences(struct drm_device *dev)
1634{
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 int i;
1637
4b9de737 1638 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1639 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1640
ada726c7 1641 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1642
ada726c7
CW
1643 if (reg->obj)
1644 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1645
ada726c7
CW
1646 reg->pin_count = 0;
1647 reg->obj = NULL;
1648 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1649 }
ada726c7
CW
1650
1651 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1652}
1653
069efc1d 1654void i915_gem_reset(struct drm_device *dev)
673a394b 1655{
77f01230 1656 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1657 struct drm_i915_gem_object *obj;
b4519513 1658 struct intel_ring_buffer *ring;
1ec14ad3 1659 int i;
673a394b 1660
b4519513
CW
1661 for_each_ring(ring, dev_priv, i)
1662 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392
CW
1663
1664 /* Remove anything from the flushing lists. The GPU cache is likely
1665 * to be lost on reset along with the data, so simply move the
1666 * lost bo to the inactive list.
1667 */
1668 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1669 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1670 struct drm_i915_gem_object,
1671 mm_list);
dfaae392 1672
05394f39
CW
1673 obj->base.write_domain = 0;
1674 list_del_init(&obj->gpu_write_list);
1675 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1676 }
1677
1678 /* Move everything out of the GPU domains to ensure we do any
1679 * necessary invalidation upon reuse.
1680 */
05394f39 1681 list_for_each_entry(obj,
77f01230 1682 &dev_priv->mm.inactive_list,
69dc4987 1683 mm_list)
77f01230 1684 {
05394f39 1685 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1686 }
069efc1d
CW
1687
1688 /* The fence registers are invalidated so clear them out */
312817a3 1689 i915_gem_reset_fences(dev);
673a394b
EA
1690}
1691
1692/**
1693 * This function clears the request list as sequence numbers are passed.
1694 */
a71d8d94 1695void
db53a302 1696i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1697{
673a394b 1698 uint32_t seqno;
1ec14ad3 1699 int i;
673a394b 1700
db53a302 1701 if (list_empty(&ring->request_list))
6c0594a3
KW
1702 return;
1703
db53a302 1704 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1705
78501eac 1706 seqno = ring->get_seqno(ring);
1ec14ad3 1707
076e2c0e 1708 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1709 if (seqno >= ring->sync_seqno[i])
1710 ring->sync_seqno[i] = 0;
1711
852835f3 1712 while (!list_empty(&ring->request_list)) {
673a394b 1713 struct drm_i915_gem_request *request;
673a394b 1714
852835f3 1715 request = list_first_entry(&ring->request_list,
673a394b
EA
1716 struct drm_i915_gem_request,
1717 list);
673a394b 1718
dfaae392 1719 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1720 break;
1721
db53a302 1722 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1723 /* We know the GPU must have read the request to have
1724 * sent us the seqno + interrupt, so use the position
1725 * of tail of the request to update the last known position
1726 * of the GPU head.
1727 */
1728 ring->last_retired_head = request->tail;
b84d5f0c
CW
1729
1730 list_del(&request->list);
f787a5f5 1731 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1732 kfree(request);
1733 }
673a394b 1734
b84d5f0c
CW
1735 /* Move any buffers on the active list that are no longer referenced
1736 * by the ringbuffer to the flushing/inactive lists as appropriate.
1737 */
1738 while (!list_empty(&ring->active_list)) {
05394f39 1739 struct drm_i915_gem_object *obj;
b84d5f0c 1740
0206e353 1741 obj = list_first_entry(&ring->active_list,
05394f39
CW
1742 struct drm_i915_gem_object,
1743 ring_list);
673a394b 1744
05394f39 1745 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1746 break;
b84d5f0c 1747
05394f39 1748 if (obj->base.write_domain != 0)
b84d5f0c
CW
1749 i915_gem_object_move_to_flushing(obj);
1750 else
1751 i915_gem_object_move_to_inactive(obj);
673a394b 1752 }
9d34e5db 1753
db53a302
CW
1754 if (unlikely(ring->trace_irq_seqno &&
1755 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1756 ring->irq_put(ring);
db53a302 1757 ring->trace_irq_seqno = 0;
9d34e5db 1758 }
23bc5982 1759
db53a302 1760 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1761}
1762
b09a1fec
CW
1763void
1764i915_gem_retire_requests(struct drm_device *dev)
1765{
1766 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1767 struct intel_ring_buffer *ring;
1ec14ad3 1768 int i;
b09a1fec 1769
b4519513
CW
1770 for_each_ring(ring, dev_priv, i)
1771 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1772}
1773
75ef9da2 1774static void
673a394b
EA
1775i915_gem_retire_work_handler(struct work_struct *work)
1776{
1777 drm_i915_private_t *dev_priv;
1778 struct drm_device *dev;
b4519513 1779 struct intel_ring_buffer *ring;
0a58705b
CW
1780 bool idle;
1781 int i;
673a394b
EA
1782
1783 dev_priv = container_of(work, drm_i915_private_t,
1784 mm.retire_work.work);
1785 dev = dev_priv->dev;
1786
891b48cf
CW
1787 /* Come back later if the device is busy... */
1788 if (!mutex_trylock(&dev->struct_mutex)) {
1789 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1790 return;
1791 }
1792
b09a1fec 1793 i915_gem_retire_requests(dev);
d1b851fc 1794
0a58705b
CW
1795 /* Send a periodic flush down the ring so we don't hold onto GEM
1796 * objects indefinitely.
1797 */
1798 idle = true;
b4519513 1799 for_each_ring(ring, dev_priv, i) {
0a58705b
CW
1800 if (!list_empty(&ring->gpu_write_list)) {
1801 struct drm_i915_gem_request *request;
1802 int ret;
1803
db53a302
CW
1804 ret = i915_gem_flush_ring(ring,
1805 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1806 request = kzalloc(sizeof(*request), GFP_KERNEL);
1807 if (ret || request == NULL ||
db53a302 1808 i915_add_request(ring, NULL, request))
0a58705b
CW
1809 kfree(request);
1810 }
1811
1812 idle &= list_empty(&ring->request_list);
1813 }
1814
1815 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1816 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1817
673a394b
EA
1818 mutex_unlock(&dev->struct_mutex);
1819}
1820
b4aca010
BW
1821static int
1822i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1823{
1824 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1825
1826 if (atomic_read(&dev_priv->mm.wedged)) {
1827 struct completion *x = &dev_priv->error_completion;
1828 bool recovery_complete;
1829 unsigned long flags;
1830
1831 /* Give the error handler a chance to run. */
1832 spin_lock_irqsave(&x->wait.lock, flags);
1833 recovery_complete = x->done > 0;
1834 spin_unlock_irqrestore(&x->wait.lock, flags);
1835
1836 return recovery_complete ? -EIO : -EAGAIN;
1837 }
1838
1839 return 0;
1840}
1841
1842/*
1843 * Compare seqno against outstanding lazy request. Emit a request if they are
1844 * equal.
1845 */
1846static int
1847i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1848{
1849 int ret = 0;
1850
1851 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1852
1853 if (seqno == ring->outstanding_lazy_request) {
1854 struct drm_i915_gem_request *request;
1855
1856 request = kzalloc(sizeof(*request), GFP_KERNEL);
1857 if (request == NULL)
1858 return -ENOMEM;
1859
1860 ret = i915_add_request(ring, NULL, request);
1861 if (ret) {
1862 kfree(request);
1863 return ret;
1864 }
1865
1866 BUG_ON(seqno != request->seqno);
1867 }
1868
1869 return ret;
1870}
1871
5c81fe85
BW
1872/**
1873 * __wait_seqno - wait until execution of seqno has finished
1874 * @ring: the ring expected to report seqno
1875 * @seqno: duh!
1876 * @interruptible: do an interruptible wait (normally yes)
1877 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1878 *
1879 * Returns 0 if the seqno was found within the alloted time. Else returns the
1880 * errno with remaining time filled in timeout argument.
1881 */
604dd3ec 1882static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1883 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1884{
1885 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1886 struct timespec before, now, wait_time={1,0};
1887 unsigned long timeout_jiffies;
1888 long end;
1889 bool wait_forever = true;
604dd3ec
BW
1890
1891 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1892 return 0;
1893
1894 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1895
1896 if (timeout != NULL) {
1897 wait_time = *timeout;
1898 wait_forever = false;
1899 }
1900
1901 timeout_jiffies = timespec_to_jiffies(&wait_time);
1902
604dd3ec
BW
1903 if (WARN_ON(!ring->irq_get(ring)))
1904 return -ENODEV;
1905
5c81fe85
BW
1906 /* Record current time in case interrupted by signal, or wedged * */
1907 getrawmonotonic(&before);
1908
604dd3ec
BW
1909#define EXIT_COND \
1910 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1911 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1912 do {
1913 if (interruptible)
1914 end = wait_event_interruptible_timeout(ring->irq_queue,
1915 EXIT_COND,
1916 timeout_jiffies);
1917 else
1918 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1919 timeout_jiffies);
604dd3ec 1920
5c81fe85
BW
1921 if (atomic_read(&dev_priv->mm.wedged))
1922 end = -EAGAIN;
1923 } while (end == 0 && wait_forever);
1924
1925 getrawmonotonic(&now);
604dd3ec
BW
1926
1927 ring->irq_put(ring);
1928 trace_i915_gem_request_wait_end(ring, seqno);
1929#undef EXIT_COND
1930
5c81fe85
BW
1931 if (timeout) {
1932 struct timespec sleep_time = timespec_sub(now, before);
1933 *timeout = timespec_sub(*timeout, sleep_time);
1934 }
1935
1936 switch (end) {
1937 case -EAGAIN: /* Wedged */
1938 case -ERESTARTSYS: /* Signal */
1939 return (int)end;
1940 case 0: /* Timeout */
1941 if (timeout)
1942 set_normalized_timespec(timeout, 0, 0);
1943 return -ETIME;
1944 default: /* Completed */
1945 WARN_ON(end < 0); /* We're not aware of other errors */
1946 return 0;
1947 }
604dd3ec
BW
1948}
1949
db53a302
CW
1950/**
1951 * Waits for a sequence number to be signaled, and cleans up the
1952 * request and object lists appropriately for that event.
1953 */
5a5a0c64 1954int
199b2bc2 1955i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 1956{
db53a302 1957 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1958 int ret = 0;
1959
1960 BUG_ON(seqno == 0);
1961
b4aca010
BW
1962 ret = i915_gem_check_wedge(dev_priv);
1963 if (ret)
1964 return ret;
3cce469c 1965
b4aca010
BW
1966 ret = i915_gem_check_olr(ring, seqno);
1967 if (ret)
1968 return ret;
ffed1d09 1969
5c81fe85 1970 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 1971
673a394b
EA
1972 return ret;
1973}
1974
673a394b
EA
1975/**
1976 * Ensures that all rendering to the object has completed and the object is
1977 * safe to unbind from the GTT or access from the CPU.
1978 */
54cf91dc 1979int
ce453d81 1980i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1981{
673a394b
EA
1982 int ret;
1983
e47c68e9
EA
1984 /* This function only exists to support waiting for existing rendering,
1985 * not for emitting required flushes.
673a394b 1986 */
05394f39 1987 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1988
1989 /* If there is rendering queued on the buffer being evicted, wait for
1990 * it.
1991 */
05394f39 1992 if (obj->active) {
199b2bc2 1993 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2cf34d7b 1994 if (ret)
673a394b 1995 return ret;
b2da9fe5 1996 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
1997 }
1998
1999 return 0;
2000}
2001
23ba4fd0
BW
2002/**
2003 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2004 * @DRM_IOCTL_ARGS: standard ioctl arguments
2005 *
2006 * Returns 0 if successful, else an error is returned with the remaining time in
2007 * the timeout parameter.
2008 * -ETIME: object is still busy after timeout
2009 * -ERESTARTSYS: signal interrupted the wait
2010 * -ENONENT: object doesn't exist
2011 * Also possible, but rare:
2012 * -EAGAIN: GPU wedged
2013 * -ENOMEM: damn
2014 * -ENODEV: Internal IRQ fail
2015 * -E?: The add request failed
2016 *
2017 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2018 * non-zero timeout parameter the wait ioctl will wait for the given number of
2019 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2020 * without holding struct_mutex the object may become re-busied before this
2021 * function completes. A similar but shorter * race condition exists in the busy
2022 * ioctl
2023 */
2024int
2025i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2026{
2027 struct drm_i915_gem_wait *args = data;
2028 struct drm_i915_gem_object *obj;
2029 struct intel_ring_buffer *ring = NULL;
2030 struct timespec timeout;
2031 u32 seqno = 0;
2032 int ret = 0;
2033
2034 timeout = ns_to_timespec(args->timeout_ns);
2035
2036 ret = i915_mutex_lock_interruptible(dev);
2037 if (ret)
2038 return ret;
2039
2040 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2041 if (&obj->base == NULL) {
2042 mutex_unlock(&dev->struct_mutex);
2043 return -ENOENT;
2044 }
2045
2046 /* Need to make sure the object is flushed first. This non-obvious
2047 * flush is required to enforce that (active && !olr) == no wait
2048 * necessary.
2049 */
2050 ret = i915_gem_object_flush_gpu_write_domain(obj);
2051 if (ret)
2052 goto out;
2053
2054 if (obj->active) {
2055 seqno = obj->last_rendering_seqno;
2056 ring = obj->ring;
2057 }
2058
2059 if (seqno == 0)
2060 goto out;
2061
2062 ret = i915_gem_check_olr(ring, seqno);
2063 if (ret)
2064 goto out;
2065
2066 /* Do this after OLR check to make sure we make forward progress polling
2067 * on this IOCTL with a 0 timeout (like busy ioctl)
2068 */
2069 if (!args->timeout_ns) {
2070 ret = -ETIME;
2071 goto out;
2072 }
2073
2074 drm_gem_object_unreference(&obj->base);
2075 mutex_unlock(&dev->struct_mutex);
2076
2077 ret = __wait_seqno(ring, seqno, true, &timeout);
2078 WARN_ON(!timespec_valid(&timeout));
2079 args->timeout_ns = timespec_to_ns(&timeout);
2080 return ret;
2081
2082out:
2083 drm_gem_object_unreference(&obj->base);
2084 mutex_unlock(&dev->struct_mutex);
2085 return ret;
2086}
2087
5816d648
BW
2088/**
2089 * i915_gem_object_sync - sync an object to a ring.
2090 *
2091 * @obj: object which may be in use on another ring.
2092 * @to: ring we wish to use the object on. May be NULL.
2093 *
2094 * This code is meant to abstract object synchronization with the GPU.
2095 * Calling with NULL implies synchronizing the object with the CPU
2096 * rather than a particular GPU ring.
2097 *
2098 * Returns 0 if successful, else propagates up the lower layer error.
2099 */
2911a35b
BW
2100int
2101i915_gem_object_sync(struct drm_i915_gem_object *obj,
2102 struct intel_ring_buffer *to)
2103{
2104 struct intel_ring_buffer *from = obj->ring;
2105 u32 seqno;
2106 int ret, idx;
2107
2108 if (from == NULL || to == from)
2109 return 0;
2110
5816d648 2111 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
2112 return i915_gem_object_wait_rendering(obj);
2113
2114 idx = intel_ring_sync_index(from, to);
2115
2116 seqno = obj->last_rendering_seqno;
2117 if (seqno <= from->sync_seqno[idx])
2118 return 0;
2119
b4aca010
BW
2120 ret = i915_gem_check_olr(obj->ring, seqno);
2121 if (ret)
2122 return ret;
2911a35b 2123
1500f7ea 2124 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2125 if (!ret)
2126 from->sync_seqno[idx] = seqno;
2911a35b 2127
e3a5a225 2128 return ret;
2911a35b
BW
2129}
2130
b5ffc9bc
CW
2131static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2132{
2133 u32 old_write_domain, old_read_domains;
2134
b5ffc9bc
CW
2135 /* Act a barrier for all accesses through the GTT */
2136 mb();
2137
2138 /* Force a pagefault for domain tracking on next user access */
2139 i915_gem_release_mmap(obj);
2140
b97c3d9c
KP
2141 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2142 return;
2143
b5ffc9bc
CW
2144 old_read_domains = obj->base.read_domains;
2145 old_write_domain = obj->base.write_domain;
2146
2147 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2148 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2149
2150 trace_i915_gem_object_change_domain(obj,
2151 old_read_domains,
2152 old_write_domain);
2153}
2154
673a394b
EA
2155/**
2156 * Unbinds an object from the GTT aperture.
2157 */
0f973f27 2158int
05394f39 2159i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2160{
7bddb01f 2161 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2162 int ret = 0;
2163
05394f39 2164 if (obj->gtt_space == NULL)
673a394b
EA
2165 return 0;
2166
05394f39 2167 if (obj->pin_count != 0) {
673a394b
EA
2168 DRM_ERROR("Attempting to unbind pinned buffer\n");
2169 return -EINVAL;
2170 }
2171
a8198eea 2172 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2173 if (ret)
a8198eea
CW
2174 return ret;
2175 /* Continue on if we fail due to EIO, the GPU is hung so we
2176 * should be safe and we need to cleanup or else we might
2177 * cause memory corruption through use-after-free.
2178 */
2179
b5ffc9bc 2180 i915_gem_object_finish_gtt(obj);
5323fd04 2181
673a394b
EA
2182 /* Move the object to the CPU domain to ensure that
2183 * any possible CPU writes while it's not in the GTT
a8198eea 2184 * are flushed when we go to remap it.
673a394b 2185 */
a8198eea
CW
2186 if (ret == 0)
2187 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2188 if (ret == -ERESTARTSYS)
673a394b 2189 return ret;
812ed492 2190 if (ret) {
a8198eea
CW
2191 /* In the event of a disaster, abandon all caches and
2192 * hope for the best.
2193 */
812ed492 2194 i915_gem_clflush_object(obj);
05394f39 2195 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2196 }
673a394b 2197
96b47b65 2198 /* release the fence reg _after_ flushing */
d9e86c0e 2199 ret = i915_gem_object_put_fence(obj);
1488fc08 2200 if (ret)
d9e86c0e 2201 return ret;
96b47b65 2202
db53a302
CW
2203 trace_i915_gem_object_unbind(obj);
2204
74898d7e
DV
2205 if (obj->has_global_gtt_mapping)
2206 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2207 if (obj->has_aliasing_ppgtt_mapping) {
2208 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2209 obj->has_aliasing_ppgtt_mapping = 0;
2210 }
74163907 2211 i915_gem_gtt_finish_object(obj);
7bddb01f 2212
e5281ccd 2213 i915_gem_object_put_pages_gtt(obj);
673a394b 2214
6299f992 2215 list_del_init(&obj->gtt_list);
05394f39 2216 list_del_init(&obj->mm_list);
75e9e915 2217 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2218 obj->map_and_fenceable = true;
673a394b 2219
05394f39
CW
2220 drm_mm_put_block(obj->gtt_space);
2221 obj->gtt_space = NULL;
2222 obj->gtt_offset = 0;
673a394b 2223
05394f39 2224 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2225 i915_gem_object_truncate(obj);
2226
8dc1775d 2227 return ret;
673a394b
EA
2228}
2229
88241785 2230int
db53a302 2231i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2232 uint32_t invalidate_domains,
2233 uint32_t flush_domains)
2234{
88241785
CW
2235 int ret;
2236
36d527de
CW
2237 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2238 return 0;
2239
db53a302
CW
2240 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2241
88241785
CW
2242 ret = ring->flush(ring, invalidate_domains, flush_domains);
2243 if (ret)
2244 return ret;
2245
36d527de
CW
2246 if (flush_domains & I915_GEM_GPU_DOMAINS)
2247 i915_gem_process_flushing_list(ring, flush_domains);
2248
88241785 2249 return 0;
54cf91dc
CW
2250}
2251
b2da9fe5 2252static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2253{
88241785
CW
2254 int ret;
2255
395b70be 2256 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2257 return 0;
2258
88241785 2259 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2260 ret = i915_gem_flush_ring(ring,
0ac74c6b 2261 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2262 if (ret)
2263 return ret;
2264 }
2265
199b2bc2 2266 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2267}
2268
b2da9fe5 2269int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2270{
2271 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2272 struct intel_ring_buffer *ring;
1ec14ad3 2273 int ret, i;
4df2faf4 2274
4df2faf4 2275 /* Flush everything onto the inactive list. */
b4519513
CW
2276 for_each_ring(ring, dev_priv, i) {
2277 ret = i915_ring_idle(ring);
1ec14ad3
CW
2278 if (ret)
2279 return ret;
b4519513
CW
2280
2281 /* Is the device fubar? */
2282 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2283 return -EBUSY;
1ec14ad3 2284 }
4df2faf4 2285
8a1a49f9 2286 return 0;
4df2faf4
DV
2287}
2288
9ce079e4
CW
2289static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2290 struct drm_i915_gem_object *obj)
4e901fdc 2291{
4e901fdc 2292 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2293 uint64_t val;
2294
9ce079e4
CW
2295 if (obj) {
2296 u32 size = obj->gtt_space->size;
4e901fdc 2297
9ce079e4
CW
2298 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2299 0xfffff000) << 32;
2300 val |= obj->gtt_offset & 0xfffff000;
2301 val |= (uint64_t)((obj->stride / 128) - 1) <<
2302 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2303
9ce079e4
CW
2304 if (obj->tiling_mode == I915_TILING_Y)
2305 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2306 val |= I965_FENCE_REG_VALID;
2307 } else
2308 val = 0;
c6642782 2309
9ce079e4
CW
2310 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2311 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2312}
2313
9ce079e4
CW
2314static void i965_write_fence_reg(struct drm_device *dev, int reg,
2315 struct drm_i915_gem_object *obj)
de151cf6 2316{
de151cf6 2317 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2318 uint64_t val;
2319
9ce079e4
CW
2320 if (obj) {
2321 u32 size = obj->gtt_space->size;
de151cf6 2322
9ce079e4
CW
2323 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2324 0xfffff000) << 32;
2325 val |= obj->gtt_offset & 0xfffff000;
2326 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2327 if (obj->tiling_mode == I915_TILING_Y)
2328 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2329 val |= I965_FENCE_REG_VALID;
2330 } else
2331 val = 0;
c6642782 2332
9ce079e4
CW
2333 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2334 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2335}
2336
9ce079e4
CW
2337static void i915_write_fence_reg(struct drm_device *dev, int reg,
2338 struct drm_i915_gem_object *obj)
de151cf6 2339{
de151cf6 2340 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2341 u32 val;
de151cf6 2342
9ce079e4
CW
2343 if (obj) {
2344 u32 size = obj->gtt_space->size;
2345 int pitch_val;
2346 int tile_width;
c6642782 2347
9ce079e4
CW
2348 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2349 (size & -size) != size ||
2350 (obj->gtt_offset & (size - 1)),
2351 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2352 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2353
9ce079e4
CW
2354 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2355 tile_width = 128;
2356 else
2357 tile_width = 512;
2358
2359 /* Note: pitch better be a power of two tile widths */
2360 pitch_val = obj->stride / tile_width;
2361 pitch_val = ffs(pitch_val) - 1;
2362
2363 val = obj->gtt_offset;
2364 if (obj->tiling_mode == I915_TILING_Y)
2365 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2366 val |= I915_FENCE_SIZE_BITS(size);
2367 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2368 val |= I830_FENCE_REG_VALID;
2369 } else
2370 val = 0;
2371
2372 if (reg < 8)
2373 reg = FENCE_REG_830_0 + reg * 4;
2374 else
2375 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2376
2377 I915_WRITE(reg, val);
2378 POSTING_READ(reg);
de151cf6
JB
2379}
2380
9ce079e4
CW
2381static void i830_write_fence_reg(struct drm_device *dev, int reg,
2382 struct drm_i915_gem_object *obj)
de151cf6 2383{
de151cf6 2384 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2385 uint32_t val;
de151cf6 2386
9ce079e4
CW
2387 if (obj) {
2388 u32 size = obj->gtt_space->size;
2389 uint32_t pitch_val;
de151cf6 2390
9ce079e4
CW
2391 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2392 (size & -size) != size ||
2393 (obj->gtt_offset & (size - 1)),
2394 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2395 obj->gtt_offset, size);
e76a16de 2396
9ce079e4
CW
2397 pitch_val = obj->stride / 128;
2398 pitch_val = ffs(pitch_val) - 1;
de151cf6 2399
9ce079e4
CW
2400 val = obj->gtt_offset;
2401 if (obj->tiling_mode == I915_TILING_Y)
2402 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2403 val |= I830_FENCE_SIZE_BITS(size);
2404 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2405 val |= I830_FENCE_REG_VALID;
2406 } else
2407 val = 0;
c6642782 2408
9ce079e4
CW
2409 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2410 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2411}
2412
2413static void i915_gem_write_fence(struct drm_device *dev, int reg,
2414 struct drm_i915_gem_object *obj)
2415{
2416 switch (INTEL_INFO(dev)->gen) {
2417 case 7:
2418 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2419 case 5:
2420 case 4: i965_write_fence_reg(dev, reg, obj); break;
2421 case 3: i915_write_fence_reg(dev, reg, obj); break;
2422 case 2: i830_write_fence_reg(dev, reg, obj); break;
2423 default: break;
2424 }
de151cf6
JB
2425}
2426
61050808
CW
2427static inline int fence_number(struct drm_i915_private *dev_priv,
2428 struct drm_i915_fence_reg *fence)
2429{
2430 return fence - dev_priv->fence_regs;
2431}
2432
2433static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2434 struct drm_i915_fence_reg *fence,
2435 bool enable)
2436{
2437 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2438 int reg = fence_number(dev_priv, fence);
2439
2440 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2441
2442 if (enable) {
2443 obj->fence_reg = reg;
2444 fence->obj = obj;
2445 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2446 } else {
2447 obj->fence_reg = I915_FENCE_REG_NONE;
2448 fence->obj = NULL;
2449 list_del_init(&fence->lru_list);
2450 }
2451}
2452
d9e86c0e 2453static int
a360bb1a 2454i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2455{
2456 int ret;
2457
2458 if (obj->fenced_gpu_access) {
88241785 2459 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2460 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2461 0, obj->base.write_domain);
2462 if (ret)
2463 return ret;
2464 }
d9e86c0e
CW
2465
2466 obj->fenced_gpu_access = false;
2467 }
2468
1c293ea3 2469 if (obj->last_fenced_seqno) {
199b2bc2 2470 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2471 if (ret)
2472 return ret;
d9e86c0e
CW
2473
2474 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2475 }
2476
63256ec5
CW
2477 /* Ensure that all CPU reads are completed before installing a fence
2478 * and all writes before removing the fence.
2479 */
2480 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2481 mb();
2482
d9e86c0e
CW
2483 return 0;
2484}
2485
2486int
2487i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2488{
61050808 2489 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2490 int ret;
2491
a360bb1a 2492 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2493 if (ret)
2494 return ret;
2495
61050808
CW
2496 if (obj->fence_reg == I915_FENCE_REG_NONE)
2497 return 0;
d9e86c0e 2498
61050808
CW
2499 i915_gem_object_update_fence(obj,
2500 &dev_priv->fence_regs[obj->fence_reg],
2501 false);
2502 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2503
2504 return 0;
2505}
2506
2507static struct drm_i915_fence_reg *
a360bb1a 2508i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2509{
ae3db24a 2510 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2511 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2512 int i;
ae3db24a
DV
2513
2514 /* First try to find a free reg */
d9e86c0e 2515 avail = NULL;
ae3db24a
DV
2516 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2517 reg = &dev_priv->fence_regs[i];
2518 if (!reg->obj)
d9e86c0e 2519 return reg;
ae3db24a 2520
1690e1eb 2521 if (!reg->pin_count)
d9e86c0e 2522 avail = reg;
ae3db24a
DV
2523 }
2524
d9e86c0e
CW
2525 if (avail == NULL)
2526 return NULL;
ae3db24a
DV
2527
2528 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2529 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2530 if (reg->pin_count)
ae3db24a
DV
2531 continue;
2532
8fe301ad 2533 return reg;
ae3db24a
DV
2534 }
2535
8fe301ad 2536 return NULL;
ae3db24a
DV
2537}
2538
de151cf6 2539/**
9a5a53b3 2540 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2541 * @obj: object to map through a fence reg
2542 *
2543 * When mapping objects through the GTT, userspace wants to be able to write
2544 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2545 * This function walks the fence regs looking for a free one for @obj,
2546 * stealing one if it can't find any.
2547 *
2548 * It then sets up the reg based on the object's properties: address, pitch
2549 * and tiling format.
9a5a53b3
CW
2550 *
2551 * For an untiled surface, this removes any existing fence.
de151cf6 2552 */
8c4b8c3f 2553int
06d98131 2554i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2555{
05394f39 2556 struct drm_device *dev = obj->base.dev;
79e53945 2557 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2558 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2559 struct drm_i915_fence_reg *reg;
ae3db24a 2560 int ret;
de151cf6 2561
14415745
CW
2562 /* Have we updated the tiling parameters upon the object and so
2563 * will need to serialise the write to the associated fence register?
2564 */
5d82e3e6 2565 if (obj->fence_dirty) {
14415745
CW
2566 ret = i915_gem_object_flush_fence(obj);
2567 if (ret)
2568 return ret;
2569 }
9a5a53b3 2570
d9e86c0e 2571 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2572 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2573 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2574 if (!obj->fence_dirty) {
14415745
CW
2575 list_move_tail(&reg->lru_list,
2576 &dev_priv->mm.fence_list);
2577 return 0;
2578 }
2579 } else if (enable) {
2580 reg = i915_find_fence_reg(dev);
2581 if (reg == NULL)
2582 return -EDEADLK;
d9e86c0e 2583
14415745
CW
2584 if (reg->obj) {
2585 struct drm_i915_gem_object *old = reg->obj;
2586
2587 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2588 if (ret)
2589 return ret;
2590
14415745 2591 i915_gem_object_fence_lost(old);
29c5a587 2592 }
14415745 2593 } else
a09ba7fa 2594 return 0;
a09ba7fa 2595
14415745 2596 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2597 obj->fence_dirty = false;
14415745 2598
9ce079e4 2599 return 0;
de151cf6
JB
2600}
2601
673a394b
EA
2602/**
2603 * Finds free space in the GTT aperture and binds the object there.
2604 */
2605static int
05394f39 2606i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2607 unsigned alignment,
75e9e915 2608 bool map_and_fenceable)
673a394b 2609{
05394f39 2610 struct drm_device *dev = obj->base.dev;
673a394b 2611 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2612 struct drm_mm_node *free_space;
a00b10c3 2613 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2614 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2615 bool mappable, fenceable;
07f73f69 2616 int ret;
673a394b 2617
05394f39 2618 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2619 DRM_ERROR("Attempting to bind a purgeable object\n");
2620 return -EINVAL;
2621 }
2622
e28f8711
CW
2623 fence_size = i915_gem_get_gtt_size(dev,
2624 obj->base.size,
2625 obj->tiling_mode);
2626 fence_alignment = i915_gem_get_gtt_alignment(dev,
2627 obj->base.size,
2628 obj->tiling_mode);
2629 unfenced_alignment =
2630 i915_gem_get_unfenced_gtt_alignment(dev,
2631 obj->base.size,
2632 obj->tiling_mode);
a00b10c3 2633
673a394b 2634 if (alignment == 0)
5e783301
DV
2635 alignment = map_and_fenceable ? fence_alignment :
2636 unfenced_alignment;
75e9e915 2637 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2638 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2639 return -EINVAL;
2640 }
2641
05394f39 2642 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2643
654fc607
CW
2644 /* If the object is bigger than the entire aperture, reject it early
2645 * before evicting everything in a vain attempt to find space.
2646 */
05394f39 2647 if (obj->base.size >
75e9e915 2648 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2649 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2650 return -E2BIG;
2651 }
2652
673a394b 2653 search_free:
75e9e915 2654 if (map_and_fenceable)
920afa77
DV
2655 free_space =
2656 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2657 size, alignment, 0,
920afa77
DV
2658 dev_priv->mm.gtt_mappable_end,
2659 0);
2660 else
2661 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2662 size, alignment, 0);
920afa77
DV
2663
2664 if (free_space != NULL) {
75e9e915 2665 if (map_and_fenceable)
05394f39 2666 obj->gtt_space =
920afa77 2667 drm_mm_get_block_range_generic(free_space,
a00b10c3 2668 size, alignment, 0,
920afa77
DV
2669 dev_priv->mm.gtt_mappable_end,
2670 0);
2671 else
05394f39 2672 obj->gtt_space =
a00b10c3 2673 drm_mm_get_block(free_space, size, alignment);
920afa77 2674 }
05394f39 2675 if (obj->gtt_space == NULL) {
673a394b
EA
2676 /* If the gtt is empty and we're still having trouble
2677 * fitting our object in, we're out of memory.
2678 */
75e9e915
DV
2679 ret = i915_gem_evict_something(dev, size, alignment,
2680 map_and_fenceable);
9731129c 2681 if (ret)
673a394b 2682 return ret;
9731129c 2683
673a394b
EA
2684 goto search_free;
2685 }
2686
e5281ccd 2687 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2688 if (ret) {
05394f39
CW
2689 drm_mm_put_block(obj->gtt_space);
2690 obj->gtt_space = NULL;
07f73f69
CW
2691
2692 if (ret == -ENOMEM) {
809b6334
CW
2693 /* first try to reclaim some memory by clearing the GTT */
2694 ret = i915_gem_evict_everything(dev, false);
07f73f69 2695 if (ret) {
07f73f69 2696 /* now try to shrink everyone else */
4bdadb97
CW
2697 if (gfpmask) {
2698 gfpmask = 0;
2699 goto search_free;
07f73f69
CW
2700 }
2701
809b6334 2702 return -ENOMEM;
07f73f69
CW
2703 }
2704
2705 goto search_free;
2706 }
2707
673a394b
EA
2708 return ret;
2709 }
2710
74163907 2711 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2712 if (ret) {
e5281ccd 2713 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2714 drm_mm_put_block(obj->gtt_space);
2715 obj->gtt_space = NULL;
07f73f69 2716
809b6334 2717 if (i915_gem_evict_everything(dev, false))
07f73f69 2718 return ret;
07f73f69
CW
2719
2720 goto search_free;
673a394b 2721 }
673a394b 2722
0ebb9829
DV
2723 if (!dev_priv->mm.aliasing_ppgtt)
2724 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2725
6299f992 2726 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2727 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2728
673a394b
EA
2729 /* Assert that the object is not currently in any GPU domain. As it
2730 * wasn't in the GTT, there shouldn't be any way it could have been in
2731 * a GPU cache
2732 */
05394f39
CW
2733 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2734 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2735
6299f992 2736 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2737
75e9e915 2738 fenceable =
05394f39 2739 obj->gtt_space->size == fence_size &&
0206e353 2740 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2741
75e9e915 2742 mappable =
05394f39 2743 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2744
05394f39 2745 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2746
db53a302 2747 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2748 return 0;
2749}
2750
2751void
05394f39 2752i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2753{
673a394b
EA
2754 /* If we don't have a page list set up, then we're not pinned
2755 * to GPU, and we can ignore the cache flush because it'll happen
2756 * again at bind time.
2757 */
05394f39 2758 if (obj->pages == NULL)
673a394b
EA
2759 return;
2760
9c23f7fc
CW
2761 /* If the GPU is snooping the contents of the CPU cache,
2762 * we do not need to manually clear the CPU cache lines. However,
2763 * the caches are only snooped when the render cache is
2764 * flushed/invalidated. As we always have to emit invalidations
2765 * and flushes when moving into and out of the RENDER domain, correct
2766 * snooping behaviour occurs naturally as the result of our domain
2767 * tracking.
2768 */
2769 if (obj->cache_level != I915_CACHE_NONE)
2770 return;
2771
1c5d22f7 2772 trace_i915_gem_object_clflush(obj);
cfa16a0d 2773
05394f39 2774 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2775}
2776
e47c68e9 2777/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2778static int
3619df03 2779i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2780{
05394f39 2781 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2782 return 0;
e47c68e9
EA
2783
2784 /* Queue the GPU write cache flushing we need. */
db53a302 2785 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2786}
2787
2788/** Flushes the GTT write domain for the object if it's dirty. */
2789static void
05394f39 2790i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2791{
1c5d22f7
CW
2792 uint32_t old_write_domain;
2793
05394f39 2794 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2795 return;
2796
63256ec5 2797 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2798 * to it immediately go to main memory as far as we know, so there's
2799 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2800 *
2801 * However, we do have to enforce the order so that all writes through
2802 * the GTT land before any writes to the device, such as updates to
2803 * the GATT itself.
e47c68e9 2804 */
63256ec5
CW
2805 wmb();
2806
05394f39
CW
2807 old_write_domain = obj->base.write_domain;
2808 obj->base.write_domain = 0;
1c5d22f7
CW
2809
2810 trace_i915_gem_object_change_domain(obj,
05394f39 2811 obj->base.read_domains,
1c5d22f7 2812 old_write_domain);
e47c68e9
EA
2813}
2814
2815/** Flushes the CPU write domain for the object if it's dirty. */
2816static void
05394f39 2817i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2818{
1c5d22f7 2819 uint32_t old_write_domain;
e47c68e9 2820
05394f39 2821 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2822 return;
2823
2824 i915_gem_clflush_object(obj);
40ce6575 2825 intel_gtt_chipset_flush();
05394f39
CW
2826 old_write_domain = obj->base.write_domain;
2827 obj->base.write_domain = 0;
1c5d22f7
CW
2828
2829 trace_i915_gem_object_change_domain(obj,
05394f39 2830 obj->base.read_domains,
1c5d22f7 2831 old_write_domain);
e47c68e9
EA
2832}
2833
2ef7eeaa
EA
2834/**
2835 * Moves a single object to the GTT read, and possibly write domain.
2836 *
2837 * This function returns when the move is complete, including waiting on
2838 * flushes to occur.
2839 */
79e53945 2840int
2021746e 2841i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2842{
8325a09d 2843 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2844 uint32_t old_write_domain, old_read_domains;
e47c68e9 2845 int ret;
2ef7eeaa 2846
02354392 2847 /* Not valid to be called on unbound objects. */
05394f39 2848 if (obj->gtt_space == NULL)
02354392
EA
2849 return -EINVAL;
2850
8d7e3de1
CW
2851 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2852 return 0;
2853
88241785
CW
2854 ret = i915_gem_object_flush_gpu_write_domain(obj);
2855 if (ret)
2856 return ret;
2857
87ca9c8a 2858 if (obj->pending_gpu_write || write) {
ce453d81 2859 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2860 if (ret)
2861 return ret;
2862 }
2dafb1e0 2863
7213342d 2864 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2865
05394f39
CW
2866 old_write_domain = obj->base.write_domain;
2867 old_read_domains = obj->base.read_domains;
1c5d22f7 2868
e47c68e9
EA
2869 /* It should now be out of any other write domains, and we can update
2870 * the domain values for our changes.
2871 */
05394f39
CW
2872 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2873 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2874 if (write) {
05394f39
CW
2875 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2876 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2877 obj->dirty = 1;
2ef7eeaa
EA
2878 }
2879
1c5d22f7
CW
2880 trace_i915_gem_object_change_domain(obj,
2881 old_read_domains,
2882 old_write_domain);
2883
8325a09d
CW
2884 /* And bump the LRU for this access */
2885 if (i915_gem_object_is_inactive(obj))
2886 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2887
e47c68e9
EA
2888 return 0;
2889}
2890
e4ffd173
CW
2891int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2892 enum i915_cache_level cache_level)
2893{
7bddb01f
DV
2894 struct drm_device *dev = obj->base.dev;
2895 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2896 int ret;
2897
2898 if (obj->cache_level == cache_level)
2899 return 0;
2900
2901 if (obj->pin_count) {
2902 DRM_DEBUG("can not change the cache level of pinned objects\n");
2903 return -EBUSY;
2904 }
2905
2906 if (obj->gtt_space) {
2907 ret = i915_gem_object_finish_gpu(obj);
2908 if (ret)
2909 return ret;
2910
2911 i915_gem_object_finish_gtt(obj);
2912
2913 /* Before SandyBridge, you could not use tiling or fence
2914 * registers with snooped memory, so relinquish any fences
2915 * currently pointing to our region in the aperture.
2916 */
2917 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2918 ret = i915_gem_object_put_fence(obj);
2919 if (ret)
2920 return ret;
2921 }
2922
74898d7e
DV
2923 if (obj->has_global_gtt_mapping)
2924 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2925 if (obj->has_aliasing_ppgtt_mapping)
2926 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2927 obj, cache_level);
e4ffd173
CW
2928 }
2929
2930 if (cache_level == I915_CACHE_NONE) {
2931 u32 old_read_domains, old_write_domain;
2932
2933 /* If we're coming from LLC cached, then we haven't
2934 * actually been tracking whether the data is in the
2935 * CPU cache or not, since we only allow one bit set
2936 * in obj->write_domain and have been skipping the clflushes.
2937 * Just set it to the CPU cache for now.
2938 */
2939 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2940 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2941
2942 old_read_domains = obj->base.read_domains;
2943 old_write_domain = obj->base.write_domain;
2944
2945 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2946 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2947
2948 trace_i915_gem_object_change_domain(obj,
2949 old_read_domains,
2950 old_write_domain);
2951 }
2952
2953 obj->cache_level = cache_level;
2954 return 0;
2955}
2956
b9241ea3 2957/*
2da3b9b9
CW
2958 * Prepare buffer for display plane (scanout, cursors, etc).
2959 * Can be called from an uninterruptible phase (modesetting) and allows
2960 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2961 */
2962int
2da3b9b9
CW
2963i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2964 u32 alignment,
919926ae 2965 struct intel_ring_buffer *pipelined)
b9241ea3 2966{
2da3b9b9 2967 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2968 int ret;
2969
88241785
CW
2970 ret = i915_gem_object_flush_gpu_write_domain(obj);
2971 if (ret)
2972 return ret;
2973
0be73284 2974 if (pipelined != obj->ring) {
2911a35b
BW
2975 ret = i915_gem_object_sync(obj, pipelined);
2976 if (ret)
b9241ea3
ZW
2977 return ret;
2978 }
2979
a7ef0640
EA
2980 /* The display engine is not coherent with the LLC cache on gen6. As
2981 * a result, we make sure that the pinning that is about to occur is
2982 * done with uncached PTEs. This is lowest common denominator for all
2983 * chipsets.
2984 *
2985 * However for gen6+, we could do better by using the GFDT bit instead
2986 * of uncaching, which would allow us to flush all the LLC-cached data
2987 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2988 */
2989 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2990 if (ret)
2991 return ret;
2992
2da3b9b9
CW
2993 /* As the user may map the buffer once pinned in the display plane
2994 * (e.g. libkms for the bootup splash), we have to ensure that we
2995 * always use map_and_fenceable for all scanout buffers.
2996 */
2997 ret = i915_gem_object_pin(obj, alignment, true);
2998 if (ret)
2999 return ret;
3000
b118c1e3
CW
3001 i915_gem_object_flush_cpu_write_domain(obj);
3002
2da3b9b9 3003 old_write_domain = obj->base.write_domain;
05394f39 3004 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3005
3006 /* It should now be out of any other write domains, and we can update
3007 * the domain values for our changes.
3008 */
3009 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3010 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3011
3012 trace_i915_gem_object_change_domain(obj,
3013 old_read_domains,
2da3b9b9 3014 old_write_domain);
b9241ea3
ZW
3015
3016 return 0;
3017}
3018
85345517 3019int
a8198eea 3020i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3021{
88241785
CW
3022 int ret;
3023
a8198eea 3024 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3025 return 0;
3026
88241785 3027 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3028 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3029 if (ret)
3030 return ret;
3031 }
85345517 3032
c501ae7f
CW
3033 ret = i915_gem_object_wait_rendering(obj);
3034 if (ret)
3035 return ret;
3036
a8198eea
CW
3037 /* Ensure that we invalidate the GPU's caches and TLBs. */
3038 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3039 return 0;
85345517
CW
3040}
3041
e47c68e9
EA
3042/**
3043 * Moves a single object to the CPU read, and possibly write domain.
3044 *
3045 * This function returns when the move is complete, including waiting on
3046 * flushes to occur.
3047 */
dabdfe02 3048int
919926ae 3049i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3050{
1c5d22f7 3051 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3052 int ret;
3053
8d7e3de1
CW
3054 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3055 return 0;
3056
88241785
CW
3057 ret = i915_gem_object_flush_gpu_write_domain(obj);
3058 if (ret)
3059 return ret;
3060
f8413190
CW
3061 if (write || obj->pending_gpu_write) {
3062 ret = i915_gem_object_wait_rendering(obj);
3063 if (ret)
3064 return ret;
3065 }
2ef7eeaa 3066
e47c68e9 3067 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3068
05394f39
CW
3069 old_write_domain = obj->base.write_domain;
3070 old_read_domains = obj->base.read_domains;
1c5d22f7 3071
e47c68e9 3072 /* Flush the CPU cache if it's still invalid. */
05394f39 3073 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3074 i915_gem_clflush_object(obj);
2ef7eeaa 3075
05394f39 3076 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3077 }
3078
3079 /* It should now be out of any other write domains, and we can update
3080 * the domain values for our changes.
3081 */
05394f39 3082 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3083
3084 /* If we're writing through the CPU, then the GPU read domains will
3085 * need to be invalidated at next use.
3086 */
3087 if (write) {
05394f39
CW
3088 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3089 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3090 }
2ef7eeaa 3091
1c5d22f7
CW
3092 trace_i915_gem_object_change_domain(obj,
3093 old_read_domains,
3094 old_write_domain);
3095
2ef7eeaa
EA
3096 return 0;
3097}
3098
673a394b
EA
3099/* Throttle our rendering by waiting until the ring has completed our requests
3100 * emitted over 20 msec ago.
3101 *
b962442e
EA
3102 * Note that if we were to use the current jiffies each time around the loop,
3103 * we wouldn't escape the function with any frames outstanding if the time to
3104 * render a frame was over 20ms.
3105 *
673a394b
EA
3106 * This should get us reasonable parallelism between CPU and GPU but also
3107 * relatively low latency when blocking on a particular request to finish.
3108 */
40a5f0de 3109static int
f787a5f5 3110i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3111{
f787a5f5
CW
3112 struct drm_i915_private *dev_priv = dev->dev_private;
3113 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3114 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3115 struct drm_i915_gem_request *request;
3116 struct intel_ring_buffer *ring = NULL;
3117 u32 seqno = 0;
3118 int ret;
93533c29 3119
e110e8d6
CW
3120 if (atomic_read(&dev_priv->mm.wedged))
3121 return -EIO;
3122
1c25595f 3123 spin_lock(&file_priv->mm.lock);
f787a5f5 3124 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3125 if (time_after_eq(request->emitted_jiffies, recent_enough))
3126 break;
40a5f0de 3127
f787a5f5
CW
3128 ring = request->ring;
3129 seqno = request->seqno;
b962442e 3130 }
1c25595f 3131 spin_unlock(&file_priv->mm.lock);
40a5f0de 3132
f787a5f5
CW
3133 if (seqno == 0)
3134 return 0;
2bc43b5c 3135
5c81fe85 3136 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3137 if (ret == 0)
3138 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3139
3140 return ret;
3141}
3142
673a394b 3143int
05394f39
CW
3144i915_gem_object_pin(struct drm_i915_gem_object *obj,
3145 uint32_t alignment,
75e9e915 3146 bool map_and_fenceable)
673a394b 3147{
673a394b
EA
3148 int ret;
3149
05394f39 3150 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3151
05394f39
CW
3152 if (obj->gtt_space != NULL) {
3153 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3154 (map_and_fenceable && !obj->map_and_fenceable)) {
3155 WARN(obj->pin_count,
ae7d49d8 3156 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3157 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3158 " obj->map_and_fenceable=%d\n",
05394f39 3159 obj->gtt_offset, alignment,
75e9e915 3160 map_and_fenceable,
05394f39 3161 obj->map_and_fenceable);
ac0c6b5a
CW
3162 ret = i915_gem_object_unbind(obj);
3163 if (ret)
3164 return ret;
3165 }
3166 }
3167
05394f39 3168 if (obj->gtt_space == NULL) {
a00b10c3 3169 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3170 map_and_fenceable);
9731129c 3171 if (ret)
673a394b 3172 return ret;
22c344e9 3173 }
76446cac 3174
74898d7e
DV
3175 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3176 i915_gem_gtt_bind_object(obj, obj->cache_level);
3177
1b50247a 3178 obj->pin_count++;
6299f992 3179 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3180
3181 return 0;
3182}
3183
3184void
05394f39 3185i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3186{
05394f39
CW
3187 BUG_ON(obj->pin_count == 0);
3188 BUG_ON(obj->gtt_space == NULL);
673a394b 3189
1b50247a 3190 if (--obj->pin_count == 0)
6299f992 3191 obj->pin_mappable = false;
673a394b
EA
3192}
3193
3194int
3195i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3196 struct drm_file *file)
673a394b
EA
3197{
3198 struct drm_i915_gem_pin *args = data;
05394f39 3199 struct drm_i915_gem_object *obj;
673a394b
EA
3200 int ret;
3201
1d7cfea1
CW
3202 ret = i915_mutex_lock_interruptible(dev);
3203 if (ret)
3204 return ret;
673a394b 3205
05394f39 3206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3207 if (&obj->base == NULL) {
1d7cfea1
CW
3208 ret = -ENOENT;
3209 goto unlock;
673a394b 3210 }
673a394b 3211
05394f39 3212 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3213 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3214 ret = -EINVAL;
3215 goto out;
3ef94daa
CW
3216 }
3217
05394f39 3218 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3219 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3220 args->handle);
1d7cfea1
CW
3221 ret = -EINVAL;
3222 goto out;
79e53945
JB
3223 }
3224
05394f39
CW
3225 obj->user_pin_count++;
3226 obj->pin_filp = file;
3227 if (obj->user_pin_count == 1) {
75e9e915 3228 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3229 if (ret)
3230 goto out;
673a394b
EA
3231 }
3232
3233 /* XXX - flush the CPU caches for pinned objects
3234 * as the X server doesn't manage domains yet
3235 */
e47c68e9 3236 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3237 args->offset = obj->gtt_offset;
1d7cfea1 3238out:
05394f39 3239 drm_gem_object_unreference(&obj->base);
1d7cfea1 3240unlock:
673a394b 3241 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3242 return ret;
673a394b
EA
3243}
3244
3245int
3246i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3247 struct drm_file *file)
673a394b
EA
3248{
3249 struct drm_i915_gem_pin *args = data;
05394f39 3250 struct drm_i915_gem_object *obj;
76c1dec1 3251 int ret;
673a394b 3252
1d7cfea1
CW
3253 ret = i915_mutex_lock_interruptible(dev);
3254 if (ret)
3255 return ret;
673a394b 3256
05394f39 3257 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3258 if (&obj->base == NULL) {
1d7cfea1
CW
3259 ret = -ENOENT;
3260 goto unlock;
673a394b 3261 }
76c1dec1 3262
05394f39 3263 if (obj->pin_filp != file) {
79e53945
JB
3264 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3265 args->handle);
1d7cfea1
CW
3266 ret = -EINVAL;
3267 goto out;
79e53945 3268 }
05394f39
CW
3269 obj->user_pin_count--;
3270 if (obj->user_pin_count == 0) {
3271 obj->pin_filp = NULL;
79e53945
JB
3272 i915_gem_object_unpin(obj);
3273 }
673a394b 3274
1d7cfea1 3275out:
05394f39 3276 drm_gem_object_unreference(&obj->base);
1d7cfea1 3277unlock:
673a394b 3278 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3279 return ret;
673a394b
EA
3280}
3281
3282int
3283i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3284 struct drm_file *file)
673a394b
EA
3285{
3286 struct drm_i915_gem_busy *args = data;
05394f39 3287 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3288 int ret;
3289
76c1dec1 3290 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3291 if (ret)
76c1dec1 3292 return ret;
673a394b 3293
05394f39 3294 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3295 if (&obj->base == NULL) {
1d7cfea1
CW
3296 ret = -ENOENT;
3297 goto unlock;
673a394b 3298 }
d1b851fc 3299
0be555b6
CW
3300 /* Count all active objects as busy, even if they are currently not used
3301 * by the gpu. Users of this interface expect objects to eventually
3302 * become non-busy without any further actions, therefore emit any
3303 * necessary flushes here.
c4de0a5d 3304 */
05394f39 3305 args->busy = obj->active;
0be555b6
CW
3306 if (args->busy) {
3307 /* Unconditionally flush objects, even when the gpu still uses this
3308 * object. Userspace calling this function indicates that it wants to
3309 * use this buffer rather sooner than later, so issuing the required
3310 * flush earlier is beneficial.
3311 */
1a1c6976 3312 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3313 ret = i915_gem_flush_ring(obj->ring,
88241785 3314 0, obj->base.write_domain);
b4aca010
BW
3315 } else {
3316 ret = i915_gem_check_olr(obj->ring,
3317 obj->last_rendering_seqno);
7a194876 3318 }
0be555b6
CW
3319
3320 /* Update the active list for the hardware's current position.
3321 * Otherwise this only updates on a delayed timer or when irqs
3322 * are actually unmasked, and our working set ends up being
3323 * larger than required.
3324 */
db53a302 3325 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3326
05394f39 3327 args->busy = obj->active;
0be555b6 3328 }
673a394b 3329
05394f39 3330 drm_gem_object_unreference(&obj->base);
1d7cfea1 3331unlock:
673a394b 3332 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3333 return ret;
673a394b
EA
3334}
3335
3336int
3337i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3338 struct drm_file *file_priv)
3339{
0206e353 3340 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3341}
3342
3ef94daa
CW
3343int
3344i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3345 struct drm_file *file_priv)
3346{
3347 struct drm_i915_gem_madvise *args = data;
05394f39 3348 struct drm_i915_gem_object *obj;
76c1dec1 3349 int ret;
3ef94daa
CW
3350
3351 switch (args->madv) {
3352 case I915_MADV_DONTNEED:
3353 case I915_MADV_WILLNEED:
3354 break;
3355 default:
3356 return -EINVAL;
3357 }
3358
1d7cfea1
CW
3359 ret = i915_mutex_lock_interruptible(dev);
3360 if (ret)
3361 return ret;
3362
05394f39 3363 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3364 if (&obj->base == NULL) {
1d7cfea1
CW
3365 ret = -ENOENT;
3366 goto unlock;
3ef94daa 3367 }
3ef94daa 3368
05394f39 3369 if (obj->pin_count) {
1d7cfea1
CW
3370 ret = -EINVAL;
3371 goto out;
3ef94daa
CW
3372 }
3373
05394f39
CW
3374 if (obj->madv != __I915_MADV_PURGED)
3375 obj->madv = args->madv;
3ef94daa 3376
2d7ef395 3377 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3378 if (i915_gem_object_is_purgeable(obj) &&
3379 obj->gtt_space == NULL)
2d7ef395
CW
3380 i915_gem_object_truncate(obj);
3381
05394f39 3382 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3383
1d7cfea1 3384out:
05394f39 3385 drm_gem_object_unreference(&obj->base);
1d7cfea1 3386unlock:
3ef94daa 3387 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3388 return ret;
3ef94daa
CW
3389}
3390
05394f39
CW
3391struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3392 size_t size)
ac52bc56 3393{
73aa808f 3394 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3395 struct drm_i915_gem_object *obj;
5949eac4 3396 struct address_space *mapping;
ac52bc56 3397
c397b908
DV
3398 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3399 if (obj == NULL)
3400 return NULL;
673a394b 3401
c397b908
DV
3402 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3403 kfree(obj);
3404 return NULL;
3405 }
673a394b 3406
5949eac4
HD
3407 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3408 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3409
73aa808f
CW
3410 i915_gem_info_add_obj(dev_priv, size);
3411
c397b908
DV
3412 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3413 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3414
3d29b842
ED
3415 if (HAS_LLC(dev)) {
3416 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3417 * cache) for about a 10% performance improvement
3418 * compared to uncached. Graphics requests other than
3419 * display scanout are coherent with the CPU in
3420 * accessing this cache. This means in this mode we
3421 * don't need to clflush on the CPU side, and on the
3422 * GPU side we only need to flush internal caches to
3423 * get data visible to the CPU.
3424 *
3425 * However, we maintain the display planes as UC, and so
3426 * need to rebind when first used as such.
3427 */
3428 obj->cache_level = I915_CACHE_LLC;
3429 } else
3430 obj->cache_level = I915_CACHE_NONE;
3431
62b8b215 3432 obj->base.driver_private = NULL;
c397b908 3433 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3434 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3435 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3436 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3437 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3438 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3439 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3440 /* Avoid an unnecessary call to unbind on the first bind. */
3441 obj->map_and_fenceable = true;
de151cf6 3442
05394f39 3443 return obj;
c397b908
DV
3444}
3445
3446int i915_gem_init_object(struct drm_gem_object *obj)
3447{
3448 BUG();
de151cf6 3449
673a394b
EA
3450 return 0;
3451}
3452
1488fc08 3453void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3454{
1488fc08 3455 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3456 struct drm_device *dev = obj->base.dev;
be72615b 3457 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3458
26e12f89
CW
3459 trace_i915_gem_object_destroy(obj);
3460
1488fc08
CW
3461 if (obj->phys_obj)
3462 i915_gem_detach_phys_object(dev, obj);
3463
3464 obj->pin_count = 0;
3465 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3466 bool was_interruptible;
3467
3468 was_interruptible = dev_priv->mm.interruptible;
3469 dev_priv->mm.interruptible = false;
3470
3471 WARN_ON(i915_gem_object_unbind(obj));
3472
3473 dev_priv->mm.interruptible = was_interruptible;
3474 }
3475
05394f39 3476 if (obj->base.map_list.map)
b464e9a2 3477 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3478
05394f39
CW
3479 drm_gem_object_release(&obj->base);
3480 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3481
05394f39
CW
3482 kfree(obj->bit_17);
3483 kfree(obj);
673a394b
EA
3484}
3485
29105ccc
CW
3486int
3487i915_gem_idle(struct drm_device *dev)
3488{
3489 drm_i915_private_t *dev_priv = dev->dev_private;
3490 int ret;
28dfe52a 3491
29105ccc 3492 mutex_lock(&dev->struct_mutex);
1c5d22f7 3493
87acb0a5 3494 if (dev_priv->mm.suspended) {
29105ccc
CW
3495 mutex_unlock(&dev->struct_mutex);
3496 return 0;
28dfe52a
EA
3497 }
3498
b2da9fe5 3499 ret = i915_gpu_idle(dev);
6dbe2772
KP
3500 if (ret) {
3501 mutex_unlock(&dev->struct_mutex);
673a394b 3502 return ret;
6dbe2772 3503 }
b2da9fe5 3504 i915_gem_retire_requests(dev);
673a394b 3505
29105ccc 3506 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3507 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3508 i915_gem_evict_everything(dev, false);
29105ccc 3509
312817a3
CW
3510 i915_gem_reset_fences(dev);
3511
29105ccc
CW
3512 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3513 * We need to replace this with a semaphore, or something.
3514 * And not confound mm.suspended!
3515 */
3516 dev_priv->mm.suspended = 1;
bc0c7f14 3517 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3518
3519 i915_kernel_lost_context(dev);
6dbe2772 3520 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3521
6dbe2772
KP
3522 mutex_unlock(&dev->struct_mutex);
3523
29105ccc
CW
3524 /* Cancel the retire work handler, which should be idle now. */
3525 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3526
673a394b
EA
3527 return 0;
3528}
3529
f691e2f4
DV
3530void i915_gem_init_swizzling(struct drm_device *dev)
3531{
3532 drm_i915_private_t *dev_priv = dev->dev_private;
3533
11782b02 3534 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3535 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3536 return;
3537
3538 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3539 DISP_TILE_SURFACE_SWIZZLING);
3540
11782b02
DV
3541 if (IS_GEN5(dev))
3542 return;
3543
f691e2f4
DV
3544 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3545 if (IS_GEN6(dev))
6b26c86d 3546 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3547 else
6b26c86d 3548 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3549}
e21af88d
DV
3550
3551void i915_gem_init_ppgtt(struct drm_device *dev)
3552{
3553 drm_i915_private_t *dev_priv = dev->dev_private;
3554 uint32_t pd_offset;
3555 struct intel_ring_buffer *ring;
55a254ac
DV
3556 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3557 uint32_t __iomem *pd_addr;
3558 uint32_t pd_entry;
e21af88d
DV
3559 int i;
3560
3561 if (!dev_priv->mm.aliasing_ppgtt)
3562 return;
3563
55a254ac
DV
3564
3565 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3566 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3567 dma_addr_t pt_addr;
3568
3569 if (dev_priv->mm.gtt->needs_dmar)
3570 pt_addr = ppgtt->pt_dma_addr[i];
3571 else
3572 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3573
3574 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3575 pd_entry |= GEN6_PDE_VALID;
3576
3577 writel(pd_entry, pd_addr + i);
3578 }
3579 readl(pd_addr);
3580
3581 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3582 pd_offset /= 64; /* in cachelines, */
3583 pd_offset <<= 16;
3584
3585 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3586 uint32_t ecochk, gab_ctl, ecobits;
3587
3588 ecobits = I915_READ(GAC_ECO_BITS);
3589 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3590
3591 gab_ctl = I915_READ(GAB_CTL);
3592 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3593
3594 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3595 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3596 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3597 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3598 } else if (INTEL_INFO(dev)->gen >= 7) {
3599 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3600 /* GFX_MODE is per-ring on gen7+ */
3601 }
3602
b4519513 3603 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3604 if (INTEL_INFO(dev)->gen >= 7)
3605 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3606 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3607
3608 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3609 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3610 }
3611}
3612
8187a2b7 3613int
f691e2f4 3614i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3615{
3616 drm_i915_private_t *dev_priv = dev->dev_private;
3617 int ret;
68f95ba9 3618
f691e2f4
DV
3619 i915_gem_init_swizzling(dev);
3620
5c1143bb 3621 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3622 if (ret)
b6913e4b 3623 return ret;
68f95ba9
CW
3624
3625 if (HAS_BSD(dev)) {
5c1143bb 3626 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3627 if (ret)
3628 goto cleanup_render_ring;
d1b851fc 3629 }
68f95ba9 3630
549f7365
CW
3631 if (HAS_BLT(dev)) {
3632 ret = intel_init_blt_ring_buffer(dev);
3633 if (ret)
3634 goto cleanup_bsd_ring;
3635 }
3636
6f392d54
CW
3637 dev_priv->next_seqno = 1;
3638
e21af88d
DV
3639 i915_gem_init_ppgtt(dev);
3640
68f95ba9
CW
3641 return 0;
3642
549f7365 3643cleanup_bsd_ring:
1ec14ad3 3644 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3645cleanup_render_ring:
1ec14ad3 3646 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3647 return ret;
3648}
3649
1070a42b
CW
3650static bool
3651intel_enable_ppgtt(struct drm_device *dev)
3652{
3653 if (i915_enable_ppgtt >= 0)
3654 return i915_enable_ppgtt;
3655
3656#ifdef CONFIG_INTEL_IOMMU
3657 /* Disable ppgtt on SNB if VT-d is on. */
3658 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3659 return false;
3660#endif
3661
3662 return true;
3663}
3664
3665int i915_gem_init(struct drm_device *dev)
3666{
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 unsigned long gtt_size, mappable_size;
3669 int ret;
3670
3671 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3672 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3673
3674 mutex_lock(&dev->struct_mutex);
3675 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3676 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3677 * aperture accordingly when using aliasing ppgtt. */
3678 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3679
3680 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3681
3682 ret = i915_gem_init_aliasing_ppgtt(dev);
3683 if (ret) {
3684 mutex_unlock(&dev->struct_mutex);
3685 return ret;
3686 }
3687 } else {
3688 /* Let GEM Manage all of the aperture.
3689 *
3690 * However, leave one page at the end still bound to the scratch
3691 * page. There are a number of places where the hardware
3692 * apparently prefetches past the end of the object, and we've
3693 * seen multiple hangs with the GPU head pointer stuck in a
3694 * batchbuffer bound at the last page of the aperture. One page
3695 * should be enough to keep any prefetching inside of the
3696 * aperture.
3697 */
3698 i915_gem_init_global_gtt(dev, 0, mappable_size,
3699 gtt_size);
3700 }
3701
3702 ret = i915_gem_init_hw(dev);
3703 mutex_unlock(&dev->struct_mutex);
3704 if (ret) {
3705 i915_gem_cleanup_aliasing_ppgtt(dev);
3706 return ret;
3707 }
3708
53ca26ca
DV
3709 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3710 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3711 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3712 return 0;
3713}
3714
8187a2b7
ZN
3715void
3716i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3717{
3718 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3719 struct intel_ring_buffer *ring;
1ec14ad3 3720 int i;
8187a2b7 3721
b4519513
CW
3722 for_each_ring(ring, dev_priv, i)
3723 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3724}
3725
673a394b
EA
3726int
3727i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3728 struct drm_file *file_priv)
3729{
3730 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3731 int ret;
673a394b 3732
79e53945
JB
3733 if (drm_core_check_feature(dev, DRIVER_MODESET))
3734 return 0;
3735
ba1234d1 3736 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3737 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3738 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3739 }
3740
673a394b 3741 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3742 dev_priv->mm.suspended = 0;
3743
f691e2f4 3744 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3745 if (ret != 0) {
3746 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3747 return ret;
d816f6ac 3748 }
9bb2d6f9 3749
69dc4987 3750 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3751 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3752 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3753 mutex_unlock(&dev->struct_mutex);
dbb19d30 3754
5f35308b
CW
3755 ret = drm_irq_install(dev);
3756 if (ret)
3757 goto cleanup_ringbuffer;
dbb19d30 3758
673a394b 3759 return 0;
5f35308b
CW
3760
3761cleanup_ringbuffer:
3762 mutex_lock(&dev->struct_mutex);
3763 i915_gem_cleanup_ringbuffer(dev);
3764 dev_priv->mm.suspended = 1;
3765 mutex_unlock(&dev->struct_mutex);
3766
3767 return ret;
673a394b
EA
3768}
3769
3770int
3771i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3772 struct drm_file *file_priv)
3773{
79e53945
JB
3774 if (drm_core_check_feature(dev, DRIVER_MODESET))
3775 return 0;
3776
dbb19d30 3777 drm_irq_uninstall(dev);
e6890f6f 3778 return i915_gem_idle(dev);
673a394b
EA
3779}
3780
3781void
3782i915_gem_lastclose(struct drm_device *dev)
3783{
3784 int ret;
673a394b 3785
e806b495
EA
3786 if (drm_core_check_feature(dev, DRIVER_MODESET))
3787 return;
3788
6dbe2772
KP
3789 ret = i915_gem_idle(dev);
3790 if (ret)
3791 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3792}
3793
64193406
CW
3794static void
3795init_ring_lists(struct intel_ring_buffer *ring)
3796{
3797 INIT_LIST_HEAD(&ring->active_list);
3798 INIT_LIST_HEAD(&ring->request_list);
3799 INIT_LIST_HEAD(&ring->gpu_write_list);
3800}
3801
673a394b
EA
3802void
3803i915_gem_load(struct drm_device *dev)
3804{
b5aa8a0f 3805 int i;
673a394b
EA
3806 drm_i915_private_t *dev_priv = dev->dev_private;
3807
69dc4987 3808 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3809 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3810 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3811 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3812 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3813 for (i = 0; i < I915_NUM_RINGS; i++)
3814 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3815 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3816 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3817 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3818 i915_gem_retire_work_handler);
30dbf0c0 3819 init_completion(&dev_priv->error_completion);
31169714 3820
94400120
DA
3821 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3822 if (IS_GEN3(dev)) {
50743298
DV
3823 I915_WRITE(MI_ARB_STATE,
3824 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3825 }
3826
72bfa19c
CW
3827 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3828
de151cf6 3829 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3830 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3831 dev_priv->fence_reg_start = 3;
de151cf6 3832
a6c45cf0 3833 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3834 dev_priv->num_fence_regs = 16;
3835 else
3836 dev_priv->num_fence_regs = 8;
3837
b5aa8a0f 3838 /* Initialize fence registers to zero */
ada726c7 3839 i915_gem_reset_fences(dev);
10ed13e4 3840
673a394b 3841 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3842 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3843
ce453d81
CW
3844 dev_priv->mm.interruptible = true;
3845
17250b71
CW
3846 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3847 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3848 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3849}
71acb5eb
DA
3850
3851/*
3852 * Create a physically contiguous memory object for this object
3853 * e.g. for cursor + overlay regs
3854 */
995b6762
CW
3855static int i915_gem_init_phys_object(struct drm_device *dev,
3856 int id, int size, int align)
71acb5eb
DA
3857{
3858 drm_i915_private_t *dev_priv = dev->dev_private;
3859 struct drm_i915_gem_phys_object *phys_obj;
3860 int ret;
3861
3862 if (dev_priv->mm.phys_objs[id - 1] || !size)
3863 return 0;
3864
9a298b2a 3865 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3866 if (!phys_obj)
3867 return -ENOMEM;
3868
3869 phys_obj->id = id;
3870
6eeefaf3 3871 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3872 if (!phys_obj->handle) {
3873 ret = -ENOMEM;
3874 goto kfree_obj;
3875 }
3876#ifdef CONFIG_X86
3877 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3878#endif
3879
3880 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3881
3882 return 0;
3883kfree_obj:
9a298b2a 3884 kfree(phys_obj);
71acb5eb
DA
3885 return ret;
3886}
3887
995b6762 3888static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3889{
3890 drm_i915_private_t *dev_priv = dev->dev_private;
3891 struct drm_i915_gem_phys_object *phys_obj;
3892
3893 if (!dev_priv->mm.phys_objs[id - 1])
3894 return;
3895
3896 phys_obj = dev_priv->mm.phys_objs[id - 1];
3897 if (phys_obj->cur_obj) {
3898 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3899 }
3900
3901#ifdef CONFIG_X86
3902 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3903#endif
3904 drm_pci_free(dev, phys_obj->handle);
3905 kfree(phys_obj);
3906 dev_priv->mm.phys_objs[id - 1] = NULL;
3907}
3908
3909void i915_gem_free_all_phys_object(struct drm_device *dev)
3910{
3911 int i;
3912
260883c8 3913 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3914 i915_gem_free_phys_object(dev, i);
3915}
3916
3917void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3918 struct drm_i915_gem_object *obj)
71acb5eb 3919{
05394f39 3920 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3921 char *vaddr;
71acb5eb 3922 int i;
71acb5eb
DA
3923 int page_count;
3924
05394f39 3925 if (!obj->phys_obj)
71acb5eb 3926 return;
05394f39 3927 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3928
05394f39 3929 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3930 for (i = 0; i < page_count; i++) {
5949eac4 3931 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3932 if (!IS_ERR(page)) {
3933 char *dst = kmap_atomic(page);
3934 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3935 kunmap_atomic(dst);
3936
3937 drm_clflush_pages(&page, 1);
3938
3939 set_page_dirty(page);
3940 mark_page_accessed(page);
3941 page_cache_release(page);
3942 }
71acb5eb 3943 }
40ce6575 3944 intel_gtt_chipset_flush();
d78b47b9 3945
05394f39
CW
3946 obj->phys_obj->cur_obj = NULL;
3947 obj->phys_obj = NULL;
71acb5eb
DA
3948}
3949
3950int
3951i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3952 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3953 int id,
3954 int align)
71acb5eb 3955{
05394f39 3956 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3957 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3958 int ret = 0;
3959 int page_count;
3960 int i;
3961
3962 if (id > I915_MAX_PHYS_OBJECT)
3963 return -EINVAL;
3964
05394f39
CW
3965 if (obj->phys_obj) {
3966 if (obj->phys_obj->id == id)
71acb5eb
DA
3967 return 0;
3968 i915_gem_detach_phys_object(dev, obj);
3969 }
3970
71acb5eb
DA
3971 /* create a new object */
3972 if (!dev_priv->mm.phys_objs[id - 1]) {
3973 ret = i915_gem_init_phys_object(dev, id,
05394f39 3974 obj->base.size, align);
71acb5eb 3975 if (ret) {
05394f39
CW
3976 DRM_ERROR("failed to init phys object %d size: %zu\n",
3977 id, obj->base.size);
e5281ccd 3978 return ret;
71acb5eb
DA
3979 }
3980 }
3981
3982 /* bind to the object */
05394f39
CW
3983 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3984 obj->phys_obj->cur_obj = obj;
71acb5eb 3985
05394f39 3986 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3987
3988 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3989 struct page *page;
3990 char *dst, *src;
3991
5949eac4 3992 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3993 if (IS_ERR(page))
3994 return PTR_ERR(page);
71acb5eb 3995
ff75b9bc 3996 src = kmap_atomic(page);
05394f39 3997 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3998 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3999 kunmap_atomic(src);
71acb5eb 4000
e5281ccd
CW
4001 mark_page_accessed(page);
4002 page_cache_release(page);
4003 }
d78b47b9 4004
71acb5eb 4005 return 0;
71acb5eb
DA
4006}
4007
4008static int
05394f39
CW
4009i915_gem_phys_pwrite(struct drm_device *dev,
4010 struct drm_i915_gem_object *obj,
71acb5eb
DA
4011 struct drm_i915_gem_pwrite *args,
4012 struct drm_file *file_priv)
4013{
05394f39 4014 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4015 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4016
b47b30cc
CW
4017 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4018 unsigned long unwritten;
4019
4020 /* The physical object once assigned is fixed for the lifetime
4021 * of the obj, so we can safely drop the lock and continue
4022 * to access vaddr.
4023 */
4024 mutex_unlock(&dev->struct_mutex);
4025 unwritten = copy_from_user(vaddr, user_data, args->size);
4026 mutex_lock(&dev->struct_mutex);
4027 if (unwritten)
4028 return -EFAULT;
4029 }
71acb5eb 4030
40ce6575 4031 intel_gtt_chipset_flush();
71acb5eb
DA
4032 return 0;
4033}
b962442e 4034
f787a5f5 4035void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4036{
f787a5f5 4037 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4038
4039 /* Clean up our request list when the client is going away, so that
4040 * later retire_requests won't dereference our soon-to-be-gone
4041 * file_priv.
4042 */
1c25595f 4043 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4044 while (!list_empty(&file_priv->mm.request_list)) {
4045 struct drm_i915_gem_request *request;
4046
4047 request = list_first_entry(&file_priv->mm.request_list,
4048 struct drm_i915_gem_request,
4049 client_list);
4050 list_del(&request->client_list);
4051 request->file_priv = NULL;
4052 }
1c25595f 4053 spin_unlock(&file_priv->mm.lock);
b962442e 4054}
31169714 4055
1637ef41
CW
4056static int
4057i915_gpu_is_active(struct drm_device *dev)
4058{
4059 drm_i915_private_t *dev_priv = dev->dev_private;
4060 int lists_empty;
4061
1637ef41 4062 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4063 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4064
4065 return !lists_empty;
4066}
4067
31169714 4068static int
1495f230 4069i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4070{
17250b71
CW
4071 struct drm_i915_private *dev_priv =
4072 container_of(shrinker,
4073 struct drm_i915_private,
4074 mm.inactive_shrinker);
4075 struct drm_device *dev = dev_priv->dev;
4076 struct drm_i915_gem_object *obj, *next;
1495f230 4077 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4078 int cnt;
4079
4080 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4081 return 0;
31169714
CW
4082
4083 /* "fast-path" to count number of available objects */
4084 if (nr_to_scan == 0) {
17250b71
CW
4085 cnt = 0;
4086 list_for_each_entry(obj,
4087 &dev_priv->mm.inactive_list,
4088 mm_list)
4089 cnt++;
4090 mutex_unlock(&dev->struct_mutex);
4091 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4092 }
4093
1637ef41 4094rescan:
31169714 4095 /* first scan for clean buffers */
17250b71 4096 i915_gem_retire_requests(dev);
31169714 4097
17250b71
CW
4098 list_for_each_entry_safe(obj, next,
4099 &dev_priv->mm.inactive_list,
4100 mm_list) {
4101 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4102 if (i915_gem_object_unbind(obj) == 0 &&
4103 --nr_to_scan == 0)
17250b71 4104 break;
31169714 4105 }
31169714
CW
4106 }
4107
4108 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4109 cnt = 0;
4110 list_for_each_entry_safe(obj, next,
4111 &dev_priv->mm.inactive_list,
4112 mm_list) {
2021746e
CW
4113 if (nr_to_scan &&
4114 i915_gem_object_unbind(obj) == 0)
17250b71 4115 nr_to_scan--;
2021746e 4116 else
17250b71
CW
4117 cnt++;
4118 }
4119
4120 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4121 /*
4122 * We are desperate for pages, so as a last resort, wait
4123 * for the GPU to finish and discard whatever we can.
4124 * This has a dramatic impact to reduce the number of
4125 * OOM-killer events whilst running the GPU aggressively.
4126 */
b2da9fe5 4127 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4128 goto rescan;
4129 }
17250b71
CW
4130 mutex_unlock(&dev->struct_mutex);
4131 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4132}