]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/gen9: Set PIN_ZONE_4G end to 4GB - 1 page
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
ca5b721e
CW
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
91b0c352 1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1182{
2def4ad9 1183 unsigned long timeout;
ca5b721e
CW
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
2def4ad9 1195
821485dc 1196 if (req->ring->irq_refcount)
2def4ad9
CW
1197 return -EBUSY;
1198
821485dc
CW
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
ca5b721e 1203 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1204 while (!need_resched()) {
eed29a5b 1205 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1206 return 0;
1207
91b0c352
CW
1208 if (signal_pending_state(state, current))
1209 break;
1210
ca5b721e 1211 if (busywait_stop(timeout, cpu))
2def4ad9 1212 break;
b29c19b6 1213
2def4ad9
CW
1214 cpu_relax_lowlatency();
1215 }
821485dc 1216
eed29a5b 1217 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1218 return 0;
1219
1220 return -EAGAIN;
b29c19b6
CW
1221}
1222
b361237b 1223/**
9c654818
JH
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
f69061be
DV
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
9c654818 1237 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1238 * errno with remaining time filled in timeout argument.
1239 */
9c654818 1240int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1241 unsigned reset_counter,
b29c19b6 1242 bool interruptible,
5ed0bdf2 1243 s64 *timeout,
2e1b8730 1244 struct intel_rps_client *rps)
b361237b 1245{
9c654818 1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1247 struct drm_device *dev = ring->dev;
3e31c6c0 1248 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
91b0c352 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1252 DEFINE_WAIT(wait);
47e9766d 1253 unsigned long timeout_expire;
5ed0bdf2 1254 s64 before, now;
b361237b
CW
1255 int ret;
1256
9df7575f 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1258
b4716185
CW
1259 if (list_empty(&req->list))
1260 return 0;
1261
1b5a433a 1262 if (i915_gem_request_completed(req, true))
b361237b
CW
1263 return 0;
1264
bb6d1984
CW
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 }
b361237b 1275
2e1b8730 1276 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1277 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1278
094f9a54 1279 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1280 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1281 before = ktime_get_raw_ns();
2def4ad9
CW
1282
1283 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1284 ret = __i915_spin_request(req, state);
2def4ad9
CW
1285 if (ret == 0)
1286 goto out;
1287
1288 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 ret = -ENODEV;
1290 goto out;
1291 }
1292
094f9a54
CW
1293 for (;;) {
1294 struct timer_list timer;
b361237b 1295
91b0c352 1296 prepare_to_wait(&ring->irq_queue, &wait, state);
b361237b 1297
f69061be
DV
1298 /* We need to check whether any gpu reset happened in between
1299 * the caller grabbing the seqno and now ... */
094f9a54
CW
1300 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 * is truely gone. */
1303 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 if (ret == 0)
1305 ret = -EAGAIN;
1306 break;
1307 }
f69061be 1308
1b5a433a 1309 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1310 ret = 0;
1311 break;
1312 }
b361237b 1313
91b0c352 1314 if (signal_pending_state(state, current)) {
094f9a54
CW
1315 ret = -ERESTARTSYS;
1316 break;
1317 }
1318
47e9766d 1319 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1320 ret = -ETIME;
1321 break;
1322 }
1323
1324 timer.function = NULL;
1325 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1326 unsigned long expire;
1327
094f9a54 1328 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1329 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1330 mod_timer(&timer, expire);
1331 }
1332
5035c275 1333 io_schedule();
094f9a54 1334
094f9a54
CW
1335 if (timer.function) {
1336 del_singleshot_timer_sync(&timer);
1337 destroy_timer_on_stack(&timer);
1338 }
1339 }
168c3f21
MK
1340 if (!irq_test_in_progress)
1341 ring->irq_put(ring);
094f9a54
CW
1342
1343 finish_wait(&ring->irq_queue, &wait);
b361237b 1344
2def4ad9
CW
1345out:
1346 now = ktime_get_raw_ns();
1347 trace_i915_gem_request_wait_end(req);
1348
b361237b 1349 if (timeout) {
5ed0bdf2
TG
1350 s64 tres = *timeout - (now - before);
1351
1352 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1353
1354 /*
1355 * Apparently ktime isn't accurate enough and occasionally has a
1356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 * things up to make the test happy. We allow up to 1 jiffy.
1358 *
1359 * This is a regrssion from the timespec->ktime conversion.
1360 */
1361 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 *timeout = 0;
b361237b
CW
1363 }
1364
094f9a54 1365 return ret;
b361237b
CW
1366}
1367
fcfa423c
JH
1368int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 struct drm_file *file)
1370{
1371 struct drm_i915_private *dev_private;
1372 struct drm_i915_file_private *file_priv;
1373
1374 WARN_ON(!req || !file || req->file_priv);
1375
1376 if (!req || !file)
1377 return -EINVAL;
1378
1379 if (req->file_priv)
1380 return -EINVAL;
1381
1382 dev_private = req->ring->dev->dev_private;
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393}
1394
b4716185
CW
1395static inline void
1396i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397{
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
b4716185
CW
1410}
1411
1412static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413{
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
b4716185
CW
1429 i915_gem_request_unreference(request);
1430}
1431
1432static void
1433__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434{
1435 struct intel_engine_cs *engine = req->ring;
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451}
1452
b361237b 1453/**
a4b3a571 1454 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1455 * request and object lists appropriately for that event.
1456 */
1457int
a4b3a571 1458i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1459{
a4b3a571
DV
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
b361237b
CW
1463 int ret;
1464
a4b3a571
DV
1465 BUG_ON(req == NULL);
1466
1467 dev = req->ring->dev;
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
b361237b 1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1472
33196ded 1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1474 if (ret)
1475 return ret;
1476
b4716185
CW
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1479 interruptible, NULL, NULL);
b4716185
CW
1480 if (ret)
1481 return ret;
d26e3af8 1482
b4716185 1483 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1484 return 0;
1485}
1486
b361237b
CW
1487/**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
2e2f351d 1491int
b361237b
CW
1492i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494{
b4716185 1495 int ret, i;
b361237b 1496
b4716185 1497 if (!obj->active)
b361237b
CW
1498 return 0;
1499
b4716185
CW
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
b361237b 1505
b4716185
CW
1506 i = obj->last_write_req->ring->id;
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
1513 for (i = 0; i < I915_NUM_RINGS; i++) {
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527}
1528
1529static void
1530i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532{
1533 int ring = req->ring->id;
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
b361237b
CW
1541}
1542
3236f57a
CW
1543/* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546static __must_check int
1547i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1548 struct intel_rps_client *rps,
3236f57a
CW
1549 bool readonly)
1550{
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1553 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1554 unsigned reset_counter;
b4716185 1555 int ret, i, n = 0;
3236f57a
CW
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
b4716185 1560 if (!obj->active)
3236f57a
CW
1561 return 0;
1562
33196ded 1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1564 if (ret)
1565 return ret;
1566
f69061be 1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
b4716185
CW
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
1578 for (i = 0; i < I915_NUM_RINGS; i++) {
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
b4716185
CW
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
3236f57a 1589 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1592 NULL, rps);
3236f57a
CW
1593 mutex_lock(&dev->struct_mutex);
1594
b4716185
CW
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
3236f57a
CW
1602}
1603
2e1b8730
CW
1604static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605{
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608}
1609
673a394b 1610/**
2ef7eeaa
EA
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1613 */
1614int
1615i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1616 struct drm_file *file)
673a394b
EA
1617{
1618 struct drm_i915_gem_set_domain *args = data;
05394f39 1619 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
673a394b
EA
1622 int ret;
1623
2ef7eeaa 1624 /* Only handle setting domains to types used by the CPU. */
21d509e3 1625 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1626 return -EINVAL;
1627
21d509e3 1628 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
76c1dec1 1637 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1638 if (ret)
76c1dec1 1639 return ret;
1d7cfea1 1640
05394f39 1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1642 if (&obj->base == NULL) {
1d7cfea1
CW
1643 ret = -ENOENT;
1644 goto unlock;
76c1dec1 1645 }
673a394b 1646
3236f57a
CW
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
6e4930f6 1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1652 to_rps_client(file),
6e4930f6 1653 !write_domain);
3236f57a
CW
1654 if (ret)
1655 goto unref;
1656
43566ded 1657 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1659 else
e47c68e9 1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1661
031b698a
DV
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
3236f57a 1667unref:
05394f39 1668 drm_gem_object_unreference(&obj->base);
1d7cfea1 1669unlock:
673a394b
EA
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672}
1673
1674/**
1675 * Called when user space has done writes to this buffer
1676 */
1677int
1678i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1679 struct drm_file *file)
673a394b
EA
1680{
1681 struct drm_i915_gem_sw_finish *args = data;
05394f39 1682 struct drm_i915_gem_object *obj;
673a394b
EA
1683 int ret = 0;
1684
76c1dec1 1685 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1686 if (ret)
76c1dec1 1687 return ret;
1d7cfea1 1688
05394f39 1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1690 if (&obj->base == NULL) {
1d7cfea1
CW
1691 ret = -ENOENT;
1692 goto unlock;
673a394b
EA
1693 }
1694
673a394b 1695 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1696 if (obj->pin_display)
e62b59e4 1697 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1698
05394f39 1699 drm_gem_object_unreference(&obj->base);
1d7cfea1 1700unlock:
673a394b
EA
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703}
1704
1705/**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
34367381
DV
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1721 */
1722int
1723i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1724 struct drm_file *file)
673a394b
EA
1725{
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
673a394b
EA
1728 unsigned long addr;
1729
1816f923
AG
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
05394f39 1736 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1737 if (obj == NULL)
bf79cb91 1738 return -ENOENT;
673a394b 1739
1286ff73
DV
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
6be5ceb0 1748 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1816f923
AG
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
bc9025bd 1764 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771}
1772
de151cf6
JB
1773/**
1774 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1775 * @vma: VMA in question
1776 * @vmf: fault info
de151cf6
JB
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
1789int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790{
05394f39
CW
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
3e31c6c0 1793 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
0f973f27 1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1799
f65c9168
PZ
1800 intel_runtime_pm_get(dev_priv);
1801
de151cf6
JB
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
d9bc7e9f
CW
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
a00b10c3 1809
db53a302
CW
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
6e4930f6
CW
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
eb119bd6
CW
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1823 ret = -EFAULT;
eb119bd6
CW
1824 goto unlock;
1825 }
1826
c5ad54cf 1827 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1828 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1830 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1831
c5ad54cf
JL
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1844 if (ret)
1845 goto unlock;
4a684a41 1846
c9839303
CW
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
74898d7e 1850
06d98131 1851 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1852 if (ret)
c9839303 1853 goto unpin;
7d1c4804 1854
b90b91d8 1855 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1856 pfn = dev_priv->gtt.mappable_base +
1857 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1858 pfn >>= PAGE_SHIFT;
de151cf6 1859
c5ad54cf
JL
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
b90b91d8 1869
c5ad54cf
JL
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
c5ad54cf
JL
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
c9839303 1898unpin:
c5ad54cf 1899 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1900unlock:
de151cf6 1901 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1902out:
de151cf6 1903 switch (ret) {
d9bc7e9f 1904 case -EIO:
2232f031
DV
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
045e769a 1915 case -EAGAIN:
571c608d
DV
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
d9bc7e9f 1920 */
c715089f
CW
1921 case 0:
1922 case -ERESTARTSYS:
bed636ab 1923 case -EINTR:
e79e0fe3
DR
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
f65c9168
PZ
1929 ret = VM_FAULT_NOPAGE;
1930 break;
de151cf6 1931 case -ENOMEM:
f65c9168
PZ
1932 ret = VM_FAULT_OOM;
1933 break;
a7c2e1aa 1934 case -ENOSPC:
45d67817 1935 case -EFAULT:
f65c9168
PZ
1936 ret = VM_FAULT_SIGBUS;
1937 break;
de151cf6 1938 default:
a7c2e1aa 1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1940 ret = VM_FAULT_SIGBUS;
1941 break;
de151cf6 1942 }
f65c9168
PZ
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
de151cf6
JB
1946}
1947
901782b2
CW
1948/**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
af901ca1 1952 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
d05ca301 1962void
05394f39 1963i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1964{
6299f992
CW
1965 if (!obj->fault_mappable)
1966 return;
901782b2 1967
6796cb16
DH
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
6299f992 1970 obj->fault_mappable = false;
901782b2
CW
1971}
1972
eedd10f4
CW
1973void
1974i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975{
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980}
1981
0fa87796 1982uint32_t
e28f8711 1983i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1984{
e28f8711 1985 uint32_t gtt_size;
92b88aeb
CW
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
92b88aeb
CW
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1993 gtt_size = 1024*1024;
92b88aeb 1994 else
e28f8711 1995 gtt_size = 512*1024;
92b88aeb 1996
e28f8711
CW
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
92b88aeb 1999
e28f8711 2000 return gtt_size;
92b88aeb
CW
2001}
2002
de151cf6
JB
2003/**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
5e783301 2008 * potential fence register mapping.
de151cf6 2009 */
d865110c
ID
2010uint32_t
2011i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
de151cf6 2013{
de151cf6
JB
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
d865110c 2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2019 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2020 return 4096;
2021
a00b10c3
CW
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
e28f8711 2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2027}
2028
d8cb5086
CW
2029static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030{
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
0de23977 2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2035 return 0;
2036
da494d7c
DV
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
d8cb5086
CW
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
da494d7c 2041 goto out;
d8cb5086
CW
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
21ab4e74
CW
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
da494d7c 2057 goto out;
d8cb5086
CW
2058
2059 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
d8cb5086
CW
2065}
2066
2067static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068{
d8cb5086
CW
2069 drm_gem_free_mmap_offset(&obj->base);
2070}
2071
da6b51d0 2072int
ff72145b
DA
2073i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
da6b51d0 2075 uint32_t handle,
ff72145b 2076 uint64_t *offset)
de151cf6 2077{
05394f39 2078 struct drm_i915_gem_object *obj;
de151cf6
JB
2079 int ret;
2080
76c1dec1 2081 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2082 if (ret)
76c1dec1 2083 return ret;
de151cf6 2084
ff72145b 2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2086 if (&obj->base == NULL) {
1d7cfea1
CW
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
de151cf6 2090
05394f39 2091 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2093 ret = -EFAULT;
1d7cfea1 2094 goto out;
ab18282d
CW
2095 }
2096
d8cb5086
CW
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
de151cf6 2100
0de23977 2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2102
1d7cfea1 2103out:
05394f39 2104 drm_gem_object_unreference(&obj->base);
1d7cfea1 2105unlock:
de151cf6 2106 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2107 return ret;
de151cf6
JB
2108}
2109
ff72145b
DA
2110/**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125int
2126i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128{
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
da6b51d0 2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2132}
2133
225067ee
DV
2134/* Immediately discard the backing storage */
2135static void
2136i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2137{
4d6294bf 2138 i915_gem_object_free_mmap_offset(obj);
1286ff73 2139
4d6294bf
CW
2140 if (obj->base.filp == NULL)
2141 return;
e5281ccd 2142
225067ee
DV
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
5537252b 2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2149 obj->madv = __I915_MADV_PURGED;
2150}
e5281ccd 2151
5537252b
CW
2152/* Try to discard unwanted pages */
2153static void
2154i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2155{
5537252b
CW
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2170}
2171
5cdf5881 2172static void
05394f39 2173i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2174{
90797e6d
ID
2175 struct sg_page_iter sg_iter;
2176 int ret;
1286ff73 2177
05394f39 2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2179
6c085a72
CW
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2c22569b 2186 i915_gem_clflush_object(obj, true);
6c085a72
CW
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
e2273302
ID
2190 i915_gem_gtt_finish_object(obj);
2191
6dacfd2f 2192 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
05394f39
CW
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
3ef94daa 2197
90797e6d 2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2199 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2200
05394f39 2201 if (obj->dirty)
9da3da66 2202 set_page_dirty(page);
3ef94daa 2203
05394f39 2204 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2205 mark_page_accessed(page);
3ef94daa 2206
9da3da66 2207 page_cache_release(page);
3ef94daa 2208 }
05394f39 2209 obj->dirty = 0;
673a394b 2210
9da3da66
CW
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
37e680a1 2213}
6c085a72 2214
dd624afd 2215int
37e680a1
CW
2216i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217{
2218 const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2f745ad3 2220 if (obj->pages == NULL)
37e680a1
CW
2221 return 0;
2222
a5570178
CW
2223 if (obj->pages_pin_count)
2224 return -EBUSY;
2225
9843877d 2226 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2227
a2165e31
CW
2228 /* ->put_pages might need to allocate memory for the bit17 swizzle
2229 * array, hence protect them from being reaped by removing them from gtt
2230 * lists early. */
35c20a60 2231 list_del(&obj->global_list);
a2165e31 2232
37e680a1 2233 ops->put_pages(obj);
05394f39 2234 obj->pages = NULL;
37e680a1 2235
5537252b 2236 i915_gem_object_invalidate(obj);
6c085a72
CW
2237
2238 return 0;
2239}
2240
37e680a1 2241static int
6c085a72 2242i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2243{
6c085a72 2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2245 int page_count, i;
2246 struct address_space *mapping;
9da3da66
CW
2247 struct sg_table *st;
2248 struct scatterlist *sg;
90797e6d 2249 struct sg_page_iter sg_iter;
e5281ccd 2250 struct page *page;
90797e6d 2251 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2252 int ret;
6c085a72 2253 gfp_t gfp;
e5281ccd 2254
6c085a72
CW
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
9da3da66
CW
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
05394f39 2266 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2268 kfree(st);
e5281ccd 2269 return -ENOMEM;
9da3da66 2270 }
e5281ccd 2271
9da3da66
CW
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
496ad9aa 2277 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
6c085a72
CW
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
21ab4e74
CW
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
6c085a72
CW
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
6c085a72 2297 i915_gem_shrink_all(dev_priv);
f461d1be 2298 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
6c085a72 2301 goto err_pages;
e2273302 2302 }
6c085a72 2303 }
426729dc
KRW
2304#ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311#endif
90797e6d
ID
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
3bbbe706
DV
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2324 }
426729dc
KRW
2325#ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327#endif
2328 sg_mark_end(sg);
74ce6b6c
CW
2329 obj->pages = st;
2330
e2273302
ID
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
6dacfd2f 2335 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
656bfa3a
DV
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
e5281ccd
CW
2342 return 0;
2343
2344err_pages:
90797e6d
ID
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2347 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2348 sg_free_table(st);
2349 kfree(st);
0820baf3
CW
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
e2273302
ID
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
673a394b
EA
2363}
2364
37e680a1
CW
2365/* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372int
2373i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374{
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2f745ad3 2379 if (obj->pages)
37e680a1
CW
2380 return 0;
2381
43e28f09 2382 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2384 return -EFAULT;
43e28f09
CW
2385 }
2386
a5570178
CW
2387 BUG_ON(obj->pages_pin_count);
2388
37e680a1
CW
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
35c20a60 2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
37e680a1 2398 return 0;
673a394b
EA
2399}
2400
b4716185 2401void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2402 struct drm_i915_gem_request *req)
673a394b 2403{
b4716185 2404 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2405 struct intel_engine_cs *ring;
2406
2407 ring = i915_gem_request_get_ring(req);
673a394b
EA
2408
2409 /* Add a reference if we're newly entering the active list. */
b4716185 2410 if (obj->active == 0)
05394f39 2411 drm_gem_object_reference(&obj->base);
b4716185 2412 obj->active |= intel_ring_flag(ring);
e35a41de 2413
b4716185 2414 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2415 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2416
b4716185 2417 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2418}
2419
b4716185
CW
2420static void
2421i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2422{
b4716185
CW
2423 RQ_BUG_ON(obj->last_write_req == NULL);
2424 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425
2426 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2427 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2428}
2429
caea7476 2430static void
b4716185 2431i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2432{
feb822cf 2433 struct i915_vma *vma;
ce44b0ea 2434
b4716185
CW
2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438 list_del_init(&obj->ring_list[ring]);
2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442 i915_gem_object_retire__write(obj);
2443
2444 obj->active &= ~(1 << ring);
2445 if (obj->active)
2446 return;
caea7476 2447
6c246959
CW
2448 /* Bump our place on the bound list to keep it roughly in LRU order
2449 * so that we don't steal from recently used but inactive objects
2450 * (unless we are forced to ofc!)
2451 */
2452 list_move_tail(&obj->global_list,
2453 &to_i915(obj->base.dev)->mm.bound_list);
2454
fe14d5f4
TU
2455 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456 if (!list_empty(&vma->mm_list))
2457 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2458 }
caea7476 2459
97b2a6a1 2460 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2461 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2462}
2463
9d773091 2464static int
fca26bb4 2465i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2466{
9d773091 2467 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2468 struct intel_engine_cs *ring;
9d773091 2469 int ret, i, j;
53d227f2 2470
107f27a5 2471 /* Carefully retire all requests without writing to the rings */
9d773091 2472 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2473 ret = intel_ring_idle(ring);
2474 if (ret)
2475 return ret;
9d773091 2476 }
9d773091 2477 i915_gem_retire_requests(dev);
107f27a5
CW
2478
2479 /* Finally reset hw state */
9d773091 2480 for_each_ring(ring, dev_priv, i) {
fca26bb4 2481 intel_ring_init_seqno(ring, seqno);
498d2ac1 2482
ebc348b2
BW
2483 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484 ring->semaphore.sync_seqno[j] = 0;
9d773091 2485 }
53d227f2 2486
9d773091 2487 return 0;
53d227f2
DV
2488}
2489
fca26bb4
MK
2490int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491{
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 int ret;
2494
2495 if (seqno == 0)
2496 return -EINVAL;
2497
2498 /* HWS page needs to be set less than what we
2499 * will inject to ring
2500 */
2501 ret = i915_gem_init_seqno(dev, seqno - 1);
2502 if (ret)
2503 return ret;
2504
2505 /* Carefully set the last_seqno value so that wrap
2506 * detection still works
2507 */
2508 dev_priv->next_seqno = seqno;
2509 dev_priv->last_seqno = seqno - 1;
2510 if (dev_priv->last_seqno == 0)
2511 dev_priv->last_seqno--;
2512
2513 return 0;
2514}
2515
9d773091
CW
2516int
2517i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2518{
9d773091
CW
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 /* reserve 0 for non-seqno */
2522 if (dev_priv->next_seqno == 0) {
fca26bb4 2523 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2524 if (ret)
2525 return ret;
53d227f2 2526
9d773091
CW
2527 dev_priv->next_seqno = 1;
2528 }
53d227f2 2529
f72b3435 2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2531 return 0;
53d227f2
DV
2532}
2533
bf7dc5b7
JH
2534/*
2535 * NB: This function is not allowed to fail. Doing so would mean the the
2536 * request is not being tracked for completion but the work itself is
2537 * going to happen on the hardware. This would be a Bad Thing(tm).
2538 */
75289874 2539void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2540 struct drm_i915_gem_object *obj,
2541 bool flush_caches)
673a394b 2542{
75289874
JH
2543 struct intel_engine_cs *ring;
2544 struct drm_i915_private *dev_priv;
48e29f55 2545 struct intel_ringbuffer *ringbuf;
6d3d8274 2546 u32 request_start;
3cce469c
CW
2547 int ret;
2548
48e29f55 2549 if (WARN_ON(request == NULL))
bf7dc5b7 2550 return;
48e29f55 2551
75289874
JH
2552 ring = request->ring;
2553 dev_priv = ring->dev->dev_private;
2554 ringbuf = request->ringbuf;
2555
29b1b415
JH
2556 /*
2557 * To ensure that this call will not fail, space for its emissions
2558 * should already have been reserved in the ring buffer. Let the ring
2559 * know that it is time to use that space up.
2560 */
2561 intel_ring_reserved_space_use(ringbuf);
2562
48e29f55 2563 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2564 /*
2565 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 * after having emitted the batchbuffer command. Hence we need to fix
2567 * things up similar to emitting the lazy request. The difference here
2568 * is that the flush _must_ happen before the next request, no matter
2569 * what.
2570 */
5b4a60c2
JH
2571 if (flush_caches) {
2572 if (i915.enable_execlists)
4866d729 2573 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2574 else
4866d729 2575 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2576 /* Not allowed to fail! */
2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 }
cc889e0f 2579
a71d8d94
CW
2580 /* Record the position of the start of the request so that
2581 * should we detect the updated seqno part-way through the
2582 * GPU processing the request, we never over-estimate the
2583 * position of the head.
2584 */
6d3d8274 2585 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2586
bf7dc5b7 2587 if (i915.enable_execlists)
c4e76638 2588 ret = ring->emit_request(request);
bf7dc5b7 2589 else {
ee044a88 2590 ret = ring->add_request(request);
53292cdb
MT
2591
2592 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2593 }
bf7dc5b7
JH
2594 /* Not allowed to fail! */
2595 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2596
7d736f4f 2597 request->head = request_start;
7d736f4f
MK
2598
2599 /* Whilst this request exists, batch_obj will be on the
2600 * active_list, and so will hold the active reference. Only when this
2601 * request is retired will the the batch_obj be moved onto the
2602 * inactive_list and lose its active reference. Hence we do not need
2603 * to explicitly hold another reference here.
2604 */
9a7e0c2a 2605 request->batch_obj = obj;
0e50e96b 2606
673a394b 2607 request->emitted_jiffies = jiffies;
821485dc 2608 request->previous_seqno = ring->last_submitted_seqno;
94f7bbe1 2609 ring->last_submitted_seqno = request->seqno;
852835f3 2610 list_add_tail(&request->list, &ring->request_list);
673a394b 2611
74328ee5 2612 trace_i915_gem_request_add(request);
db53a302 2613
87255483 2614 i915_queue_hangcheck(ring->dev);
10cd45b6 2615
87255483
DV
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->mm.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 intel_mark_busy(dev_priv->dev);
cc889e0f 2620
29b1b415
JH
2621 /* Sanity check that the reserved size was large enough. */
2622 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2623}
2624
939fd762 2625static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2626 const struct intel_context *ctx)
be62acb4 2627{
44e2c070 2628 unsigned long elapsed;
be62acb4 2629
44e2c070
MK
2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632 if (ctx->hang_stats.banned)
be62acb4
MK
2633 return true;
2634
676fa572
CW
2635 if (ctx->hang_stats.ban_period_seconds &&
2636 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2637 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2638 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2639 return true;
88b4aa87
MK
2640 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 if (i915_stop_ring_allow_warn(dev_priv))
2642 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2643 return true;
3fac8978 2644 }
be62acb4
MK
2645 }
2646
2647 return false;
2648}
2649
939fd762 2650static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2651 struct intel_context *ctx,
b6b0fac0 2652 const bool guilty)
aa60c664 2653{
44e2c070
MK
2654 struct i915_ctx_hang_stats *hs;
2655
2656 if (WARN_ON(!ctx))
2657 return;
aa60c664 2658
44e2c070
MK
2659 hs = &ctx->hang_stats;
2660
2661 if (guilty) {
939fd762 2662 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2663 hs->batch_active++;
2664 hs->guilty_ts = get_seconds();
2665 } else {
2666 hs->batch_pending++;
aa60c664
MK
2667 }
2668}
2669
abfe262a
JH
2670void i915_gem_request_free(struct kref *req_ref)
2671{
2672 struct drm_i915_gem_request *req = container_of(req_ref,
2673 typeof(*req), ref);
2674 struct intel_context *ctx = req->ctx;
2675
fcfa423c
JH
2676 if (req->file_priv)
2677 i915_gem_request_remove_from_client(req);
2678
0794aed3
TD
2679 if (ctx) {
2680 if (i915.enable_execlists) {
8ba319da
MK
2681 if (ctx != req->ring->default_context)
2682 intel_lr_context_unpin(req);
0794aed3 2683 }
abfe262a 2684
dcb4c12a
OM
2685 i915_gem_context_unreference(ctx);
2686 }
abfe262a 2687
efab6d8d 2688 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2689}
2690
6689cb2b 2691int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2692 struct intel_context *ctx,
2693 struct drm_i915_gem_request **req_out)
6689cb2b 2694{
efab6d8d 2695 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2696 struct drm_i915_gem_request *req;
6689cb2b 2697 int ret;
6689cb2b 2698
217e46b5
JH
2699 if (!req_out)
2700 return -EINVAL;
2701
bccca494 2702 *req_out = NULL;
6689cb2b 2703
eed29a5b
DV
2704 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705 if (req == NULL)
6689cb2b
JH
2706 return -ENOMEM;
2707
eed29a5b 2708 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2709 if (ret)
2710 goto err;
6689cb2b 2711
40e895ce
JH
2712 kref_init(&req->ref);
2713 req->i915 = dev_priv;
eed29a5b 2714 req->ring = ring;
40e895ce
JH
2715 req->ctx = ctx;
2716 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2717
2718 if (i915.enable_execlists)
40e895ce 2719 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2720 else
eed29a5b 2721 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2722 if (ret) {
2723 i915_gem_context_unreference(req->ctx);
9a0c1e27 2724 goto err;
40e895ce 2725 }
6689cb2b 2726
29b1b415
JH
2727 /*
2728 * Reserve space in the ring buffer for all the commands required to
2729 * eventually emit this request. This is to guarantee that the
2730 * i915_add_request() call can't fail. Note that the reserve may need
2731 * to be redone if the request is not actually submitted straight
2732 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2733 */
ccd98fe4
JH
2734 if (i915.enable_execlists)
2735 ret = intel_logical_ring_reserve_space(req);
2736 else
2737 ret = intel_ring_reserve_space(req);
2738 if (ret) {
2739 /*
2740 * At this point, the request is fully allocated even if not
2741 * fully prepared. Thus it can be cleaned up using the proper
2742 * free code.
2743 */
2744 i915_gem_request_cancel(req);
2745 return ret;
2746 }
29b1b415 2747
bccca494 2748 *req_out = req;
6689cb2b 2749 return 0;
9a0c1e27
CW
2750
2751err:
2752 kmem_cache_free(dev_priv->requests, req);
2753 return ret;
0e50e96b
MK
2754}
2755
29b1b415
JH
2756void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757{
2758 intel_ring_reserved_space_cancel(req->ringbuf);
2759
2760 i915_gem_request_unreference(req);
2761}
2762
8d9fc7fd 2763struct drm_i915_gem_request *
a4872ba6 2764i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2765{
4db080f9
CW
2766 struct drm_i915_gem_request *request;
2767
2768 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2769 if (i915_gem_request_completed(request, false))
4db080f9 2770 continue;
aa60c664 2771
b6b0fac0 2772 return request;
4db080f9 2773 }
b6b0fac0
MK
2774
2775 return NULL;
2776}
2777
2778static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2779 struct intel_engine_cs *ring)
b6b0fac0
MK
2780{
2781 struct drm_i915_gem_request *request;
2782 bool ring_hung;
2783
8d9fc7fd 2784 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2785
2786 if (request == NULL)
2787 return;
2788
2789 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790
939fd762 2791 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2792
2793 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2794 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2795}
aa60c664 2796
4db080f9 2797static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2798 struct intel_engine_cs *ring)
4db080f9 2799{
608c1a52
CW
2800 struct intel_ringbuffer *buffer;
2801
dfaae392 2802 while (!list_empty(&ring->active_list)) {
05394f39 2803 struct drm_i915_gem_object *obj;
9375e446 2804
05394f39
CW
2805 obj = list_first_entry(&ring->active_list,
2806 struct drm_i915_gem_object,
b4716185 2807 ring_list[ring->id]);
9375e446 2808
b4716185 2809 i915_gem_object_retire__read(obj, ring->id);
673a394b 2810 }
1d62beea 2811
dcb4c12a
OM
2812 /*
2813 * Clear the execlists queue up before freeing the requests, as those
2814 * are the ones that keep the context and ringbuffer backing objects
2815 * pinned in place.
2816 */
dcb4c12a 2817
7de1691a
TE
2818 if (i915.enable_execlists) {
2819 spin_lock_irq(&ring->execlist_lock);
1197b4f2 2820
c5baa566
TE
2821 /* list_splice_tail_init checks for empty lists */
2822 list_splice_tail_init(&ring->execlist_queue,
2823 &ring->execlist_retired_req_list);
af3302b9 2824
7de1691a 2825 spin_unlock_irq(&ring->execlist_lock);
c5baa566 2826 intel_execlists_retire_requests(ring);
dcb4c12a
OM
2827 }
2828
1d62beea
BW
2829 /*
2830 * We must free the requests after all the corresponding objects have
2831 * been moved off active lists. Which is the same order as the normal
2832 * retire_requests function does. This is important if object hold
2833 * implicit references on things like e.g. ppgtt address spaces through
2834 * the request.
2835 */
2836 while (!list_empty(&ring->request_list)) {
2837 struct drm_i915_gem_request *request;
2838
2839 request = list_first_entry(&ring->request_list,
2840 struct drm_i915_gem_request,
2841 list);
2842
b4716185 2843 i915_gem_request_retire(request);
1d62beea 2844 }
608c1a52
CW
2845
2846 /* Having flushed all requests from all queues, we know that all
2847 * ringbuffers must now be empty. However, since we do not reclaim
2848 * all space when retiring the request (to prevent HEADs colliding
2849 * with rapid ringbuffer wraparound) the amount of available space
2850 * upon reset is less than when we start. Do one more pass over
2851 * all the ringbuffers to reset last_retired_head.
2852 */
2853 list_for_each_entry(buffer, &ring->buffers, link) {
2854 buffer->last_retired_head = buffer->tail;
2855 intel_ring_update_space(buffer);
2856 }
673a394b
EA
2857}
2858
069efc1d 2859void i915_gem_reset(struct drm_device *dev)
673a394b 2860{
77f01230 2861 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2862 struct intel_engine_cs *ring;
1ec14ad3 2863 int i;
673a394b 2864
4db080f9
CW
2865 /*
2866 * Before we free the objects from the requests, we need to inspect
2867 * them for finding the guilty party. As the requests only borrow
2868 * their reference to the objects, the inspection must be done first.
2869 */
2870 for_each_ring(ring, dev_priv, i)
2871 i915_gem_reset_ring_status(dev_priv, ring);
2872
b4519513 2873 for_each_ring(ring, dev_priv, i)
4db080f9 2874 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2875
acce9ffa
BW
2876 i915_gem_context_reset(dev);
2877
19b2dbde 2878 i915_gem_restore_fences(dev);
b4716185
CW
2879
2880 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2881}
2882
2883/**
2884 * This function clears the request list as sequence numbers are passed.
2885 */
1cf0ba14 2886void
a4872ba6 2887i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2888{
db53a302 2889 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2890
832a3aad
CW
2891 /* Retire requests first as we use it above for the early return.
2892 * If we retire requests last, we may use a later seqno and so clear
2893 * the requests lists without clearing the active list, leading to
2894 * confusion.
e9103038 2895 */
852835f3 2896 while (!list_empty(&ring->request_list)) {
673a394b 2897 struct drm_i915_gem_request *request;
673a394b 2898
852835f3 2899 request = list_first_entry(&ring->request_list,
673a394b
EA
2900 struct drm_i915_gem_request,
2901 list);
673a394b 2902
1b5a433a 2903 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2904 break;
2905
b4716185 2906 i915_gem_request_retire(request);
b84d5f0c 2907 }
673a394b 2908
832a3aad
CW
2909 /* Move any buffers on the active list that are no longer referenced
2910 * by the ringbuffer to the flushing/inactive lists as appropriate,
2911 * before we free the context associated with the requests.
2912 */
2913 while (!list_empty(&ring->active_list)) {
2914 struct drm_i915_gem_object *obj;
2915
2916 obj = list_first_entry(&ring->active_list,
2917 struct drm_i915_gem_object,
b4716185 2918 ring_list[ring->id]);
832a3aad 2919
b4716185 2920 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2921 break;
2922
b4716185 2923 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2924 }
2925
581c26e8
JH
2926 if (unlikely(ring->trace_irq_req &&
2927 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2928 ring->irq_put(ring);
581c26e8 2929 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2930 }
23bc5982 2931
db53a302 2932 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2933}
2934
b29c19b6 2935bool
b09a1fec
CW
2936i915_gem_retire_requests(struct drm_device *dev)
2937{
3e31c6c0 2938 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2939 struct intel_engine_cs *ring;
b29c19b6 2940 bool idle = true;
1ec14ad3 2941 int i;
b09a1fec 2942
b29c19b6 2943 for_each_ring(ring, dev_priv, i) {
b4519513 2944 i915_gem_retire_requests_ring(ring);
b29c19b6 2945 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2946 if (i915.enable_execlists) {
2947 unsigned long flags;
2948
2949 spin_lock_irqsave(&ring->execlist_lock, flags);
2950 idle &= list_empty(&ring->execlist_queue);
2951 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2952
2953 intel_execlists_retire_requests(ring);
2954 }
b29c19b6
CW
2955 }
2956
2957 if (idle)
2958 mod_delayed_work(dev_priv->wq,
2959 &dev_priv->mm.idle_work,
2960 msecs_to_jiffies(100));
2961
2962 return idle;
b09a1fec
CW
2963}
2964
75ef9da2 2965static void
673a394b
EA
2966i915_gem_retire_work_handler(struct work_struct *work)
2967{
b29c19b6
CW
2968 struct drm_i915_private *dev_priv =
2969 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2970 struct drm_device *dev = dev_priv->dev;
0a58705b 2971 bool idle;
673a394b 2972
891b48cf 2973 /* Come back later if the device is busy... */
b29c19b6
CW
2974 idle = false;
2975 if (mutex_trylock(&dev->struct_mutex)) {
2976 idle = i915_gem_retire_requests(dev);
2977 mutex_unlock(&dev->struct_mutex);
673a394b 2978 }
b29c19b6 2979 if (!idle)
bcb45086
CW
2980 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2981 round_jiffies_up_relative(HZ));
b29c19b6 2982}
0a58705b 2983
b29c19b6
CW
2984static void
2985i915_gem_idle_work_handler(struct work_struct *work)
2986{
2987 struct drm_i915_private *dev_priv =
2988 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2989 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2990 struct intel_engine_cs *ring;
2991 int i;
b29c19b6 2992
423795cb
CW
2993 for_each_ring(ring, dev_priv, i)
2994 if (!list_empty(&ring->request_list))
2995 return;
35c94185
CW
2996
2997 intel_mark_idle(dev);
2998
2999 if (mutex_trylock(&dev->struct_mutex)) {
3000 struct intel_engine_cs *ring;
3001 int i;
3002
3003 for_each_ring(ring, dev_priv, i)
3004 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 3005
35c94185
CW
3006 mutex_unlock(&dev->struct_mutex);
3007 }
673a394b
EA
3008}
3009
30dfebf3
DV
3010/**
3011 * Ensures that an object will eventually get non-busy by flushing any required
3012 * write domains, emitting any outstanding lazy request and retiring and
3013 * completed requests.
3014 */
3015static int
3016i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3017{
a5ac0f90 3018 int i;
b4716185
CW
3019
3020 if (!obj->active)
3021 return 0;
30dfebf3 3022
b4716185
CW
3023 for (i = 0; i < I915_NUM_RINGS; i++) {
3024 struct drm_i915_gem_request *req;
41c52415 3025
b4716185
CW
3026 req = obj->last_read_req[i];
3027 if (req == NULL)
3028 continue;
3029
3030 if (list_empty(&req->list))
3031 goto retire;
3032
b4716185
CW
3033 if (i915_gem_request_completed(req, true)) {
3034 __i915_gem_request_retire__upto(req);
3035retire:
3036 i915_gem_object_retire__read(obj, i);
3037 }
30dfebf3
DV
3038 }
3039
3040 return 0;
3041}
3042
23ba4fd0
BW
3043/**
3044 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3045 * @DRM_IOCTL_ARGS: standard ioctl arguments
3046 *
3047 * Returns 0 if successful, else an error is returned with the remaining time in
3048 * the timeout parameter.
3049 * -ETIME: object is still busy after timeout
3050 * -ERESTARTSYS: signal interrupted the wait
3051 * -ENONENT: object doesn't exist
3052 * Also possible, but rare:
3053 * -EAGAIN: GPU wedged
3054 * -ENOMEM: damn
3055 * -ENODEV: Internal IRQ fail
3056 * -E?: The add request failed
3057 *
3058 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3059 * non-zero timeout parameter the wait ioctl will wait for the given number of
3060 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3061 * without holding struct_mutex the object may become re-busied before this
3062 * function completes. A similar but shorter * race condition exists in the busy
3063 * ioctl
3064 */
3065int
3066i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3067{
3e31c6c0 3068 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3069 struct drm_i915_gem_wait *args = data;
3070 struct drm_i915_gem_object *obj;
b4716185 3071 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3072 unsigned reset_counter;
b4716185
CW
3073 int i, n = 0;
3074 int ret;
23ba4fd0 3075
11b5d511
DV
3076 if (args->flags != 0)
3077 return -EINVAL;
3078
23ba4fd0
BW
3079 ret = i915_mutex_lock_interruptible(dev);
3080 if (ret)
3081 return ret;
3082
3083 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3084 if (&obj->base == NULL) {
3085 mutex_unlock(&dev->struct_mutex);
3086 return -ENOENT;
3087 }
3088
30dfebf3
DV
3089 /* Need to make sure the object gets inactive eventually. */
3090 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3091 if (ret)
3092 goto out;
3093
b4716185 3094 if (!obj->active)
97b2a6a1 3095 goto out;
23ba4fd0 3096
23ba4fd0 3097 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3098 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3099 */
762e4583 3100 if (args->timeout_ns == 0) {
23ba4fd0
BW
3101 ret = -ETIME;
3102 goto out;
3103 }
3104
3105 drm_gem_object_unreference(&obj->base);
f69061be 3106 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3107
3108 for (i = 0; i < I915_NUM_RINGS; i++) {
3109 if (obj->last_read_req[i] == NULL)
3110 continue;
3111
3112 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3113 }
3114
23ba4fd0
BW
3115 mutex_unlock(&dev->struct_mutex);
3116
b4716185
CW
3117 for (i = 0; i < n; i++) {
3118 if (ret == 0)
3119 ret = __i915_wait_request(req[i], reset_counter, true,
3120 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3121 to_rps_client(file));
b4716185
CW
3122 i915_gem_request_unreference__unlocked(req[i]);
3123 }
ff865885 3124 return ret;
23ba4fd0
BW
3125
3126out:
3127 drm_gem_object_unreference(&obj->base);
3128 mutex_unlock(&dev->struct_mutex);
3129 return ret;
3130}
3131
b4716185
CW
3132static int
3133__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3134 struct intel_engine_cs *to,
91af127f
JH
3135 struct drm_i915_gem_request *from_req,
3136 struct drm_i915_gem_request **to_req)
b4716185
CW
3137{
3138 struct intel_engine_cs *from;
3139 int ret;
3140
91af127f 3141 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3142 if (to == from)
3143 return 0;
3144
91af127f 3145 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3146 return 0;
3147
b4716185 3148 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3149 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3150 ret = __i915_wait_request(from_req,
a6f766f3
CW
3151 atomic_read(&i915->gpu_error.reset_counter),
3152 i915->mm.interruptible,
3153 NULL,
3154 &i915->rps.semaphores);
b4716185
CW
3155 if (ret)
3156 return ret;
3157
91af127f 3158 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3159 } else {
3160 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3161 u32 seqno = i915_gem_request_get_seqno(from_req);
3162
3163 WARN_ON(!to_req);
b4716185
CW
3164
3165 if (seqno <= from->semaphore.sync_seqno[idx])
3166 return 0;
3167
91af127f
JH
3168 if (*to_req == NULL) {
3169 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3170 if (ret)
3171 return ret;
3172 }
3173
599d924c
JH
3174 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3175 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3176 if (ret)
3177 return ret;
3178
3179 /* We use last_read_req because sync_to()
3180 * might have just caused seqno wrap under
3181 * the radar.
3182 */
3183 from->semaphore.sync_seqno[idx] =
3184 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3185 }
3186
3187 return 0;
3188}
3189
5816d648
BW
3190/**
3191 * i915_gem_object_sync - sync an object to a ring.
3192 *
3193 * @obj: object which may be in use on another ring.
3194 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3195 * @to_req: request we wish to use the object for. See below.
3196 * This will be allocated and returned if a request is
3197 * required but not passed in.
5816d648
BW
3198 *
3199 * This code is meant to abstract object synchronization with the GPU.
3200 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3201 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3202 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3203 * into a buffer at any time, but multiple readers. To ensure each has
3204 * a coherent view of memory, we must:
3205 *
3206 * - If there is an outstanding write request to the object, the new
3207 * request must wait for it to complete (either CPU or in hw, requests
3208 * on the same ring will be naturally ordered).
3209 *
3210 * - If we are a write request (pending_write_domain is set), the new
3211 * request must wait for outstanding read requests to complete.
5816d648 3212 *
91af127f
JH
3213 * For CPU synchronisation (NULL to) no request is required. For syncing with
3214 * rings to_req must be non-NULL. However, a request does not have to be
3215 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3216 * request will be allocated automatically and returned through *to_req. Note
3217 * that it is not guaranteed that commands will be emitted (because the system
3218 * might already be idle). Hence there is no need to create a request that
3219 * might never have any work submitted. Note further that if a request is
3220 * returned in *to_req, it is the responsibility of the caller to submit
3221 * that request (after potentially adding more work to it).
3222 *
5816d648
BW
3223 * Returns 0 if successful, else propagates up the lower layer error.
3224 */
2911a35b
BW
3225int
3226i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3227 struct intel_engine_cs *to,
3228 struct drm_i915_gem_request **to_req)
2911a35b 3229{
b4716185
CW
3230 const bool readonly = obj->base.pending_write_domain == 0;
3231 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3232 int ret, i, n;
41c52415 3233
b4716185 3234 if (!obj->active)
2911a35b
BW
3235 return 0;
3236
b4716185
CW
3237 if (to == NULL)
3238 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3239
b4716185
CW
3240 n = 0;
3241 if (readonly) {
3242 if (obj->last_write_req)
3243 req[n++] = obj->last_write_req;
3244 } else {
3245 for (i = 0; i < I915_NUM_RINGS; i++)
3246 if (obj->last_read_req[i])
3247 req[n++] = obj->last_read_req[i];
3248 }
3249 for (i = 0; i < n; i++) {
91af127f 3250 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3251 if (ret)
3252 return ret;
3253 }
2911a35b 3254
b4716185 3255 return 0;
2911a35b
BW
3256}
3257
b5ffc9bc
CW
3258static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3259{
3260 u32 old_write_domain, old_read_domains;
3261
b5ffc9bc
CW
3262 /* Force a pagefault for domain tracking on next user access */
3263 i915_gem_release_mmap(obj);
3264
b97c3d9c
KP
3265 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3266 return;
3267
97c809fd
CW
3268 /* Wait for any direct GTT access to complete */
3269 mb();
3270
b5ffc9bc
CW
3271 old_read_domains = obj->base.read_domains;
3272 old_write_domain = obj->base.write_domain;
3273
3274 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3275 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3276
3277 trace_i915_gem_object_change_domain(obj,
3278 old_read_domains,
3279 old_write_domain);
3280}
3281
e9f24d5f 3282static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3283{
07fe0b12 3284 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3285 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3286 int ret;
673a394b 3287
07fe0b12 3288 if (list_empty(&vma->vma_link))
673a394b
EA
3289 return 0;
3290
0ff501cb
DV
3291 if (!drm_mm_node_allocated(&vma->node)) {
3292 i915_gem_vma_destroy(vma);
0ff501cb
DV
3293 return 0;
3294 }
433544bd 3295
d7f46fc4 3296 if (vma->pin_count)
31d8d651 3297 return -EBUSY;
673a394b 3298
c4670ad0
CW
3299 BUG_ON(obj->pages == NULL);
3300
e9f24d5f
TU
3301 if (wait) {
3302 ret = i915_gem_object_wait_rendering(obj, false);
3303 if (ret)
3304 return ret;
3305 }
a8198eea 3306
fe14d5f4
TU
3307 if (i915_is_ggtt(vma->vm) &&
3308 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3309 i915_gem_object_finish_gtt(obj);
5323fd04 3310
8b1bc9b4
DV
3311 /* release the fence reg _after_ flushing */
3312 ret = i915_gem_object_put_fence(obj);
3313 if (ret)
3314 return ret;
3315 }
96b47b65 3316
07fe0b12 3317 trace_i915_vma_unbind(vma);
db53a302 3318
777dc5bb 3319 vma->vm->unbind_vma(vma);
5e562f1d 3320 vma->bound = 0;
6f65e29a 3321
64bf9303 3322 list_del_init(&vma->mm_list);
fe14d5f4
TU
3323 if (i915_is_ggtt(vma->vm)) {
3324 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3325 obj->map_and_fenceable = false;
3326 } else if (vma->ggtt_view.pages) {
3327 sg_free_table(vma->ggtt_view.pages);
3328 kfree(vma->ggtt_view.pages);
fe14d5f4 3329 }
016a65a3 3330 vma->ggtt_view.pages = NULL;
fe14d5f4 3331 }
673a394b 3332
2f633156
BW
3333 drm_mm_remove_node(&vma->node);
3334 i915_gem_vma_destroy(vma);
3335
3336 /* Since the unbound list is global, only move to that list if
b93dab6e 3337 * no more VMAs exist. */
e2273302 3338 if (list_empty(&obj->vma_list))
2f633156 3339 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3340
70903c3b
CW
3341 /* And finally now the object is completely decoupled from this vma,
3342 * we can drop its hold on the backing storage and allow it to be
3343 * reaped by the shrinker.
3344 */
3345 i915_gem_object_unpin_pages(obj);
3346
88241785 3347 return 0;
54cf91dc
CW
3348}
3349
e9f24d5f
TU
3350int i915_vma_unbind(struct i915_vma *vma)
3351{
3352 return __i915_vma_unbind(vma, true);
3353}
3354
3355int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3356{
3357 return __i915_vma_unbind(vma, false);
3358}
3359
b2da9fe5 3360int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3361{
3e31c6c0 3362 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3363 struct intel_engine_cs *ring;
1ec14ad3 3364 int ret, i;
4df2faf4 3365
4df2faf4 3366 /* Flush everything onto the inactive list. */
b4519513 3367 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3368 if (!i915.enable_execlists) {
73cfa865
JH
3369 struct drm_i915_gem_request *req;
3370
3371 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3372 if (ret)
3373 return ret;
73cfa865 3374
ba01cc93 3375 ret = i915_switch_context(req);
73cfa865
JH
3376 if (ret) {
3377 i915_gem_request_cancel(req);
3378 return ret;
3379 }
3380
75289874 3381 i915_add_request_no_flush(req);
ecdb5fd8 3382 }
b6c7488d 3383
3e960501 3384 ret = intel_ring_idle(ring);
1ec14ad3
CW
3385 if (ret)
3386 return ret;
3387 }
4df2faf4 3388
b4716185 3389 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3390 return 0;
4df2faf4
DV
3391}
3392
4144f9b5 3393static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3394 unsigned long cache_level)
3395{
4144f9b5 3396 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3397 struct drm_mm_node *other;
3398
4144f9b5
CW
3399 /*
3400 * On some machines we have to be careful when putting differing types
3401 * of snoopable memory together to avoid the prefetcher crossing memory
3402 * domains and dying. During vm initialisation, we decide whether or not
3403 * these constraints apply and set the drm_mm.color_adjust
3404 * appropriately.
42d6ab48 3405 */
4144f9b5 3406 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3407 return true;
3408
c6cfb325 3409 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3410 return true;
3411
3412 if (list_empty(&gtt_space->node_list))
3413 return true;
3414
3415 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3416 if (other->allocated && !other->hole_follows && other->color != cache_level)
3417 return false;
3418
3419 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3420 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3421 return false;
3422
3423 return true;
3424}
3425
673a394b 3426/**
91e6711e
JL
3427 * Finds free space in the GTT aperture and binds the object or a view of it
3428 * there.
673a394b 3429 */
262de145 3430static struct i915_vma *
07fe0b12
BW
3431i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3432 struct i915_address_space *vm,
ec7adb6e 3433 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3434 unsigned alignment,
ec7adb6e 3435 uint64_t flags)
673a394b 3436{
05394f39 3437 struct drm_device *dev = obj->base.dev;
3e31c6c0 3438 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3439 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3440 u32 search_flag, alloc_flag;
3441 u64 start, end;
65bd342f 3442 u64 size, fence_size;
2f633156 3443 struct i915_vma *vma;
07f73f69 3444 int ret;
673a394b 3445
91e6711e
JL
3446 if (i915_is_ggtt(vm)) {
3447 u32 view_size;
3448
3449 if (WARN_ON(!ggtt_view))
3450 return ERR_PTR(-EINVAL);
ec7adb6e 3451
91e6711e
JL
3452 view_size = i915_ggtt_view_size(obj, ggtt_view);
3453
3454 fence_size = i915_gem_get_gtt_size(dev,
3455 view_size,
3456 obj->tiling_mode);
3457 fence_alignment = i915_gem_get_gtt_alignment(dev,
3458 view_size,
3459 obj->tiling_mode,
3460 true);
3461 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3462 view_size,
3463 obj->tiling_mode,
3464 false);
3465 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3466 } else {
3467 fence_size = i915_gem_get_gtt_size(dev,
3468 obj->base.size,
3469 obj->tiling_mode);
3470 fence_alignment = i915_gem_get_gtt_alignment(dev,
3471 obj->base.size,
3472 obj->tiling_mode,
3473 true);
3474 unfenced_alignment =
3475 i915_gem_get_gtt_alignment(dev,
3476 obj->base.size,
3477 obj->tiling_mode,
3478 false);
3479 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3480 }
a00b10c3 3481
101b506a
MT
3482 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3483 end = vm->total;
3484 if (flags & PIN_MAPPABLE)
3485 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3486 if (flags & PIN_ZONE_4G)
1892faa9 3487 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3488
673a394b 3489 if (alignment == 0)
1ec9e26d 3490 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3491 unfenced_alignment;
1ec9e26d 3492 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3493 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3494 ggtt_view ? ggtt_view->type : 0,
3495 alignment);
262de145 3496 return ERR_PTR(-EINVAL);
673a394b
EA
3497 }
3498
91e6711e
JL
3499 /* If binding the object/GGTT view requires more space than the entire
3500 * aperture has, reject it early before evicting everything in a vain
3501 * attempt to find space.
654fc607 3502 */
91e6711e 3503 if (size > end) {
65bd342f 3504 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3505 ggtt_view ? ggtt_view->type : 0,
3506 size,
1ec9e26d 3507 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3508 end);
262de145 3509 return ERR_PTR(-E2BIG);
654fc607
CW
3510 }
3511
37e680a1 3512 ret = i915_gem_object_get_pages(obj);
6c085a72 3513 if (ret)
262de145 3514 return ERR_PTR(ret);
6c085a72 3515
fbdda6fb
CW
3516 i915_gem_object_pin_pages(obj);
3517
ec7adb6e
JL
3518 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3519 i915_gem_obj_lookup_or_create_vma(obj, vm);
3520
262de145 3521 if (IS_ERR(vma))
bc6bc15b 3522 goto err_unpin;
2f633156 3523
506a8e87
CW
3524 if (flags & PIN_OFFSET_FIXED) {
3525 uint64_t offset = flags & PIN_OFFSET_MASK;
3526
3527 if (offset & (alignment - 1) || offset + size > end) {
3528 ret = -EINVAL;
3529 goto err_free_vma;
3530 }
3531 vma->node.start = offset;
3532 vma->node.size = size;
3533 vma->node.color = obj->cache_level;
3534 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3535 if (ret) {
3536 ret = i915_gem_evict_for_vma(vma);
3537 if (ret == 0)
3538 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3539 }
3540 if (ret)
3541 goto err_free_vma;
101b506a 3542 } else {
506a8e87
CW
3543 if (flags & PIN_HIGH) {
3544 search_flag = DRM_MM_SEARCH_BELOW;
3545 alloc_flag = DRM_MM_CREATE_TOP;
3546 } else {
3547 search_flag = DRM_MM_SEARCH_DEFAULT;
3548 alloc_flag = DRM_MM_CREATE_DEFAULT;
3549 }
101b506a 3550
0a9ae0d7 3551search_free:
506a8e87
CW
3552 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3553 size, alignment,
3554 obj->cache_level,
3555 start, end,
3556 search_flag,
3557 alloc_flag);
3558 if (ret) {
3559 ret = i915_gem_evict_something(dev, vm, size, alignment,
3560 obj->cache_level,
3561 start, end,
3562 flags);
3563 if (ret == 0)
3564 goto search_free;
9731129c 3565
506a8e87
CW
3566 goto err_free_vma;
3567 }
673a394b 3568 }
4144f9b5 3569 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3570 ret = -EINVAL;
bc6bc15b 3571 goto err_remove_node;
673a394b
EA
3572 }
3573
fe14d5f4 3574 trace_i915_vma_bind(vma, flags);
0875546c 3575 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3576 if (ret)
e2273302 3577 goto err_remove_node;
fe14d5f4 3578
35c20a60 3579 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3580 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3581
262de145 3582 return vma;
2f633156 3583
bc6bc15b 3584err_remove_node:
6286ef9b 3585 drm_mm_remove_node(&vma->node);
bc6bc15b 3586err_free_vma:
2f633156 3587 i915_gem_vma_destroy(vma);
262de145 3588 vma = ERR_PTR(ret);
bc6bc15b 3589err_unpin:
2f633156 3590 i915_gem_object_unpin_pages(obj);
262de145 3591 return vma;
673a394b
EA
3592}
3593
000433b6 3594bool
2c22569b
CW
3595i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3596 bool force)
673a394b 3597{
673a394b
EA
3598 /* If we don't have a page list set up, then we're not pinned
3599 * to GPU, and we can ignore the cache flush because it'll happen
3600 * again at bind time.
3601 */
05394f39 3602 if (obj->pages == NULL)
000433b6 3603 return false;
673a394b 3604
769ce464
ID
3605 /*
3606 * Stolen memory is always coherent with the GPU as it is explicitly
3607 * marked as wc by the system, or the system is cache-coherent.
3608 */
6a2c4232 3609 if (obj->stolen || obj->phys_handle)
000433b6 3610 return false;
769ce464 3611
9c23f7fc
CW
3612 /* If the GPU is snooping the contents of the CPU cache,
3613 * we do not need to manually clear the CPU cache lines. However,
3614 * the caches are only snooped when the render cache is
3615 * flushed/invalidated. As we always have to emit invalidations
3616 * and flushes when moving into and out of the RENDER domain, correct
3617 * snooping behaviour occurs naturally as the result of our domain
3618 * tracking.
3619 */
0f71979a
CW
3620 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3621 obj->cache_dirty = true;
000433b6 3622 return false;
0f71979a 3623 }
9c23f7fc 3624
1c5d22f7 3625 trace_i915_gem_object_clflush(obj);
9da3da66 3626 drm_clflush_sg(obj->pages);
0f71979a 3627 obj->cache_dirty = false;
000433b6
CW
3628
3629 return true;
e47c68e9
EA
3630}
3631
3632/** Flushes the GTT write domain for the object if it's dirty. */
3633static void
05394f39 3634i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3635{
1c5d22f7
CW
3636 uint32_t old_write_domain;
3637
05394f39 3638 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3639 return;
3640
63256ec5 3641 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3642 * to it immediately go to main memory as far as we know, so there's
3643 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3644 *
3645 * However, we do have to enforce the order so that all writes through
3646 * the GTT land before any writes to the device, such as updates to
3647 * the GATT itself.
e47c68e9 3648 */
63256ec5
CW
3649 wmb();
3650
05394f39
CW
3651 old_write_domain = obj->base.write_domain;
3652 obj->base.write_domain = 0;
1c5d22f7 3653
de152b62 3654 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3655
1c5d22f7 3656 trace_i915_gem_object_change_domain(obj,
05394f39 3657 obj->base.read_domains,
1c5d22f7 3658 old_write_domain);
e47c68e9
EA
3659}
3660
3661/** Flushes the CPU write domain for the object if it's dirty. */
3662static void
e62b59e4 3663i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3664{
1c5d22f7 3665 uint32_t old_write_domain;
e47c68e9 3666
05394f39 3667 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3668 return;
3669
e62b59e4 3670 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3671 i915_gem_chipset_flush(obj->base.dev);
3672
05394f39
CW
3673 old_write_domain = obj->base.write_domain;
3674 obj->base.write_domain = 0;
1c5d22f7 3675
de152b62 3676 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3677
1c5d22f7 3678 trace_i915_gem_object_change_domain(obj,
05394f39 3679 obj->base.read_domains,
1c5d22f7 3680 old_write_domain);
e47c68e9
EA
3681}
3682
2ef7eeaa
EA
3683/**
3684 * Moves a single object to the GTT read, and possibly write domain.
3685 *
3686 * This function returns when the move is complete, including waiting on
3687 * flushes to occur.
3688 */
79e53945 3689int
2021746e 3690i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3691{
1c5d22f7 3692 uint32_t old_write_domain, old_read_domains;
43566ded 3693 struct i915_vma *vma;
e47c68e9 3694 int ret;
2ef7eeaa 3695
8d7e3de1
CW
3696 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3697 return 0;
3698
0201f1ec 3699 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3700 if (ret)
3701 return ret;
3702
43566ded
CW
3703 /* Flush and acquire obj->pages so that we are coherent through
3704 * direct access in memory with previous cached writes through
3705 * shmemfs and that our cache domain tracking remains valid.
3706 * For example, if the obj->filp was moved to swap without us
3707 * being notified and releasing the pages, we would mistakenly
3708 * continue to assume that the obj remained out of the CPU cached
3709 * domain.
3710 */
3711 ret = i915_gem_object_get_pages(obj);
3712 if (ret)
3713 return ret;
3714
e62b59e4 3715 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3716
d0a57789
CW
3717 /* Serialise direct access to this object with the barriers for
3718 * coherent writes from the GPU, by effectively invalidating the
3719 * GTT domain upon first access.
3720 */
3721 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3722 mb();
3723
05394f39
CW
3724 old_write_domain = obj->base.write_domain;
3725 old_read_domains = obj->base.read_domains;
1c5d22f7 3726
e47c68e9
EA
3727 /* It should now be out of any other write domains, and we can update
3728 * the domain values for our changes.
3729 */
05394f39
CW
3730 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3731 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3732 if (write) {
05394f39
CW
3733 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3734 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3735 obj->dirty = 1;
2ef7eeaa
EA
3736 }
3737
1c5d22f7
CW
3738 trace_i915_gem_object_change_domain(obj,
3739 old_read_domains,
3740 old_write_domain);
3741
8325a09d 3742 /* And bump the LRU for this access */
43566ded
CW
3743 vma = i915_gem_obj_to_ggtt(obj);
3744 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3745 list_move_tail(&vma->mm_list,
43566ded 3746 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3747
e47c68e9
EA
3748 return 0;
3749}
3750
ef55f92a
CW
3751/**
3752 * Changes the cache-level of an object across all VMA.
3753 *
3754 * After this function returns, the object will be in the new cache-level
3755 * across all GTT and the contents of the backing storage will be coherent,
3756 * with respect to the new cache-level. In order to keep the backing storage
3757 * coherent for all users, we only allow a single cache level to be set
3758 * globally on the object and prevent it from being changed whilst the
3759 * hardware is reading from the object. That is if the object is currently
3760 * on the scanout it will be set to uncached (or equivalent display
3761 * cache coherency) and all non-MOCS GPU access will also be uncached so
3762 * that all direct access to the scanout remains coherent.
3763 */
e4ffd173
CW
3764int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3765 enum i915_cache_level cache_level)
3766{
7bddb01f 3767 struct drm_device *dev = obj->base.dev;
df6f783a 3768 struct i915_vma *vma, *next;
ef55f92a 3769 bool bound = false;
ed75a55b 3770 int ret = 0;
e4ffd173
CW
3771
3772 if (obj->cache_level == cache_level)
ed75a55b 3773 goto out;
e4ffd173 3774
ef55f92a
CW
3775 /* Inspect the list of currently bound VMA and unbind any that would
3776 * be invalid given the new cache-level. This is principally to
3777 * catch the issue of the CS prefetch crossing page boundaries and
3778 * reading an invalid PTE on older architectures.
3779 */
df6f783a 3780 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3781 if (!drm_mm_node_allocated(&vma->node))
3782 continue;
3783
3784 if (vma->pin_count) {
3785 DRM_DEBUG("can not change the cache level of pinned objects\n");
3786 return -EBUSY;
3787 }
3788
4144f9b5 3789 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3790 ret = i915_vma_unbind(vma);
3089c6f2
BW
3791 if (ret)
3792 return ret;
ef55f92a
CW
3793 } else
3794 bound = true;
42d6ab48
CW
3795 }
3796
ef55f92a
CW
3797 /* We can reuse the existing drm_mm nodes but need to change the
3798 * cache-level on the PTE. We could simply unbind them all and
3799 * rebind with the correct cache-level on next use. However since
3800 * we already have a valid slot, dma mapping, pages etc, we may as
3801 * rewrite the PTE in the belief that doing so tramples upon less
3802 * state and so involves less work.
3803 */
3804 if (bound) {
3805 /* Before we change the PTE, the GPU must not be accessing it.
3806 * If we wait upon the object, we know that all the bound
3807 * VMA are no longer active.
3808 */
2e2f351d 3809 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3810 if (ret)
3811 return ret;
3812
ef55f92a
CW
3813 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3814 /* Access to snoopable pages through the GTT is
3815 * incoherent and on some machines causes a hard
3816 * lockup. Relinquish the CPU mmaping to force
3817 * userspace to refault in the pages and we can
3818 * then double check if the GTT mapping is still
3819 * valid for that pointer access.
3820 */
3821 i915_gem_release_mmap(obj);
3822
3823 /* As we no longer need a fence for GTT access,
3824 * we can relinquish it now (and so prevent having
3825 * to steal a fence from someone else on the next
3826 * fence request). Note GPU activity would have
3827 * dropped the fence as all snoopable access is
3828 * supposed to be linear.
3829 */
e4ffd173
CW
3830 ret = i915_gem_object_put_fence(obj);
3831 if (ret)
3832 return ret;
ef55f92a
CW
3833 } else {
3834 /* We either have incoherent backing store and
3835 * so no GTT access or the architecture is fully
3836 * coherent. In such cases, existing GTT mmaps
3837 * ignore the cache bit in the PTE and we can
3838 * rewrite it without confusing the GPU or having
3839 * to force userspace to fault back in its mmaps.
3840 */
e4ffd173
CW
3841 }
3842
ef55f92a
CW
3843 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3844 if (!drm_mm_node_allocated(&vma->node))
3845 continue;
3846
3847 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3848 if (ret)
3849 return ret;
3850 }
e4ffd173
CW
3851 }
3852
2c22569b
CW
3853 list_for_each_entry(vma, &obj->vma_list, vma_link)
3854 vma->node.color = cache_level;
3855 obj->cache_level = cache_level;
3856
ed75a55b 3857out:
ef55f92a
CW
3858 /* Flush the dirty CPU caches to the backing storage so that the
3859 * object is now coherent at its new cache level (with respect
3860 * to the access domain).
3861 */
0f71979a
CW
3862 if (obj->cache_dirty &&
3863 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3864 cpu_write_needs_clflush(obj)) {
3865 if (i915_gem_clflush_object(obj, true))
3866 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3867 }
3868
e4ffd173
CW
3869 return 0;
3870}
3871
199adf40
BW
3872int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3873 struct drm_file *file)
e6994aee 3874{
199adf40 3875 struct drm_i915_gem_caching *args = data;
e6994aee 3876 struct drm_i915_gem_object *obj;
e6994aee
CW
3877
3878 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3879 if (&obj->base == NULL)
3880 return -ENOENT;
e6994aee 3881
651d794f
CW
3882 switch (obj->cache_level) {
3883 case I915_CACHE_LLC:
3884 case I915_CACHE_L3_LLC:
3885 args->caching = I915_CACHING_CACHED;
3886 break;
3887
4257d3ba
CW
3888 case I915_CACHE_WT:
3889 args->caching = I915_CACHING_DISPLAY;
3890 break;
3891
651d794f
CW
3892 default:
3893 args->caching = I915_CACHING_NONE;
3894 break;
3895 }
e6994aee 3896
432be69d
CW
3897 drm_gem_object_unreference_unlocked(&obj->base);
3898 return 0;
e6994aee
CW
3899}
3900
199adf40
BW
3901int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3902 struct drm_file *file)
e6994aee 3903{
fd0fe6ac 3904 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3905 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3906 struct drm_i915_gem_object *obj;
3907 enum i915_cache_level level;
3908 int ret;
3909
199adf40
BW
3910 switch (args->caching) {
3911 case I915_CACHING_NONE:
e6994aee
CW
3912 level = I915_CACHE_NONE;
3913 break;
199adf40 3914 case I915_CACHING_CACHED:
e5756c10
ID
3915 /*
3916 * Due to a HW issue on BXT A stepping, GPU stores via a
3917 * snooped mapping may leave stale data in a corresponding CPU
3918 * cacheline, whereas normally such cachelines would get
3919 * invalidated.
3920 */
e87a005d 3921 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
e5756c10
ID
3922 return -ENODEV;
3923
e6994aee
CW
3924 level = I915_CACHE_LLC;
3925 break;
4257d3ba
CW
3926 case I915_CACHING_DISPLAY:
3927 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3928 break;
e6994aee
CW
3929 default:
3930 return -EINVAL;
3931 }
3932
fd0fe6ac
ID
3933 intel_runtime_pm_get(dev_priv);
3934
3bc2913e
BW
3935 ret = i915_mutex_lock_interruptible(dev);
3936 if (ret)
fd0fe6ac 3937 goto rpm_put;
3bc2913e 3938
e6994aee
CW
3939 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3940 if (&obj->base == NULL) {
3941 ret = -ENOENT;
3942 goto unlock;
3943 }
3944
3945 ret = i915_gem_object_set_cache_level(obj, level);
3946
3947 drm_gem_object_unreference(&obj->base);
3948unlock:
3949 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3950rpm_put:
3951 intel_runtime_pm_put(dev_priv);
3952
e6994aee
CW
3953 return ret;
3954}
3955
b9241ea3 3956/*
2da3b9b9
CW
3957 * Prepare buffer for display plane (scanout, cursors, etc).
3958 * Can be called from an uninterruptible phase (modesetting) and allows
3959 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3960 */
3961int
2da3b9b9
CW
3962i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3963 u32 alignment,
e6617330 3964 const struct i915_ggtt_view *view)
b9241ea3 3965{
2da3b9b9 3966 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3967 int ret;
3968
cc98b413
CW
3969 /* Mark the pin_display early so that we account for the
3970 * display coherency whilst setting up the cache domains.
3971 */
8a0c39b1 3972 obj->pin_display++;
cc98b413 3973
a7ef0640
EA
3974 /* The display engine is not coherent with the LLC cache on gen6. As
3975 * a result, we make sure that the pinning that is about to occur is
3976 * done with uncached PTEs. This is lowest common denominator for all
3977 * chipsets.
3978 *
3979 * However for gen6+, we could do better by using the GFDT bit instead
3980 * of uncaching, which would allow us to flush all the LLC-cached data
3981 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3982 */
651d794f
CW
3983 ret = i915_gem_object_set_cache_level(obj,
3984 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3985 if (ret)
cc98b413 3986 goto err_unpin_display;
a7ef0640 3987
2da3b9b9
CW
3988 /* As the user may map the buffer once pinned in the display plane
3989 * (e.g. libkms for the bootup splash), we have to ensure that we
3990 * always use map_and_fenceable for all scanout buffers.
3991 */
50470bb0
TU
3992 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3993 view->type == I915_GGTT_VIEW_NORMAL ?
3994 PIN_MAPPABLE : 0);
2da3b9b9 3995 if (ret)
cc98b413 3996 goto err_unpin_display;
2da3b9b9 3997
e62b59e4 3998 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3999
2da3b9b9 4000 old_write_domain = obj->base.write_domain;
05394f39 4001 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4002
4003 /* It should now be out of any other write domains, and we can update
4004 * the domain values for our changes.
4005 */
e5f1d962 4006 obj->base.write_domain = 0;
05394f39 4007 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4008
4009 trace_i915_gem_object_change_domain(obj,
4010 old_read_domains,
2da3b9b9 4011 old_write_domain);
b9241ea3
ZW
4012
4013 return 0;
cc98b413
CW
4014
4015err_unpin_display:
8a0c39b1 4016 obj->pin_display--;
cc98b413
CW
4017 return ret;
4018}
4019
4020void
e6617330
TU
4021i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4022 const struct i915_ggtt_view *view)
cc98b413 4023{
8a0c39b1
TU
4024 if (WARN_ON(obj->pin_display == 0))
4025 return;
4026
e6617330
TU
4027 i915_gem_object_ggtt_unpin_view(obj, view);
4028
8a0c39b1 4029 obj->pin_display--;
b9241ea3
ZW
4030}
4031
e47c68e9
EA
4032/**
4033 * Moves a single object to the CPU read, and possibly write domain.
4034 *
4035 * This function returns when the move is complete, including waiting on
4036 * flushes to occur.
4037 */
dabdfe02 4038int
919926ae 4039i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4040{
1c5d22f7 4041 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4042 int ret;
4043
8d7e3de1
CW
4044 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4045 return 0;
4046
0201f1ec 4047 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4048 if (ret)
4049 return ret;
4050
e47c68e9 4051 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4052
05394f39
CW
4053 old_write_domain = obj->base.write_domain;
4054 old_read_domains = obj->base.read_domains;
1c5d22f7 4055
e47c68e9 4056 /* Flush the CPU cache if it's still invalid. */
05394f39 4057 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4058 i915_gem_clflush_object(obj, false);
2ef7eeaa 4059
05394f39 4060 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4061 }
4062
4063 /* It should now be out of any other write domains, and we can update
4064 * the domain values for our changes.
4065 */
05394f39 4066 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4067
4068 /* If we're writing through the CPU, then the GPU read domains will
4069 * need to be invalidated at next use.
4070 */
4071 if (write) {
05394f39
CW
4072 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4073 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4074 }
2ef7eeaa 4075
1c5d22f7
CW
4076 trace_i915_gem_object_change_domain(obj,
4077 old_read_domains,
4078 old_write_domain);
4079
2ef7eeaa
EA
4080 return 0;
4081}
4082
673a394b
EA
4083/* Throttle our rendering by waiting until the ring has completed our requests
4084 * emitted over 20 msec ago.
4085 *
b962442e
EA
4086 * Note that if we were to use the current jiffies each time around the loop,
4087 * we wouldn't escape the function with any frames outstanding if the time to
4088 * render a frame was over 20ms.
4089 *
673a394b
EA
4090 * This should get us reasonable parallelism between CPU and GPU but also
4091 * relatively low latency when blocking on a particular request to finish.
4092 */
40a5f0de 4093static int
f787a5f5 4094i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4095{
f787a5f5
CW
4096 struct drm_i915_private *dev_priv = dev->dev_private;
4097 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4098 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4099 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4100 unsigned reset_counter;
f787a5f5 4101 int ret;
93533c29 4102
308887aa
DV
4103 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4104 if (ret)
4105 return ret;
4106
4107 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4108 if (ret)
4109 return ret;
e110e8d6 4110
1c25595f 4111 spin_lock(&file_priv->mm.lock);
f787a5f5 4112 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4113 if (time_after_eq(request->emitted_jiffies, recent_enough))
4114 break;
40a5f0de 4115
fcfa423c
JH
4116 /*
4117 * Note that the request might not have been submitted yet.
4118 * In which case emitted_jiffies will be zero.
4119 */
4120 if (!request->emitted_jiffies)
4121 continue;
4122
54fb2411 4123 target = request;
b962442e 4124 }
f69061be 4125 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4126 if (target)
4127 i915_gem_request_reference(target);
1c25595f 4128 spin_unlock(&file_priv->mm.lock);
40a5f0de 4129
54fb2411 4130 if (target == NULL)
f787a5f5 4131 return 0;
2bc43b5c 4132
9c654818 4133 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4134 if (ret == 0)
4135 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4136
41037f9f 4137 i915_gem_request_unreference__unlocked(target);
ff865885 4138
40a5f0de
EA
4139 return ret;
4140}
4141
d23db88c
CW
4142static bool
4143i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4144{
4145 struct drm_i915_gem_object *obj = vma->obj;
4146
4147 if (alignment &&
4148 vma->node.start & (alignment - 1))
4149 return true;
4150
4151 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4152 return true;
4153
4154 if (flags & PIN_OFFSET_BIAS &&
4155 vma->node.start < (flags & PIN_OFFSET_MASK))
4156 return true;
4157
506a8e87
CW
4158 if (flags & PIN_OFFSET_FIXED &&
4159 vma->node.start != (flags & PIN_OFFSET_MASK))
4160 return true;
4161
d23db88c
CW
4162 return false;
4163}
4164
d0710abb
CW
4165void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4166{
4167 struct drm_i915_gem_object *obj = vma->obj;
4168 bool mappable, fenceable;
4169 u32 fence_size, fence_alignment;
4170
4171 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4172 obj->base.size,
4173 obj->tiling_mode);
4174 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4175 obj->base.size,
4176 obj->tiling_mode,
4177 true);
4178
4179 fenceable = (vma->node.size == fence_size &&
4180 (vma->node.start & (fence_alignment - 1)) == 0);
4181
4182 mappable = (vma->node.start + fence_size <=
4183 to_i915(obj->base.dev)->gtt.mappable_end);
4184
4185 obj->map_and_fenceable = mappable && fenceable;
4186}
4187
ec7adb6e
JL
4188static int
4189i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4190 struct i915_address_space *vm,
4191 const struct i915_ggtt_view *ggtt_view,
4192 uint32_t alignment,
4193 uint64_t flags)
673a394b 4194{
6e7186af 4195 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4196 struct i915_vma *vma;
ef79e17c 4197 unsigned bound;
673a394b
EA
4198 int ret;
4199
6e7186af
BW
4200 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4201 return -ENODEV;
4202
bf3d149b 4203 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4204 return -EINVAL;
07fe0b12 4205
c826c449
CW
4206 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4207 return -EINVAL;
4208
ec7adb6e
JL
4209 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4210 return -EINVAL;
4211
4212 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4213 i915_gem_obj_to_vma(obj, vm);
4214
4215 if (IS_ERR(vma))
4216 return PTR_ERR(vma);
4217
07fe0b12 4218 if (vma) {
d7f46fc4
BW
4219 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4220 return -EBUSY;
4221
d23db88c 4222 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4223 WARN(vma->pin_count,
ec7adb6e 4224 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4225 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4226 " obj->map_and_fenceable=%d\n",
ec7adb6e 4227 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4228 upper_32_bits(vma->node.start),
4229 lower_32_bits(vma->node.start),
fe14d5f4 4230 alignment,
d23db88c 4231 !!(flags & PIN_MAPPABLE),
05394f39 4232 obj->map_and_fenceable);
07fe0b12 4233 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4234 if (ret)
4235 return ret;
8ea99c92
DV
4236
4237 vma = NULL;
ac0c6b5a
CW
4238 }
4239 }
4240
ef79e17c 4241 bound = vma ? vma->bound : 0;
8ea99c92 4242 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4243 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4244 flags);
262de145
DV
4245 if (IS_ERR(vma))
4246 return PTR_ERR(vma);
0875546c
DV
4247 } else {
4248 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4249 if (ret)
4250 return ret;
4251 }
74898d7e 4252
91e6711e
JL
4253 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4254 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4255 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4256 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4257 }
ef79e17c 4258
8ea99c92 4259 vma->pin_count++;
673a394b
EA
4260 return 0;
4261}
4262
ec7adb6e
JL
4263int
4264i915_gem_object_pin(struct drm_i915_gem_object *obj,
4265 struct i915_address_space *vm,
4266 uint32_t alignment,
4267 uint64_t flags)
4268{
4269 return i915_gem_object_do_pin(obj, vm,
4270 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4271 alignment, flags);
4272}
4273
4274int
4275i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4276 const struct i915_ggtt_view *view,
4277 uint32_t alignment,
4278 uint64_t flags)
4279{
4280 if (WARN_ONCE(!view, "no view specified"))
4281 return -EINVAL;
4282
4283 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4284 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4285}
4286
673a394b 4287void
e6617330
TU
4288i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4289 const struct i915_ggtt_view *view)
673a394b 4290{
e6617330 4291 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4292
d7f46fc4 4293 BUG_ON(!vma);
e6617330 4294 WARN_ON(vma->pin_count == 0);
9abc4648 4295 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4296
30154650 4297 --vma->pin_count;
673a394b
EA
4298}
4299
673a394b
EA
4300int
4301i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4302 struct drm_file *file)
673a394b
EA
4303{
4304 struct drm_i915_gem_busy *args = data;
05394f39 4305 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4306 int ret;
4307
76c1dec1 4308 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4309 if (ret)
76c1dec1 4310 return ret;
673a394b 4311
05394f39 4312 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4313 if (&obj->base == NULL) {
1d7cfea1
CW
4314 ret = -ENOENT;
4315 goto unlock;
673a394b 4316 }
d1b851fc 4317
0be555b6
CW
4318 /* Count all active objects as busy, even if they are currently not used
4319 * by the gpu. Users of this interface expect objects to eventually
4320 * become non-busy without any further actions, therefore emit any
4321 * necessary flushes here.
c4de0a5d 4322 */
30dfebf3 4323 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4324 if (ret)
4325 goto unref;
0be555b6 4326
b4716185
CW
4327 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4328 args->busy = obj->active << 16;
4329 if (obj->last_write_req)
4330 args->busy |= obj->last_write_req->ring->id;
673a394b 4331
b4716185 4332unref:
05394f39 4333 drm_gem_object_unreference(&obj->base);
1d7cfea1 4334unlock:
673a394b 4335 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4336 return ret;
673a394b
EA
4337}
4338
4339int
4340i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4341 struct drm_file *file_priv)
4342{
0206e353 4343 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4344}
4345
3ef94daa
CW
4346int
4347i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4348 struct drm_file *file_priv)
4349{
656bfa3a 4350 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4351 struct drm_i915_gem_madvise *args = data;
05394f39 4352 struct drm_i915_gem_object *obj;
76c1dec1 4353 int ret;
3ef94daa
CW
4354
4355 switch (args->madv) {
4356 case I915_MADV_DONTNEED:
4357 case I915_MADV_WILLNEED:
4358 break;
4359 default:
4360 return -EINVAL;
4361 }
4362
1d7cfea1
CW
4363 ret = i915_mutex_lock_interruptible(dev);
4364 if (ret)
4365 return ret;
4366
05394f39 4367 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4368 if (&obj->base == NULL) {
1d7cfea1
CW
4369 ret = -ENOENT;
4370 goto unlock;
3ef94daa 4371 }
3ef94daa 4372
d7f46fc4 4373 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4374 ret = -EINVAL;
4375 goto out;
3ef94daa
CW
4376 }
4377
656bfa3a
DV
4378 if (obj->pages &&
4379 obj->tiling_mode != I915_TILING_NONE &&
4380 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4381 if (obj->madv == I915_MADV_WILLNEED)
4382 i915_gem_object_unpin_pages(obj);
4383 if (args->madv == I915_MADV_WILLNEED)
4384 i915_gem_object_pin_pages(obj);
4385 }
4386
05394f39
CW
4387 if (obj->madv != __I915_MADV_PURGED)
4388 obj->madv = args->madv;
3ef94daa 4389
6c085a72 4390 /* if the object is no longer attached, discard its backing storage */
be6a0376 4391 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4392 i915_gem_object_truncate(obj);
4393
05394f39 4394 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4395
1d7cfea1 4396out:
05394f39 4397 drm_gem_object_unreference(&obj->base);
1d7cfea1 4398unlock:
3ef94daa 4399 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4400 return ret;
3ef94daa
CW
4401}
4402
37e680a1
CW
4403void i915_gem_object_init(struct drm_i915_gem_object *obj,
4404 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4405{
b4716185
CW
4406 int i;
4407
35c20a60 4408 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4409 for (i = 0; i < I915_NUM_RINGS; i++)
4410 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4411 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4412 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4413 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4414
37e680a1
CW
4415 obj->ops = ops;
4416
0327d6ba
CW
4417 obj->fence_reg = I915_FENCE_REG_NONE;
4418 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4419
4420 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4421}
4422
37e680a1
CW
4423static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4424 .get_pages = i915_gem_object_get_pages_gtt,
4425 .put_pages = i915_gem_object_put_pages_gtt,
4426};
4427
05394f39
CW
4428struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4429 size_t size)
ac52bc56 4430{
c397b908 4431 struct drm_i915_gem_object *obj;
5949eac4 4432 struct address_space *mapping;
1a240d4d 4433 gfp_t mask;
ac52bc56 4434
42dcedd4 4435 obj = i915_gem_object_alloc(dev);
c397b908
DV
4436 if (obj == NULL)
4437 return NULL;
673a394b 4438
c397b908 4439 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4440 i915_gem_object_free(obj);
c397b908
DV
4441 return NULL;
4442 }
673a394b 4443
bed1ea95
CW
4444 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4445 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4446 /* 965gm cannot relocate objects above 4GiB. */
4447 mask &= ~__GFP_HIGHMEM;
4448 mask |= __GFP_DMA32;
4449 }
4450
496ad9aa 4451 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4452 mapping_set_gfp_mask(mapping, mask);
5949eac4 4453
37e680a1 4454 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4455
c397b908
DV
4456 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4457 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4458
3d29b842
ED
4459 if (HAS_LLC(dev)) {
4460 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4461 * cache) for about a 10% performance improvement
4462 * compared to uncached. Graphics requests other than
4463 * display scanout are coherent with the CPU in
4464 * accessing this cache. This means in this mode we
4465 * don't need to clflush on the CPU side, and on the
4466 * GPU side we only need to flush internal caches to
4467 * get data visible to the CPU.
4468 *
4469 * However, we maintain the display planes as UC, and so
4470 * need to rebind when first used as such.
4471 */
4472 obj->cache_level = I915_CACHE_LLC;
4473 } else
4474 obj->cache_level = I915_CACHE_NONE;
4475
d861e338
DV
4476 trace_i915_gem_object_create(obj);
4477
05394f39 4478 return obj;
c397b908
DV
4479}
4480
340fbd8c
CW
4481static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4482{
4483 /* If we are the last user of the backing storage (be it shmemfs
4484 * pages or stolen etc), we know that the pages are going to be
4485 * immediately released. In this case, we can then skip copying
4486 * back the contents from the GPU.
4487 */
4488
4489 if (obj->madv != I915_MADV_WILLNEED)
4490 return false;
4491
4492 if (obj->base.filp == NULL)
4493 return true;
4494
4495 /* At first glance, this looks racy, but then again so would be
4496 * userspace racing mmap against close. However, the first external
4497 * reference to the filp can only be obtained through the
4498 * i915_gem_mmap_ioctl() which safeguards us against the user
4499 * acquiring such a reference whilst we are in the middle of
4500 * freeing the object.
4501 */
4502 return atomic_long_read(&obj->base.filp->f_count) == 1;
4503}
4504
1488fc08 4505void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4506{
1488fc08 4507 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4508 struct drm_device *dev = obj->base.dev;
3e31c6c0 4509 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4510 struct i915_vma *vma, *next;
673a394b 4511
f65c9168
PZ
4512 intel_runtime_pm_get(dev_priv);
4513
26e12f89
CW
4514 trace_i915_gem_object_destroy(obj);
4515
07fe0b12 4516 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4517 int ret;
4518
4519 vma->pin_count = 0;
4520 ret = i915_vma_unbind(vma);
07fe0b12
BW
4521 if (WARN_ON(ret == -ERESTARTSYS)) {
4522 bool was_interruptible;
1488fc08 4523
07fe0b12
BW
4524 was_interruptible = dev_priv->mm.interruptible;
4525 dev_priv->mm.interruptible = false;
1488fc08 4526
07fe0b12 4527 WARN_ON(i915_vma_unbind(vma));
1488fc08 4528
07fe0b12
BW
4529 dev_priv->mm.interruptible = was_interruptible;
4530 }
1488fc08
CW
4531 }
4532
1d64ae71
BW
4533 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4534 * before progressing. */
4535 if (obj->stolen)
4536 i915_gem_object_unpin_pages(obj);
4537
a071fa00
DV
4538 WARN_ON(obj->frontbuffer_bits);
4539
656bfa3a
DV
4540 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4541 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4542 obj->tiling_mode != I915_TILING_NONE)
4543 i915_gem_object_unpin_pages(obj);
4544
401c29f6
BW
4545 if (WARN_ON(obj->pages_pin_count))
4546 obj->pages_pin_count = 0;
340fbd8c 4547 if (discard_backing_storage(obj))
5537252b 4548 obj->madv = I915_MADV_DONTNEED;
37e680a1 4549 i915_gem_object_put_pages(obj);
d8cb5086 4550 i915_gem_object_free_mmap_offset(obj);
de151cf6 4551
9da3da66
CW
4552 BUG_ON(obj->pages);
4553
2f745ad3
CW
4554 if (obj->base.import_attach)
4555 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4556
5cc9ed4b
CW
4557 if (obj->ops->release)
4558 obj->ops->release(obj);
4559
05394f39
CW
4560 drm_gem_object_release(&obj->base);
4561 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4562
05394f39 4563 kfree(obj->bit_17);
42dcedd4 4564 i915_gem_object_free(obj);
f65c9168
PZ
4565
4566 intel_runtime_pm_put(dev_priv);
673a394b
EA
4567}
4568
ec7adb6e
JL
4569struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4570 struct i915_address_space *vm)
e656a6cb
DV
4571{
4572 struct i915_vma *vma;
ec7adb6e 4573 list_for_each_entry(vma, &obj->vma_list, vma_link) {
1b683729
TU
4574 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4575 vma->vm == vm)
e656a6cb 4576 return vma;
ec7adb6e
JL
4577 }
4578 return NULL;
4579}
4580
4581struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4582 const struct i915_ggtt_view *view)
4583{
4584 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4585 struct i915_vma *vma;
e656a6cb 4586
ec7adb6e
JL
4587 if (WARN_ONCE(!view, "no view specified"))
4588 return ERR_PTR(-EINVAL);
4589
4590 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4591 if (vma->vm == ggtt &&
4592 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4593 return vma;
e656a6cb
DV
4594 return NULL;
4595}
4596
2f633156
BW
4597void i915_gem_vma_destroy(struct i915_vma *vma)
4598{
b9d06dd9 4599 struct i915_address_space *vm = NULL;
2f633156 4600 WARN_ON(vma->node.allocated);
aaa05667
CW
4601
4602 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4603 if (!list_empty(&vma->exec_list))
4604 return;
4605
b9d06dd9 4606 vm = vma->vm;
b9d06dd9 4607
841cd773
DV
4608 if (!i915_is_ggtt(vm))
4609 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4610
8b9c2b94 4611 list_del(&vma->vma_link);
b93dab6e 4612
e20d2ab7 4613 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4614}
4615
e3efda49
CW
4616static void
4617i915_gem_stop_ringbuffers(struct drm_device *dev)
4618{
4619 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4620 struct intel_engine_cs *ring;
e3efda49
CW
4621 int i;
4622
4623 for_each_ring(ring, dev_priv, i)
a83014d3 4624 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4625}
4626
29105ccc 4627int
45c5f202 4628i915_gem_suspend(struct drm_device *dev)
29105ccc 4629{
3e31c6c0 4630 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4631 int ret = 0;
28dfe52a 4632
45c5f202 4633 mutex_lock(&dev->struct_mutex);
b2da9fe5 4634 ret = i915_gpu_idle(dev);
f7403347 4635 if (ret)
45c5f202 4636 goto err;
f7403347 4637
b2da9fe5 4638 i915_gem_retire_requests(dev);
673a394b 4639
e3efda49 4640 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4641 mutex_unlock(&dev->struct_mutex);
4642
737b1506 4643 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4644 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4645 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4646
bdcf120b
CW
4647 /* Assert that we sucessfully flushed all the work and
4648 * reset the GPU back to its idle, low power state.
4649 */
4650 WARN_ON(dev_priv->mm.busy);
4651
673a394b 4652 return 0;
45c5f202
CW
4653
4654err:
4655 mutex_unlock(&dev->struct_mutex);
4656 return ret;
673a394b
EA
4657}
4658
6909a666 4659int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4660{
6909a666 4661 struct intel_engine_cs *ring = req->ring;
c3787e2e 4662 struct drm_device *dev = ring->dev;
3e31c6c0 4663 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4664 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4665 int i, ret;
b9524a1e 4666
040d2baa 4667 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4668 return 0;
b9524a1e 4669
5fb9de1a 4670 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4671 if (ret)
4672 return ret;
b9524a1e 4673
c3787e2e
BW
4674 /*
4675 * Note: We do not worry about the concurrent register cacheline hang
4676 * here because no other code should access these registers other than
4677 * at initialization time.
4678 */
6fa1c5f1 4679 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
c3787e2e 4680 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 4681 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
6fa1c5f1 4682 intel_ring_emit(ring, remap_info[i]);
b9524a1e
BW
4683 }
4684
c3787e2e 4685 intel_ring_advance(ring);
b9524a1e 4686
c3787e2e 4687 return ret;
b9524a1e
BW
4688}
4689
f691e2f4
DV
4690void i915_gem_init_swizzling(struct drm_device *dev)
4691{
3e31c6c0 4692 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4693
11782b02 4694 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4695 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4696 return;
4697
4698 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4699 DISP_TILE_SURFACE_SWIZZLING);
4700
11782b02
DV
4701 if (IS_GEN5(dev))
4702 return;
4703
f691e2f4
DV
4704 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4705 if (IS_GEN6(dev))
6b26c86d 4706 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4707 else if (IS_GEN7(dev))
6b26c86d 4708 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4709 else if (IS_GEN8(dev))
4710 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4711 else
4712 BUG();
f691e2f4 4713}
e21af88d 4714
81e7f200
VS
4715static void init_unused_ring(struct drm_device *dev, u32 base)
4716{
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718
4719 I915_WRITE(RING_CTL(base), 0);
4720 I915_WRITE(RING_HEAD(base), 0);
4721 I915_WRITE(RING_TAIL(base), 0);
4722 I915_WRITE(RING_START(base), 0);
4723}
4724
4725static void init_unused_rings(struct drm_device *dev)
4726{
4727 if (IS_I830(dev)) {
4728 init_unused_ring(dev, PRB1_BASE);
4729 init_unused_ring(dev, SRB0_BASE);
4730 init_unused_ring(dev, SRB1_BASE);
4731 init_unused_ring(dev, SRB2_BASE);
4732 init_unused_ring(dev, SRB3_BASE);
4733 } else if (IS_GEN2(dev)) {
4734 init_unused_ring(dev, SRB0_BASE);
4735 init_unused_ring(dev, SRB1_BASE);
4736 } else if (IS_GEN3(dev)) {
4737 init_unused_ring(dev, PRB1_BASE);
4738 init_unused_ring(dev, PRB2_BASE);
4739 }
4740}
4741
a83014d3 4742int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4743{
4fc7c971 4744 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4745 int ret;
68f95ba9 4746
5c1143bb 4747 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4748 if (ret)
b6913e4b 4749 return ret;
68f95ba9
CW
4750
4751 if (HAS_BSD(dev)) {
5c1143bb 4752 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4753 if (ret)
4754 goto cleanup_render_ring;
d1b851fc 4755 }
68f95ba9 4756
d39398f5 4757 if (HAS_BLT(dev)) {
549f7365
CW
4758 ret = intel_init_blt_ring_buffer(dev);
4759 if (ret)
4760 goto cleanup_bsd_ring;
4761 }
4762
9a8a2213
BW
4763 if (HAS_VEBOX(dev)) {
4764 ret = intel_init_vebox_ring_buffer(dev);
4765 if (ret)
4766 goto cleanup_blt_ring;
4767 }
4768
845f74a7
ZY
4769 if (HAS_BSD2(dev)) {
4770 ret = intel_init_bsd2_ring_buffer(dev);
4771 if (ret)
4772 goto cleanup_vebox_ring;
4773 }
9a8a2213 4774
4fc7c971
BW
4775 return 0;
4776
9a8a2213
BW
4777cleanup_vebox_ring:
4778 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4779cleanup_blt_ring:
4780 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4781cleanup_bsd_ring:
4782 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4783cleanup_render_ring:
4784 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4785
4786 return ret;
4787}
4788
4789int
4790i915_gem_init_hw(struct drm_device *dev)
4791{
3e31c6c0 4792 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4793 struct intel_engine_cs *ring;
4ad2fd88 4794 int ret, i, j;
4fc7c971
BW
4795
4796 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4797 return -EIO;
4798
5e4f5189
CW
4799 /* Double layer security blanket, see i915_gem_init() */
4800 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4801
59124506 4802 if (dev_priv->ellc_size)
05e21cc4 4803 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4804
0bf21347
VS
4805 if (IS_HASWELL(dev))
4806 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4807 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4808
88a2b2a3 4809 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4810 if (IS_IVYBRIDGE(dev)) {
4811 u32 temp = I915_READ(GEN7_MSG_CTL);
4812 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4813 I915_WRITE(GEN7_MSG_CTL, temp);
4814 } else if (INTEL_INFO(dev)->gen >= 7) {
4815 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4816 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4817 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4818 }
88a2b2a3
BW
4819 }
4820
4fc7c971
BW
4821 i915_gem_init_swizzling(dev);
4822
d5abdfda
DV
4823 /*
4824 * At least 830 can leave some of the unused rings
4825 * "active" (ie. head != tail) after resume which
4826 * will prevent c3 entry. Makes sure all unused rings
4827 * are totally idle.
4828 */
4829 init_unused_rings(dev);
4830
90638cc1
JH
4831 BUG_ON(!dev_priv->ring[RCS].default_context);
4832
4ad2fd88
JH
4833 ret = i915_ppgtt_init_hw(dev);
4834 if (ret) {
4835 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4836 goto out;
4837 }
4838
4839 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4840 for_each_ring(ring, dev_priv, i) {
4841 ret = ring->init_hw(ring);
4842 if (ret)
5e4f5189 4843 goto out;
35a57ffb 4844 }
99433931 4845
33a732f4 4846 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4847 if (HAS_GUC_UCODE(dev)) {
4848 ret = intel_guc_ucode_load(dev);
4849 if (ret) {
9f9e539f
DV
4850 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4851 ret = -EIO;
4852 goto out;
87bcdd2e 4853 }
33a732f4
AD
4854 }
4855
e84fe803
NH
4856 /*
4857 * Increment the next seqno by 0x100 so we have a visible break
4858 * on re-initialisation
4859 */
4860 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4861 if (ret)
4862 goto out;
4863
4ad2fd88
JH
4864 /* Now it is safe to go back round and do everything else: */
4865 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4866 struct drm_i915_gem_request *req;
4867
90638cc1
JH
4868 WARN_ON(!ring->default_context);
4869
dc4be607
JH
4870 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4871 if (ret) {
4872 i915_gem_cleanup_ringbuffer(dev);
4873 goto out;
4874 }
4875
4ad2fd88
JH
4876 if (ring->id == RCS) {
4877 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4878 i915_gem_l3_remap(req, j);
4ad2fd88 4879 }
c3787e2e 4880
b3dd6b96 4881 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4882 if (ret && ret != -EIO) {
4883 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4884 i915_gem_request_cancel(req);
4ad2fd88
JH
4885 i915_gem_cleanup_ringbuffer(dev);
4886 goto out;
4887 }
82460d97 4888
b3dd6b96 4889 ret = i915_gem_context_enable(req);
90638cc1
JH
4890 if (ret && ret != -EIO) {
4891 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4892 i915_gem_request_cancel(req);
90638cc1
JH
4893 i915_gem_cleanup_ringbuffer(dev);
4894 goto out;
4895 }
dc4be607 4896
75289874 4897 i915_add_request_no_flush(req);
b7c36d25 4898 }
e21af88d 4899
5e4f5189
CW
4900out:
4901 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4902 return ret;
8187a2b7
ZN
4903}
4904
1070a42b
CW
4905int i915_gem_init(struct drm_device *dev)
4906{
4907 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4908 int ret;
4909
127f1003
OM
4910 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4911 i915.enable_execlists);
4912
1070a42b 4913 mutex_lock(&dev->struct_mutex);
d62b4892 4914
a83014d3 4915 if (!i915.enable_execlists) {
f3dc74c0 4916 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4917 dev_priv->gt.init_rings = i915_gem_init_rings;
4918 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4919 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4920 } else {
f3dc74c0 4921 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4922 dev_priv->gt.init_rings = intel_logical_rings_init;
4923 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4924 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4925 }
4926
5e4f5189
CW
4927 /* This is just a security blanket to placate dragons.
4928 * On some systems, we very sporadically observe that the first TLBs
4929 * used by the CS may be stale, despite us poking the TLB reset. If
4930 * we hold the forcewake during initialisation these problems
4931 * just magically go away.
4932 */
4933 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4934
6c5566a8 4935 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4936 if (ret)
4937 goto out_unlock;
6c5566a8 4938
d7e5008f 4939 i915_gem_init_global_gtt(dev);
d62b4892 4940
2fa48d8d 4941 ret = i915_gem_context_init(dev);
7bcc3777
JN
4942 if (ret)
4943 goto out_unlock;
2fa48d8d 4944
35a57ffb
DV
4945 ret = dev_priv->gt.init_rings(dev);
4946 if (ret)
7bcc3777 4947 goto out_unlock;
2fa48d8d 4948
1070a42b 4949 ret = i915_gem_init_hw(dev);
60990320
CW
4950 if (ret == -EIO) {
4951 /* Allow ring initialisation to fail by marking the GPU as
4952 * wedged. But we only want to do this where the GPU is angry,
4953 * for all other failure, such as an allocation failure, bail.
4954 */
4955 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4956 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4957 ret = 0;
1070a42b 4958 }
7bcc3777
JN
4959
4960out_unlock:
5e4f5189 4961 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4962 mutex_unlock(&dev->struct_mutex);
1070a42b 4963
60990320 4964 return ret;
1070a42b
CW
4965}
4966
8187a2b7
ZN
4967void
4968i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4969{
3e31c6c0 4970 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4971 struct intel_engine_cs *ring;
1ec14ad3 4972 int i;
8187a2b7 4973
b4519513 4974 for_each_ring(ring, dev_priv, i)
a83014d3 4975 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4976
4977 if (i915.enable_execlists)
4978 /*
4979 * Neither the BIOS, ourselves or any other kernel
4980 * expects the system to be in execlists mode on startup,
4981 * so we need to reset the GPU back to legacy mode.
4982 */
4983 intel_gpu_reset(dev);
8187a2b7
ZN
4984}
4985
64193406 4986static void
a4872ba6 4987init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4988{
4989 INIT_LIST_HEAD(&ring->active_list);
4990 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4991}
4992
673a394b
EA
4993void
4994i915_gem_load(struct drm_device *dev)
4995{
3e31c6c0 4996 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4997 int i;
4998
efab6d8d 4999 dev_priv->objects =
42dcedd4
CW
5000 kmem_cache_create("i915_gem_object",
5001 sizeof(struct drm_i915_gem_object), 0,
5002 SLAB_HWCACHE_ALIGN,
5003 NULL);
e20d2ab7
CW
5004 dev_priv->vmas =
5005 kmem_cache_create("i915_gem_vma",
5006 sizeof(struct i915_vma), 0,
5007 SLAB_HWCACHE_ALIGN,
5008 NULL);
efab6d8d
CW
5009 dev_priv->requests =
5010 kmem_cache_create("i915_gem_request",
5011 sizeof(struct drm_i915_gem_request), 0,
5012 SLAB_HWCACHE_ALIGN,
5013 NULL);
673a394b 5014
fc8c067e 5015 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5016 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5017 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5018 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5019 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5020 for (i = 0; i < I915_NUM_RINGS; i++)
5021 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5022 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5023 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5024 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5025 i915_gem_retire_work_handler);
b29c19b6
CW
5026 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5027 i915_gem_idle_work_handler);
1f83fee0 5028 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5029
72bfa19c
CW
5030 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5031
666a4537 5032 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
42b5aeab
VS
5033 dev_priv->num_fence_regs = 32;
5034 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5035 dev_priv->num_fence_regs = 16;
5036 else
5037 dev_priv->num_fence_regs = 8;
5038
eb82289a
YZ
5039 if (intel_vgpu_active(dev))
5040 dev_priv->num_fence_regs =
5041 I915_READ(vgtif_reg(avail_rs.fence_num));
5042
e84fe803
NH
5043 /*
5044 * Set initial sequence number for requests.
5045 * Using this number allows the wraparound to happen early,
5046 * catching any obvious problems.
5047 */
5048 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5049 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5050
b5aa8a0f 5051 /* Initialize fence registers to zero */
19b2dbde
CW
5052 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5053 i915_gem_restore_fences(dev);
10ed13e4 5054
673a394b 5055 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5056 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5057
ce453d81
CW
5058 dev_priv->mm.interruptible = true;
5059
be6a0376 5060 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5061
5062 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5063}
71acb5eb 5064
f787a5f5 5065void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5066{
f787a5f5 5067 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5068
5069 /* Clean up our request list when the client is going away, so that
5070 * later retire_requests won't dereference our soon-to-be-gone
5071 * file_priv.
5072 */
1c25595f 5073 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5074 while (!list_empty(&file_priv->mm.request_list)) {
5075 struct drm_i915_gem_request *request;
5076
5077 request = list_first_entry(&file_priv->mm.request_list,
5078 struct drm_i915_gem_request,
5079 client_list);
5080 list_del(&request->client_list);
5081 request->file_priv = NULL;
5082 }
1c25595f 5083 spin_unlock(&file_priv->mm.lock);
b29c19b6 5084
2e1b8730 5085 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5086 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5087 list_del(&file_priv->rps.link);
8d3afd7d 5088 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5089 }
b29c19b6
CW
5090}
5091
5092int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5093{
5094 struct drm_i915_file_private *file_priv;
e422b888 5095 int ret;
b29c19b6
CW
5096
5097 DRM_DEBUG_DRIVER("\n");
5098
5099 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5100 if (!file_priv)
5101 return -ENOMEM;
5102
5103 file->driver_priv = file_priv;
5104 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5105 file_priv->file = file;
2e1b8730 5106 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5107
5108 spin_lock_init(&file_priv->mm.lock);
5109 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5110
e422b888
BW
5111 ret = i915_gem_context_open(dev, file);
5112 if (ret)
5113 kfree(file_priv);
b29c19b6 5114
e422b888 5115 return ret;
b29c19b6
CW
5116}
5117
b680c37a
DV
5118/**
5119 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5120 * @old: current GEM buffer for the frontbuffer slots
5121 * @new: new GEM buffer for the frontbuffer slots
5122 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5123 *
5124 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5125 * from @old and setting them in @new. Both @old and @new can be NULL.
5126 */
a071fa00
DV
5127void i915_gem_track_fb(struct drm_i915_gem_object *old,
5128 struct drm_i915_gem_object *new,
5129 unsigned frontbuffer_bits)
5130{
5131 if (old) {
5132 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5133 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5134 old->frontbuffer_bits &= ~frontbuffer_bits;
5135 }
5136
5137 if (new) {
5138 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5139 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5140 new->frontbuffer_bits |= frontbuffer_bits;
5141 }
5142}
5143
a70a3148 5144/* All the new VM stuff */
088e0df4
MT
5145u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5146 struct i915_address_space *vm)
a70a3148
BW
5147{
5148 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5149 struct i915_vma *vma;
5150
896ab1a5 5151 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5152
a70a3148 5153 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5154 if (i915_is_ggtt(vma->vm) &&
5155 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5156 continue;
5157 if (vma->vm == vm)
a70a3148 5158 return vma->node.start;
a70a3148 5159 }
ec7adb6e 5160
f25748ea
DV
5161 WARN(1, "%s vma for this object not found.\n",
5162 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5163 return -1;
5164}
5165
088e0df4
MT
5166u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5167 const struct i915_ggtt_view *view)
a70a3148 5168{
ec7adb6e 5169 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5170 struct i915_vma *vma;
5171
5172 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5173 if (vma->vm == ggtt &&
5174 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5175 return vma->node.start;
5176
5678ad73 5177 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5178 return -1;
5179}
5180
5181bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5182 struct i915_address_space *vm)
5183{
5184 struct i915_vma *vma;
5185
5186 list_for_each_entry(vma, &o->vma_list, vma_link) {
5187 if (i915_is_ggtt(vma->vm) &&
5188 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5189 continue;
5190 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5191 return true;
5192 }
5193
5194 return false;
5195}
5196
5197bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5198 const struct i915_ggtt_view *view)
ec7adb6e
JL
5199{
5200 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5201 struct i915_vma *vma;
5202
5203 list_for_each_entry(vma, &o->vma_list, vma_link)
5204 if (vma->vm == ggtt &&
9abc4648 5205 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5206 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5207 return true;
5208
5209 return false;
5210}
5211
5212bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5213{
5a1d5eb0 5214 struct i915_vma *vma;
a70a3148 5215
5a1d5eb0
CW
5216 list_for_each_entry(vma, &o->vma_list, vma_link)
5217 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5218 return true;
5219
5220 return false;
5221}
5222
5223unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5224 struct i915_address_space *vm)
5225{
5226 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5227 struct i915_vma *vma;
5228
896ab1a5 5229 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5230
5231 BUG_ON(list_empty(&o->vma_list));
5232
ec7adb6e
JL
5233 list_for_each_entry(vma, &o->vma_list, vma_link) {
5234 if (i915_is_ggtt(vma->vm) &&
5235 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236 continue;
a70a3148
BW
5237 if (vma->vm == vm)
5238 return vma->node.size;
ec7adb6e 5239 }
a70a3148
BW
5240 return 0;
5241}
5242
ec7adb6e 5243bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5244{
5245 struct i915_vma *vma;
a6631ae1 5246 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5247 if (vma->pin_count > 0)
5248 return true;
a6631ae1 5249
ec7adb6e 5250 return false;
5c2abbea 5251}
ea70299d 5252
033908ae
DG
5253/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5254struct page *
5255i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5256{
5257 struct page *page;
5258
5259 /* Only default objects have per-page dirty tracking */
5260 if (WARN_ON(obj->ops != &i915_gem_object_ops))
5261 return NULL;
5262
5263 page = i915_gem_object_get_page(obj, n);
5264 set_page_dirty(page);
5265 return page;
5266}
5267
ea70299d
DG
5268/* Allocate a new GEM object and fill it with the supplied data */
5269struct drm_i915_gem_object *
5270i915_gem_object_create_from_data(struct drm_device *dev,
5271 const void *data, size_t size)
5272{
5273 struct drm_i915_gem_object *obj;
5274 struct sg_table *sg;
5275 size_t bytes;
5276 int ret;
5277
5278 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5279 if (IS_ERR_OR_NULL(obj))
5280 return obj;
5281
5282 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5283 if (ret)
5284 goto fail;
5285
5286 ret = i915_gem_object_get_pages(obj);
5287 if (ret)
5288 goto fail;
5289
5290 i915_gem_object_pin_pages(obj);
5291 sg = obj->pages;
5292 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5293 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5294 i915_gem_object_unpin_pages(obj);
5295
5296 if (WARN_ON(bytes != size)) {
5297 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5298 ret = -EFAULT;
5299 goto fail;
5300 }
5301
5302 return obj;
5303
5304fail:
5305 drm_gem_object_unreference(&obj->base);
5306 return ERR_PTR(ret);
5307}