]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-amdkfd-next-2017-10-18' of git://people.freedesktop.org/~gabbayo/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
465c403c 38#include "i915_gemfs.h"
6b5e90f5 39#include <linux/dma-fence-array.h>
fe3288b5 40#include <linux/kthread.h>
c13d87ea 41#include <linux/reservation.h>
5949eac4 42#include <linux/shmem_fs.h>
5a0e3ad6 43#include <linux/slab.h>
20e4933c 44#include <linux/stop_machine.h>
673a394b 45#include <linux/swap.h>
79e53945 46#include <linux/pci.h>
1286ff73 47#include <linux/dma-buf.h>
673a394b 48
fbbd37b3 49static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 50
2c22569b
CW
51static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52{
e27ab73d 53 if (obj->cache_dirty)
b50a5371
AS
54 return false;
55
b8f55be6 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
57 return true;
58
59 return obj->pin_display;
60}
61
4f1959ee 62static int
bb6dc8d9 63insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
64 struct drm_mm_node *node, u32 size)
65{
66 memset(node, 0, sizeof(*node));
4e64e553
CW
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
4f1959ee
AS
71}
72
73static void
74remove_mappable_node(struct drm_mm_node *node)
75{
76 drm_mm_remove_node(node);
77}
78
73aa808f
CW
79/* some bookkeeping */
80static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 81 u64 size)
73aa808f 82{
c20e8355 83 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
c20e8355 86 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
87}
88
89static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 90 u64 size)
73aa808f 91{
c20e8355 92 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
c20e8355 95 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96}
97
21dd3734 98static int
33196ded 99i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 100{
30dbf0c0
CW
101 int ret;
102
4c7d62c6
CW
103 might_sleep();
104
0a6759c6
DV
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
1f83fee0 110 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 111 !i915_reset_backoff(error),
b52992c0 112 I915_RESET_TIMEOUT);
0a6759c6
DV
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
30dbf0c0 117 return ret;
d98c52cf
CW
118 } else {
119 return 0;
0a6759c6 120 }
30dbf0c0
CW
121}
122
54cf91dc 123int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 124{
fac5e23e 125 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
126 int ret;
127
33196ded 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
76c1dec1
CW
136 return 0;
137}
30dbf0c0 138
5a125c3c
EA
139int
140i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 141 struct drm_file *file)
5a125c3c 142{
72e96d64 143 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 145 struct drm_i915_gem_get_aperture *args = data;
ca1543be 146 struct i915_vma *vma;
ff8f7975 147 u64 pinned;
5a125c3c 148
ff8f7975 149 pinned = ggtt->base.reserved;
73aa808f 150 mutex_lock(&dev->struct_mutex);
1c7f4bca 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 152 if (i915_vma_is_pinned(vma))
ca1543be 153 pinned += vma->node.size;
1c7f4bca 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 155 if (i915_vma_is_pinned(vma))
ca1543be 156 pinned += vma->node.size;
73aa808f 157 mutex_unlock(&dev->struct_mutex);
5a125c3c 158
72e96d64 159 args->aper_size = ggtt->base.total;
0206e353 160 args->aper_available_size = args->aper_size - pinned;
6299f992 161
5a125c3c
EA
162 return 0;
163}
164
b91b09ee 165static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 166{
93c76a3d 167 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 168 drm_dma_handle_t *phys;
6a2c4232
CW
169 struct sg_table *st;
170 struct scatterlist *sg;
dbb4351b 171 char *vaddr;
6a2c4232 172 int i;
b91b09ee 173 int err;
00731155 174
6a2c4232 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
b91b09ee 176 return -EINVAL;
6a2c4232 177
dbb4351b
CW
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
181 */
182 phys = drm_pci_alloc(obj->base.dev,
750fae23 183 roundup_pow_of_two(obj->base.size),
dbb4351b
CW
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
b91b09ee 186 return -ENOMEM;
dbb4351b
CW
187
188 vaddr = phys->vaddr;
6a2c4232
CW
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
dbb4351b 194 if (IS_ERR(page)) {
b91b09ee 195 err = PTR_ERR(page);
dbb4351b
CW
196 goto err_phys;
197 }
6a2c4232
CW
198
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
203
09cbfeaf 204 put_page(page);
6a2c4232
CW
205 vaddr += PAGE_SIZE;
206 }
207
c033666a 208 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
209
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b 211 if (!st) {
b91b09ee 212 err = -ENOMEM;
dbb4351b
CW
213 goto err_phys;
214 }
6a2c4232
CW
215
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
b91b09ee 218 err = -ENOMEM;
dbb4351b 219 goto err_phys;
6a2c4232
CW
220 }
221
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
00731155 225
dbb4351b 226 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
227 sg_dma_len(sg) = obj->base.size;
228
dbb4351b 229 obj->phys_handle = phys;
b91b09ee 230
a5c08166 231 __i915_gem_object_set_pages(obj, st, sg->length);
b91b09ee
MA
232
233 return 0;
dbb4351b
CW
234
235err_phys:
236 drm_pci_free(obj->base.dev, phys);
b91b09ee
MA
237
238 return err;
6a2c4232
CW
239}
240
e27ab73d
CW
241static void __start_cpu_write(struct drm_i915_gem_object *obj)
242{
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
247}
248
6a2c4232 249static void
2b3c8317 250__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
251 struct sg_table *pages,
252 bool needs_clflush)
6a2c4232 253{
a4f5ea64 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 255
a4f5ea64
CW
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
6a2c4232 258
e5facdf9
CW
259 if (needs_clflush &&
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 262 drm_clflush_sg(pages);
03ac84f1 263
e27ab73d 264 __start_cpu_write(obj);
03ac84f1
CW
265}
266
267static void
268i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
270{
e5facdf9 271 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 272
a4f5ea64 273 if (obj->mm.dirty) {
93c76a3d 274 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 275 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
276 int i;
277
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
279 struct page *page;
280 char *dst;
281
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
285
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
290
291 set_page_dirty(page);
a4f5ea64 292 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 293 mark_page_accessed(page);
09cbfeaf 294 put_page(page);
00731155
CW
295 vaddr += PAGE_SIZE;
296 }
a4f5ea64 297 obj->mm.dirty = false;
00731155
CW
298 }
299
03ac84f1
CW
300 sg_free_table(pages);
301 kfree(pages);
dbb4351b
CW
302
303 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
304}
305
306static void
307i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308{
a4f5ea64 309 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
310}
311
312static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
316};
317
581ab1fe
CW
318static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
35a9611c 320int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
321{
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
02bef8f9
CW
324 int ret;
325
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 327
02bef8f9
CW
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
aa653a68 332 */
e95433c7
CW
333 ret = i915_gem_object_wait(obj,
334 I915_WAIT_INTERRUPTIBLE |
335 I915_WAIT_LOCKED |
336 I915_WAIT_ALL,
337 MAX_SCHEDULE_TIMEOUT,
338 NULL);
02bef8f9
CW
339 if (ret)
340 return ret;
341
342 i915_gem_retire_requests(to_i915(obj->base.dev));
343
aa653a68
CW
344 while ((vma = list_first_entry_or_null(&obj->vma_list,
345 struct i915_vma,
346 obj_link))) {
347 list_move_tail(&vma->obj_link, &still_in_list);
348 ret = i915_vma_unbind(vma);
349 if (ret)
350 break;
351 }
352 list_splice(&still_in_list, &obj->vma_list);
353
354 return ret;
355}
356
e95433c7
CW
357static long
358i915_gem_object_wait_fence(struct dma_fence *fence,
359 unsigned int flags,
360 long timeout,
562d9bae 361 struct intel_rps_client *rps_client)
00e60f26 362{
e95433c7 363 struct drm_i915_gem_request *rq;
00e60f26 364
e95433c7 365 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 366
e95433c7
CW
367 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
368 return timeout;
369
370 if (!dma_fence_is_i915(fence))
371 return dma_fence_wait_timeout(fence,
372 flags & I915_WAIT_INTERRUPTIBLE,
373 timeout);
374
375 rq = to_request(fence);
376 if (i915_gem_request_completed(rq))
377 goto out;
378
379 /* This client is about to stall waiting for the GPU. In many cases
380 * this is undesirable and limits the throughput of the system, as
381 * many clients cannot continue processing user input/output whilst
382 * blocked. RPS autotuning may take tens of milliseconds to respond
383 * to the GPU load and thus incurs additional latency for the client.
384 * We can circumvent that by promoting the GPU frequency to maximum
385 * before we wait. This makes the GPU throttle up much more quickly
386 * (good for benchmarks and user experience, e.g. window animations),
387 * but at a cost of spending more power processing the workload
388 * (bad for battery). Not all clients even want their results
389 * immediately and for them we should just let the GPU select its own
390 * frequency to maximise efficiency. To prevent a single client from
391 * forcing the clocks too high for the whole system, we only allow
392 * each client to waitboost once in a busy period.
393 */
562d9bae 394 if (rps_client) {
e95433c7 395 if (INTEL_GEN(rq->i915) >= 6)
562d9bae 396 gen6_rps_boost(rq, rps_client);
e95433c7 397 else
562d9bae 398 rps_client = NULL;
00e60f26
CW
399 }
400
e95433c7
CW
401 timeout = i915_wait_request(rq, flags, timeout);
402
403out:
404 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
405 i915_gem_request_retire_upto(rq);
406
e95433c7
CW
407 return timeout;
408}
409
410static long
411i915_gem_object_wait_reservation(struct reservation_object *resv,
412 unsigned int flags,
413 long timeout,
562d9bae 414 struct intel_rps_client *rps_client)
e95433c7 415{
e54ca977 416 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 417 struct dma_fence *excl;
e54ca977 418 bool prune_fences = false;
e95433c7
CW
419
420 if (flags & I915_WAIT_ALL) {
421 struct dma_fence **shared;
422 unsigned int count, i;
00e60f26
CW
423 int ret;
424
e95433c7
CW
425 ret = reservation_object_get_fences_rcu(resv,
426 &excl, &count, &shared);
00e60f26
CW
427 if (ret)
428 return ret;
00e60f26 429
e95433c7
CW
430 for (i = 0; i < count; i++) {
431 timeout = i915_gem_object_wait_fence(shared[i],
432 flags, timeout,
562d9bae 433 rps_client);
d892e939 434 if (timeout < 0)
e95433c7 435 break;
00e60f26 436
e95433c7
CW
437 dma_fence_put(shared[i]);
438 }
439
440 for (; i < count; i++)
441 dma_fence_put(shared[i]);
442 kfree(shared);
e54ca977
CW
443
444 prune_fences = count && timeout >= 0;
e95433c7
CW
445 } else {
446 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
447 }
448
e54ca977 449 if (excl && timeout >= 0) {
562d9bae
SAK
450 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
451 rps_client);
e54ca977
CW
452 prune_fences = timeout >= 0;
453 }
e95433c7
CW
454
455 dma_fence_put(excl);
456
03d1cac6
CW
457 /* Oportunistically prune the fences iff we know they have *all* been
458 * signaled and that the reservation object has not been changed (i.e.
459 * no new fences have been added).
460 */
e54ca977 461 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
462 if (reservation_object_trylock(resv)) {
463 if (!__read_seqcount_retry(&resv->seq, seq))
464 reservation_object_add_excl_fence(resv, NULL);
465 reservation_object_unlock(resv);
466 }
e54ca977
CW
467 }
468
e95433c7 469 return timeout;
00e60f26
CW
470}
471
6b5e90f5
CW
472static void __fence_set_priority(struct dma_fence *fence, int prio)
473{
474 struct drm_i915_gem_request *rq;
475 struct intel_engine_cs *engine;
476
477 if (!dma_fence_is_i915(fence))
478 return;
479
480 rq = to_request(fence);
481 engine = rq->engine;
482 if (!engine->schedule)
483 return;
484
485 engine->schedule(rq, prio);
486}
487
488static void fence_set_priority(struct dma_fence *fence, int prio)
489{
490 /* Recurse once into a fence-array */
491 if (dma_fence_is_array(fence)) {
492 struct dma_fence_array *array = to_dma_fence_array(fence);
493 int i;
494
495 for (i = 0; i < array->num_fences; i++)
496 __fence_set_priority(array->fences[i], prio);
497 } else {
498 __fence_set_priority(fence, prio);
499 }
500}
501
502int
503i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
504 unsigned int flags,
505 int prio)
506{
507 struct dma_fence *excl;
508
509 if (flags & I915_WAIT_ALL) {
510 struct dma_fence **shared;
511 unsigned int count, i;
512 int ret;
513
514 ret = reservation_object_get_fences_rcu(obj->resv,
515 &excl, &count, &shared);
516 if (ret)
517 return ret;
518
519 for (i = 0; i < count; i++) {
520 fence_set_priority(shared[i], prio);
521 dma_fence_put(shared[i]);
522 }
523
524 kfree(shared);
525 } else {
526 excl = reservation_object_get_excl_rcu(obj->resv);
527 }
528
529 if (excl) {
530 fence_set_priority(excl, prio);
531 dma_fence_put(excl);
532 }
533 return 0;
534}
535
e95433c7
CW
536/**
537 * Waits for rendering to the object to be completed
538 * @obj: i915 gem object
539 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
540 * @timeout: how long to wait
541 * @rps: client (user process) to charge for any waitboosting
00e60f26 542 */
e95433c7
CW
543int
544i915_gem_object_wait(struct drm_i915_gem_object *obj,
545 unsigned int flags,
546 long timeout,
562d9bae 547 struct intel_rps_client *rps_client)
00e60f26 548{
e95433c7
CW
549 might_sleep();
550#if IS_ENABLED(CONFIG_LOCKDEP)
551 GEM_BUG_ON(debug_locks &&
552 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
553 !!(flags & I915_WAIT_LOCKED));
554#endif
555 GEM_BUG_ON(timeout < 0);
00e60f26 556
d07f0e59
CW
557 timeout = i915_gem_object_wait_reservation(obj->resv,
558 flags, timeout,
562d9bae 559 rps_client);
e95433c7 560 return timeout < 0 ? timeout : 0;
00e60f26
CW
561}
562
563static struct intel_rps_client *to_rps_client(struct drm_file *file)
564{
565 struct drm_i915_file_private *fpriv = file->driver_priv;
566
562d9bae 567 return &fpriv->rps_client;
00e60f26
CW
568}
569
00731155
CW
570static int
571i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
572 struct drm_i915_gem_pwrite *args,
03ac84f1 573 struct drm_file *file)
00731155 574{
00731155 575 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 576 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
577
578 /* We manually control the domain here and pretend that it
579 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
580 */
77a0d1ca 581 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
582 if (copy_from_user(vaddr, user_data, args->size))
583 return -EFAULT;
00731155 584
6a2c4232 585 drm_clflush_virt_range(vaddr, args->size);
10466d2a 586 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 587
d59b21ec 588 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 589 return 0;
00731155
CW
590}
591
187685cb 592void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 593{
efab6d8d 594 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
595}
596
597void i915_gem_object_free(struct drm_i915_gem_object *obj)
598{
fac5e23e 599 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 600 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
601}
602
ff72145b
DA
603static int
604i915_gem_create(struct drm_file *file,
12d79d78 605 struct drm_i915_private *dev_priv,
ff72145b
DA
606 uint64_t size,
607 uint32_t *handle_p)
673a394b 608{
05394f39 609 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
610 int ret;
611 u32 handle;
673a394b 612
ff72145b 613 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
614 if (size == 0)
615 return -EINVAL;
673a394b
EA
616
617 /* Allocate the new object */
12d79d78 618 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
619 if (IS_ERR(obj))
620 return PTR_ERR(obj);
673a394b 621
05394f39 622 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 623 /* drop reference from allocate - handle holds it now */
f0cd5182 624 i915_gem_object_put(obj);
d861e338
DV
625 if (ret)
626 return ret;
202f2fef 627
ff72145b 628 *handle_p = handle;
673a394b
EA
629 return 0;
630}
631
ff72145b
DA
632int
633i915_gem_dumb_create(struct drm_file *file,
634 struct drm_device *dev,
635 struct drm_mode_create_dumb *args)
636{
637 /* have to work out size/pitch and return them */
de45eaf7 638 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 639 args->size = args->pitch * args->height;
12d79d78 640 return i915_gem_create(file, to_i915(dev),
da6b51d0 641 args->size, &args->handle);
ff72145b
DA
642}
643
e27ab73d
CW
644static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
645{
646 return !(obj->cache_level == I915_CACHE_NONE ||
647 obj->cache_level == I915_CACHE_WT);
648}
649
ff72145b
DA
650/**
651 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
652 * @dev: drm device pointer
653 * @data: ioctl data blob
654 * @file: drm file pointer
ff72145b
DA
655 */
656int
657i915_gem_create_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659{
12d79d78 660 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 661 struct drm_i915_gem_create *args = data;
63ed2cb2 662
12d79d78 663 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 664
12d79d78 665 return i915_gem_create(file, dev_priv,
da6b51d0 666 args->size, &args->handle);
ff72145b
DA
667}
668
ef74921b
CW
669static inline enum fb_op_origin
670fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
671{
672 return (domain == I915_GEM_DOMAIN_GTT ?
673 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
674}
675
676static void
677flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
678{
679 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
680
681 if (!(obj->base.write_domain & flush_domains))
682 return;
683
684 /* No actual flushing is required for the GTT write domain. Writes
685 * to it "immediately" go to main memory as far as we know, so there's
686 * no chipset flush. It also doesn't land in render cache.
687 *
688 * However, we do have to enforce the order so that all writes through
689 * the GTT land before any writes to the device, such as updates to
690 * the GATT itself.
691 *
692 * We also have to wait a bit for the writes to land from the GTT.
693 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
694 * timing. This issue has only been observed when switching quickly
695 * between GTT writes and CPU reads from inside the kernel on recent hw,
696 * and it appears to only affect discrete GTT blocks (i.e. on LLC
697 * system agents we cannot reproduce this behaviour).
698 */
699 wmb();
700
701 switch (obj->base.write_domain) {
702 case I915_GEM_DOMAIN_GTT:
c5ba5b24 703 if (!HAS_LLC(dev_priv)) {
b69a784f
CW
704 intel_runtime_pm_get(dev_priv);
705 spin_lock_irq(&dev_priv->uncore.lock);
c5ba5b24 706 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
b69a784f
CW
707 spin_unlock_irq(&dev_priv->uncore.lock);
708 intel_runtime_pm_put(dev_priv);
ef74921b
CW
709 }
710
711 intel_fb_obj_flush(obj,
712 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
713 break;
714
715 case I915_GEM_DOMAIN_CPU:
716 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
717 break;
e27ab73d
CW
718
719 case I915_GEM_DOMAIN_RENDER:
720 if (gpu_write_needs_clflush(obj))
721 obj->cache_dirty = true;
722 break;
ef74921b
CW
723 }
724
725 obj->base.write_domain = 0;
726}
727
8461d226
DV
728static inline int
729__copy_to_user_swizzled(char __user *cpu_vaddr,
730 const char *gpu_vaddr, int gpu_offset,
731 int length)
732{
733 int ret, cpu_offset = 0;
734
735 while (length > 0) {
736 int cacheline_end = ALIGN(gpu_offset + 1, 64);
737 int this_length = min(cacheline_end - gpu_offset, length);
738 int swizzled_gpu_offset = gpu_offset ^ 64;
739
740 ret = __copy_to_user(cpu_vaddr + cpu_offset,
741 gpu_vaddr + swizzled_gpu_offset,
742 this_length);
743 if (ret)
744 return ret + length;
745
746 cpu_offset += this_length;
747 gpu_offset += this_length;
748 length -= this_length;
749 }
750
751 return 0;
752}
753
8c59967c 754static inline int
4f0c7cfb
BW
755__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
756 const char __user *cpu_vaddr,
8c59967c
DV
757 int length)
758{
759 int ret, cpu_offset = 0;
760
761 while (length > 0) {
762 int cacheline_end = ALIGN(gpu_offset + 1, 64);
763 int this_length = min(cacheline_end - gpu_offset, length);
764 int swizzled_gpu_offset = gpu_offset ^ 64;
765
766 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
767 cpu_vaddr + cpu_offset,
768 this_length);
769 if (ret)
770 return ret + length;
771
772 cpu_offset += this_length;
773 gpu_offset += this_length;
774 length -= this_length;
775 }
776
777 return 0;
778}
779
4c914c0c
BV
780/*
781 * Pins the specified object's pages and synchronizes the object with
782 * GPU accesses. Sets needs_clflush to non-zero if the caller should
783 * flush the object from the CPU cache.
784 */
785int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 786 unsigned int *needs_clflush)
4c914c0c
BV
787{
788 int ret;
789
e95433c7 790 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 791
e95433c7 792 *needs_clflush = 0;
43394c7d
CW
793 if (!i915_gem_object_has_struct_page(obj))
794 return -ENODEV;
4c914c0c 795
e95433c7
CW
796 ret = i915_gem_object_wait(obj,
797 I915_WAIT_INTERRUPTIBLE |
798 I915_WAIT_LOCKED,
799 MAX_SCHEDULE_TIMEOUT,
800 NULL);
c13d87ea
CW
801 if (ret)
802 return ret;
803
a4f5ea64 804 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
805 if (ret)
806 return ret;
807
b8f55be6
CW
808 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
809 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
810 ret = i915_gem_object_set_to_cpu_domain(obj, false);
811 if (ret)
812 goto err_unpin;
813 else
814 goto out;
815 }
816
ef74921b 817 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 818
43394c7d
CW
819 /* If we're not in the cpu read domain, set ourself into the gtt
820 * read domain and manually flush cachelines (if required). This
821 * optimizes for the case when the gpu will dirty the data
822 * anyway again before the next pread happens.
823 */
e27ab73d
CW
824 if (!obj->cache_dirty &&
825 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 826 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 827
7f5f95d8 828out:
9764951e 829 /* return with the pages pinned */
43394c7d 830 return 0;
9764951e
CW
831
832err_unpin:
833 i915_gem_object_unpin_pages(obj);
834 return ret;
43394c7d
CW
835}
836
837int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
838 unsigned int *needs_clflush)
839{
840 int ret;
841
e95433c7
CW
842 lockdep_assert_held(&obj->base.dev->struct_mutex);
843
43394c7d
CW
844 *needs_clflush = 0;
845 if (!i915_gem_object_has_struct_page(obj))
846 return -ENODEV;
847
e95433c7
CW
848 ret = i915_gem_object_wait(obj,
849 I915_WAIT_INTERRUPTIBLE |
850 I915_WAIT_LOCKED |
851 I915_WAIT_ALL,
852 MAX_SCHEDULE_TIMEOUT,
853 NULL);
43394c7d
CW
854 if (ret)
855 return ret;
856
a4f5ea64 857 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
858 if (ret)
859 return ret;
860
b8f55be6
CW
861 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
862 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
863 ret = i915_gem_object_set_to_cpu_domain(obj, true);
864 if (ret)
865 goto err_unpin;
866 else
867 goto out;
868 }
869
ef74921b 870 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 871
43394c7d
CW
872 /* If we're not in the cpu write domain, set ourself into the
873 * gtt write domain and manually flush cachelines (as required).
874 * This optimizes for the case when the gpu will use the data
875 * right away and we therefore have to clflush anyway.
876 */
e27ab73d 877 if (!obj->cache_dirty) {
7f5f95d8 878 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 879
e27ab73d
CW
880 /*
881 * Same trick applies to invalidate partially written
882 * cachelines read before writing.
883 */
884 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
885 *needs_clflush |= CLFLUSH_BEFORE;
886 }
43394c7d 887
7f5f95d8 888out:
43394c7d 889 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 890 obj->mm.dirty = true;
9764951e 891 /* return with the pages pinned */
43394c7d 892 return 0;
9764951e
CW
893
894err_unpin:
895 i915_gem_object_unpin_pages(obj);
896 return ret;
4c914c0c
BV
897}
898
23c18c71
DV
899static void
900shmem_clflush_swizzled_range(char *addr, unsigned long length,
901 bool swizzled)
902{
e7e58eb5 903 if (unlikely(swizzled)) {
23c18c71
DV
904 unsigned long start = (unsigned long) addr;
905 unsigned long end = (unsigned long) addr + length;
906
907 /* For swizzling simply ensure that we always flush both
908 * channels. Lame, but simple and it works. Swizzled
909 * pwrite/pread is far from a hotpath - current userspace
910 * doesn't use it at all. */
911 start = round_down(start, 128);
912 end = round_up(end, 128);
913
914 drm_clflush_virt_range((void *)start, end - start);
915 } else {
916 drm_clflush_virt_range(addr, length);
917 }
918
919}
920
d174bd64
DV
921/* Only difference to the fast-path function is that this can handle bit17
922 * and uses non-atomic copy and kmap functions. */
923static int
bb6dc8d9 924shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
925 char __user *user_data,
926 bool page_do_bit17_swizzling, bool needs_clflush)
927{
928 char *vaddr;
929 int ret;
930
931 vaddr = kmap(page);
932 if (needs_clflush)
bb6dc8d9 933 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 934 page_do_bit17_swizzling);
d174bd64
DV
935
936 if (page_do_bit17_swizzling)
bb6dc8d9 937 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 938 else
bb6dc8d9 939 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
940 kunmap(page);
941
f60d7f0c 942 return ret ? - EFAULT : 0;
d174bd64
DV
943}
944
bb6dc8d9
CW
945static int
946shmem_pread(struct page *page, int offset, int length, char __user *user_data,
947 bool page_do_bit17_swizzling, bool needs_clflush)
948{
949 int ret;
950
951 ret = -ENODEV;
952 if (!page_do_bit17_swizzling) {
953 char *vaddr = kmap_atomic(page);
954
955 if (needs_clflush)
956 drm_clflush_virt_range(vaddr + offset, length);
957 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
958 kunmap_atomic(vaddr);
959 }
960 if (ret == 0)
961 return 0;
962
963 return shmem_pread_slow(page, offset, length, user_data,
964 page_do_bit17_swizzling, needs_clflush);
965}
966
967static int
968i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
969 struct drm_i915_gem_pread *args)
970{
971 char __user *user_data;
972 u64 remain;
973 unsigned int obj_do_bit17_swizzling;
974 unsigned int needs_clflush;
975 unsigned int idx, offset;
976 int ret;
977
978 obj_do_bit17_swizzling = 0;
979 if (i915_gem_object_needs_bit17_swizzle(obj))
980 obj_do_bit17_swizzling = BIT(17);
981
982 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
983 if (ret)
984 return ret;
985
986 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
987 mutex_unlock(&obj->base.dev->struct_mutex);
988 if (ret)
989 return ret;
990
991 remain = args->size;
992 user_data = u64_to_user_ptr(args->data_ptr);
993 offset = offset_in_page(args->offset);
994 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
995 struct page *page = i915_gem_object_get_page(obj, idx);
996 int length;
997
998 length = remain;
999 if (offset + length > PAGE_SIZE)
1000 length = PAGE_SIZE - offset;
1001
1002 ret = shmem_pread(page, offset, length, user_data,
1003 page_to_phys(page) & obj_do_bit17_swizzling,
1004 needs_clflush);
1005 if (ret)
1006 break;
1007
1008 remain -= length;
1009 user_data += length;
1010 offset = 0;
1011 }
1012
1013 i915_gem_obj_finish_shmem_access(obj);
1014 return ret;
1015}
1016
1017static inline bool
1018gtt_user_read(struct io_mapping *mapping,
1019 loff_t base, int offset,
1020 char __user *user_data, int length)
b50a5371 1021{
afe722be 1022 void __iomem *vaddr;
bb6dc8d9 1023 unsigned long unwritten;
b50a5371 1024
b50a5371 1025 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1026 vaddr = io_mapping_map_atomic_wc(mapping, base);
1027 unwritten = __copy_to_user_inatomic(user_data,
1028 (void __force *)vaddr + offset,
1029 length);
bb6dc8d9
CW
1030 io_mapping_unmap_atomic(vaddr);
1031 if (unwritten) {
afe722be
VS
1032 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1033 unwritten = copy_to_user(user_data,
1034 (void __force *)vaddr + offset,
1035 length);
bb6dc8d9
CW
1036 io_mapping_unmap(vaddr);
1037 }
b50a5371
AS
1038 return unwritten;
1039}
1040
1041static int
bb6dc8d9
CW
1042i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1043 const struct drm_i915_gem_pread *args)
b50a5371 1044{
bb6dc8d9
CW
1045 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1046 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1047 struct drm_mm_node node;
bb6dc8d9
CW
1048 struct i915_vma *vma;
1049 void __user *user_data;
1050 u64 remain, offset;
b50a5371
AS
1051 int ret;
1052
bb6dc8d9
CW
1053 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1054 if (ret)
1055 return ret;
1056
1057 intel_runtime_pm_get(i915);
1058 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1059 PIN_MAPPABLE |
1060 PIN_NONFAULT |
1061 PIN_NONBLOCK);
18034584
CW
1062 if (!IS_ERR(vma)) {
1063 node.start = i915_ggtt_offset(vma);
1064 node.allocated = false;
49ef5294 1065 ret = i915_vma_put_fence(vma);
18034584
CW
1066 if (ret) {
1067 i915_vma_unpin(vma);
1068 vma = ERR_PTR(ret);
1069 }
1070 }
058d88c4 1071 if (IS_ERR(vma)) {
bb6dc8d9 1072 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1073 if (ret)
bb6dc8d9
CW
1074 goto out_unlock;
1075 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1076 }
1077
1078 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1079 if (ret)
1080 goto out_unpin;
1081
bb6dc8d9 1082 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1083
bb6dc8d9
CW
1084 user_data = u64_to_user_ptr(args->data_ptr);
1085 remain = args->size;
1086 offset = args->offset;
b50a5371
AS
1087
1088 while (remain > 0) {
1089 /* Operation in this page
1090 *
1091 * page_base = page offset within aperture
1092 * page_offset = offset within page
1093 * page_length = bytes to copy for this page
1094 */
1095 u32 page_base = node.start;
1096 unsigned page_offset = offset_in_page(offset);
1097 unsigned page_length = PAGE_SIZE - page_offset;
1098 page_length = remain < page_length ? remain : page_length;
1099 if (node.allocated) {
1100 wmb();
1101 ggtt->base.insert_page(&ggtt->base,
1102 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1103 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1104 wmb();
1105 } else {
1106 page_base += offset & PAGE_MASK;
1107 }
bb6dc8d9
CW
1108
1109 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1110 user_data, page_length)) {
b50a5371
AS
1111 ret = -EFAULT;
1112 break;
1113 }
1114
1115 remain -= page_length;
1116 user_data += page_length;
1117 offset += page_length;
1118 }
1119
bb6dc8d9 1120 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1121out_unpin:
1122 if (node.allocated) {
1123 wmb();
1124 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1125 node.start, node.size);
b50a5371
AS
1126 remove_mappable_node(&node);
1127 } else {
058d88c4 1128 i915_vma_unpin(vma);
b50a5371 1129 }
bb6dc8d9
CW
1130out_unlock:
1131 intel_runtime_pm_put(i915);
1132 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1133
eb01459f
EA
1134 return ret;
1135}
1136
673a394b
EA
1137/**
1138 * Reads data from the object referenced by handle.
14bb2c11
TU
1139 * @dev: drm device pointer
1140 * @data: ioctl data blob
1141 * @file: drm file pointer
673a394b
EA
1142 *
1143 * On error, the contents of *data are undefined.
1144 */
1145int
1146i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1147 struct drm_file *file)
673a394b
EA
1148{
1149 struct drm_i915_gem_pread *args = data;
05394f39 1150 struct drm_i915_gem_object *obj;
bb6dc8d9 1151 int ret;
673a394b 1152
51311d0a
CW
1153 if (args->size == 0)
1154 return 0;
1155
1156 if (!access_ok(VERIFY_WRITE,
3ed605bc 1157 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1158 args->size))
1159 return -EFAULT;
1160
03ac0642 1161 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1162 if (!obj)
1163 return -ENOENT;
673a394b 1164
7dcd2499 1165 /* Bounds check source. */
966d5bf5 1166 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1167 ret = -EINVAL;
bb6dc8d9 1168 goto out;
ce9d419d
CW
1169 }
1170
db53a302
CW
1171 trace_i915_gem_object_pread(obj, args->offset, args->size);
1172
e95433c7
CW
1173 ret = i915_gem_object_wait(obj,
1174 I915_WAIT_INTERRUPTIBLE,
1175 MAX_SCHEDULE_TIMEOUT,
1176 to_rps_client(file));
258a5ede 1177 if (ret)
bb6dc8d9 1178 goto out;
258a5ede 1179
bb6dc8d9 1180 ret = i915_gem_object_pin_pages(obj);
258a5ede 1181 if (ret)
bb6dc8d9 1182 goto out;
673a394b 1183
bb6dc8d9 1184 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1185 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1186 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1187
bb6dc8d9
CW
1188 i915_gem_object_unpin_pages(obj);
1189out:
f0cd5182 1190 i915_gem_object_put(obj);
eb01459f 1191 return ret;
673a394b
EA
1192}
1193
0839ccb8
KP
1194/* This is the fast write path which cannot handle
1195 * page faults in the source data
9b7530cc 1196 */
0839ccb8 1197
fe115628
CW
1198static inline bool
1199ggtt_write(struct io_mapping *mapping,
1200 loff_t base, int offset,
1201 char __user *user_data, int length)
9b7530cc 1202{
afe722be 1203 void __iomem *vaddr;
0839ccb8 1204 unsigned long unwritten;
9b7530cc 1205
4f0c7cfb 1206 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1207 vaddr = io_mapping_map_atomic_wc(mapping, base);
1208 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
0839ccb8 1209 user_data, length);
fe115628
CW
1210 io_mapping_unmap_atomic(vaddr);
1211 if (unwritten) {
afe722be
VS
1212 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1213 unwritten = copy_from_user((void __force *)vaddr + offset,
1214 user_data, length);
fe115628
CW
1215 io_mapping_unmap(vaddr);
1216 }
bb6dc8d9 1217
bb6dc8d9
CW
1218 return unwritten;
1219}
1220
3de09aa3
EA
1221/**
1222 * This is the fast pwrite path, where we copy the data directly from the
1223 * user into the GTT, uncached.
fe115628 1224 * @obj: i915 GEM object
14bb2c11 1225 * @args: pwrite arguments structure
3de09aa3 1226 */
673a394b 1227static int
fe115628
CW
1228i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1229 const struct drm_i915_gem_pwrite *args)
673a394b 1230{
fe115628 1231 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1232 struct i915_ggtt *ggtt = &i915->ggtt;
1233 struct drm_mm_node node;
fe115628
CW
1234 struct i915_vma *vma;
1235 u64 remain, offset;
1236 void __user *user_data;
4f1959ee 1237 int ret;
b50a5371 1238
fe115628
CW
1239 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1240 if (ret)
1241 return ret;
935aaa69 1242
9c870d03 1243 intel_runtime_pm_get(i915);
058d88c4 1244 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1245 PIN_MAPPABLE |
1246 PIN_NONFAULT |
1247 PIN_NONBLOCK);
18034584
CW
1248 if (!IS_ERR(vma)) {
1249 node.start = i915_ggtt_offset(vma);
1250 node.allocated = false;
49ef5294 1251 ret = i915_vma_put_fence(vma);
18034584
CW
1252 if (ret) {
1253 i915_vma_unpin(vma);
1254 vma = ERR_PTR(ret);
1255 }
1256 }
058d88c4 1257 if (IS_ERR(vma)) {
bb6dc8d9 1258 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1259 if (ret)
fe115628
CW
1260 goto out_unlock;
1261 GEM_BUG_ON(!node.allocated);
4f1959ee 1262 }
935aaa69
DV
1263
1264 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1265 if (ret)
1266 goto out_unpin;
1267
fe115628
CW
1268 mutex_unlock(&i915->drm.struct_mutex);
1269
b19482d7 1270 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1271
4f1959ee
AS
1272 user_data = u64_to_user_ptr(args->data_ptr);
1273 offset = args->offset;
1274 remain = args->size;
1275 while (remain) {
673a394b
EA
1276 /* Operation in this page
1277 *
0839ccb8
KP
1278 * page_base = page offset within aperture
1279 * page_offset = offset within page
1280 * page_length = bytes to copy for this page
673a394b 1281 */
4f1959ee 1282 u32 page_base = node.start;
bb6dc8d9
CW
1283 unsigned int page_offset = offset_in_page(offset);
1284 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1285 page_length = remain < page_length ? remain : page_length;
1286 if (node.allocated) {
1287 wmb(); /* flush the write before we modify the GGTT */
1288 ggtt->base.insert_page(&ggtt->base,
1289 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1290 node.start, I915_CACHE_NONE, 0);
1291 wmb(); /* flush modifications to the GGTT (insert_page) */
1292 } else {
1293 page_base += offset & PAGE_MASK;
1294 }
0839ccb8 1295 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1296 * source page isn't available. Return the error and we'll
1297 * retry in the slow path.
b50a5371
AS
1298 * If the object is non-shmem backed, we retry again with the
1299 * path that handles page fault.
0839ccb8 1300 */
fe115628
CW
1301 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1302 user_data, page_length)) {
1303 ret = -EFAULT;
1304 break;
935aaa69 1305 }
673a394b 1306
0839ccb8
KP
1307 remain -= page_length;
1308 user_data += page_length;
1309 offset += page_length;
673a394b 1310 }
d59b21ec 1311 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1312
1313 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1314out_unpin:
4f1959ee
AS
1315 if (node.allocated) {
1316 wmb();
1317 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1318 node.start, node.size);
4f1959ee
AS
1319 remove_mappable_node(&node);
1320 } else {
058d88c4 1321 i915_vma_unpin(vma);
4f1959ee 1322 }
fe115628 1323out_unlock:
9c870d03 1324 intel_runtime_pm_put(i915);
fe115628 1325 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1326 return ret;
673a394b
EA
1327}
1328
3043c60c 1329static int
fe115628 1330shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1331 char __user *user_data,
1332 bool page_do_bit17_swizzling,
1333 bool needs_clflush_before,
1334 bool needs_clflush_after)
673a394b 1335{
d174bd64
DV
1336 char *vaddr;
1337 int ret;
e5281ccd 1338
d174bd64 1339 vaddr = kmap(page);
e7e58eb5 1340 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1341 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1342 page_do_bit17_swizzling);
d174bd64 1343 if (page_do_bit17_swizzling)
fe115628
CW
1344 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1345 length);
d174bd64 1346 else
fe115628 1347 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1348 if (needs_clflush_after)
fe115628 1349 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1350 page_do_bit17_swizzling);
d174bd64 1351 kunmap(page);
40123c1f 1352
755d2218 1353 return ret ? -EFAULT : 0;
40123c1f
EA
1354}
1355
fe115628
CW
1356/* Per-page copy function for the shmem pwrite fastpath.
1357 * Flushes invalid cachelines before writing to the target if
1358 * needs_clflush_before is set and flushes out any written cachelines after
1359 * writing if needs_clflush is set.
1360 */
40123c1f 1361static int
fe115628
CW
1362shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1363 bool page_do_bit17_swizzling,
1364 bool needs_clflush_before,
1365 bool needs_clflush_after)
40123c1f 1366{
fe115628
CW
1367 int ret;
1368
1369 ret = -ENODEV;
1370 if (!page_do_bit17_swizzling) {
1371 char *vaddr = kmap_atomic(page);
1372
1373 if (needs_clflush_before)
1374 drm_clflush_virt_range(vaddr + offset, len);
1375 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1376 if (needs_clflush_after)
1377 drm_clflush_virt_range(vaddr + offset, len);
1378
1379 kunmap_atomic(vaddr);
1380 }
1381 if (ret == 0)
1382 return ret;
1383
1384 return shmem_pwrite_slow(page, offset, len, user_data,
1385 page_do_bit17_swizzling,
1386 needs_clflush_before,
1387 needs_clflush_after);
1388}
1389
1390static int
1391i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1392 const struct drm_i915_gem_pwrite *args)
1393{
1394 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1395 void __user *user_data;
1396 u64 remain;
1397 unsigned int obj_do_bit17_swizzling;
1398 unsigned int partial_cacheline_write;
43394c7d 1399 unsigned int needs_clflush;
fe115628
CW
1400 unsigned int offset, idx;
1401 int ret;
40123c1f 1402
fe115628 1403 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1404 if (ret)
1405 return ret;
1406
fe115628
CW
1407 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1408 mutex_unlock(&i915->drm.struct_mutex);
1409 if (ret)
1410 return ret;
673a394b 1411
fe115628
CW
1412 obj_do_bit17_swizzling = 0;
1413 if (i915_gem_object_needs_bit17_swizzle(obj))
1414 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1415
fe115628
CW
1416 /* If we don't overwrite a cacheline completely we need to be
1417 * careful to have up-to-date data by first clflushing. Don't
1418 * overcomplicate things and flush the entire patch.
1419 */
1420 partial_cacheline_write = 0;
1421 if (needs_clflush & CLFLUSH_BEFORE)
1422 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1423
fe115628
CW
1424 user_data = u64_to_user_ptr(args->data_ptr);
1425 remain = args->size;
1426 offset = offset_in_page(args->offset);
1427 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1428 struct page *page = i915_gem_object_get_page(obj, idx);
1429 int length;
40123c1f 1430
fe115628
CW
1431 length = remain;
1432 if (offset + length > PAGE_SIZE)
1433 length = PAGE_SIZE - offset;
755d2218 1434
fe115628
CW
1435 ret = shmem_pwrite(page, offset, length, user_data,
1436 page_to_phys(page) & obj_do_bit17_swizzling,
1437 (offset | length) & partial_cacheline_write,
1438 needs_clflush & CLFLUSH_AFTER);
755d2218 1439 if (ret)
fe115628 1440 break;
755d2218 1441
fe115628
CW
1442 remain -= length;
1443 user_data += length;
1444 offset = 0;
8c59967c 1445 }
673a394b 1446
d59b21ec 1447 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1448 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1449 return ret;
673a394b
EA
1450}
1451
1452/**
1453 * Writes data to the object referenced by handle.
14bb2c11
TU
1454 * @dev: drm device
1455 * @data: ioctl data blob
1456 * @file: drm file
673a394b
EA
1457 *
1458 * On error, the contents of the buffer that were to be modified are undefined.
1459 */
1460int
1461i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1462 struct drm_file *file)
673a394b
EA
1463{
1464 struct drm_i915_gem_pwrite *args = data;
05394f39 1465 struct drm_i915_gem_object *obj;
51311d0a
CW
1466 int ret;
1467
1468 if (args->size == 0)
1469 return 0;
1470
1471 if (!access_ok(VERIFY_READ,
3ed605bc 1472 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1473 args->size))
1474 return -EFAULT;
1475
03ac0642 1476 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1477 if (!obj)
1478 return -ENOENT;
673a394b 1479
7dcd2499 1480 /* Bounds check destination. */
966d5bf5 1481 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1482 ret = -EINVAL;
258a5ede 1483 goto err;
ce9d419d
CW
1484 }
1485
db53a302
CW
1486 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1487
7c55e2c5
CW
1488 ret = -ENODEV;
1489 if (obj->ops->pwrite)
1490 ret = obj->ops->pwrite(obj, args);
1491 if (ret != -ENODEV)
1492 goto err;
1493
e95433c7
CW
1494 ret = i915_gem_object_wait(obj,
1495 I915_WAIT_INTERRUPTIBLE |
1496 I915_WAIT_ALL,
1497 MAX_SCHEDULE_TIMEOUT,
1498 to_rps_client(file));
258a5ede
CW
1499 if (ret)
1500 goto err;
1501
fe115628 1502 ret = i915_gem_object_pin_pages(obj);
258a5ede 1503 if (ret)
fe115628 1504 goto err;
258a5ede 1505
935aaa69 1506 ret = -EFAULT;
673a394b
EA
1507 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1508 * it would end up going through the fenced access, and we'll get
1509 * different detiling behavior between reading and writing.
1510 * pread/pwrite currently are reading and writing from the CPU
1511 * perspective, requiring manual detiling by the client.
1512 */
6eae0059 1513 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1514 cpu_write_needs_clflush(obj))
935aaa69
DV
1515 /* Note that the gtt paths might fail with non-page-backed user
1516 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1517 * textures). Fallback to the shmem path in that case.
1518 */
fe115628 1519 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1520
d1054ee4 1521 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1522 if (obj->phys_handle)
1523 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1524 else
fe115628 1525 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1526 }
5c0480f2 1527
fe115628 1528 i915_gem_object_unpin_pages(obj);
258a5ede 1529err:
f0cd5182 1530 i915_gem_object_put(obj);
258a5ede 1531 return ret;
673a394b
EA
1532}
1533
40e62d5d
CW
1534static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1535{
1536 struct drm_i915_private *i915;
1537 struct list_head *list;
1538 struct i915_vma *vma;
1539
1540 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1541 if (!i915_vma_is_ggtt(vma))
28f412e0 1542 break;
40e62d5d
CW
1543
1544 if (i915_vma_is_active(vma))
1545 continue;
1546
1547 if (!drm_mm_node_allocated(&vma->node))
1548 continue;
1549
1550 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1551 }
1552
1553 i915 = to_i915(obj->base.dev);
1554 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1555 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1556}
1557
673a394b 1558/**
2ef7eeaa
EA
1559 * Called when user space prepares to use an object with the CPU, either
1560 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1561 * @dev: drm device
1562 * @data: ioctl data blob
1563 * @file: drm file
673a394b
EA
1564 */
1565int
1566i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1567 struct drm_file *file)
673a394b
EA
1568{
1569 struct drm_i915_gem_set_domain *args = data;
05394f39 1570 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1571 uint32_t read_domains = args->read_domains;
1572 uint32_t write_domain = args->write_domain;
40e62d5d 1573 int err;
673a394b 1574
2ef7eeaa 1575 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1576 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1577 return -EINVAL;
1578
1579 /* Having something in the write domain implies it's in the read
1580 * domain, and only that read domain. Enforce that in the request.
1581 */
1582 if (write_domain != 0 && read_domains != write_domain)
1583 return -EINVAL;
1584
03ac0642 1585 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1586 if (!obj)
1587 return -ENOENT;
673a394b 1588
3236f57a
CW
1589 /* Try to flush the object off the GPU without holding the lock.
1590 * We will repeat the flush holding the lock in the normal manner
1591 * to catch cases where we are gazumped.
1592 */
40e62d5d 1593 err = i915_gem_object_wait(obj,
e95433c7
CW
1594 I915_WAIT_INTERRUPTIBLE |
1595 (write_domain ? I915_WAIT_ALL : 0),
1596 MAX_SCHEDULE_TIMEOUT,
1597 to_rps_client(file));
40e62d5d 1598 if (err)
f0cd5182 1599 goto out;
b8f9096d 1600
40e62d5d
CW
1601 /* Flush and acquire obj->pages so that we are coherent through
1602 * direct access in memory with previous cached writes through
1603 * shmemfs and that our cache domain tracking remains valid.
1604 * For example, if the obj->filp was moved to swap without us
1605 * being notified and releasing the pages, we would mistakenly
1606 * continue to assume that the obj remained out of the CPU cached
1607 * domain.
1608 */
1609 err = i915_gem_object_pin_pages(obj);
1610 if (err)
f0cd5182 1611 goto out;
40e62d5d
CW
1612
1613 err = i915_mutex_lock_interruptible(dev);
1614 if (err)
f0cd5182 1615 goto out_unpin;
3236f57a 1616
e22d8e3c
CW
1617 if (read_domains & I915_GEM_DOMAIN_WC)
1618 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1619 else if (read_domains & I915_GEM_DOMAIN_GTT)
1620 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1621 else
e22d8e3c 1622 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1623
40e62d5d
CW
1624 /* And bump the LRU for this access */
1625 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1626
673a394b 1627 mutex_unlock(&dev->struct_mutex);
b8f9096d 1628
40e62d5d 1629 if (write_domain != 0)
ef74921b
CW
1630 intel_fb_obj_invalidate(obj,
1631 fb_write_origin(obj, write_domain));
40e62d5d 1632
f0cd5182 1633out_unpin:
40e62d5d 1634 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1635out:
1636 i915_gem_object_put(obj);
40e62d5d 1637 return err;
673a394b
EA
1638}
1639
1640/**
1641 * Called when user space has done writes to this buffer
14bb2c11
TU
1642 * @dev: drm device
1643 * @data: ioctl data blob
1644 * @file: drm file
673a394b
EA
1645 */
1646int
1647i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1648 struct drm_file *file)
673a394b
EA
1649{
1650 struct drm_i915_gem_sw_finish *args = data;
05394f39 1651 struct drm_i915_gem_object *obj;
1d7cfea1 1652
03ac0642 1653 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1654 if (!obj)
1655 return -ENOENT;
673a394b 1656
673a394b 1657 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1658 i915_gem_object_flush_if_display(obj);
f0cd5182 1659 i915_gem_object_put(obj);
5a97bcc6
CW
1660
1661 return 0;
673a394b
EA
1662}
1663
1664/**
14bb2c11
TU
1665 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1666 * it is mapped to.
1667 * @dev: drm device
1668 * @data: ioctl data blob
1669 * @file: drm file
673a394b
EA
1670 *
1671 * While the mapping holds a reference on the contents of the object, it doesn't
1672 * imply a ref on the object itself.
34367381
DV
1673 *
1674 * IMPORTANT:
1675 *
1676 * DRM driver writers who look a this function as an example for how to do GEM
1677 * mmap support, please don't implement mmap support like here. The modern way
1678 * to implement DRM mmap support is with an mmap offset ioctl (like
1679 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1680 * That way debug tooling like valgrind will understand what's going on, hiding
1681 * the mmap call in a driver private ioctl will break that. The i915 driver only
1682 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1683 */
1684int
1685i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1686 struct drm_file *file)
673a394b
EA
1687{
1688 struct drm_i915_gem_mmap *args = data;
03ac0642 1689 struct drm_i915_gem_object *obj;
673a394b
EA
1690 unsigned long addr;
1691
1816f923
AG
1692 if (args->flags & ~(I915_MMAP_WC))
1693 return -EINVAL;
1694
568a58e5 1695 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1696 return -ENODEV;
1697
03ac0642
CW
1698 obj = i915_gem_object_lookup(file, args->handle);
1699 if (!obj)
bf79cb91 1700 return -ENOENT;
673a394b 1701
1286ff73
DV
1702 /* prime objects have no backing filp to GEM mmap
1703 * pages from.
1704 */
03ac0642 1705 if (!obj->base.filp) {
f0cd5182 1706 i915_gem_object_put(obj);
1286ff73
DV
1707 return -EINVAL;
1708 }
1709
03ac0642 1710 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1711 PROT_READ | PROT_WRITE, MAP_SHARED,
1712 args->offset);
1816f923
AG
1713 if (args->flags & I915_MMAP_WC) {
1714 struct mm_struct *mm = current->mm;
1715 struct vm_area_struct *vma;
1716
80a89a5e 1717 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1718 i915_gem_object_put(obj);
80a89a5e
MH
1719 return -EINTR;
1720 }
1816f923
AG
1721 vma = find_vma(mm, addr);
1722 if (vma)
1723 vma->vm_page_prot =
1724 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1725 else
1726 addr = -ENOMEM;
1727 up_write(&mm->mmap_sem);
aeecc969
CW
1728
1729 /* This may race, but that's ok, it only gets set */
50349247 1730 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1731 }
f0cd5182 1732 i915_gem_object_put(obj);
673a394b
EA
1733 if (IS_ERR((void *)addr))
1734 return addr;
1735
1736 args->addr_ptr = (uint64_t) addr;
1737
1738 return 0;
1739}
1740
03af84fe
CW
1741static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1742{
6649a0b6 1743 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1744}
1745
4cc69075
CW
1746/**
1747 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1748 *
1749 * A history of the GTT mmap interface:
1750 *
1751 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1752 * aligned and suitable for fencing, and still fit into the available
1753 * mappable space left by the pinned display objects. A classic problem
1754 * we called the page-fault-of-doom where we would ping-pong between
1755 * two objects that could not fit inside the GTT and so the memcpy
1756 * would page one object in at the expense of the other between every
1757 * single byte.
1758 *
1759 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1760 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1761 * object is too large for the available space (or simply too large
1762 * for the mappable aperture!), a view is created instead and faulted
1763 * into userspace. (This view is aligned and sized appropriately for
1764 * fenced access.)
1765 *
e22d8e3c
CW
1766 * 2 - Recognise WC as a separate cache domain so that we can flush the
1767 * delayed writes via GTT before performing direct access via WC.
1768 *
4cc69075
CW
1769 * Restrictions:
1770 *
1771 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1772 * hangs on some architectures, corruption on others. An attempt to service
1773 * a GTT page fault from a snoopable object will generate a SIGBUS.
1774 *
1775 * * the object must be able to fit into RAM (physical memory, though no
1776 * limited to the mappable aperture).
1777 *
1778 *
1779 * Caveats:
1780 *
1781 * * a new GTT page fault will synchronize rendering from the GPU and flush
1782 * all data to system memory. Subsequent access will not be synchronized.
1783 *
1784 * * all mappings are revoked on runtime device suspend.
1785 *
1786 * * there are only 8, 16 or 32 fence registers to share between all users
1787 * (older machines require fence register for display and blitter access
1788 * as well). Contention of the fence registers will cause the previous users
1789 * to be unmapped and any new access will generate new page faults.
1790 *
1791 * * running out of memory while servicing a fault may generate a SIGBUS,
1792 * rather than the expected SIGSEGV.
1793 */
1794int i915_gem_mmap_gtt_version(void)
1795{
e22d8e3c 1796 return 2;
4cc69075
CW
1797}
1798
2d4281bb
CW
1799static inline struct i915_ggtt_view
1800compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1801 pgoff_t page_offset,
1802 unsigned int chunk)
1803{
1804 struct i915_ggtt_view view;
1805
1806 if (i915_gem_object_is_tiled(obj))
1807 chunk = roundup(chunk, tile_row_pages(obj));
1808
2d4281bb 1809 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1810 view.partial.offset = rounddown(page_offset, chunk);
1811 view.partial.size =
2d4281bb 1812 min_t(unsigned int, chunk,
8bab1193 1813 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1814
1815 /* If the partial covers the entire object, just create a normal VMA. */
1816 if (chunk >= obj->base.size >> PAGE_SHIFT)
1817 view.type = I915_GGTT_VIEW_NORMAL;
1818
1819 return view;
1820}
1821
de151cf6
JB
1822/**
1823 * i915_gem_fault - fault a page into the GTT
d9072a3e 1824 * @vmf: fault info
de151cf6
JB
1825 *
1826 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1827 * from userspace. The fault handler takes care of binding the object to
1828 * the GTT (if needed), allocating and programming a fence register (again,
1829 * only if needed based on whether the old reg is still valid or the object
1830 * is tiled) and inserting a new PTE into the faulting process.
1831 *
1832 * Note that the faulting process may involve evicting existing objects
1833 * from the GTT and/or fence registers to make room. So performance may
1834 * suffer if the GTT working set is large or there are few fence registers
1835 * left.
4cc69075
CW
1836 *
1837 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1838 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1839 */
11bac800 1840int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1841{
03af84fe 1842#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1843 struct vm_area_struct *area = vmf->vma;
058d88c4 1844 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1845 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1846 struct drm_i915_private *dev_priv = to_i915(dev);
1847 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1848 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1849 struct i915_vma *vma;
de151cf6 1850 pgoff_t page_offset;
82118877 1851 unsigned int flags;
b8f9096d 1852 int ret;
f65c9168 1853
de151cf6 1854 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1855 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1856
db53a302
CW
1857 trace_i915_gem_object_fault(obj, page_offset, true, write);
1858
6e4930f6 1859 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1860 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1861 * repeat the flush holding the lock in the normal manner to catch cases
1862 * where we are gazumped.
1863 */
e95433c7
CW
1864 ret = i915_gem_object_wait(obj,
1865 I915_WAIT_INTERRUPTIBLE,
1866 MAX_SCHEDULE_TIMEOUT,
1867 NULL);
6e4930f6 1868 if (ret)
b8f9096d
CW
1869 goto err;
1870
40e62d5d
CW
1871 ret = i915_gem_object_pin_pages(obj);
1872 if (ret)
1873 goto err;
1874
b8f9096d
CW
1875 intel_runtime_pm_get(dev_priv);
1876
1877 ret = i915_mutex_lock_interruptible(dev);
1878 if (ret)
1879 goto err_rpm;
6e4930f6 1880
eb119bd6 1881 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1882 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1883 ret = -EFAULT;
b8f9096d 1884 goto err_unlock;
eb119bd6
CW
1885 }
1886
82118877
CW
1887 /* If the object is smaller than a couple of partial vma, it is
1888 * not worth only creating a single partial vma - we may as well
1889 * clear enough space for the full object.
1890 */
1891 flags = PIN_MAPPABLE;
1892 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1893 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1894
a61007a8 1895 /* Now pin it into the GTT as needed */
82118877 1896 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1897 if (IS_ERR(vma)) {
a61007a8 1898 /* Use a partial view if it is bigger than available space */
2d4281bb 1899 struct i915_ggtt_view view =
8201c1fa 1900 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1901
50349247
CW
1902 /* Userspace is now writing through an untracked VMA, abandon
1903 * all hope that the hardware is able to track future writes.
1904 */
1905 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1906
a61007a8
CW
1907 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1908 }
058d88c4
CW
1909 if (IS_ERR(vma)) {
1910 ret = PTR_ERR(vma);
b8f9096d 1911 goto err_unlock;
058d88c4 1912 }
4a684a41 1913
c9839303
CW
1914 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1915 if (ret)
b8f9096d 1916 goto err_unpin;
74898d7e 1917
3bd40735 1918 ret = i915_vma_pin_fence(vma);
d9e86c0e 1919 if (ret)
b8f9096d 1920 goto err_unpin;
7d1c4804 1921
b90b91d8 1922 /* Finally, remap it using the new GTT offset */
c58305af 1923 ret = remap_io_mapping(area,
8bab1193 1924 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1925 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1926 min_t(u64, vma->size, area->vm_end - area->vm_start),
1927 &ggtt->mappable);
a65adaf8
CW
1928 if (ret)
1929 goto err_fence;
a61007a8 1930
a65adaf8
CW
1931 /* Mark as being mmapped into userspace for later revocation */
1932 assert_rpm_wakelock_held(dev_priv);
1933 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1934 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1935 GEM_BUG_ON(!obj->userfault_count);
1936
1937err_fence:
3bd40735 1938 i915_vma_unpin_fence(vma);
b8f9096d 1939err_unpin:
058d88c4 1940 __i915_vma_unpin(vma);
b8f9096d 1941err_unlock:
de151cf6 1942 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1943err_rpm:
1944 intel_runtime_pm_put(dev_priv);
40e62d5d 1945 i915_gem_object_unpin_pages(obj);
b8f9096d 1946err:
de151cf6 1947 switch (ret) {
d9bc7e9f 1948 case -EIO:
2232f031
DV
1949 /*
1950 * We eat errors when the gpu is terminally wedged to avoid
1951 * userspace unduly crashing (gl has no provisions for mmaps to
1952 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1953 * and so needs to be reported.
1954 */
1955 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1956 ret = VM_FAULT_SIGBUS;
1957 break;
1958 }
045e769a 1959 case -EAGAIN:
571c608d
DV
1960 /*
1961 * EAGAIN means the gpu is hung and we'll wait for the error
1962 * handler to reset everything when re-faulting in
1963 * i915_mutex_lock_interruptible.
d9bc7e9f 1964 */
c715089f
CW
1965 case 0:
1966 case -ERESTARTSYS:
bed636ab 1967 case -EINTR:
e79e0fe3
DR
1968 case -EBUSY:
1969 /*
1970 * EBUSY is ok: this just means that another thread
1971 * already did the job.
1972 */
f65c9168
PZ
1973 ret = VM_FAULT_NOPAGE;
1974 break;
de151cf6 1975 case -ENOMEM:
f65c9168
PZ
1976 ret = VM_FAULT_OOM;
1977 break;
a7c2e1aa 1978 case -ENOSPC:
45d67817 1979 case -EFAULT:
f65c9168
PZ
1980 ret = VM_FAULT_SIGBUS;
1981 break;
de151cf6 1982 default:
a7c2e1aa 1983 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1984 ret = VM_FAULT_SIGBUS;
1985 break;
de151cf6 1986 }
f65c9168 1987 return ret;
de151cf6
JB
1988}
1989
a65adaf8
CW
1990static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
1991{
1992 struct i915_vma *vma;
1993
1994 GEM_BUG_ON(!obj->userfault_count);
1995
1996 obj->userfault_count = 0;
1997 list_del(&obj->userfault_link);
1998 drm_vma_node_unmap(&obj->base.vma_node,
1999 obj->base.dev->anon_inode->i_mapping);
2000
2001 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2002 if (!i915_vma_is_ggtt(vma))
2003 break;
2004
2005 i915_vma_unset_userfault(vma);
2006 }
2007}
2008
901782b2
CW
2009/**
2010 * i915_gem_release_mmap - remove physical page mappings
2011 * @obj: obj in question
2012 *
af901ca1 2013 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2014 * relinquish ownership of the pages back to the system.
2015 *
2016 * It is vital that we remove the page mapping if we have mapped a tiled
2017 * object through the GTT and then lose the fence register due to
2018 * resource pressure. Similarly if the object has been moved out of the
2019 * aperture, than pages mapped into userspace must be revoked. Removing the
2020 * mapping will then trigger a page fault on the next user access, allowing
2021 * fixup by i915_gem_fault().
2022 */
d05ca301 2023void
05394f39 2024i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2025{
275f039d 2026 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2027
349f2ccf
CW
2028 /* Serialisation between user GTT access and our code depends upon
2029 * revoking the CPU's PTE whilst the mutex is held. The next user
2030 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2031 *
2032 * Note that RPM complicates somewhat by adding an additional
2033 * requirement that operations to the GGTT be made holding the RPM
2034 * wakeref.
349f2ccf 2035 */
275f039d 2036 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2037 intel_runtime_pm_get(i915);
349f2ccf 2038
a65adaf8 2039 if (!obj->userfault_count)
9c870d03 2040 goto out;
901782b2 2041
a65adaf8 2042 __i915_gem_object_release_mmap(obj);
349f2ccf
CW
2043
2044 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2045 * memory transactions from userspace before we return. The TLB
2046 * flushing implied above by changing the PTE above *should* be
2047 * sufficient, an extra barrier here just provides us with a bit
2048 * of paranoid documentation about our requirement to serialise
2049 * memory writes before touching registers / GSM.
2050 */
2051 wmb();
9c870d03
CW
2052
2053out:
2054 intel_runtime_pm_put(i915);
901782b2
CW
2055}
2056
7c108fd8 2057void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2058{
3594a3e2 2059 struct drm_i915_gem_object *obj, *on;
7c108fd8 2060 int i;
eedd10f4 2061
3594a3e2
CW
2062 /*
2063 * Only called during RPM suspend. All users of the userfault_list
2064 * must be holding an RPM wakeref to ensure that this can not
2065 * run concurrently with themselves (and use the struct_mutex for
2066 * protection between themselves).
2067 */
275f039d 2068
3594a3e2 2069 list_for_each_entry_safe(obj, on,
a65adaf8
CW
2070 &dev_priv->mm.userfault_list, userfault_link)
2071 __i915_gem_object_release_mmap(obj);
7c108fd8
CW
2072
2073 /* The fence will be lost when the device powers down. If any were
2074 * in use by hardware (i.e. they are pinned), we should not be powering
2075 * down! All other fences will be reacquired by the user upon waking.
2076 */
2077 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2078 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2079
e0ec3ec6
CW
2080 /* Ideally we want to assert that the fence register is not
2081 * live at this point (i.e. that no piece of code will be
2082 * trying to write through fence + GTT, as that both violates
2083 * our tracking of activity and associated locking/barriers,
2084 * but also is illegal given that the hw is powered down).
2085 *
2086 * Previously we used reg->pin_count as a "liveness" indicator.
2087 * That is not sufficient, and we need a more fine-grained
2088 * tool if we want to have a sanity check here.
2089 */
7c108fd8
CW
2090
2091 if (!reg->vma)
2092 continue;
2093
a65adaf8 2094 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
7c108fd8
CW
2095 reg->dirty = true;
2096 }
eedd10f4
CW
2097}
2098
d8cb5086
CW
2099static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2100{
fac5e23e 2101 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2102 int err;
da494d7c 2103
f3f6184c 2104 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2105 if (likely(!err))
f3f6184c 2106 return 0;
d8cb5086 2107
b42a13d9
CW
2108 /* Attempt to reap some mmap space from dead objects */
2109 do {
2110 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2111 if (err)
2112 break;
f3f6184c 2113
b42a13d9 2114 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2115 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2116 if (!err)
2117 break;
2118
2119 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2120
f3f6184c 2121 return err;
d8cb5086
CW
2122}
2123
2124static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2125{
d8cb5086
CW
2126 drm_gem_free_mmap_offset(&obj->base);
2127}
2128
da6b51d0 2129int
ff72145b
DA
2130i915_gem_mmap_gtt(struct drm_file *file,
2131 struct drm_device *dev,
da6b51d0 2132 uint32_t handle,
ff72145b 2133 uint64_t *offset)
de151cf6 2134{
05394f39 2135 struct drm_i915_gem_object *obj;
de151cf6
JB
2136 int ret;
2137
03ac0642 2138 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2139 if (!obj)
2140 return -ENOENT;
ab18282d 2141
d8cb5086 2142 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2143 if (ret == 0)
2144 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2145
f0cd5182 2146 i915_gem_object_put(obj);
1d7cfea1 2147 return ret;
de151cf6
JB
2148}
2149
ff72145b
DA
2150/**
2151 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2152 * @dev: DRM device
2153 * @data: GTT mapping ioctl data
2154 * @file: GEM object info
2155 *
2156 * Simply returns the fake offset to userspace so it can mmap it.
2157 * The mmap call will end up in drm_gem_mmap(), which will set things
2158 * up so we can get faults in the handler above.
2159 *
2160 * The fault handler will take care of binding the object into the GTT
2161 * (since it may have been evicted to make room for something), allocating
2162 * a fence register, and mapping the appropriate aperture address into
2163 * userspace.
2164 */
2165int
2166i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2167 struct drm_file *file)
2168{
2169 struct drm_i915_gem_mmap_gtt *args = data;
2170
da6b51d0 2171 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2172}
2173
225067ee
DV
2174/* Immediately discard the backing storage */
2175static void
2176i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2177{
4d6294bf 2178 i915_gem_object_free_mmap_offset(obj);
1286ff73 2179
4d6294bf
CW
2180 if (obj->base.filp == NULL)
2181 return;
e5281ccd 2182
225067ee
DV
2183 /* Our goal here is to return as much of the memory as
2184 * is possible back to the system as we are called from OOM.
2185 * To do this we must instruct the shmfs to drop all of its
2186 * backing pages, *now*.
2187 */
5537252b 2188 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2189 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2190 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2191}
e5281ccd 2192
5537252b 2193/* Try to discard unwanted pages */
03ac84f1 2194void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2195{
5537252b
CW
2196 struct address_space *mapping;
2197
1233e2db
CW
2198 lockdep_assert_held(&obj->mm.lock);
2199 GEM_BUG_ON(obj->mm.pages);
2200
a4f5ea64 2201 switch (obj->mm.madv) {
5537252b
CW
2202 case I915_MADV_DONTNEED:
2203 i915_gem_object_truncate(obj);
2204 case __I915_MADV_PURGED:
2205 return;
2206 }
2207
2208 if (obj->base.filp == NULL)
2209 return;
2210
93c76a3d 2211 mapping = obj->base.filp->f_mapping,
5537252b 2212 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2213}
2214
5cdf5881 2215static void
03ac84f1
CW
2216i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2217 struct sg_table *pages)
673a394b 2218{
85d1225e
DG
2219 struct sgt_iter sgt_iter;
2220 struct page *page;
1286ff73 2221
e5facdf9 2222 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2223
03ac84f1 2224 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2225
6dacfd2f 2226 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2227 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2228
03ac84f1 2229 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2230 if (obj->mm.dirty)
9da3da66 2231 set_page_dirty(page);
3ef94daa 2232
a4f5ea64 2233 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2234 mark_page_accessed(page);
3ef94daa 2235
09cbfeaf 2236 put_page(page);
3ef94daa 2237 }
a4f5ea64 2238 obj->mm.dirty = false;
673a394b 2239
03ac84f1
CW
2240 sg_free_table(pages);
2241 kfree(pages);
37e680a1 2242}
6c085a72 2243
96d77634
CW
2244static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2245{
2246 struct radix_tree_iter iter;
c23aa71b 2247 void __rcu **slot;
96d77634 2248
a4f5ea64
CW
2249 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2250 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2251}
2252
548625ee
CW
2253void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2254 enum i915_mm_subclass subclass)
37e680a1 2255{
03ac84f1 2256 struct sg_table *pages;
37e680a1 2257
a4f5ea64 2258 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2259 return;
a5570178 2260
15717de2 2261 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2262 if (!READ_ONCE(obj->mm.pages))
2263 return;
2264
2265 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2266 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2267 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2268 goto unlock;
3e123027 2269
a2165e31
CW
2270 /* ->put_pages might need to allocate memory for the bit17 swizzle
2271 * array, hence protect them from being reaped by removing them from gtt
2272 * lists early. */
03ac84f1
CW
2273 pages = fetch_and_zero(&obj->mm.pages);
2274 GEM_BUG_ON(!pages);
a2165e31 2275
a4f5ea64 2276 if (obj->mm.mapping) {
4b30cb23
CW
2277 void *ptr;
2278
0ce81788 2279 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2280 if (is_vmalloc_addr(ptr))
2281 vunmap(ptr);
fb8621d3 2282 else
4b30cb23
CW
2283 kunmap(kmap_to_page(ptr));
2284
a4f5ea64 2285 obj->mm.mapping = NULL;
0a798eb9
CW
2286 }
2287
96d77634
CW
2288 __i915_gem_object_reset_page_iter(obj);
2289
4e5462ee
CW
2290 if (!IS_ERR(pages))
2291 obj->ops->put_pages(obj, pages);
2292
a5c08166
MA
2293 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2294
1233e2db
CW
2295unlock:
2296 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2297}
2298
935a2f77 2299static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2300{
2301 struct sg_table new_st;
2302 struct scatterlist *sg, *new_sg;
2303 unsigned int i;
2304
2305 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2306 return false;
0c40ce13 2307
8bfc478f 2308 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2309 return false;
0c40ce13
TU
2310
2311 new_sg = new_st.sgl;
2312 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2313 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2314 /* called before being DMA mapped, no need to copy sg->dma_* */
2315 new_sg = sg_next(new_sg);
2316 }
c2dc6cc9 2317 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2318
2319 sg_free_table(orig_st);
2320
2321 *orig_st = new_st;
935a2f77 2322 return true;
0c40ce13
TU
2323}
2324
b91b09ee 2325static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2326{
fac5e23e 2327 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2328 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2329 unsigned long i;
e5281ccd 2330 struct address_space *mapping;
9da3da66
CW
2331 struct sg_table *st;
2332 struct scatterlist *sg;
85d1225e 2333 struct sgt_iter sgt_iter;
e5281ccd 2334 struct page *page;
90797e6d 2335 unsigned long last_pfn = 0; /* suppress gcc warning */
5602452e 2336 unsigned int max_segment = i915_sg_segment_size();
84e8978e 2337 unsigned int sg_page_sizes;
4846bf0c 2338 gfp_t noreclaim;
e2273302 2339 int ret;
e5281ccd 2340
6c085a72
CW
2341 /* Assert that the object is not currently in any GPU domain. As it
2342 * wasn't in the GTT, there shouldn't be any way it could have been in
2343 * a GPU cache
2344 */
03ac84f1
CW
2345 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2346 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2347
9da3da66
CW
2348 st = kmalloc(sizeof(*st), GFP_KERNEL);
2349 if (st == NULL)
b91b09ee 2350 return -ENOMEM;
9da3da66 2351
d766ef53 2352rebuild_st:
9da3da66 2353 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2354 kfree(st);
b91b09ee 2355 return -ENOMEM;
9da3da66 2356 }
e5281ccd 2357
9da3da66
CW
2358 /* Get the list of pages out of our struct file. They'll be pinned
2359 * at this point until we release them.
2360 *
2361 * Fail silently without starting the shrinker
2362 */
93c76a3d 2363 mapping = obj->base.filp->f_mapping;
0f6ab55d 2364 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2365 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2366
90797e6d
ID
2367 sg = st->sgl;
2368 st->nents = 0;
84e8978e 2369 sg_page_sizes = 0;
90797e6d 2370 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2371 const unsigned int shrink[] = {
2372 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2373 0,
2374 }, *s = shrink;
2375 gfp_t gfp = noreclaim;
2376
2377 do {
6c085a72 2378 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2379 if (likely(!IS_ERR(page)))
2380 break;
2381
2382 if (!*s) {
2383 ret = PTR_ERR(page);
2384 goto err_sg;
2385 }
2386
912d572d 2387 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2388 cond_resched();
24f8e00a 2389
6c085a72
CW
2390 /* We've tried hard to allocate the memory by reaping
2391 * our own buffer, now let the real VM do its job and
2392 * go down in flames if truly OOM.
24f8e00a
CW
2393 *
2394 * However, since graphics tend to be disposable,
2395 * defer the oom here by reporting the ENOMEM back
2396 * to userspace.
6c085a72 2397 */
4846bf0c
CW
2398 if (!*s) {
2399 /* reclaim and warn, but no oom */
2400 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2401
2402 /* Our bo are always dirty and so we require
2403 * kswapd to reclaim our pages (direct reclaim
2404 * does not effectively begin pageout of our
2405 * buffers on its own). However, direct reclaim
2406 * only waits for kswapd when under allocation
2407 * congestion. So as a result __GFP_RECLAIM is
2408 * unreliable and fails to actually reclaim our
2409 * dirty pages -- unless you try over and over
2410 * again with !__GFP_NORETRY. However, we still
2411 * want to fail this allocation rather than
2412 * trigger the out-of-memory killer and for
dbb32956 2413 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2414 */
dbb32956 2415 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2416 }
4846bf0c
CW
2417 } while (1);
2418
871dfbd6
CW
2419 if (!i ||
2420 sg->length >= max_segment ||
2421 page_to_pfn(page) != last_pfn + 1) {
a5c08166 2422 if (i) {
84e8978e 2423 sg_page_sizes |= sg->length;
90797e6d 2424 sg = sg_next(sg);
a5c08166 2425 }
90797e6d
ID
2426 st->nents++;
2427 sg_set_page(sg, page, PAGE_SIZE, 0);
2428 } else {
2429 sg->length += PAGE_SIZE;
2430 }
2431 last_pfn = page_to_pfn(page);
3bbbe706
DV
2432
2433 /* Check that the i965g/gm workaround works. */
2434 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2435 }
a5c08166 2436 if (sg) { /* loop terminated early; short sg table */
84e8978e 2437 sg_page_sizes |= sg->length;
426729dc 2438 sg_mark_end(sg);
a5c08166 2439 }
74ce6b6c 2440
0c40ce13
TU
2441 /* Trim unused sg entries to avoid wasting memory. */
2442 i915_sg_trim(st);
2443
03ac84f1 2444 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2445 if (ret) {
2446 /* DMA remapping failed? One possible cause is that
2447 * it could not reserve enough large entries, asking
2448 * for PAGE_SIZE chunks instead may be helpful.
2449 */
2450 if (max_segment > PAGE_SIZE) {
2451 for_each_sgt_page(page, sgt_iter, st)
2452 put_page(page);
2453 sg_free_table(st);
2454
2455 max_segment = PAGE_SIZE;
2456 goto rebuild_st;
2457 } else {
2458 dev_warn(&dev_priv->drm.pdev->dev,
2459 "Failed to DMA remap %lu pages\n",
2460 page_count);
2461 goto err_pages;
2462 }
2463 }
e2273302 2464
6dacfd2f 2465 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2466 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2467
84e8978e 2468 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee
MA
2469
2470 return 0;
e5281ccd 2471
b17993b7 2472err_sg:
90797e6d 2473 sg_mark_end(sg);
b17993b7 2474err_pages:
85d1225e
DG
2475 for_each_sgt_page(page, sgt_iter, st)
2476 put_page(page);
9da3da66
CW
2477 sg_free_table(st);
2478 kfree(st);
0820baf3
CW
2479
2480 /* shmemfs first checks if there is enough memory to allocate the page
2481 * and reports ENOSPC should there be insufficient, along with the usual
2482 * ENOMEM for a genuine allocation failure.
2483 *
2484 * We use ENOSPC in our driver to mean that we have run out of aperture
2485 * space and so want to translate the error from shmemfs back to our
2486 * usual understanding of ENOMEM.
2487 */
e2273302
ID
2488 if (ret == -ENOSPC)
2489 ret = -ENOMEM;
2490
b91b09ee 2491 return ret;
03ac84f1
CW
2492}
2493
2494void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
a5c08166 2495 struct sg_table *pages,
84e8978e 2496 unsigned int sg_page_sizes)
03ac84f1 2497{
a5c08166
MA
2498 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2499 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2500 int i;
2501
1233e2db 2502 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2503
2504 obj->mm.get_page.sg_pos = pages->sgl;
2505 obj->mm.get_page.sg_idx = 0;
2506
2507 obj->mm.pages = pages;
2c3a3f44
CW
2508
2509 if (i915_gem_object_is_tiled(obj) &&
2510 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2511 GEM_BUG_ON(obj->mm.quirked);
2512 __i915_gem_object_pin_pages(obj);
2513 obj->mm.quirked = true;
2514 }
a5c08166 2515
84e8978e
MA
2516 GEM_BUG_ON(!sg_page_sizes);
2517 obj->mm.page_sizes.phys = sg_page_sizes;
a5c08166
MA
2518
2519 /*
84e8978e
MA
2520 * Calculate the supported page-sizes which fit into the given
2521 * sg_page_sizes. This will give us the page-sizes which we may be able
2522 * to use opportunistically when later inserting into the GTT. For
2523 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2524 * 64K or 4K pages, although in practice this will depend on a number of
2525 * other factors.
a5c08166
MA
2526 */
2527 obj->mm.page_sizes.sg = 0;
2528 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2529 if (obj->mm.page_sizes.phys & ~0u << i)
2530 obj->mm.page_sizes.sg |= BIT(i);
2531 }
2532
2533 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
03ac84f1
CW
2534}
2535
2536static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2537{
b91b09ee 2538 int err;
03ac84f1
CW
2539
2540 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2541 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2542 return -EFAULT;
2543 }
2544
b91b09ee
MA
2545 err = obj->ops->get_pages(obj);
2546 GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
03ac84f1 2547
b91b09ee 2548 return err;
673a394b
EA
2549}
2550
37e680a1 2551/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2552 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2553 * multiple times before they are released by a single call to
1233e2db 2554 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2555 * either as a result of memory pressure (reaping pages under the shrinker)
2556 * or as the object is itself released.
2557 */
a4f5ea64 2558int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2559{
03ac84f1 2560 int err;
37e680a1 2561
1233e2db
CW
2562 err = mutex_lock_interruptible(&obj->mm.lock);
2563 if (err)
2564 return err;
4c7d62c6 2565
4e5462ee 2566 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
88c880bb
CW
2567 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2568
2c3a3f44
CW
2569 err = ____i915_gem_object_get_pages(obj);
2570 if (err)
2571 goto unlock;
37e680a1 2572
2c3a3f44
CW
2573 smp_mb__before_atomic();
2574 }
2575 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2576
1233e2db
CW
2577unlock:
2578 mutex_unlock(&obj->mm.lock);
03ac84f1 2579 return err;
673a394b
EA
2580}
2581
dd6034c6 2582/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2583static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2584 enum i915_map_type type)
dd6034c6
DG
2585{
2586 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2587 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2588 struct sgt_iter sgt_iter;
2589 struct page *page;
b338fa47
DG
2590 struct page *stack_pages[32];
2591 struct page **pages = stack_pages;
dd6034c6 2592 unsigned long i = 0;
d31d7cb1 2593 pgprot_t pgprot;
dd6034c6
DG
2594 void *addr;
2595
2596 /* A single page can always be kmapped */
d31d7cb1 2597 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2598 return kmap(sg_page(sgt->sgl));
2599
b338fa47
DG
2600 if (n_pages > ARRAY_SIZE(stack_pages)) {
2601 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2602 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2603 if (!pages)
2604 return NULL;
2605 }
dd6034c6 2606
85d1225e
DG
2607 for_each_sgt_page(page, sgt_iter, sgt)
2608 pages[i++] = page;
dd6034c6
DG
2609
2610 /* Check that we have the expected number of pages */
2611 GEM_BUG_ON(i != n_pages);
2612
d31d7cb1 2613 switch (type) {
a575c676
CW
2614 default:
2615 MISSING_CASE(type);
2616 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2617 case I915_MAP_WB:
2618 pgprot = PAGE_KERNEL;
2619 break;
2620 case I915_MAP_WC:
2621 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2622 break;
2623 }
2624 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2625
b338fa47 2626 if (pages != stack_pages)
2098105e 2627 kvfree(pages);
dd6034c6
DG
2628
2629 return addr;
2630}
2631
2632/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2633void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2634 enum i915_map_type type)
0a798eb9 2635{
d31d7cb1
CW
2636 enum i915_map_type has_type;
2637 bool pinned;
2638 void *ptr;
0a798eb9
CW
2639 int ret;
2640
d31d7cb1 2641 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2642
1233e2db 2643 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2644 if (ret)
2645 return ERR_PTR(ret);
2646
a575c676
CW
2647 pinned = !(type & I915_MAP_OVERRIDE);
2648 type &= ~I915_MAP_OVERRIDE;
2649
1233e2db 2650 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
4e5462ee 2651 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
88c880bb
CW
2652 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2653
2c3a3f44
CW
2654 ret = ____i915_gem_object_get_pages(obj);
2655 if (ret)
2656 goto err_unlock;
1233e2db 2657
2c3a3f44
CW
2658 smp_mb__before_atomic();
2659 }
2660 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2661 pinned = false;
2662 }
2663 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2664
0ce81788 2665 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2666 if (ptr && has_type != type) {
2667 if (pinned) {
2668 ret = -EBUSY;
1233e2db 2669 goto err_unpin;
0a798eb9 2670 }
d31d7cb1
CW
2671
2672 if (is_vmalloc_addr(ptr))
2673 vunmap(ptr);
2674 else
2675 kunmap(kmap_to_page(ptr));
2676
a4f5ea64 2677 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2678 }
2679
d31d7cb1
CW
2680 if (!ptr) {
2681 ptr = i915_gem_object_map(obj, type);
2682 if (!ptr) {
2683 ret = -ENOMEM;
1233e2db 2684 goto err_unpin;
d31d7cb1
CW
2685 }
2686
0ce81788 2687 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2688 }
2689
1233e2db
CW
2690out_unlock:
2691 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2692 return ptr;
2693
1233e2db
CW
2694err_unpin:
2695 atomic_dec(&obj->mm.pages_pin_count);
2696err_unlock:
2697 ptr = ERR_PTR(ret);
2698 goto out_unlock;
0a798eb9
CW
2699}
2700
7c55e2c5
CW
2701static int
2702i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2703 const struct drm_i915_gem_pwrite *arg)
2704{
2705 struct address_space *mapping = obj->base.filp->f_mapping;
2706 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2707 u64 remain, offset;
2708 unsigned int pg;
2709
2710 /* Before we instantiate/pin the backing store for our use, we
2711 * can prepopulate the shmemfs filp efficiently using a write into
2712 * the pagecache. We avoid the penalty of instantiating all the
2713 * pages, important if the user is just writing to a few and never
2714 * uses the object on the GPU, and using a direct write into shmemfs
2715 * allows it to avoid the cost of retrieving a page (either swapin
2716 * or clearing-before-use) before it is overwritten.
2717 */
2718 if (READ_ONCE(obj->mm.pages))
2719 return -ENODEV;
2720
2721 /* Before the pages are instantiated the object is treated as being
2722 * in the CPU domain. The pages will be clflushed as required before
2723 * use, and we can freely write into the pages directly. If userspace
2724 * races pwrite with any other operation; corruption will ensue -
2725 * that is userspace's prerogative!
2726 */
2727
2728 remain = arg->size;
2729 offset = arg->offset;
2730 pg = offset_in_page(offset);
2731
2732 do {
2733 unsigned int len, unwritten;
2734 struct page *page;
2735 void *data, *vaddr;
2736 int err;
2737
2738 len = PAGE_SIZE - pg;
2739 if (len > remain)
2740 len = remain;
2741
2742 err = pagecache_write_begin(obj->base.filp, mapping,
2743 offset, len, 0,
2744 &page, &data);
2745 if (err < 0)
2746 return err;
2747
2748 vaddr = kmap(page);
2749 unwritten = copy_from_user(vaddr + pg, user_data, len);
2750 kunmap(page);
2751
2752 err = pagecache_write_end(obj->base.filp, mapping,
2753 offset, len, len - unwritten,
2754 page, data);
2755 if (err < 0)
2756 return err;
2757
2758 if (unwritten)
2759 return -EFAULT;
2760
2761 remain -= len;
2762 user_data += len;
2763 offset += len;
2764 pg = 0;
2765 } while (remain);
2766
2767 return 0;
2768}
2769
77b25a97
CW
2770static bool ban_context(const struct i915_gem_context *ctx,
2771 unsigned int score)
be62acb4 2772{
6095868a 2773 return (i915_gem_context_is_bannable(ctx) &&
77b25a97 2774 score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2775}
2776
e5e1fc47 2777static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2778{
77b25a97
CW
2779 unsigned int score;
2780 bool banned;
b083a087 2781
77b25a97 2782 atomic_inc(&ctx->guilty_count);
b083a087 2783
77b25a97
CW
2784 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2785 banned = ban_context(ctx, score);
2786 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2787 ctx->name, score, yesno(banned));
2788 if (!banned)
b083a087
MK
2789 return;
2790
77b25a97
CW
2791 i915_gem_context_set_banned(ctx);
2792 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2793 atomic_inc(&ctx->file_priv->context_bans);
2794 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2795 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2796 }
e5e1fc47
MK
2797}
2798
2799static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2800{
77b25a97 2801 atomic_inc(&ctx->active_count);
aa60c664
MK
2802}
2803
8d9fc7fd 2804struct drm_i915_gem_request *
0bc40be8 2805i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2806{
754c9fd5
CW
2807 struct drm_i915_gem_request *request, *active = NULL;
2808 unsigned long flags;
4db080f9 2809
f69a02c9
CW
2810 /* We are called by the error capture and reset at a random
2811 * point in time. In particular, note that neither is crucially
2812 * ordered with an interrupt. After a hang, the GPU is dead and we
2813 * assume that no more writes can happen (we waited long enough for
2814 * all writes that were in transaction to be flushed) - adding an
2815 * extra delay for a recent interrupt is pointless. Hence, we do
2816 * not need an engine->irq_seqno_barrier() before the seqno reads.
2817 */
754c9fd5 2818 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2819 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2820 if (__i915_gem_request_completed(request,
2821 request->global_seqno))
4db080f9 2822 continue;
aa60c664 2823
36193acd 2824 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2825 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2826 &request->fence.flags));
754c9fd5
CW
2827
2828 active = request;
2829 break;
4db080f9 2830 }
754c9fd5 2831 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2832
754c9fd5 2833 return active;
b6b0fac0
MK
2834}
2835
bf2f0436
MK
2836static bool engine_stalled(struct intel_engine_cs *engine)
2837{
2838 if (!engine->hangcheck.stalled)
2839 return false;
2840
2841 /* Check for possible seqno movement after hang declaration */
2842 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2843 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2844 return false;
2845 }
2846
2847 return true;
2848}
2849
a1ef70e1
MT
2850/*
2851 * Ensure irq handler finishes, and not run again.
2852 * Also return the active request so that we only search for it once.
2853 */
2854struct drm_i915_gem_request *
2855i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2856{
2857 struct drm_i915_gem_request *request = NULL;
2858
1749d90f
CW
2859 /*
2860 * During the reset sequence, we must prevent the engine from
2861 * entering RC6. As the context state is undefined until we restart
2862 * the engine, if it does enter RC6 during the reset, the state
2863 * written to the powercontext is undefined and so we may lose
2864 * GPU state upon resume, i.e. fail to restart after a reset.
2865 */
2866 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2867
2868 /*
2869 * Prevent the signaler thread from updating the request
a1ef70e1
MT
2870 * state (by calling dma_fence_signal) as we are processing
2871 * the reset. The write from the GPU of the seqno is
2872 * asynchronous and the signaler thread may see a different
2873 * value to us and declare the request complete, even though
2874 * the reset routine have picked that request as the active
2875 * (incomplete) request. This conflict is not handled
2876 * gracefully!
2877 */
2878 kthread_park(engine->breadcrumbs.signaler);
2879
1749d90f
CW
2880 /*
2881 * Prevent request submission to the hardware until we have
a1ef70e1
MT
2882 * completed the reset in i915_gem_reset_finish(). If a request
2883 * is completed by one engine, it may then queue a request
2884 * to a second via its engine->irq_tasklet *just* as we are
2885 * calling engine->init_hw() and also writing the ELSP.
2886 * Turning off the engine->irq_tasklet until the reset is over
2887 * prevents the race.
2888 */
b620e870
MK
2889 tasklet_kill(&engine->execlists.irq_tasklet);
2890 tasklet_disable(&engine->execlists.irq_tasklet);
a1ef70e1
MT
2891
2892 if (engine->irq_seqno_barrier)
2893 engine->irq_seqno_barrier(engine);
2894
d1d1ebf4
CW
2895 request = i915_gem_find_active_request(engine);
2896 if (request && request->fence.error == -EIO)
2897 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
2898
2899 return request;
2900}
2901
0e178aef 2902int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2903{
2904 struct intel_engine_cs *engine;
a1ef70e1 2905 struct drm_i915_gem_request *request;
4c965543 2906 enum intel_engine_id id;
0e178aef 2907 int err = 0;
4c965543 2908
0e178aef 2909 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
2910 request = i915_gem_reset_prepare_engine(engine);
2911 if (IS_ERR(request)) {
2912 err = PTR_ERR(request);
2913 continue;
0e178aef 2914 }
c64992e0
MT
2915
2916 engine->hangcheck.active_request = request;
0e178aef
CW
2917 }
2918
4c965543 2919 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2920
2921 return err;
4c965543
CW
2922}
2923
36193acd 2924static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2925{
2926 void *vaddr = request->ring->vaddr;
2927 u32 head;
2928
2929 /* As this request likely depends on state from the lost
2930 * context, clear out all the user operations leaving the
2931 * breadcrumb at the end (so we get the fence notifications).
2932 */
2933 head = request->head;
2934 if (request->postfix < head) {
2935 memset(vaddr + head, 0, request->ring->size - head);
2936 head = 0;
2937 }
2938 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2939
2940 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2941}
2942
36193acd
MK
2943static void engine_skip_context(struct drm_i915_gem_request *request)
2944{
2945 struct intel_engine_cs *engine = request->engine;
2946 struct i915_gem_context *hung_ctx = request->ctx;
2947 struct intel_timeline *timeline;
2948 unsigned long flags;
2949
2950 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2951
2952 spin_lock_irqsave(&engine->timeline->lock, flags);
2953 spin_lock(&timeline->lock);
2954
2955 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2956 if (request->ctx == hung_ctx)
2957 skip_request(request);
2958
2959 list_for_each_entry(request, &timeline->requests, link)
2960 skip_request(request);
2961
2962 spin_unlock(&timeline->lock);
2963 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2964}
2965
d1d1ebf4
CW
2966/* Returns the request if it was guilty of the hang */
2967static struct drm_i915_gem_request *
2968i915_gem_reset_request(struct intel_engine_cs *engine,
2969 struct drm_i915_gem_request *request)
61da5362 2970{
71895a08
MK
2971 /* The guilty request will get skipped on a hung engine.
2972 *
2973 * Users of client default contexts do not rely on logical
2974 * state preserved between batches so it is safe to execute
2975 * queued requests following the hang. Non default contexts
2976 * rely on preserved state, so skipping a batch loses the
2977 * evolution of the state and it needs to be considered corrupted.
2978 * Executing more queued batches on top of corrupted state is
2979 * risky. But we take the risk by trying to advance through
2980 * the queued requests in order to make the client behaviour
2981 * more predictable around resets, by not throwing away random
2982 * amount of batches it has prepared for execution. Sophisticated
2983 * clients can use gem_reset_stats_ioctl and dma fence status
2984 * (exported via sync_file info ioctl on explicit fences) to observe
2985 * when it loses the context state and should rebuild accordingly.
2986 *
2987 * The context ban, and ultimately the client ban, mechanism are safety
2988 * valves if client submission ends up resulting in nothing more than
2989 * subsequent hangs.
2990 */
2991
d1d1ebf4 2992 if (engine_stalled(engine)) {
61da5362
MK
2993 i915_gem_context_mark_guilty(request->ctx);
2994 skip_request(request);
d1d1ebf4
CW
2995
2996 /* If this context is now banned, skip all pending requests. */
2997 if (i915_gem_context_is_banned(request->ctx))
2998 engine_skip_context(request);
61da5362 2999 } else {
d1d1ebf4
CW
3000 /*
3001 * Since this is not the hung engine, it may have advanced
3002 * since the hang declaration. Double check by refinding
3003 * the active request at the time of the reset.
3004 */
3005 request = i915_gem_find_active_request(engine);
3006 if (request) {
3007 i915_gem_context_mark_innocent(request->ctx);
3008 dma_fence_set_error(&request->fence, -EAGAIN);
3009
3010 /* Rewind the engine to replay the incomplete rq */
3011 spin_lock_irq(&engine->timeline->lock);
3012 request = list_prev_entry(request, link);
3013 if (&request->link == &engine->timeline->requests)
3014 request = NULL;
3015 spin_unlock_irq(&engine->timeline->lock);
3016 }
61da5362
MK
3017 }
3018
d1d1ebf4 3019 return request;
61da5362
MK
3020}
3021
a1ef70e1
MT
3022void i915_gem_reset_engine(struct intel_engine_cs *engine,
3023 struct drm_i915_gem_request *request)
b6b0fac0 3024{
ed454f2c
CW
3025 engine->irq_posted = 0;
3026
d1d1ebf4
CW
3027 if (request)
3028 request = i915_gem_reset_request(engine, request);
3029
3030 if (request) {
c0dcb203
CW
3031 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3032 engine->name, request->global_seqno);
c0dcb203 3033 }
821ed7df
CW
3034
3035 /* Setup the CS to resume from the breadcrumb of the hung request */
3036 engine->reset_hw(engine, request);
4db080f9 3037}
aa60c664 3038
d8027093 3039void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 3040{
821ed7df 3041 struct intel_engine_cs *engine;
3b3f1650 3042 enum intel_engine_id id;
608c1a52 3043
4c7d62c6
CW
3044 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3045
821ed7df
CW
3046 i915_gem_retire_requests(dev_priv);
3047
2ae55738
CW
3048 for_each_engine(engine, dev_priv, id) {
3049 struct i915_gem_context *ctx;
3050
c64992e0 3051 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2ae55738
CW
3052 ctx = fetch_and_zero(&engine->last_retired_context);
3053 if (ctx)
3054 engine->context_unpin(engine, ctx);
3055 }
821ed7df 3056
4362f4f6 3057 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
3058
3059 if (dev_priv->gt.awake) {
3060 intel_sanitize_gt_powersave(dev_priv);
3061 intel_enable_gt_powersave(dev_priv);
3062 if (INTEL_GEN(dev_priv) >= 6)
3063 gen6_rps_busy(dev_priv);
3064 }
821ed7df
CW
3065}
3066
a1ef70e1
MT
3067void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3068{
b620e870 3069 tasklet_enable(&engine->execlists.irq_tasklet);
a1ef70e1 3070 kthread_unpark(engine->breadcrumbs.signaler);
1749d90f
CW
3071
3072 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
a1ef70e1
MT
3073}
3074
d8027093
CW
3075void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3076{
1f7b847d
CW
3077 struct intel_engine_cs *engine;
3078 enum intel_engine_id id;
3079
d8027093 3080 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3081
fe3288b5 3082 for_each_engine(engine, dev_priv, id) {
c64992e0 3083 engine->hangcheck.active_request = NULL;
a1ef70e1 3084 i915_gem_reset_finish_engine(engine);
fe3288b5 3085 }
d8027093
CW
3086}
3087
821ed7df 3088static void nop_submit_request(struct drm_i915_gem_request *request)
af7a8ffa
DV
3089{
3090 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3091 dma_fence_set_error(&request->fence, -EIO);
3092
3093 i915_gem_request_submit(request);
3094}
3095
3096static void nop_complete_submit_request(struct drm_i915_gem_request *request)
821ed7df 3097{
8d550824
CW
3098 unsigned long flags;
3099
bf2eac3b 3100 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3cd9442f 3101 dma_fence_set_error(&request->fence, -EIO);
8d550824
CW
3102
3103 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3104 __i915_gem_request_submit(request);
3dcf93f7 3105 intel_engine_init_global_seqno(request->engine, request->global_seqno);
8d550824 3106 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
821ed7df
CW
3107}
3108
af7a8ffa 3109void i915_gem_set_wedged(struct drm_i915_private *i915)
821ed7df 3110{
af7a8ffa
DV
3111 struct intel_engine_cs *engine;
3112 enum intel_engine_id id;
3113
3114 /*
3115 * First, stop submission to hw, but do not yet complete requests by
3116 * rolling the global seqno forward (since this would complete requests
3117 * for which we haven't set the fence error to EIO yet).
3118 */
3119 for_each_engine(engine, i915, id)
3120 engine->submit_request = nop_submit_request;
3121
3122 /*
3123 * Make sure no one is running the old callback before we proceed with
3124 * cancelling requests and resetting the completion tracking. Otherwise
3125 * we might submit a request to the hardware which never completes.
20e4933c 3126 */
af7a8ffa 3127 synchronize_rcu();
70c2a24d 3128
af7a8ffa
DV
3129 for_each_engine(engine, i915, id) {
3130 /* Mark all executing requests as skipped */
3131 engine->cancel_requests(engine);
5e32d748 3132
af7a8ffa
DV
3133 /*
3134 * Only once we've force-cancelled all in-flight requests can we
3135 * start to complete all requests.
3136 */
3137 engine->submit_request = nop_complete_submit_request;
3138 }
3139
3140 /*
3141 * Make sure no request can slip through without getting completed by
3142 * either this call here to intel_engine_init_global_seqno, or the one
3143 * in nop_complete_submit_request.
5e32d748 3144 */
af7a8ffa 3145 synchronize_rcu();
673a394b 3146
af7a8ffa
DV
3147 for_each_engine(engine, i915, id) {
3148 unsigned long flags;
673a394b 3149
af7a8ffa
DV
3150 /* Mark all pending requests as complete so that any concurrent
3151 * (lockless) lookup doesn't try and wait upon the request as we
3152 * reset it.
3153 */
3154 spin_lock_irqsave(&engine->timeline->lock, flags);
3155 intel_engine_init_global_seqno(engine,
3156 intel_engine_last_submit(engine));
3157 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3158 }
20e4933c 3159
3d7adbbf
CW
3160 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3161 wake_up_all(&i915->gpu_error.reset_queue);
673a394b
EA
3162}
3163
2e8f9d32
CW
3164bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3165{
3166 struct i915_gem_timeline *tl;
3167 int i;
3168
3169 lockdep_assert_held(&i915->drm.struct_mutex);
3170 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3171 return true;
3172
3173 /* Before unwedging, make sure that all pending operations
3174 * are flushed and errored out - we may have requests waiting upon
3175 * third party fences. We marked all inflight requests as EIO, and
3176 * every execbuf since returned EIO, for consistency we want all
3177 * the currently pending requests to also be marked as EIO, which
3178 * is done inside our nop_submit_request - and so we must wait.
3179 *
3180 * No more can be submitted until we reset the wedged bit.
3181 */
3182 list_for_each_entry(tl, &i915->gt.timelines, link) {
3183 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3184 struct drm_i915_gem_request *rq;
3185
3186 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3187 &i915->drm.struct_mutex);
3188 if (!rq)
3189 continue;
3190
3191 /* We can't use our normal waiter as we want to
3192 * avoid recursively trying to handle the current
3193 * reset. The basic dma_fence_default_wait() installs
3194 * a callback for dma_fence_signal(), which is
3195 * triggered by our nop handler (indirectly, the
3196 * callback enables the signaler thread which is
3197 * woken by the nop_submit_request() advancing the seqno
3198 * and when the seqno passes the fence, the signaler
3199 * then signals the fence waking us up).
3200 */
3201 if (dma_fence_default_wait(&rq->fence, true,
3202 MAX_SCHEDULE_TIMEOUT) < 0)
3203 return false;
3204 }
3205 }
3206
3207 /* Undo nop_submit_request. We prevent all new i915 requests from
3208 * being queued (by disallowing execbuf whilst wedged) so having
3209 * waited for all active requests above, we know the system is idle
3210 * and do not have to worry about a thread being inside
3211 * engine->submit_request() as we swap over. So unlike installing
3212 * the nop_submit_request on reset, we can do this from normal
3213 * context and do not require stop_machine().
3214 */
3215 intel_engines_reset_default_submission(i915);
36703e79 3216 i915_gem_contexts_lost(i915);
2e8f9d32
CW
3217
3218 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3219 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3220
3221 return true;
3222}
3223
75ef9da2 3224static void
673a394b
EA
3225i915_gem_retire_work_handler(struct work_struct *work)
3226{
b29c19b6 3227 struct drm_i915_private *dev_priv =
67d97da3 3228 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3229 struct drm_device *dev = &dev_priv->drm;
673a394b 3230
891b48cf 3231 /* Come back later if the device is busy... */
b29c19b6 3232 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3233 i915_gem_retire_requests(dev_priv);
b29c19b6 3234 mutex_unlock(&dev->struct_mutex);
673a394b 3235 }
67d97da3
CW
3236
3237 /* Keep the retire handler running until we are finally idle.
3238 * We do not need to do this test under locking as in the worst-case
3239 * we queue the retire worker once too often.
3240 */
c9615613
CW
3241 if (READ_ONCE(dev_priv->gt.awake)) {
3242 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3243 queue_delayed_work(dev_priv->wq,
3244 &dev_priv->gt.retire_work,
bcb45086 3245 round_jiffies_up_relative(HZ));
c9615613 3246 }
b29c19b6 3247}
0a58705b 3248
b29c19b6
CW
3249static void
3250i915_gem_idle_work_handler(struct work_struct *work)
3251{
3252 struct drm_i915_private *dev_priv =
67d97da3 3253 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3254 struct drm_device *dev = &dev_priv->drm;
67d97da3
CW
3255 bool rearm_hangcheck;
3256
3257 if (!READ_ONCE(dev_priv->gt.awake))
3258 return;
3259
0cb5670b
ID
3260 /*
3261 * Wait for last execlists context complete, but bail out in case a
3262 * new request is submitted.
3263 */
8490ae20 3264 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3265 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3266 return;
3267
3268 rearm_hangcheck =
3269 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3270
3271 if (!mutex_trylock(&dev->struct_mutex)) {
3272 /* Currently busy, come back later */
3273 mod_delayed_work(dev_priv->wq,
3274 &dev_priv->gt.idle_work,
3275 msecs_to_jiffies(50));
3276 goto out_rearm;
3277 }
3278
93c97dc1
ID
3279 /*
3280 * New request retired after this work handler started, extend active
3281 * period until next instance of the work.
3282 */
3283 if (work_pending(work))
3284 goto out_unlock;
3285
28176ef4 3286 if (dev_priv->gt.active_requests)
67d97da3 3287 goto out_unlock;
b29c19b6 3288
05425249 3289 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3290 DRM_ERROR("Timeout waiting for engines to idle\n");
3291
6c067579 3292 intel_engines_mark_idle(dev_priv);
47979480 3293 i915_gem_timelines_mark_idle(dev_priv);
35c94185 3294
67d97da3
CW
3295 GEM_BUG_ON(!dev_priv->gt.awake);
3296 dev_priv->gt.awake = false;
3297 rearm_hangcheck = false;
30ecad77 3298
67d97da3
CW
3299 if (INTEL_GEN(dev_priv) >= 6)
3300 gen6_rps_idle(dev_priv);
3301 intel_runtime_pm_put(dev_priv);
3302out_unlock:
3303 mutex_unlock(&dev->struct_mutex);
b29c19b6 3304
67d97da3
CW
3305out_rearm:
3306 if (rearm_hangcheck) {
3307 GEM_BUG_ON(!dev_priv->gt.awake);
3308 i915_queue_hangcheck(dev_priv);
35c94185 3309 }
673a394b
EA
3310}
3311
b1f788c6
CW
3312void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3313{
d1b48c1e 3314 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3315 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3316 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3317 struct i915_lut_handle *lut, *ln;
b1f788c6 3318
d1b48c1e
CW
3319 mutex_lock(&i915->drm.struct_mutex);
3320
3321 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3322 struct i915_gem_context *ctx = lut->ctx;
3323 struct i915_vma *vma;
3324
432295d7 3325 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
d1b48c1e
CW
3326 if (ctx->file_priv != fpriv)
3327 continue;
3328
3329 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3ffff017
CW
3330 GEM_BUG_ON(vma->obj != obj);
3331
3332 /* We allow the process to have multiple handles to the same
3333 * vma, in the same fd namespace, by virtue of flink/open.
3334 */
3335 GEM_BUG_ON(!vma->open_count);
3336 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3337 i915_vma_close(vma);
f8a7fde4 3338
d1b48c1e
CW
3339 list_del(&lut->obj_link);
3340 list_del(&lut->ctx_link);
4ff4b44c 3341
d1b48c1e
CW
3342 kmem_cache_free(i915->luts, lut);
3343 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3344 }
d1b48c1e
CW
3345
3346 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3347}
3348
e95433c7
CW
3349static unsigned long to_wait_timeout(s64 timeout_ns)
3350{
3351 if (timeout_ns < 0)
3352 return MAX_SCHEDULE_TIMEOUT;
3353
3354 if (timeout_ns == 0)
3355 return 0;
3356
3357 return nsecs_to_jiffies_timeout(timeout_ns);
3358}
3359
23ba4fd0
BW
3360/**
3361 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3362 * @dev: drm device pointer
3363 * @data: ioctl data blob
3364 * @file: drm file pointer
23ba4fd0
BW
3365 *
3366 * Returns 0 if successful, else an error is returned with the remaining time in
3367 * the timeout parameter.
3368 * -ETIME: object is still busy after timeout
3369 * -ERESTARTSYS: signal interrupted the wait
3370 * -ENONENT: object doesn't exist
3371 * Also possible, but rare:
b8050148 3372 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3373 * -ENOMEM: damn
3374 * -ENODEV: Internal IRQ fail
3375 * -E?: The add request failed
3376 *
3377 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3378 * non-zero timeout parameter the wait ioctl will wait for the given number of
3379 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3380 * without holding struct_mutex the object may become re-busied before this
3381 * function completes. A similar but shorter * race condition exists in the busy
3382 * ioctl
3383 */
3384int
3385i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3386{
3387 struct drm_i915_gem_wait *args = data;
3388 struct drm_i915_gem_object *obj;
e95433c7
CW
3389 ktime_t start;
3390 long ret;
23ba4fd0 3391
11b5d511
DV
3392 if (args->flags != 0)
3393 return -EINVAL;
3394
03ac0642 3395 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3396 if (!obj)
23ba4fd0 3397 return -ENOENT;
23ba4fd0 3398
e95433c7
CW
3399 start = ktime_get();
3400
3401 ret = i915_gem_object_wait(obj,
3402 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3403 to_wait_timeout(args->timeout_ns),
3404 to_rps_client(file));
3405
3406 if (args->timeout_ns > 0) {
3407 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3408 if (args->timeout_ns < 0)
3409 args->timeout_ns = 0;
c1d2061b
CW
3410
3411 /*
3412 * Apparently ktime isn't accurate enough and occasionally has a
3413 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3414 * things up to make the test happy. We allow up to 1 jiffy.
3415 *
3416 * This is a regression from the timespec->ktime conversion.
3417 */
3418 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3419 args->timeout_ns = 0;
b8050148
CW
3420
3421 /* Asked to wait beyond the jiffie/scheduler precision? */
3422 if (ret == -ETIME && args->timeout_ns)
3423 ret = -EAGAIN;
b4716185
CW
3424 }
3425
f0cd5182 3426 i915_gem_object_put(obj);
ff865885 3427 return ret;
23ba4fd0
BW
3428}
3429
73cb9701 3430static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3431{
73cb9701 3432 int ret, i;
4df2faf4 3433
73cb9701
CW
3434 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3435 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3436 if (ret)
3437 return ret;
3438 }
62e63007 3439
73cb9701
CW
3440 return 0;
3441}
3442
25112b64
CW
3443static int wait_for_engines(struct drm_i915_private *i915)
3444{
cad9946c
CW
3445 if (wait_for(intel_engines_are_idle(i915), 50)) {
3446 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3447 i915_gem_set_wedged(i915);
3448 return -EIO;
25112b64
CW
3449 }
3450
3451 return 0;
3452}
3453
73cb9701
CW
3454int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3455{
73cb9701
CW
3456 int ret;
3457
863e9fde
CW
3458 /* If the device is asleep, we have no requests outstanding */
3459 if (!READ_ONCE(i915->gt.awake))
3460 return 0;
3461
9caa34aa
CW
3462 if (flags & I915_WAIT_LOCKED) {
3463 struct i915_gem_timeline *tl;
3464
3465 lockdep_assert_held(&i915->drm.struct_mutex);
3466
3467 list_for_each_entry(tl, &i915->gt.timelines, link) {
3468 ret = wait_for_timeline(tl, flags);
3469 if (ret)
3470 return ret;
3471 }
72022a70
CW
3472
3473 i915_gem_retire_requests(i915);
3474 GEM_BUG_ON(i915->gt.active_requests);
25112b64
CW
3475
3476 ret = wait_for_engines(i915);
9caa34aa
CW
3477 } else {
3478 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3 3479 }
4df2faf4 3480
25112b64 3481 return ret;
4df2faf4
DV
3482}
3483
5a97bcc6
CW
3484static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3485{
e27ab73d
CW
3486 /*
3487 * We manually flush the CPU domain so that we can override and
3488 * force the flush for the display, and perform it asyncrhonously.
3489 */
3490 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3491 if (obj->cache_dirty)
3492 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3493 obj->base.write_domain = 0;
3494}
3495
3496void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3497{
3498 if (!READ_ONCE(obj->pin_display))
3499 return;
3500
3501 mutex_lock(&obj->base.dev->struct_mutex);
3502 __i915_gem_object_flush_for_display(obj);
3503 mutex_unlock(&obj->base.dev->struct_mutex);
3504}
3505
e22d8e3c
CW
3506/**
3507 * Moves a single object to the WC read, and possibly write domain.
3508 * @obj: object to act on
3509 * @write: ask for write access or read only
3510 *
3511 * This function returns when the move is complete, including waiting on
3512 * flushes to occur.
3513 */
3514int
3515i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3516{
3517 int ret;
3518
3519 lockdep_assert_held(&obj->base.dev->struct_mutex);
3520
3521 ret = i915_gem_object_wait(obj,
3522 I915_WAIT_INTERRUPTIBLE |
3523 I915_WAIT_LOCKED |
3524 (write ? I915_WAIT_ALL : 0),
3525 MAX_SCHEDULE_TIMEOUT,
3526 NULL);
3527 if (ret)
3528 return ret;
3529
3530 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3531 return 0;
3532
3533 /* Flush and acquire obj->pages so that we are coherent through
3534 * direct access in memory with previous cached writes through
3535 * shmemfs and that our cache domain tracking remains valid.
3536 * For example, if the obj->filp was moved to swap without us
3537 * being notified and releasing the pages, we would mistakenly
3538 * continue to assume that the obj remained out of the CPU cached
3539 * domain.
3540 */
3541 ret = i915_gem_object_pin_pages(obj);
3542 if (ret)
3543 return ret;
3544
3545 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3546
3547 /* Serialise direct access to this object with the barriers for
3548 * coherent writes from the GPU, by effectively invalidating the
3549 * WC domain upon first access.
3550 */
3551 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3552 mb();
3553
3554 /* It should now be out of any other write domains, and we can update
3555 * the domain values for our changes.
3556 */
3557 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3558 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3559 if (write) {
3560 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3561 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3562 obj->mm.dirty = true;
3563 }
3564
3565 i915_gem_object_unpin_pages(obj);
3566 return 0;
3567}
3568
2ef7eeaa
EA
3569/**
3570 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3571 * @obj: object to act on
3572 * @write: ask for write access or read only
2ef7eeaa
EA
3573 *
3574 * This function returns when the move is complete, including waiting on
3575 * flushes to occur.
3576 */
79e53945 3577int
2021746e 3578i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3579{
e47c68e9 3580 int ret;
2ef7eeaa 3581
e95433c7 3582 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3583
e95433c7
CW
3584 ret = i915_gem_object_wait(obj,
3585 I915_WAIT_INTERRUPTIBLE |
3586 I915_WAIT_LOCKED |
3587 (write ? I915_WAIT_ALL : 0),
3588 MAX_SCHEDULE_TIMEOUT,
3589 NULL);
88241785
CW
3590 if (ret)
3591 return ret;
3592
c13d87ea
CW
3593 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3594 return 0;
3595
43566ded
CW
3596 /* Flush and acquire obj->pages so that we are coherent through
3597 * direct access in memory with previous cached writes through
3598 * shmemfs and that our cache domain tracking remains valid.
3599 * For example, if the obj->filp was moved to swap without us
3600 * being notified and releasing the pages, we would mistakenly
3601 * continue to assume that the obj remained out of the CPU cached
3602 * domain.
3603 */
a4f5ea64 3604 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3605 if (ret)
3606 return ret;
3607
ef74921b 3608 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3609
d0a57789
CW
3610 /* Serialise direct access to this object with the barriers for
3611 * coherent writes from the GPU, by effectively invalidating the
3612 * GTT domain upon first access.
3613 */
3614 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3615 mb();
3616
e47c68e9
EA
3617 /* It should now be out of any other write domains, and we can update
3618 * the domain values for our changes.
3619 */
40e62d5d 3620 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3621 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3622 if (write) {
05394f39
CW
3623 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3624 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3625 obj->mm.dirty = true;
2ef7eeaa
EA
3626 }
3627
a4f5ea64 3628 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3629 return 0;
3630}
3631
ef55f92a
CW
3632/**
3633 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3634 * @obj: object to act on
3635 * @cache_level: new cache level to set for the object
ef55f92a
CW
3636 *
3637 * After this function returns, the object will be in the new cache-level
3638 * across all GTT and the contents of the backing storage will be coherent,
3639 * with respect to the new cache-level. In order to keep the backing storage
3640 * coherent for all users, we only allow a single cache level to be set
3641 * globally on the object and prevent it from being changed whilst the
3642 * hardware is reading from the object. That is if the object is currently
3643 * on the scanout it will be set to uncached (or equivalent display
3644 * cache coherency) and all non-MOCS GPU access will also be uncached so
3645 * that all direct access to the scanout remains coherent.
3646 */
e4ffd173
CW
3647int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3648 enum i915_cache_level cache_level)
3649{
aa653a68 3650 struct i915_vma *vma;
a6a7cc4b 3651 int ret;
e4ffd173 3652
4c7d62c6
CW
3653 lockdep_assert_held(&obj->base.dev->struct_mutex);
3654
e4ffd173 3655 if (obj->cache_level == cache_level)
a6a7cc4b 3656 return 0;
e4ffd173 3657
ef55f92a
CW
3658 /* Inspect the list of currently bound VMA and unbind any that would
3659 * be invalid given the new cache-level. This is principally to
3660 * catch the issue of the CS prefetch crossing page boundaries and
3661 * reading an invalid PTE on older architectures.
3662 */
aa653a68
CW
3663restart:
3664 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3665 if (!drm_mm_node_allocated(&vma->node))
3666 continue;
3667
20dfbde4 3668 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3669 DRM_DEBUG("can not change the cache level of pinned objects\n");
3670 return -EBUSY;
3671 }
3672
aa653a68
CW
3673 if (i915_gem_valid_gtt_space(vma, cache_level))
3674 continue;
3675
3676 ret = i915_vma_unbind(vma);
3677 if (ret)
3678 return ret;
3679
3680 /* As unbinding may affect other elements in the
3681 * obj->vma_list (due to side-effects from retiring
3682 * an active vma), play safe and restart the iterator.
3683 */
3684 goto restart;
42d6ab48
CW
3685 }
3686
ef55f92a
CW
3687 /* We can reuse the existing drm_mm nodes but need to change the
3688 * cache-level on the PTE. We could simply unbind them all and
3689 * rebind with the correct cache-level on next use. However since
3690 * we already have a valid slot, dma mapping, pages etc, we may as
3691 * rewrite the PTE in the belief that doing so tramples upon less
3692 * state and so involves less work.
3693 */
15717de2 3694 if (obj->bind_count) {
ef55f92a
CW
3695 /* Before we change the PTE, the GPU must not be accessing it.
3696 * If we wait upon the object, we know that all the bound
3697 * VMA are no longer active.
3698 */
e95433c7
CW
3699 ret = i915_gem_object_wait(obj,
3700 I915_WAIT_INTERRUPTIBLE |
3701 I915_WAIT_LOCKED |
3702 I915_WAIT_ALL,
3703 MAX_SCHEDULE_TIMEOUT,
3704 NULL);
e4ffd173
CW
3705 if (ret)
3706 return ret;
3707
0031fb96
TU
3708 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3709 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3710 /* Access to snoopable pages through the GTT is
3711 * incoherent and on some machines causes a hard
3712 * lockup. Relinquish the CPU mmaping to force
3713 * userspace to refault in the pages and we can
3714 * then double check if the GTT mapping is still
3715 * valid for that pointer access.
3716 */
3717 i915_gem_release_mmap(obj);
3718
3719 /* As we no longer need a fence for GTT access,
3720 * we can relinquish it now (and so prevent having
3721 * to steal a fence from someone else on the next
3722 * fence request). Note GPU activity would have
3723 * dropped the fence as all snoopable access is
3724 * supposed to be linear.
3725 */
49ef5294
CW
3726 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3727 ret = i915_vma_put_fence(vma);
3728 if (ret)
3729 return ret;
3730 }
ef55f92a
CW
3731 } else {
3732 /* We either have incoherent backing store and
3733 * so no GTT access or the architecture is fully
3734 * coherent. In such cases, existing GTT mmaps
3735 * ignore the cache bit in the PTE and we can
3736 * rewrite it without confusing the GPU or having
3737 * to force userspace to fault back in its mmaps.
3738 */
e4ffd173
CW
3739 }
3740
1c7f4bca 3741 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3742 if (!drm_mm_node_allocated(&vma->node))
3743 continue;
3744
3745 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3746 if (ret)
3747 return ret;
3748 }
e4ffd173
CW
3749 }
3750
1c7f4bca 3751 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 3752 vma->node.color = cache_level;
b8f55be6 3753 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 3754 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 3755
e4ffd173
CW
3756 return 0;
3757}
3758
199adf40
BW
3759int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3760 struct drm_file *file)
e6994aee 3761{
199adf40 3762 struct drm_i915_gem_caching *args = data;
e6994aee 3763 struct drm_i915_gem_object *obj;
fbbd37b3 3764 int err = 0;
e6994aee 3765
fbbd37b3
CW
3766 rcu_read_lock();
3767 obj = i915_gem_object_lookup_rcu(file, args->handle);
3768 if (!obj) {
3769 err = -ENOENT;
3770 goto out;
3771 }
e6994aee 3772
651d794f
CW
3773 switch (obj->cache_level) {
3774 case I915_CACHE_LLC:
3775 case I915_CACHE_L3_LLC:
3776 args->caching = I915_CACHING_CACHED;
3777 break;
3778
4257d3ba
CW
3779 case I915_CACHE_WT:
3780 args->caching = I915_CACHING_DISPLAY;
3781 break;
3782
651d794f
CW
3783 default:
3784 args->caching = I915_CACHING_NONE;
3785 break;
3786 }
fbbd37b3
CW
3787out:
3788 rcu_read_unlock();
3789 return err;
e6994aee
CW
3790}
3791
199adf40
BW
3792int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3793 struct drm_file *file)
e6994aee 3794{
9c870d03 3795 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3796 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3797 struct drm_i915_gem_object *obj;
3798 enum i915_cache_level level;
d65415df 3799 int ret = 0;
e6994aee 3800
199adf40
BW
3801 switch (args->caching) {
3802 case I915_CACHING_NONE:
e6994aee
CW
3803 level = I915_CACHE_NONE;
3804 break;
199adf40 3805 case I915_CACHING_CACHED:
e5756c10
ID
3806 /*
3807 * Due to a HW issue on BXT A stepping, GPU stores via a
3808 * snooped mapping may leave stale data in a corresponding CPU
3809 * cacheline, whereas normally such cachelines would get
3810 * invalidated.
3811 */
9c870d03 3812 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3813 return -ENODEV;
3814
e6994aee
CW
3815 level = I915_CACHE_LLC;
3816 break;
4257d3ba 3817 case I915_CACHING_DISPLAY:
9c870d03 3818 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3819 break;
e6994aee
CW
3820 default:
3821 return -EINVAL;
3822 }
3823
d65415df
CW
3824 obj = i915_gem_object_lookup(file, args->handle);
3825 if (!obj)
3826 return -ENOENT;
3827
3828 if (obj->cache_level == level)
3829 goto out;
3830
3831 ret = i915_gem_object_wait(obj,
3832 I915_WAIT_INTERRUPTIBLE,
3833 MAX_SCHEDULE_TIMEOUT,
3834 to_rps_client(file));
3bc2913e 3835 if (ret)
d65415df 3836 goto out;
3bc2913e 3837
d65415df
CW
3838 ret = i915_mutex_lock_interruptible(dev);
3839 if (ret)
3840 goto out;
e6994aee
CW
3841
3842 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3843 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3844
3845out:
3846 i915_gem_object_put(obj);
e6994aee
CW
3847 return ret;
3848}
3849
b9241ea3 3850/*
2da3b9b9
CW
3851 * Prepare buffer for display plane (scanout, cursors, etc).
3852 * Can be called from an uninterruptible phase (modesetting) and allows
3853 * any flushes to be pipelined (for pageflips).
b9241ea3 3854 */
058d88c4 3855struct i915_vma *
2da3b9b9
CW
3856i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3857 u32 alignment,
e6617330 3858 const struct i915_ggtt_view *view)
b9241ea3 3859{
058d88c4 3860 struct i915_vma *vma;
b9241ea3
ZW
3861 int ret;
3862
4c7d62c6
CW
3863 lockdep_assert_held(&obj->base.dev->struct_mutex);
3864
cc98b413
CW
3865 /* Mark the pin_display early so that we account for the
3866 * display coherency whilst setting up the cache domains.
3867 */
8a0c39b1 3868 obj->pin_display++;
cc98b413 3869
a7ef0640
EA
3870 /* The display engine is not coherent with the LLC cache on gen6. As
3871 * a result, we make sure that the pinning that is about to occur is
3872 * done with uncached PTEs. This is lowest common denominator for all
3873 * chipsets.
3874 *
3875 * However for gen6+, we could do better by using the GFDT bit instead
3876 * of uncaching, which would allow us to flush all the LLC-cached data
3877 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3878 */
651d794f 3879 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3880 HAS_WT(to_i915(obj->base.dev)) ?
3881 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3882 if (ret) {
3883 vma = ERR_PTR(ret);
cc98b413 3884 goto err_unpin_display;
058d88c4 3885 }
a7ef0640 3886
2da3b9b9
CW
3887 /* As the user may map the buffer once pinned in the display plane
3888 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3889 * always use map_and_fenceable for all scanout buffers. However,
3890 * it may simply be too big to fit into mappable, in which case
3891 * put it anyway and hope that userspace can cope (but always first
3892 * try to preserve the existing ABI).
2da3b9b9 3893 */
2efb813d 3894 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3895 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3896 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3897 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3898 if (IS_ERR(vma)) {
3899 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3900 unsigned int flags;
3901
3902 /* Valleyview is definitely limited to scanning out the first
3903 * 512MiB. Lets presume this behaviour was inherited from the
3904 * g4x display engine and that all earlier gen are similarly
3905 * limited. Testing suggests that it is a little more
3906 * complicated than this. For example, Cherryview appears quite
3907 * happy to scanout from anywhere within its global aperture.
3908 */
3909 flags = 0;
3910 if (HAS_GMCH_DISPLAY(i915))
3911 flags = PIN_MAPPABLE;
3912 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3913 }
058d88c4 3914 if (IS_ERR(vma))
cc98b413 3915 goto err_unpin_display;
2da3b9b9 3916
d8923dcf
CW
3917 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3918
a6a7cc4b 3919 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3920 __i915_gem_object_flush_for_display(obj);
d59b21ec 3921 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3922
2da3b9b9
CW
3923 /* It should now be out of any other write domains, and we can update
3924 * the domain values for our changes.
3925 */
05394f39 3926 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3927
058d88c4 3928 return vma;
cc98b413
CW
3929
3930err_unpin_display:
8a0c39b1 3931 obj->pin_display--;
058d88c4 3932 return vma;
cc98b413
CW
3933}
3934
3935void
058d88c4 3936i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3937{
49d73912 3938 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3939
058d88c4 3940 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3941 return;
3942
d8923dcf 3943 if (--vma->obj->pin_display == 0)
f51455d4 3944 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3945
383d5823 3946 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3947 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3948
058d88c4 3949 i915_vma_unpin(vma);
b9241ea3
ZW
3950}
3951
e47c68e9
EA
3952/**
3953 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3954 * @obj: object to act on
3955 * @write: requesting write or read-only access
e47c68e9
EA
3956 *
3957 * This function returns when the move is complete, including waiting on
3958 * flushes to occur.
3959 */
dabdfe02 3960int
919926ae 3961i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3962{
e47c68e9
EA
3963 int ret;
3964
e95433c7 3965 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3966
e95433c7
CW
3967 ret = i915_gem_object_wait(obj,
3968 I915_WAIT_INTERRUPTIBLE |
3969 I915_WAIT_LOCKED |
3970 (write ? I915_WAIT_ALL : 0),
3971 MAX_SCHEDULE_TIMEOUT,
3972 NULL);
88241785
CW
3973 if (ret)
3974 return ret;
3975
ef74921b 3976 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 3977
e47c68e9 3978 /* Flush the CPU cache if it's still invalid. */
05394f39 3979 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 3980 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 3981 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3982 }
3983
3984 /* It should now be out of any other write domains, and we can update
3985 * the domain values for our changes.
3986 */
e27ab73d 3987 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3988
3989 /* If we're writing through the CPU, then the GPU read domains will
3990 * need to be invalidated at next use.
3991 */
e27ab73d
CW
3992 if (write)
3993 __start_cpu_write(obj);
2ef7eeaa
EA
3994
3995 return 0;
3996}
3997
673a394b
EA
3998/* Throttle our rendering by waiting until the ring has completed our requests
3999 * emitted over 20 msec ago.
4000 *
b962442e
EA
4001 * Note that if we were to use the current jiffies each time around the loop,
4002 * we wouldn't escape the function with any frames outstanding if the time to
4003 * render a frame was over 20ms.
4004 *
673a394b
EA
4005 * This should get us reasonable parallelism between CPU and GPU but also
4006 * relatively low latency when blocking on a particular request to finish.
4007 */
40a5f0de 4008static int
f787a5f5 4009i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4010{
fac5e23e 4011 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4012 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4013 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4014 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 4015 long ret;
93533c29 4016
f4457ae7
CW
4017 /* ABI: return -EIO if already wedged */
4018 if (i915_terminally_wedged(&dev_priv->gpu_error))
4019 return -EIO;
e110e8d6 4020
1c25595f 4021 spin_lock(&file_priv->mm.lock);
c8659efa 4022 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
4023 if (time_after_eq(request->emitted_jiffies, recent_enough))
4024 break;
40a5f0de 4025
c8659efa
CW
4026 if (target) {
4027 list_del(&target->client_link);
4028 target->file_priv = NULL;
4029 }
fcfa423c 4030
54fb2411 4031 target = request;
b962442e 4032 }
ff865885 4033 if (target)
e8a261ea 4034 i915_gem_request_get(target);
1c25595f 4035 spin_unlock(&file_priv->mm.lock);
40a5f0de 4036
54fb2411 4037 if (target == NULL)
f787a5f5 4038 return 0;
2bc43b5c 4039
e95433c7
CW
4040 ret = i915_wait_request(target,
4041 I915_WAIT_INTERRUPTIBLE,
4042 MAX_SCHEDULE_TIMEOUT);
e8a261ea 4043 i915_gem_request_put(target);
ff865885 4044
e95433c7 4045 return ret < 0 ? ret : 0;
40a5f0de
EA
4046}
4047
058d88c4 4048struct i915_vma *
ec7adb6e
JL
4049i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4050 const struct i915_ggtt_view *view,
91b2db6f 4051 u64 size,
2ffffd0f
CW
4052 u64 alignment,
4053 u64 flags)
ec7adb6e 4054{
ad16d2ed
CW
4055 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4056 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
4057 struct i915_vma *vma;
4058 int ret;
72e96d64 4059
4c7d62c6
CW
4060 lockdep_assert_held(&obj->base.dev->struct_mutex);
4061
43ae70d9
CW
4062 if (!view && flags & PIN_MAPPABLE) {
4063 /* If the required space is larger than the available
4064 * aperture, we will not able to find a slot for the
4065 * object and unbinding the object now will be in
4066 * vain. Worse, doing so may cause us to ping-pong
4067 * the object in and out of the Global GTT and
4068 * waste a lot of cycles under the mutex.
4069 */
4070 if (obj->base.size > dev_priv->ggtt.mappable_end)
4071 return ERR_PTR(-E2BIG);
4072
4073 /* If NONBLOCK is set the caller is optimistically
4074 * trying to cache the full object within the mappable
4075 * aperture, and *must* have a fallback in place for
4076 * situations where we cannot bind the object. We
4077 * can be a little more lax here and use the fallback
4078 * more often to avoid costly migrations of ourselves
4079 * and other objects within the aperture.
4080 *
4081 * Half-the-aperture is used as a simple heuristic.
4082 * More interesting would to do search for a free
4083 * block prior to making the commitment to unbind.
4084 * That caters for the self-harm case, and with a
4085 * little more heuristics (e.g. NOFAULT, NOEVICT)
4086 * we could try to minimise harm to others.
4087 */
4088 if (flags & PIN_NONBLOCK &&
4089 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4090 return ERR_PTR(-ENOSPC);
4091 }
4092
718659a6 4093 vma = i915_vma_instance(obj, vm, view);
e0216b76 4094 if (unlikely(IS_ERR(vma)))
058d88c4 4095 return vma;
59bfa124
CW
4096
4097 if (i915_vma_misplaced(vma, size, alignment, flags)) {
43ae70d9
CW
4098 if (flags & PIN_NONBLOCK) {
4099 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4100 return ERR_PTR(-ENOSPC);
59bfa124 4101
43ae70d9 4102 if (flags & PIN_MAPPABLE &&
944397f0 4103 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4104 return ERR_PTR(-ENOSPC);
4105 }
4106
59bfa124
CW
4107 WARN(i915_vma_is_pinned(vma),
4108 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4109 " offset=%08x, req.alignment=%llx,"
4110 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4111 i915_ggtt_offset(vma), alignment,
59bfa124 4112 !!(flags & PIN_MAPPABLE),
05a20d09 4113 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4114 ret = i915_vma_unbind(vma);
4115 if (ret)
058d88c4 4116 return ERR_PTR(ret);
59bfa124
CW
4117 }
4118
058d88c4
CW
4119 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4120 if (ret)
4121 return ERR_PTR(ret);
ec7adb6e 4122
058d88c4 4123 return vma;
673a394b
EA
4124}
4125
edf6b76f 4126static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4127{
4128 /* Note that we could alias engines in the execbuf API, but
4129 * that would be very unwise as it prevents userspace from
4130 * fine control over engine selection. Ahem.
4131 *
4132 * This should be something like EXEC_MAX_ENGINE instead of
4133 * I915_NUM_ENGINES.
4134 */
4135 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4136 return 0x10000 << id;
4137}
4138
4139static __always_inline unsigned int __busy_write_id(unsigned int id)
4140{
70cb472c
CW
4141 /* The uABI guarantees an active writer is also amongst the read
4142 * engines. This would be true if we accessed the activity tracking
4143 * under the lock, but as we perform the lookup of the object and
4144 * its activity locklessly we can not guarantee that the last_write
4145 * being active implies that we have set the same engine flag from
4146 * last_read - hence we always set both read and write busy for
4147 * last_write.
4148 */
4149 return id | __busy_read_flag(id);
3fdc13c7
CW
4150}
4151
edf6b76f 4152static __always_inline unsigned int
d07f0e59 4153__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4154 unsigned int (*flag)(unsigned int id))
4155{
d07f0e59 4156 struct drm_i915_gem_request *rq;
3fdc13c7 4157
d07f0e59
CW
4158 /* We have to check the current hw status of the fence as the uABI
4159 * guarantees forward progress. We could rely on the idle worker
4160 * to eventually flush us, but to minimise latency just ask the
4161 * hardware.
1255501d 4162 *
d07f0e59 4163 * Note we only report on the status of native fences.
1255501d 4164 */
d07f0e59
CW
4165 if (!dma_fence_is_i915(fence))
4166 return 0;
4167
4168 /* opencode to_request() in order to avoid const warnings */
4169 rq = container_of(fence, struct drm_i915_gem_request, fence);
4170 if (i915_gem_request_completed(rq))
4171 return 0;
4172
1d39f281 4173 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4174}
4175
edf6b76f 4176static __always_inline unsigned int
d07f0e59 4177busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4178{
d07f0e59 4179 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4180}
4181
edf6b76f 4182static __always_inline unsigned int
d07f0e59 4183busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4184{
d07f0e59
CW
4185 if (!fence)
4186 return 0;
4187
4188 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4189}
4190
673a394b
EA
4191int
4192i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4193 struct drm_file *file)
673a394b
EA
4194{
4195 struct drm_i915_gem_busy *args = data;
05394f39 4196 struct drm_i915_gem_object *obj;
d07f0e59
CW
4197 struct reservation_object_list *list;
4198 unsigned int seq;
fbbd37b3 4199 int err;
673a394b 4200
d07f0e59 4201 err = -ENOENT;
fbbd37b3
CW
4202 rcu_read_lock();
4203 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4204 if (!obj)
fbbd37b3 4205 goto out;
d1b851fc 4206
d07f0e59
CW
4207 /* A discrepancy here is that we do not report the status of
4208 * non-i915 fences, i.e. even though we may report the object as idle,
4209 * a call to set-domain may still stall waiting for foreign rendering.
4210 * This also means that wait-ioctl may report an object as busy,
4211 * where busy-ioctl considers it idle.
4212 *
4213 * We trade the ability to warn of foreign fences to report on which
4214 * i915 engines are active for the object.
4215 *
4216 * Alternatively, we can trade that extra information on read/write
4217 * activity with
4218 * args->busy =
4219 * !reservation_object_test_signaled_rcu(obj->resv, true);
4220 * to report the overall busyness. This is what the wait-ioctl does.
4221 *
4222 */
4223retry:
4224 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4225
d07f0e59
CW
4226 /* Translate the exclusive fence to the READ *and* WRITE engine */
4227 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4228
d07f0e59
CW
4229 /* Translate shared fences to READ set of engines */
4230 list = rcu_dereference(obj->resv->fence);
4231 if (list) {
4232 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4233
d07f0e59
CW
4234 for (i = 0; i < shared_count; ++i) {
4235 struct dma_fence *fence =
4236 rcu_dereference(list->shared[i]);
4237
4238 args->busy |= busy_check_reader(fence);
4239 }
426960be 4240 }
673a394b 4241
d07f0e59
CW
4242 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4243 goto retry;
4244
4245 err = 0;
fbbd37b3
CW
4246out:
4247 rcu_read_unlock();
4248 return err;
673a394b
EA
4249}
4250
4251int
4252i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4253 struct drm_file *file_priv)
4254{
0206e353 4255 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4256}
4257
3ef94daa
CW
4258int
4259i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4260 struct drm_file *file_priv)
4261{
fac5e23e 4262 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4263 struct drm_i915_gem_madvise *args = data;
05394f39 4264 struct drm_i915_gem_object *obj;
1233e2db 4265 int err;
3ef94daa
CW
4266
4267 switch (args->madv) {
4268 case I915_MADV_DONTNEED:
4269 case I915_MADV_WILLNEED:
4270 break;
4271 default:
4272 return -EINVAL;
4273 }
4274
03ac0642 4275 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4276 if (!obj)
4277 return -ENOENT;
4278
4279 err = mutex_lock_interruptible(&obj->mm.lock);
4280 if (err)
4281 goto out;
3ef94daa 4282
a4f5ea64 4283 if (obj->mm.pages &&
3e510a8e 4284 i915_gem_object_is_tiled(obj) &&
656bfa3a 4285 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4286 if (obj->mm.madv == I915_MADV_WILLNEED) {
4287 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4288 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4289 obj->mm.quirked = false;
4290 }
4291 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4292 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4293 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4294 obj->mm.quirked = true;
4295 }
656bfa3a
DV
4296 }
4297
a4f5ea64
CW
4298 if (obj->mm.madv != __I915_MADV_PURGED)
4299 obj->mm.madv = args->madv;
3ef94daa 4300
6c085a72 4301 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4302 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4303 i915_gem_object_truncate(obj);
4304
a4f5ea64 4305 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4306 mutex_unlock(&obj->mm.lock);
bb6baf76 4307
1233e2db 4308out:
f8c417cd 4309 i915_gem_object_put(obj);
1233e2db 4310 return err;
3ef94daa
CW
4311}
4312
5b8c8aec
CW
4313static void
4314frontbuffer_retire(struct i915_gem_active *active,
4315 struct drm_i915_gem_request *request)
4316{
4317 struct drm_i915_gem_object *obj =
4318 container_of(active, typeof(*obj), frontbuffer_write);
4319
d59b21ec 4320 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4321}
4322
37e680a1
CW
4323void i915_gem_object_init(struct drm_i915_gem_object *obj,
4324 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4325{
1233e2db
CW
4326 mutex_init(&obj->mm.lock);
4327
56cea323 4328 INIT_LIST_HEAD(&obj->global_link);
2f633156 4329 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4330 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4331 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4332
37e680a1
CW
4333 obj->ops = ops;
4334
d07f0e59
CW
4335 reservation_object_init(&obj->__builtin_resv);
4336 obj->resv = &obj->__builtin_resv;
4337
50349247 4338 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4339 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4340
4341 obj->mm.madv = I915_MADV_WILLNEED;
4342 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4343 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4344
f19ec8cb 4345 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4346}
4347
37e680a1 4348static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4349 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4350 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4351
37e680a1
CW
4352 .get_pages = i915_gem_object_get_pages_gtt,
4353 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4354
4355 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4356};
4357
465c403c
MA
4358static int i915_gem_object_create_shmem(struct drm_device *dev,
4359 struct drm_gem_object *obj,
4360 size_t size)
4361{
4362 struct drm_i915_private *i915 = to_i915(dev);
4363 unsigned long flags = VM_NORESERVE;
4364 struct file *filp;
4365
4366 drm_gem_private_object_init(dev, obj, size);
4367
4368 if (i915->mm.gemfs)
4369 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4370 flags);
4371 else
4372 filp = shmem_file_setup("i915", size, flags);
4373
4374 if (IS_ERR(filp))
4375 return PTR_ERR(filp);
4376
4377 obj->filp = filp;
4378
4379 return 0;
4380}
4381
b4bcbe2a 4382struct drm_i915_gem_object *
12d79d78 4383i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4384{
c397b908 4385 struct drm_i915_gem_object *obj;
5949eac4 4386 struct address_space *mapping;
b8f55be6 4387 unsigned int cache_level;
1a240d4d 4388 gfp_t mask;
fe3db79b 4389 int ret;
ac52bc56 4390
b4bcbe2a
CW
4391 /* There is a prevalence of the assumption that we fit the object's
4392 * page count inside a 32bit _signed_ variable. Let's document this and
4393 * catch if we ever need to fix it. In the meantime, if you do spot
4394 * such a local variable, please consider fixing!
4395 */
7a3ee5de 4396 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4397 return ERR_PTR(-E2BIG);
4398
4399 if (overflows_type(size, obj->base.size))
4400 return ERR_PTR(-E2BIG);
4401
187685cb 4402 obj = i915_gem_object_alloc(dev_priv);
c397b908 4403 if (obj == NULL)
fe3db79b 4404 return ERR_PTR(-ENOMEM);
673a394b 4405
465c403c 4406 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4407 if (ret)
4408 goto fail;
673a394b 4409
bed1ea95 4410 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4411 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4412 /* 965gm cannot relocate objects above 4GiB. */
4413 mask &= ~__GFP_HIGHMEM;
4414 mask |= __GFP_DMA32;
4415 }
4416
93c76a3d 4417 mapping = obj->base.filp->f_mapping;
bed1ea95 4418 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4419 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4420
37e680a1 4421 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4422
c397b908
DV
4423 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4424 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4425
b8f55be6 4426 if (HAS_LLC(dev_priv))
3d29b842 4427 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4428 * cache) for about a 10% performance improvement
4429 * compared to uncached. Graphics requests other than
4430 * display scanout are coherent with the CPU in
4431 * accessing this cache. This means in this mode we
4432 * don't need to clflush on the CPU side, and on the
4433 * GPU side we only need to flush internal caches to
4434 * get data visible to the CPU.
4435 *
4436 * However, we maintain the display planes as UC, and so
4437 * need to rebind when first used as such.
4438 */
b8f55be6
CW
4439 cache_level = I915_CACHE_LLC;
4440 else
4441 cache_level = I915_CACHE_NONE;
a1871112 4442
b8f55be6 4443 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4444
d861e338
DV
4445 trace_i915_gem_object_create(obj);
4446
05394f39 4447 return obj;
fe3db79b
CW
4448
4449fail:
4450 i915_gem_object_free(obj);
fe3db79b 4451 return ERR_PTR(ret);
c397b908
DV
4452}
4453
340fbd8c
CW
4454static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4455{
4456 /* If we are the last user of the backing storage (be it shmemfs
4457 * pages or stolen etc), we know that the pages are going to be
4458 * immediately released. In this case, we can then skip copying
4459 * back the contents from the GPU.
4460 */
4461
a4f5ea64 4462 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4463 return false;
4464
4465 if (obj->base.filp == NULL)
4466 return true;
4467
4468 /* At first glance, this looks racy, but then again so would be
4469 * userspace racing mmap against close. However, the first external
4470 * reference to the filp can only be obtained through the
4471 * i915_gem_mmap_ioctl() which safeguards us against the user
4472 * acquiring such a reference whilst we are in the middle of
4473 * freeing the object.
4474 */
4475 return atomic_long_read(&obj->base.filp->f_count) == 1;
4476}
4477
fbbd37b3
CW
4478static void __i915_gem_free_objects(struct drm_i915_private *i915,
4479 struct llist_node *freed)
673a394b 4480{
fbbd37b3 4481 struct drm_i915_gem_object *obj, *on;
673a394b 4482
fbbd37b3
CW
4483 mutex_lock(&i915->drm.struct_mutex);
4484 intel_runtime_pm_get(i915);
4485 llist_for_each_entry(obj, freed, freed) {
4486 struct i915_vma *vma, *vn;
4487
4488 trace_i915_gem_object_destroy(obj);
4489
4490 GEM_BUG_ON(i915_gem_object_is_active(obj));
4491 list_for_each_entry_safe(vma, vn,
4492 &obj->vma_list, obj_link) {
fbbd37b3
CW
4493 GEM_BUG_ON(i915_vma_is_active(vma));
4494 vma->flags &= ~I915_VMA_PIN_MASK;
4495 i915_vma_close(vma);
4496 }
db6c2b41
CW
4497 GEM_BUG_ON(!list_empty(&obj->vma_list));
4498 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4499
56cea323 4500 list_del(&obj->global_link);
fbbd37b3
CW
4501 }
4502 intel_runtime_pm_put(i915);
4503 mutex_unlock(&i915->drm.struct_mutex);
4504
f2be9d68
CW
4505 cond_resched();
4506
fbbd37b3
CW
4507 llist_for_each_entry_safe(obj, on, freed, freed) {
4508 GEM_BUG_ON(obj->bind_count);
a65adaf8 4509 GEM_BUG_ON(obj->userfault_count);
fbbd37b3 4510 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
67b48040 4511 GEM_BUG_ON(!list_empty(&obj->lut_list));
fbbd37b3
CW
4512
4513 if (obj->ops->release)
4514 obj->ops->release(obj);
f65c9168 4515
fbbd37b3
CW
4516 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4517 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4518 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4519 GEM_BUG_ON(obj->mm.pages);
4520
4521 if (obj->base.import_attach)
4522 drm_prime_gem_destroy(&obj->base, NULL);
4523
d07f0e59 4524 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4525 drm_gem_object_release(&obj->base);
4526 i915_gem_info_remove_obj(i915, obj->base.size);
4527
4528 kfree(obj->bit_17);
4529 i915_gem_object_free(obj);
4530 }
4531}
4532
4533static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4534{
4535 struct llist_node *freed;
4536
4537 freed = llist_del_all(&i915->mm.free_list);
4538 if (unlikely(freed))
4539 __i915_gem_free_objects(i915, freed);
4540}
4541
4542static void __i915_gem_free_work(struct work_struct *work)
4543{
4544 struct drm_i915_private *i915 =
4545 container_of(work, struct drm_i915_private, mm.free_work);
4546 struct llist_node *freed;
26e12f89 4547
b1f788c6
CW
4548 /* All file-owned VMA should have been released by this point through
4549 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4550 * However, the object may also be bound into the global GTT (e.g.
4551 * older GPUs without per-process support, or for direct access through
4552 * the GTT either for the user or for scanout). Those VMA still need to
4553 * unbound now.
4554 */
1488fc08 4555
5ad08be7 4556 while ((freed = llist_del_all(&i915->mm.free_list))) {
fbbd37b3 4557 __i915_gem_free_objects(i915, freed);
5ad08be7
CW
4558 if (need_resched())
4559 break;
4560 }
fbbd37b3 4561}
a071fa00 4562
fbbd37b3
CW
4563static void __i915_gem_free_object_rcu(struct rcu_head *head)
4564{
4565 struct drm_i915_gem_object *obj =
4566 container_of(head, typeof(*obj), rcu);
4567 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4568
4569 /* We can't simply use call_rcu() from i915_gem_free_object()
4570 * as we need to block whilst unbinding, and the call_rcu
4571 * task may be called from softirq context. So we take a
4572 * detour through a worker.
4573 */
4574 if (llist_add(&obj->freed, &i915->mm.free_list))
4575 schedule_work(&i915->mm.free_work);
4576}
656bfa3a 4577
fbbd37b3
CW
4578void i915_gem_free_object(struct drm_gem_object *gem_obj)
4579{
4580 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4581
bc0629a7
CW
4582 if (obj->mm.quirked)
4583 __i915_gem_object_unpin_pages(obj);
4584
340fbd8c 4585 if (discard_backing_storage(obj))
a4f5ea64 4586 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4587
fbbd37b3
CW
4588 /* Before we free the object, make sure any pure RCU-only
4589 * read-side critical sections are complete, e.g.
4590 * i915_gem_busy_ioctl(). For the corresponding synchronized
4591 * lookup see i915_gem_object_lookup_rcu().
4592 */
4593 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4594}
4595
f8a7fde4
CW
4596void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4597{
4598 lockdep_assert_held(&obj->base.dev->struct_mutex);
4599
d1b48c1e
CW
4600 if (!i915_gem_object_has_active_reference(obj) &&
4601 i915_gem_object_is_active(obj))
f8a7fde4
CW
4602 i915_gem_object_set_active_reference(obj);
4603 else
4604 i915_gem_object_put(obj);
4605}
4606
3033acab
CW
4607static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4608{
4609 struct intel_engine_cs *engine;
4610 enum intel_engine_id id;
4611
4612 for_each_engine(engine, dev_priv, id)
f131e356
CW
4613 GEM_BUG_ON(engine->last_retired_context &&
4614 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4615}
4616
24145517
CW
4617void i915_gem_sanitize(struct drm_i915_private *i915)
4618{
f36325f3
CW
4619 if (i915_terminally_wedged(&i915->gpu_error)) {
4620 mutex_lock(&i915->drm.struct_mutex);
4621 i915_gem_unset_wedged(i915);
4622 mutex_unlock(&i915->drm.struct_mutex);
4623 }
4624
24145517
CW
4625 /*
4626 * If we inherit context state from the BIOS or earlier occupants
4627 * of the GPU, the GPU may be in an inconsistent state when we
4628 * try to take over. The only way to remove the earlier state
4629 * is by resetting. However, resetting on earlier gen is tricky as
4630 * it may impact the display and we are uncertain about the stability
ea117b8d 4631 * of the reset, so this could be applied to even earlier gen.
24145517 4632 */
ea117b8d 4633 if (INTEL_GEN(i915) >= 5) {
24145517
CW
4634 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4635 WARN_ON(reset && reset != -ENODEV);
4636 }
4637}
4638
bf9e8429 4639int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4640{
bf9e8429 4641 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4642 int ret;
28dfe52a 4643
c998e8a0 4644 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4645 intel_suspend_gt_powersave(dev_priv);
4646
45c5f202 4647 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4648
4649 /* We have to flush all the executing contexts to main memory so
4650 * that they can saved in the hibernation image. To ensure the last
4651 * context image is coherent, we have to switch away from it. That
4652 * leaves the dev_priv->kernel_context still active when
4653 * we actually suspend, and its image in memory may not match the GPU
4654 * state. Fortunately, the kernel_context is disposable and we do
4655 * not rely on its state.
4656 */
4657 ret = i915_gem_switch_to_kernel_context(dev_priv);
4658 if (ret)
c998e8a0 4659 goto err_unlock;
5ab57c70 4660
22dd3bb9
CW
4661 ret = i915_gem_wait_for_idle(dev_priv,
4662 I915_WAIT_INTERRUPTIBLE |
4663 I915_WAIT_LOCKED);
cad9946c 4664 if (ret && ret != -EIO)
c998e8a0 4665 goto err_unlock;
f7403347 4666
3033acab 4667 assert_kernel_context_is_current(dev_priv);
829a0af2 4668 i915_gem_contexts_lost(dev_priv);
45c5f202
CW
4669 mutex_unlock(&dev->struct_mutex);
4670
63987bfe
SAK
4671 intel_guc_suspend(dev_priv);
4672
737b1506 4673 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4674 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4675
4676 /* As the idle_work is rearming if it detects a race, play safe and
4677 * repeat the flush until it is definitely idle.
4678 */
7c26240e 4679 drain_delayed_work(&dev_priv->gt.idle_work);
bdeb9785 4680
bdcf120b
CW
4681 /* Assert that we sucessfully flushed all the work and
4682 * reset the GPU back to its idle, low power state.
4683 */
67d97da3 4684 WARN_ON(dev_priv->gt.awake);
fc692bd3
CW
4685 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4686 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
bdcf120b 4687
1c777c5d
ID
4688 /*
4689 * Neither the BIOS, ourselves or any other kernel
4690 * expects the system to be in execlists mode on startup,
4691 * so we need to reset the GPU back to legacy mode. And the only
4692 * known way to disable logical contexts is through a GPU reset.
4693 *
4694 * So in order to leave the system in a known default configuration,
4695 * always reset the GPU upon unload and suspend. Afterwards we then
4696 * clean up the GEM state tracking, flushing off the requests and
4697 * leaving the system in a known idle state.
4698 *
4699 * Note that is of the upmost importance that the GPU is idle and
4700 * all stray writes are flushed *before* we dismantle the backing
4701 * storage for the pinned objects.
4702 *
4703 * However, since we are uncertain that resetting the GPU on older
4704 * machines is a good idea, we don't - just in case it leaves the
4705 * machine in an unusable condition.
4706 */
24145517 4707 i915_gem_sanitize(dev_priv);
cad9946c
CW
4708
4709 intel_runtime_pm_put(dev_priv);
4710 return 0;
1c777c5d 4711
c998e8a0 4712err_unlock:
45c5f202 4713 mutex_unlock(&dev->struct_mutex);
c998e8a0 4714 intel_runtime_pm_put(dev_priv);
45c5f202 4715 return ret;
673a394b
EA
4716}
4717
bf9e8429 4718void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4719{
bf9e8429 4720 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4721
31ab49ab
ID
4722 WARN_ON(dev_priv->gt.awake);
4723
5ab57c70 4724 mutex_lock(&dev->struct_mutex);
275a991c 4725 i915_gem_restore_gtt_mappings(dev_priv);
269e6ea9 4726 i915_gem_restore_fences(dev_priv);
5ab57c70
CW
4727
4728 /* As we didn't flush the kernel context before suspend, we cannot
4729 * guarantee that the context image is complete. So let's just reset
4730 * it and start again.
4731 */
821ed7df 4732 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4733
4734 mutex_unlock(&dev->struct_mutex);
4735}
4736
c6be607a 4737void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4738{
c6be607a 4739 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4740 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4741 return;
4742
4743 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4744 DISP_TILE_SURFACE_SWIZZLING);
4745
5db94019 4746 if (IS_GEN5(dev_priv))
11782b02
DV
4747 return;
4748
f691e2f4 4749 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4750 if (IS_GEN6(dev_priv))
6b26c86d 4751 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4752 else if (IS_GEN7(dev_priv))
6b26c86d 4753 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4754 else if (IS_GEN8(dev_priv))
31a5336e 4755 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4756 else
4757 BUG();
f691e2f4 4758}
e21af88d 4759
50a0bc90 4760static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4761{
81e7f200
VS
4762 I915_WRITE(RING_CTL(base), 0);
4763 I915_WRITE(RING_HEAD(base), 0);
4764 I915_WRITE(RING_TAIL(base), 0);
4765 I915_WRITE(RING_START(base), 0);
4766}
4767
50a0bc90 4768static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4769{
50a0bc90
TU
4770 if (IS_I830(dev_priv)) {
4771 init_unused_ring(dev_priv, PRB1_BASE);
4772 init_unused_ring(dev_priv, SRB0_BASE);
4773 init_unused_ring(dev_priv, SRB1_BASE);
4774 init_unused_ring(dev_priv, SRB2_BASE);
4775 init_unused_ring(dev_priv, SRB3_BASE);
4776 } else if (IS_GEN2(dev_priv)) {
4777 init_unused_ring(dev_priv, SRB0_BASE);
4778 init_unused_ring(dev_priv, SRB1_BASE);
4779 } else if (IS_GEN3(dev_priv)) {
4780 init_unused_ring(dev_priv, PRB1_BASE);
4781 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4782 }
4783}
4784
20a8a74a 4785static int __i915_gem_restart_engines(void *data)
4fc7c971 4786{
20a8a74a 4787 struct drm_i915_private *i915 = data;
e2f80391 4788 struct intel_engine_cs *engine;
3b3f1650 4789 enum intel_engine_id id;
20a8a74a
CW
4790 int err;
4791
4792 for_each_engine(engine, i915, id) {
4793 err = engine->init_hw(engine);
4794 if (err)
4795 return err;
4796 }
4797
4798 return 0;
4799}
4800
4801int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4802{
d200cda6 4803 int ret;
4fc7c971 4804
de867c20
CW
4805 dev_priv->gt.last_init_time = ktime_get();
4806
5e4f5189
CW
4807 /* Double layer security blanket, see i915_gem_init() */
4808 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4809
0031fb96 4810 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4811 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4812
772c2a51 4813 if (IS_HASWELL(dev_priv))
50a0bc90 4814 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4815 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4816
6e266956 4817 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4818 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4819 u32 temp = I915_READ(GEN7_MSG_CTL);
4820 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4821 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4822 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4823 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4824 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4825 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4826 }
88a2b2a3
BW
4827 }
4828
c6be607a 4829 i915_gem_init_swizzling(dev_priv);
4fc7c971 4830
d5abdfda
DV
4831 /*
4832 * At least 830 can leave some of the unused rings
4833 * "active" (ie. head != tail) after resume which
4834 * will prevent c3 entry. Makes sure all unused rings
4835 * are totally idle.
4836 */
50a0bc90 4837 init_unused_rings(dev_priv);
d5abdfda 4838
ed54c1a1 4839 BUG_ON(!dev_priv->kernel_context);
90638cc1 4840
c6be607a 4841 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4842 if (ret) {
4843 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4844 goto out;
4845 }
4846
4847 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4848 ret = __i915_gem_restart_engines(dev_priv);
4849 if (ret)
4850 goto out;
99433931 4851
bf9e8429 4852 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4853
b8991403
OM
4854 /* We can't enable contexts until all firmware is loaded */
4855 ret = intel_uc_init_hw(dev_priv);
4856 if (ret)
4857 goto out;
33a732f4 4858
5e4f5189
CW
4859out:
4860 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4861 return ret;
8187a2b7
ZN
4862}
4863
39df9190
CW
4864bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4865{
4866 if (INTEL_INFO(dev_priv)->gen < 6)
4867 return false;
4868
4869 /* TODO: make semaphores and Execlists play nicely together */
4f044a88 4870 if (i915_modparams.enable_execlists)
39df9190
CW
4871 return false;
4872
4873 if (value >= 0)
4874 return value;
4875
39df9190 4876 /* Enable semaphores on SNB when IO remapping is off */
80debff8 4877 if (IS_GEN6(dev_priv) && intel_vtd_active())
39df9190 4878 return false;
39df9190
CW
4879
4880 return true;
4881}
4882
bf9e8429 4883int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4884{
1070a42b
CW
4885 int ret;
4886
bf9e8429 4887 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4888
da9fe3f3
MA
4889 /*
4890 * We need to fallback to 4K pages since gvt gtt handling doesn't
4891 * support huge page entries - we will need to check either hypervisor
4892 * mm can support huge guest page or just do emulation in gvt.
4893 */
4894 if (intel_vgpu_active(dev_priv))
4895 mkwrite_device_info(dev_priv)->page_sizes =
4896 I915_GTT_PAGE_SIZE_4K;
4897
94312828 4898 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 4899
4f044a88 4900 if (!i915_modparams.enable_execlists) {
821ed7df 4901 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4902 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4903 } else {
821ed7df 4904 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4905 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4906 }
4907
5e4f5189
CW
4908 /* This is just a security blanket to placate dragons.
4909 * On some systems, we very sporadically observe that the first TLBs
4910 * used by the CS may be stale, despite us poking the TLB reset. If
4911 * we hold the forcewake during initialisation these problems
4912 * just magically go away.
4913 */
4914 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4915
8a2421bd
CW
4916 ret = i915_gem_init_userptr(dev_priv);
4917 if (ret)
4918 goto out_unlock;
f6b9d5ca
CW
4919
4920 ret = i915_gem_init_ggtt(dev_priv);
4921 if (ret)
4922 goto out_unlock;
d62b4892 4923
829a0af2 4924 ret = i915_gem_contexts_init(dev_priv);
7bcc3777
JN
4925 if (ret)
4926 goto out_unlock;
2fa48d8d 4927
bf9e8429 4928 ret = intel_engines_init(dev_priv);
35a57ffb 4929 if (ret)
7bcc3777 4930 goto out_unlock;
2fa48d8d 4931
bf9e8429 4932 ret = i915_gem_init_hw(dev_priv);
60990320 4933 if (ret == -EIO) {
7e21d648 4934 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4935 * wedged. But we only want to do this where the GPU is angry,
4936 * for all other failure, such as an allocation failure, bail.
4937 */
4938 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4939 i915_gem_set_wedged(dev_priv);
60990320 4940 ret = 0;
1070a42b 4941 }
7bcc3777
JN
4942
4943out_unlock:
5e4f5189 4944 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4945 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4946
60990320 4947 return ret;
1070a42b
CW
4948}
4949
24145517
CW
4950void i915_gem_init_mmio(struct drm_i915_private *i915)
4951{
4952 i915_gem_sanitize(i915);
4953}
4954
8187a2b7 4955void
cb15d9f8 4956i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4957{
e2f80391 4958 struct intel_engine_cs *engine;
3b3f1650 4959 enum intel_engine_id id;
8187a2b7 4960
3b3f1650 4961 for_each_engine(engine, dev_priv, id)
117897f4 4962 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4963}
4964
40ae4e16
ID
4965void
4966i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4967{
49ef5294 4968 int i;
40ae4e16
ID
4969
4970 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4971 !IS_CHERRYVIEW(dev_priv))
4972 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4973 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4974 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4975 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4976 dev_priv->num_fence_regs = 16;
4977 else
4978 dev_priv->num_fence_regs = 8;
4979
c033666a 4980 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4981 dev_priv->num_fence_regs =
4982 I915_READ(vgtif_reg(avail_rs.fence_num));
4983
4984 /* Initialize fence registers to zero */
49ef5294
CW
4985 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4986 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4987
4988 fence->i915 = dev_priv;
4989 fence->id = i;
4990 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4991 }
4362f4f6 4992 i915_gem_restore_fences(dev_priv);
40ae4e16 4993
4362f4f6 4994 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4995}
4996
73cb9701 4997int
cb15d9f8 4998i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4999{
a933568e 5000 int err = -ENOMEM;
42dcedd4 5001
a933568e
TU
5002 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5003 if (!dev_priv->objects)
73cb9701 5004 goto err_out;
73cb9701 5005
a933568e
TU
5006 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5007 if (!dev_priv->vmas)
73cb9701 5008 goto err_objects;
73cb9701 5009
d1b48c1e
CW
5010 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5011 if (!dev_priv->luts)
5012 goto err_vmas;
5013
a933568e
TU
5014 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5015 SLAB_HWCACHE_ALIGN |
5016 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 5017 SLAB_TYPESAFE_BY_RCU);
a933568e 5018 if (!dev_priv->requests)
d1b48c1e 5019 goto err_luts;
73cb9701 5020
52e54209
CW
5021 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5022 SLAB_HWCACHE_ALIGN |
5023 SLAB_RECLAIM_ACCOUNT);
5024 if (!dev_priv->dependencies)
5025 goto err_requests;
5026
c5cf9a91
CW
5027 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5028 if (!dev_priv->priorities)
5029 goto err_dependencies;
5030
73cb9701
CW
5031 mutex_lock(&dev_priv->drm.struct_mutex);
5032 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 5033 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
5034 mutex_unlock(&dev_priv->drm.struct_mutex);
5035 if (err)
c5cf9a91 5036 goto err_priorities;
673a394b 5037
fbbd37b3
CW
5038 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5039 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
5040 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5041 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5042 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 5043 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 5044 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5045 i915_gem_retire_work_handler);
67d97da3 5046 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5047 i915_gem_idle_work_handler);
1f15b76f 5048 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5049 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5050
6f633402
JL
5051 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5052
b5add959 5053 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701 5054
465c403c
MA
5055 err = i915_gemfs_init(dev_priv);
5056 if (err)
5057 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5058
73cb9701
CW
5059 return 0;
5060
c5cf9a91
CW
5061err_priorities:
5062 kmem_cache_destroy(dev_priv->priorities);
52e54209
CW
5063err_dependencies:
5064 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
5065err_requests:
5066 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
5067err_luts:
5068 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
5069err_vmas:
5070 kmem_cache_destroy(dev_priv->vmas);
5071err_objects:
5072 kmem_cache_destroy(dev_priv->objects);
5073err_out:
5074 return err;
673a394b 5075}
71acb5eb 5076
cb15d9f8 5077void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 5078{
c4d4c1c6 5079 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 5080 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 5081 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 5082
ea84aa77
MA
5083 mutex_lock(&dev_priv->drm.struct_mutex);
5084 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5085 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5086 mutex_unlock(&dev_priv->drm.struct_mutex);
5087
c5cf9a91 5088 kmem_cache_destroy(dev_priv->priorities);
52e54209 5089 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 5090 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 5091 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
5092 kmem_cache_destroy(dev_priv->vmas);
5093 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
5094
5095 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5096 rcu_barrier();
465c403c
MA
5097
5098 i915_gemfs_fini(dev_priv);
d64aa096
ID
5099}
5100
6a800eab
CW
5101int i915_gem_freeze(struct drm_i915_private *dev_priv)
5102{
d0aa301a
CW
5103 /* Discard all purgeable objects, let userspace recover those as
5104 * required after resuming.
5105 */
6a800eab 5106 i915_gem_shrink_all(dev_priv);
6a800eab 5107
6a800eab
CW
5108 return 0;
5109}
5110
461fb99c
CW
5111int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5112{
5113 struct drm_i915_gem_object *obj;
7aab2d53
CW
5114 struct list_head *phases[] = {
5115 &dev_priv->mm.unbound_list,
5116 &dev_priv->mm.bound_list,
5117 NULL
5118 }, **p;
461fb99c
CW
5119
5120 /* Called just before we write the hibernation image.
5121 *
5122 * We need to update the domain tracking to reflect that the CPU
5123 * will be accessing all the pages to create and restore from the
5124 * hibernation, and so upon restoration those pages will be in the
5125 * CPU domain.
5126 *
5127 * To make sure the hibernation image contains the latest state,
5128 * we update that state just before writing out the image.
7aab2d53
CW
5129 *
5130 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5131 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5132 */
5133
912d572d 5134 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
17b93c40 5135 i915_gem_drain_freed_objects(dev_priv);
461fb99c 5136
d0aa301a 5137 mutex_lock(&dev_priv->drm.struct_mutex);
7aab2d53 5138 for (p = phases; *p; p++) {
e27ab73d
CW
5139 list_for_each_entry(obj, *p, global_link)
5140 __start_cpu_write(obj);
461fb99c 5141 }
6a800eab 5142 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
5143
5144 return 0;
5145}
5146
f787a5f5 5147void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5148{
f787a5f5 5149 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 5150 struct drm_i915_gem_request *request;
b962442e
EA
5151
5152 /* Clean up our request list when the client is going away, so that
5153 * later retire_requests won't dereference our soon-to-be-gone
5154 * file_priv.
5155 */
1c25595f 5156 spin_lock(&file_priv->mm.lock);
c8659efa 5157 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5158 request->file_priv = NULL;
1c25595f 5159 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5160}
5161
829a0af2 5162int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5163{
5164 struct drm_i915_file_private *file_priv;
e422b888 5165 int ret;
b29c19b6 5166
c4c29d7b 5167 DRM_DEBUG("\n");
b29c19b6
CW
5168
5169 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5170 if (!file_priv)
5171 return -ENOMEM;
5172
5173 file->driver_priv = file_priv;
829a0af2 5174 file_priv->dev_priv = i915;
ab0e7ff9 5175 file_priv->file = file;
b29c19b6
CW
5176
5177 spin_lock_init(&file_priv->mm.lock);
5178 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5179
c80ff16e 5180 file_priv->bsd_engine = -1;
de1add36 5181
829a0af2 5182 ret = i915_gem_context_open(i915, file);
e422b888
BW
5183 if (ret)
5184 kfree(file_priv);
b29c19b6 5185
e422b888 5186 return ret;
b29c19b6
CW
5187}
5188
b680c37a
DV
5189/**
5190 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5191 * @old: current GEM buffer for the frontbuffer slots
5192 * @new: new GEM buffer for the frontbuffer slots
5193 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5194 *
5195 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5196 * from @old and setting them in @new. Both @old and @new can be NULL.
5197 */
a071fa00
DV
5198void i915_gem_track_fb(struct drm_i915_gem_object *old,
5199 struct drm_i915_gem_object *new,
5200 unsigned frontbuffer_bits)
5201{
faf5bf0a
CW
5202 /* Control of individual bits within the mask are guarded by
5203 * the owning plane->mutex, i.e. we can never see concurrent
5204 * manipulation of individual bits. But since the bitfield as a whole
5205 * is updated using RMW, we need to use atomics in order to update
5206 * the bits.
5207 */
5208 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5209 sizeof(atomic_t) * BITS_PER_BYTE);
5210
a071fa00 5211 if (old) {
faf5bf0a
CW
5212 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5213 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5214 }
5215
5216 if (new) {
faf5bf0a
CW
5217 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5218 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5219 }
5220}
5221
ea70299d
DG
5222/* Allocate a new GEM object and fill it with the supplied data */
5223struct drm_i915_gem_object *
12d79d78 5224i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5225 const void *data, size_t size)
5226{
5227 struct drm_i915_gem_object *obj;
be062fa4
CW
5228 struct file *file;
5229 size_t offset;
5230 int err;
ea70299d 5231
12d79d78 5232 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5233 if (IS_ERR(obj))
ea70299d
DG
5234 return obj;
5235
ce8ff099 5236 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5237
be062fa4
CW
5238 file = obj->base.filp;
5239 offset = 0;
5240 do {
5241 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5242 struct page *page;
5243 void *pgdata, *vaddr;
ea70299d 5244
be062fa4
CW
5245 err = pagecache_write_begin(file, file->f_mapping,
5246 offset, len, 0,
5247 &page, &pgdata);
5248 if (err < 0)
5249 goto fail;
ea70299d 5250
be062fa4
CW
5251 vaddr = kmap(page);
5252 memcpy(vaddr, data, len);
5253 kunmap(page);
5254
5255 err = pagecache_write_end(file, file->f_mapping,
5256 offset, len, len,
5257 page, pgdata);
5258 if (err < 0)
5259 goto fail;
5260
5261 size -= len;
5262 data += len;
5263 offset += len;
5264 } while (size);
ea70299d
DG
5265
5266 return obj;
5267
5268fail:
f8c417cd 5269 i915_gem_object_put(obj);
be062fa4 5270 return ERR_PTR(err);
ea70299d 5271}
96d77634
CW
5272
5273struct scatterlist *
5274i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5275 unsigned int n,
5276 unsigned int *offset)
5277{
a4f5ea64 5278 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5279 struct scatterlist *sg;
5280 unsigned int idx, count;
5281
5282 might_sleep();
5283 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5284 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5285
5286 /* As we iterate forward through the sg, we record each entry in a
5287 * radixtree for quick repeated (backwards) lookups. If we have seen
5288 * this index previously, we will have an entry for it.
5289 *
5290 * Initial lookup is O(N), but this is amortized to O(1) for
5291 * sequential page access (where each new request is consecutive
5292 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5293 * i.e. O(1) with a large constant!
5294 */
5295 if (n < READ_ONCE(iter->sg_idx))
5296 goto lookup;
5297
5298 mutex_lock(&iter->lock);
5299
5300 /* We prefer to reuse the last sg so that repeated lookup of this
5301 * (or the subsequent) sg are fast - comparing against the last
5302 * sg is faster than going through the radixtree.
5303 */
5304
5305 sg = iter->sg_pos;
5306 idx = iter->sg_idx;
5307 count = __sg_page_count(sg);
5308
5309 while (idx + count <= n) {
5310 unsigned long exception, i;
5311 int ret;
5312
5313 /* If we cannot allocate and insert this entry, or the
5314 * individual pages from this range, cancel updating the
5315 * sg_idx so that on this lookup we are forced to linearly
5316 * scan onwards, but on future lookups we will try the
5317 * insertion again (in which case we need to be careful of
5318 * the error return reporting that we have already inserted
5319 * this index).
5320 */
5321 ret = radix_tree_insert(&iter->radix, idx, sg);
5322 if (ret && ret != -EEXIST)
5323 goto scan;
5324
5325 exception =
5326 RADIX_TREE_EXCEPTIONAL_ENTRY |
5327 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5328 for (i = 1; i < count; i++) {
5329 ret = radix_tree_insert(&iter->radix, idx + i,
5330 (void *)exception);
5331 if (ret && ret != -EEXIST)
5332 goto scan;
5333 }
5334
5335 idx += count;
5336 sg = ____sg_next(sg);
5337 count = __sg_page_count(sg);
5338 }
5339
5340scan:
5341 iter->sg_pos = sg;
5342 iter->sg_idx = idx;
5343
5344 mutex_unlock(&iter->lock);
5345
5346 if (unlikely(n < idx)) /* insertion completed by another thread */
5347 goto lookup;
5348
5349 /* In case we failed to insert the entry into the radixtree, we need
5350 * to look beyond the current sg.
5351 */
5352 while (idx + count <= n) {
5353 idx += count;
5354 sg = ____sg_next(sg);
5355 count = __sg_page_count(sg);
5356 }
5357
5358 *offset = n - idx;
5359 return sg;
5360
5361lookup:
5362 rcu_read_lock();
5363
5364 sg = radix_tree_lookup(&iter->radix, n);
5365 GEM_BUG_ON(!sg);
5366
5367 /* If this index is in the middle of multi-page sg entry,
5368 * the radixtree will contain an exceptional entry that points
5369 * to the start of that range. We will return the pointer to
5370 * the base page and the offset of this page within the
5371 * sg entry's range.
5372 */
5373 *offset = 0;
5374 if (unlikely(radix_tree_exception(sg))) {
5375 unsigned long base =
5376 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5377
5378 sg = radix_tree_lookup(&iter->radix, base);
5379 GEM_BUG_ON(!sg);
5380
5381 *offset = n - base;
5382 }
5383
5384 rcu_read_unlock();
5385
5386 return sg;
5387}
5388
5389struct page *
5390i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5391{
5392 struct scatterlist *sg;
5393 unsigned int offset;
5394
5395 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5396
5397 sg = i915_gem_object_get_sg(obj, n, &offset);
5398 return nth_page(sg_page(sg), offset);
5399}
5400
5401/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5402struct page *
5403i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5404 unsigned int n)
5405{
5406 struct page *page;
5407
5408 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5409 if (!obj->mm.dirty)
96d77634
CW
5410 set_page_dirty(page);
5411
5412 return page;
5413}
5414
5415dma_addr_t
5416i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5417 unsigned long n)
5418{
5419 struct scatterlist *sg;
5420 unsigned int offset;
5421
5422 sg = i915_gem_object_get_sg(obj, n, &offset);
5423 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5424}
935a2f77 5425
8eeb7906
CW
5426int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5427{
5428 struct sg_table *pages;
5429 int err;
5430
5431 if (align > obj->base.size)
5432 return -EINVAL;
5433
5434 if (obj->ops == &i915_gem_phys_ops)
5435 return 0;
5436
5437 if (obj->ops != &i915_gem_object_ops)
5438 return -EINVAL;
5439
5440 err = i915_gem_object_unbind(obj);
5441 if (err)
5442 return err;
5443
5444 mutex_lock(&obj->mm.lock);
5445
5446 if (obj->mm.madv != I915_MADV_WILLNEED) {
5447 err = -EFAULT;
5448 goto err_unlock;
5449 }
5450
5451 if (obj->mm.quirked) {
5452 err = -EFAULT;
5453 goto err_unlock;
5454 }
5455
5456 if (obj->mm.mapping) {
5457 err = -EBUSY;
5458 goto err_unlock;
5459 }
5460
5461 pages = obj->mm.pages;
5462 obj->ops = &i915_gem_phys_ops;
5463
8fb6a5df 5464 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
5465 if (err)
5466 goto err_xfer;
5467
5468 /* Perma-pin (until release) the physical set of pages */
5469 __i915_gem_object_pin_pages(obj);
5470
5471 if (!IS_ERR_OR_NULL(pages))
5472 i915_gem_object_ops.put_pages(obj, pages);
5473 mutex_unlock(&obj->mm.lock);
5474 return 0;
5475
5476err_xfer:
5477 obj->ops = &i915_gem_object_ops;
5478 obj->mm.pages = pages;
5479err_unlock:
5480 mutex_unlock(&obj->mm.lock);
5481 return err;
5482}
5483
935a2f77
CW
5484#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5485#include "selftests/scatterlist.c"
66d9cb5d 5486#include "selftests/mock_gem_device.c"
44653988 5487#include "selftests/huge_gem_object.c"
4049866f 5488#include "selftests/huge_pages.c"
8335fd65 5489#include "selftests/i915_gem_object.c"
17059450 5490#include "selftests/i915_gem_coherency.c"
935a2f77 5491#endif