]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Convert 'i915_seqno_passed' calls into 'i915_gem_request_completed'
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
35c20a60 173 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 174 if (i915_gem_obj_is_pinned(obj))
f343c5f6 175 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
853ba5d2 178 args->aper_size = dev_priv->gtt.base.total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
6a2c4232
CW
184static int
185i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 186{
6a2c4232
CW
187 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188 char *vaddr = obj->phys_handle->vaddr;
189 struct sg_table *st;
190 struct scatterlist *sg;
191 int i;
00731155 192
6a2c4232
CW
193 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194 return -EINVAL;
195
196 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 struct page *page;
198 char *src;
199
200 page = shmem_read_mapping_page(mapping, i);
201 if (IS_ERR(page))
202 return PTR_ERR(page);
203
204 src = kmap_atomic(page);
205 memcpy(vaddr, src, PAGE_SIZE);
206 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 kunmap_atomic(src);
208
209 page_cache_release(page);
210 vaddr += PAGE_SIZE;
211 }
212
213 i915_gem_chipset_flush(obj->base.dev);
214
215 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (st == NULL)
217 return -ENOMEM;
218
219 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220 kfree(st);
221 return -ENOMEM;
222 }
223
224 sg = st->sgl;
225 sg->offset = 0;
226 sg->length = obj->base.size;
00731155 227
6a2c4232
CW
228 sg_dma_address(sg) = obj->phys_handle->busaddr;
229 sg_dma_len(sg) = obj->base.size;
230
231 obj->pages = st;
232 obj->has_dma_mapping = true;
233 return 0;
234}
235
236static void
237i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238{
239 int ret;
240
241 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 242
6a2c4232
CW
243 ret = i915_gem_object_set_to_cpu_domain(obj, true);
244 if (ret) {
245 /* In the event of a disaster, abandon all caches and
246 * hope for the best.
247 */
248 WARN_ON(ret != -EIO);
249 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250 }
251
252 if (obj->madv == I915_MADV_DONTNEED)
253 obj->dirty = 0;
254
255 if (obj->dirty) {
00731155 256 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 257 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
258 int i;
259
260 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
261 struct page *page;
262 char *dst;
263
264 page = shmem_read_mapping_page(mapping, i);
265 if (IS_ERR(page))
266 continue;
267
268 dst = kmap_atomic(page);
269 drm_clflush_virt_range(vaddr, PAGE_SIZE);
270 memcpy(dst, vaddr, PAGE_SIZE);
271 kunmap_atomic(dst);
272
273 set_page_dirty(page);
274 if (obj->madv == I915_MADV_WILLNEED)
00731155 275 mark_page_accessed(page);
6a2c4232 276 page_cache_release(page);
00731155
CW
277 vaddr += PAGE_SIZE;
278 }
6a2c4232 279 obj->dirty = 0;
00731155
CW
280 }
281
6a2c4232
CW
282 sg_free_table(obj->pages);
283 kfree(obj->pages);
284
285 obj->has_dma_mapping = false;
286}
287
288static void
289i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290{
291 drm_pci_free(obj->base.dev, obj->phys_handle);
292}
293
294static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295 .get_pages = i915_gem_object_get_pages_phys,
296 .put_pages = i915_gem_object_put_pages_phys,
297 .release = i915_gem_object_release_phys,
298};
299
300static int
301drop_pages(struct drm_i915_gem_object *obj)
302{
303 struct i915_vma *vma, *next;
304 int ret;
305
306 drm_gem_object_reference(&obj->base);
307 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308 if (i915_vma_unbind(vma))
309 break;
310
311 ret = i915_gem_object_put_pages(obj);
312 drm_gem_object_unreference(&obj->base);
313
314 return ret;
00731155
CW
315}
316
317int
318i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319 int align)
320{
321 drm_dma_handle_t *phys;
6a2c4232 322 int ret;
00731155
CW
323
324 if (obj->phys_handle) {
325 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326 return -EBUSY;
327
328 return 0;
329 }
330
331 if (obj->madv != I915_MADV_WILLNEED)
332 return -EFAULT;
333
334 if (obj->base.filp == NULL)
335 return -EINVAL;
336
6a2c4232
CW
337 ret = drop_pages(obj);
338 if (ret)
339 return ret;
340
00731155
CW
341 /* create a new object */
342 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343 if (!phys)
344 return -ENOMEM;
345
00731155 346 obj->phys_handle = phys;
6a2c4232
CW
347 obj->ops = &i915_gem_phys_ops;
348
349 return i915_gem_object_get_pages(obj);
00731155
CW
350}
351
352static int
353i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354 struct drm_i915_gem_pwrite *args,
355 struct drm_file *file_priv)
356{
357 struct drm_device *dev = obj->base.dev;
358 void *vaddr = obj->phys_handle->vaddr + args->offset;
359 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
360 int ret;
361
362 /* We manually control the domain here and pretend that it
363 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364 */
365 ret = i915_gem_object_wait_rendering(obj, false);
366 if (ret)
367 return ret;
00731155
CW
368
369 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370 unsigned long unwritten;
371
372 /* The physical object once assigned is fixed for the lifetime
373 * of the obj, so we can safely drop the lock and continue
374 * to access vaddr.
375 */
376 mutex_unlock(&dev->struct_mutex);
377 unwritten = copy_from_user(vaddr, user_data, args->size);
378 mutex_lock(&dev->struct_mutex);
379 if (unwritten)
380 return -EFAULT;
381 }
382
6a2c4232 383 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
384 i915_gem_chipset_flush(dev);
385 return 0;
386}
387
42dcedd4
CW
388void *i915_gem_object_alloc(struct drm_device *dev)
389{
390 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
392}
393
394void i915_gem_object_free(struct drm_i915_gem_object *obj)
395{
396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 kmem_cache_free(dev_priv->slab, obj);
398}
399
ff72145b
DA
400static int
401i915_gem_create(struct drm_file *file,
402 struct drm_device *dev,
403 uint64_t size,
355a7018 404 bool dumb,
ff72145b 405 uint32_t *handle_p)
673a394b 406{
05394f39 407 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
408 int ret;
409 u32 handle;
673a394b 410
ff72145b 411 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
412 if (size == 0)
413 return -EINVAL;
673a394b
EA
414
415 /* Allocate the new object */
ff72145b 416 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
417 if (obj == NULL)
418 return -ENOMEM;
419
355a7018 420 obj->base.dumb = dumb;
05394f39 421 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 422 /* drop reference from allocate - handle holds it now */
d861e338
DV
423 drm_gem_object_unreference_unlocked(&obj->base);
424 if (ret)
425 return ret;
202f2fef 426
ff72145b 427 *handle_p = handle;
673a394b
EA
428 return 0;
429}
430
ff72145b
DA
431int
432i915_gem_dumb_create(struct drm_file *file,
433 struct drm_device *dev,
434 struct drm_mode_create_dumb *args)
435{
436 /* have to work out size/pitch and return them */
de45eaf7 437 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
438 args->size = args->pitch * args->height;
439 return i915_gem_create(file, dev,
355a7018 440 args->size, true, &args->handle);
ff72145b
DA
441}
442
ff72145b
DA
443/**
444 * Creates a new mm object and returns a handle to it.
445 */
446int
447i915_gem_create_ioctl(struct drm_device *dev, void *data,
448 struct drm_file *file)
449{
450 struct drm_i915_gem_create *args = data;
63ed2cb2 451
ff72145b 452 return i915_gem_create(file, dev,
355a7018 453 args->size, false, &args->handle);
ff72145b
DA
454}
455
8461d226
DV
456static inline int
457__copy_to_user_swizzled(char __user *cpu_vaddr,
458 const char *gpu_vaddr, int gpu_offset,
459 int length)
460{
461 int ret, cpu_offset = 0;
462
463 while (length > 0) {
464 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465 int this_length = min(cacheline_end - gpu_offset, length);
466 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469 gpu_vaddr + swizzled_gpu_offset,
470 this_length);
471 if (ret)
472 return ret + length;
473
474 cpu_offset += this_length;
475 gpu_offset += this_length;
476 length -= this_length;
477 }
478
479 return 0;
480}
481
8c59967c 482static inline int
4f0c7cfb
BW
483__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484 const char __user *cpu_vaddr,
8c59967c
DV
485 int length)
486{
487 int ret, cpu_offset = 0;
488
489 while (length > 0) {
490 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491 int this_length = min(cacheline_end - gpu_offset, length);
492 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495 cpu_vaddr + cpu_offset,
496 this_length);
497 if (ret)
498 return ret + length;
499
500 cpu_offset += this_length;
501 gpu_offset += this_length;
502 length -= this_length;
503 }
504
505 return 0;
506}
507
4c914c0c
BV
508/*
509 * Pins the specified object's pages and synchronizes the object with
510 * GPU accesses. Sets needs_clflush to non-zero if the caller should
511 * flush the object from the CPU cache.
512 */
513int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514 int *needs_clflush)
515{
516 int ret;
517
518 *needs_clflush = 0;
519
520 if (!obj->base.filp)
521 return -EINVAL;
522
523 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524 /* If we're not in the cpu read domain, set ourself into the gtt
525 * read domain and manually flush cachelines (if required). This
526 * optimizes for the case when the gpu will dirty the data
527 * anyway again before the next pread happens. */
528 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529 obj->cache_level);
530 ret = i915_gem_object_wait_rendering(obj, true);
531 if (ret)
532 return ret;
c8725f3d
CW
533
534 i915_gem_object_retire(obj);
4c914c0c
BV
535 }
536
537 ret = i915_gem_object_get_pages(obj);
538 if (ret)
539 return ret;
540
541 i915_gem_object_pin_pages(obj);
542
543 return ret;
544}
545
d174bd64
DV
546/* Per-page copy function for the shmem pread fastpath.
547 * Flushes invalid cachelines before reading the target if
548 * needs_clflush is set. */
eb01459f 549static int
d174bd64
DV
550shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551 char __user *user_data,
552 bool page_do_bit17_swizzling, bool needs_clflush)
553{
554 char *vaddr;
555 int ret;
556
e7e58eb5 557 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
558 return -EINVAL;
559
560 vaddr = kmap_atomic(page);
561 if (needs_clflush)
562 drm_clflush_virt_range(vaddr + shmem_page_offset,
563 page_length);
564 ret = __copy_to_user_inatomic(user_data,
565 vaddr + shmem_page_offset,
566 page_length);
567 kunmap_atomic(vaddr);
568
f60d7f0c 569 return ret ? -EFAULT : 0;
d174bd64
DV
570}
571
23c18c71
DV
572static void
573shmem_clflush_swizzled_range(char *addr, unsigned long length,
574 bool swizzled)
575{
e7e58eb5 576 if (unlikely(swizzled)) {
23c18c71
DV
577 unsigned long start = (unsigned long) addr;
578 unsigned long end = (unsigned long) addr + length;
579
580 /* For swizzling simply ensure that we always flush both
581 * channels. Lame, but simple and it works. Swizzled
582 * pwrite/pread is far from a hotpath - current userspace
583 * doesn't use it at all. */
584 start = round_down(start, 128);
585 end = round_up(end, 128);
586
587 drm_clflush_virt_range((void *)start, end - start);
588 } else {
589 drm_clflush_virt_range(addr, length);
590 }
591
592}
593
d174bd64
DV
594/* Only difference to the fast-path function is that this can handle bit17
595 * and uses non-atomic copy and kmap functions. */
596static int
597shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598 char __user *user_data,
599 bool page_do_bit17_swizzling, bool needs_clflush)
600{
601 char *vaddr;
602 int ret;
603
604 vaddr = kmap(page);
605 if (needs_clflush)
23c18c71
DV
606 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607 page_length,
608 page_do_bit17_swizzling);
d174bd64
DV
609
610 if (page_do_bit17_swizzling)
611 ret = __copy_to_user_swizzled(user_data,
612 vaddr, shmem_page_offset,
613 page_length);
614 else
615 ret = __copy_to_user(user_data,
616 vaddr + shmem_page_offset,
617 page_length);
618 kunmap(page);
619
f60d7f0c 620 return ret ? - EFAULT : 0;
d174bd64
DV
621}
622
eb01459f 623static int
dbf7bff0
DV
624i915_gem_shmem_pread(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
626 struct drm_i915_gem_pread *args,
627 struct drm_file *file)
eb01459f 628{
8461d226 629 char __user *user_data;
eb01459f 630 ssize_t remain;
8461d226 631 loff_t offset;
eb2c0c81 632 int shmem_page_offset, page_length, ret = 0;
8461d226 633 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 634 int prefaulted = 0;
8489731c 635 int needs_clflush = 0;
67d5a50c 636 struct sg_page_iter sg_iter;
eb01459f 637
2bb4629a 638 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
639 remain = args->size;
640
8461d226 641 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 642
4c914c0c 643 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
644 if (ret)
645 return ret;
646
8461d226 647 offset = args->offset;
eb01459f 648
67d5a50c
ID
649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650 offset >> PAGE_SHIFT) {
2db76d7c 651 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
652
653 if (remain <= 0)
654 break;
655
eb01459f
EA
656 /* Operation in this page
657 *
eb01459f 658 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
659 * page_length = bytes to copy for this page
660 */
c8cbbb8b 661 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
662 page_length = remain;
663 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 665
8461d226
DV
666 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667 (page_to_phys(page) & (1 << 17)) != 0;
668
d174bd64
DV
669 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670 user_data, page_do_bit17_swizzling,
671 needs_clflush);
672 if (ret == 0)
673 goto next_page;
dbf7bff0 674
dbf7bff0
DV
675 mutex_unlock(&dev->struct_mutex);
676
d330a953 677 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 678 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
679 /* Userspace is tricking us, but we've already clobbered
680 * its pages with the prefault and promised to write the
681 * data up to the first fault. Hence ignore any errors
682 * and just continue. */
683 (void)ret;
684 prefaulted = 1;
685 }
eb01459f 686
d174bd64
DV
687 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688 user_data, page_do_bit17_swizzling,
689 needs_clflush);
eb01459f 690
dbf7bff0 691 mutex_lock(&dev->struct_mutex);
f60d7f0c 692
f60d7f0c 693 if (ret)
8461d226 694 goto out;
8461d226 695
17793c9a 696next_page:
eb01459f 697 remain -= page_length;
8461d226 698 user_data += page_length;
eb01459f
EA
699 offset += page_length;
700 }
701
4f27b75d 702out:
f60d7f0c
CW
703 i915_gem_object_unpin_pages(obj);
704
eb01459f
EA
705 return ret;
706}
707
673a394b
EA
708/**
709 * Reads data from the object referenced by handle.
710 *
711 * On error, the contents of *data are undefined.
712 */
713int
714i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 715 struct drm_file *file)
673a394b
EA
716{
717 struct drm_i915_gem_pread *args = data;
05394f39 718 struct drm_i915_gem_object *obj;
35b62a89 719 int ret = 0;
673a394b 720
51311d0a
CW
721 if (args->size == 0)
722 return 0;
723
724 if (!access_ok(VERIFY_WRITE,
2bb4629a 725 to_user_ptr(args->data_ptr),
51311d0a
CW
726 args->size))
727 return -EFAULT;
728
4f27b75d 729 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 730 if (ret)
4f27b75d 731 return ret;
673a394b 732
05394f39 733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 734 if (&obj->base == NULL) {
1d7cfea1
CW
735 ret = -ENOENT;
736 goto unlock;
4f27b75d 737 }
673a394b 738
7dcd2499 739 /* Bounds check source. */
05394f39
CW
740 if (args->offset > obj->base.size ||
741 args->size > obj->base.size - args->offset) {
ce9d419d 742 ret = -EINVAL;
35b62a89 743 goto out;
ce9d419d
CW
744 }
745
1286ff73
DV
746 /* prime objects have no backing filp to GEM pread/pwrite
747 * pages from.
748 */
749 if (!obj->base.filp) {
750 ret = -EINVAL;
751 goto out;
752 }
753
db53a302
CW
754 trace_i915_gem_object_pread(obj, args->offset, args->size);
755
dbf7bff0 756 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 757
35b62a89 758out:
05394f39 759 drm_gem_object_unreference(&obj->base);
1d7cfea1 760unlock:
4f27b75d 761 mutex_unlock(&dev->struct_mutex);
eb01459f 762 return ret;
673a394b
EA
763}
764
0839ccb8
KP
765/* This is the fast write path which cannot handle
766 * page faults in the source data
9b7530cc 767 */
0839ccb8
KP
768
769static inline int
770fast_user_write(struct io_mapping *mapping,
771 loff_t page_base, int page_offset,
772 char __user *user_data,
773 int length)
9b7530cc 774{
4f0c7cfb
BW
775 void __iomem *vaddr_atomic;
776 void *vaddr;
0839ccb8 777 unsigned long unwritten;
9b7530cc 778
3e4d3af5 779 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
780 /* We can use the cpu mem copy function because this is X86. */
781 vaddr = (void __force*)vaddr_atomic + page_offset;
782 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 783 user_data, length);
3e4d3af5 784 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 785 return unwritten;
0839ccb8
KP
786}
787
3de09aa3
EA
788/**
789 * This is the fast pwrite path, where we copy the data directly from the
790 * user into the GTT, uncached.
791 */
673a394b 792static int
05394f39
CW
793i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794 struct drm_i915_gem_object *obj,
3de09aa3 795 struct drm_i915_gem_pwrite *args,
05394f39 796 struct drm_file *file)
673a394b 797{
3e31c6c0 798 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 799 ssize_t remain;
0839ccb8 800 loff_t offset, page_base;
673a394b 801 char __user *user_data;
935aaa69
DV
802 int page_offset, page_length, ret;
803
1ec9e26d 804 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
805 if (ret)
806 goto out;
807
808 ret = i915_gem_object_set_to_gtt_domain(obj, true);
809 if (ret)
810 goto out_unpin;
811
812 ret = i915_gem_object_put_fence(obj);
813 if (ret)
814 goto out_unpin;
673a394b 815
2bb4629a 816 user_data = to_user_ptr(args->data_ptr);
673a394b 817 remain = args->size;
673a394b 818
f343c5f6 819 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
820
821 while (remain > 0) {
822 /* Operation in this page
823 *
0839ccb8
KP
824 * page_base = page offset within aperture
825 * page_offset = offset within page
826 * page_length = bytes to copy for this page
673a394b 827 */
c8cbbb8b
CW
828 page_base = offset & PAGE_MASK;
829 page_offset = offset_in_page(offset);
0839ccb8
KP
830 page_length = remain;
831 if ((page_offset + remain) > PAGE_SIZE)
832 page_length = PAGE_SIZE - page_offset;
833
0839ccb8 834 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
835 * source page isn't available. Return the error and we'll
836 * retry in the slow path.
0839ccb8 837 */
5d4545ae 838 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
839 page_offset, user_data, page_length)) {
840 ret = -EFAULT;
841 goto out_unpin;
842 }
673a394b 843
0839ccb8
KP
844 remain -= page_length;
845 user_data += page_length;
846 offset += page_length;
673a394b 847 }
673a394b 848
935aaa69 849out_unpin:
d7f46fc4 850 i915_gem_object_ggtt_unpin(obj);
935aaa69 851out:
3de09aa3 852 return ret;
673a394b
EA
853}
854
d174bd64
DV
855/* Per-page copy function for the shmem pwrite fastpath.
856 * Flushes invalid cachelines before writing to the target if
857 * needs_clflush_before is set and flushes out any written cachelines after
858 * writing if needs_clflush is set. */
3043c60c 859static int
d174bd64
DV
860shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861 char __user *user_data,
862 bool page_do_bit17_swizzling,
863 bool needs_clflush_before,
864 bool needs_clflush_after)
673a394b 865{
d174bd64 866 char *vaddr;
673a394b 867 int ret;
3de09aa3 868
e7e58eb5 869 if (unlikely(page_do_bit17_swizzling))
d174bd64 870 return -EINVAL;
3de09aa3 871
d174bd64
DV
872 vaddr = kmap_atomic(page);
873 if (needs_clflush_before)
874 drm_clflush_virt_range(vaddr + shmem_page_offset,
875 page_length);
c2831a94
CW
876 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877 user_data, page_length);
d174bd64
DV
878 if (needs_clflush_after)
879 drm_clflush_virt_range(vaddr + shmem_page_offset,
880 page_length);
881 kunmap_atomic(vaddr);
3de09aa3 882
755d2218 883 return ret ? -EFAULT : 0;
3de09aa3
EA
884}
885
d174bd64
DV
886/* Only difference to the fast-path function is that this can handle bit17
887 * and uses non-atomic copy and kmap functions. */
3043c60c 888static int
d174bd64
DV
889shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890 char __user *user_data,
891 bool page_do_bit17_swizzling,
892 bool needs_clflush_before,
893 bool needs_clflush_after)
673a394b 894{
d174bd64
DV
895 char *vaddr;
896 int ret;
e5281ccd 897
d174bd64 898 vaddr = kmap(page);
e7e58eb5 899 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
900 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901 page_length,
902 page_do_bit17_swizzling);
d174bd64
DV
903 if (page_do_bit17_swizzling)
904 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
905 user_data,
906 page_length);
d174bd64
DV
907 else
908 ret = __copy_from_user(vaddr + shmem_page_offset,
909 user_data,
910 page_length);
911 if (needs_clflush_after)
23c18c71
DV
912 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913 page_length,
914 page_do_bit17_swizzling);
d174bd64 915 kunmap(page);
40123c1f 916
755d2218 917 return ret ? -EFAULT : 0;
40123c1f
EA
918}
919
40123c1f 920static int
e244a443
DV
921i915_gem_shmem_pwrite(struct drm_device *dev,
922 struct drm_i915_gem_object *obj,
923 struct drm_i915_gem_pwrite *args,
924 struct drm_file *file)
40123c1f 925{
40123c1f 926 ssize_t remain;
8c59967c
DV
927 loff_t offset;
928 char __user *user_data;
eb2c0c81 929 int shmem_page_offset, page_length, ret = 0;
8c59967c 930 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 931 int hit_slowpath = 0;
58642885
DV
932 int needs_clflush_after = 0;
933 int needs_clflush_before = 0;
67d5a50c 934 struct sg_page_iter sg_iter;
40123c1f 935
2bb4629a 936 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
937 remain = args->size;
938
8c59967c 939 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 940
58642885
DV
941 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942 /* If we're not in the cpu write domain, set ourself into the gtt
943 * write domain and manually flush cachelines (if required). This
944 * optimizes for the case when the gpu will use the data
945 * right away and we therefore have to clflush anyway. */
2c22569b 946 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
947 ret = i915_gem_object_wait_rendering(obj, false);
948 if (ret)
949 return ret;
c8725f3d
CW
950
951 i915_gem_object_retire(obj);
58642885 952 }
c76ce038
CW
953 /* Same trick applies to invalidate partially written cachelines read
954 * before writing. */
955 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956 needs_clflush_before =
957 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 958
755d2218
CW
959 ret = i915_gem_object_get_pages(obj);
960 if (ret)
961 return ret;
962
963 i915_gem_object_pin_pages(obj);
964
673a394b 965 offset = args->offset;
05394f39 966 obj->dirty = 1;
673a394b 967
67d5a50c
ID
968 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969 offset >> PAGE_SHIFT) {
2db76d7c 970 struct page *page = sg_page_iter_page(&sg_iter);
58642885 971 int partial_cacheline_write;
e5281ccd 972
9da3da66
CW
973 if (remain <= 0)
974 break;
975
40123c1f
EA
976 /* Operation in this page
977 *
40123c1f 978 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
979 * page_length = bytes to copy for this page
980 */
c8cbbb8b 981 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
982
983 page_length = remain;
984 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 986
58642885
DV
987 /* If we don't overwrite a cacheline completely we need to be
988 * careful to have up-to-date data by first clflushing. Don't
989 * overcomplicate things and flush the entire patch. */
990 partial_cacheline_write = needs_clflush_before &&
991 ((shmem_page_offset | page_length)
992 & (boot_cpu_data.x86_clflush_size - 1));
993
8c59967c
DV
994 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995 (page_to_phys(page) & (1 << 17)) != 0;
996
d174bd64
DV
997 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001 if (ret == 0)
1002 goto next_page;
e244a443
DV
1003
1004 hit_slowpath = 1;
e244a443 1005 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1006 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007 user_data, page_do_bit17_swizzling,
1008 partial_cacheline_write,
1009 needs_clflush_after);
40123c1f 1010
e244a443 1011 mutex_lock(&dev->struct_mutex);
755d2218 1012
755d2218 1013 if (ret)
8c59967c 1014 goto out;
8c59967c 1015
17793c9a 1016next_page:
40123c1f 1017 remain -= page_length;
8c59967c 1018 user_data += page_length;
40123c1f 1019 offset += page_length;
673a394b
EA
1020 }
1021
fbd5a26d 1022out:
755d2218
CW
1023 i915_gem_object_unpin_pages(obj);
1024
e244a443 1025 if (hit_slowpath) {
8dcf015e
DV
1026 /*
1027 * Fixup: Flush cpu caches in case we didn't flush the dirty
1028 * cachelines in-line while writing and the object moved
1029 * out of the cpu write domain while we've dropped the lock.
1030 */
1031 if (!needs_clflush_after &&
1032 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1033 if (i915_gem_clflush_object(obj, obj->pin_display))
1034 i915_gem_chipset_flush(dev);
e244a443 1035 }
8c59967c 1036 }
673a394b 1037
58642885 1038 if (needs_clflush_after)
e76e9aeb 1039 i915_gem_chipset_flush(dev);
58642885 1040
40123c1f 1041 return ret;
673a394b
EA
1042}
1043
1044/**
1045 * Writes data to the object referenced by handle.
1046 *
1047 * On error, the contents of the buffer that were to be modified are undefined.
1048 */
1049int
1050i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1051 struct drm_file *file)
673a394b
EA
1052{
1053 struct drm_i915_gem_pwrite *args = data;
05394f39 1054 struct drm_i915_gem_object *obj;
51311d0a
CW
1055 int ret;
1056
1057 if (args->size == 0)
1058 return 0;
1059
1060 if (!access_ok(VERIFY_READ,
2bb4629a 1061 to_user_ptr(args->data_ptr),
51311d0a
CW
1062 args->size))
1063 return -EFAULT;
1064
d330a953 1065 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1066 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067 args->size);
1068 if (ret)
1069 return -EFAULT;
1070 }
673a394b 1071
fbd5a26d 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
fbd5a26d 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
fbd5a26d 1080 }
673a394b 1081
7dcd2499 1082 /* Bounds check destination. */
05394f39
CW
1083 if (args->offset > obj->base.size ||
1084 args->size > obj->base.size - args->offset) {
ce9d419d 1085 ret = -EINVAL;
35b62a89 1086 goto out;
ce9d419d
CW
1087 }
1088
1286ff73
DV
1089 /* prime objects have no backing filp to GEM pread/pwrite
1090 * pages from.
1091 */
1092 if (!obj->base.filp) {
1093 ret = -EINVAL;
1094 goto out;
1095 }
1096
db53a302
CW
1097 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
935aaa69 1099 ret = -EFAULT;
673a394b
EA
1100 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101 * it would end up going through the fenced access, and we'll get
1102 * different detiling behavior between reading and writing.
1103 * pread/pwrite currently are reading and writing from the CPU
1104 * perspective, requiring manual detiling by the client.
1105 */
2c22569b
CW
1106 if (obj->tiling_mode == I915_TILING_NONE &&
1107 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108 cpu_write_needs_clflush(obj)) {
fbd5a26d 1109 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1110 /* Note that the gtt paths might fail with non-page-backed user
1111 * pointers (e.g. gtt mappings when moving data between
1112 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1113 }
673a394b 1114
6a2c4232
CW
1115 if (ret == -EFAULT || ret == -ENOSPC) {
1116 if (obj->phys_handle)
1117 ret = i915_gem_phys_pwrite(obj, args, file);
1118 else
1119 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120 }
5c0480f2 1121
35b62a89 1122out:
05394f39 1123 drm_gem_object_unreference(&obj->base);
1d7cfea1 1124unlock:
fbd5a26d 1125 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1126 return ret;
1127}
1128
b361237b 1129int
33196ded 1130i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1131 bool interruptible)
1132{
1f83fee0 1133 if (i915_reset_in_progress(error)) {
b361237b
CW
1134 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135 * -EIO unconditionally for these. */
1136 if (!interruptible)
1137 return -EIO;
1138
1f83fee0
DV
1139 /* Recovery complete, but the reset failed ... */
1140 if (i915_terminally_wedged(error))
b361237b
CW
1141 return -EIO;
1142
6689c167
MA
1143 /*
1144 * Check if GPU Reset is in progress - we need intel_ring_begin
1145 * to work properly to reinit the hw state while the gpu is
1146 * still marked as reset-in-progress. Handle this with a flag.
1147 */
1148 if (!error->reload_in_reset)
1149 return -EAGAIN;
b361237b
CW
1150 }
1151
1152 return 0;
1153}
1154
1155/*
b6660d59 1156 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1157 */
84c33a64 1158int
b6660d59 1159i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1160{
1161 int ret;
1162
b6660d59 1163 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1164
1165 ret = 0;
b6660d59 1166 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1167 ret = i915_add_request(req->ring);
b361237b
CW
1168
1169 return ret;
1170}
1171
094f9a54
CW
1172static void fake_irq(unsigned long data)
1173{
1174 wake_up_process((struct task_struct *)data);
1175}
1176
1177static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1178 struct intel_engine_cs *ring)
094f9a54
CW
1179{
1180 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1181}
1182
b29c19b6
CW
1183static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1184{
1185 if (file_priv == NULL)
1186 return true;
1187
1188 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1189}
1190
b361237b 1191/**
9c654818
JH
1192 * __i915_wait_request - wait until execution of request has finished
1193 * @req: duh!
1194 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1195 * @interruptible: do an interruptible wait (normally yes)
1196 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1197 *
f69061be
DV
1198 * Note: It is of utmost importance that the passed in seqno and reset_counter
1199 * values have been read by the caller in an smp safe manner. Where read-side
1200 * locks are involved, it is sufficient to read the reset_counter before
1201 * unlocking the lock that protects the seqno. For lockless tricks, the
1202 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1203 * inserted.
1204 *
9c654818 1205 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1206 * errno with remaining time filled in timeout argument.
1207 */
9c654818 1208int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1209 unsigned reset_counter,
b29c19b6 1210 bool interruptible,
5ed0bdf2 1211 s64 *timeout,
b29c19b6 1212 struct drm_i915_file_private *file_priv)
b361237b 1213{
9c654818 1214 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1215 struct drm_device *dev = ring->dev;
3e31c6c0 1216 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1217 const bool irq_test_in_progress =
1218 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1219 DEFINE_WAIT(wait);
47e9766d 1220 unsigned long timeout_expire;
5ed0bdf2 1221 s64 before, now;
b361237b
CW
1222 int ret;
1223
9df7575f 1224 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1225
1b5a433a 1226 if (i915_gem_request_completed(req, true))
b361237b
CW
1227 return 0;
1228
5ed0bdf2 1229 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1230
ec5cc0f9 1231 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1232 gen6_rps_boost(dev_priv);
1233 if (file_priv)
1234 mod_delayed_work(dev_priv->wq,
1235 &file_priv->mm.idle_work,
1236 msecs_to_jiffies(100));
1237 }
1238
168c3f21 1239 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1240 return -ENODEV;
1241
094f9a54 1242 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1243 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1244 before = ktime_get_raw_ns();
094f9a54
CW
1245 for (;;) {
1246 struct timer_list timer;
b361237b 1247
094f9a54
CW
1248 prepare_to_wait(&ring->irq_queue, &wait,
1249 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1250
f69061be
DV
1251 /* We need to check whether any gpu reset happened in between
1252 * the caller grabbing the seqno and now ... */
094f9a54
CW
1253 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1254 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1255 * is truely gone. */
1256 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1257 if (ret == 0)
1258 ret = -EAGAIN;
1259 break;
1260 }
f69061be 1261
1b5a433a 1262 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1263 ret = 0;
1264 break;
1265 }
b361237b 1266
094f9a54
CW
1267 if (interruptible && signal_pending(current)) {
1268 ret = -ERESTARTSYS;
1269 break;
1270 }
1271
47e9766d 1272 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1273 ret = -ETIME;
1274 break;
1275 }
1276
1277 timer.function = NULL;
1278 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1279 unsigned long expire;
1280
094f9a54 1281 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1282 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1283 mod_timer(&timer, expire);
1284 }
1285
5035c275 1286 io_schedule();
094f9a54 1287
094f9a54
CW
1288 if (timer.function) {
1289 del_singleshot_timer_sync(&timer);
1290 destroy_timer_on_stack(&timer);
1291 }
1292 }
5ed0bdf2 1293 now = ktime_get_raw_ns();
74328ee5 1294 trace_i915_gem_request_wait_end(req);
b361237b 1295
168c3f21
MK
1296 if (!irq_test_in_progress)
1297 ring->irq_put(ring);
094f9a54
CW
1298
1299 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1300
1301 if (timeout) {
5ed0bdf2
TG
1302 s64 tres = *timeout - (now - before);
1303
1304 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1305 }
1306
094f9a54 1307 return ret;
b361237b
CW
1308}
1309
1310/**
a4b3a571 1311 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1312 * request and object lists appropriately for that event.
1313 */
1314int
a4b3a571 1315i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1316{
a4b3a571
DV
1317 struct drm_device *dev;
1318 struct drm_i915_private *dev_priv;
1319 bool interruptible;
16e9a21f 1320 unsigned reset_counter;
b361237b
CW
1321 int ret;
1322
a4b3a571
DV
1323 BUG_ON(req == NULL);
1324
1325 dev = req->ring->dev;
1326 dev_priv = dev->dev_private;
1327 interruptible = dev_priv->mm.interruptible;
1328
b361237b 1329 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1330
33196ded 1331 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1332 if (ret)
1333 return ret;
1334
a4b3a571 1335 ret = i915_gem_check_olr(req);
b361237b
CW
1336 if (ret)
1337 return ret;
1338
16e9a21f 1339 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1340 i915_gem_request_reference(req);
9c654818
JH
1341 ret = __i915_wait_request(req, reset_counter,
1342 interruptible, NULL, NULL);
a4b3a571
DV
1343 i915_gem_request_unreference(req);
1344 return ret;
b361237b
CW
1345}
1346
d26e3af8 1347static int
8e639549 1348i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1349{
c8725f3d
CW
1350 if (!obj->active)
1351 return 0;
d26e3af8
CW
1352
1353 /* Manually manage the write flush as we may have not yet
1354 * retired the buffer.
1355 *
97b2a6a1
JH
1356 * Note that the last_write_req is always the earlier of
1357 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1358 * we know we have passed the last write.
1359 */
97b2a6a1 1360 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1361
1362 return 0;
1363}
1364
b361237b
CW
1365/**
1366 * Ensures that all rendering to the object has completed and the object is
1367 * safe to unbind from the GTT or access from the CPU.
1368 */
1369static __must_check int
1370i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1371 bool readonly)
1372{
97b2a6a1 1373 struct drm_i915_gem_request *req;
b361237b
CW
1374 int ret;
1375
97b2a6a1
JH
1376 req = readonly ? obj->last_write_req : obj->last_read_req;
1377 if (!req)
b361237b
CW
1378 return 0;
1379
a4b3a571 1380 ret = i915_wait_request(req);
b361237b
CW
1381 if (ret)
1382 return ret;
1383
8e639549 1384 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1385}
1386
3236f57a
CW
1387/* A nonblocking variant of the above wait. This is a highly dangerous routine
1388 * as the object state may change during this call.
1389 */
1390static __must_check int
1391i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1392 struct drm_i915_file_private *file_priv,
3236f57a
CW
1393 bool readonly)
1394{
97b2a6a1 1395 struct drm_i915_gem_request *req;
3236f57a
CW
1396 struct drm_device *dev = obj->base.dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1398 unsigned reset_counter;
3236f57a
CW
1399 int ret;
1400
1401 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1402 BUG_ON(!dev_priv->mm.interruptible);
1403
97b2a6a1
JH
1404 req = readonly ? obj->last_write_req : obj->last_read_req;
1405 if (!req)
3236f57a
CW
1406 return 0;
1407
33196ded 1408 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1409 if (ret)
1410 return ret;
1411
b6660d59 1412 ret = i915_gem_check_olr(req);
3236f57a
CW
1413 if (ret)
1414 return ret;
1415
f69061be 1416 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1417 i915_gem_request_reference(req);
3236f57a 1418 mutex_unlock(&dev->struct_mutex);
9c654818 1419 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1420 mutex_lock(&dev->struct_mutex);
ff865885 1421 i915_gem_request_unreference(req);
d26e3af8
CW
1422 if (ret)
1423 return ret;
3236f57a 1424
8e639549 1425 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1426}
1427
673a394b 1428/**
2ef7eeaa
EA
1429 * Called when user space prepares to use an object with the CPU, either
1430 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1431 */
1432int
1433i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1434 struct drm_file *file)
673a394b
EA
1435{
1436 struct drm_i915_gem_set_domain *args = data;
05394f39 1437 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1438 uint32_t read_domains = args->read_domains;
1439 uint32_t write_domain = args->write_domain;
673a394b
EA
1440 int ret;
1441
2ef7eeaa 1442 /* Only handle setting domains to types used by the CPU. */
21d509e3 1443 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1444 return -EINVAL;
1445
21d509e3 1446 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1447 return -EINVAL;
1448
1449 /* Having something in the write domain implies it's in the read
1450 * domain, and only that read domain. Enforce that in the request.
1451 */
1452 if (write_domain != 0 && read_domains != write_domain)
1453 return -EINVAL;
1454
76c1dec1 1455 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1456 if (ret)
76c1dec1 1457 return ret;
1d7cfea1 1458
05394f39 1459 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1460 if (&obj->base == NULL) {
1d7cfea1
CW
1461 ret = -ENOENT;
1462 goto unlock;
76c1dec1 1463 }
673a394b 1464
3236f57a
CW
1465 /* Try to flush the object off the GPU without holding the lock.
1466 * We will repeat the flush holding the lock in the normal manner
1467 * to catch cases where we are gazumped.
1468 */
6e4930f6
CW
1469 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1470 file->driver_priv,
1471 !write_domain);
3236f57a
CW
1472 if (ret)
1473 goto unref;
1474
2ef7eeaa
EA
1475 if (read_domains & I915_GEM_DOMAIN_GTT) {
1476 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1477
1478 /* Silently promote "you're not bound, there was nothing to do"
1479 * to success, since the client was just asking us to
1480 * make sure everything was done.
1481 */
1482 if (ret == -EINVAL)
1483 ret = 0;
2ef7eeaa 1484 } else {
e47c68e9 1485 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1486 }
1487
3236f57a 1488unref:
05394f39 1489 drm_gem_object_unreference(&obj->base);
1d7cfea1 1490unlock:
673a394b
EA
1491 mutex_unlock(&dev->struct_mutex);
1492 return ret;
1493}
1494
1495/**
1496 * Called when user space has done writes to this buffer
1497 */
1498int
1499i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1500 struct drm_file *file)
673a394b
EA
1501{
1502 struct drm_i915_gem_sw_finish *args = data;
05394f39 1503 struct drm_i915_gem_object *obj;
673a394b
EA
1504 int ret = 0;
1505
76c1dec1 1506 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1507 if (ret)
76c1dec1 1508 return ret;
1d7cfea1 1509
05394f39 1510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1511 if (&obj->base == NULL) {
1d7cfea1
CW
1512 ret = -ENOENT;
1513 goto unlock;
673a394b
EA
1514 }
1515
673a394b 1516 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1517 if (obj->pin_display)
1518 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1519
05394f39 1520 drm_gem_object_unreference(&obj->base);
1d7cfea1 1521unlock:
673a394b
EA
1522 mutex_unlock(&dev->struct_mutex);
1523 return ret;
1524}
1525
1526/**
1527 * Maps the contents of an object, returning the address it is mapped
1528 * into.
1529 *
1530 * While the mapping holds a reference on the contents of the object, it doesn't
1531 * imply a ref on the object itself.
34367381
DV
1532 *
1533 * IMPORTANT:
1534 *
1535 * DRM driver writers who look a this function as an example for how to do GEM
1536 * mmap support, please don't implement mmap support like here. The modern way
1537 * to implement DRM mmap support is with an mmap offset ioctl (like
1538 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539 * That way debug tooling like valgrind will understand what's going on, hiding
1540 * the mmap call in a driver private ioctl will break that. The i915 driver only
1541 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1542 */
1543int
1544i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1545 struct drm_file *file)
673a394b
EA
1546{
1547 struct drm_i915_gem_mmap *args = data;
1548 struct drm_gem_object *obj;
673a394b
EA
1549 unsigned long addr;
1550
05394f39 1551 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1552 if (obj == NULL)
bf79cb91 1553 return -ENOENT;
673a394b 1554
1286ff73
DV
1555 /* prime objects have no backing filp to GEM mmap
1556 * pages from.
1557 */
1558 if (!obj->filp) {
1559 drm_gem_object_unreference_unlocked(obj);
1560 return -EINVAL;
1561 }
1562
6be5ceb0 1563 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1564 PROT_READ | PROT_WRITE, MAP_SHARED,
1565 args->offset);
bc9025bd 1566 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1567 if (IS_ERR((void *)addr))
1568 return addr;
1569
1570 args->addr_ptr = (uint64_t) addr;
1571
1572 return 0;
1573}
1574
de151cf6
JB
1575/**
1576 * i915_gem_fault - fault a page into the GTT
1577 * vma: VMA in question
1578 * vmf: fault info
1579 *
1580 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1581 * from userspace. The fault handler takes care of binding the object to
1582 * the GTT (if needed), allocating and programming a fence register (again,
1583 * only if needed based on whether the old reg is still valid or the object
1584 * is tiled) and inserting a new PTE into the faulting process.
1585 *
1586 * Note that the faulting process may involve evicting existing objects
1587 * from the GTT and/or fence registers to make room. So performance may
1588 * suffer if the GTT working set is large or there are few fence registers
1589 * left.
1590 */
1591int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1592{
05394f39
CW
1593 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1594 struct drm_device *dev = obj->base.dev;
3e31c6c0 1595 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1596 pgoff_t page_offset;
1597 unsigned long pfn;
1598 int ret = 0;
0f973f27 1599 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1600
f65c9168
PZ
1601 intel_runtime_pm_get(dev_priv);
1602
de151cf6
JB
1603 /* We don't use vmf->pgoff since that has the fake offset */
1604 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1605 PAGE_SHIFT;
1606
d9bc7e9f
CW
1607 ret = i915_mutex_lock_interruptible(dev);
1608 if (ret)
1609 goto out;
a00b10c3 1610
db53a302
CW
1611 trace_i915_gem_object_fault(obj, page_offset, true, write);
1612
6e4930f6
CW
1613 /* Try to flush the object off the GPU first without holding the lock.
1614 * Upon reacquiring the lock, we will perform our sanity checks and then
1615 * repeat the flush holding the lock in the normal manner to catch cases
1616 * where we are gazumped.
1617 */
1618 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1619 if (ret)
1620 goto unlock;
1621
eb119bd6
CW
1622 /* Access to snoopable pages through the GTT is incoherent. */
1623 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1624 ret = -EFAULT;
eb119bd6
CW
1625 goto unlock;
1626 }
1627
d9bc7e9f 1628 /* Now bind it into the GTT if needed */
1ec9e26d 1629 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1630 if (ret)
1631 goto unlock;
4a684a41 1632
c9839303
CW
1633 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1634 if (ret)
1635 goto unpin;
74898d7e 1636
06d98131 1637 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1638 if (ret)
c9839303 1639 goto unpin;
7d1c4804 1640
b90b91d8 1641 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1642 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1643 pfn >>= PAGE_SHIFT;
de151cf6 1644
b90b91d8 1645 if (!obj->fault_mappable) {
beff0d0f
VS
1646 unsigned long size = min_t(unsigned long,
1647 vma->vm_end - vma->vm_start,
1648 obj->base.size);
b90b91d8
CW
1649 int i;
1650
beff0d0f 1651 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1652 ret = vm_insert_pfn(vma,
1653 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1654 pfn + i);
1655 if (ret)
1656 break;
1657 }
1658
1659 obj->fault_mappable = true;
1660 } else
1661 ret = vm_insert_pfn(vma,
1662 (unsigned long)vmf->virtual_address,
1663 pfn + page_offset);
c9839303 1664unpin:
d7f46fc4 1665 i915_gem_object_ggtt_unpin(obj);
c715089f 1666unlock:
de151cf6 1667 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1668out:
de151cf6 1669 switch (ret) {
d9bc7e9f 1670 case -EIO:
2232f031
DV
1671 /*
1672 * We eat errors when the gpu is terminally wedged to avoid
1673 * userspace unduly crashing (gl has no provisions for mmaps to
1674 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1675 * and so needs to be reported.
1676 */
1677 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1678 ret = VM_FAULT_SIGBUS;
1679 break;
1680 }
045e769a 1681 case -EAGAIN:
571c608d
DV
1682 /*
1683 * EAGAIN means the gpu is hung and we'll wait for the error
1684 * handler to reset everything when re-faulting in
1685 * i915_mutex_lock_interruptible.
d9bc7e9f 1686 */
c715089f
CW
1687 case 0:
1688 case -ERESTARTSYS:
bed636ab 1689 case -EINTR:
e79e0fe3
DR
1690 case -EBUSY:
1691 /*
1692 * EBUSY is ok: this just means that another thread
1693 * already did the job.
1694 */
f65c9168
PZ
1695 ret = VM_FAULT_NOPAGE;
1696 break;
de151cf6 1697 case -ENOMEM:
f65c9168
PZ
1698 ret = VM_FAULT_OOM;
1699 break;
a7c2e1aa 1700 case -ENOSPC:
45d67817 1701 case -EFAULT:
f65c9168
PZ
1702 ret = VM_FAULT_SIGBUS;
1703 break;
de151cf6 1704 default:
a7c2e1aa 1705 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1706 ret = VM_FAULT_SIGBUS;
1707 break;
de151cf6 1708 }
f65c9168
PZ
1709
1710 intel_runtime_pm_put(dev_priv);
1711 return ret;
de151cf6
JB
1712}
1713
901782b2
CW
1714/**
1715 * i915_gem_release_mmap - remove physical page mappings
1716 * @obj: obj in question
1717 *
af901ca1 1718 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1719 * relinquish ownership of the pages back to the system.
1720 *
1721 * It is vital that we remove the page mapping if we have mapped a tiled
1722 * object through the GTT and then lose the fence register due to
1723 * resource pressure. Similarly if the object has been moved out of the
1724 * aperture, than pages mapped into userspace must be revoked. Removing the
1725 * mapping will then trigger a page fault on the next user access, allowing
1726 * fixup by i915_gem_fault().
1727 */
d05ca301 1728void
05394f39 1729i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1730{
6299f992
CW
1731 if (!obj->fault_mappable)
1732 return;
901782b2 1733
6796cb16
DH
1734 drm_vma_node_unmap(&obj->base.vma_node,
1735 obj->base.dev->anon_inode->i_mapping);
6299f992 1736 obj->fault_mappable = false;
901782b2
CW
1737}
1738
eedd10f4
CW
1739void
1740i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1741{
1742 struct drm_i915_gem_object *obj;
1743
1744 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1745 i915_gem_release_mmap(obj);
1746}
1747
0fa87796 1748uint32_t
e28f8711 1749i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1750{
e28f8711 1751 uint32_t gtt_size;
92b88aeb
CW
1752
1753 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1754 tiling_mode == I915_TILING_NONE)
1755 return size;
92b88aeb
CW
1756
1757 /* Previous chips need a power-of-two fence region when tiling */
1758 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1759 gtt_size = 1024*1024;
92b88aeb 1760 else
e28f8711 1761 gtt_size = 512*1024;
92b88aeb 1762
e28f8711
CW
1763 while (gtt_size < size)
1764 gtt_size <<= 1;
92b88aeb 1765
e28f8711 1766 return gtt_size;
92b88aeb
CW
1767}
1768
de151cf6
JB
1769/**
1770 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1771 * @obj: object to check
1772 *
1773 * Return the required GTT alignment for an object, taking into account
5e783301 1774 * potential fence register mapping.
de151cf6 1775 */
d865110c
ID
1776uint32_t
1777i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1778 int tiling_mode, bool fenced)
de151cf6 1779{
de151cf6
JB
1780 /*
1781 * Minimum alignment is 4k (GTT page size), but might be greater
1782 * if a fence register is needed for the object.
1783 */
d865110c 1784 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1785 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1786 return 4096;
1787
a00b10c3
CW
1788 /*
1789 * Previous chips need to be aligned to the size of the smallest
1790 * fence register that can contain the object.
1791 */
e28f8711 1792 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1793}
1794
d8cb5086
CW
1795static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1796{
1797 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1798 int ret;
1799
0de23977 1800 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1801 return 0;
1802
da494d7c
DV
1803 dev_priv->mm.shrinker_no_lock_stealing = true;
1804
d8cb5086
CW
1805 ret = drm_gem_create_mmap_offset(&obj->base);
1806 if (ret != -ENOSPC)
da494d7c 1807 goto out;
d8cb5086
CW
1808
1809 /* Badly fragmented mmap space? The only way we can recover
1810 * space is by destroying unwanted objects. We can't randomly release
1811 * mmap_offsets as userspace expects them to be persistent for the
1812 * lifetime of the objects. The closest we can is to release the
1813 * offsets on purgeable objects by truncating it and marking it purged,
1814 * which prevents userspace from ever using that object again.
1815 */
21ab4e74
CW
1816 i915_gem_shrink(dev_priv,
1817 obj->base.size >> PAGE_SHIFT,
1818 I915_SHRINK_BOUND |
1819 I915_SHRINK_UNBOUND |
1820 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1821 ret = drm_gem_create_mmap_offset(&obj->base);
1822 if (ret != -ENOSPC)
da494d7c 1823 goto out;
d8cb5086
CW
1824
1825 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1826 ret = drm_gem_create_mmap_offset(&obj->base);
1827out:
1828 dev_priv->mm.shrinker_no_lock_stealing = false;
1829
1830 return ret;
d8cb5086
CW
1831}
1832
1833static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1834{
d8cb5086
CW
1835 drm_gem_free_mmap_offset(&obj->base);
1836}
1837
355a7018 1838static int
ff72145b
DA
1839i915_gem_mmap_gtt(struct drm_file *file,
1840 struct drm_device *dev,
355a7018 1841 uint32_t handle, bool dumb,
ff72145b 1842 uint64_t *offset)
de151cf6 1843{
da761a6e 1844 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1845 struct drm_i915_gem_object *obj;
de151cf6
JB
1846 int ret;
1847
76c1dec1 1848 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1849 if (ret)
76c1dec1 1850 return ret;
de151cf6 1851
ff72145b 1852 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1853 if (&obj->base == NULL) {
1d7cfea1
CW
1854 ret = -ENOENT;
1855 goto unlock;
1856 }
de151cf6 1857
355a7018
TH
1858 /*
1859 * We don't allow dumb mmaps on objects created using another
1860 * interface.
1861 */
1862 WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1863 "Illegal dumb map of accelerated buffer.\n");
1864
5d4545ae 1865 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1866 ret = -E2BIG;
ff56b0bc 1867 goto out;
da761a6e
CW
1868 }
1869
05394f39 1870 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1871 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1872 ret = -EFAULT;
1d7cfea1 1873 goto out;
ab18282d
CW
1874 }
1875
d8cb5086
CW
1876 ret = i915_gem_object_create_mmap_offset(obj);
1877 if (ret)
1878 goto out;
de151cf6 1879
0de23977 1880 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1881
1d7cfea1 1882out:
05394f39 1883 drm_gem_object_unreference(&obj->base);
1d7cfea1 1884unlock:
de151cf6 1885 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1886 return ret;
de151cf6
JB
1887}
1888
355a7018
TH
1889int
1890i915_gem_dumb_map_offset(struct drm_file *file,
1891 struct drm_device *dev,
1892 uint32_t handle,
1893 uint64_t *offset)
1894{
1895 return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1896}
1897
ff72145b
DA
1898/**
1899 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1900 * @dev: DRM device
1901 * @data: GTT mapping ioctl data
1902 * @file: GEM object info
1903 *
1904 * Simply returns the fake offset to userspace so it can mmap it.
1905 * The mmap call will end up in drm_gem_mmap(), which will set things
1906 * up so we can get faults in the handler above.
1907 *
1908 * The fault handler will take care of binding the object into the GTT
1909 * (since it may have been evicted to make room for something), allocating
1910 * a fence register, and mapping the appropriate aperture address into
1911 * userspace.
1912 */
1913int
1914i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1915 struct drm_file *file)
1916{
1917 struct drm_i915_gem_mmap_gtt *args = data;
1918
355a7018 1919 return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
ff72145b
DA
1920}
1921
5537252b
CW
1922static inline int
1923i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1924{
1925 return obj->madv == I915_MADV_DONTNEED;
1926}
1927
225067ee
DV
1928/* Immediately discard the backing storage */
1929static void
1930i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1931{
4d6294bf 1932 i915_gem_object_free_mmap_offset(obj);
1286ff73 1933
4d6294bf
CW
1934 if (obj->base.filp == NULL)
1935 return;
e5281ccd 1936
225067ee
DV
1937 /* Our goal here is to return as much of the memory as
1938 * is possible back to the system as we are called from OOM.
1939 * To do this we must instruct the shmfs to drop all of its
1940 * backing pages, *now*.
1941 */
5537252b 1942 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1943 obj->madv = __I915_MADV_PURGED;
1944}
e5281ccd 1945
5537252b
CW
1946/* Try to discard unwanted pages */
1947static void
1948i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1949{
5537252b
CW
1950 struct address_space *mapping;
1951
1952 switch (obj->madv) {
1953 case I915_MADV_DONTNEED:
1954 i915_gem_object_truncate(obj);
1955 case __I915_MADV_PURGED:
1956 return;
1957 }
1958
1959 if (obj->base.filp == NULL)
1960 return;
1961
1962 mapping = file_inode(obj->base.filp)->i_mapping,
1963 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1964}
1965
5cdf5881 1966static void
05394f39 1967i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1968{
90797e6d
ID
1969 struct sg_page_iter sg_iter;
1970 int ret;
1286ff73 1971
05394f39 1972 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1973
6c085a72
CW
1974 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1975 if (ret) {
1976 /* In the event of a disaster, abandon all caches and
1977 * hope for the best.
1978 */
1979 WARN_ON(ret != -EIO);
2c22569b 1980 i915_gem_clflush_object(obj, true);
6c085a72
CW
1981 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1982 }
1983
6dacfd2f 1984 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1985 i915_gem_object_save_bit_17_swizzle(obj);
1986
05394f39
CW
1987 if (obj->madv == I915_MADV_DONTNEED)
1988 obj->dirty = 0;
3ef94daa 1989
90797e6d 1990 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1991 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1992
05394f39 1993 if (obj->dirty)
9da3da66 1994 set_page_dirty(page);
3ef94daa 1995
05394f39 1996 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1997 mark_page_accessed(page);
3ef94daa 1998
9da3da66 1999 page_cache_release(page);
3ef94daa 2000 }
05394f39 2001 obj->dirty = 0;
673a394b 2002
9da3da66
CW
2003 sg_free_table(obj->pages);
2004 kfree(obj->pages);
37e680a1 2005}
6c085a72 2006
dd624afd 2007int
37e680a1
CW
2008i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2009{
2010 const struct drm_i915_gem_object_ops *ops = obj->ops;
2011
2f745ad3 2012 if (obj->pages == NULL)
37e680a1
CW
2013 return 0;
2014
a5570178
CW
2015 if (obj->pages_pin_count)
2016 return -EBUSY;
2017
9843877d 2018 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2019
a2165e31
CW
2020 /* ->put_pages might need to allocate memory for the bit17 swizzle
2021 * array, hence protect them from being reaped by removing them from gtt
2022 * lists early. */
35c20a60 2023 list_del(&obj->global_list);
a2165e31 2024
37e680a1 2025 ops->put_pages(obj);
05394f39 2026 obj->pages = NULL;
37e680a1 2027
5537252b 2028 i915_gem_object_invalidate(obj);
6c085a72
CW
2029
2030 return 0;
2031}
2032
21ab4e74
CW
2033unsigned long
2034i915_gem_shrink(struct drm_i915_private *dev_priv,
2035 long target, unsigned flags)
6c085a72 2036{
60a53727
CW
2037 const struct {
2038 struct list_head *list;
2039 unsigned int bit;
2040 } phases[] = {
2041 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2042 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2043 { NULL, 0 },
2044 }, *phase;
d9973b43 2045 unsigned long count = 0;
6c085a72 2046
57094f82 2047 /*
c8725f3d 2048 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2049 * (due to retiring requests) we have to strictly process only
2050 * one element of the list at the time, and recheck the list
2051 * on every iteration.
c8725f3d
CW
2052 *
2053 * In particular, we must hold a reference whilst removing the
2054 * object as we may end up waiting for and/or retiring the objects.
2055 * This might release the final reference (held by the active list)
2056 * and result in the object being freed from under us. This is
2057 * similar to the precautions the eviction code must take whilst
2058 * removing objects.
2059 *
2060 * Also note that although these lists do not hold a reference to
2061 * the object we can safely grab one here: The final object
2062 * unreferencing and the bound_list are both protected by the
2063 * dev->struct_mutex and so we won't ever be able to observe an
2064 * object on the bound_list with a reference count equals 0.
57094f82 2065 */
60a53727 2066 for (phase = phases; phase->list; phase++) {
21ab4e74 2067 struct list_head still_in_list;
c8725f3d 2068
60a53727
CW
2069 if ((flags & phase->bit) == 0)
2070 continue;
80dcfdbd 2071
21ab4e74 2072 INIT_LIST_HEAD(&still_in_list);
60a53727 2073 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2074 struct drm_i915_gem_object *obj;
2075 struct i915_vma *vma, *v;
57094f82 2076
60a53727 2077 obj = list_first_entry(phase->list,
21ab4e74
CW
2078 typeof(*obj), global_list);
2079 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2080
60a53727
CW
2081 if (flags & I915_SHRINK_PURGEABLE &&
2082 !i915_gem_object_is_purgeable(obj))
21ab4e74 2083 continue;
57094f82 2084
21ab4e74 2085 drm_gem_object_reference(&obj->base);
80dcfdbd 2086
60a53727
CW
2087 /* For the unbound phase, this should be a no-op! */
2088 list_for_each_entry_safe(vma, v,
2089 &obj->vma_list, vma_link)
21ab4e74
CW
2090 if (i915_vma_unbind(vma))
2091 break;
57094f82 2092
21ab4e74
CW
2093 if (i915_gem_object_put_pages(obj) == 0)
2094 count += obj->base.size >> PAGE_SHIFT;
2095
2096 drm_gem_object_unreference(&obj->base);
2097 }
60a53727 2098 list_splice(&still_in_list, phase->list);
6c085a72
CW
2099 }
2100
2101 return count;
2102}
2103
d9973b43 2104static unsigned long
6c085a72
CW
2105i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2106{
6c085a72 2107 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2108 return i915_gem_shrink(dev_priv, LONG_MAX,
2109 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2110}
2111
37e680a1 2112static int
6c085a72 2113i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2114{
6c085a72 2115 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2116 int page_count, i;
2117 struct address_space *mapping;
9da3da66
CW
2118 struct sg_table *st;
2119 struct scatterlist *sg;
90797e6d 2120 struct sg_page_iter sg_iter;
e5281ccd 2121 struct page *page;
90797e6d 2122 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2123 gfp_t gfp;
e5281ccd 2124
6c085a72
CW
2125 /* Assert that the object is not currently in any GPU domain. As it
2126 * wasn't in the GTT, there shouldn't be any way it could have been in
2127 * a GPU cache
2128 */
2129 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2130 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2131
9da3da66
CW
2132 st = kmalloc(sizeof(*st), GFP_KERNEL);
2133 if (st == NULL)
2134 return -ENOMEM;
2135
05394f39 2136 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2137 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2138 kfree(st);
e5281ccd 2139 return -ENOMEM;
9da3da66 2140 }
e5281ccd 2141
9da3da66
CW
2142 /* Get the list of pages out of our struct file. They'll be pinned
2143 * at this point until we release them.
2144 *
2145 * Fail silently without starting the shrinker
2146 */
496ad9aa 2147 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2148 gfp = mapping_gfp_mask(mapping);
caf49191 2149 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2150 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2151 sg = st->sgl;
2152 st->nents = 0;
2153 for (i = 0; i < page_count; i++) {
6c085a72
CW
2154 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2155 if (IS_ERR(page)) {
21ab4e74
CW
2156 i915_gem_shrink(dev_priv,
2157 page_count,
2158 I915_SHRINK_BOUND |
2159 I915_SHRINK_UNBOUND |
2160 I915_SHRINK_PURGEABLE);
6c085a72
CW
2161 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2162 }
2163 if (IS_ERR(page)) {
2164 /* We've tried hard to allocate the memory by reaping
2165 * our own buffer, now let the real VM do its job and
2166 * go down in flames if truly OOM.
2167 */
6c085a72 2168 i915_gem_shrink_all(dev_priv);
f461d1be 2169 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2170 if (IS_ERR(page))
2171 goto err_pages;
6c085a72 2172 }
426729dc
KRW
2173#ifdef CONFIG_SWIOTLB
2174 if (swiotlb_nr_tbl()) {
2175 st->nents++;
2176 sg_set_page(sg, page, PAGE_SIZE, 0);
2177 sg = sg_next(sg);
2178 continue;
2179 }
2180#endif
90797e6d
ID
2181 if (!i || page_to_pfn(page) != last_pfn + 1) {
2182 if (i)
2183 sg = sg_next(sg);
2184 st->nents++;
2185 sg_set_page(sg, page, PAGE_SIZE, 0);
2186 } else {
2187 sg->length += PAGE_SIZE;
2188 }
2189 last_pfn = page_to_pfn(page);
3bbbe706
DV
2190
2191 /* Check that the i965g/gm workaround works. */
2192 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2193 }
426729dc
KRW
2194#ifdef CONFIG_SWIOTLB
2195 if (!swiotlb_nr_tbl())
2196#endif
2197 sg_mark_end(sg);
74ce6b6c
CW
2198 obj->pages = st;
2199
6dacfd2f 2200 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2201 i915_gem_object_do_bit_17_swizzle(obj);
2202
656bfa3a
DV
2203 if (obj->tiling_mode != I915_TILING_NONE &&
2204 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2205 i915_gem_object_pin_pages(obj);
2206
e5281ccd
CW
2207 return 0;
2208
2209err_pages:
90797e6d
ID
2210 sg_mark_end(sg);
2211 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2212 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2213 sg_free_table(st);
2214 kfree(st);
0820baf3
CW
2215
2216 /* shmemfs first checks if there is enough memory to allocate the page
2217 * and reports ENOSPC should there be insufficient, along with the usual
2218 * ENOMEM for a genuine allocation failure.
2219 *
2220 * We use ENOSPC in our driver to mean that we have run out of aperture
2221 * space and so want to translate the error from shmemfs back to our
2222 * usual understanding of ENOMEM.
2223 */
2224 if (PTR_ERR(page) == -ENOSPC)
2225 return -ENOMEM;
2226 else
2227 return PTR_ERR(page);
673a394b
EA
2228}
2229
37e680a1
CW
2230/* Ensure that the associated pages are gathered from the backing storage
2231 * and pinned into our object. i915_gem_object_get_pages() may be called
2232 * multiple times before they are released by a single call to
2233 * i915_gem_object_put_pages() - once the pages are no longer referenced
2234 * either as a result of memory pressure (reaping pages under the shrinker)
2235 * or as the object is itself released.
2236 */
2237int
2238i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2239{
2240 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241 const struct drm_i915_gem_object_ops *ops = obj->ops;
2242 int ret;
2243
2f745ad3 2244 if (obj->pages)
37e680a1
CW
2245 return 0;
2246
43e28f09 2247 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2248 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2249 return -EFAULT;
43e28f09
CW
2250 }
2251
a5570178
CW
2252 BUG_ON(obj->pages_pin_count);
2253
37e680a1
CW
2254 ret = ops->get_pages(obj);
2255 if (ret)
2256 return ret;
2257
35c20a60 2258 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2259 return 0;
673a394b
EA
2260}
2261
e2d05a8b 2262static void
05394f39 2263i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2264 struct intel_engine_cs *ring)
673a394b 2265{
97b2a6a1 2266 struct drm_i915_gem_request *req = intel_ring_get_request(ring);
617dbe27 2267
852835f3 2268 BUG_ON(ring == NULL);
97b2a6a1
JH
2269 if (obj->ring != ring && obj->last_write_req) {
2270 /* Keep the request relative to the current ring */
2271 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2272 }
05394f39 2273 obj->ring = ring;
673a394b
EA
2274
2275 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2276 if (!obj->active) {
2277 drm_gem_object_reference(&obj->base);
2278 obj->active = 1;
673a394b 2279 }
e35a41de 2280
05394f39 2281 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2282
97b2a6a1 2283 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2284}
2285
e2d05a8b 2286void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2287 struct intel_engine_cs *ring)
e2d05a8b
BW
2288{
2289 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2290 return i915_gem_object_move_to_active(vma->obj, ring);
2291}
2292
caea7476 2293static void
caea7476 2294i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2295{
ca191b13 2296 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2297 struct i915_address_space *vm;
2298 struct i915_vma *vma;
ce44b0ea 2299
65ce3027 2300 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2301 BUG_ON(!obj->active);
caea7476 2302
feb822cf
BW
2303 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2304 vma = i915_gem_obj_to_vma(obj, vm);
2305 if (vma && !list_empty(&vma->mm_list))
2306 list_move_tail(&vma->mm_list, &vm->inactive_list);
2307 }
caea7476 2308
f99d7069
DV
2309 intel_fb_obj_flush(obj, true);
2310
65ce3027 2311 list_del_init(&obj->ring_list);
caea7476
CW
2312 obj->ring = NULL;
2313
97b2a6a1
JH
2314 i915_gem_request_assign(&obj->last_read_req, NULL);
2315 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2316 obj->base.write_domain = 0;
2317
97b2a6a1 2318 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2319
2320 obj->active = 0;
2321 drm_gem_object_unreference(&obj->base);
2322
2323 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2324}
673a394b 2325
c8725f3d
CW
2326static void
2327i915_gem_object_retire(struct drm_i915_gem_object *obj)
2328{
a4872ba6 2329 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2330
2331 if (ring == NULL)
2332 return;
2333
1b5a433a 2334 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2335 i915_gem_object_move_to_inactive(obj);
2336}
2337
9d773091 2338static int
fca26bb4 2339i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2340{
9d773091 2341 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2342 struct intel_engine_cs *ring;
9d773091 2343 int ret, i, j;
53d227f2 2344
107f27a5 2345 /* Carefully retire all requests without writing to the rings */
9d773091 2346 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2347 ret = intel_ring_idle(ring);
2348 if (ret)
2349 return ret;
9d773091 2350 }
9d773091 2351 i915_gem_retire_requests(dev);
107f27a5
CW
2352
2353 /* Finally reset hw state */
9d773091 2354 for_each_ring(ring, dev_priv, i) {
fca26bb4 2355 intel_ring_init_seqno(ring, seqno);
498d2ac1 2356
ebc348b2
BW
2357 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2358 ring->semaphore.sync_seqno[j] = 0;
9d773091 2359 }
53d227f2 2360
9d773091 2361 return 0;
53d227f2
DV
2362}
2363
fca26bb4
MK
2364int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2365{
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 int ret;
2368
2369 if (seqno == 0)
2370 return -EINVAL;
2371
2372 /* HWS page needs to be set less than what we
2373 * will inject to ring
2374 */
2375 ret = i915_gem_init_seqno(dev, seqno - 1);
2376 if (ret)
2377 return ret;
2378
2379 /* Carefully set the last_seqno value so that wrap
2380 * detection still works
2381 */
2382 dev_priv->next_seqno = seqno;
2383 dev_priv->last_seqno = seqno - 1;
2384 if (dev_priv->last_seqno == 0)
2385 dev_priv->last_seqno--;
2386
2387 return 0;
2388}
2389
9d773091
CW
2390int
2391i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2392{
9d773091
CW
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394
2395 /* reserve 0 for non-seqno */
2396 if (dev_priv->next_seqno == 0) {
fca26bb4 2397 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2398 if (ret)
2399 return ret;
53d227f2 2400
9d773091
CW
2401 dev_priv->next_seqno = 1;
2402 }
53d227f2 2403
f72b3435 2404 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2405 return 0;
53d227f2
DV
2406}
2407
a4872ba6 2408int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2409 struct drm_file *file,
9400ae5c 2410 struct drm_i915_gem_object *obj)
673a394b 2411{
3e31c6c0 2412 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2413 struct drm_i915_gem_request *request;
48e29f55 2414 struct intel_ringbuffer *ringbuf;
7d736f4f 2415 u32 request_ring_position, request_start;
3cce469c
CW
2416 int ret;
2417
6259cead 2418 request = ring->outstanding_lazy_request;
48e29f55
OM
2419 if (WARN_ON(request == NULL))
2420 return -ENOMEM;
2421
2422 if (i915.enable_execlists) {
2423 struct intel_context *ctx = request->ctx;
2424 ringbuf = ctx->engine[ring->id].ringbuf;
2425 } else
2426 ringbuf = ring->buffer;
2427
2428 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2429 /*
2430 * Emit any outstanding flushes - execbuf can fail to emit the flush
2431 * after having emitted the batchbuffer command. Hence we need to fix
2432 * things up similar to emitting the lazy request. The difference here
2433 * is that the flush _must_ happen before the next request, no matter
2434 * what.
2435 */
48e29f55
OM
2436 if (i915.enable_execlists) {
2437 ret = logical_ring_flush_all_caches(ringbuf);
2438 if (ret)
2439 return ret;
2440 } else {
2441 ret = intel_ring_flush_all_caches(ring);
2442 if (ret)
2443 return ret;
2444 }
cc889e0f 2445
a71d8d94
CW
2446 /* Record the position of the start of the request so that
2447 * should we detect the updated seqno part-way through the
2448 * GPU processing the request, we never over-estimate the
2449 * position of the head.
2450 */
48e29f55 2451 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2452
48e29f55
OM
2453 if (i915.enable_execlists) {
2454 ret = ring->emit_request(ringbuf);
2455 if (ret)
2456 return ret;
2457 } else {
2458 ret = ring->add_request(ring);
2459 if (ret)
2460 return ret;
2461 }
673a394b 2462
7d736f4f 2463 request->head = request_start;
a71d8d94 2464 request->tail = request_ring_position;
7d736f4f
MK
2465
2466 /* Whilst this request exists, batch_obj will be on the
2467 * active_list, and so will hold the active reference. Only when this
2468 * request is retired will the the batch_obj be moved onto the
2469 * inactive_list and lose its active reference. Hence we do not need
2470 * to explicitly hold another reference here.
2471 */
9a7e0c2a 2472 request->batch_obj = obj;
0e50e96b 2473
48e29f55
OM
2474 if (!i915.enable_execlists) {
2475 /* Hold a reference to the current context so that we can inspect
2476 * it later in case a hangcheck error event fires.
2477 */
2478 request->ctx = ring->last_context;
2479 if (request->ctx)
2480 i915_gem_context_reference(request->ctx);
2481 }
0e50e96b 2482
673a394b 2483 request->emitted_jiffies = jiffies;
852835f3 2484 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2485 request->file_priv = NULL;
852835f3 2486
db53a302
CW
2487 if (file) {
2488 struct drm_i915_file_private *file_priv = file->driver_priv;
2489
1c25595f 2490 spin_lock(&file_priv->mm.lock);
f787a5f5 2491 request->file_priv = file_priv;
b962442e 2492 list_add_tail(&request->client_list,
f787a5f5 2493 &file_priv->mm.request_list);
1c25595f 2494 spin_unlock(&file_priv->mm.lock);
b962442e 2495 }
673a394b 2496
74328ee5 2497 trace_i915_gem_request_add(request);
6259cead 2498 ring->outstanding_lazy_request = NULL;
db53a302 2499
87255483 2500 i915_queue_hangcheck(ring->dev);
10cd45b6 2501
87255483
DV
2502 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2503 queue_delayed_work(dev_priv->wq,
2504 &dev_priv->mm.retire_work,
2505 round_jiffies_up_relative(HZ));
2506 intel_mark_busy(dev_priv->dev);
cc889e0f 2507
3cce469c 2508 return 0;
673a394b
EA
2509}
2510
f787a5f5
CW
2511static inline void
2512i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2513{
1c25595f 2514 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2515
1c25595f
CW
2516 if (!file_priv)
2517 return;
1c5d22f7 2518
1c25595f 2519 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2520 list_del(&request->client_list);
2521 request->file_priv = NULL;
1c25595f 2522 spin_unlock(&file_priv->mm.lock);
673a394b 2523}
673a394b 2524
939fd762 2525static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2526 const struct intel_context *ctx)
be62acb4 2527{
44e2c070 2528 unsigned long elapsed;
be62acb4 2529
44e2c070
MK
2530 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2531
2532 if (ctx->hang_stats.banned)
be62acb4
MK
2533 return true;
2534
2535 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2536 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2537 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2538 return true;
88b4aa87
MK
2539 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2540 if (i915_stop_ring_allow_warn(dev_priv))
2541 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2542 return true;
3fac8978 2543 }
be62acb4
MK
2544 }
2545
2546 return false;
2547}
2548
939fd762 2549static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2550 struct intel_context *ctx,
b6b0fac0 2551 const bool guilty)
aa60c664 2552{
44e2c070
MK
2553 struct i915_ctx_hang_stats *hs;
2554
2555 if (WARN_ON(!ctx))
2556 return;
aa60c664 2557
44e2c070
MK
2558 hs = &ctx->hang_stats;
2559
2560 if (guilty) {
939fd762 2561 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2562 hs->batch_active++;
2563 hs->guilty_ts = get_seconds();
2564 } else {
2565 hs->batch_pending++;
aa60c664
MK
2566 }
2567}
2568
0e50e96b
MK
2569static void i915_gem_free_request(struct drm_i915_gem_request *request)
2570{
2571 list_del(&request->list);
2572 i915_gem_request_remove_from_client(request);
2573
abfe262a
JH
2574 i915_gem_request_unreference(request);
2575}
2576
2577void i915_gem_request_free(struct kref *req_ref)
2578{
2579 struct drm_i915_gem_request *req = container_of(req_ref,
2580 typeof(*req), ref);
2581 struct intel_context *ctx = req->ctx;
2582
0794aed3
TD
2583 if (ctx) {
2584 if (i915.enable_execlists) {
abfe262a 2585 struct intel_engine_cs *ring = req->ring;
0e50e96b 2586
0794aed3
TD
2587 if (ctx != ring->default_context)
2588 intel_lr_context_unpin(ring, ctx);
2589 }
abfe262a 2590
dcb4c12a
OM
2591 i915_gem_context_unreference(ctx);
2592 }
abfe262a
JH
2593
2594 kfree(req);
0e50e96b
MK
2595}
2596
8d9fc7fd 2597struct drm_i915_gem_request *
a4872ba6 2598i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2599{
4db080f9
CW
2600 struct drm_i915_gem_request *request;
2601
2602 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2603 if (i915_gem_request_completed(request, false))
4db080f9 2604 continue;
aa60c664 2605
b6b0fac0 2606 return request;
4db080f9 2607 }
b6b0fac0
MK
2608
2609 return NULL;
2610}
2611
2612static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2613 struct intel_engine_cs *ring)
b6b0fac0
MK
2614{
2615 struct drm_i915_gem_request *request;
2616 bool ring_hung;
2617
8d9fc7fd 2618 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2619
2620 if (request == NULL)
2621 return;
2622
2623 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2624
939fd762 2625 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2626
2627 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2628 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2629}
aa60c664 2630
4db080f9 2631static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2632 struct intel_engine_cs *ring)
4db080f9 2633{
dfaae392 2634 while (!list_empty(&ring->active_list)) {
05394f39 2635 struct drm_i915_gem_object *obj;
9375e446 2636
05394f39
CW
2637 obj = list_first_entry(&ring->active_list,
2638 struct drm_i915_gem_object,
2639 ring_list);
9375e446 2640
05394f39 2641 i915_gem_object_move_to_inactive(obj);
673a394b 2642 }
1d62beea 2643
dcb4c12a
OM
2644 /*
2645 * Clear the execlists queue up before freeing the requests, as those
2646 * are the ones that keep the context and ringbuffer backing objects
2647 * pinned in place.
2648 */
2649 while (!list_empty(&ring->execlist_queue)) {
2650 struct intel_ctx_submit_request *submit_req;
2651
2652 submit_req = list_first_entry(&ring->execlist_queue,
2653 struct intel_ctx_submit_request,
2654 execlist_link);
2655 list_del(&submit_req->execlist_link);
2656 intel_runtime_pm_put(dev_priv);
2657 i915_gem_context_unreference(submit_req->ctx);
2658 kfree(submit_req);
2659 }
2660
1d62beea
BW
2661 /*
2662 * We must free the requests after all the corresponding objects have
2663 * been moved off active lists. Which is the same order as the normal
2664 * retire_requests function does. This is important if object hold
2665 * implicit references on things like e.g. ppgtt address spaces through
2666 * the request.
2667 */
2668 while (!list_empty(&ring->request_list)) {
2669 struct drm_i915_gem_request *request;
2670
2671 request = list_first_entry(&ring->request_list,
2672 struct drm_i915_gem_request,
2673 list);
2674
2675 i915_gem_free_request(request);
2676 }
e3efda49 2677
6259cead
JH
2678 /* This may not have been flushed before the reset, so clean it now */
2679 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2680}
2681
19b2dbde 2682void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2683{
2684 struct drm_i915_private *dev_priv = dev->dev_private;
2685 int i;
2686
4b9de737 2687 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2688 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2689
94a335db
DV
2690 /*
2691 * Commit delayed tiling changes if we have an object still
2692 * attached to the fence, otherwise just clear the fence.
2693 */
2694 if (reg->obj) {
2695 i915_gem_object_update_fence(reg->obj, reg,
2696 reg->obj->tiling_mode);
2697 } else {
2698 i915_gem_write_fence(dev, i, NULL);
2699 }
312817a3
CW
2700 }
2701}
2702
069efc1d 2703void i915_gem_reset(struct drm_device *dev)
673a394b 2704{
77f01230 2705 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2706 struct intel_engine_cs *ring;
1ec14ad3 2707 int i;
673a394b 2708
4db080f9
CW
2709 /*
2710 * Before we free the objects from the requests, we need to inspect
2711 * them for finding the guilty party. As the requests only borrow
2712 * their reference to the objects, the inspection must be done first.
2713 */
2714 for_each_ring(ring, dev_priv, i)
2715 i915_gem_reset_ring_status(dev_priv, ring);
2716
b4519513 2717 for_each_ring(ring, dev_priv, i)
4db080f9 2718 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2719
acce9ffa
BW
2720 i915_gem_context_reset(dev);
2721
19b2dbde 2722 i915_gem_restore_fences(dev);
673a394b
EA
2723}
2724
2725/**
2726 * This function clears the request list as sequence numbers are passed.
2727 */
1cf0ba14 2728void
a4872ba6 2729i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2730{
db53a302 2731 if (list_empty(&ring->request_list))
6c0594a3
KW
2732 return;
2733
db53a302 2734 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2735
e9103038
CW
2736 /* Move any buffers on the active list that are no longer referenced
2737 * by the ringbuffer to the flushing/inactive lists as appropriate,
2738 * before we free the context associated with the requests.
2739 */
2740 while (!list_empty(&ring->active_list)) {
2741 struct drm_i915_gem_object *obj;
2742
2743 obj = list_first_entry(&ring->active_list,
2744 struct drm_i915_gem_object,
2745 ring_list);
2746
1b5a433a 2747 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2748 break;
2749
2750 i915_gem_object_move_to_inactive(obj);
2751 }
2752
2753
852835f3 2754 while (!list_empty(&ring->request_list)) {
673a394b 2755 struct drm_i915_gem_request *request;
48e29f55 2756 struct intel_ringbuffer *ringbuf;
673a394b 2757
852835f3 2758 request = list_first_entry(&ring->request_list,
673a394b
EA
2759 struct drm_i915_gem_request,
2760 list);
673a394b 2761
1b5a433a 2762 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2763 break;
2764
74328ee5 2765 trace_i915_gem_request_retire(request);
48e29f55
OM
2766
2767 /* This is one of the few common intersection points
2768 * between legacy ringbuffer submission and execlists:
2769 * we need to tell them apart in order to find the correct
2770 * ringbuffer to which the request belongs to.
2771 */
2772 if (i915.enable_execlists) {
2773 struct intel_context *ctx = request->ctx;
2774 ringbuf = ctx->engine[ring->id].ringbuf;
2775 } else
2776 ringbuf = ring->buffer;
2777
a71d8d94
CW
2778 /* We know the GPU must have read the request to have
2779 * sent us the seqno + interrupt, so use the position
2780 * of tail of the request to update the last known position
2781 * of the GPU head.
2782 */
48e29f55 2783 ringbuf->last_retired_head = request->tail;
b84d5f0c 2784
0e50e96b 2785 i915_gem_free_request(request);
b84d5f0c 2786 }
673a394b 2787
db53a302 2788 if (unlikely(ring->trace_irq_seqno &&
1b5a433a
JH
2789 i915_seqno_passed(ring->get_seqno(ring, true),
2790 ring->trace_irq_seqno))) {
1ec14ad3 2791 ring->irq_put(ring);
db53a302 2792 ring->trace_irq_seqno = 0;
9d34e5db 2793 }
23bc5982 2794
db53a302 2795 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2796}
2797
b29c19b6 2798bool
b09a1fec
CW
2799i915_gem_retire_requests(struct drm_device *dev)
2800{
3e31c6c0 2801 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2802 struct intel_engine_cs *ring;
b29c19b6 2803 bool idle = true;
1ec14ad3 2804 int i;
b09a1fec 2805
b29c19b6 2806 for_each_ring(ring, dev_priv, i) {
b4519513 2807 i915_gem_retire_requests_ring(ring);
b29c19b6 2808 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2809 if (i915.enable_execlists) {
2810 unsigned long flags;
2811
2812 spin_lock_irqsave(&ring->execlist_lock, flags);
2813 idle &= list_empty(&ring->execlist_queue);
2814 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2815
2816 intel_execlists_retire_requests(ring);
2817 }
b29c19b6
CW
2818 }
2819
2820 if (idle)
2821 mod_delayed_work(dev_priv->wq,
2822 &dev_priv->mm.idle_work,
2823 msecs_to_jiffies(100));
2824
2825 return idle;
b09a1fec
CW
2826}
2827
75ef9da2 2828static void
673a394b
EA
2829i915_gem_retire_work_handler(struct work_struct *work)
2830{
b29c19b6
CW
2831 struct drm_i915_private *dev_priv =
2832 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2833 struct drm_device *dev = dev_priv->dev;
0a58705b 2834 bool idle;
673a394b 2835
891b48cf 2836 /* Come back later if the device is busy... */
b29c19b6
CW
2837 idle = false;
2838 if (mutex_trylock(&dev->struct_mutex)) {
2839 idle = i915_gem_retire_requests(dev);
2840 mutex_unlock(&dev->struct_mutex);
673a394b 2841 }
b29c19b6 2842 if (!idle)
bcb45086
CW
2843 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2844 round_jiffies_up_relative(HZ));
b29c19b6 2845}
0a58705b 2846
b29c19b6
CW
2847static void
2848i915_gem_idle_work_handler(struct work_struct *work)
2849{
2850 struct drm_i915_private *dev_priv =
2851 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2852
2853 intel_mark_idle(dev_priv->dev);
673a394b
EA
2854}
2855
30dfebf3
DV
2856/**
2857 * Ensures that an object will eventually get non-busy by flushing any required
2858 * write domains, emitting any outstanding lazy request and retiring and
2859 * completed requests.
2860 */
2861static int
2862i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2863{
2864 int ret;
2865
2866 if (obj->active) {
b6660d59 2867 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2868 if (ret)
2869 return ret;
2870
30dfebf3
DV
2871 i915_gem_retire_requests_ring(obj->ring);
2872 }
2873
2874 return 0;
2875}
2876
23ba4fd0
BW
2877/**
2878 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2879 * @DRM_IOCTL_ARGS: standard ioctl arguments
2880 *
2881 * Returns 0 if successful, else an error is returned with the remaining time in
2882 * the timeout parameter.
2883 * -ETIME: object is still busy after timeout
2884 * -ERESTARTSYS: signal interrupted the wait
2885 * -ENONENT: object doesn't exist
2886 * Also possible, but rare:
2887 * -EAGAIN: GPU wedged
2888 * -ENOMEM: damn
2889 * -ENODEV: Internal IRQ fail
2890 * -E?: The add request failed
2891 *
2892 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2893 * non-zero timeout parameter the wait ioctl will wait for the given number of
2894 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2895 * without holding struct_mutex the object may become re-busied before this
2896 * function completes. A similar but shorter * race condition exists in the busy
2897 * ioctl
2898 */
2899int
2900i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2901{
3e31c6c0 2902 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2903 struct drm_i915_gem_wait *args = data;
2904 struct drm_i915_gem_object *obj;
ff865885 2905 struct drm_i915_gem_request *req;
f69061be 2906 unsigned reset_counter;
23ba4fd0
BW
2907 int ret = 0;
2908
11b5d511
DV
2909 if (args->flags != 0)
2910 return -EINVAL;
2911
23ba4fd0
BW
2912 ret = i915_mutex_lock_interruptible(dev);
2913 if (ret)
2914 return ret;
2915
2916 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2917 if (&obj->base == NULL) {
2918 mutex_unlock(&dev->struct_mutex);
2919 return -ENOENT;
2920 }
2921
30dfebf3
DV
2922 /* Need to make sure the object gets inactive eventually. */
2923 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2924 if (ret)
2925 goto out;
2926
97b2a6a1
JH
2927 if (!obj->active || !obj->last_read_req)
2928 goto out;
23ba4fd0 2929
ff865885 2930 req = obj->last_read_req;
23ba4fd0 2931
23ba4fd0 2932 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2933 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2934 */
5ed0bdf2 2935 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2936 ret = -ETIME;
2937 goto out;
2938 }
2939
2940 drm_gem_object_unreference(&obj->base);
f69061be 2941 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2942 i915_gem_request_reference(req);
23ba4fd0
BW
2943 mutex_unlock(&dev->struct_mutex);
2944
9c654818
JH
2945 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2946 file->driver_priv);
ff865885
JH
2947 mutex_lock(&dev->struct_mutex);
2948 i915_gem_request_unreference(req);
2949 mutex_unlock(&dev->struct_mutex);
2950 return ret;
23ba4fd0
BW
2951
2952out:
2953 drm_gem_object_unreference(&obj->base);
2954 mutex_unlock(&dev->struct_mutex);
2955 return ret;
2956}
2957
5816d648
BW
2958/**
2959 * i915_gem_object_sync - sync an object to a ring.
2960 *
2961 * @obj: object which may be in use on another ring.
2962 * @to: ring we wish to use the object on. May be NULL.
2963 *
2964 * This code is meant to abstract object synchronization with the GPU.
2965 * Calling with NULL implies synchronizing the object with the CPU
2966 * rather than a particular GPU ring.
2967 *
2968 * Returns 0 if successful, else propagates up the lower layer error.
2969 */
2911a35b
BW
2970int
2971i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2972 struct intel_engine_cs *to)
2911a35b 2973{
a4872ba6 2974 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2975 u32 seqno;
2976 int ret, idx;
2977
2978 if (from == NULL || to == from)
2979 return 0;
2980
5816d648 2981 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2982 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2983
2984 idx = intel_ring_sync_index(from, to);
2985
97b2a6a1 2986 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2987 /* Optimization: Avoid semaphore sync when we are sure we already
2988 * waited for an object with higher seqno */
ebc348b2 2989 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2990 return 0;
2991
b6660d59 2992 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
2993 if (ret)
2994 return ret;
2911a35b 2995
74328ee5 2996 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 2997 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2998 if (!ret)
97b2a6a1 2999 /* We use last_read_req because sync_to()
7b01e260
MK
3000 * might have just caused seqno wrap under
3001 * the radar.
3002 */
97b2a6a1
JH
3003 from->semaphore.sync_seqno[idx] =
3004 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3005
e3a5a225 3006 return ret;
2911a35b
BW
3007}
3008
b5ffc9bc
CW
3009static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3010{
3011 u32 old_write_domain, old_read_domains;
3012
b5ffc9bc
CW
3013 /* Force a pagefault for domain tracking on next user access */
3014 i915_gem_release_mmap(obj);
3015
b97c3d9c
KP
3016 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3017 return;
3018
97c809fd
CW
3019 /* Wait for any direct GTT access to complete */
3020 mb();
3021
b5ffc9bc
CW
3022 old_read_domains = obj->base.read_domains;
3023 old_write_domain = obj->base.write_domain;
3024
3025 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3026 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3027
3028 trace_i915_gem_object_change_domain(obj,
3029 old_read_domains,
3030 old_write_domain);
3031}
3032
07fe0b12 3033int i915_vma_unbind(struct i915_vma *vma)
673a394b 3034{
07fe0b12 3035 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3036 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3037 int ret;
673a394b 3038
07fe0b12 3039 if (list_empty(&vma->vma_link))
673a394b
EA
3040 return 0;
3041
0ff501cb
DV
3042 if (!drm_mm_node_allocated(&vma->node)) {
3043 i915_gem_vma_destroy(vma);
0ff501cb
DV
3044 return 0;
3045 }
433544bd 3046
d7f46fc4 3047 if (vma->pin_count)
31d8d651 3048 return -EBUSY;
673a394b 3049
c4670ad0
CW
3050 BUG_ON(obj->pages == NULL);
3051
a8198eea 3052 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3053 if (ret)
a8198eea
CW
3054 return ret;
3055 /* Continue on if we fail due to EIO, the GPU is hung so we
3056 * should be safe and we need to cleanup or else we might
3057 * cause memory corruption through use-after-free.
3058 */
3059
1d1ef21d
CW
3060 /* Throw away the active reference before moving to the unbound list */
3061 i915_gem_object_retire(obj);
3062
8b1bc9b4
DV
3063 if (i915_is_ggtt(vma->vm)) {
3064 i915_gem_object_finish_gtt(obj);
5323fd04 3065
8b1bc9b4
DV
3066 /* release the fence reg _after_ flushing */
3067 ret = i915_gem_object_put_fence(obj);
3068 if (ret)
3069 return ret;
3070 }
96b47b65 3071
07fe0b12 3072 trace_i915_vma_unbind(vma);
db53a302 3073
6f65e29a
BW
3074 vma->unbind_vma(vma);
3075
64bf9303 3076 list_del_init(&vma->mm_list);
5cacaac7 3077 if (i915_is_ggtt(vma->vm))
e6a84468 3078 obj->map_and_fenceable = false;
673a394b 3079
2f633156
BW
3080 drm_mm_remove_node(&vma->node);
3081 i915_gem_vma_destroy(vma);
3082
3083 /* Since the unbound list is global, only move to that list if
b93dab6e 3084 * no more VMAs exist. */
9490edb5
AR
3085 if (list_empty(&obj->vma_list)) {
3086 i915_gem_gtt_finish_object(obj);
2f633156 3087 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3088 }
673a394b 3089
70903c3b
CW
3090 /* And finally now the object is completely decoupled from this vma,
3091 * we can drop its hold on the backing storage and allow it to be
3092 * reaped by the shrinker.
3093 */
3094 i915_gem_object_unpin_pages(obj);
3095
88241785 3096 return 0;
54cf91dc
CW
3097}
3098
b2da9fe5 3099int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3100{
3e31c6c0 3101 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3102 struct intel_engine_cs *ring;
1ec14ad3 3103 int ret, i;
4df2faf4 3104
4df2faf4 3105 /* Flush everything onto the inactive list. */
b4519513 3106 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3107 if (!i915.enable_execlists) {
3108 ret = i915_switch_context(ring, ring->default_context);
3109 if (ret)
3110 return ret;
3111 }
b6c7488d 3112
3e960501 3113 ret = intel_ring_idle(ring);
1ec14ad3
CW
3114 if (ret)
3115 return ret;
3116 }
4df2faf4 3117
8a1a49f9 3118 return 0;
4df2faf4
DV
3119}
3120
9ce079e4
CW
3121static void i965_write_fence_reg(struct drm_device *dev, int reg,
3122 struct drm_i915_gem_object *obj)
de151cf6 3123{
3e31c6c0 3124 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3125 int fence_reg;
3126 int fence_pitch_shift;
de151cf6 3127
56c844e5
ID
3128 if (INTEL_INFO(dev)->gen >= 6) {
3129 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3130 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3131 } else {
3132 fence_reg = FENCE_REG_965_0;
3133 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3134 }
3135
d18b9619
CW
3136 fence_reg += reg * 8;
3137
3138 /* To w/a incoherency with non-atomic 64-bit register updates,
3139 * we split the 64-bit update into two 32-bit writes. In order
3140 * for a partial fence not to be evaluated between writes, we
3141 * precede the update with write to turn off the fence register,
3142 * and only enable the fence as the last step.
3143 *
3144 * For extra levels of paranoia, we make sure each step lands
3145 * before applying the next step.
3146 */
3147 I915_WRITE(fence_reg, 0);
3148 POSTING_READ(fence_reg);
3149
9ce079e4 3150 if (obj) {
f343c5f6 3151 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3152 uint64_t val;
de151cf6 3153
f343c5f6 3154 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3155 0xfffff000) << 32;
f343c5f6 3156 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3157 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3158 if (obj->tiling_mode == I915_TILING_Y)
3159 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3160 val |= I965_FENCE_REG_VALID;
c6642782 3161
d18b9619
CW
3162 I915_WRITE(fence_reg + 4, val >> 32);
3163 POSTING_READ(fence_reg + 4);
3164
3165 I915_WRITE(fence_reg + 0, val);
3166 POSTING_READ(fence_reg);
3167 } else {
3168 I915_WRITE(fence_reg + 4, 0);
3169 POSTING_READ(fence_reg + 4);
3170 }
de151cf6
JB
3171}
3172
9ce079e4
CW
3173static void i915_write_fence_reg(struct drm_device *dev, int reg,
3174 struct drm_i915_gem_object *obj)
de151cf6 3175{
3e31c6c0 3176 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3177 u32 val;
de151cf6 3178
9ce079e4 3179 if (obj) {
f343c5f6 3180 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3181 int pitch_val;
3182 int tile_width;
c6642782 3183
f343c5f6 3184 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3185 (size & -size) != size ||
f343c5f6
BW
3186 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3187 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3188 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3189
9ce079e4
CW
3190 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3191 tile_width = 128;
3192 else
3193 tile_width = 512;
3194
3195 /* Note: pitch better be a power of two tile widths */
3196 pitch_val = obj->stride / tile_width;
3197 pitch_val = ffs(pitch_val) - 1;
3198
f343c5f6 3199 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3200 if (obj->tiling_mode == I915_TILING_Y)
3201 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3202 val |= I915_FENCE_SIZE_BITS(size);
3203 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3204 val |= I830_FENCE_REG_VALID;
3205 } else
3206 val = 0;
3207
3208 if (reg < 8)
3209 reg = FENCE_REG_830_0 + reg * 4;
3210 else
3211 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3212
3213 I915_WRITE(reg, val);
3214 POSTING_READ(reg);
de151cf6
JB
3215}
3216
9ce079e4
CW
3217static void i830_write_fence_reg(struct drm_device *dev, int reg,
3218 struct drm_i915_gem_object *obj)
de151cf6 3219{
3e31c6c0 3220 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3221 uint32_t val;
de151cf6 3222
9ce079e4 3223 if (obj) {
f343c5f6 3224 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3225 uint32_t pitch_val;
de151cf6 3226
f343c5f6 3227 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3228 (size & -size) != size ||
f343c5f6
BW
3229 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3230 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3231 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3232
9ce079e4
CW
3233 pitch_val = obj->stride / 128;
3234 pitch_val = ffs(pitch_val) - 1;
de151cf6 3235
f343c5f6 3236 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3237 if (obj->tiling_mode == I915_TILING_Y)
3238 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3239 val |= I830_FENCE_SIZE_BITS(size);
3240 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3241 val |= I830_FENCE_REG_VALID;
3242 } else
3243 val = 0;
c6642782 3244
9ce079e4
CW
3245 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3246 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3247}
3248
d0a57789
CW
3249inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3250{
3251 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3252}
3253
9ce079e4
CW
3254static void i915_gem_write_fence(struct drm_device *dev, int reg,
3255 struct drm_i915_gem_object *obj)
3256{
d0a57789
CW
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258
3259 /* Ensure that all CPU reads are completed before installing a fence
3260 * and all writes before removing the fence.
3261 */
3262 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3263 mb();
3264
94a335db
DV
3265 WARN(obj && (!obj->stride || !obj->tiling_mode),
3266 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3267 obj->stride, obj->tiling_mode);
3268
9ce079e4 3269 switch (INTEL_INFO(dev)->gen) {
01209dd5 3270 case 9:
5ab31333 3271 case 8:
9ce079e4 3272 case 7:
56c844e5 3273 case 6:
9ce079e4
CW
3274 case 5:
3275 case 4: i965_write_fence_reg(dev, reg, obj); break;
3276 case 3: i915_write_fence_reg(dev, reg, obj); break;
3277 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3278 default: BUG();
9ce079e4 3279 }
d0a57789
CW
3280
3281 /* And similarly be paranoid that no direct access to this region
3282 * is reordered to before the fence is installed.
3283 */
3284 if (i915_gem_object_needs_mb(obj))
3285 mb();
de151cf6
JB
3286}
3287
61050808
CW
3288static inline int fence_number(struct drm_i915_private *dev_priv,
3289 struct drm_i915_fence_reg *fence)
3290{
3291 return fence - dev_priv->fence_regs;
3292}
3293
3294static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3295 struct drm_i915_fence_reg *fence,
3296 bool enable)
3297{
2dc8aae0 3298 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3299 int reg = fence_number(dev_priv, fence);
3300
3301 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3302
3303 if (enable) {
46a0b638 3304 obj->fence_reg = reg;
61050808
CW
3305 fence->obj = obj;
3306 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3307 } else {
3308 obj->fence_reg = I915_FENCE_REG_NONE;
3309 fence->obj = NULL;
3310 list_del_init(&fence->lru_list);
3311 }
94a335db 3312 obj->fence_dirty = false;
61050808
CW
3313}
3314
d9e86c0e 3315static int
d0a57789 3316i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3317{
97b2a6a1 3318 if (obj->last_fenced_req) {
a4b3a571 3319 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3320 if (ret)
3321 return ret;
d9e86c0e 3322
97b2a6a1 3323 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3324 }
3325
3326 return 0;
3327}
3328
3329int
3330i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3331{
61050808 3332 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3333 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3334 int ret;
3335
d0a57789 3336 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3337 if (ret)
3338 return ret;
3339
61050808
CW
3340 if (obj->fence_reg == I915_FENCE_REG_NONE)
3341 return 0;
d9e86c0e 3342
f9c513e9
CW
3343 fence = &dev_priv->fence_regs[obj->fence_reg];
3344
aff10b30
DV
3345 if (WARN_ON(fence->pin_count))
3346 return -EBUSY;
3347
61050808 3348 i915_gem_object_fence_lost(obj);
f9c513e9 3349 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3350
3351 return 0;
3352}
3353
3354static struct drm_i915_fence_reg *
a360bb1a 3355i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3356{
ae3db24a 3357 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3358 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3359 int i;
ae3db24a
DV
3360
3361 /* First try to find a free reg */
d9e86c0e 3362 avail = NULL;
ae3db24a
DV
3363 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3364 reg = &dev_priv->fence_regs[i];
3365 if (!reg->obj)
d9e86c0e 3366 return reg;
ae3db24a 3367
1690e1eb 3368 if (!reg->pin_count)
d9e86c0e 3369 avail = reg;
ae3db24a
DV
3370 }
3371
d9e86c0e 3372 if (avail == NULL)
5dce5b93 3373 goto deadlock;
ae3db24a
DV
3374
3375 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3376 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3377 if (reg->pin_count)
ae3db24a
DV
3378 continue;
3379
8fe301ad 3380 return reg;
ae3db24a
DV
3381 }
3382
5dce5b93
CW
3383deadlock:
3384 /* Wait for completion of pending flips which consume fences */
3385 if (intel_has_pending_fb_unpin(dev))
3386 return ERR_PTR(-EAGAIN);
3387
3388 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3389}
3390
de151cf6 3391/**
9a5a53b3 3392 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3393 * @obj: object to map through a fence reg
3394 *
3395 * When mapping objects through the GTT, userspace wants to be able to write
3396 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3397 * This function walks the fence regs looking for a free one for @obj,
3398 * stealing one if it can't find any.
3399 *
3400 * It then sets up the reg based on the object's properties: address, pitch
3401 * and tiling format.
9a5a53b3
CW
3402 *
3403 * For an untiled surface, this removes any existing fence.
de151cf6 3404 */
8c4b8c3f 3405int
06d98131 3406i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3407{
05394f39 3408 struct drm_device *dev = obj->base.dev;
79e53945 3409 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3410 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3411 struct drm_i915_fence_reg *reg;
ae3db24a 3412 int ret;
de151cf6 3413
14415745
CW
3414 /* Have we updated the tiling parameters upon the object and so
3415 * will need to serialise the write to the associated fence register?
3416 */
5d82e3e6 3417 if (obj->fence_dirty) {
d0a57789 3418 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3419 if (ret)
3420 return ret;
3421 }
9a5a53b3 3422
d9e86c0e 3423 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3424 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3425 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3426 if (!obj->fence_dirty) {
14415745
CW
3427 list_move_tail(&reg->lru_list,
3428 &dev_priv->mm.fence_list);
3429 return 0;
3430 }
3431 } else if (enable) {
e6a84468
CW
3432 if (WARN_ON(!obj->map_and_fenceable))
3433 return -EINVAL;
3434
14415745 3435 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3436 if (IS_ERR(reg))
3437 return PTR_ERR(reg);
d9e86c0e 3438
14415745
CW
3439 if (reg->obj) {
3440 struct drm_i915_gem_object *old = reg->obj;
3441
d0a57789 3442 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3443 if (ret)
3444 return ret;
3445
14415745 3446 i915_gem_object_fence_lost(old);
29c5a587 3447 }
14415745 3448 } else
a09ba7fa 3449 return 0;
a09ba7fa 3450
14415745 3451 i915_gem_object_update_fence(obj, reg, enable);
14415745 3452
9ce079e4 3453 return 0;
de151cf6
JB
3454}
3455
4144f9b5 3456static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3457 unsigned long cache_level)
3458{
4144f9b5 3459 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3460 struct drm_mm_node *other;
3461
4144f9b5
CW
3462 /*
3463 * On some machines we have to be careful when putting differing types
3464 * of snoopable memory together to avoid the prefetcher crossing memory
3465 * domains and dying. During vm initialisation, we decide whether or not
3466 * these constraints apply and set the drm_mm.color_adjust
3467 * appropriately.
42d6ab48 3468 */
4144f9b5 3469 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3470 return true;
3471
c6cfb325 3472 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3473 return true;
3474
3475 if (list_empty(&gtt_space->node_list))
3476 return true;
3477
3478 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3479 if (other->allocated && !other->hole_follows && other->color != cache_level)
3480 return false;
3481
3482 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3483 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3484 return false;
3485
3486 return true;
3487}
3488
673a394b
EA
3489/**
3490 * Finds free space in the GTT aperture and binds the object there.
3491 */
262de145 3492static struct i915_vma *
07fe0b12
BW
3493i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3494 struct i915_address_space *vm,
3495 unsigned alignment,
d23db88c 3496 uint64_t flags)
673a394b 3497{
05394f39 3498 struct drm_device *dev = obj->base.dev;
3e31c6c0 3499 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3500 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3501 unsigned long start =
3502 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3503 unsigned long end =
1ec9e26d 3504 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3505 struct i915_vma *vma;
07f73f69 3506 int ret;
673a394b 3507
e28f8711
CW
3508 fence_size = i915_gem_get_gtt_size(dev,
3509 obj->base.size,
3510 obj->tiling_mode);
3511 fence_alignment = i915_gem_get_gtt_alignment(dev,
3512 obj->base.size,
d865110c 3513 obj->tiling_mode, true);
e28f8711 3514 unfenced_alignment =
d865110c 3515 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3516 obj->base.size,
3517 obj->tiling_mode, false);
a00b10c3 3518
673a394b 3519 if (alignment == 0)
1ec9e26d 3520 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3521 unfenced_alignment;
1ec9e26d 3522 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3523 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3524 return ERR_PTR(-EINVAL);
673a394b
EA
3525 }
3526
1ec9e26d 3527 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3528
654fc607
CW
3529 /* If the object is bigger than the entire aperture, reject it early
3530 * before evicting everything in a vain attempt to find space.
3531 */
d23db88c
CW
3532 if (obj->base.size > end) {
3533 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3534 obj->base.size,
1ec9e26d 3535 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3536 end);
262de145 3537 return ERR_PTR(-E2BIG);
654fc607
CW
3538 }
3539
37e680a1 3540 ret = i915_gem_object_get_pages(obj);
6c085a72 3541 if (ret)
262de145 3542 return ERR_PTR(ret);
6c085a72 3543
fbdda6fb
CW
3544 i915_gem_object_pin_pages(obj);
3545
accfef2e 3546 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3547 if (IS_ERR(vma))
bc6bc15b 3548 goto err_unpin;
2f633156 3549
0a9ae0d7 3550search_free:
07fe0b12 3551 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3552 size, alignment,
d23db88c
CW
3553 obj->cache_level,
3554 start, end,
62347f9e
LK
3555 DRM_MM_SEARCH_DEFAULT,
3556 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3557 if (ret) {
f6cd1f15 3558 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3559 obj->cache_level,
3560 start, end,
3561 flags);
dc9dd7a2
CW
3562 if (ret == 0)
3563 goto search_free;
9731129c 3564
bc6bc15b 3565 goto err_free_vma;
673a394b 3566 }
4144f9b5 3567 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3568 ret = -EINVAL;
bc6bc15b 3569 goto err_remove_node;
673a394b
EA
3570 }
3571
74163907 3572 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3573 if (ret)
bc6bc15b 3574 goto err_remove_node;
673a394b 3575
35c20a60 3576 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3577 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3578
1ec9e26d 3579 trace_i915_vma_bind(vma, flags);
8ea99c92 3580 vma->bind_vma(vma, obj->cache_level,
c826c449 3581 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
8ea99c92 3582
262de145 3583 return vma;
2f633156 3584
bc6bc15b 3585err_remove_node:
6286ef9b 3586 drm_mm_remove_node(&vma->node);
bc6bc15b 3587err_free_vma:
2f633156 3588 i915_gem_vma_destroy(vma);
262de145 3589 vma = ERR_PTR(ret);
bc6bc15b 3590err_unpin:
2f633156 3591 i915_gem_object_unpin_pages(obj);
262de145 3592 return vma;
673a394b
EA
3593}
3594
000433b6 3595bool
2c22569b
CW
3596i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3597 bool force)
673a394b 3598{
673a394b
EA
3599 /* If we don't have a page list set up, then we're not pinned
3600 * to GPU, and we can ignore the cache flush because it'll happen
3601 * again at bind time.
3602 */
05394f39 3603 if (obj->pages == NULL)
000433b6 3604 return false;
673a394b 3605
769ce464
ID
3606 /*
3607 * Stolen memory is always coherent with the GPU as it is explicitly
3608 * marked as wc by the system, or the system is cache-coherent.
3609 */
6a2c4232 3610 if (obj->stolen || obj->phys_handle)
000433b6 3611 return false;
769ce464 3612
9c23f7fc
CW
3613 /* If the GPU is snooping the contents of the CPU cache,
3614 * we do not need to manually clear the CPU cache lines. However,
3615 * the caches are only snooped when the render cache is
3616 * flushed/invalidated. As we always have to emit invalidations
3617 * and flushes when moving into and out of the RENDER domain, correct
3618 * snooping behaviour occurs naturally as the result of our domain
3619 * tracking.
3620 */
2c22569b 3621 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3622 return false;
9c23f7fc 3623
1c5d22f7 3624 trace_i915_gem_object_clflush(obj);
9da3da66 3625 drm_clflush_sg(obj->pages);
000433b6
CW
3626
3627 return true;
e47c68e9
EA
3628}
3629
3630/** Flushes the GTT write domain for the object if it's dirty. */
3631static void
05394f39 3632i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3633{
1c5d22f7
CW
3634 uint32_t old_write_domain;
3635
05394f39 3636 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3637 return;
3638
63256ec5 3639 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3640 * to it immediately go to main memory as far as we know, so there's
3641 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3642 *
3643 * However, we do have to enforce the order so that all writes through
3644 * the GTT land before any writes to the device, such as updates to
3645 * the GATT itself.
e47c68e9 3646 */
63256ec5
CW
3647 wmb();
3648
05394f39
CW
3649 old_write_domain = obj->base.write_domain;
3650 obj->base.write_domain = 0;
1c5d22f7 3651
f99d7069
DV
3652 intel_fb_obj_flush(obj, false);
3653
1c5d22f7 3654 trace_i915_gem_object_change_domain(obj,
05394f39 3655 obj->base.read_domains,
1c5d22f7 3656 old_write_domain);
e47c68e9
EA
3657}
3658
3659/** Flushes the CPU write domain for the object if it's dirty. */
3660static void
2c22569b
CW
3661i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3662 bool force)
e47c68e9 3663{
1c5d22f7 3664 uint32_t old_write_domain;
e47c68e9 3665
05394f39 3666 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3667 return;
3668
000433b6
CW
3669 if (i915_gem_clflush_object(obj, force))
3670 i915_gem_chipset_flush(obj->base.dev);
3671
05394f39
CW
3672 old_write_domain = obj->base.write_domain;
3673 obj->base.write_domain = 0;
1c5d22f7 3674
f99d7069
DV
3675 intel_fb_obj_flush(obj, false);
3676
1c5d22f7 3677 trace_i915_gem_object_change_domain(obj,
05394f39 3678 obj->base.read_domains,
1c5d22f7 3679 old_write_domain);
e47c68e9
EA
3680}
3681
2ef7eeaa
EA
3682/**
3683 * Moves a single object to the GTT read, and possibly write domain.
3684 *
3685 * This function returns when the move is complete, including waiting on
3686 * flushes to occur.
3687 */
79e53945 3688int
2021746e 3689i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3690{
3e31c6c0 3691 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3692 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3693 uint32_t old_write_domain, old_read_domains;
e47c68e9 3694 int ret;
2ef7eeaa 3695
02354392 3696 /* Not valid to be called on unbound objects. */
dc8cd1e7 3697 if (vma == NULL)
02354392
EA
3698 return -EINVAL;
3699
8d7e3de1
CW
3700 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3701 return 0;
3702
0201f1ec 3703 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3704 if (ret)
3705 return ret;
3706
c8725f3d 3707 i915_gem_object_retire(obj);
2c22569b 3708 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3709
d0a57789
CW
3710 /* Serialise direct access to this object with the barriers for
3711 * coherent writes from the GPU, by effectively invalidating the
3712 * GTT domain upon first access.
3713 */
3714 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3715 mb();
3716
05394f39
CW
3717 old_write_domain = obj->base.write_domain;
3718 old_read_domains = obj->base.read_domains;
1c5d22f7 3719
e47c68e9
EA
3720 /* It should now be out of any other write domains, and we can update
3721 * the domain values for our changes.
3722 */
05394f39
CW
3723 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3724 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3725 if (write) {
05394f39
CW
3726 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3727 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3728 obj->dirty = 1;
2ef7eeaa
EA
3729 }
3730
f99d7069
DV
3731 if (write)
3732 intel_fb_obj_invalidate(obj, NULL);
3733
1c5d22f7
CW
3734 trace_i915_gem_object_change_domain(obj,
3735 old_read_domains,
3736 old_write_domain);
3737
8325a09d 3738 /* And bump the LRU for this access */
dc8cd1e7
CW
3739 if (i915_gem_object_is_inactive(obj))
3740 list_move_tail(&vma->mm_list,
3741 &dev_priv->gtt.base.inactive_list);
8325a09d 3742
e47c68e9
EA
3743 return 0;
3744}
3745
e4ffd173
CW
3746int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3747 enum i915_cache_level cache_level)
3748{
7bddb01f 3749 struct drm_device *dev = obj->base.dev;
df6f783a 3750 struct i915_vma *vma, *next;
e4ffd173
CW
3751 int ret;
3752
3753 if (obj->cache_level == cache_level)
3754 return 0;
3755
d7f46fc4 3756 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3757 DRM_DEBUG("can not change the cache level of pinned objects\n");
3758 return -EBUSY;
3759 }
3760
df6f783a 3761 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3762 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3763 ret = i915_vma_unbind(vma);
3089c6f2
BW
3764 if (ret)
3765 return ret;
3089c6f2 3766 }
42d6ab48
CW
3767 }
3768
3089c6f2 3769 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3770 ret = i915_gem_object_finish_gpu(obj);
3771 if (ret)
3772 return ret;
3773
3774 i915_gem_object_finish_gtt(obj);
3775
3776 /* Before SandyBridge, you could not use tiling or fence
3777 * registers with snooped memory, so relinquish any fences
3778 * currently pointing to our region in the aperture.
3779 */
42d6ab48 3780 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3781 ret = i915_gem_object_put_fence(obj);
3782 if (ret)
3783 return ret;
3784 }
3785
6f65e29a 3786 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3787 if (drm_mm_node_allocated(&vma->node))
3788 vma->bind_vma(vma, cache_level,
aff43766 3789 vma->bound & GLOBAL_BIND);
e4ffd173
CW
3790 }
3791
2c22569b
CW
3792 list_for_each_entry(vma, &obj->vma_list, vma_link)
3793 vma->node.color = cache_level;
3794 obj->cache_level = cache_level;
3795
3796 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3797 u32 old_read_domains, old_write_domain;
3798
3799 /* If we're coming from LLC cached, then we haven't
3800 * actually been tracking whether the data is in the
3801 * CPU cache or not, since we only allow one bit set
3802 * in obj->write_domain and have been skipping the clflushes.
3803 * Just set it to the CPU cache for now.
3804 */
c8725f3d 3805 i915_gem_object_retire(obj);
e4ffd173 3806 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3807
3808 old_read_domains = obj->base.read_domains;
3809 old_write_domain = obj->base.write_domain;
3810
3811 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3812 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3813
3814 trace_i915_gem_object_change_domain(obj,
3815 old_read_domains,
3816 old_write_domain);
3817 }
3818
e4ffd173
CW
3819 return 0;
3820}
3821
199adf40
BW
3822int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3823 struct drm_file *file)
e6994aee 3824{
199adf40 3825 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3826 struct drm_i915_gem_object *obj;
3827 int ret;
3828
3829 ret = i915_mutex_lock_interruptible(dev);
3830 if (ret)
3831 return ret;
3832
3833 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3834 if (&obj->base == NULL) {
3835 ret = -ENOENT;
3836 goto unlock;
3837 }
3838
651d794f
CW
3839 switch (obj->cache_level) {
3840 case I915_CACHE_LLC:
3841 case I915_CACHE_L3_LLC:
3842 args->caching = I915_CACHING_CACHED;
3843 break;
3844
4257d3ba
CW
3845 case I915_CACHE_WT:
3846 args->caching = I915_CACHING_DISPLAY;
3847 break;
3848
651d794f
CW
3849 default:
3850 args->caching = I915_CACHING_NONE;
3851 break;
3852 }
e6994aee
CW
3853
3854 drm_gem_object_unreference(&obj->base);
3855unlock:
3856 mutex_unlock(&dev->struct_mutex);
3857 return ret;
3858}
3859
199adf40
BW
3860int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3861 struct drm_file *file)
e6994aee 3862{
199adf40 3863 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3864 struct drm_i915_gem_object *obj;
3865 enum i915_cache_level level;
3866 int ret;
3867
199adf40
BW
3868 switch (args->caching) {
3869 case I915_CACHING_NONE:
e6994aee
CW
3870 level = I915_CACHE_NONE;
3871 break;
199adf40 3872 case I915_CACHING_CACHED:
e6994aee
CW
3873 level = I915_CACHE_LLC;
3874 break;
4257d3ba
CW
3875 case I915_CACHING_DISPLAY:
3876 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3877 break;
e6994aee
CW
3878 default:
3879 return -EINVAL;
3880 }
3881
3bc2913e
BW
3882 ret = i915_mutex_lock_interruptible(dev);
3883 if (ret)
3884 return ret;
3885
e6994aee
CW
3886 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3887 if (&obj->base == NULL) {
3888 ret = -ENOENT;
3889 goto unlock;
3890 }
3891
3892 ret = i915_gem_object_set_cache_level(obj, level);
3893
3894 drm_gem_object_unreference(&obj->base);
3895unlock:
3896 mutex_unlock(&dev->struct_mutex);
3897 return ret;
3898}
3899
cc98b413
CW
3900static bool is_pin_display(struct drm_i915_gem_object *obj)
3901{
19656430
OM
3902 struct i915_vma *vma;
3903
19656430
OM
3904 vma = i915_gem_obj_to_ggtt(obj);
3905 if (!vma)
3906 return false;
3907
4feb7659 3908 /* There are 2 sources that pin objects:
cc98b413
CW
3909 * 1. The display engine (scanouts, sprites, cursors);
3910 * 2. Reservations for execbuffer;
cc98b413
CW
3911 *
3912 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3913 * are only called outside of the reservation path.
cc98b413 3914 */
4feb7659 3915 return vma->pin_count;
cc98b413
CW
3916}
3917
b9241ea3 3918/*
2da3b9b9
CW
3919 * Prepare buffer for display plane (scanout, cursors, etc).
3920 * Can be called from an uninterruptible phase (modesetting) and allows
3921 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3922 */
3923int
2da3b9b9
CW
3924i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3925 u32 alignment,
a4872ba6 3926 struct intel_engine_cs *pipelined)
b9241ea3 3927{
2da3b9b9 3928 u32 old_read_domains, old_write_domain;
19656430 3929 bool was_pin_display;
b9241ea3
ZW
3930 int ret;
3931
0be73284 3932 if (pipelined != obj->ring) {
2911a35b
BW
3933 ret = i915_gem_object_sync(obj, pipelined);
3934 if (ret)
b9241ea3
ZW
3935 return ret;
3936 }
3937
cc98b413
CW
3938 /* Mark the pin_display early so that we account for the
3939 * display coherency whilst setting up the cache domains.
3940 */
19656430 3941 was_pin_display = obj->pin_display;
cc98b413
CW
3942 obj->pin_display = true;
3943
a7ef0640
EA
3944 /* The display engine is not coherent with the LLC cache on gen6. As
3945 * a result, we make sure that the pinning that is about to occur is
3946 * done with uncached PTEs. This is lowest common denominator for all
3947 * chipsets.
3948 *
3949 * However for gen6+, we could do better by using the GFDT bit instead
3950 * of uncaching, which would allow us to flush all the LLC-cached data
3951 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3952 */
651d794f
CW
3953 ret = i915_gem_object_set_cache_level(obj,
3954 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3955 if (ret)
cc98b413 3956 goto err_unpin_display;
a7ef0640 3957
2da3b9b9
CW
3958 /* As the user may map the buffer once pinned in the display plane
3959 * (e.g. libkms for the bootup splash), we have to ensure that we
3960 * always use map_and_fenceable for all scanout buffers.
3961 */
1ec9e26d 3962 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3963 if (ret)
cc98b413 3964 goto err_unpin_display;
2da3b9b9 3965
2c22569b 3966 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3967
2da3b9b9 3968 old_write_domain = obj->base.write_domain;
05394f39 3969 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3970
3971 /* It should now be out of any other write domains, and we can update
3972 * the domain values for our changes.
3973 */
e5f1d962 3974 obj->base.write_domain = 0;
05394f39 3975 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3976
3977 trace_i915_gem_object_change_domain(obj,
3978 old_read_domains,
2da3b9b9 3979 old_write_domain);
b9241ea3
ZW
3980
3981 return 0;
cc98b413
CW
3982
3983err_unpin_display:
19656430
OM
3984 WARN_ON(was_pin_display != is_pin_display(obj));
3985 obj->pin_display = was_pin_display;
cc98b413
CW
3986 return ret;
3987}
3988
3989void
3990i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3991{
d7f46fc4 3992 i915_gem_object_ggtt_unpin(obj);
cc98b413 3993 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3994}
3995
85345517 3996int
a8198eea 3997i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3998{
88241785
CW
3999 int ret;
4000
a8198eea 4001 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4002 return 0;
4003
0201f1ec 4004 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4005 if (ret)
4006 return ret;
4007
a8198eea
CW
4008 /* Ensure that we invalidate the GPU's caches and TLBs. */
4009 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4010 return 0;
85345517
CW
4011}
4012
e47c68e9
EA
4013/**
4014 * Moves a single object to the CPU read, and possibly write domain.
4015 *
4016 * This function returns when the move is complete, including waiting on
4017 * flushes to occur.
4018 */
dabdfe02 4019int
919926ae 4020i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4021{
1c5d22f7 4022 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4023 int ret;
4024
8d7e3de1
CW
4025 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4026 return 0;
4027
0201f1ec 4028 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4029 if (ret)
4030 return ret;
4031
c8725f3d 4032 i915_gem_object_retire(obj);
e47c68e9 4033 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4034
05394f39
CW
4035 old_write_domain = obj->base.write_domain;
4036 old_read_domains = obj->base.read_domains;
1c5d22f7 4037
e47c68e9 4038 /* Flush the CPU cache if it's still invalid. */
05394f39 4039 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4040 i915_gem_clflush_object(obj, false);
2ef7eeaa 4041
05394f39 4042 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4043 }
4044
4045 /* It should now be out of any other write domains, and we can update
4046 * the domain values for our changes.
4047 */
05394f39 4048 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4049
4050 /* If we're writing through the CPU, then the GPU read domains will
4051 * need to be invalidated at next use.
4052 */
4053 if (write) {
05394f39
CW
4054 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4055 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4056 }
2ef7eeaa 4057
f99d7069
DV
4058 if (write)
4059 intel_fb_obj_invalidate(obj, NULL);
4060
1c5d22f7
CW
4061 trace_i915_gem_object_change_domain(obj,
4062 old_read_domains,
4063 old_write_domain);
4064
2ef7eeaa
EA
4065 return 0;
4066}
4067
673a394b
EA
4068/* Throttle our rendering by waiting until the ring has completed our requests
4069 * emitted over 20 msec ago.
4070 *
b962442e
EA
4071 * Note that if we were to use the current jiffies each time around the loop,
4072 * we wouldn't escape the function with any frames outstanding if the time to
4073 * render a frame was over 20ms.
4074 *
673a394b
EA
4075 * This should get us reasonable parallelism between CPU and GPU but also
4076 * relatively low latency when blocking on a particular request to finish.
4077 */
40a5f0de 4078static int
f787a5f5 4079i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4080{
f787a5f5
CW
4081 struct drm_i915_private *dev_priv = dev->dev_private;
4082 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4083 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4084 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4085 unsigned reset_counter;
f787a5f5 4086 int ret;
93533c29 4087
308887aa
DV
4088 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4089 if (ret)
4090 return ret;
4091
4092 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4093 if (ret)
4094 return ret;
e110e8d6 4095
1c25595f 4096 spin_lock(&file_priv->mm.lock);
f787a5f5 4097 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4098 if (time_after_eq(request->emitted_jiffies, recent_enough))
4099 break;
40a5f0de 4100
54fb2411 4101 target = request;
b962442e 4102 }
f69061be 4103 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4104 if (target)
4105 i915_gem_request_reference(target);
1c25595f 4106 spin_unlock(&file_priv->mm.lock);
40a5f0de 4107
54fb2411 4108 if (target == NULL)
f787a5f5 4109 return 0;
2bc43b5c 4110
9c654818 4111 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4112 if (ret == 0)
4113 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4114
ff865885
JH
4115 mutex_lock(&dev->struct_mutex);
4116 i915_gem_request_unreference(target);
4117 mutex_unlock(&dev->struct_mutex);
4118
40a5f0de
EA
4119 return ret;
4120}
4121
d23db88c
CW
4122static bool
4123i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4124{
4125 struct drm_i915_gem_object *obj = vma->obj;
4126
4127 if (alignment &&
4128 vma->node.start & (alignment - 1))
4129 return true;
4130
4131 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4132 return true;
4133
4134 if (flags & PIN_OFFSET_BIAS &&
4135 vma->node.start < (flags & PIN_OFFSET_MASK))
4136 return true;
4137
4138 return false;
4139}
4140
673a394b 4141int
05394f39 4142i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4143 struct i915_address_space *vm,
05394f39 4144 uint32_t alignment,
d23db88c 4145 uint64_t flags)
673a394b 4146{
6e7186af 4147 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4148 struct i915_vma *vma;
ef79e17c 4149 unsigned bound;
673a394b
EA
4150 int ret;
4151
6e7186af
BW
4152 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4153 return -ENODEV;
4154
bf3d149b 4155 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4156 return -EINVAL;
07fe0b12 4157
c826c449
CW
4158 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4159 return -EINVAL;
4160
07fe0b12 4161 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4162 if (vma) {
d7f46fc4
BW
4163 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4164 return -EBUSY;
4165
d23db88c 4166 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4167 WARN(vma->pin_count,
ae7d49d8 4168 "bo is already pinned with incorrect alignment:"
f343c5f6 4169 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4170 " obj->map_and_fenceable=%d\n",
07fe0b12 4171 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4172 !!(flags & PIN_MAPPABLE),
05394f39 4173 obj->map_and_fenceable);
07fe0b12 4174 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4175 if (ret)
4176 return ret;
8ea99c92
DV
4177
4178 vma = NULL;
ac0c6b5a
CW
4179 }
4180 }
4181
ef79e17c 4182 bound = vma ? vma->bound : 0;
8ea99c92 4183 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4184 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4185 if (IS_ERR(vma))
4186 return PTR_ERR(vma);
22c344e9 4187 }
76446cac 4188
aff43766 4189 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
8ea99c92 4190 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4191
ef79e17c
CW
4192 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4193 bool mappable, fenceable;
4194 u32 fence_size, fence_alignment;
4195
4196 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4197 obj->base.size,
4198 obj->tiling_mode);
4199 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4200 obj->base.size,
4201 obj->tiling_mode,
4202 true);
4203
4204 fenceable = (vma->node.size == fence_size &&
4205 (vma->node.start & (fence_alignment - 1)) == 0);
4206
4207 mappable = (vma->node.start + obj->base.size <=
4208 dev_priv->gtt.mappable_end);
4209
4210 obj->map_and_fenceable = mappable && fenceable;
4211 }
4212
4213 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4214
8ea99c92 4215 vma->pin_count++;
1ec9e26d
DV
4216 if (flags & PIN_MAPPABLE)
4217 obj->pin_mappable |= true;
673a394b
EA
4218
4219 return 0;
4220}
4221
4222void
d7f46fc4 4223i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4224{
d7f46fc4 4225 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4226
d7f46fc4
BW
4227 BUG_ON(!vma);
4228 BUG_ON(vma->pin_count == 0);
4229 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4230
4231 if (--vma->pin_count == 0)
6299f992 4232 obj->pin_mappable = false;
673a394b
EA
4233}
4234
d8ffa60b
DV
4235bool
4236i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4237{
4238 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4239 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4240 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4241
4242 WARN_ON(!ggtt_vma ||
4243 dev_priv->fence_regs[obj->fence_reg].pin_count >
4244 ggtt_vma->pin_count);
4245 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4246 return true;
4247 } else
4248 return false;
4249}
4250
4251void
4252i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4253{
4254 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4255 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4256 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4257 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4258 }
4259}
4260
673a394b
EA
4261int
4262i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4263 struct drm_file *file)
673a394b
EA
4264{
4265 struct drm_i915_gem_busy *args = data;
05394f39 4266 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4267 int ret;
4268
76c1dec1 4269 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4270 if (ret)
76c1dec1 4271 return ret;
673a394b 4272
05394f39 4273 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4274 if (&obj->base == NULL) {
1d7cfea1
CW
4275 ret = -ENOENT;
4276 goto unlock;
673a394b 4277 }
d1b851fc 4278
0be555b6
CW
4279 /* Count all active objects as busy, even if they are currently not used
4280 * by the gpu. Users of this interface expect objects to eventually
4281 * become non-busy without any further actions, therefore emit any
4282 * necessary flushes here.
c4de0a5d 4283 */
30dfebf3 4284 ret = i915_gem_object_flush_active(obj);
0be555b6 4285
30dfebf3 4286 args->busy = obj->active;
e9808edd
CW
4287 if (obj->ring) {
4288 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4289 args->busy |= intel_ring_flag(obj->ring) << 16;
4290 }
673a394b 4291
05394f39 4292 drm_gem_object_unreference(&obj->base);
1d7cfea1 4293unlock:
673a394b 4294 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4295 return ret;
673a394b
EA
4296}
4297
4298int
4299i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4300 struct drm_file *file_priv)
4301{
0206e353 4302 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4303}
4304
3ef94daa
CW
4305int
4306i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4307 struct drm_file *file_priv)
4308{
656bfa3a 4309 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4310 struct drm_i915_gem_madvise *args = data;
05394f39 4311 struct drm_i915_gem_object *obj;
76c1dec1 4312 int ret;
3ef94daa
CW
4313
4314 switch (args->madv) {
4315 case I915_MADV_DONTNEED:
4316 case I915_MADV_WILLNEED:
4317 break;
4318 default:
4319 return -EINVAL;
4320 }
4321
1d7cfea1
CW
4322 ret = i915_mutex_lock_interruptible(dev);
4323 if (ret)
4324 return ret;
4325
05394f39 4326 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4327 if (&obj->base == NULL) {
1d7cfea1
CW
4328 ret = -ENOENT;
4329 goto unlock;
3ef94daa 4330 }
3ef94daa 4331
d7f46fc4 4332 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4333 ret = -EINVAL;
4334 goto out;
3ef94daa
CW
4335 }
4336
656bfa3a
DV
4337 if (obj->pages &&
4338 obj->tiling_mode != I915_TILING_NONE &&
4339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4340 if (obj->madv == I915_MADV_WILLNEED)
4341 i915_gem_object_unpin_pages(obj);
4342 if (args->madv == I915_MADV_WILLNEED)
4343 i915_gem_object_pin_pages(obj);
4344 }
4345
05394f39
CW
4346 if (obj->madv != __I915_MADV_PURGED)
4347 obj->madv = args->madv;
3ef94daa 4348
6c085a72
CW
4349 /* if the object is no longer attached, discard its backing storage */
4350 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4351 i915_gem_object_truncate(obj);
4352
05394f39 4353 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4354
1d7cfea1 4355out:
05394f39 4356 drm_gem_object_unreference(&obj->base);
1d7cfea1 4357unlock:
3ef94daa 4358 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4359 return ret;
3ef94daa
CW
4360}
4361
37e680a1
CW
4362void i915_gem_object_init(struct drm_i915_gem_object *obj,
4363 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4364{
35c20a60 4365 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4366 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4367 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4368 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4369
37e680a1
CW
4370 obj->ops = ops;
4371
0327d6ba
CW
4372 obj->fence_reg = I915_FENCE_REG_NONE;
4373 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4374
4375 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4376}
4377
37e680a1
CW
4378static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4379 .get_pages = i915_gem_object_get_pages_gtt,
4380 .put_pages = i915_gem_object_put_pages_gtt,
4381};
4382
05394f39
CW
4383struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4384 size_t size)
ac52bc56 4385{
c397b908 4386 struct drm_i915_gem_object *obj;
5949eac4 4387 struct address_space *mapping;
1a240d4d 4388 gfp_t mask;
ac52bc56 4389
42dcedd4 4390 obj = i915_gem_object_alloc(dev);
c397b908
DV
4391 if (obj == NULL)
4392 return NULL;
673a394b 4393
c397b908 4394 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4395 i915_gem_object_free(obj);
c397b908
DV
4396 return NULL;
4397 }
673a394b 4398
bed1ea95
CW
4399 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4400 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4401 /* 965gm cannot relocate objects above 4GiB. */
4402 mask &= ~__GFP_HIGHMEM;
4403 mask |= __GFP_DMA32;
4404 }
4405
496ad9aa 4406 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4407 mapping_set_gfp_mask(mapping, mask);
5949eac4 4408
37e680a1 4409 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4410
c397b908
DV
4411 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4412 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4413
3d29b842
ED
4414 if (HAS_LLC(dev)) {
4415 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4416 * cache) for about a 10% performance improvement
4417 * compared to uncached. Graphics requests other than
4418 * display scanout are coherent with the CPU in
4419 * accessing this cache. This means in this mode we
4420 * don't need to clflush on the CPU side, and on the
4421 * GPU side we only need to flush internal caches to
4422 * get data visible to the CPU.
4423 *
4424 * However, we maintain the display planes as UC, and so
4425 * need to rebind when first used as such.
4426 */
4427 obj->cache_level = I915_CACHE_LLC;
4428 } else
4429 obj->cache_level = I915_CACHE_NONE;
4430
d861e338
DV
4431 trace_i915_gem_object_create(obj);
4432
05394f39 4433 return obj;
c397b908
DV
4434}
4435
340fbd8c
CW
4436static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4437{
4438 /* If we are the last user of the backing storage (be it shmemfs
4439 * pages or stolen etc), we know that the pages are going to be
4440 * immediately released. In this case, we can then skip copying
4441 * back the contents from the GPU.
4442 */
4443
4444 if (obj->madv != I915_MADV_WILLNEED)
4445 return false;
4446
4447 if (obj->base.filp == NULL)
4448 return true;
4449
4450 /* At first glance, this looks racy, but then again so would be
4451 * userspace racing mmap against close. However, the first external
4452 * reference to the filp can only be obtained through the
4453 * i915_gem_mmap_ioctl() which safeguards us against the user
4454 * acquiring such a reference whilst we are in the middle of
4455 * freeing the object.
4456 */
4457 return atomic_long_read(&obj->base.filp->f_count) == 1;
4458}
4459
1488fc08 4460void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4461{
1488fc08 4462 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4463 struct drm_device *dev = obj->base.dev;
3e31c6c0 4464 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4465 struct i915_vma *vma, *next;
673a394b 4466
f65c9168
PZ
4467 intel_runtime_pm_get(dev_priv);
4468
26e12f89
CW
4469 trace_i915_gem_object_destroy(obj);
4470
07fe0b12 4471 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4472 int ret;
4473
4474 vma->pin_count = 0;
4475 ret = i915_vma_unbind(vma);
07fe0b12
BW
4476 if (WARN_ON(ret == -ERESTARTSYS)) {
4477 bool was_interruptible;
1488fc08 4478
07fe0b12
BW
4479 was_interruptible = dev_priv->mm.interruptible;
4480 dev_priv->mm.interruptible = false;
1488fc08 4481
07fe0b12 4482 WARN_ON(i915_vma_unbind(vma));
1488fc08 4483
07fe0b12
BW
4484 dev_priv->mm.interruptible = was_interruptible;
4485 }
1488fc08
CW
4486 }
4487
1d64ae71
BW
4488 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4489 * before progressing. */
4490 if (obj->stolen)
4491 i915_gem_object_unpin_pages(obj);
4492
a071fa00
DV
4493 WARN_ON(obj->frontbuffer_bits);
4494
656bfa3a
DV
4495 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4496 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4497 obj->tiling_mode != I915_TILING_NONE)
4498 i915_gem_object_unpin_pages(obj);
4499
401c29f6
BW
4500 if (WARN_ON(obj->pages_pin_count))
4501 obj->pages_pin_count = 0;
340fbd8c 4502 if (discard_backing_storage(obj))
5537252b 4503 obj->madv = I915_MADV_DONTNEED;
37e680a1 4504 i915_gem_object_put_pages(obj);
d8cb5086 4505 i915_gem_object_free_mmap_offset(obj);
de151cf6 4506
9da3da66
CW
4507 BUG_ON(obj->pages);
4508
2f745ad3
CW
4509 if (obj->base.import_attach)
4510 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4511
5cc9ed4b
CW
4512 if (obj->ops->release)
4513 obj->ops->release(obj);
4514
05394f39
CW
4515 drm_gem_object_release(&obj->base);
4516 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4517
05394f39 4518 kfree(obj->bit_17);
42dcedd4 4519 i915_gem_object_free(obj);
f65c9168
PZ
4520
4521 intel_runtime_pm_put(dev_priv);
673a394b
EA
4522}
4523
e656a6cb 4524struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4525 struct i915_address_space *vm)
e656a6cb
DV
4526{
4527 struct i915_vma *vma;
4528 list_for_each_entry(vma, &obj->vma_list, vma_link)
4529 if (vma->vm == vm)
4530 return vma;
4531
4532 return NULL;
4533}
4534
2f633156
BW
4535void i915_gem_vma_destroy(struct i915_vma *vma)
4536{
b9d06dd9 4537 struct i915_address_space *vm = NULL;
2f633156 4538 WARN_ON(vma->node.allocated);
aaa05667
CW
4539
4540 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4541 if (!list_empty(&vma->exec_list))
4542 return;
4543
b9d06dd9 4544 vm = vma->vm;
b9d06dd9 4545
841cd773
DV
4546 if (!i915_is_ggtt(vm))
4547 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4548
8b9c2b94 4549 list_del(&vma->vma_link);
b93dab6e 4550
2f633156
BW
4551 kfree(vma);
4552}
4553
e3efda49
CW
4554static void
4555i915_gem_stop_ringbuffers(struct drm_device *dev)
4556{
4557 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4558 struct intel_engine_cs *ring;
e3efda49
CW
4559 int i;
4560
4561 for_each_ring(ring, dev_priv, i)
a83014d3 4562 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4563}
4564
29105ccc 4565int
45c5f202 4566i915_gem_suspend(struct drm_device *dev)
29105ccc 4567{
3e31c6c0 4568 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4569 int ret = 0;
28dfe52a 4570
45c5f202 4571 mutex_lock(&dev->struct_mutex);
b2da9fe5 4572 ret = i915_gpu_idle(dev);
f7403347 4573 if (ret)
45c5f202 4574 goto err;
f7403347 4575
b2da9fe5 4576 i915_gem_retire_requests(dev);
673a394b 4577
29105ccc 4578 /* Under UMS, be paranoid and evict. */
a39d7efc 4579 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4580 i915_gem_evict_everything(dev);
29105ccc 4581
e3efda49 4582 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4583 mutex_unlock(&dev->struct_mutex);
4584
4585 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4586 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4587 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4588
bdcf120b
CW
4589 /* Assert that we sucessfully flushed all the work and
4590 * reset the GPU back to its idle, low power state.
4591 */
4592 WARN_ON(dev_priv->mm.busy);
4593
673a394b 4594 return 0;
45c5f202
CW
4595
4596err:
4597 mutex_unlock(&dev->struct_mutex);
4598 return ret;
673a394b
EA
4599}
4600
a4872ba6 4601int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4602{
c3787e2e 4603 struct drm_device *dev = ring->dev;
3e31c6c0 4604 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4605 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4606 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4607 int i, ret;
b9524a1e 4608
040d2baa 4609 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4610 return 0;
b9524a1e 4611
c3787e2e
BW
4612 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4613 if (ret)
4614 return ret;
b9524a1e 4615
c3787e2e
BW
4616 /*
4617 * Note: We do not worry about the concurrent register cacheline hang
4618 * here because no other code should access these registers other than
4619 * at initialization time.
4620 */
b9524a1e 4621 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4622 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4623 intel_ring_emit(ring, reg_base + i);
4624 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4625 }
4626
c3787e2e 4627 intel_ring_advance(ring);
b9524a1e 4628
c3787e2e 4629 return ret;
b9524a1e
BW
4630}
4631
f691e2f4
DV
4632void i915_gem_init_swizzling(struct drm_device *dev)
4633{
3e31c6c0 4634 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4635
11782b02 4636 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4637 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4638 return;
4639
4640 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4641 DISP_TILE_SURFACE_SWIZZLING);
4642
11782b02
DV
4643 if (IS_GEN5(dev))
4644 return;
4645
f691e2f4
DV
4646 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4647 if (IS_GEN6(dev))
6b26c86d 4648 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4649 else if (IS_GEN7(dev))
6b26c86d 4650 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4651 else if (IS_GEN8(dev))
4652 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4653 else
4654 BUG();
f691e2f4 4655}
e21af88d 4656
67b1b571
CW
4657static bool
4658intel_enable_blt(struct drm_device *dev)
4659{
4660 if (!HAS_BLT(dev))
4661 return false;
4662
4663 /* The blitter was dysfunctional on early prototypes */
4664 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4665 DRM_INFO("BLT not supported on this pre-production hardware;"
4666 " graphics performance will be degraded.\n");
4667 return false;
4668 }
4669
4670 return true;
4671}
4672
81e7f200
VS
4673static void init_unused_ring(struct drm_device *dev, u32 base)
4674{
4675 struct drm_i915_private *dev_priv = dev->dev_private;
4676
4677 I915_WRITE(RING_CTL(base), 0);
4678 I915_WRITE(RING_HEAD(base), 0);
4679 I915_WRITE(RING_TAIL(base), 0);
4680 I915_WRITE(RING_START(base), 0);
4681}
4682
4683static void init_unused_rings(struct drm_device *dev)
4684{
4685 if (IS_I830(dev)) {
4686 init_unused_ring(dev, PRB1_BASE);
4687 init_unused_ring(dev, SRB0_BASE);
4688 init_unused_ring(dev, SRB1_BASE);
4689 init_unused_ring(dev, SRB2_BASE);
4690 init_unused_ring(dev, SRB3_BASE);
4691 } else if (IS_GEN2(dev)) {
4692 init_unused_ring(dev, SRB0_BASE);
4693 init_unused_ring(dev, SRB1_BASE);
4694 } else if (IS_GEN3(dev)) {
4695 init_unused_ring(dev, PRB1_BASE);
4696 init_unused_ring(dev, PRB2_BASE);
4697 }
4698}
4699
a83014d3 4700int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4701{
4fc7c971 4702 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4703 int ret;
68f95ba9 4704
81e7f200
VS
4705 /*
4706 * At least 830 can leave some of the unused rings
4707 * "active" (ie. head != tail) after resume which
4708 * will prevent c3 entry. Makes sure all unused rings
4709 * are totally idle.
4710 */
4711 init_unused_rings(dev);
4712
5c1143bb 4713 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4714 if (ret)
b6913e4b 4715 return ret;
68f95ba9
CW
4716
4717 if (HAS_BSD(dev)) {
5c1143bb 4718 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4719 if (ret)
4720 goto cleanup_render_ring;
d1b851fc 4721 }
68f95ba9 4722
67b1b571 4723 if (intel_enable_blt(dev)) {
549f7365
CW
4724 ret = intel_init_blt_ring_buffer(dev);
4725 if (ret)
4726 goto cleanup_bsd_ring;
4727 }
4728
9a8a2213
BW
4729 if (HAS_VEBOX(dev)) {
4730 ret = intel_init_vebox_ring_buffer(dev);
4731 if (ret)
4732 goto cleanup_blt_ring;
4733 }
4734
845f74a7
ZY
4735 if (HAS_BSD2(dev)) {
4736 ret = intel_init_bsd2_ring_buffer(dev);
4737 if (ret)
4738 goto cleanup_vebox_ring;
4739 }
9a8a2213 4740
99433931 4741 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4742 if (ret)
845f74a7 4743 goto cleanup_bsd2_ring;
4fc7c971
BW
4744
4745 return 0;
4746
845f74a7
ZY
4747cleanup_bsd2_ring:
4748 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4749cleanup_vebox_ring:
4750 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4751cleanup_blt_ring:
4752 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4753cleanup_bsd_ring:
4754 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4755cleanup_render_ring:
4756 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4757
4758 return ret;
4759}
4760
4761int
4762i915_gem_init_hw(struct drm_device *dev)
4763{
3e31c6c0 4764 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4765 int ret, i;
4fc7c971
BW
4766
4767 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4768 return -EIO;
4769
59124506 4770 if (dev_priv->ellc_size)
05e21cc4 4771 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4772
0bf21347
VS
4773 if (IS_HASWELL(dev))
4774 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4775 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4776
88a2b2a3 4777 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4778 if (IS_IVYBRIDGE(dev)) {
4779 u32 temp = I915_READ(GEN7_MSG_CTL);
4780 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4781 I915_WRITE(GEN7_MSG_CTL, temp);
4782 } else if (INTEL_INFO(dev)->gen >= 7) {
4783 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4784 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4785 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4786 }
88a2b2a3
BW
4787 }
4788
4fc7c971
BW
4789 i915_gem_init_swizzling(dev);
4790
a83014d3 4791 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4792 if (ret)
4793 return ret;
4794
c3787e2e
BW
4795 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4796 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4797
254f965c 4798 /*
2fa48d8d
BW
4799 * XXX: Contexts should only be initialized once. Doing a switch to the
4800 * default context switch however is something we'd like to do after
4801 * reset or thaw (the latter may not actually be necessary for HW, but
4802 * goes with our code better). Context switching requires rings (for
4803 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4804 */
2fa48d8d 4805 ret = i915_gem_context_enable(dev_priv);
60990320 4806 if (ret && ret != -EIO) {
2fa48d8d 4807 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4808 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4809
4810 return ret;
4811 }
4812
4813 ret = i915_ppgtt_init_hw(dev);
4814 if (ret && ret != -EIO) {
4815 DRM_ERROR("PPGTT enable failed %d\n", ret);
4816 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4817 }
e21af88d 4818
2fa48d8d 4819 return ret;
8187a2b7
ZN
4820}
4821
1070a42b
CW
4822int i915_gem_init(struct drm_device *dev)
4823{
4824 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4825 int ret;
4826
127f1003
OM
4827 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4828 i915.enable_execlists);
4829
1070a42b 4830 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4831
4832 if (IS_VALLEYVIEW(dev)) {
4833 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4834 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4835 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4836 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4837 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4838 }
4839
a83014d3
OM
4840 if (!i915.enable_execlists) {
4841 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4842 dev_priv->gt.init_rings = i915_gem_init_rings;
4843 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4844 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4845 } else {
4846 dev_priv->gt.do_execbuf = intel_execlists_submission;
4847 dev_priv->gt.init_rings = intel_logical_rings_init;
4848 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4849 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4850 }
4851
6c5566a8
DV
4852 ret = i915_gem_init_userptr(dev);
4853 if (ret) {
4854 mutex_unlock(&dev->struct_mutex);
4855 return ret;
4856 }
4857
d7e5008f 4858 i915_gem_init_global_gtt(dev);
d62b4892 4859
2fa48d8d 4860 ret = i915_gem_context_init(dev);
e3848694
MK
4861 if (ret) {
4862 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4863 return ret;
e3848694 4864 }
2fa48d8d 4865
1070a42b 4866 ret = i915_gem_init_hw(dev);
60990320
CW
4867 if (ret == -EIO) {
4868 /* Allow ring initialisation to fail by marking the GPU as
4869 * wedged. But we only want to do this where the GPU is angry,
4870 * for all other failure, such as an allocation failure, bail.
4871 */
4872 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4873 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4874 ret = 0;
1070a42b 4875 }
60990320 4876 mutex_unlock(&dev->struct_mutex);
1070a42b 4877
60990320 4878 return ret;
1070a42b
CW
4879}
4880
8187a2b7
ZN
4881void
4882i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4883{
3e31c6c0 4884 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4885 struct intel_engine_cs *ring;
1ec14ad3 4886 int i;
8187a2b7 4887
b4519513 4888 for_each_ring(ring, dev_priv, i)
a83014d3 4889 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4890}
4891
64193406 4892static void
a4872ba6 4893init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4894{
4895 INIT_LIST_HEAD(&ring->active_list);
4896 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4897}
4898
7e0d96bc
BW
4899void i915_init_vm(struct drm_i915_private *dev_priv,
4900 struct i915_address_space *vm)
fc8c067e 4901{
7e0d96bc
BW
4902 if (!i915_is_ggtt(vm))
4903 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4904 vm->dev = dev_priv->dev;
4905 INIT_LIST_HEAD(&vm->active_list);
4906 INIT_LIST_HEAD(&vm->inactive_list);
4907 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4908 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4909}
4910
673a394b
EA
4911void
4912i915_gem_load(struct drm_device *dev)
4913{
3e31c6c0 4914 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4915 int i;
4916
4917 dev_priv->slab =
4918 kmem_cache_create("i915_gem_object",
4919 sizeof(struct drm_i915_gem_object), 0,
4920 SLAB_HWCACHE_ALIGN,
4921 NULL);
673a394b 4922
fc8c067e
BW
4923 INIT_LIST_HEAD(&dev_priv->vm_list);
4924 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4925
a33afea5 4926 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4927 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4928 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4929 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4930 for (i = 0; i < I915_NUM_RINGS; i++)
4931 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4932 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4933 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4934 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4935 i915_gem_retire_work_handler);
b29c19b6
CW
4936 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4937 i915_gem_idle_work_handler);
1f83fee0 4938 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4939
94400120 4940 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4941 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4942 I915_WRITE(MI_ARB_STATE,
4943 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4944 }
4945
72bfa19c
CW
4946 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4947
de151cf6 4948 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4949 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4950 dev_priv->fence_reg_start = 3;
de151cf6 4951
42b5aeab
VS
4952 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4953 dev_priv->num_fence_regs = 32;
4954 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4955 dev_priv->num_fence_regs = 16;
4956 else
4957 dev_priv->num_fence_regs = 8;
4958
b5aa8a0f 4959 /* Initialize fence registers to zero */
19b2dbde
CW
4960 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4961 i915_gem_restore_fences(dev);
10ed13e4 4962
673a394b 4963 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4964 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4965
ce453d81
CW
4966 dev_priv->mm.interruptible = true;
4967
ceabbba5
CW
4968 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4969 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4970 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4971 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4972
4973 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4974 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
4975
4976 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4977}
71acb5eb 4978
f787a5f5 4979void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4980{
f787a5f5 4981 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4982
b29c19b6
CW
4983 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4984
b962442e
EA
4985 /* Clean up our request list when the client is going away, so that
4986 * later retire_requests won't dereference our soon-to-be-gone
4987 * file_priv.
4988 */
1c25595f 4989 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4990 while (!list_empty(&file_priv->mm.request_list)) {
4991 struct drm_i915_gem_request *request;
4992
4993 request = list_first_entry(&file_priv->mm.request_list,
4994 struct drm_i915_gem_request,
4995 client_list);
4996 list_del(&request->client_list);
4997 request->file_priv = NULL;
4998 }
1c25595f 4999 spin_unlock(&file_priv->mm.lock);
b962442e 5000}
31169714 5001
b29c19b6
CW
5002static void
5003i915_gem_file_idle_work_handler(struct work_struct *work)
5004{
5005 struct drm_i915_file_private *file_priv =
5006 container_of(work, typeof(*file_priv), mm.idle_work.work);
5007
5008 atomic_set(&file_priv->rps_wait_boost, false);
5009}
5010
5011int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5012{
5013 struct drm_i915_file_private *file_priv;
e422b888 5014 int ret;
b29c19b6
CW
5015
5016 DRM_DEBUG_DRIVER("\n");
5017
5018 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5019 if (!file_priv)
5020 return -ENOMEM;
5021
5022 file->driver_priv = file_priv;
5023 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5024 file_priv->file = file;
b29c19b6
CW
5025
5026 spin_lock_init(&file_priv->mm.lock);
5027 INIT_LIST_HEAD(&file_priv->mm.request_list);
5028 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5029 i915_gem_file_idle_work_handler);
5030
e422b888
BW
5031 ret = i915_gem_context_open(dev, file);
5032 if (ret)
5033 kfree(file_priv);
b29c19b6 5034
e422b888 5035 return ret;
b29c19b6
CW
5036}
5037
b680c37a
DV
5038/**
5039 * i915_gem_track_fb - update frontbuffer tracking
5040 * old: current GEM buffer for the frontbuffer slots
5041 * new: new GEM buffer for the frontbuffer slots
5042 * frontbuffer_bits: bitmask of frontbuffer slots
5043 *
5044 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5045 * from @old and setting them in @new. Both @old and @new can be NULL.
5046 */
a071fa00
DV
5047void i915_gem_track_fb(struct drm_i915_gem_object *old,
5048 struct drm_i915_gem_object *new,
5049 unsigned frontbuffer_bits)
5050{
5051 if (old) {
5052 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5053 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5054 old->frontbuffer_bits &= ~frontbuffer_bits;
5055 }
5056
5057 if (new) {
5058 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5059 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5060 new->frontbuffer_bits |= frontbuffer_bits;
5061 }
5062}
5063
5774506f
CW
5064static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5065{
5066 if (!mutex_is_locked(mutex))
5067 return false;
5068
5069#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5070 return mutex->owner == task;
5071#else
5072 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5073 return false;
5074#endif
5075}
5076
b453c4db
CW
5077static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5078{
5079 if (!mutex_trylock(&dev->struct_mutex)) {
5080 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5081 return false;
5082
5083 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5084 return false;
5085
5086 *unlock = false;
5087 } else
5088 *unlock = true;
5089
5090 return true;
5091}
5092
ceabbba5
CW
5093static int num_vma_bound(struct drm_i915_gem_object *obj)
5094{
5095 struct i915_vma *vma;
5096 int count = 0;
5097
5098 list_for_each_entry(vma, &obj->vma_list, vma_link)
5099 if (drm_mm_node_allocated(&vma->node))
5100 count++;
5101
5102 return count;
5103}
5104
7dc19d5a 5105static unsigned long
ceabbba5 5106i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5107{
17250b71 5108 struct drm_i915_private *dev_priv =
ceabbba5 5109 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5110 struct drm_device *dev = dev_priv->dev;
6c085a72 5111 struct drm_i915_gem_object *obj;
7dc19d5a 5112 unsigned long count;
b453c4db 5113 bool unlock;
17250b71 5114
b453c4db
CW
5115 if (!i915_gem_shrinker_lock(dev, &unlock))
5116 return 0;
31169714 5117
7dc19d5a 5118 count = 0;
35c20a60 5119 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5120 if (obj->pages_pin_count == 0)
7dc19d5a 5121 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5122
5123 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5124 if (!i915_gem_obj_is_pinned(obj) &&
5125 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5126 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5127 }
17250b71 5128
5774506f
CW
5129 if (unlock)
5130 mutex_unlock(&dev->struct_mutex);
d9973b43 5131
7dc19d5a 5132 return count;
31169714 5133}
a70a3148
BW
5134
5135/* All the new VM stuff */
5136unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5137 struct i915_address_space *vm)
5138{
5139 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5140 struct i915_vma *vma;
5141
896ab1a5 5142 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5143
a70a3148
BW
5144 list_for_each_entry(vma, &o->vma_list, vma_link) {
5145 if (vma->vm == vm)
5146 return vma->node.start;
5147
5148 }
f25748ea
DV
5149 WARN(1, "%s vma for this object not found.\n",
5150 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5151 return -1;
5152}
5153
5154bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5155 struct i915_address_space *vm)
5156{
5157 struct i915_vma *vma;
5158
5159 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5160 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5161 return true;
5162
5163 return false;
5164}
5165
5166bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5167{
5a1d5eb0 5168 struct i915_vma *vma;
a70a3148 5169
5a1d5eb0
CW
5170 list_for_each_entry(vma, &o->vma_list, vma_link)
5171 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5172 return true;
5173
5174 return false;
5175}
5176
5177unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5178 struct i915_address_space *vm)
5179{
5180 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5181 struct i915_vma *vma;
5182
896ab1a5 5183 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5184
5185 BUG_ON(list_empty(&o->vma_list));
5186
5187 list_for_each_entry(vma, &o->vma_list, vma_link)
5188 if (vma->vm == vm)
5189 return vma->node.size;
5190
5191 return 0;
5192}
5193
7dc19d5a 5194static unsigned long
ceabbba5 5195i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5196{
5197 struct drm_i915_private *dev_priv =
ceabbba5 5198 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5199 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5200 unsigned long freed;
b453c4db 5201 bool unlock;
7dc19d5a 5202
b453c4db
CW
5203 if (!i915_gem_shrinker_lock(dev, &unlock))
5204 return SHRINK_STOP;
7dc19d5a 5205
21ab4e74
CW
5206 freed = i915_gem_shrink(dev_priv,
5207 sc->nr_to_scan,
5208 I915_SHRINK_BOUND |
5209 I915_SHRINK_UNBOUND |
5210 I915_SHRINK_PURGEABLE);
d9973b43 5211 if (freed < sc->nr_to_scan)
21ab4e74
CW
5212 freed += i915_gem_shrink(dev_priv,
5213 sc->nr_to_scan - freed,
5214 I915_SHRINK_BOUND |
5215 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5216 if (unlock)
5217 mutex_unlock(&dev->struct_mutex);
d9973b43 5218
7dc19d5a
DC
5219 return freed;
5220}
5c2abbea 5221
2cfcd32a
CW
5222static int
5223i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5224{
5225 struct drm_i915_private *dev_priv =
5226 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5227 struct drm_device *dev = dev_priv->dev;
5228 struct drm_i915_gem_object *obj;
5229 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5230 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5231 bool was_interruptible;
5232 bool unlock;
5233
a1db2fa7 5234 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5235 schedule_timeout_killable(1);
a1db2fa7
CW
5236 if (fatal_signal_pending(current))
5237 return NOTIFY_DONE;
5238 }
2cfcd32a
CW
5239 if (timeout == 0) {
5240 pr_err("Unable to purge GPU memory due lock contention.\n");
5241 return NOTIFY_DONE;
5242 }
5243
5244 was_interruptible = dev_priv->mm.interruptible;
5245 dev_priv->mm.interruptible = false;
5246
005445c5 5247 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5248
5249 dev_priv->mm.interruptible = was_interruptible;
5250
5251 /* Because we may be allocating inside our own driver, we cannot
5252 * assert that there are no objects with pinned pages that are not
5253 * being pointed to by hardware.
5254 */
5255 unbound = bound = pinned = 0;
5256 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5257 if (!obj->base.filp) /* not backed by a freeable object */
5258 continue;
5259
5260 if (obj->pages_pin_count)
5261 pinned += obj->base.size;
5262 else
5263 unbound += obj->base.size;
5264 }
5265 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5266 if (!obj->base.filp)
5267 continue;
5268
5269 if (obj->pages_pin_count)
5270 pinned += obj->base.size;
5271 else
5272 bound += obj->base.size;
5273 }
5274
5275 if (unlock)
5276 mutex_unlock(&dev->struct_mutex);
5277
bb9059d3
CW
5278 if (freed_pages || unbound || bound)
5279 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5280 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5281 if (unbound || bound)
5282 pr_err("%lu and %lu bytes still available in the "
5283 "bound and unbound GPU page lists.\n",
5284 bound, unbound);
5285
005445c5 5286 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5287 return NOTIFY_DONE;
5288}
5289
5c2abbea
BW
5290struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5291{
5292 struct i915_vma *vma;
5293
5c2abbea 5294 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5295 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5296 return NULL;
5297
5298 return vma;
5299}