]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Add distinct stubs for PM hibernation phases
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61}
62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
c20e8355 67 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
c20e8355 70 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
71}
72
73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
c20e8355 76 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
c20e8355 79 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
80}
81
21dd3734 82static int
33196ded 83i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 84{
30dbf0c0
CW
85 int ret;
86
d98c52cf 87 if (!i915_reset_in_progress(error))
30dbf0c0
CW
88 return 0;
89
0a6759c6
DV
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
1f83fee0 95 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 96 !i915_reset_in_progress(error),
1f83fee0 97 10*HZ);
0a6759c6
DV
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
30dbf0c0 102 return ret;
d98c52cf
CW
103 } else {
104 return 0;
0a6759c6 105 }
30dbf0c0
CW
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 109{
33196ded 110 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
111 int ret;
112
33196ded 113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
23bc5982 121 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
122 return 0;
123}
30dbf0c0 124
5a125c3c
EA
125int
126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 127 struct drm_file *file)
5a125c3c 128{
72e96d64 129 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 131 struct drm_i915_gem_get_aperture *args = data;
ca1543be 132 struct i915_vma *vma;
6299f992 133 size_t pinned;
5a125c3c 134
6299f992 135 pinned = 0;
73aa808f 136 mutex_lock(&dev->struct_mutex);
1c7f4bca 137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
138 if (vma->pin_count)
139 pinned += vma->node.size;
1c7f4bca 140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
141 if (vma->pin_count)
142 pinned += vma->node.size;
73aa808f 143 mutex_unlock(&dev->struct_mutex);
5a125c3c 144
72e96d64 145 args->aper_size = ggtt->base.total;
0206e353 146 args->aper_available_size = args->aper_size - pinned;
6299f992 147
5a125c3c
EA
148 return 0;
149}
150
6a2c4232
CW
151static int
152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 153{
6a2c4232
CW
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
00731155 159
6a2c4232
CW
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
09cbfeaf 176 put_page(page);
6a2c4232
CW
177 vaddr += PAGE_SIZE;
178 }
179
c033666a 180 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
00731155 194
6a2c4232
CW
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
6a2c4232
CW
199 return 0;
200}
201
202static void
203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204{
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 208
6a2c4232 209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 210 if (WARN_ON(ret)) {
6a2c4232
CW
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
6a2c4232
CW
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
00731155 221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 222 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
00731155 240 mark_page_accessed(page);
09cbfeaf 241 put_page(page);
00731155
CW
242 vaddr += PAGE_SIZE;
243 }
6a2c4232 244 obj->dirty = 0;
00731155
CW
245 }
246
6a2c4232
CW
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
6a2c4232
CW
249}
250
251static void
252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253{
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255}
256
257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261};
262
263static int
264drop_pages(struct drm_i915_gem_object *obj)
265{
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
1c7f4bca 270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
00731155
CW
278}
279
280int
281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283{
284 drm_dma_handle_t *phys;
6a2c4232 285 int ret;
00731155
CW
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
6a2c4232
CW
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
00731155
CW
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
00731155 309 obj->phys_handle = phys;
6a2c4232
CW
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
00731155
CW
313}
314
315static int
316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319{
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 323 int ret = 0;
6a2c4232
CW
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
00731155 331
77a0d1ca 332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
00731155
CW
347 }
348
6a2c4232 349 drm_clflush_virt_range(vaddr, args->size);
c033666a 350 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
351
352out:
de152b62 353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 354 return ret;
00731155
CW
355}
356
42dcedd4
CW
357void *i915_gem_object_alloc(struct drm_device *dev)
358{
359 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
361}
362
363void i915_gem_object_free(struct drm_i915_gem_object *obj)
364{
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 366 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
367}
368
ff72145b
DA
369static int
370i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
673a394b 374{
05394f39 375 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
376 int ret;
377 u32 handle;
673a394b 378
ff72145b 379 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
380 if (size == 0)
381 return -EINVAL;
673a394b
EA
382
383 /* Allocate the new object */
d37cd8a8 384 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
673a394b 387
05394f39 388 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 389 /* drop reference from allocate - handle holds it now */
d861e338
DV
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
202f2fef 393
ff72145b 394 *handle_p = handle;
673a394b
EA
395 return 0;
396}
397
ff72145b
DA
398int
399i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402{
403 /* have to work out size/pitch and return them */
de45eaf7 404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
da6b51d0 407 args->size, &args->handle);
ff72145b
DA
408}
409
ff72145b
DA
410/**
411 * Creates a new mm object and returns a handle to it.
412 */
413int
414i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416{
417 struct drm_i915_gem_create *args = data;
63ed2cb2 418
ff72145b 419 return i915_gem_create(file, dev,
da6b51d0 420 args->size, &args->handle);
ff72145b
DA
421}
422
8461d226
DV
423static inline int
424__copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427{
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447}
448
8c59967c 449static inline int
4f0c7cfb
BW
450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
8c59967c
DV
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
4c914c0c
BV
475/*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482{
483 int ret;
484
485 *needs_clflush = 0;
486
1db6e2e7 487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509}
510
d174bd64
DV
511/* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
eb01459f 514static int
d174bd64
DV
515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518{
519 char *vaddr;
520 int ret;
521
e7e58eb5 522 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
f60d7f0c 534 return ret ? -EFAULT : 0;
d174bd64
DV
535}
536
23c18c71
DV
537static void
538shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540{
e7e58eb5 541 if (unlikely(swizzled)) {
23c18c71
DV
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557}
558
d174bd64
DV
559/* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561static int
562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565{
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
23c18c71
DV
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
d174bd64
DV
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
f60d7f0c 585 return ret ? - EFAULT : 0;
d174bd64
DV
586}
587
eb01459f 588static int
dbf7bff0
DV
589i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
eb01459f 593{
8461d226 594 char __user *user_data;
eb01459f 595 ssize_t remain;
8461d226 596 loff_t offset;
eb2c0c81 597 int shmem_page_offset, page_length, ret = 0;
8461d226 598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 599 int prefaulted = 0;
8489731c 600 int needs_clflush = 0;
67d5a50c 601 struct sg_page_iter sg_iter;
eb01459f 602
2bb4629a 603 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
604 remain = args->size;
605
8461d226 606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 607
4c914c0c 608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
609 if (ret)
610 return ret;
611
8461d226 612 offset = args->offset;
eb01459f 613
67d5a50c
ID
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
2db76d7c 616 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
617
618 if (remain <= 0)
619 break;
620
eb01459f
EA
621 /* Operation in this page
622 *
eb01459f 623 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
624 * page_length = bytes to copy for this page
625 */
c8cbbb8b 626 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 630
8461d226
DV
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
d174bd64
DV
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
dbf7bff0 639
dbf7bff0
DV
640 mutex_unlock(&dev->struct_mutex);
641
d330a953 642 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 643 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
eb01459f 651
d174bd64
DV
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
eb01459f 655
dbf7bff0 656 mutex_lock(&dev->struct_mutex);
f60d7f0c 657
f60d7f0c 658 if (ret)
8461d226 659 goto out;
8461d226 660
17793c9a 661next_page:
eb01459f 662 remain -= page_length;
8461d226 663 user_data += page_length;
eb01459f
EA
664 offset += page_length;
665 }
666
4f27b75d 667out:
f60d7f0c
CW
668 i915_gem_object_unpin_pages(obj);
669
eb01459f
EA
670 return ret;
671}
672
673a394b
EA
673/**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678int
679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 680 struct drm_file *file)
673a394b
EA
681{
682 struct drm_i915_gem_pread *args = data;
05394f39 683 struct drm_i915_gem_object *obj;
35b62a89 684 int ret = 0;
673a394b 685
51311d0a
CW
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
2bb4629a 690 to_user_ptr(args->data_ptr),
51311d0a
CW
691 args->size))
692 return -EFAULT;
693
4f27b75d 694 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 695 if (ret)
4f27b75d 696 return ret;
673a394b 697
05394f39 698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 699 if (&obj->base == NULL) {
1d7cfea1
CW
700 ret = -ENOENT;
701 goto unlock;
4f27b75d 702 }
673a394b 703
7dcd2499 704 /* Bounds check source. */
05394f39
CW
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
ce9d419d 707 ret = -EINVAL;
35b62a89 708 goto out;
ce9d419d
CW
709 }
710
1286ff73
DV
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
db53a302
CW
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
dbf7bff0 721 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 722
35b62a89 723out:
05394f39 724 drm_gem_object_unreference(&obj->base);
1d7cfea1 725unlock:
4f27b75d 726 mutex_unlock(&dev->struct_mutex);
eb01459f 727 return ret;
673a394b
EA
728}
729
0839ccb8
KP
730/* This is the fast write path which cannot handle
731 * page faults in the source data
9b7530cc 732 */
0839ccb8
KP
733
734static inline int
735fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
9b7530cc 739{
4f0c7cfb
BW
740 void __iomem *vaddr_atomic;
741 void *vaddr;
0839ccb8 742 unsigned long unwritten;
9b7530cc 743
3e4d3af5 744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 748 user_data, length);
3e4d3af5 749 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 750 return unwritten;
0839ccb8
KP
751}
752
3de09aa3
EA
753/**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
673a394b 757static int
05394f39
CW
758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
3de09aa3 760 struct drm_i915_gem_pwrite *args,
05394f39 761 struct drm_file *file)
673a394b 762{
72e96d64
JL
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
673a394b 765 ssize_t remain;
0839ccb8 766 loff_t offset, page_base;
673a394b 767 char __user *user_data;
935aaa69
DV
768 int page_offset, page_length, ret;
769
1ec9e26d 770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
673a394b 781
2bb4629a 782 user_data = to_user_ptr(args->data_ptr);
673a394b 783 remain = args->size;
673a394b 784
f343c5f6 785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 786
77a0d1ca 787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 788
673a394b
EA
789 while (remain > 0) {
790 /* Operation in this page
791 *
0839ccb8
KP
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
673a394b 795 */
c8cbbb8b
CW
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
0839ccb8
KP
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
0839ccb8 802 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
0839ccb8 805 */
72e96d64 806 if (fast_user_write(ggtt->mappable, page_base,
935aaa69
DV
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
063e4e6b 809 goto out_flush;
935aaa69 810 }
673a394b 811
0839ccb8
KP
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
673a394b 815 }
673a394b 816
063e4e6b 817out_flush:
de152b62 818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 819out_unpin:
d7f46fc4 820 i915_gem_object_ggtt_unpin(obj);
935aaa69 821out:
3de09aa3 822 return ret;
673a394b
EA
823}
824
d174bd64
DV
825/* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
3043c60c 829static int
d174bd64
DV
830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
673a394b 835{
d174bd64 836 char *vaddr;
673a394b 837 int ret;
3de09aa3 838
e7e58eb5 839 if (unlikely(page_do_bit17_swizzling))
d174bd64 840 return -EINVAL;
3de09aa3 841
d174bd64
DV
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
c2831a94
CW
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
d174bd64
DV
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
3de09aa3 852
755d2218 853 return ret ? -EFAULT : 0;
3de09aa3
EA
854}
855
d174bd64
DV
856/* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
3043c60c 858static int
d174bd64
DV
859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
673a394b 864{
d174bd64
DV
865 char *vaddr;
866 int ret;
e5281ccd 867
d174bd64 868 vaddr = kmap(page);
e7e58eb5 869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
d174bd64
DV
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
875 user_data,
876 page_length);
d174bd64
DV
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
23c18c71
DV
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
d174bd64 885 kunmap(page);
40123c1f 886
755d2218 887 return ret ? -EFAULT : 0;
40123c1f
EA
888}
889
40123c1f 890static int
e244a443
DV
891i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
40123c1f 895{
40123c1f 896 ssize_t remain;
8c59967c
DV
897 loff_t offset;
898 char __user *user_data;
eb2c0c81 899 int shmem_page_offset, page_length, ret = 0;
8c59967c 900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 901 int hit_slowpath = 0;
58642885
DV
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
67d5a50c 904 struct sg_page_iter sg_iter;
40123c1f 905
2bb4629a 906 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
907 remain = args->size;
908
8c59967c 909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 910
58642885
DV
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
2c22569b 916 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
58642885 920 }
c76ce038
CW
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 926
755d2218
CW
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
77a0d1ca 931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 932
755d2218
CW
933 i915_gem_object_pin_pages(obj);
934
673a394b 935 offset = args->offset;
05394f39 936 obj->dirty = 1;
673a394b 937
67d5a50c
ID
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
2db76d7c 940 struct page *page = sg_page_iter_page(&sg_iter);
58642885 941 int partial_cacheline_write;
e5281ccd 942
9da3da66
CW
943 if (remain <= 0)
944 break;
945
40123c1f
EA
946 /* Operation in this page
947 *
40123c1f 948 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
949 * page_length = bytes to copy for this page
950 */
c8cbbb8b 951 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 956
58642885
DV
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
8c59967c
DV
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
d174bd64
DV
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
e244a443
DV
973
974 hit_slowpath = 1;
e244a443 975 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
40123c1f 980
e244a443 981 mutex_lock(&dev->struct_mutex);
755d2218 982
755d2218 983 if (ret)
8c59967c 984 goto out;
8c59967c 985
17793c9a 986next_page:
40123c1f 987 remain -= page_length;
8c59967c 988 user_data += page_length;
40123c1f 989 offset += page_length;
673a394b
EA
990 }
991
fbd5a26d 992out:
755d2218
CW
993 i915_gem_object_unpin_pages(obj);
994
e244a443 995 if (hit_slowpath) {
8dcf015e
DV
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1003 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1004 needs_clflush_after = true;
e244a443 1005 }
8c59967c 1006 }
673a394b 1007
58642885 1008 if (needs_clflush_after)
c033666a 1009 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1010 else
1011 obj->cache_dirty = true;
58642885 1012
de152b62 1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b 1025{
5d77d9c5 1026 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1027 struct drm_i915_gem_pwrite *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
51311d0a
CW
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
2bb4629a 1035 to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
d330a953 1039 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
673a394b 1045
5d77d9c5
ID
1046 intel_runtime_pm_get(dev_priv);
1047
fbd5a26d 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
5d77d9c5 1050 goto put_rpm;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
fbd5a26d 1056 }
673a394b 1057
7dcd2499 1058 /* Bounds check destination. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
35b62a89 1062 goto out;
ce9d419d
CW
1063 }
1064
1286ff73
DV
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
db53a302
CW
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
935aaa69 1075 ret = -EFAULT;
673a394b
EA
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
2c22569b
CW
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
fbd5a26d 1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1089 }
673a394b 1090
6a2c4232
CW
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
5c0480f2 1097
35b62a89 1098out:
05394f39 1099 drm_gem_object_unreference(&obj->base);
1d7cfea1 1100unlock:
fbd5a26d 1101 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1102put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
673a394b
EA
1105 return ret;
1106}
1107
f4457ae7
CW
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1110{
f4457ae7
CW
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
d98c52cf 1113
f4457ae7 1114 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
d98c52cf 1120 return -EAGAIN;
b361237b
CW
1121 }
1122
1123 return 0;
1124}
1125
094f9a54
CW
1126static void fake_irq(unsigned long data)
1127{
1128 wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1132 struct intel_engine_cs *engine)
094f9a54 1133{
0bc40be8 1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1135}
1136
ca5b721e
CW
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167}
1168
91b0c352 1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1170{
2def4ad9 1171 unsigned long timeout;
ca5b721e
CW
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
2def4ad9 1183
4a570db5 1184 if (req->engine->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
821485dc
CW
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
ca5b721e 1191 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1192 while (!need_resched()) {
eed29a5b 1193 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1194 return 0;
1195
91b0c352
CW
1196 if (signal_pending_state(state, current))
1197 break;
1198
ca5b721e 1199 if (busywait_stop(timeout, cpu))
2def4ad9 1200 break;
b29c19b6 1201
2def4ad9
CW
1202 cpu_relax_lowlatency();
1203 }
821485dc 1204
eed29a5b 1205 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1206 return 0;
1207
1208 return -EAGAIN;
b29c19b6
CW
1209}
1210
b361237b 1211/**
9c654818
JH
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
b361237b
CW
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
f69061be
DV
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
9c654818 1224 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1225 * errno with remaining time filled in timeout argument.
1226 */
9c654818 1227int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1228 bool interruptible,
5ed0bdf2 1229 s64 *timeout,
2e1b8730 1230 struct intel_rps_client *rps)
b361237b 1231{
666796da 1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
c033666a 1233 struct drm_i915_private *dev_priv = req->i915;
168c3f21 1234 const bool irq_test_in_progress =
666796da 1235 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1236 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1237 DEFINE_WAIT(wait);
47e9766d 1238 unsigned long timeout_expire;
e0313db0 1239 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1240 int ret;
1241
9df7575f 1242 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1243
b4716185
CW
1244 if (list_empty(&req->list))
1245 return 0;
1246
1b5a433a 1247 if (i915_gem_request_completed(req, true))
b361237b
CW
1248 return 0;
1249
bb6d1984
CW
1250 timeout_expire = 0;
1251 if (timeout) {
1252 if (WARN_ON(*timeout < 0))
1253 return -EINVAL;
1254
1255 if (*timeout == 0)
1256 return -ETIME;
1257
1258 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1259
1260 /*
1261 * Record current time in case interrupted by signal, or wedged.
1262 */
1263 before = ktime_get_raw_ns();
bb6d1984 1264 }
b361237b 1265
2e1b8730 1266 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1267 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1268
74328ee5 1269 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1270
1271 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1272 ret = __i915_spin_request(req, state);
2def4ad9
CW
1273 if (ret == 0)
1274 goto out;
1275
e2f80391 1276 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1277 ret = -ENODEV;
1278 goto out;
1279 }
1280
094f9a54
CW
1281 for (;;) {
1282 struct timer_list timer;
b361237b 1283
e2f80391 1284 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1285
f69061be 1286 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1287 * the request being submitted and now. If a reset has occurred,
1288 * the request is effectively complete (we either are in the
1289 * process of or have discarded the rendering and completely
1290 * reset the GPU. The results of the request are lost and we
1291 * are free to continue on with the original operation.
1292 */
299259a3 1293 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1294 ret = 0;
094f9a54
CW
1295 break;
1296 }
f69061be 1297
1b5a433a 1298 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1299 ret = 0;
1300 break;
1301 }
b361237b 1302
91b0c352 1303 if (signal_pending_state(state, current)) {
094f9a54
CW
1304 ret = -ERESTARTSYS;
1305 break;
1306 }
1307
47e9766d 1308 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1309 ret = -ETIME;
1310 break;
1311 }
1312
1313 timer.function = NULL;
e2f80391 1314 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1315 unsigned long expire;
1316
094f9a54 1317 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1318 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1319 mod_timer(&timer, expire);
1320 }
1321
5035c275 1322 io_schedule();
094f9a54 1323
094f9a54
CW
1324 if (timer.function) {
1325 del_singleshot_timer_sync(&timer);
1326 destroy_timer_on_stack(&timer);
1327 }
1328 }
168c3f21 1329 if (!irq_test_in_progress)
e2f80391 1330 engine->irq_put(engine);
094f9a54 1331
e2f80391 1332 finish_wait(&engine->irq_queue, &wait);
b361237b 1333
2def4ad9 1334out:
2def4ad9
CW
1335 trace_i915_gem_request_wait_end(req);
1336
b361237b 1337 if (timeout) {
e0313db0 1338 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1339
1340 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1341
1342 /*
1343 * Apparently ktime isn't accurate enough and occasionally has a
1344 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1345 * things up to make the test happy. We allow up to 1 jiffy.
1346 *
1347 * This is a regrssion from the timespec->ktime conversion.
1348 */
1349 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1350 *timeout = 0;
b361237b
CW
1351 }
1352
094f9a54 1353 return ret;
b361237b
CW
1354}
1355
fcfa423c
JH
1356int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1357 struct drm_file *file)
1358{
fcfa423c
JH
1359 struct drm_i915_file_private *file_priv;
1360
1361 WARN_ON(!req || !file || req->file_priv);
1362
1363 if (!req || !file)
1364 return -EINVAL;
1365
1366 if (req->file_priv)
1367 return -EINVAL;
1368
fcfa423c
JH
1369 file_priv = file->driver_priv;
1370
1371 spin_lock(&file_priv->mm.lock);
1372 req->file_priv = file_priv;
1373 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1374 spin_unlock(&file_priv->mm.lock);
1375
1376 req->pid = get_pid(task_pid(current));
1377
1378 return 0;
1379}
1380
b4716185
CW
1381static inline void
1382i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1383{
1384 struct drm_i915_file_private *file_priv = request->file_priv;
1385
1386 if (!file_priv)
1387 return;
1388
1389 spin_lock(&file_priv->mm.lock);
1390 list_del(&request->client_list);
1391 request->file_priv = NULL;
1392 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1393
1394 put_pid(request->pid);
1395 request->pid = NULL;
b4716185
CW
1396}
1397
1398static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1399{
1400 trace_i915_gem_request_retire(request);
1401
1402 /* We know the GPU must have read the request to have
1403 * sent us the seqno + interrupt, so use the position
1404 * of tail of the request to update the last known position
1405 * of the GPU head.
1406 *
1407 * Note this requires that we are always called in request
1408 * completion order.
1409 */
1410 request->ringbuf->last_retired_head = request->postfix;
1411
1412 list_del_init(&request->list);
1413 i915_gem_request_remove_from_client(request);
1414
a16a4052 1415 if (request->previous_context) {
73db04cf 1416 if (i915.enable_execlists)
a16a4052
CW
1417 intel_lr_context_unpin(request->previous_context,
1418 request->engine);
73db04cf
CW
1419 }
1420
a16a4052 1421 i915_gem_context_unreference(request->ctx);
b4716185
CW
1422 i915_gem_request_unreference(request);
1423}
1424
1425static void
1426__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1427{
4a570db5 1428 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1429 struct drm_i915_gem_request *tmp;
1430
c033666a 1431 lockdep_assert_held(&engine->i915->dev->struct_mutex);
b4716185
CW
1432
1433 if (list_empty(&req->list))
1434 return;
1435
1436 do {
1437 tmp = list_first_entry(&engine->request_list,
1438 typeof(*tmp), list);
1439
1440 i915_gem_request_retire(tmp);
1441 } while (tmp != req);
1442
1443 WARN_ON(i915_verify_lists(engine->dev));
1444}
1445
b361237b 1446/**
a4b3a571 1447 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1448 * request and object lists appropriately for that event.
1449 */
1450int
a4b3a571 1451i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1452{
791bee12 1453 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1454 bool interruptible;
b361237b
CW
1455 int ret;
1456
a4b3a571
DV
1457 interruptible = dev_priv->mm.interruptible;
1458
791bee12 1459 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1460
299259a3 1461 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1462 if (ret)
1463 return ret;
d26e3af8 1464
e075a32f
CW
1465 /* If the GPU hung, we want to keep the requests to find the guilty. */
1466 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1467 __i915_gem_request_retire__upto(req);
1468
d26e3af8
CW
1469 return 0;
1470}
1471
b361237b
CW
1472/**
1473 * Ensures that all rendering to the object has completed and the object is
1474 * safe to unbind from the GTT or access from the CPU.
1475 */
2e2f351d 1476int
b361237b
CW
1477i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1478 bool readonly)
1479{
b4716185 1480 int ret, i;
b361237b 1481
b4716185 1482 if (!obj->active)
b361237b
CW
1483 return 0;
1484
b4716185
CW
1485 if (readonly) {
1486 if (obj->last_write_req != NULL) {
1487 ret = i915_wait_request(obj->last_write_req);
1488 if (ret)
1489 return ret;
b361237b 1490
4a570db5 1491 i = obj->last_write_req->engine->id;
b4716185
CW
1492 if (obj->last_read_req[i] == obj->last_write_req)
1493 i915_gem_object_retire__read(obj, i);
1494 else
1495 i915_gem_object_retire__write(obj);
1496 }
1497 } else {
666796da 1498 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1499 if (obj->last_read_req[i] == NULL)
1500 continue;
1501
1502 ret = i915_wait_request(obj->last_read_req[i]);
1503 if (ret)
1504 return ret;
1505
1506 i915_gem_object_retire__read(obj, i);
1507 }
d501b1d2 1508 GEM_BUG_ON(obj->active);
b4716185
CW
1509 }
1510
1511 return 0;
1512}
1513
1514static void
1515i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1516 struct drm_i915_gem_request *req)
1517{
4a570db5 1518 int ring = req->engine->id;
b4716185
CW
1519
1520 if (obj->last_read_req[ring] == req)
1521 i915_gem_object_retire__read(obj, ring);
1522 else if (obj->last_write_req == req)
1523 i915_gem_object_retire__write(obj);
1524
e075a32f
CW
1525 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1526 __i915_gem_request_retire__upto(req);
b361237b
CW
1527}
1528
3236f57a
CW
1529/* A nonblocking variant of the above wait. This is a highly dangerous routine
1530 * as the object state may change during this call.
1531 */
1532static __must_check int
1533i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1534 struct intel_rps_client *rps,
3236f57a
CW
1535 bool readonly)
1536{
1537 struct drm_device *dev = obj->base.dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1539 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1540 int ret, i, n = 0;
3236f57a
CW
1541
1542 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1543 BUG_ON(!dev_priv->mm.interruptible);
1544
b4716185 1545 if (!obj->active)
3236f57a
CW
1546 return 0;
1547
b4716185
CW
1548 if (readonly) {
1549 struct drm_i915_gem_request *req;
1550
1551 req = obj->last_write_req;
1552 if (req == NULL)
1553 return 0;
1554
b4716185
CW
1555 requests[n++] = i915_gem_request_reference(req);
1556 } else {
666796da 1557 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1558 struct drm_i915_gem_request *req;
1559
1560 req = obj->last_read_req[i];
1561 if (req == NULL)
1562 continue;
1563
b4716185
CW
1564 requests[n++] = i915_gem_request_reference(req);
1565 }
1566 }
1567
3236f57a 1568 mutex_unlock(&dev->struct_mutex);
299259a3 1569 ret = 0;
b4716185 1570 for (i = 0; ret == 0 && i < n; i++)
299259a3 1571 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1572 mutex_lock(&dev->struct_mutex);
1573
b4716185
CW
1574 for (i = 0; i < n; i++) {
1575 if (ret == 0)
1576 i915_gem_object_retire_request(obj, requests[i]);
1577 i915_gem_request_unreference(requests[i]);
1578 }
1579
1580 return ret;
3236f57a
CW
1581}
1582
2e1b8730
CW
1583static struct intel_rps_client *to_rps_client(struct drm_file *file)
1584{
1585 struct drm_i915_file_private *fpriv = file->driver_priv;
1586 return &fpriv->rps;
1587}
1588
673a394b 1589/**
2ef7eeaa
EA
1590 * Called when user space prepares to use an object with the CPU, either
1591 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1592 */
1593int
1594i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1595 struct drm_file *file)
673a394b
EA
1596{
1597 struct drm_i915_gem_set_domain *args = data;
05394f39 1598 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
673a394b
EA
1601 int ret;
1602
2ef7eeaa 1603 /* Only handle setting domains to types used by the CPU. */
21d509e3 1604 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1605 return -EINVAL;
1606
21d509e3 1607 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1608 return -EINVAL;
1609
1610 /* Having something in the write domain implies it's in the read
1611 * domain, and only that read domain. Enforce that in the request.
1612 */
1613 if (write_domain != 0 && read_domains != write_domain)
1614 return -EINVAL;
1615
76c1dec1 1616 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1617 if (ret)
76c1dec1 1618 return ret;
1d7cfea1 1619
05394f39 1620 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1621 if (&obj->base == NULL) {
1d7cfea1
CW
1622 ret = -ENOENT;
1623 goto unlock;
76c1dec1 1624 }
673a394b 1625
3236f57a
CW
1626 /* Try to flush the object off the GPU without holding the lock.
1627 * We will repeat the flush holding the lock in the normal manner
1628 * to catch cases where we are gazumped.
1629 */
6e4930f6 1630 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1631 to_rps_client(file),
6e4930f6 1632 !write_domain);
3236f57a
CW
1633 if (ret)
1634 goto unref;
1635
43566ded 1636 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1637 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1638 else
e47c68e9 1639 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1640
031b698a
DV
1641 if (write_domain != 0)
1642 intel_fb_obj_invalidate(obj,
1643 write_domain == I915_GEM_DOMAIN_GTT ?
1644 ORIGIN_GTT : ORIGIN_CPU);
1645
3236f57a 1646unref:
05394f39 1647 drm_gem_object_unreference(&obj->base);
1d7cfea1 1648unlock:
673a394b
EA
1649 mutex_unlock(&dev->struct_mutex);
1650 return ret;
1651}
1652
1653/**
1654 * Called when user space has done writes to this buffer
1655 */
1656int
1657i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1658 struct drm_file *file)
673a394b
EA
1659{
1660 struct drm_i915_gem_sw_finish *args = data;
05394f39 1661 struct drm_i915_gem_object *obj;
673a394b
EA
1662 int ret = 0;
1663
76c1dec1 1664 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1665 if (ret)
76c1dec1 1666 return ret;
1d7cfea1 1667
05394f39 1668 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1669 if (&obj->base == NULL) {
1d7cfea1
CW
1670 ret = -ENOENT;
1671 goto unlock;
673a394b
EA
1672 }
1673
673a394b 1674 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1675 if (obj->pin_display)
e62b59e4 1676 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1677
05394f39 1678 drm_gem_object_unreference(&obj->base);
1d7cfea1 1679unlock:
673a394b
EA
1680 mutex_unlock(&dev->struct_mutex);
1681 return ret;
1682}
1683
1684/**
1685 * Maps the contents of an object, returning the address it is mapped
1686 * into.
1687 *
1688 * While the mapping holds a reference on the contents of the object, it doesn't
1689 * imply a ref on the object itself.
34367381
DV
1690 *
1691 * IMPORTANT:
1692 *
1693 * DRM driver writers who look a this function as an example for how to do GEM
1694 * mmap support, please don't implement mmap support like here. The modern way
1695 * to implement DRM mmap support is with an mmap offset ioctl (like
1696 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1697 * That way debug tooling like valgrind will understand what's going on, hiding
1698 * the mmap call in a driver private ioctl will break that. The i915 driver only
1699 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1700 */
1701int
1702i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1703 struct drm_file *file)
673a394b
EA
1704{
1705 struct drm_i915_gem_mmap *args = data;
1706 struct drm_gem_object *obj;
673a394b
EA
1707 unsigned long addr;
1708
1816f923
AG
1709 if (args->flags & ~(I915_MMAP_WC))
1710 return -EINVAL;
1711
1712 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1713 return -ENODEV;
1714
05394f39 1715 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1716 if (obj == NULL)
bf79cb91 1717 return -ENOENT;
673a394b 1718
1286ff73
DV
1719 /* prime objects have no backing filp to GEM mmap
1720 * pages from.
1721 */
1722 if (!obj->filp) {
1723 drm_gem_object_unreference_unlocked(obj);
1724 return -EINVAL;
1725 }
1726
6be5ceb0 1727 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1728 PROT_READ | PROT_WRITE, MAP_SHARED,
1729 args->offset);
1816f923
AG
1730 if (args->flags & I915_MMAP_WC) {
1731 struct mm_struct *mm = current->mm;
1732 struct vm_area_struct *vma;
1733
1734 down_write(&mm->mmap_sem);
1735 vma = find_vma(mm, addr);
1736 if (vma)
1737 vma->vm_page_prot =
1738 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1739 else
1740 addr = -ENOMEM;
1741 up_write(&mm->mmap_sem);
1742 }
bc9025bd 1743 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1744 if (IS_ERR((void *)addr))
1745 return addr;
1746
1747 args->addr_ptr = (uint64_t) addr;
1748
1749 return 0;
1750}
1751
de151cf6
JB
1752/**
1753 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1754 * @vma: VMA in question
1755 * @vmf: fault info
de151cf6
JB
1756 *
1757 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1758 * from userspace. The fault handler takes care of binding the object to
1759 * the GTT (if needed), allocating and programming a fence register (again,
1760 * only if needed based on whether the old reg is still valid or the object
1761 * is tiled) and inserting a new PTE into the faulting process.
1762 *
1763 * Note that the faulting process may involve evicting existing objects
1764 * from the GTT and/or fence registers to make room. So performance may
1765 * suffer if the GTT working set is large or there are few fence registers
1766 * left.
1767 */
1768int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1769{
05394f39
CW
1770 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1771 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1772 struct drm_i915_private *dev_priv = to_i915(dev);
1773 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1774 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1775 pgoff_t page_offset;
1776 unsigned long pfn;
1777 int ret = 0;
0f973f27 1778 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1779
f65c9168
PZ
1780 intel_runtime_pm_get(dev_priv);
1781
de151cf6
JB
1782 /* We don't use vmf->pgoff since that has the fake offset */
1783 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1784 PAGE_SHIFT;
1785
d9bc7e9f
CW
1786 ret = i915_mutex_lock_interruptible(dev);
1787 if (ret)
1788 goto out;
a00b10c3 1789
db53a302
CW
1790 trace_i915_gem_object_fault(obj, page_offset, true, write);
1791
6e4930f6
CW
1792 /* Try to flush the object off the GPU first without holding the lock.
1793 * Upon reacquiring the lock, we will perform our sanity checks and then
1794 * repeat the flush holding the lock in the normal manner to catch cases
1795 * where we are gazumped.
1796 */
1797 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1798 if (ret)
1799 goto unlock;
1800
eb119bd6
CW
1801 /* Access to snoopable pages through the GTT is incoherent. */
1802 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1803 ret = -EFAULT;
eb119bd6
CW
1804 goto unlock;
1805 }
1806
c5ad54cf 1807 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1808 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1809 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1810 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1811
c5ad54cf
JL
1812 memset(&view, 0, sizeof(view));
1813 view.type = I915_GGTT_VIEW_PARTIAL;
1814 view.params.partial.offset = rounddown(page_offset, chunk_size);
1815 view.params.partial.size =
1816 min_t(unsigned int,
1817 chunk_size,
1818 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1819 view.params.partial.offset);
1820 }
1821
1822 /* Now pin it into the GTT if needed */
1823 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1824 if (ret)
1825 goto unlock;
4a684a41 1826
c9839303
CW
1827 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1828 if (ret)
1829 goto unpin;
74898d7e 1830
06d98131 1831 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1832 if (ret)
c9839303 1833 goto unpin;
7d1c4804 1834
b90b91d8 1835 /* Finally, remap it using the new GTT offset */
72e96d64 1836 pfn = ggtt->mappable_base +
c5ad54cf 1837 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1838 pfn >>= PAGE_SHIFT;
de151cf6 1839
c5ad54cf
JL
1840 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1841 /* Overriding existing pages in partial view does not cause
1842 * us any trouble as TLBs are still valid because the fault
1843 * is due to userspace losing part of the mapping or never
1844 * having accessed it before (at this partials' range).
1845 */
1846 unsigned long base = vma->vm_start +
1847 (view.params.partial.offset << PAGE_SHIFT);
1848 unsigned int i;
b90b91d8 1849
c5ad54cf
JL
1850 for (i = 0; i < view.params.partial.size; i++) {
1851 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1852 if (ret)
1853 break;
1854 }
1855
1856 obj->fault_mappable = true;
c5ad54cf
JL
1857 } else {
1858 if (!obj->fault_mappable) {
1859 unsigned long size = min_t(unsigned long,
1860 vma->vm_end - vma->vm_start,
1861 obj->base.size);
1862 int i;
1863
1864 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1865 ret = vm_insert_pfn(vma,
1866 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1867 pfn + i);
1868 if (ret)
1869 break;
1870 }
1871
1872 obj->fault_mappable = true;
1873 } else
1874 ret = vm_insert_pfn(vma,
1875 (unsigned long)vmf->virtual_address,
1876 pfn + page_offset);
1877 }
c9839303 1878unpin:
c5ad54cf 1879 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1880unlock:
de151cf6 1881 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1882out:
de151cf6 1883 switch (ret) {
d9bc7e9f 1884 case -EIO:
2232f031
DV
1885 /*
1886 * We eat errors when the gpu is terminally wedged to avoid
1887 * userspace unduly crashing (gl has no provisions for mmaps to
1888 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1889 * and so needs to be reported.
1890 */
1891 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
045e769a 1895 case -EAGAIN:
571c608d
DV
1896 /*
1897 * EAGAIN means the gpu is hung and we'll wait for the error
1898 * handler to reset everything when re-faulting in
1899 * i915_mutex_lock_interruptible.
d9bc7e9f 1900 */
c715089f
CW
1901 case 0:
1902 case -ERESTARTSYS:
bed636ab 1903 case -EINTR:
e79e0fe3
DR
1904 case -EBUSY:
1905 /*
1906 * EBUSY is ok: this just means that another thread
1907 * already did the job.
1908 */
f65c9168
PZ
1909 ret = VM_FAULT_NOPAGE;
1910 break;
de151cf6 1911 case -ENOMEM:
f65c9168
PZ
1912 ret = VM_FAULT_OOM;
1913 break;
a7c2e1aa 1914 case -ENOSPC:
45d67817 1915 case -EFAULT:
f65c9168
PZ
1916 ret = VM_FAULT_SIGBUS;
1917 break;
de151cf6 1918 default:
a7c2e1aa 1919 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1920 ret = VM_FAULT_SIGBUS;
1921 break;
de151cf6 1922 }
f65c9168
PZ
1923
1924 intel_runtime_pm_put(dev_priv);
1925 return ret;
de151cf6
JB
1926}
1927
901782b2
CW
1928/**
1929 * i915_gem_release_mmap - remove physical page mappings
1930 * @obj: obj in question
1931 *
af901ca1 1932 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1933 * relinquish ownership of the pages back to the system.
1934 *
1935 * It is vital that we remove the page mapping if we have mapped a tiled
1936 * object through the GTT and then lose the fence register due to
1937 * resource pressure. Similarly if the object has been moved out of the
1938 * aperture, than pages mapped into userspace must be revoked. Removing the
1939 * mapping will then trigger a page fault on the next user access, allowing
1940 * fixup by i915_gem_fault().
1941 */
d05ca301 1942void
05394f39 1943i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1944{
349f2ccf
CW
1945 /* Serialisation between user GTT access and our code depends upon
1946 * revoking the CPU's PTE whilst the mutex is held. The next user
1947 * pagefault then has to wait until we release the mutex.
1948 */
1949 lockdep_assert_held(&obj->base.dev->struct_mutex);
1950
6299f992
CW
1951 if (!obj->fault_mappable)
1952 return;
901782b2 1953
6796cb16
DH
1954 drm_vma_node_unmap(&obj->base.vma_node,
1955 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1956
1957 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1958 * memory transactions from userspace before we return. The TLB
1959 * flushing implied above by changing the PTE above *should* be
1960 * sufficient, an extra barrier here just provides us with a bit
1961 * of paranoid documentation about our requirement to serialise
1962 * memory writes before touching registers / GSM.
1963 */
1964 wmb();
1965
6299f992 1966 obj->fault_mappable = false;
901782b2
CW
1967}
1968
eedd10f4
CW
1969void
1970i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1971{
1972 struct drm_i915_gem_object *obj;
1973
1974 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1975 i915_gem_release_mmap(obj);
1976}
1977
0fa87796 1978uint32_t
e28f8711 1979i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1980{
e28f8711 1981 uint32_t gtt_size;
92b88aeb
CW
1982
1983 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1984 tiling_mode == I915_TILING_NONE)
1985 return size;
92b88aeb
CW
1986
1987 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 1988 if (IS_GEN3(dev))
e28f8711 1989 gtt_size = 1024*1024;
92b88aeb 1990 else
e28f8711 1991 gtt_size = 512*1024;
92b88aeb 1992
e28f8711
CW
1993 while (gtt_size < size)
1994 gtt_size <<= 1;
92b88aeb 1995
e28f8711 1996 return gtt_size;
92b88aeb
CW
1997}
1998
de151cf6
JB
1999/**
2000 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2001 * @obj: object to check
2002 *
2003 * Return the required GTT alignment for an object, taking into account
5e783301 2004 * potential fence register mapping.
de151cf6 2005 */
d865110c
ID
2006uint32_t
2007i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2008 int tiling_mode, bool fenced)
de151cf6 2009{
de151cf6
JB
2010 /*
2011 * Minimum alignment is 4k (GTT page size), but might be greater
2012 * if a fence register is needed for the object.
2013 */
d865110c 2014 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2015 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2016 return 4096;
2017
a00b10c3
CW
2018 /*
2019 * Previous chips need to be aligned to the size of the smallest
2020 * fence register that can contain the object.
2021 */
e28f8711 2022 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2023}
2024
d8cb5086
CW
2025static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2026{
2027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2028 int ret;
2029
0de23977 2030 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2031 return 0;
2032
da494d7c
DV
2033 dev_priv->mm.shrinker_no_lock_stealing = true;
2034
d8cb5086
CW
2035 ret = drm_gem_create_mmap_offset(&obj->base);
2036 if (ret != -ENOSPC)
da494d7c 2037 goto out;
d8cb5086
CW
2038
2039 /* Badly fragmented mmap space? The only way we can recover
2040 * space is by destroying unwanted objects. We can't randomly release
2041 * mmap_offsets as userspace expects them to be persistent for the
2042 * lifetime of the objects. The closest we can is to release the
2043 * offsets on purgeable objects by truncating it and marking it purged,
2044 * which prevents userspace from ever using that object again.
2045 */
21ab4e74
CW
2046 i915_gem_shrink(dev_priv,
2047 obj->base.size >> PAGE_SHIFT,
2048 I915_SHRINK_BOUND |
2049 I915_SHRINK_UNBOUND |
2050 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2051 ret = drm_gem_create_mmap_offset(&obj->base);
2052 if (ret != -ENOSPC)
da494d7c 2053 goto out;
d8cb5086
CW
2054
2055 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2056 ret = drm_gem_create_mmap_offset(&obj->base);
2057out:
2058 dev_priv->mm.shrinker_no_lock_stealing = false;
2059
2060 return ret;
d8cb5086
CW
2061}
2062
2063static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2064{
d8cb5086
CW
2065 drm_gem_free_mmap_offset(&obj->base);
2066}
2067
da6b51d0 2068int
ff72145b
DA
2069i915_gem_mmap_gtt(struct drm_file *file,
2070 struct drm_device *dev,
da6b51d0 2071 uint32_t handle,
ff72145b 2072 uint64_t *offset)
de151cf6 2073{
05394f39 2074 struct drm_i915_gem_object *obj;
de151cf6
JB
2075 int ret;
2076
76c1dec1 2077 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2078 if (ret)
76c1dec1 2079 return ret;
de151cf6 2080
ff72145b 2081 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2082 if (&obj->base == NULL) {
1d7cfea1
CW
2083 ret = -ENOENT;
2084 goto unlock;
2085 }
de151cf6 2086
05394f39 2087 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2088 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2089 ret = -EFAULT;
1d7cfea1 2090 goto out;
ab18282d
CW
2091 }
2092
d8cb5086
CW
2093 ret = i915_gem_object_create_mmap_offset(obj);
2094 if (ret)
2095 goto out;
de151cf6 2096
0de23977 2097 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2098
1d7cfea1 2099out:
05394f39 2100 drm_gem_object_unreference(&obj->base);
1d7cfea1 2101unlock:
de151cf6 2102 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2103 return ret;
de151cf6
JB
2104}
2105
ff72145b
DA
2106/**
2107 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2108 * @dev: DRM device
2109 * @data: GTT mapping ioctl data
2110 * @file: GEM object info
2111 *
2112 * Simply returns the fake offset to userspace so it can mmap it.
2113 * The mmap call will end up in drm_gem_mmap(), which will set things
2114 * up so we can get faults in the handler above.
2115 *
2116 * The fault handler will take care of binding the object into the GTT
2117 * (since it may have been evicted to make room for something), allocating
2118 * a fence register, and mapping the appropriate aperture address into
2119 * userspace.
2120 */
2121int
2122i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2123 struct drm_file *file)
2124{
2125 struct drm_i915_gem_mmap_gtt *args = data;
2126
da6b51d0 2127 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2128}
2129
225067ee
DV
2130/* Immediately discard the backing storage */
2131static void
2132i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2133{
4d6294bf 2134 i915_gem_object_free_mmap_offset(obj);
1286ff73 2135
4d6294bf
CW
2136 if (obj->base.filp == NULL)
2137 return;
e5281ccd 2138
225067ee
DV
2139 /* Our goal here is to return as much of the memory as
2140 * is possible back to the system as we are called from OOM.
2141 * To do this we must instruct the shmfs to drop all of its
2142 * backing pages, *now*.
2143 */
5537252b 2144 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2145 obj->madv = __I915_MADV_PURGED;
2146}
e5281ccd 2147
5537252b
CW
2148/* Try to discard unwanted pages */
2149static void
2150i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2151{
5537252b
CW
2152 struct address_space *mapping;
2153
2154 switch (obj->madv) {
2155 case I915_MADV_DONTNEED:
2156 i915_gem_object_truncate(obj);
2157 case __I915_MADV_PURGED:
2158 return;
2159 }
2160
2161 if (obj->base.filp == NULL)
2162 return;
2163
2164 mapping = file_inode(obj->base.filp)->i_mapping,
2165 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2166}
2167
5cdf5881 2168static void
05394f39 2169i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2170{
90797e6d
ID
2171 struct sg_page_iter sg_iter;
2172 int ret;
1286ff73 2173
05394f39 2174 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2175
6c085a72 2176 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2177 if (WARN_ON(ret)) {
6c085a72
CW
2178 /* In the event of a disaster, abandon all caches and
2179 * hope for the best.
2180 */
2c22569b 2181 i915_gem_clflush_object(obj, true);
6c085a72
CW
2182 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2183 }
2184
e2273302
ID
2185 i915_gem_gtt_finish_object(obj);
2186
6dacfd2f 2187 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2188 i915_gem_object_save_bit_17_swizzle(obj);
2189
05394f39
CW
2190 if (obj->madv == I915_MADV_DONTNEED)
2191 obj->dirty = 0;
3ef94daa 2192
90797e6d 2193 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2194 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2195
05394f39 2196 if (obj->dirty)
9da3da66 2197 set_page_dirty(page);
3ef94daa 2198
05394f39 2199 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2200 mark_page_accessed(page);
3ef94daa 2201
09cbfeaf 2202 put_page(page);
3ef94daa 2203 }
05394f39 2204 obj->dirty = 0;
673a394b 2205
9da3da66
CW
2206 sg_free_table(obj->pages);
2207 kfree(obj->pages);
37e680a1 2208}
6c085a72 2209
dd624afd 2210int
37e680a1
CW
2211i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2212{
2213 const struct drm_i915_gem_object_ops *ops = obj->ops;
2214
2f745ad3 2215 if (obj->pages == NULL)
37e680a1
CW
2216 return 0;
2217
a5570178
CW
2218 if (obj->pages_pin_count)
2219 return -EBUSY;
2220
9843877d 2221 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2222
a2165e31
CW
2223 /* ->put_pages might need to allocate memory for the bit17 swizzle
2224 * array, hence protect them from being reaped by removing them from gtt
2225 * lists early. */
35c20a60 2226 list_del(&obj->global_list);
a2165e31 2227
0a798eb9 2228 if (obj->mapping) {
fb8621d3
CW
2229 if (is_vmalloc_addr(obj->mapping))
2230 vunmap(obj->mapping);
2231 else
2232 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2233 obj->mapping = NULL;
2234 }
2235
37e680a1 2236 ops->put_pages(obj);
05394f39 2237 obj->pages = NULL;
37e680a1 2238
5537252b 2239 i915_gem_object_invalidate(obj);
6c085a72
CW
2240
2241 return 0;
2242}
2243
37e680a1 2244static int
6c085a72 2245i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2246{
6c085a72 2247 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2248 int page_count, i;
2249 struct address_space *mapping;
9da3da66
CW
2250 struct sg_table *st;
2251 struct scatterlist *sg;
90797e6d 2252 struct sg_page_iter sg_iter;
e5281ccd 2253 struct page *page;
90797e6d 2254 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2255 int ret;
6c085a72 2256 gfp_t gfp;
e5281ccd 2257
6c085a72
CW
2258 /* Assert that the object is not currently in any GPU domain. As it
2259 * wasn't in the GTT, there shouldn't be any way it could have been in
2260 * a GPU cache
2261 */
2262 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2263 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2264
9da3da66
CW
2265 st = kmalloc(sizeof(*st), GFP_KERNEL);
2266 if (st == NULL)
2267 return -ENOMEM;
2268
05394f39 2269 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2270 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2271 kfree(st);
e5281ccd 2272 return -ENOMEM;
9da3da66 2273 }
e5281ccd 2274
9da3da66
CW
2275 /* Get the list of pages out of our struct file. They'll be pinned
2276 * at this point until we release them.
2277 *
2278 * Fail silently without starting the shrinker
2279 */
496ad9aa 2280 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2281 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2282 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2283 sg = st->sgl;
2284 st->nents = 0;
2285 for (i = 0; i < page_count; i++) {
6c085a72
CW
2286 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2287 if (IS_ERR(page)) {
21ab4e74
CW
2288 i915_gem_shrink(dev_priv,
2289 page_count,
2290 I915_SHRINK_BOUND |
2291 I915_SHRINK_UNBOUND |
2292 I915_SHRINK_PURGEABLE);
6c085a72
CW
2293 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2294 }
2295 if (IS_ERR(page)) {
2296 /* We've tried hard to allocate the memory by reaping
2297 * our own buffer, now let the real VM do its job and
2298 * go down in flames if truly OOM.
2299 */
6c085a72 2300 i915_gem_shrink_all(dev_priv);
f461d1be 2301 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2302 if (IS_ERR(page)) {
2303 ret = PTR_ERR(page);
6c085a72 2304 goto err_pages;
e2273302 2305 }
6c085a72 2306 }
426729dc
KRW
2307#ifdef CONFIG_SWIOTLB
2308 if (swiotlb_nr_tbl()) {
2309 st->nents++;
2310 sg_set_page(sg, page, PAGE_SIZE, 0);
2311 sg = sg_next(sg);
2312 continue;
2313 }
2314#endif
90797e6d
ID
2315 if (!i || page_to_pfn(page) != last_pfn + 1) {
2316 if (i)
2317 sg = sg_next(sg);
2318 st->nents++;
2319 sg_set_page(sg, page, PAGE_SIZE, 0);
2320 } else {
2321 sg->length += PAGE_SIZE;
2322 }
2323 last_pfn = page_to_pfn(page);
3bbbe706
DV
2324
2325 /* Check that the i965g/gm workaround works. */
2326 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2327 }
426729dc
KRW
2328#ifdef CONFIG_SWIOTLB
2329 if (!swiotlb_nr_tbl())
2330#endif
2331 sg_mark_end(sg);
74ce6b6c
CW
2332 obj->pages = st;
2333
e2273302
ID
2334 ret = i915_gem_gtt_prepare_object(obj);
2335 if (ret)
2336 goto err_pages;
2337
6dacfd2f 2338 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2339 i915_gem_object_do_bit_17_swizzle(obj);
2340
656bfa3a
DV
2341 if (obj->tiling_mode != I915_TILING_NONE &&
2342 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2343 i915_gem_object_pin_pages(obj);
2344
e5281ccd
CW
2345 return 0;
2346
2347err_pages:
90797e6d
ID
2348 sg_mark_end(sg);
2349 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
09cbfeaf 2350 put_page(sg_page_iter_page(&sg_iter));
9da3da66
CW
2351 sg_free_table(st);
2352 kfree(st);
0820baf3
CW
2353
2354 /* shmemfs first checks if there is enough memory to allocate the page
2355 * and reports ENOSPC should there be insufficient, along with the usual
2356 * ENOMEM for a genuine allocation failure.
2357 *
2358 * We use ENOSPC in our driver to mean that we have run out of aperture
2359 * space and so want to translate the error from shmemfs back to our
2360 * usual understanding of ENOMEM.
2361 */
e2273302
ID
2362 if (ret == -ENOSPC)
2363 ret = -ENOMEM;
2364
2365 return ret;
673a394b
EA
2366}
2367
37e680a1
CW
2368/* Ensure that the associated pages are gathered from the backing storage
2369 * and pinned into our object. i915_gem_object_get_pages() may be called
2370 * multiple times before they are released by a single call to
2371 * i915_gem_object_put_pages() - once the pages are no longer referenced
2372 * either as a result of memory pressure (reaping pages under the shrinker)
2373 * or as the object is itself released.
2374 */
2375int
2376i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2377{
2378 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2379 const struct drm_i915_gem_object_ops *ops = obj->ops;
2380 int ret;
2381
2f745ad3 2382 if (obj->pages)
37e680a1
CW
2383 return 0;
2384
43e28f09 2385 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2386 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2387 return -EFAULT;
43e28f09
CW
2388 }
2389
a5570178
CW
2390 BUG_ON(obj->pages_pin_count);
2391
37e680a1
CW
2392 ret = ops->get_pages(obj);
2393 if (ret)
2394 return ret;
2395
35c20a60 2396 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2397
2398 obj->get_page.sg = obj->pages->sgl;
2399 obj->get_page.last = 0;
2400
37e680a1 2401 return 0;
673a394b
EA
2402}
2403
0a798eb9
CW
2404void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2405{
2406 int ret;
2407
2408 lockdep_assert_held(&obj->base.dev->struct_mutex);
2409
2410 ret = i915_gem_object_get_pages(obj);
2411 if (ret)
2412 return ERR_PTR(ret);
2413
2414 i915_gem_object_pin_pages(obj);
2415
2416 if (obj->mapping == NULL) {
0a798eb9 2417 struct page **pages;
0a798eb9 2418
fb8621d3
CW
2419 pages = NULL;
2420 if (obj->base.size == PAGE_SIZE)
2421 obj->mapping = kmap(sg_page(obj->pages->sgl));
2422 else
2423 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2424 sizeof(*pages),
2425 GFP_TEMPORARY);
0a798eb9 2426 if (pages != NULL) {
fb8621d3
CW
2427 struct sg_page_iter sg_iter;
2428 int n;
2429
0a798eb9
CW
2430 n = 0;
2431 for_each_sg_page(obj->pages->sgl, &sg_iter,
2432 obj->pages->nents, 0)
2433 pages[n++] = sg_page_iter_page(&sg_iter);
2434
2435 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2436 drm_free_large(pages);
2437 }
2438 if (obj->mapping == NULL) {
2439 i915_gem_object_unpin_pages(obj);
2440 return ERR_PTR(-ENOMEM);
2441 }
2442 }
2443
2444 return obj->mapping;
2445}
2446
b4716185 2447void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2448 struct drm_i915_gem_request *req)
673a394b 2449{
b4716185 2450 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2451 struct intel_engine_cs *engine;
b2af0376 2452
666796da 2453 engine = i915_gem_request_get_engine(req);
673a394b
EA
2454
2455 /* Add a reference if we're newly entering the active list. */
b4716185 2456 if (obj->active == 0)
05394f39 2457 drm_gem_object_reference(&obj->base);
666796da 2458 obj->active |= intel_engine_flag(engine);
e35a41de 2459
117897f4 2460 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2461 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2462
1c7f4bca 2463 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2464}
2465
b4716185
CW
2466static void
2467i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2468{
d501b1d2
CW
2469 GEM_BUG_ON(obj->last_write_req == NULL);
2470 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2471
2472 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2473 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2474}
2475
caea7476 2476static void
b4716185 2477i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2478{
feb822cf 2479 struct i915_vma *vma;
ce44b0ea 2480
d501b1d2
CW
2481 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2482 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2483
117897f4 2484 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2485 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2486
4a570db5 2487 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2488 i915_gem_object_retire__write(obj);
2489
2490 obj->active &= ~(1 << ring);
2491 if (obj->active)
2492 return;
caea7476 2493
6c246959
CW
2494 /* Bump our place on the bound list to keep it roughly in LRU order
2495 * so that we don't steal from recently used but inactive objects
2496 * (unless we are forced to ofc!)
2497 */
2498 list_move_tail(&obj->global_list,
2499 &to_i915(obj->base.dev)->mm.bound_list);
2500
1c7f4bca
CW
2501 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2502 if (!list_empty(&vma->vm_link))
2503 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2504 }
caea7476 2505
97b2a6a1 2506 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2507 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2508}
2509
9d773091 2510static int
c033666a 2511i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
53d227f2 2512{
e2f80391 2513 struct intel_engine_cs *engine;
29dcb570 2514 int ret;
53d227f2 2515
107f27a5 2516 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2517 for_each_engine(engine, dev_priv) {
666796da 2518 ret = intel_engine_idle(engine);
107f27a5
CW
2519 if (ret)
2520 return ret;
9d773091 2521 }
c033666a 2522 i915_gem_retire_requests(dev_priv);
107f27a5
CW
2523
2524 /* Finally reset hw state */
29dcb570 2525 for_each_engine(engine, dev_priv)
e2f80391 2526 intel_ring_init_seqno(engine, seqno);
498d2ac1 2527
9d773091 2528 return 0;
53d227f2
DV
2529}
2530
fca26bb4
MK
2531int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2532{
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534 int ret;
2535
2536 if (seqno == 0)
2537 return -EINVAL;
2538
2539 /* HWS page needs to be set less than what we
2540 * will inject to ring
2541 */
c033666a 2542 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
fca26bb4
MK
2543 if (ret)
2544 return ret;
2545
2546 /* Carefully set the last_seqno value so that wrap
2547 * detection still works
2548 */
2549 dev_priv->next_seqno = seqno;
2550 dev_priv->last_seqno = seqno - 1;
2551 if (dev_priv->last_seqno == 0)
2552 dev_priv->last_seqno--;
2553
2554 return 0;
2555}
2556
9d773091 2557int
c033666a 2558i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
53d227f2 2559{
9d773091
CW
2560 /* reserve 0 for non-seqno */
2561 if (dev_priv->next_seqno == 0) {
c033666a 2562 int ret = i915_gem_init_seqno(dev_priv, 0);
9d773091
CW
2563 if (ret)
2564 return ret;
53d227f2 2565
9d773091
CW
2566 dev_priv->next_seqno = 1;
2567 }
53d227f2 2568
f72b3435 2569 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2570 return 0;
53d227f2
DV
2571}
2572
bf7dc5b7
JH
2573/*
2574 * NB: This function is not allowed to fail. Doing so would mean the the
2575 * request is not being tracked for completion but the work itself is
2576 * going to happen on the hardware. This would be a Bad Thing(tm).
2577 */
75289874 2578void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2579 struct drm_i915_gem_object *obj,
2580 bool flush_caches)
673a394b 2581{
e2f80391 2582 struct intel_engine_cs *engine;
75289874 2583 struct drm_i915_private *dev_priv;
48e29f55 2584 struct intel_ringbuffer *ringbuf;
6d3d8274 2585 u32 request_start;
0251a963 2586 u32 reserved_tail;
3cce469c
CW
2587 int ret;
2588
48e29f55 2589 if (WARN_ON(request == NULL))
bf7dc5b7 2590 return;
48e29f55 2591
4a570db5 2592 engine = request->engine;
39dabecd 2593 dev_priv = request->i915;
75289874
JH
2594 ringbuf = request->ringbuf;
2595
29b1b415
JH
2596 /*
2597 * To ensure that this call will not fail, space for its emissions
2598 * should already have been reserved in the ring buffer. Let the ring
2599 * know that it is time to use that space up.
2600 */
48e29f55 2601 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2602 reserved_tail = request->reserved_space;
2603 request->reserved_space = 0;
2604
cc889e0f
DV
2605 /*
2606 * Emit any outstanding flushes - execbuf can fail to emit the flush
2607 * after having emitted the batchbuffer command. Hence we need to fix
2608 * things up similar to emitting the lazy request. The difference here
2609 * is that the flush _must_ happen before the next request, no matter
2610 * what.
2611 */
5b4a60c2
JH
2612 if (flush_caches) {
2613 if (i915.enable_execlists)
4866d729 2614 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2615 else
4866d729 2616 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2617 /* Not allowed to fail! */
2618 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2619 }
cc889e0f 2620
7c90b7de
CW
2621 trace_i915_gem_request_add(request);
2622
2623 request->head = request_start;
2624
2625 /* Whilst this request exists, batch_obj will be on the
2626 * active_list, and so will hold the active reference. Only when this
2627 * request is retired will the the batch_obj be moved onto the
2628 * inactive_list and lose its active reference. Hence we do not need
2629 * to explicitly hold another reference here.
2630 */
2631 request->batch_obj = obj;
2632
2633 /* Seal the request and mark it as pending execution. Note that
2634 * we may inspect this state, without holding any locks, during
2635 * hangcheck. Hence we apply the barrier to ensure that we do not
2636 * see a more recent value in the hws than we are tracking.
2637 */
2638 request->emitted_jiffies = jiffies;
2639 request->previous_seqno = engine->last_submitted_seqno;
2640 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2641 list_add_tail(&request->list, &engine->request_list);
2642
a71d8d94
CW
2643 /* Record the position of the start of the request so that
2644 * should we detect the updated seqno part-way through the
2645 * GPU processing the request, we never over-estimate the
2646 * position of the head.
2647 */
6d3d8274 2648 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2649
bf7dc5b7 2650 if (i915.enable_execlists)
e2f80391 2651 ret = engine->emit_request(request);
bf7dc5b7 2652 else {
e2f80391 2653 ret = engine->add_request(request);
53292cdb
MT
2654
2655 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2656 }
bf7dc5b7
JH
2657 /* Not allowed to fail! */
2658 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2659
c033666a 2660 i915_queue_hangcheck(engine->i915);
10cd45b6 2661
87255483
DV
2662 queue_delayed_work(dev_priv->wq,
2663 &dev_priv->mm.retire_work,
2664 round_jiffies_up_relative(HZ));
7d993739 2665 intel_mark_busy(dev_priv);
cc889e0f 2666
29b1b415 2667 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2668 ret = intel_ring_get_tail(ringbuf) - request_start;
2669 if (ret < 0)
2670 ret += ringbuf->size;
2671 WARN_ONCE(ret > reserved_tail,
2672 "Not enough space reserved (%d bytes) "
2673 "for adding the request (%d bytes)\n",
2674 reserved_tail, ret);
673a394b
EA
2675}
2676
939fd762 2677static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2678 const struct intel_context *ctx)
be62acb4 2679{
44e2c070 2680 unsigned long elapsed;
be62acb4 2681
44e2c070
MK
2682 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2683
2684 if (ctx->hang_stats.banned)
be62acb4
MK
2685 return true;
2686
676fa572
CW
2687 if (ctx->hang_stats.ban_period_seconds &&
2688 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2689 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2690 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2691 return true;
88b4aa87
MK
2692 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2693 if (i915_stop_ring_allow_warn(dev_priv))
2694 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2695 return true;
3fac8978 2696 }
be62acb4
MK
2697 }
2698
2699 return false;
2700}
2701
939fd762 2702static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2703 struct intel_context *ctx,
b6b0fac0 2704 const bool guilty)
aa60c664 2705{
44e2c070
MK
2706 struct i915_ctx_hang_stats *hs;
2707
2708 if (WARN_ON(!ctx))
2709 return;
aa60c664 2710
44e2c070
MK
2711 hs = &ctx->hang_stats;
2712
2713 if (guilty) {
939fd762 2714 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2715 hs->batch_active++;
2716 hs->guilty_ts = get_seconds();
2717 } else {
2718 hs->batch_pending++;
aa60c664
MK
2719 }
2720}
2721
abfe262a
JH
2722void i915_gem_request_free(struct kref *req_ref)
2723{
2724 struct drm_i915_gem_request *req = container_of(req_ref,
2725 typeof(*req), ref);
efab6d8d 2726 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2727}
2728
26827088 2729static inline int
0bc40be8 2730__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2731 struct intel_context *ctx,
2732 struct drm_i915_gem_request **req_out)
6689cb2b 2733{
c033666a 2734 struct drm_i915_private *dev_priv = engine->i915;
299259a3 2735 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2736 struct drm_i915_gem_request *req;
6689cb2b 2737 int ret;
6689cb2b 2738
217e46b5
JH
2739 if (!req_out)
2740 return -EINVAL;
2741
bccca494 2742 *req_out = NULL;
6689cb2b 2743
f4457ae7
CW
2744 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2745 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2746 * and restart.
2747 */
2748 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
2749 if (ret)
2750 return ret;
2751
eed29a5b
DV
2752 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2753 if (req == NULL)
6689cb2b
JH
2754 return -ENOMEM;
2755
c033666a 2756 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
9a0c1e27
CW
2757 if (ret)
2758 goto err;
6689cb2b 2759
40e895ce
JH
2760 kref_init(&req->ref);
2761 req->i915 = dev_priv;
4a570db5 2762 req->engine = engine;
299259a3 2763 req->reset_counter = reset_counter;
40e895ce
JH
2764 req->ctx = ctx;
2765 i915_gem_context_reference(req->ctx);
6689cb2b 2766
29b1b415
JH
2767 /*
2768 * Reserve space in the ring buffer for all the commands required to
2769 * eventually emit this request. This is to guarantee that the
2770 * i915_add_request() call can't fail. Note that the reserve may need
2771 * to be redone if the request is not actually submitted straight
2772 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2773 */
0251a963 2774 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
2775
2776 if (i915.enable_execlists)
2777 ret = intel_logical_ring_alloc_request_extras(req);
2778 else
2779 ret = intel_ring_alloc_request_extras(req);
2780 if (ret)
2781 goto err_ctx;
29b1b415 2782
bccca494 2783 *req_out = req;
6689cb2b 2784 return 0;
9a0c1e27 2785
bfa01200
CW
2786err_ctx:
2787 i915_gem_context_unreference(ctx);
9a0c1e27
CW
2788err:
2789 kmem_cache_free(dev_priv->requests, req);
2790 return ret;
0e50e96b
MK
2791}
2792
26827088
DG
2793/**
2794 * i915_gem_request_alloc - allocate a request structure
2795 *
2796 * @engine: engine that we wish to issue the request on.
2797 * @ctx: context that the request will be associated with.
2798 * This can be NULL if the request is not directly related to
2799 * any specific user context, in which case this function will
2800 * choose an appropriate context to use.
2801 *
2802 * Returns a pointer to the allocated request if successful,
2803 * or an error code if not.
2804 */
2805struct drm_i915_gem_request *
2806i915_gem_request_alloc(struct intel_engine_cs *engine,
2807 struct intel_context *ctx)
2808{
2809 struct drm_i915_gem_request *req;
2810 int err;
2811
2812 if (ctx == NULL)
c033666a 2813 ctx = engine->i915->kernel_context;
26827088
DG
2814 err = __i915_gem_request_alloc(engine, ctx, &req);
2815 return err ? ERR_PTR(err) : req;
2816}
2817
8d9fc7fd 2818struct drm_i915_gem_request *
0bc40be8 2819i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2820{
4db080f9
CW
2821 struct drm_i915_gem_request *request;
2822
0bc40be8 2823 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2824 if (i915_gem_request_completed(request, false))
4db080f9 2825 continue;
aa60c664 2826
b6b0fac0 2827 return request;
4db080f9 2828 }
b6b0fac0
MK
2829
2830 return NULL;
2831}
2832
666796da 2833static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2834 struct intel_engine_cs *engine)
b6b0fac0
MK
2835{
2836 struct drm_i915_gem_request *request;
2837 bool ring_hung;
2838
0bc40be8 2839 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2840
2841 if (request == NULL)
2842 return;
2843
0bc40be8 2844 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2845
939fd762 2846 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2847
0bc40be8 2848 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2849 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2850}
aa60c664 2851
666796da 2852static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2853 struct intel_engine_cs *engine)
4db080f9 2854{
608c1a52
CW
2855 struct intel_ringbuffer *buffer;
2856
0bc40be8 2857 while (!list_empty(&engine->active_list)) {
05394f39 2858 struct drm_i915_gem_object *obj;
9375e446 2859
0bc40be8 2860 obj = list_first_entry(&engine->active_list,
05394f39 2861 struct drm_i915_gem_object,
117897f4 2862 engine_list[engine->id]);
9375e446 2863
0bc40be8 2864 i915_gem_object_retire__read(obj, engine->id);
673a394b 2865 }
1d62beea 2866
dcb4c12a
OM
2867 /*
2868 * Clear the execlists queue up before freeing the requests, as those
2869 * are the ones that keep the context and ringbuffer backing objects
2870 * pinned in place.
2871 */
dcb4c12a 2872
7de1691a 2873 if (i915.enable_execlists) {
27af5eea
TU
2874 /* Ensure irq handler finishes or is cancelled. */
2875 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2876
e39d42fa 2877 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2878 }
2879
1d62beea
BW
2880 /*
2881 * We must free the requests after all the corresponding objects have
2882 * been moved off active lists. Which is the same order as the normal
2883 * retire_requests function does. This is important if object hold
2884 * implicit references on things like e.g. ppgtt address spaces through
2885 * the request.
2886 */
0bc40be8 2887 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2888 struct drm_i915_gem_request *request;
2889
0bc40be8 2890 request = list_first_entry(&engine->request_list,
1d62beea
BW
2891 struct drm_i915_gem_request,
2892 list);
2893
b4716185 2894 i915_gem_request_retire(request);
1d62beea 2895 }
608c1a52
CW
2896
2897 /* Having flushed all requests from all queues, we know that all
2898 * ringbuffers must now be empty. However, since we do not reclaim
2899 * all space when retiring the request (to prevent HEADs colliding
2900 * with rapid ringbuffer wraparound) the amount of available space
2901 * upon reset is less than when we start. Do one more pass over
2902 * all the ringbuffers to reset last_retired_head.
2903 */
0bc40be8 2904 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2905 buffer->last_retired_head = buffer->tail;
2906 intel_ring_update_space(buffer);
2907 }
2ed53a94
CW
2908
2909 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
2910}
2911
069efc1d 2912void i915_gem_reset(struct drm_device *dev)
673a394b 2913{
77f01230 2914 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2915 struct intel_engine_cs *engine;
673a394b 2916
4db080f9
CW
2917 /*
2918 * Before we free the objects from the requests, we need to inspect
2919 * them for finding the guilty party. As the requests only borrow
2920 * their reference to the objects, the inspection must be done first.
2921 */
b4ac5afc 2922 for_each_engine(engine, dev_priv)
666796da 2923 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2924
b4ac5afc 2925 for_each_engine(engine, dev_priv)
666796da 2926 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2927
acce9ffa
BW
2928 i915_gem_context_reset(dev);
2929
19b2dbde 2930 i915_gem_restore_fences(dev);
b4716185
CW
2931
2932 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2933}
2934
2935/**
2936 * This function clears the request list as sequence numbers are passed.
2937 */
1cf0ba14 2938void
0bc40be8 2939i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2940{
0bc40be8 2941 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2942
832a3aad
CW
2943 /* Retire requests first as we use it above for the early return.
2944 * If we retire requests last, we may use a later seqno and so clear
2945 * the requests lists without clearing the active list, leading to
2946 * confusion.
e9103038 2947 */
0bc40be8 2948 while (!list_empty(&engine->request_list)) {
673a394b 2949 struct drm_i915_gem_request *request;
673a394b 2950
0bc40be8 2951 request = list_first_entry(&engine->request_list,
673a394b
EA
2952 struct drm_i915_gem_request,
2953 list);
673a394b 2954
1b5a433a 2955 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2956 break;
2957
b4716185 2958 i915_gem_request_retire(request);
b84d5f0c 2959 }
673a394b 2960
832a3aad
CW
2961 /* Move any buffers on the active list that are no longer referenced
2962 * by the ringbuffer to the flushing/inactive lists as appropriate,
2963 * before we free the context associated with the requests.
2964 */
0bc40be8 2965 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2966 struct drm_i915_gem_object *obj;
2967
0bc40be8
TU
2968 obj = list_first_entry(&engine->active_list,
2969 struct drm_i915_gem_object,
117897f4 2970 engine_list[engine->id]);
832a3aad 2971
0bc40be8 2972 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2973 break;
2974
0bc40be8 2975 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2976 }
2977
0bc40be8
TU
2978 if (unlikely(engine->trace_irq_req &&
2979 i915_gem_request_completed(engine->trace_irq_req, true))) {
2980 engine->irq_put(engine);
2981 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2982 }
23bc5982 2983
0bc40be8 2984 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
2985}
2986
b29c19b6 2987bool
c033666a 2988i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 2989{
e2f80391 2990 struct intel_engine_cs *engine;
b29c19b6 2991 bool idle = true;
b09a1fec 2992
b4ac5afc 2993 for_each_engine(engine, dev_priv) {
e2f80391
TU
2994 i915_gem_retire_requests_ring(engine);
2995 idle &= list_empty(&engine->request_list);
c86ee3a9 2996 if (i915.enable_execlists) {
27af5eea 2997 spin_lock_bh(&engine->execlist_lock);
e2f80391 2998 idle &= list_empty(&engine->execlist_queue);
27af5eea 2999 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3000 }
b29c19b6
CW
3001 }
3002
3003 if (idle)
3004 mod_delayed_work(dev_priv->wq,
3005 &dev_priv->mm.idle_work,
3006 msecs_to_jiffies(100));
3007
3008 return idle;
b09a1fec
CW
3009}
3010
75ef9da2 3011static void
673a394b
EA
3012i915_gem_retire_work_handler(struct work_struct *work)
3013{
b29c19b6
CW
3014 struct drm_i915_private *dev_priv =
3015 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3016 struct drm_device *dev = dev_priv->dev;
0a58705b 3017 bool idle;
673a394b 3018
891b48cf 3019 /* Come back later if the device is busy... */
b29c19b6
CW
3020 idle = false;
3021 if (mutex_trylock(&dev->struct_mutex)) {
c033666a 3022 idle = i915_gem_retire_requests(dev_priv);
b29c19b6 3023 mutex_unlock(&dev->struct_mutex);
673a394b 3024 }
b29c19b6 3025 if (!idle)
bcb45086
CW
3026 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3027 round_jiffies_up_relative(HZ));
b29c19b6 3028}
0a58705b 3029
b29c19b6
CW
3030static void
3031i915_gem_idle_work_handler(struct work_struct *work)
3032{
3033 struct drm_i915_private *dev_priv =
3034 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3035 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3036 struct intel_engine_cs *engine;
b29c19b6 3037
b4ac5afc
DG
3038 for_each_engine(engine, dev_priv)
3039 if (!list_empty(&engine->request_list))
423795cb 3040 return;
35c94185 3041
30ecad77 3042 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3043 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3044 * by dev->struct_mutex. */
3045
7d993739 3046 intel_mark_idle(dev_priv);
35c94185
CW
3047
3048 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3049 for_each_engine(engine, dev_priv)
e2f80391 3050 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3051
35c94185
CW
3052 mutex_unlock(&dev->struct_mutex);
3053 }
673a394b
EA
3054}
3055
30dfebf3
DV
3056/**
3057 * Ensures that an object will eventually get non-busy by flushing any required
3058 * write domains, emitting any outstanding lazy request and retiring and
3059 * completed requests.
3060 */
3061static int
3062i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3063{
a5ac0f90 3064 int i;
b4716185
CW
3065
3066 if (!obj->active)
3067 return 0;
30dfebf3 3068
666796da 3069 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3070 struct drm_i915_gem_request *req;
41c52415 3071
b4716185
CW
3072 req = obj->last_read_req[i];
3073 if (req == NULL)
3074 continue;
3075
e6db7469 3076 if (i915_gem_request_completed(req, true))
b4716185 3077 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
3078 }
3079
3080 return 0;
3081}
3082
23ba4fd0
BW
3083/**
3084 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3085 * @DRM_IOCTL_ARGS: standard ioctl arguments
3086 *
3087 * Returns 0 if successful, else an error is returned with the remaining time in
3088 * the timeout parameter.
3089 * -ETIME: object is still busy after timeout
3090 * -ERESTARTSYS: signal interrupted the wait
3091 * -ENONENT: object doesn't exist
3092 * Also possible, but rare:
3093 * -EAGAIN: GPU wedged
3094 * -ENOMEM: damn
3095 * -ENODEV: Internal IRQ fail
3096 * -E?: The add request failed
3097 *
3098 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3099 * non-zero timeout parameter the wait ioctl will wait for the given number of
3100 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3101 * without holding struct_mutex the object may become re-busied before this
3102 * function completes. A similar but shorter * race condition exists in the busy
3103 * ioctl
3104 */
3105int
3106i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3107{
3108 struct drm_i915_gem_wait *args = data;
3109 struct drm_i915_gem_object *obj;
666796da 3110 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3111 int i, n = 0;
3112 int ret;
23ba4fd0 3113
11b5d511
DV
3114 if (args->flags != 0)
3115 return -EINVAL;
3116
23ba4fd0
BW
3117 ret = i915_mutex_lock_interruptible(dev);
3118 if (ret)
3119 return ret;
3120
3121 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3122 if (&obj->base == NULL) {
3123 mutex_unlock(&dev->struct_mutex);
3124 return -ENOENT;
3125 }
3126
30dfebf3
DV
3127 /* Need to make sure the object gets inactive eventually. */
3128 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3129 if (ret)
3130 goto out;
3131
b4716185 3132 if (!obj->active)
97b2a6a1 3133 goto out;
23ba4fd0 3134
23ba4fd0 3135 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3136 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3137 */
762e4583 3138 if (args->timeout_ns == 0) {
23ba4fd0
BW
3139 ret = -ETIME;
3140 goto out;
3141 }
3142
3143 drm_gem_object_unreference(&obj->base);
b4716185 3144
666796da 3145 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3146 if (obj->last_read_req[i] == NULL)
3147 continue;
3148
3149 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3150 }
3151
23ba4fd0
BW
3152 mutex_unlock(&dev->struct_mutex);
3153
b4716185
CW
3154 for (i = 0; i < n; i++) {
3155 if (ret == 0)
299259a3 3156 ret = __i915_wait_request(req[i], true,
b4716185 3157 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3158 to_rps_client(file));
73db04cf 3159 i915_gem_request_unreference(req[i]);
b4716185 3160 }
ff865885 3161 return ret;
23ba4fd0
BW
3162
3163out:
3164 drm_gem_object_unreference(&obj->base);
3165 mutex_unlock(&dev->struct_mutex);
3166 return ret;
3167}
3168
b4716185
CW
3169static int
3170__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3171 struct intel_engine_cs *to,
91af127f
JH
3172 struct drm_i915_gem_request *from_req,
3173 struct drm_i915_gem_request **to_req)
b4716185
CW
3174{
3175 struct intel_engine_cs *from;
3176 int ret;
3177
666796da 3178 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3179 if (to == from)
3180 return 0;
3181
91af127f 3182 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3183 return 0;
3184
c033666a 3185 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
a6f766f3 3186 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3187 ret = __i915_wait_request(from_req,
a6f766f3
CW
3188 i915->mm.interruptible,
3189 NULL,
3190 &i915->rps.semaphores);
b4716185
CW
3191 if (ret)
3192 return ret;
3193
91af127f 3194 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3195 } else {
3196 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3197 u32 seqno = i915_gem_request_get_seqno(from_req);
3198
3199 WARN_ON(!to_req);
b4716185
CW
3200
3201 if (seqno <= from->semaphore.sync_seqno[idx])
3202 return 0;
3203
91af127f 3204 if (*to_req == NULL) {
26827088
DG
3205 struct drm_i915_gem_request *req;
3206
3207 req = i915_gem_request_alloc(to, NULL);
3208 if (IS_ERR(req))
3209 return PTR_ERR(req);
3210
3211 *to_req = req;
91af127f
JH
3212 }
3213
599d924c
JH
3214 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3215 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3216 if (ret)
3217 return ret;
3218
3219 /* We use last_read_req because sync_to()
3220 * might have just caused seqno wrap under
3221 * the radar.
3222 */
3223 from->semaphore.sync_seqno[idx] =
3224 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3225 }
3226
3227 return 0;
3228}
3229
5816d648
BW
3230/**
3231 * i915_gem_object_sync - sync an object to a ring.
3232 *
3233 * @obj: object which may be in use on another ring.
3234 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3235 * @to_req: request we wish to use the object for. See below.
3236 * This will be allocated and returned if a request is
3237 * required but not passed in.
5816d648
BW
3238 *
3239 * This code is meant to abstract object synchronization with the GPU.
3240 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3241 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3242 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3243 * into a buffer at any time, but multiple readers. To ensure each has
3244 * a coherent view of memory, we must:
3245 *
3246 * - If there is an outstanding write request to the object, the new
3247 * request must wait for it to complete (either CPU or in hw, requests
3248 * on the same ring will be naturally ordered).
3249 *
3250 * - If we are a write request (pending_write_domain is set), the new
3251 * request must wait for outstanding read requests to complete.
5816d648 3252 *
91af127f
JH
3253 * For CPU synchronisation (NULL to) no request is required. For syncing with
3254 * rings to_req must be non-NULL. However, a request does not have to be
3255 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3256 * request will be allocated automatically and returned through *to_req. Note
3257 * that it is not guaranteed that commands will be emitted (because the system
3258 * might already be idle). Hence there is no need to create a request that
3259 * might never have any work submitted. Note further that if a request is
3260 * returned in *to_req, it is the responsibility of the caller to submit
3261 * that request (after potentially adding more work to it).
3262 *
5816d648
BW
3263 * Returns 0 if successful, else propagates up the lower layer error.
3264 */
2911a35b
BW
3265int
3266i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3267 struct intel_engine_cs *to,
3268 struct drm_i915_gem_request **to_req)
2911a35b 3269{
b4716185 3270 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3271 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3272 int ret, i, n;
41c52415 3273
b4716185 3274 if (!obj->active)
2911a35b
BW
3275 return 0;
3276
b4716185
CW
3277 if (to == NULL)
3278 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3279
b4716185
CW
3280 n = 0;
3281 if (readonly) {
3282 if (obj->last_write_req)
3283 req[n++] = obj->last_write_req;
3284 } else {
666796da 3285 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3286 if (obj->last_read_req[i])
3287 req[n++] = obj->last_read_req[i];
3288 }
3289 for (i = 0; i < n; i++) {
91af127f 3290 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3291 if (ret)
3292 return ret;
3293 }
2911a35b 3294
b4716185 3295 return 0;
2911a35b
BW
3296}
3297
b5ffc9bc
CW
3298static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3299{
3300 u32 old_write_domain, old_read_domains;
3301
b5ffc9bc
CW
3302 /* Force a pagefault for domain tracking on next user access */
3303 i915_gem_release_mmap(obj);
3304
b97c3d9c
KP
3305 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3306 return;
3307
b5ffc9bc
CW
3308 old_read_domains = obj->base.read_domains;
3309 old_write_domain = obj->base.write_domain;
3310
3311 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3312 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3313
3314 trace_i915_gem_object_change_domain(obj,
3315 old_read_domains,
3316 old_write_domain);
3317}
3318
8ef8561f
CW
3319static void __i915_vma_iounmap(struct i915_vma *vma)
3320{
3321 GEM_BUG_ON(vma->pin_count);
3322
3323 if (vma->iomap == NULL)
3324 return;
3325
3326 io_mapping_unmap(vma->iomap);
3327 vma->iomap = NULL;
3328}
3329
e9f24d5f 3330static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3331{
07fe0b12 3332 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3333 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3334 int ret;
673a394b 3335
1c7f4bca 3336 if (list_empty(&vma->obj_link))
673a394b
EA
3337 return 0;
3338
0ff501cb
DV
3339 if (!drm_mm_node_allocated(&vma->node)) {
3340 i915_gem_vma_destroy(vma);
0ff501cb
DV
3341 return 0;
3342 }
433544bd 3343
d7f46fc4 3344 if (vma->pin_count)
31d8d651 3345 return -EBUSY;
673a394b 3346
c4670ad0
CW
3347 BUG_ON(obj->pages == NULL);
3348
e9f24d5f
TU
3349 if (wait) {
3350 ret = i915_gem_object_wait_rendering(obj, false);
3351 if (ret)
3352 return ret;
3353 }
a8198eea 3354
596c5923 3355 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3356 i915_gem_object_finish_gtt(obj);
5323fd04 3357
8b1bc9b4
DV
3358 /* release the fence reg _after_ flushing */
3359 ret = i915_gem_object_put_fence(obj);
3360 if (ret)
3361 return ret;
8ef8561f
CW
3362
3363 __i915_vma_iounmap(vma);
8b1bc9b4 3364 }
96b47b65 3365
07fe0b12 3366 trace_i915_vma_unbind(vma);
db53a302 3367
777dc5bb 3368 vma->vm->unbind_vma(vma);
5e562f1d 3369 vma->bound = 0;
6f65e29a 3370
1c7f4bca 3371 list_del_init(&vma->vm_link);
596c5923 3372 if (vma->is_ggtt) {
fe14d5f4
TU
3373 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3374 obj->map_and_fenceable = false;
3375 } else if (vma->ggtt_view.pages) {
3376 sg_free_table(vma->ggtt_view.pages);
3377 kfree(vma->ggtt_view.pages);
fe14d5f4 3378 }
016a65a3 3379 vma->ggtt_view.pages = NULL;
fe14d5f4 3380 }
673a394b 3381
2f633156
BW
3382 drm_mm_remove_node(&vma->node);
3383 i915_gem_vma_destroy(vma);
3384
3385 /* Since the unbound list is global, only move to that list if
b93dab6e 3386 * no more VMAs exist. */
e2273302 3387 if (list_empty(&obj->vma_list))
2f633156 3388 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3389
70903c3b
CW
3390 /* And finally now the object is completely decoupled from this vma,
3391 * we can drop its hold on the backing storage and allow it to be
3392 * reaped by the shrinker.
3393 */
3394 i915_gem_object_unpin_pages(obj);
3395
88241785 3396 return 0;
54cf91dc
CW
3397}
3398
e9f24d5f
TU
3399int i915_vma_unbind(struct i915_vma *vma)
3400{
3401 return __i915_vma_unbind(vma, true);
3402}
3403
3404int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3405{
3406 return __i915_vma_unbind(vma, false);
3407}
3408
b2da9fe5 3409int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3410{
3e31c6c0 3411 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3412 struct intel_engine_cs *engine;
b4ac5afc 3413 int ret;
4df2faf4 3414
4df2faf4 3415 /* Flush everything onto the inactive list. */
b4ac5afc 3416 for_each_engine(engine, dev_priv) {
ecdb5fd8 3417 if (!i915.enable_execlists) {
73cfa865
JH
3418 struct drm_i915_gem_request *req;
3419
e2f80391 3420 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3421 if (IS_ERR(req))
3422 return PTR_ERR(req);
73cfa865 3423
ba01cc93 3424 ret = i915_switch_context(req);
75289874 3425 i915_add_request_no_flush(req);
aa9b7810
CW
3426 if (ret)
3427 return ret;
ecdb5fd8 3428 }
b6c7488d 3429
666796da 3430 ret = intel_engine_idle(engine);
1ec14ad3
CW
3431 if (ret)
3432 return ret;
3433 }
4df2faf4 3434
b4716185 3435 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3436 return 0;
4df2faf4
DV
3437}
3438
4144f9b5 3439static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3440 unsigned long cache_level)
3441{
4144f9b5 3442 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3443 struct drm_mm_node *other;
3444
4144f9b5
CW
3445 /*
3446 * On some machines we have to be careful when putting differing types
3447 * of snoopable memory together to avoid the prefetcher crossing memory
3448 * domains and dying. During vm initialisation, we decide whether or not
3449 * these constraints apply and set the drm_mm.color_adjust
3450 * appropriately.
42d6ab48 3451 */
4144f9b5 3452 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3453 return true;
3454
c6cfb325 3455 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3456 return true;
3457
3458 if (list_empty(&gtt_space->node_list))
3459 return true;
3460
3461 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3462 if (other->allocated && !other->hole_follows && other->color != cache_level)
3463 return false;
3464
3465 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3466 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3467 return false;
3468
3469 return true;
3470}
3471
673a394b 3472/**
91e6711e
JL
3473 * Finds free space in the GTT aperture and binds the object or a view of it
3474 * there.
673a394b 3475 */
262de145 3476static struct i915_vma *
07fe0b12
BW
3477i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3478 struct i915_address_space *vm,
ec7adb6e 3479 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3480 unsigned alignment,
ec7adb6e 3481 uint64_t flags)
673a394b 3482{
05394f39 3483 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3484 struct drm_i915_private *dev_priv = to_i915(dev);
3485 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3486 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3487 u32 search_flag, alloc_flag;
3488 u64 start, end;
65bd342f 3489 u64 size, fence_size;
2f633156 3490 struct i915_vma *vma;
07f73f69 3491 int ret;
673a394b 3492
91e6711e
JL
3493 if (i915_is_ggtt(vm)) {
3494 u32 view_size;
3495
3496 if (WARN_ON(!ggtt_view))
3497 return ERR_PTR(-EINVAL);
ec7adb6e 3498
91e6711e
JL
3499 view_size = i915_ggtt_view_size(obj, ggtt_view);
3500
3501 fence_size = i915_gem_get_gtt_size(dev,
3502 view_size,
3503 obj->tiling_mode);
3504 fence_alignment = i915_gem_get_gtt_alignment(dev,
3505 view_size,
3506 obj->tiling_mode,
3507 true);
3508 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3509 view_size,
3510 obj->tiling_mode,
3511 false);
3512 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3513 } else {
3514 fence_size = i915_gem_get_gtt_size(dev,
3515 obj->base.size,
3516 obj->tiling_mode);
3517 fence_alignment = i915_gem_get_gtt_alignment(dev,
3518 obj->base.size,
3519 obj->tiling_mode,
3520 true);
3521 unfenced_alignment =
3522 i915_gem_get_gtt_alignment(dev,
3523 obj->base.size,
3524 obj->tiling_mode,
3525 false);
3526 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3527 }
a00b10c3 3528
101b506a
MT
3529 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3530 end = vm->total;
3531 if (flags & PIN_MAPPABLE)
72e96d64 3532 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3533 if (flags & PIN_ZONE_4G)
48ea1e32 3534 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3535
673a394b 3536 if (alignment == 0)
1ec9e26d 3537 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3538 unfenced_alignment;
1ec9e26d 3539 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3540 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3541 ggtt_view ? ggtt_view->type : 0,
3542 alignment);
262de145 3543 return ERR_PTR(-EINVAL);
673a394b
EA
3544 }
3545
91e6711e
JL
3546 /* If binding the object/GGTT view requires more space than the entire
3547 * aperture has, reject it early before evicting everything in a vain
3548 * attempt to find space.
654fc607 3549 */
91e6711e 3550 if (size > end) {
65bd342f 3551 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3552 ggtt_view ? ggtt_view->type : 0,
3553 size,
1ec9e26d 3554 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3555 end);
262de145 3556 return ERR_PTR(-E2BIG);
654fc607
CW
3557 }
3558
37e680a1 3559 ret = i915_gem_object_get_pages(obj);
6c085a72 3560 if (ret)
262de145 3561 return ERR_PTR(ret);
6c085a72 3562
fbdda6fb
CW
3563 i915_gem_object_pin_pages(obj);
3564
ec7adb6e
JL
3565 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3566 i915_gem_obj_lookup_or_create_vma(obj, vm);
3567
262de145 3568 if (IS_ERR(vma))
bc6bc15b 3569 goto err_unpin;
2f633156 3570
506a8e87
CW
3571 if (flags & PIN_OFFSET_FIXED) {
3572 uint64_t offset = flags & PIN_OFFSET_MASK;
3573
3574 if (offset & (alignment - 1) || offset + size > end) {
3575 ret = -EINVAL;
3576 goto err_free_vma;
3577 }
3578 vma->node.start = offset;
3579 vma->node.size = size;
3580 vma->node.color = obj->cache_level;
3581 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3582 if (ret) {
3583 ret = i915_gem_evict_for_vma(vma);
3584 if (ret == 0)
3585 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3586 }
3587 if (ret)
3588 goto err_free_vma;
101b506a 3589 } else {
506a8e87
CW
3590 if (flags & PIN_HIGH) {
3591 search_flag = DRM_MM_SEARCH_BELOW;
3592 alloc_flag = DRM_MM_CREATE_TOP;
3593 } else {
3594 search_flag = DRM_MM_SEARCH_DEFAULT;
3595 alloc_flag = DRM_MM_CREATE_DEFAULT;
3596 }
101b506a 3597
0a9ae0d7 3598search_free:
506a8e87
CW
3599 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3600 size, alignment,
3601 obj->cache_level,
3602 start, end,
3603 search_flag,
3604 alloc_flag);
3605 if (ret) {
3606 ret = i915_gem_evict_something(dev, vm, size, alignment,
3607 obj->cache_level,
3608 start, end,
3609 flags);
3610 if (ret == 0)
3611 goto search_free;
9731129c 3612
506a8e87
CW
3613 goto err_free_vma;
3614 }
673a394b 3615 }
4144f9b5 3616 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3617 ret = -EINVAL;
bc6bc15b 3618 goto err_remove_node;
673a394b
EA
3619 }
3620
fe14d5f4 3621 trace_i915_vma_bind(vma, flags);
0875546c 3622 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3623 if (ret)
e2273302 3624 goto err_remove_node;
fe14d5f4 3625
35c20a60 3626 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3627 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3628
262de145 3629 return vma;
2f633156 3630
bc6bc15b 3631err_remove_node:
6286ef9b 3632 drm_mm_remove_node(&vma->node);
bc6bc15b 3633err_free_vma:
2f633156 3634 i915_gem_vma_destroy(vma);
262de145 3635 vma = ERR_PTR(ret);
bc6bc15b 3636err_unpin:
2f633156 3637 i915_gem_object_unpin_pages(obj);
262de145 3638 return vma;
673a394b
EA
3639}
3640
000433b6 3641bool
2c22569b
CW
3642i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3643 bool force)
673a394b 3644{
673a394b
EA
3645 /* If we don't have a page list set up, then we're not pinned
3646 * to GPU, and we can ignore the cache flush because it'll happen
3647 * again at bind time.
3648 */
05394f39 3649 if (obj->pages == NULL)
000433b6 3650 return false;
673a394b 3651
769ce464
ID
3652 /*
3653 * Stolen memory is always coherent with the GPU as it is explicitly
3654 * marked as wc by the system, or the system is cache-coherent.
3655 */
6a2c4232 3656 if (obj->stolen || obj->phys_handle)
000433b6 3657 return false;
769ce464 3658
9c23f7fc
CW
3659 /* If the GPU is snooping the contents of the CPU cache,
3660 * we do not need to manually clear the CPU cache lines. However,
3661 * the caches are only snooped when the render cache is
3662 * flushed/invalidated. As we always have to emit invalidations
3663 * and flushes when moving into and out of the RENDER domain, correct
3664 * snooping behaviour occurs naturally as the result of our domain
3665 * tracking.
3666 */
0f71979a
CW
3667 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3668 obj->cache_dirty = true;
000433b6 3669 return false;
0f71979a 3670 }
9c23f7fc 3671
1c5d22f7 3672 trace_i915_gem_object_clflush(obj);
9da3da66 3673 drm_clflush_sg(obj->pages);
0f71979a 3674 obj->cache_dirty = false;
000433b6
CW
3675
3676 return true;
e47c68e9
EA
3677}
3678
3679/** Flushes the GTT write domain for the object if it's dirty. */
3680static void
05394f39 3681i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3682{
1c5d22f7
CW
3683 uint32_t old_write_domain;
3684
05394f39 3685 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3686 return;
3687
63256ec5 3688 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3689 * to it immediately go to main memory as far as we know, so there's
3690 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3691 *
3692 * However, we do have to enforce the order so that all writes through
3693 * the GTT land before any writes to the device, such as updates to
3694 * the GATT itself.
e47c68e9 3695 */
63256ec5
CW
3696 wmb();
3697
05394f39
CW
3698 old_write_domain = obj->base.write_domain;
3699 obj->base.write_domain = 0;
1c5d22f7 3700
de152b62 3701 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3702
1c5d22f7 3703 trace_i915_gem_object_change_domain(obj,
05394f39 3704 obj->base.read_domains,
1c5d22f7 3705 old_write_domain);
e47c68e9
EA
3706}
3707
3708/** Flushes the CPU write domain for the object if it's dirty. */
3709static void
e62b59e4 3710i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3711{
1c5d22f7 3712 uint32_t old_write_domain;
e47c68e9 3713
05394f39 3714 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3715 return;
3716
e62b59e4 3717 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3718 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3719
05394f39
CW
3720 old_write_domain = obj->base.write_domain;
3721 obj->base.write_domain = 0;
1c5d22f7 3722
de152b62 3723 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3724
1c5d22f7 3725 trace_i915_gem_object_change_domain(obj,
05394f39 3726 obj->base.read_domains,
1c5d22f7 3727 old_write_domain);
e47c68e9
EA
3728}
3729
2ef7eeaa
EA
3730/**
3731 * Moves a single object to the GTT read, and possibly write domain.
3732 *
3733 * This function returns when the move is complete, including waiting on
3734 * flushes to occur.
3735 */
79e53945 3736int
2021746e 3737i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3738{
72e96d64
JL
3739 struct drm_device *dev = obj->base.dev;
3740 struct drm_i915_private *dev_priv = to_i915(dev);
3741 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3742 uint32_t old_write_domain, old_read_domains;
43566ded 3743 struct i915_vma *vma;
e47c68e9 3744 int ret;
2ef7eeaa 3745
8d7e3de1
CW
3746 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3747 return 0;
3748
0201f1ec 3749 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3750 if (ret)
3751 return ret;
3752
43566ded
CW
3753 /* Flush and acquire obj->pages so that we are coherent through
3754 * direct access in memory with previous cached writes through
3755 * shmemfs and that our cache domain tracking remains valid.
3756 * For example, if the obj->filp was moved to swap without us
3757 * being notified and releasing the pages, we would mistakenly
3758 * continue to assume that the obj remained out of the CPU cached
3759 * domain.
3760 */
3761 ret = i915_gem_object_get_pages(obj);
3762 if (ret)
3763 return ret;
3764
e62b59e4 3765 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3766
d0a57789
CW
3767 /* Serialise direct access to this object with the barriers for
3768 * coherent writes from the GPU, by effectively invalidating the
3769 * GTT domain upon first access.
3770 */
3771 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3772 mb();
3773
05394f39
CW
3774 old_write_domain = obj->base.write_domain;
3775 old_read_domains = obj->base.read_domains;
1c5d22f7 3776
e47c68e9
EA
3777 /* It should now be out of any other write domains, and we can update
3778 * the domain values for our changes.
3779 */
05394f39
CW
3780 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3781 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3782 if (write) {
05394f39
CW
3783 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3784 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3785 obj->dirty = 1;
2ef7eeaa
EA
3786 }
3787
1c5d22f7
CW
3788 trace_i915_gem_object_change_domain(obj,
3789 old_read_domains,
3790 old_write_domain);
3791
8325a09d 3792 /* And bump the LRU for this access */
43566ded
CW
3793 vma = i915_gem_obj_to_ggtt(obj);
3794 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3795 list_move_tail(&vma->vm_link,
72e96d64 3796 &ggtt->base.inactive_list);
8325a09d 3797
e47c68e9
EA
3798 return 0;
3799}
3800
ef55f92a
CW
3801/**
3802 * Changes the cache-level of an object across all VMA.
3803 *
3804 * After this function returns, the object will be in the new cache-level
3805 * across all GTT and the contents of the backing storage will be coherent,
3806 * with respect to the new cache-level. In order to keep the backing storage
3807 * coherent for all users, we only allow a single cache level to be set
3808 * globally on the object and prevent it from being changed whilst the
3809 * hardware is reading from the object. That is if the object is currently
3810 * on the scanout it will be set to uncached (or equivalent display
3811 * cache coherency) and all non-MOCS GPU access will also be uncached so
3812 * that all direct access to the scanout remains coherent.
3813 */
e4ffd173
CW
3814int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3815 enum i915_cache_level cache_level)
3816{
7bddb01f 3817 struct drm_device *dev = obj->base.dev;
df6f783a 3818 struct i915_vma *vma, *next;
ef55f92a 3819 bool bound = false;
ed75a55b 3820 int ret = 0;
e4ffd173
CW
3821
3822 if (obj->cache_level == cache_level)
ed75a55b 3823 goto out;
e4ffd173 3824
ef55f92a
CW
3825 /* Inspect the list of currently bound VMA and unbind any that would
3826 * be invalid given the new cache-level. This is principally to
3827 * catch the issue of the CS prefetch crossing page boundaries and
3828 * reading an invalid PTE on older architectures.
3829 */
1c7f4bca 3830 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3831 if (!drm_mm_node_allocated(&vma->node))
3832 continue;
3833
3834 if (vma->pin_count) {
3835 DRM_DEBUG("can not change the cache level of pinned objects\n");
3836 return -EBUSY;
3837 }
3838
4144f9b5 3839 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3840 ret = i915_vma_unbind(vma);
3089c6f2
BW
3841 if (ret)
3842 return ret;
ef55f92a
CW
3843 } else
3844 bound = true;
42d6ab48
CW
3845 }
3846
ef55f92a
CW
3847 /* We can reuse the existing drm_mm nodes but need to change the
3848 * cache-level on the PTE. We could simply unbind them all and
3849 * rebind with the correct cache-level on next use. However since
3850 * we already have a valid slot, dma mapping, pages etc, we may as
3851 * rewrite the PTE in the belief that doing so tramples upon less
3852 * state and so involves less work.
3853 */
3854 if (bound) {
3855 /* Before we change the PTE, the GPU must not be accessing it.
3856 * If we wait upon the object, we know that all the bound
3857 * VMA are no longer active.
3858 */
2e2f351d 3859 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3860 if (ret)
3861 return ret;
3862
ef55f92a
CW
3863 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3864 /* Access to snoopable pages through the GTT is
3865 * incoherent and on some machines causes a hard
3866 * lockup. Relinquish the CPU mmaping to force
3867 * userspace to refault in the pages and we can
3868 * then double check if the GTT mapping is still
3869 * valid for that pointer access.
3870 */
3871 i915_gem_release_mmap(obj);
3872
3873 /* As we no longer need a fence for GTT access,
3874 * we can relinquish it now (and so prevent having
3875 * to steal a fence from someone else on the next
3876 * fence request). Note GPU activity would have
3877 * dropped the fence as all snoopable access is
3878 * supposed to be linear.
3879 */
e4ffd173
CW
3880 ret = i915_gem_object_put_fence(obj);
3881 if (ret)
3882 return ret;
ef55f92a
CW
3883 } else {
3884 /* We either have incoherent backing store and
3885 * so no GTT access or the architecture is fully
3886 * coherent. In such cases, existing GTT mmaps
3887 * ignore the cache bit in the PTE and we can
3888 * rewrite it without confusing the GPU or having
3889 * to force userspace to fault back in its mmaps.
3890 */
e4ffd173
CW
3891 }
3892
1c7f4bca 3893 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3894 if (!drm_mm_node_allocated(&vma->node))
3895 continue;
3896
3897 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3898 if (ret)
3899 return ret;
3900 }
e4ffd173
CW
3901 }
3902
1c7f4bca 3903 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3904 vma->node.color = cache_level;
3905 obj->cache_level = cache_level;
3906
ed75a55b 3907out:
ef55f92a
CW
3908 /* Flush the dirty CPU caches to the backing storage so that the
3909 * object is now coherent at its new cache level (with respect
3910 * to the access domain).
3911 */
0f71979a
CW
3912 if (obj->cache_dirty &&
3913 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3914 cpu_write_needs_clflush(obj)) {
3915 if (i915_gem_clflush_object(obj, true))
c033666a 3916 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3917 }
3918
e4ffd173
CW
3919 return 0;
3920}
3921
199adf40
BW
3922int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3923 struct drm_file *file)
e6994aee 3924{
199adf40 3925 struct drm_i915_gem_caching *args = data;
e6994aee 3926 struct drm_i915_gem_object *obj;
e6994aee
CW
3927
3928 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3929 if (&obj->base == NULL)
3930 return -ENOENT;
e6994aee 3931
651d794f
CW
3932 switch (obj->cache_level) {
3933 case I915_CACHE_LLC:
3934 case I915_CACHE_L3_LLC:
3935 args->caching = I915_CACHING_CACHED;
3936 break;
3937
4257d3ba
CW
3938 case I915_CACHE_WT:
3939 args->caching = I915_CACHING_DISPLAY;
3940 break;
3941
651d794f
CW
3942 default:
3943 args->caching = I915_CACHING_NONE;
3944 break;
3945 }
e6994aee 3946
432be69d
CW
3947 drm_gem_object_unreference_unlocked(&obj->base);
3948 return 0;
e6994aee
CW
3949}
3950
199adf40
BW
3951int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3952 struct drm_file *file)
e6994aee 3953{
fd0fe6ac 3954 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3955 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3956 struct drm_i915_gem_object *obj;
3957 enum i915_cache_level level;
3958 int ret;
3959
199adf40
BW
3960 switch (args->caching) {
3961 case I915_CACHING_NONE:
e6994aee
CW
3962 level = I915_CACHE_NONE;
3963 break;
199adf40 3964 case I915_CACHING_CACHED:
e5756c10
ID
3965 /*
3966 * Due to a HW issue on BXT A stepping, GPU stores via a
3967 * snooped mapping may leave stale data in a corresponding CPU
3968 * cacheline, whereas normally such cachelines would get
3969 * invalidated.
3970 */
ca377809 3971 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3972 return -ENODEV;
3973
e6994aee
CW
3974 level = I915_CACHE_LLC;
3975 break;
4257d3ba
CW
3976 case I915_CACHING_DISPLAY:
3977 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3978 break;
e6994aee
CW
3979 default:
3980 return -EINVAL;
3981 }
3982
fd0fe6ac
ID
3983 intel_runtime_pm_get(dev_priv);
3984
3bc2913e
BW
3985 ret = i915_mutex_lock_interruptible(dev);
3986 if (ret)
fd0fe6ac 3987 goto rpm_put;
3bc2913e 3988
e6994aee
CW
3989 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3990 if (&obj->base == NULL) {
3991 ret = -ENOENT;
3992 goto unlock;
3993 }
3994
3995 ret = i915_gem_object_set_cache_level(obj, level);
3996
3997 drm_gem_object_unreference(&obj->base);
3998unlock:
3999 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4000rpm_put:
4001 intel_runtime_pm_put(dev_priv);
4002
e6994aee
CW
4003 return ret;
4004}
4005
b9241ea3 4006/*
2da3b9b9
CW
4007 * Prepare buffer for display plane (scanout, cursors, etc).
4008 * Can be called from an uninterruptible phase (modesetting) and allows
4009 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4010 */
4011int
2da3b9b9
CW
4012i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4013 u32 alignment,
e6617330 4014 const struct i915_ggtt_view *view)
b9241ea3 4015{
2da3b9b9 4016 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4017 int ret;
4018
cc98b413
CW
4019 /* Mark the pin_display early so that we account for the
4020 * display coherency whilst setting up the cache domains.
4021 */
8a0c39b1 4022 obj->pin_display++;
cc98b413 4023
a7ef0640
EA
4024 /* The display engine is not coherent with the LLC cache on gen6. As
4025 * a result, we make sure that the pinning that is about to occur is
4026 * done with uncached PTEs. This is lowest common denominator for all
4027 * chipsets.
4028 *
4029 * However for gen6+, we could do better by using the GFDT bit instead
4030 * of uncaching, which would allow us to flush all the LLC-cached data
4031 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4032 */
651d794f
CW
4033 ret = i915_gem_object_set_cache_level(obj,
4034 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4035 if (ret)
cc98b413 4036 goto err_unpin_display;
a7ef0640 4037
2da3b9b9
CW
4038 /* As the user may map the buffer once pinned in the display plane
4039 * (e.g. libkms for the bootup splash), we have to ensure that we
4040 * always use map_and_fenceable for all scanout buffers.
4041 */
50470bb0
TU
4042 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4043 view->type == I915_GGTT_VIEW_NORMAL ?
4044 PIN_MAPPABLE : 0);
2da3b9b9 4045 if (ret)
cc98b413 4046 goto err_unpin_display;
2da3b9b9 4047
e62b59e4 4048 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4049
2da3b9b9 4050 old_write_domain = obj->base.write_domain;
05394f39 4051 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4052
4053 /* It should now be out of any other write domains, and we can update
4054 * the domain values for our changes.
4055 */
e5f1d962 4056 obj->base.write_domain = 0;
05394f39 4057 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4058
4059 trace_i915_gem_object_change_domain(obj,
4060 old_read_domains,
2da3b9b9 4061 old_write_domain);
b9241ea3
ZW
4062
4063 return 0;
cc98b413
CW
4064
4065err_unpin_display:
8a0c39b1 4066 obj->pin_display--;
cc98b413
CW
4067 return ret;
4068}
4069
4070void
e6617330
TU
4071i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4072 const struct i915_ggtt_view *view)
cc98b413 4073{
8a0c39b1
TU
4074 if (WARN_ON(obj->pin_display == 0))
4075 return;
4076
e6617330
TU
4077 i915_gem_object_ggtt_unpin_view(obj, view);
4078
8a0c39b1 4079 obj->pin_display--;
b9241ea3
ZW
4080}
4081
e47c68e9
EA
4082/**
4083 * Moves a single object to the CPU read, and possibly write domain.
4084 *
4085 * This function returns when the move is complete, including waiting on
4086 * flushes to occur.
4087 */
dabdfe02 4088int
919926ae 4089i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4090{
1c5d22f7 4091 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4092 int ret;
4093
8d7e3de1
CW
4094 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4095 return 0;
4096
0201f1ec 4097 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4098 if (ret)
4099 return ret;
4100
e47c68e9 4101 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4102
05394f39
CW
4103 old_write_domain = obj->base.write_domain;
4104 old_read_domains = obj->base.read_domains;
1c5d22f7 4105
e47c68e9 4106 /* Flush the CPU cache if it's still invalid. */
05394f39 4107 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4108 i915_gem_clflush_object(obj, false);
2ef7eeaa 4109
05394f39 4110 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4111 }
4112
4113 /* It should now be out of any other write domains, and we can update
4114 * the domain values for our changes.
4115 */
05394f39 4116 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4117
4118 /* If we're writing through the CPU, then the GPU read domains will
4119 * need to be invalidated at next use.
4120 */
4121 if (write) {
05394f39
CW
4122 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4123 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4124 }
2ef7eeaa 4125
1c5d22f7
CW
4126 trace_i915_gem_object_change_domain(obj,
4127 old_read_domains,
4128 old_write_domain);
4129
2ef7eeaa
EA
4130 return 0;
4131}
4132
673a394b
EA
4133/* Throttle our rendering by waiting until the ring has completed our requests
4134 * emitted over 20 msec ago.
4135 *
b962442e
EA
4136 * Note that if we were to use the current jiffies each time around the loop,
4137 * we wouldn't escape the function with any frames outstanding if the time to
4138 * render a frame was over 20ms.
4139 *
673a394b
EA
4140 * This should get us reasonable parallelism between CPU and GPU but also
4141 * relatively low latency when blocking on a particular request to finish.
4142 */
40a5f0de 4143static int
f787a5f5 4144i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4145{
f787a5f5
CW
4146 struct drm_i915_private *dev_priv = dev->dev_private;
4147 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4148 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4149 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4150 int ret;
93533c29 4151
308887aa
DV
4152 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4153 if (ret)
4154 return ret;
4155
f4457ae7
CW
4156 /* ABI: return -EIO if already wedged */
4157 if (i915_terminally_wedged(&dev_priv->gpu_error))
4158 return -EIO;
e110e8d6 4159
1c25595f 4160 spin_lock(&file_priv->mm.lock);
f787a5f5 4161 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4162 if (time_after_eq(request->emitted_jiffies, recent_enough))
4163 break;
40a5f0de 4164
fcfa423c
JH
4165 /*
4166 * Note that the request might not have been submitted yet.
4167 * In which case emitted_jiffies will be zero.
4168 */
4169 if (!request->emitted_jiffies)
4170 continue;
4171
54fb2411 4172 target = request;
b962442e 4173 }
ff865885
JH
4174 if (target)
4175 i915_gem_request_reference(target);
1c25595f 4176 spin_unlock(&file_priv->mm.lock);
40a5f0de 4177
54fb2411 4178 if (target == NULL)
f787a5f5 4179 return 0;
2bc43b5c 4180
299259a3 4181 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4182 if (ret == 0)
4183 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4184
73db04cf 4185 i915_gem_request_unreference(target);
ff865885 4186
40a5f0de
EA
4187 return ret;
4188}
4189
d23db88c
CW
4190static bool
4191i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4192{
4193 struct drm_i915_gem_object *obj = vma->obj;
4194
4195 if (alignment &&
4196 vma->node.start & (alignment - 1))
4197 return true;
4198
4199 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4200 return true;
4201
4202 if (flags & PIN_OFFSET_BIAS &&
4203 vma->node.start < (flags & PIN_OFFSET_MASK))
4204 return true;
4205
506a8e87
CW
4206 if (flags & PIN_OFFSET_FIXED &&
4207 vma->node.start != (flags & PIN_OFFSET_MASK))
4208 return true;
4209
d23db88c
CW
4210 return false;
4211}
4212
d0710abb
CW
4213void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4214{
4215 struct drm_i915_gem_object *obj = vma->obj;
4216 bool mappable, fenceable;
4217 u32 fence_size, fence_alignment;
4218
4219 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4220 obj->base.size,
4221 obj->tiling_mode);
4222 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4223 obj->base.size,
4224 obj->tiling_mode,
4225 true);
4226
4227 fenceable = (vma->node.size == fence_size &&
4228 (vma->node.start & (fence_alignment - 1)) == 0);
4229
4230 mappable = (vma->node.start + fence_size <=
62106b4f 4231 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4232
4233 obj->map_and_fenceable = mappable && fenceable;
4234}
4235
ec7adb6e
JL
4236static int
4237i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4238 struct i915_address_space *vm,
4239 const struct i915_ggtt_view *ggtt_view,
4240 uint32_t alignment,
4241 uint64_t flags)
673a394b 4242{
6e7186af 4243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4244 struct i915_vma *vma;
ef79e17c 4245 unsigned bound;
673a394b
EA
4246 int ret;
4247
6e7186af
BW
4248 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4249 return -ENODEV;
4250
bf3d149b 4251 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4252 return -EINVAL;
07fe0b12 4253
c826c449
CW
4254 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4255 return -EINVAL;
4256
ec7adb6e
JL
4257 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4258 return -EINVAL;
4259
4260 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4261 i915_gem_obj_to_vma(obj, vm);
4262
07fe0b12 4263 if (vma) {
d7f46fc4
BW
4264 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4265 return -EBUSY;
4266
d23db88c 4267 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4268 WARN(vma->pin_count,
ec7adb6e 4269 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4270 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4271 " obj->map_and_fenceable=%d\n",
ec7adb6e 4272 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4273 upper_32_bits(vma->node.start),
4274 lower_32_bits(vma->node.start),
fe14d5f4 4275 alignment,
d23db88c 4276 !!(flags & PIN_MAPPABLE),
05394f39 4277 obj->map_and_fenceable);
07fe0b12 4278 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4279 if (ret)
4280 return ret;
8ea99c92
DV
4281
4282 vma = NULL;
ac0c6b5a
CW
4283 }
4284 }
4285
ef79e17c 4286 bound = vma ? vma->bound : 0;
8ea99c92 4287 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4288 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4289 flags);
262de145
DV
4290 if (IS_ERR(vma))
4291 return PTR_ERR(vma);
0875546c
DV
4292 } else {
4293 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4294 if (ret)
4295 return ret;
4296 }
74898d7e 4297
91e6711e
JL
4298 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4299 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4300 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4301 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4302 }
ef79e17c 4303
8ea99c92 4304 vma->pin_count++;
673a394b
EA
4305 return 0;
4306}
4307
ec7adb6e
JL
4308int
4309i915_gem_object_pin(struct drm_i915_gem_object *obj,
4310 struct i915_address_space *vm,
4311 uint32_t alignment,
4312 uint64_t flags)
4313{
4314 return i915_gem_object_do_pin(obj, vm,
4315 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4316 alignment, flags);
4317}
4318
4319int
4320i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4321 const struct i915_ggtt_view *view,
4322 uint32_t alignment,
4323 uint64_t flags)
4324{
72e96d64
JL
4325 struct drm_device *dev = obj->base.dev;
4326 struct drm_i915_private *dev_priv = to_i915(dev);
4327 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4328
ade7daa1 4329 BUG_ON(!view);
ec7adb6e 4330
72e96d64 4331 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4332 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4333}
4334
673a394b 4335void
e6617330
TU
4336i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4337 const struct i915_ggtt_view *view)
673a394b 4338{
e6617330 4339 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4340
e6617330 4341 WARN_ON(vma->pin_count == 0);
9abc4648 4342 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4343
30154650 4344 --vma->pin_count;
673a394b
EA
4345}
4346
673a394b
EA
4347int
4348i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4349 struct drm_file *file)
673a394b
EA
4350{
4351 struct drm_i915_gem_busy *args = data;
05394f39 4352 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4353 int ret;
4354
76c1dec1 4355 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4356 if (ret)
76c1dec1 4357 return ret;
673a394b 4358
05394f39 4359 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4360 if (&obj->base == NULL) {
1d7cfea1
CW
4361 ret = -ENOENT;
4362 goto unlock;
673a394b 4363 }
d1b851fc 4364
0be555b6
CW
4365 /* Count all active objects as busy, even if they are currently not used
4366 * by the gpu. Users of this interface expect objects to eventually
4367 * become non-busy without any further actions, therefore emit any
4368 * necessary flushes here.
c4de0a5d 4369 */
30dfebf3 4370 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4371 if (ret)
4372 goto unref;
0be555b6 4373
426960be
CW
4374 args->busy = 0;
4375 if (obj->active) {
4376 int i;
4377
666796da 4378 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4379 struct drm_i915_gem_request *req;
4380
4381 req = obj->last_read_req[i];
4382 if (req)
4a570db5 4383 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4384 }
4385 if (obj->last_write_req)
4a570db5 4386 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4387 }
673a394b 4388
b4716185 4389unref:
05394f39 4390 drm_gem_object_unreference(&obj->base);
1d7cfea1 4391unlock:
673a394b 4392 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4393 return ret;
673a394b
EA
4394}
4395
4396int
4397i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4398 struct drm_file *file_priv)
4399{
0206e353 4400 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4401}
4402
3ef94daa
CW
4403int
4404i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4405 struct drm_file *file_priv)
4406{
656bfa3a 4407 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4408 struct drm_i915_gem_madvise *args = data;
05394f39 4409 struct drm_i915_gem_object *obj;
76c1dec1 4410 int ret;
3ef94daa
CW
4411
4412 switch (args->madv) {
4413 case I915_MADV_DONTNEED:
4414 case I915_MADV_WILLNEED:
4415 break;
4416 default:
4417 return -EINVAL;
4418 }
4419
1d7cfea1
CW
4420 ret = i915_mutex_lock_interruptible(dev);
4421 if (ret)
4422 return ret;
4423
05394f39 4424 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4425 if (&obj->base == NULL) {
1d7cfea1
CW
4426 ret = -ENOENT;
4427 goto unlock;
3ef94daa 4428 }
3ef94daa 4429
d7f46fc4 4430 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4431 ret = -EINVAL;
4432 goto out;
3ef94daa
CW
4433 }
4434
656bfa3a
DV
4435 if (obj->pages &&
4436 obj->tiling_mode != I915_TILING_NONE &&
4437 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4438 if (obj->madv == I915_MADV_WILLNEED)
4439 i915_gem_object_unpin_pages(obj);
4440 if (args->madv == I915_MADV_WILLNEED)
4441 i915_gem_object_pin_pages(obj);
4442 }
4443
05394f39
CW
4444 if (obj->madv != __I915_MADV_PURGED)
4445 obj->madv = args->madv;
3ef94daa 4446
6c085a72 4447 /* if the object is no longer attached, discard its backing storage */
be6a0376 4448 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4449 i915_gem_object_truncate(obj);
4450
05394f39 4451 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4452
1d7cfea1 4453out:
05394f39 4454 drm_gem_object_unreference(&obj->base);
1d7cfea1 4455unlock:
3ef94daa 4456 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4457 return ret;
3ef94daa
CW
4458}
4459
37e680a1
CW
4460void i915_gem_object_init(struct drm_i915_gem_object *obj,
4461 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4462{
b4716185
CW
4463 int i;
4464
35c20a60 4465 INIT_LIST_HEAD(&obj->global_list);
666796da 4466 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4467 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4468 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4469 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4470 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4471
37e680a1
CW
4472 obj->ops = ops;
4473
0327d6ba
CW
4474 obj->fence_reg = I915_FENCE_REG_NONE;
4475 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4476
4477 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4478}
4479
37e680a1 4480static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4481 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4482 .get_pages = i915_gem_object_get_pages_gtt,
4483 .put_pages = i915_gem_object_put_pages_gtt,
4484};
4485
d37cd8a8 4486struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4487 size_t size)
ac52bc56 4488{
c397b908 4489 struct drm_i915_gem_object *obj;
5949eac4 4490 struct address_space *mapping;
1a240d4d 4491 gfp_t mask;
fe3db79b 4492 int ret;
ac52bc56 4493
42dcedd4 4494 obj = i915_gem_object_alloc(dev);
c397b908 4495 if (obj == NULL)
fe3db79b 4496 return ERR_PTR(-ENOMEM);
673a394b 4497
fe3db79b
CW
4498 ret = drm_gem_object_init(dev, &obj->base, size);
4499 if (ret)
4500 goto fail;
673a394b 4501
bed1ea95
CW
4502 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4503 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4504 /* 965gm cannot relocate objects above 4GiB. */
4505 mask &= ~__GFP_HIGHMEM;
4506 mask |= __GFP_DMA32;
4507 }
4508
496ad9aa 4509 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4510 mapping_set_gfp_mask(mapping, mask);
5949eac4 4511
37e680a1 4512 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4513
c397b908
DV
4514 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4515 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4516
3d29b842
ED
4517 if (HAS_LLC(dev)) {
4518 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4519 * cache) for about a 10% performance improvement
4520 * compared to uncached. Graphics requests other than
4521 * display scanout are coherent with the CPU in
4522 * accessing this cache. This means in this mode we
4523 * don't need to clflush on the CPU side, and on the
4524 * GPU side we only need to flush internal caches to
4525 * get data visible to the CPU.
4526 *
4527 * However, we maintain the display planes as UC, and so
4528 * need to rebind when first used as such.
4529 */
4530 obj->cache_level = I915_CACHE_LLC;
4531 } else
4532 obj->cache_level = I915_CACHE_NONE;
4533
d861e338
DV
4534 trace_i915_gem_object_create(obj);
4535
05394f39 4536 return obj;
fe3db79b
CW
4537
4538fail:
4539 i915_gem_object_free(obj);
4540
4541 return ERR_PTR(ret);
c397b908
DV
4542}
4543
340fbd8c
CW
4544static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4545{
4546 /* If we are the last user of the backing storage (be it shmemfs
4547 * pages or stolen etc), we know that the pages are going to be
4548 * immediately released. In this case, we can then skip copying
4549 * back the contents from the GPU.
4550 */
4551
4552 if (obj->madv != I915_MADV_WILLNEED)
4553 return false;
4554
4555 if (obj->base.filp == NULL)
4556 return true;
4557
4558 /* At first glance, this looks racy, but then again so would be
4559 * userspace racing mmap against close. However, the first external
4560 * reference to the filp can only be obtained through the
4561 * i915_gem_mmap_ioctl() which safeguards us against the user
4562 * acquiring such a reference whilst we are in the middle of
4563 * freeing the object.
4564 */
4565 return atomic_long_read(&obj->base.filp->f_count) == 1;
4566}
4567
1488fc08 4568void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4569{
1488fc08 4570 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4571 struct drm_device *dev = obj->base.dev;
3e31c6c0 4572 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4573 struct i915_vma *vma, *next;
673a394b 4574
f65c9168
PZ
4575 intel_runtime_pm_get(dev_priv);
4576
26e12f89
CW
4577 trace_i915_gem_object_destroy(obj);
4578
1c7f4bca 4579 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4580 int ret;
4581
4582 vma->pin_count = 0;
4583 ret = i915_vma_unbind(vma);
07fe0b12
BW
4584 if (WARN_ON(ret == -ERESTARTSYS)) {
4585 bool was_interruptible;
1488fc08 4586
07fe0b12
BW
4587 was_interruptible = dev_priv->mm.interruptible;
4588 dev_priv->mm.interruptible = false;
1488fc08 4589
07fe0b12 4590 WARN_ON(i915_vma_unbind(vma));
1488fc08 4591
07fe0b12
BW
4592 dev_priv->mm.interruptible = was_interruptible;
4593 }
1488fc08
CW
4594 }
4595
1d64ae71
BW
4596 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4597 * before progressing. */
4598 if (obj->stolen)
4599 i915_gem_object_unpin_pages(obj);
4600
a071fa00
DV
4601 WARN_ON(obj->frontbuffer_bits);
4602
656bfa3a
DV
4603 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4604 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4605 obj->tiling_mode != I915_TILING_NONE)
4606 i915_gem_object_unpin_pages(obj);
4607
401c29f6
BW
4608 if (WARN_ON(obj->pages_pin_count))
4609 obj->pages_pin_count = 0;
340fbd8c 4610 if (discard_backing_storage(obj))
5537252b 4611 obj->madv = I915_MADV_DONTNEED;
37e680a1 4612 i915_gem_object_put_pages(obj);
d8cb5086 4613 i915_gem_object_free_mmap_offset(obj);
de151cf6 4614
9da3da66
CW
4615 BUG_ON(obj->pages);
4616
2f745ad3
CW
4617 if (obj->base.import_attach)
4618 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4619
5cc9ed4b
CW
4620 if (obj->ops->release)
4621 obj->ops->release(obj);
4622
05394f39
CW
4623 drm_gem_object_release(&obj->base);
4624 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4625
05394f39 4626 kfree(obj->bit_17);
42dcedd4 4627 i915_gem_object_free(obj);
f65c9168
PZ
4628
4629 intel_runtime_pm_put(dev_priv);
673a394b
EA
4630}
4631
ec7adb6e
JL
4632struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4633 struct i915_address_space *vm)
e656a6cb
DV
4634{
4635 struct i915_vma *vma;
1c7f4bca 4636 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4637 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4638 vma->vm == vm)
e656a6cb 4639 return vma;
ec7adb6e
JL
4640 }
4641 return NULL;
4642}
4643
4644struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4645 const struct i915_ggtt_view *view)
4646{
ec7adb6e 4647 struct i915_vma *vma;
e656a6cb 4648
598b9ec8 4649 GEM_BUG_ON(!view);
ec7adb6e 4650
1c7f4bca 4651 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4652 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4653 return vma;
e656a6cb
DV
4654 return NULL;
4655}
4656
2f633156
BW
4657void i915_gem_vma_destroy(struct i915_vma *vma)
4658{
4659 WARN_ON(vma->node.allocated);
aaa05667
CW
4660
4661 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4662 if (!list_empty(&vma->exec_list))
4663 return;
4664
596c5923
CW
4665 if (!vma->is_ggtt)
4666 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4667
1c7f4bca 4668 list_del(&vma->obj_link);
b93dab6e 4669
e20d2ab7 4670 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4671}
4672
e3efda49 4673static void
117897f4 4674i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4675{
4676 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4677 struct intel_engine_cs *engine;
e3efda49 4678
b4ac5afc 4679 for_each_engine(engine, dev_priv)
117897f4 4680 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4681}
4682
29105ccc 4683int
45c5f202 4684i915_gem_suspend(struct drm_device *dev)
29105ccc 4685{
3e31c6c0 4686 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4687 int ret = 0;
28dfe52a 4688
45c5f202 4689 mutex_lock(&dev->struct_mutex);
b2da9fe5 4690 ret = i915_gpu_idle(dev);
f7403347 4691 if (ret)
45c5f202 4692 goto err;
f7403347 4693
c033666a 4694 i915_gem_retire_requests(dev_priv);
673a394b 4695
117897f4 4696 i915_gem_stop_engines(dev);
b2e862d0 4697 i915_gem_context_lost(dev_priv);
45c5f202
CW
4698 mutex_unlock(&dev->struct_mutex);
4699
737b1506 4700 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4701 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4702 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4703
bdcf120b
CW
4704 /* Assert that we sucessfully flushed all the work and
4705 * reset the GPU back to its idle, low power state.
4706 */
4707 WARN_ON(dev_priv->mm.busy);
4708
673a394b 4709 return 0;
45c5f202
CW
4710
4711err:
4712 mutex_unlock(&dev->struct_mutex);
4713 return ret;
673a394b
EA
4714}
4715
f691e2f4
DV
4716void i915_gem_init_swizzling(struct drm_device *dev)
4717{
3e31c6c0 4718 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4719
11782b02 4720 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4721 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4722 return;
4723
4724 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4725 DISP_TILE_SURFACE_SWIZZLING);
4726
11782b02
DV
4727 if (IS_GEN5(dev))
4728 return;
4729
f691e2f4
DV
4730 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4731 if (IS_GEN6(dev))
6b26c86d 4732 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4733 else if (IS_GEN7(dev))
6b26c86d 4734 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4735 else if (IS_GEN8(dev))
4736 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4737 else
4738 BUG();
f691e2f4 4739}
e21af88d 4740
81e7f200
VS
4741static void init_unused_ring(struct drm_device *dev, u32 base)
4742{
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744
4745 I915_WRITE(RING_CTL(base), 0);
4746 I915_WRITE(RING_HEAD(base), 0);
4747 I915_WRITE(RING_TAIL(base), 0);
4748 I915_WRITE(RING_START(base), 0);
4749}
4750
4751static void init_unused_rings(struct drm_device *dev)
4752{
4753 if (IS_I830(dev)) {
4754 init_unused_ring(dev, PRB1_BASE);
4755 init_unused_ring(dev, SRB0_BASE);
4756 init_unused_ring(dev, SRB1_BASE);
4757 init_unused_ring(dev, SRB2_BASE);
4758 init_unused_ring(dev, SRB3_BASE);
4759 } else if (IS_GEN2(dev)) {
4760 init_unused_ring(dev, SRB0_BASE);
4761 init_unused_ring(dev, SRB1_BASE);
4762 } else if (IS_GEN3(dev)) {
4763 init_unused_ring(dev, PRB1_BASE);
4764 init_unused_ring(dev, PRB2_BASE);
4765 }
4766}
4767
117897f4 4768int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4769{
4fc7c971 4770 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4771 int ret;
68f95ba9 4772
5c1143bb 4773 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4774 if (ret)
b6913e4b 4775 return ret;
68f95ba9
CW
4776
4777 if (HAS_BSD(dev)) {
5c1143bb 4778 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4779 if (ret)
4780 goto cleanup_render_ring;
d1b851fc 4781 }
68f95ba9 4782
d39398f5 4783 if (HAS_BLT(dev)) {
549f7365
CW
4784 ret = intel_init_blt_ring_buffer(dev);
4785 if (ret)
4786 goto cleanup_bsd_ring;
4787 }
4788
9a8a2213
BW
4789 if (HAS_VEBOX(dev)) {
4790 ret = intel_init_vebox_ring_buffer(dev);
4791 if (ret)
4792 goto cleanup_blt_ring;
4793 }
4794
845f74a7
ZY
4795 if (HAS_BSD2(dev)) {
4796 ret = intel_init_bsd2_ring_buffer(dev);
4797 if (ret)
4798 goto cleanup_vebox_ring;
4799 }
9a8a2213 4800
4fc7c971
BW
4801 return 0;
4802
9a8a2213 4803cleanup_vebox_ring:
117897f4 4804 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4805cleanup_blt_ring:
117897f4 4806 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4807cleanup_bsd_ring:
117897f4 4808 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4809cleanup_render_ring:
117897f4 4810 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4811
4812 return ret;
4813}
4814
4815int
4816i915_gem_init_hw(struct drm_device *dev)
4817{
3e31c6c0 4818 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4819 struct intel_engine_cs *engine;
d200cda6 4820 int ret;
4fc7c971 4821
5e4f5189
CW
4822 /* Double layer security blanket, see i915_gem_init() */
4823 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4824
3accaf7e 4825 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4826 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4827
0bf21347
VS
4828 if (IS_HASWELL(dev))
4829 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4830 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4831
88a2b2a3 4832 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4833 if (IS_IVYBRIDGE(dev)) {
4834 u32 temp = I915_READ(GEN7_MSG_CTL);
4835 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4836 I915_WRITE(GEN7_MSG_CTL, temp);
4837 } else if (INTEL_INFO(dev)->gen >= 7) {
4838 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4839 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4840 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4841 }
88a2b2a3
BW
4842 }
4843
4fc7c971
BW
4844 i915_gem_init_swizzling(dev);
4845
d5abdfda
DV
4846 /*
4847 * At least 830 can leave some of the unused rings
4848 * "active" (ie. head != tail) after resume which
4849 * will prevent c3 entry. Makes sure all unused rings
4850 * are totally idle.
4851 */
4852 init_unused_rings(dev);
4853
ed54c1a1 4854 BUG_ON(!dev_priv->kernel_context);
90638cc1 4855
4ad2fd88
JH
4856 ret = i915_ppgtt_init_hw(dev);
4857 if (ret) {
4858 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4859 goto out;
4860 }
4861
4862 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4863 for_each_engine(engine, dev_priv) {
e2f80391 4864 ret = engine->init_hw(engine);
35a57ffb 4865 if (ret)
5e4f5189 4866 goto out;
35a57ffb 4867 }
99433931 4868
0ccdacf6
PA
4869 intel_mocs_init_l3cc_table(dev);
4870
33a732f4 4871 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4872 if (HAS_GUC_UCODE(dev)) {
4873 ret = intel_guc_ucode_load(dev);
4874 if (ret) {
9f9e539f
DV
4875 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4876 ret = -EIO;
4877 goto out;
87bcdd2e 4878 }
33a732f4
AD
4879 }
4880
e84fe803
NH
4881 /*
4882 * Increment the next seqno by 0x100 so we have a visible break
4883 * on re-initialisation
4884 */
4885 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
e21af88d 4886
5e4f5189
CW
4887out:
4888 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4889 return ret;
8187a2b7
ZN
4890}
4891
1070a42b
CW
4892int i915_gem_init(struct drm_device *dev)
4893{
4894 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4895 int ret;
4896
1070a42b 4897 mutex_lock(&dev->struct_mutex);
d62b4892 4898
a83014d3 4899 if (!i915.enable_execlists) {
f3dc74c0 4900 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4901 dev_priv->gt.init_engines = i915_gem_init_engines;
4902 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4903 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4904 } else {
f3dc74c0 4905 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4906 dev_priv->gt.init_engines = intel_logical_rings_init;
4907 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4908 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4909 }
4910
5e4f5189
CW
4911 /* This is just a security blanket to placate dragons.
4912 * On some systems, we very sporadically observe that the first TLBs
4913 * used by the CS may be stale, despite us poking the TLB reset. If
4914 * we hold the forcewake during initialisation these problems
4915 * just magically go away.
4916 */
4917 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4918
6c5566a8 4919 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4920 if (ret)
4921 goto out_unlock;
6c5566a8 4922
d85489d3 4923 i915_gem_init_ggtt(dev);
d62b4892 4924
2fa48d8d 4925 ret = i915_gem_context_init(dev);
7bcc3777
JN
4926 if (ret)
4927 goto out_unlock;
2fa48d8d 4928
117897f4 4929 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4930 if (ret)
7bcc3777 4931 goto out_unlock;
2fa48d8d 4932
1070a42b 4933 ret = i915_gem_init_hw(dev);
60990320
CW
4934 if (ret == -EIO) {
4935 /* Allow ring initialisation to fail by marking the GPU as
4936 * wedged. But we only want to do this where the GPU is angry,
4937 * for all other failure, such as an allocation failure, bail.
4938 */
4939 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4940 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4941 ret = 0;
1070a42b 4942 }
7bcc3777
JN
4943
4944out_unlock:
5e4f5189 4945 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4946 mutex_unlock(&dev->struct_mutex);
1070a42b 4947
60990320 4948 return ret;
1070a42b
CW
4949}
4950
8187a2b7 4951void
117897f4 4952i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4953{
3e31c6c0 4954 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4955 struct intel_engine_cs *engine;
8187a2b7 4956
b4ac5afc 4957 for_each_engine(engine, dev_priv)
117897f4 4958 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4959}
4960
64193406 4961static void
666796da 4962init_engine_lists(struct intel_engine_cs *engine)
64193406 4963{
0bc40be8
TU
4964 INIT_LIST_HEAD(&engine->active_list);
4965 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4966}
4967
40ae4e16
ID
4968void
4969i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4970{
4971 struct drm_device *dev = dev_priv->dev;
4972
4973 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4974 !IS_CHERRYVIEW(dev_priv))
4975 dev_priv->num_fence_regs = 32;
4976 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4977 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4978 dev_priv->num_fence_regs = 16;
4979 else
4980 dev_priv->num_fence_regs = 8;
4981
c033666a 4982 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4983 dev_priv->num_fence_regs =
4984 I915_READ(vgtif_reg(avail_rs.fence_num));
4985
4986 /* Initialize fence registers to zero */
4987 i915_gem_restore_fences(dev);
4988
4989 i915_gem_detect_bit_6_swizzle(dev);
4990}
4991
673a394b 4992void
d64aa096 4993i915_gem_load_init(struct drm_device *dev)
673a394b 4994{
3e31c6c0 4995 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4996 int i;
4997
efab6d8d 4998 dev_priv->objects =
42dcedd4
CW
4999 kmem_cache_create("i915_gem_object",
5000 sizeof(struct drm_i915_gem_object), 0,
5001 SLAB_HWCACHE_ALIGN,
5002 NULL);
e20d2ab7
CW
5003 dev_priv->vmas =
5004 kmem_cache_create("i915_gem_vma",
5005 sizeof(struct i915_vma), 0,
5006 SLAB_HWCACHE_ALIGN,
5007 NULL);
efab6d8d
CW
5008 dev_priv->requests =
5009 kmem_cache_create("i915_gem_request",
5010 sizeof(struct drm_i915_gem_request), 0,
5011 SLAB_HWCACHE_ALIGN,
5012 NULL);
673a394b 5013
fc8c067e 5014 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5015 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5016 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5017 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5018 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5019 for (i = 0; i < I915_NUM_ENGINES; i++)
5020 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5021 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5022 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5023 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5024 i915_gem_retire_work_handler);
b29c19b6
CW
5025 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5026 i915_gem_idle_work_handler);
1f83fee0 5027 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5028
72bfa19c
CW
5029 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5030
e84fe803
NH
5031 /*
5032 * Set initial sequence number for requests.
5033 * Using this number allows the wraparound to happen early,
5034 * catching any obvious problems.
5035 */
5036 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5037 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5038
19b2dbde 5039 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5040
6b95a207 5041 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5042
ce453d81
CW
5043 dev_priv->mm.interruptible = true;
5044
f99d7069 5045 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5046}
71acb5eb 5047
d64aa096
ID
5048void i915_gem_load_cleanup(struct drm_device *dev)
5049{
5050 struct drm_i915_private *dev_priv = to_i915(dev);
5051
5052 kmem_cache_destroy(dev_priv->requests);
5053 kmem_cache_destroy(dev_priv->vmas);
5054 kmem_cache_destroy(dev_priv->objects);
5055}
5056
f787a5f5 5057void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5058{
f787a5f5 5059 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5060
5061 /* Clean up our request list when the client is going away, so that
5062 * later retire_requests won't dereference our soon-to-be-gone
5063 * file_priv.
5064 */
1c25595f 5065 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5066 while (!list_empty(&file_priv->mm.request_list)) {
5067 struct drm_i915_gem_request *request;
5068
5069 request = list_first_entry(&file_priv->mm.request_list,
5070 struct drm_i915_gem_request,
5071 client_list);
5072 list_del(&request->client_list);
5073 request->file_priv = NULL;
5074 }
1c25595f 5075 spin_unlock(&file_priv->mm.lock);
b29c19b6 5076
2e1b8730 5077 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5078 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5079 list_del(&file_priv->rps.link);
8d3afd7d 5080 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5081 }
b29c19b6
CW
5082}
5083
5084int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5085{
5086 struct drm_i915_file_private *file_priv;
e422b888 5087 int ret;
b29c19b6
CW
5088
5089 DRM_DEBUG_DRIVER("\n");
5090
5091 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5092 if (!file_priv)
5093 return -ENOMEM;
5094
5095 file->driver_priv = file_priv;
5096 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5097 file_priv->file = file;
2e1b8730 5098 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5099
5100 spin_lock_init(&file_priv->mm.lock);
5101 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5102
de1add36
TU
5103 file_priv->bsd_ring = -1;
5104
e422b888
BW
5105 ret = i915_gem_context_open(dev, file);
5106 if (ret)
5107 kfree(file_priv);
b29c19b6 5108
e422b888 5109 return ret;
b29c19b6
CW
5110}
5111
b680c37a
DV
5112/**
5113 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5114 * @old: current GEM buffer for the frontbuffer slots
5115 * @new: new GEM buffer for the frontbuffer slots
5116 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5117 *
5118 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5119 * from @old and setting them in @new. Both @old and @new can be NULL.
5120 */
a071fa00
DV
5121void i915_gem_track_fb(struct drm_i915_gem_object *old,
5122 struct drm_i915_gem_object *new,
5123 unsigned frontbuffer_bits)
5124{
5125 if (old) {
5126 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5127 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5128 old->frontbuffer_bits &= ~frontbuffer_bits;
5129 }
5130
5131 if (new) {
5132 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5133 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5134 new->frontbuffer_bits |= frontbuffer_bits;
5135 }
5136}
5137
a70a3148 5138/* All the new VM stuff */
088e0df4
MT
5139u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5140 struct i915_address_space *vm)
a70a3148
BW
5141{
5142 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5143 struct i915_vma *vma;
5144
896ab1a5 5145 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5146
1c7f4bca 5147 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5148 if (vma->is_ggtt &&
ec7adb6e
JL
5149 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5150 continue;
5151 if (vma->vm == vm)
a70a3148 5152 return vma->node.start;
a70a3148 5153 }
ec7adb6e 5154
f25748ea
DV
5155 WARN(1, "%s vma for this object not found.\n",
5156 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5157 return -1;
5158}
5159
088e0df4
MT
5160u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5161 const struct i915_ggtt_view *view)
a70a3148
BW
5162{
5163 struct i915_vma *vma;
5164
1c7f4bca 5165 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5166 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5167 return vma->node.start;
5168
5678ad73 5169 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5170 return -1;
5171}
5172
5173bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5174 struct i915_address_space *vm)
5175{
5176 struct i915_vma *vma;
5177
1c7f4bca 5178 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5179 if (vma->is_ggtt &&
ec7adb6e
JL
5180 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5181 continue;
5182 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5183 return true;
5184 }
5185
5186 return false;
5187}
5188
5189bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5190 const struct i915_ggtt_view *view)
ec7adb6e 5191{
ec7adb6e
JL
5192 struct i915_vma *vma;
5193
1c7f4bca 5194 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5195 if (vma->is_ggtt &&
9abc4648 5196 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5197 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5198 return true;
5199
5200 return false;
5201}
5202
5203bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5204{
5a1d5eb0 5205 struct i915_vma *vma;
a70a3148 5206
1c7f4bca 5207 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5208 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5209 return true;
5210
5211 return false;
5212}
5213
8da32727 5214unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5215{
a70a3148
BW
5216 struct i915_vma *vma;
5217
8da32727 5218 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5219
1c7f4bca 5220 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5221 if (vma->is_ggtt &&
8da32727 5222 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5223 return vma->node.size;
ec7adb6e 5224 }
8da32727 5225
a70a3148
BW
5226 return 0;
5227}
5228
ec7adb6e 5229bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5230{
5231 struct i915_vma *vma;
1c7f4bca 5232 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5233 if (vma->pin_count > 0)
5234 return true;
a6631ae1 5235
ec7adb6e 5236 return false;
5c2abbea 5237}
ea70299d 5238
033908ae
DG
5239/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5240struct page *
5241i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5242{
5243 struct page *page;
5244
5245 /* Only default objects have per-page dirty tracking */
de472664 5246 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5247 return NULL;
5248
5249 page = i915_gem_object_get_page(obj, n);
5250 set_page_dirty(page);
5251 return page;
5252}
5253
ea70299d
DG
5254/* Allocate a new GEM object and fill it with the supplied data */
5255struct drm_i915_gem_object *
5256i915_gem_object_create_from_data(struct drm_device *dev,
5257 const void *data, size_t size)
5258{
5259 struct drm_i915_gem_object *obj;
5260 struct sg_table *sg;
5261 size_t bytes;
5262 int ret;
5263
d37cd8a8 5264 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5265 if (IS_ERR(obj))
ea70299d
DG
5266 return obj;
5267
5268 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5269 if (ret)
5270 goto fail;
5271
5272 ret = i915_gem_object_get_pages(obj);
5273 if (ret)
5274 goto fail;
5275
5276 i915_gem_object_pin_pages(obj);
5277 sg = obj->pages;
5278 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5279 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5280 i915_gem_object_unpin_pages(obj);
5281
5282 if (WARN_ON(bytes != size)) {
5283 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5284 ret = -EFAULT;
5285 goto fail;
5286 }
5287
5288 return obj;
5289
5290fail:
5291 drm_gem_object_unreference(&obj->base);
5292 return ERR_PTR(ret);
5293}