]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Write to display base last.
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
0108a3ed 38static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
2dafb1e0 39static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
42static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
de151cf6 51static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
52static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
be72615b 55static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 56
31169714
CW
57static LIST_HEAD(shrink_list);
58static DEFINE_SPINLOCK(shrink_list_lock);
59
7d1c4804
CW
60static inline bool
61i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
62{
63 return obj_priv->gtt_space &&
64 !obj_priv->active &&
65 obj_priv->pin_count == 0;
66}
67
79e53945
JB
68int i915_gem_do_init(struct drm_device *dev, unsigned long start,
69 unsigned long end)
673a394b
EA
70{
71 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 72
79e53945
JB
73 if (start >= end ||
74 (start & (PAGE_SIZE - 1)) != 0 ||
75 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
76 return -EINVAL;
77 }
78
79e53945
JB
79 drm_mm_init(&dev_priv->mm.gtt_space, start,
80 end - start);
673a394b 81
79e53945
JB
82 dev->gtt_total = (uint32_t) (end - start);
83
84 return 0;
85}
673a394b 86
79e53945
JB
87int
88i915_gem_init_ioctl(struct drm_device *dev, void *data,
89 struct drm_file *file_priv)
90{
91 struct drm_i915_gem_init *args = data;
92 int ret;
93
94 mutex_lock(&dev->struct_mutex);
95 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
96 mutex_unlock(&dev->struct_mutex);
97
79e53945 98 return ret;
673a394b
EA
99}
100
5a125c3c
EA
101int
102i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
103 struct drm_file *file_priv)
104{
5a125c3c 105 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
106
107 if (!(dev->driver->driver_features & DRIVER_GEM))
108 return -ENODEV;
109
110 args->aper_size = dev->gtt_total;
2678d9d6
KP
111 args->aper_available_size = (args->aper_size -
112 atomic_read(&dev->pin_memory));
5a125c3c
EA
113
114 return 0;
115}
116
673a394b
EA
117
118/**
119 * Creates a new mm object and returns a handle to it.
120 */
121int
122i915_gem_create_ioctl(struct drm_device *dev, void *data,
123 struct drm_file *file_priv)
124{
125 struct drm_i915_gem_create *args = data;
126 struct drm_gem_object *obj;
a1a2d1d3
PP
127 int ret;
128 u32 handle;
673a394b
EA
129
130 args->size = roundup(args->size, PAGE_SIZE);
131
132 /* Allocate the new object */
ac52bc56 133 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
134 if (obj == NULL)
135 return -ENOMEM;
136
137 ret = drm_gem_handle_create(file_priv, obj, &handle);
86f100b1 138 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
139 if (ret)
140 return ret;
141
142 args->handle = handle;
143
144 return 0;
145}
146
eb01459f
EA
147static inline int
148fast_shmem_read(struct page **pages,
149 loff_t page_base, int page_offset,
150 char __user *data,
151 int length)
152{
153 char __iomem *vaddr;
2bc43b5c 154 int unwritten;
eb01459f
EA
155
156 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
157 if (vaddr == NULL)
158 return -ENOMEM;
2bc43b5c 159 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
160 kunmap_atomic(vaddr, KM_USER0);
161
2bc43b5c
FM
162 if (unwritten)
163 return -EFAULT;
164
165 return 0;
eb01459f
EA
166}
167
280b713b
EA
168static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
169{
170 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 171 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
172
173 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
174 obj_priv->tiling_mode != I915_TILING_NONE;
175}
176
99a03df5 177static inline void
40123c1f
EA
178slow_shmem_copy(struct page *dst_page,
179 int dst_offset,
180 struct page *src_page,
181 int src_offset,
182 int length)
183{
184 char *dst_vaddr, *src_vaddr;
185
99a03df5
CW
186 dst_vaddr = kmap(dst_page);
187 src_vaddr = kmap(src_page);
40123c1f
EA
188
189 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
190
99a03df5
CW
191 kunmap(src_page);
192 kunmap(dst_page);
40123c1f
EA
193}
194
99a03df5 195static inline void
280b713b
EA
196slow_shmem_bit17_copy(struct page *gpu_page,
197 int gpu_offset,
198 struct page *cpu_page,
199 int cpu_offset,
200 int length,
201 int is_read)
202{
203 char *gpu_vaddr, *cpu_vaddr;
204
205 /* Use the unswizzled path if this page isn't affected. */
206 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207 if (is_read)
208 return slow_shmem_copy(cpu_page, cpu_offset,
209 gpu_page, gpu_offset, length);
210 else
211 return slow_shmem_copy(gpu_page, gpu_offset,
212 cpu_page, cpu_offset, length);
213 }
214
99a03df5
CW
215 gpu_vaddr = kmap(gpu_page);
216 cpu_vaddr = kmap(cpu_page);
280b713b
EA
217
218 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
219 * XORing with the other bits (A9 for Y, A9 and A10 for X)
220 */
221 while (length > 0) {
222 int cacheline_end = ALIGN(gpu_offset + 1, 64);
223 int this_length = min(cacheline_end - gpu_offset, length);
224 int swizzled_gpu_offset = gpu_offset ^ 64;
225
226 if (is_read) {
227 memcpy(cpu_vaddr + cpu_offset,
228 gpu_vaddr + swizzled_gpu_offset,
229 this_length);
230 } else {
231 memcpy(gpu_vaddr + swizzled_gpu_offset,
232 cpu_vaddr + cpu_offset,
233 this_length);
234 }
235 cpu_offset += this_length;
236 gpu_offset += this_length;
237 length -= this_length;
238 }
239
99a03df5
CW
240 kunmap(cpu_page);
241 kunmap(gpu_page);
280b713b
EA
242}
243
eb01459f
EA
244/**
245 * This is the fast shmem pread path, which attempts to copy_from_user directly
246 * from the backing pages of the object to the user's address space. On a
247 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
248 */
249static int
250i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
251 struct drm_i915_gem_pread *args,
252 struct drm_file *file_priv)
253{
23010e43 254 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
255 ssize_t remain;
256 loff_t offset, page_base;
257 char __user *user_data;
258 int page_offset, page_length;
259 int ret;
260
261 user_data = (char __user *) (uintptr_t) args->data_ptr;
262 remain = args->size;
263
264 mutex_lock(&dev->struct_mutex);
265
4bdadb97 266 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
267 if (ret != 0)
268 goto fail_unlock;
269
270 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
271 args->size);
272 if (ret != 0)
273 goto fail_put_pages;
274
23010e43 275 obj_priv = to_intel_bo(obj);
eb01459f
EA
276 offset = args->offset;
277
278 while (remain > 0) {
279 /* Operation in this page
280 *
281 * page_base = page offset within aperture
282 * page_offset = offset within page
283 * page_length = bytes to copy for this page
284 */
285 page_base = (offset & ~(PAGE_SIZE-1));
286 page_offset = offset & (PAGE_SIZE-1);
287 page_length = remain;
288 if ((page_offset + remain) > PAGE_SIZE)
289 page_length = PAGE_SIZE - page_offset;
290
291 ret = fast_shmem_read(obj_priv->pages,
292 page_base, page_offset,
293 user_data, page_length);
294 if (ret)
295 goto fail_put_pages;
296
297 remain -= page_length;
298 user_data += page_length;
299 offset += page_length;
300 }
301
302fail_put_pages:
303 i915_gem_object_put_pages(obj);
304fail_unlock:
305 mutex_unlock(&dev->struct_mutex);
306
307 return ret;
308}
309
07f73f69
CW
310static int
311i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
312{
313 int ret;
314
4bdadb97 315 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
316
317 /* If we've insufficient memory to map in the pages, attempt
318 * to make some space by throwing out some old buffers.
319 */
320 if (ret == -ENOMEM) {
321 struct drm_device *dev = obj->dev;
07f73f69 322
0108a3ed
DV
323 ret = i915_gem_evict_something(dev, obj->size,
324 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
325 if (ret)
326 return ret;
327
4bdadb97 328 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
329 }
330
331 return ret;
332}
333
eb01459f
EA
334/**
335 * This is the fallback shmem pread path, which allocates temporary storage
336 * in kernel space to copy_to_user into outside of the struct_mutex, so we
337 * can copy out of the object's backing pages while holding the struct mutex
338 * and not take page faults.
339 */
340static int
341i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
342 struct drm_i915_gem_pread *args,
343 struct drm_file *file_priv)
344{
23010e43 345 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
346 struct mm_struct *mm = current->mm;
347 struct page **user_pages;
348 ssize_t remain;
349 loff_t offset, pinned_pages, i;
350 loff_t first_data_page, last_data_page, num_pages;
351 int shmem_page_index, shmem_page_offset;
352 int data_page_index, data_page_offset;
353 int page_length;
354 int ret;
355 uint64_t data_ptr = args->data_ptr;
280b713b 356 int do_bit17_swizzling;
eb01459f
EA
357
358 remain = args->size;
359
360 /* Pin the user pages containing the data. We can't fault while
361 * holding the struct mutex, yet we want to hold it while
362 * dereferencing the user data.
363 */
364 first_data_page = data_ptr / PAGE_SIZE;
365 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
366 num_pages = last_data_page - first_data_page + 1;
367
8e7d2b2c 368 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
369 if (user_pages == NULL)
370 return -ENOMEM;
371
372 down_read(&mm->mmap_sem);
373 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 374 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
375 up_read(&mm->mmap_sem);
376 if (pinned_pages < num_pages) {
377 ret = -EFAULT;
378 goto fail_put_user_pages;
379 }
380
280b713b
EA
381 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
382
eb01459f
EA
383 mutex_lock(&dev->struct_mutex);
384
07f73f69
CW
385 ret = i915_gem_object_get_pages_or_evict(obj);
386 if (ret)
eb01459f
EA
387 goto fail_unlock;
388
389 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
390 args->size);
391 if (ret != 0)
392 goto fail_put_pages;
393
23010e43 394 obj_priv = to_intel_bo(obj);
eb01459f
EA
395 offset = args->offset;
396
397 while (remain > 0) {
398 /* Operation in this page
399 *
400 * shmem_page_index = page number within shmem file
401 * shmem_page_offset = offset within page in shmem file
402 * data_page_index = page number in get_user_pages return
403 * data_page_offset = offset with data_page_index page.
404 * page_length = bytes to copy for this page
405 */
406 shmem_page_index = offset / PAGE_SIZE;
407 shmem_page_offset = offset & ~PAGE_MASK;
408 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
409 data_page_offset = data_ptr & ~PAGE_MASK;
410
411 page_length = remain;
412 if ((shmem_page_offset + page_length) > PAGE_SIZE)
413 page_length = PAGE_SIZE - shmem_page_offset;
414 if ((data_page_offset + page_length) > PAGE_SIZE)
415 page_length = PAGE_SIZE - data_page_offset;
416
280b713b 417 if (do_bit17_swizzling) {
99a03df5 418 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 419 shmem_page_offset,
99a03df5
CW
420 user_pages[data_page_index],
421 data_page_offset,
422 page_length,
423 1);
424 } else {
425 slow_shmem_copy(user_pages[data_page_index],
426 data_page_offset,
427 obj_priv->pages[shmem_page_index],
428 shmem_page_offset,
429 page_length);
280b713b 430 }
eb01459f
EA
431
432 remain -= page_length;
433 data_ptr += page_length;
434 offset += page_length;
435 }
436
437fail_put_pages:
438 i915_gem_object_put_pages(obj);
439fail_unlock:
440 mutex_unlock(&dev->struct_mutex);
441fail_put_user_pages:
442 for (i = 0; i < pinned_pages; i++) {
443 SetPageDirty(user_pages[i]);
444 page_cache_release(user_pages[i]);
445 }
8e7d2b2c 446 drm_free_large(user_pages);
eb01459f
EA
447
448 return ret;
449}
450
673a394b
EA
451/**
452 * Reads data from the object referenced by handle.
453 *
454 * On error, the contents of *data are undefined.
455 */
456int
457i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458 struct drm_file *file_priv)
459{
460 struct drm_i915_gem_pread *args = data;
461 struct drm_gem_object *obj;
462 struct drm_i915_gem_object *obj_priv;
673a394b
EA
463 int ret;
464
465 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
466 if (obj == NULL)
467 return -EBADF;
23010e43 468 obj_priv = to_intel_bo(obj);
673a394b
EA
469
470 /* Bounds check source.
471 *
472 * XXX: This could use review for overflow issues...
473 */
474 if (args->offset > obj->size || args->size > obj->size ||
475 args->offset + args->size > obj->size) {
bc9025bd 476 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
477 return -EINVAL;
478 }
479
280b713b 480 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 481 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
482 } else {
483 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
484 if (ret != 0)
485 ret = i915_gem_shmem_pread_slow(dev, obj, args,
486 file_priv);
487 }
673a394b 488
bc9025bd 489 drm_gem_object_unreference_unlocked(obj);
673a394b 490
eb01459f 491 return ret;
673a394b
EA
492}
493
0839ccb8
KP
494/* This is the fast write path which cannot handle
495 * page faults in the source data
9b7530cc 496 */
0839ccb8
KP
497
498static inline int
499fast_user_write(struct io_mapping *mapping,
500 loff_t page_base, int page_offset,
501 char __user *user_data,
502 int length)
9b7530cc 503{
9b7530cc 504 char *vaddr_atomic;
0839ccb8 505 unsigned long unwritten;
9b7530cc 506
fca3ec01 507 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
508 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
509 user_data, length);
fca3ec01 510 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
511 if (unwritten)
512 return -EFAULT;
513 return 0;
514}
515
516/* Here's the write path which can sleep for
517 * page faults
518 */
519
ab34c226 520static inline void
3de09aa3
EA
521slow_kernel_write(struct io_mapping *mapping,
522 loff_t gtt_base, int gtt_offset,
523 struct page *user_page, int user_offset,
524 int length)
0839ccb8 525{
ab34c226
CW
526 char __iomem *dst_vaddr;
527 char *src_vaddr;
0839ccb8 528
ab34c226
CW
529 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
530 src_vaddr = kmap(user_page);
531
532 memcpy_toio(dst_vaddr + gtt_offset,
533 src_vaddr + user_offset,
534 length);
535
536 kunmap(user_page);
537 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
538}
539
40123c1f
EA
540static inline int
541fast_shmem_write(struct page **pages,
542 loff_t page_base, int page_offset,
543 char __user *data,
544 int length)
545{
546 char __iomem *vaddr;
d0088775 547 unsigned long unwritten;
40123c1f
EA
548
549 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
550 if (vaddr == NULL)
551 return -ENOMEM;
d0088775 552 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
553 kunmap_atomic(vaddr, KM_USER0);
554
d0088775
DA
555 if (unwritten)
556 return -EFAULT;
40123c1f
EA
557 return 0;
558}
559
3de09aa3
EA
560/**
561 * This is the fast pwrite path, where we copy the data directly from the
562 * user into the GTT, uncached.
563 */
673a394b 564static int
3de09aa3
EA
565i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
567 struct drm_file *file_priv)
673a394b 568{
23010e43 569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 570 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 571 ssize_t remain;
0839ccb8 572 loff_t offset, page_base;
673a394b 573 char __user *user_data;
0839ccb8
KP
574 int page_offset, page_length;
575 int ret;
673a394b
EA
576
577 user_data = (char __user *) (uintptr_t) args->data_ptr;
578 remain = args->size;
579 if (!access_ok(VERIFY_READ, user_data, remain))
580 return -EFAULT;
581
582
583 mutex_lock(&dev->struct_mutex);
584 ret = i915_gem_object_pin(obj, 0);
585 if (ret) {
586 mutex_unlock(&dev->struct_mutex);
587 return ret;
588 }
2ef7eeaa 589 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
590 if (ret)
591 goto fail;
592
23010e43 593 obj_priv = to_intel_bo(obj);
673a394b 594 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
595
596 while (remain > 0) {
597 /* Operation in this page
598 *
0839ccb8
KP
599 * page_base = page offset within aperture
600 * page_offset = offset within page
601 * page_length = bytes to copy for this page
673a394b 602 */
0839ccb8
KP
603 page_base = (offset & ~(PAGE_SIZE-1));
604 page_offset = offset & (PAGE_SIZE-1);
605 page_length = remain;
606 if ((page_offset + remain) > PAGE_SIZE)
607 page_length = PAGE_SIZE - page_offset;
608
609 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
610 page_offset, user_data, page_length);
611
612 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
613 * source page isn't available. Return the error and we'll
614 * retry in the slow path.
0839ccb8 615 */
3de09aa3
EA
616 if (ret)
617 goto fail;
673a394b 618
0839ccb8
KP
619 remain -= page_length;
620 user_data += page_length;
621 offset += page_length;
673a394b 622 }
673a394b
EA
623
624fail:
625 i915_gem_object_unpin(obj);
626 mutex_unlock(&dev->struct_mutex);
627
628 return ret;
629}
630
3de09aa3
EA
631/**
632 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
633 * the memory and maps it using kmap_atomic for copying.
634 *
635 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
636 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
637 */
3043c60c 638static int
3de09aa3
EA
639i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
640 struct drm_i915_gem_pwrite *args,
641 struct drm_file *file_priv)
673a394b 642{
23010e43 643 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
644 drm_i915_private_t *dev_priv = dev->dev_private;
645 ssize_t remain;
646 loff_t gtt_page_base, offset;
647 loff_t first_data_page, last_data_page, num_pages;
648 loff_t pinned_pages, i;
649 struct page **user_pages;
650 struct mm_struct *mm = current->mm;
651 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 652 int ret;
3de09aa3
EA
653 uint64_t data_ptr = args->data_ptr;
654
655 remain = args->size;
656
657 /* Pin the user pages containing the data. We can't fault while
658 * holding the struct mutex, and all of the pwrite implementations
659 * want to hold it while dereferencing the user data.
660 */
661 first_data_page = data_ptr / PAGE_SIZE;
662 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
663 num_pages = last_data_page - first_data_page + 1;
664
8e7d2b2c 665 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
666 if (user_pages == NULL)
667 return -ENOMEM;
668
669 down_read(&mm->mmap_sem);
670 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
671 num_pages, 0, 0, user_pages, NULL);
672 up_read(&mm->mmap_sem);
673 if (pinned_pages < num_pages) {
674 ret = -EFAULT;
675 goto out_unpin_pages;
676 }
673a394b
EA
677
678 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
679 ret = i915_gem_object_pin(obj, 0);
680 if (ret)
681 goto out_unlock;
682
683 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
684 if (ret)
685 goto out_unpin_object;
686
23010e43 687 obj_priv = to_intel_bo(obj);
3de09aa3
EA
688 offset = obj_priv->gtt_offset + args->offset;
689
690 while (remain > 0) {
691 /* Operation in this page
692 *
693 * gtt_page_base = page offset within aperture
694 * gtt_page_offset = offset within page in aperture
695 * data_page_index = page number in get_user_pages return
696 * data_page_offset = offset with data_page_index page.
697 * page_length = bytes to copy for this page
698 */
699 gtt_page_base = offset & PAGE_MASK;
700 gtt_page_offset = offset & ~PAGE_MASK;
701 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
702 data_page_offset = data_ptr & ~PAGE_MASK;
703
704 page_length = remain;
705 if ((gtt_page_offset + page_length) > PAGE_SIZE)
706 page_length = PAGE_SIZE - gtt_page_offset;
707 if ((data_page_offset + page_length) > PAGE_SIZE)
708 page_length = PAGE_SIZE - data_page_offset;
709
ab34c226
CW
710 slow_kernel_write(dev_priv->mm.gtt_mapping,
711 gtt_page_base, gtt_page_offset,
712 user_pages[data_page_index],
713 data_page_offset,
714 page_length);
3de09aa3
EA
715
716 remain -= page_length;
717 offset += page_length;
718 data_ptr += page_length;
719 }
720
721out_unpin_object:
722 i915_gem_object_unpin(obj);
723out_unlock:
724 mutex_unlock(&dev->struct_mutex);
725out_unpin_pages:
726 for (i = 0; i < pinned_pages; i++)
727 page_cache_release(user_pages[i]);
8e7d2b2c 728 drm_free_large(user_pages);
3de09aa3
EA
729
730 return ret;
731}
732
40123c1f
EA
733/**
734 * This is the fast shmem pwrite path, which attempts to directly
735 * copy_from_user into the kmapped pages backing the object.
736 */
3043c60c 737static int
40123c1f
EA
738i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file_priv)
673a394b 741{
23010e43 742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length;
673a394b 747 int ret;
40123c1f
EA
748
749 user_data = (char __user *) (uintptr_t) args->data_ptr;
750 remain = args->size;
673a394b
EA
751
752 mutex_lock(&dev->struct_mutex);
753
4bdadb97 754 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
755 if (ret != 0)
756 goto fail_unlock;
673a394b 757
e47c68e9 758 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
759 if (ret != 0)
760 goto fail_put_pages;
761
23010e43 762 obj_priv = to_intel_bo(obj);
40123c1f
EA
763 offset = args->offset;
764 obj_priv->dirty = 1;
765
766 while (remain > 0) {
767 /* Operation in this page
768 *
769 * page_base = page offset within aperture
770 * page_offset = offset within page
771 * page_length = bytes to copy for this page
772 */
773 page_base = (offset & ~(PAGE_SIZE-1));
774 page_offset = offset & (PAGE_SIZE-1);
775 page_length = remain;
776 if ((page_offset + remain) > PAGE_SIZE)
777 page_length = PAGE_SIZE - page_offset;
778
779 ret = fast_shmem_write(obj_priv->pages,
780 page_base, page_offset,
781 user_data, page_length);
782 if (ret)
783 goto fail_put_pages;
784
785 remain -= page_length;
786 user_data += page_length;
787 offset += page_length;
788 }
789
790fail_put_pages:
791 i915_gem_object_put_pages(obj);
792fail_unlock:
793 mutex_unlock(&dev->struct_mutex);
794
795 return ret;
796}
797
798/**
799 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
800 * the memory and maps it using kmap_atomic for copying.
801 *
802 * This avoids taking mmap_sem for faulting on the user's address while the
803 * struct_mutex is held.
804 */
805static int
806i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
807 struct drm_i915_gem_pwrite *args,
808 struct drm_file *file_priv)
809{
23010e43 810 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
811 struct mm_struct *mm = current->mm;
812 struct page **user_pages;
813 ssize_t remain;
814 loff_t offset, pinned_pages, i;
815 loff_t first_data_page, last_data_page, num_pages;
816 int shmem_page_index, shmem_page_offset;
817 int data_page_index, data_page_offset;
818 int page_length;
819 int ret;
820 uint64_t data_ptr = args->data_ptr;
280b713b 821 int do_bit17_swizzling;
40123c1f
EA
822
823 remain = args->size;
824
825 /* Pin the user pages containing the data. We can't fault while
826 * holding the struct mutex, and all of the pwrite implementations
827 * want to hold it while dereferencing the user data.
828 */
829 first_data_page = data_ptr / PAGE_SIZE;
830 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
831 num_pages = last_data_page - first_data_page + 1;
832
8e7d2b2c 833 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
834 if (user_pages == NULL)
835 return -ENOMEM;
836
837 down_read(&mm->mmap_sem);
838 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
839 num_pages, 0, 0, user_pages, NULL);
840 up_read(&mm->mmap_sem);
841 if (pinned_pages < num_pages) {
842 ret = -EFAULT;
843 goto fail_put_user_pages;
673a394b
EA
844 }
845
280b713b
EA
846 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
847
40123c1f
EA
848 mutex_lock(&dev->struct_mutex);
849
07f73f69
CW
850 ret = i915_gem_object_get_pages_or_evict(obj);
851 if (ret)
40123c1f
EA
852 goto fail_unlock;
853
854 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
855 if (ret != 0)
856 goto fail_put_pages;
857
23010e43 858 obj_priv = to_intel_bo(obj);
673a394b 859 offset = args->offset;
40123c1f 860 obj_priv->dirty = 1;
673a394b 861
40123c1f
EA
862 while (remain > 0) {
863 /* Operation in this page
864 *
865 * shmem_page_index = page number within shmem file
866 * shmem_page_offset = offset within page in shmem file
867 * data_page_index = page number in get_user_pages return
868 * data_page_offset = offset with data_page_index page.
869 * page_length = bytes to copy for this page
870 */
871 shmem_page_index = offset / PAGE_SIZE;
872 shmem_page_offset = offset & ~PAGE_MASK;
873 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874 data_page_offset = data_ptr & ~PAGE_MASK;
875
876 page_length = remain;
877 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - shmem_page_offset;
879 if ((data_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - data_page_offset;
881
280b713b 882 if (do_bit17_swizzling) {
99a03df5 883 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
99a03df5
CW
887 page_length,
888 0);
889 } else {
890 slow_shmem_copy(obj_priv->pages[shmem_page_index],
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
894 page_length);
280b713b 895 }
40123c1f
EA
896
897 remain -= page_length;
898 data_ptr += page_length;
899 offset += page_length;
673a394b
EA
900 }
901
40123c1f
EA
902fail_put_pages:
903 i915_gem_object_put_pages(obj);
904fail_unlock:
673a394b 905 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
906fail_put_user_pages:
907 for (i = 0; i < pinned_pages; i++)
908 page_cache_release(user_pages[i]);
8e7d2b2c 909 drm_free_large(user_pages);
673a394b 910
40123c1f 911 return ret;
673a394b
EA
912}
913
914/**
915 * Writes data to the object referenced by handle.
916 *
917 * On error, the contents of the buffer that were to be modified are undefined.
918 */
919int
920i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
921 struct drm_file *file_priv)
922{
923 struct drm_i915_gem_pwrite *args = data;
924 struct drm_gem_object *obj;
925 struct drm_i915_gem_object *obj_priv;
926 int ret = 0;
927
928 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
929 if (obj == NULL)
930 return -EBADF;
23010e43 931 obj_priv = to_intel_bo(obj);
673a394b
EA
932
933 /* Bounds check destination.
934 *
935 * XXX: This could use review for overflow issues...
936 */
937 if (args->offset > obj->size || args->size > obj->size ||
938 args->offset + args->size > obj->size) {
bc9025bd 939 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
940 return -EINVAL;
941 }
942
943 /* We can only do the GTT pwrite on untiled buffers, as otherwise
944 * it would end up going through the fenced access, and we'll get
945 * different detiling behavior between reading and writing.
946 * pread/pwrite currently are reading and writing from the CPU
947 * perspective, requiring manual detiling by the client.
948 */
71acb5eb
DA
949 if (obj_priv->phys_obj)
950 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
951 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
952 dev->gtt_total != 0 &&
953 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
954 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
957 file_priv);
958 }
280b713b
EA
959 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
960 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
961 } else {
962 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
963 if (ret == -EFAULT) {
964 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
965 file_priv);
966 }
967 }
673a394b
EA
968
969#if WATCH_PWRITE
970 if (ret)
971 DRM_INFO("pwrite failed %d\n", ret);
972#endif
973
bc9025bd 974 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
975
976 return ret;
977}
978
979/**
2ef7eeaa
EA
980 * Called when user space prepares to use an object with the CPU, either
981 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
982 */
983int
984i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
985 struct drm_file *file_priv)
986{
a09ba7fa 987 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
988 struct drm_i915_gem_set_domain *args = data;
989 struct drm_gem_object *obj;
652c393a 990 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
991 uint32_t read_domains = args->read_domains;
992 uint32_t write_domain = args->write_domain;
673a394b
EA
993 int ret;
994
995 if (!(dev->driver->driver_features & DRIVER_GEM))
996 return -ENODEV;
997
2ef7eeaa 998 /* Only handle setting domains to types used by the CPU. */
21d509e3 999 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1000 return -EINVAL;
1001
21d509e3 1002 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1003 return -EINVAL;
1004
1005 /* Having something in the write domain implies it's in the read
1006 * domain, and only that read domain. Enforce that in the request.
1007 */
1008 if (write_domain != 0 && read_domains != write_domain)
1009 return -EINVAL;
1010
673a394b
EA
1011 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1012 if (obj == NULL)
1013 return -EBADF;
23010e43 1014 obj_priv = to_intel_bo(obj);
673a394b
EA
1015
1016 mutex_lock(&dev->struct_mutex);
652c393a
JB
1017
1018 intel_mark_busy(dev, obj);
1019
673a394b 1020#if WATCH_BUF
cfd43c02 1021 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1022 obj, obj->size, read_domains, write_domain);
673a394b 1023#endif
2ef7eeaa
EA
1024 if (read_domains & I915_GEM_DOMAIN_GTT) {
1025 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1026
a09ba7fa
EA
1027 /* Update the LRU on the fence for the CPU access that's
1028 * about to occur.
1029 */
1030 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1031 struct drm_i915_fence_reg *reg =
1032 &dev_priv->fence_regs[obj_priv->fence_reg];
1033 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1034 &dev_priv->mm.fence_list);
1035 }
1036
02354392
EA
1037 /* Silently promote "you're not bound, there was nothing to do"
1038 * to success, since the client was just asking us to
1039 * make sure everything was done.
1040 */
1041 if (ret == -EINVAL)
1042 ret = 0;
2ef7eeaa 1043 } else {
e47c68e9 1044 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1045 }
1046
7d1c4804
CW
1047
1048 /* Maintain LRU order of "inactive" objects */
1049 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1050 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1051
673a394b
EA
1052 drm_gem_object_unreference(obj);
1053 mutex_unlock(&dev->struct_mutex);
1054 return ret;
1055}
1056
1057/**
1058 * Called when user space has done writes to this buffer
1059 */
1060int
1061i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1062 struct drm_file *file_priv)
1063{
1064 struct drm_i915_gem_sw_finish *args = data;
1065 struct drm_gem_object *obj;
1066 struct drm_i915_gem_object *obj_priv;
1067 int ret = 0;
1068
1069 if (!(dev->driver->driver_features & DRIVER_GEM))
1070 return -ENODEV;
1071
1072 mutex_lock(&dev->struct_mutex);
1073 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1074 if (obj == NULL) {
1075 mutex_unlock(&dev->struct_mutex);
1076 return -EBADF;
1077 }
1078
1079#if WATCH_BUF
cfd43c02 1080 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1081 __func__, args->handle, obj, obj->size);
1082#endif
23010e43 1083 obj_priv = to_intel_bo(obj);
673a394b
EA
1084
1085 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1086 if (obj_priv->pin_count)
1087 i915_gem_object_flush_cpu_write_domain(obj);
1088
673a394b
EA
1089 drm_gem_object_unreference(obj);
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092}
1093
1094/**
1095 * Maps the contents of an object, returning the address it is mapped
1096 * into.
1097 *
1098 * While the mapping holds a reference on the contents of the object, it doesn't
1099 * imply a ref on the object itself.
1100 */
1101int
1102i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1103 struct drm_file *file_priv)
1104{
1105 struct drm_i915_gem_mmap *args = data;
1106 struct drm_gem_object *obj;
1107 loff_t offset;
1108 unsigned long addr;
1109
1110 if (!(dev->driver->driver_features & DRIVER_GEM))
1111 return -ENODEV;
1112
1113 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1114 if (obj == NULL)
1115 return -EBADF;
1116
1117 offset = args->offset;
1118
1119 down_write(&current->mm->mmap_sem);
1120 addr = do_mmap(obj->filp, 0, args->size,
1121 PROT_READ | PROT_WRITE, MAP_SHARED,
1122 args->offset);
1123 up_write(&current->mm->mmap_sem);
bc9025bd 1124 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1125 if (IS_ERR((void *)addr))
1126 return addr;
1127
1128 args->addr_ptr = (uint64_t) addr;
1129
1130 return 0;
1131}
1132
de151cf6
JB
1133/**
1134 * i915_gem_fault - fault a page into the GTT
1135 * vma: VMA in question
1136 * vmf: fault info
1137 *
1138 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1139 * from userspace. The fault handler takes care of binding the object to
1140 * the GTT (if needed), allocating and programming a fence register (again,
1141 * only if needed based on whether the old reg is still valid or the object
1142 * is tiled) and inserting a new PTE into the faulting process.
1143 *
1144 * Note that the faulting process may involve evicting existing objects
1145 * from the GTT and/or fence registers to make room. So performance may
1146 * suffer if the GTT working set is large or there are few fence registers
1147 * left.
1148 */
1149int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1150{
1151 struct drm_gem_object *obj = vma->vm_private_data;
1152 struct drm_device *dev = obj->dev;
7d1c4804 1153 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1154 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1155 pgoff_t page_offset;
1156 unsigned long pfn;
1157 int ret = 0;
0f973f27 1158 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1159
1160 /* We don't use vmf->pgoff since that has the fake offset */
1161 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1162 PAGE_SHIFT;
1163
1164 /* Now bind it into the GTT if needed */
1165 mutex_lock(&dev->struct_mutex);
1166 if (!obj_priv->gtt_space) {
e67b8ce1 1167 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1168 if (ret)
1169 goto unlock;
07f4f3e8 1170
07f4f3e8 1171 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1172 if (ret)
1173 goto unlock;
de151cf6
JB
1174 }
1175
1176 /* Need a new fence register? */
a09ba7fa 1177 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1178 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1179 if (ret)
1180 goto unlock;
d9ddcb96 1181 }
de151cf6 1182
7d1c4804
CW
1183 if (i915_gem_object_is_inactive(obj_priv))
1184 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1185
de151cf6
JB
1186 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1187 page_offset;
1188
1189 /* Finally, remap it using the new GTT offset */
1190 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1191unlock:
de151cf6
JB
1192 mutex_unlock(&dev->struct_mutex);
1193
1194 switch (ret) {
c715089f
CW
1195 case 0:
1196 case -ERESTARTSYS:
1197 return VM_FAULT_NOPAGE;
de151cf6
JB
1198 case -ENOMEM:
1199 case -EAGAIN:
1200 return VM_FAULT_OOM;
de151cf6 1201 default:
c715089f 1202 return VM_FAULT_SIGBUS;
de151cf6
JB
1203 }
1204}
1205
1206/**
1207 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1208 * @obj: obj in question
1209 *
1210 * GEM memory mapping works by handing back to userspace a fake mmap offset
1211 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1212 * up the object based on the offset and sets up the various memory mapping
1213 * structures.
1214 *
1215 * This routine allocates and attaches a fake offset for @obj.
1216 */
1217static int
1218i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1219{
1220 struct drm_device *dev = obj->dev;
1221 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1222 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1223 struct drm_map_list *list;
f77d390c 1224 struct drm_local_map *map;
de151cf6
JB
1225 int ret = 0;
1226
1227 /* Set the object up for mmap'ing */
1228 list = &obj->map_list;
9a298b2a 1229 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1230 if (!list->map)
1231 return -ENOMEM;
1232
1233 map = list->map;
1234 map->type = _DRM_GEM;
1235 map->size = obj->size;
1236 map->handle = obj;
1237
1238 /* Get a DRM GEM mmap offset allocated... */
1239 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1240 obj->size / PAGE_SIZE, 0, 0);
1241 if (!list->file_offset_node) {
1242 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1243 ret = -ENOMEM;
1244 goto out_free_list;
1245 }
1246
1247 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1248 obj->size / PAGE_SIZE, 0);
1249 if (!list->file_offset_node) {
1250 ret = -ENOMEM;
1251 goto out_free_list;
1252 }
1253
1254 list->hash.key = list->file_offset_node->start;
1255 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1256 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1257 ret = -ENOMEM;
de151cf6
JB
1258 goto out_free_mm;
1259 }
1260
1261 /* By now we should be all set, any drm_mmap request on the offset
1262 * below will get to our mmap & fault handler */
1263 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1264
1265 return 0;
1266
1267out_free_mm:
1268 drm_mm_put_block(list->file_offset_node);
1269out_free_list:
9a298b2a 1270 kfree(list->map);
de151cf6
JB
1271
1272 return ret;
1273}
1274
901782b2
CW
1275/**
1276 * i915_gem_release_mmap - remove physical page mappings
1277 * @obj: obj in question
1278 *
af901ca1 1279 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1280 * relinquish ownership of the pages back to the system.
1281 *
1282 * It is vital that we remove the page mapping if we have mapped a tiled
1283 * object through the GTT and then lose the fence register due to
1284 * resource pressure. Similarly if the object has been moved out of the
1285 * aperture, than pages mapped into userspace must be revoked. Removing the
1286 * mapping will then trigger a page fault on the next user access, allowing
1287 * fixup by i915_gem_fault().
1288 */
d05ca301 1289void
901782b2
CW
1290i915_gem_release_mmap(struct drm_gem_object *obj)
1291{
1292 struct drm_device *dev = obj->dev;
23010e43 1293 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1294
1295 if (dev->dev_mapping)
1296 unmap_mapping_range(dev->dev_mapping,
1297 obj_priv->mmap_offset, obj->size, 1);
1298}
1299
ab00b3e5
JB
1300static void
1301i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1302{
1303 struct drm_device *dev = obj->dev;
23010e43 1304 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1305 struct drm_gem_mm *mm = dev->mm_private;
1306 struct drm_map_list *list;
1307
1308 list = &obj->map_list;
1309 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1310
1311 if (list->file_offset_node) {
1312 drm_mm_put_block(list->file_offset_node);
1313 list->file_offset_node = NULL;
1314 }
1315
1316 if (list->map) {
9a298b2a 1317 kfree(list->map);
ab00b3e5
JB
1318 list->map = NULL;
1319 }
1320
1321 obj_priv->mmap_offset = 0;
1322}
1323
de151cf6
JB
1324/**
1325 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1326 * @obj: object to check
1327 *
1328 * Return the required GTT alignment for an object, taking into account
1329 * potential fence register mapping if needed.
1330 */
1331static uint32_t
1332i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1333{
1334 struct drm_device *dev = obj->dev;
23010e43 1335 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1336 int start, i;
1337
1338 /*
1339 * Minimum alignment is 4k (GTT page size), but might be greater
1340 * if a fence register is needed for the object.
1341 */
1342 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1343 return 4096;
1344
1345 /*
1346 * Previous chips need to be aligned to the size of the smallest
1347 * fence register that can contain the object.
1348 */
1349 if (IS_I9XX(dev))
1350 start = 1024*1024;
1351 else
1352 start = 512*1024;
1353
1354 for (i = start; i < obj->size; i <<= 1)
1355 ;
1356
1357 return i;
1358}
1359
1360/**
1361 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1362 * @dev: DRM device
1363 * @data: GTT mapping ioctl data
1364 * @file_priv: GEM object info
1365 *
1366 * Simply returns the fake offset to userspace so it can mmap it.
1367 * The mmap call will end up in drm_gem_mmap(), which will set things
1368 * up so we can get faults in the handler above.
1369 *
1370 * The fault handler will take care of binding the object into the GTT
1371 * (since it may have been evicted to make room for something), allocating
1372 * a fence register, and mapping the appropriate aperture address into
1373 * userspace.
1374 */
1375int
1376i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1377 struct drm_file *file_priv)
1378{
1379 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1380 struct drm_gem_object *obj;
1381 struct drm_i915_gem_object *obj_priv;
1382 int ret;
1383
1384 if (!(dev->driver->driver_features & DRIVER_GEM))
1385 return -ENODEV;
1386
1387 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1388 if (obj == NULL)
1389 return -EBADF;
1390
1391 mutex_lock(&dev->struct_mutex);
1392
23010e43 1393 obj_priv = to_intel_bo(obj);
de151cf6 1394
ab18282d
CW
1395 if (obj_priv->madv != I915_MADV_WILLNEED) {
1396 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1397 drm_gem_object_unreference(obj);
1398 mutex_unlock(&dev->struct_mutex);
1399 return -EINVAL;
1400 }
1401
1402
de151cf6
JB
1403 if (!obj_priv->mmap_offset) {
1404 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1405 if (ret) {
1406 drm_gem_object_unreference(obj);
1407 mutex_unlock(&dev->struct_mutex);
de151cf6 1408 return ret;
13af1062 1409 }
de151cf6
JB
1410 }
1411
1412 args->offset = obj_priv->mmap_offset;
1413
de151cf6
JB
1414 /*
1415 * Pull it into the GTT so that we have a page list (makes the
1416 * initial fault faster and any subsequent flushing possible).
1417 */
1418 if (!obj_priv->agp_mem) {
e67b8ce1 1419 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
de151cf6
JB
1425 }
1426
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429
1430 return 0;
1431}
1432
6911a9b8 1433void
856fa198 1434i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1435{
23010e43 1436 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1437 int page_count = obj->size / PAGE_SIZE;
1438 int i;
1439
856fa198 1440 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1441 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1442
856fa198
EA
1443 if (--obj_priv->pages_refcount != 0)
1444 return;
673a394b 1445
280b713b
EA
1446 if (obj_priv->tiling_mode != I915_TILING_NONE)
1447 i915_gem_object_save_bit_17_swizzle(obj);
1448
3ef94daa 1449 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1450 obj_priv->dirty = 0;
3ef94daa
CW
1451
1452 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1453 if (obj_priv->dirty)
1454 set_page_dirty(obj_priv->pages[i]);
1455
1456 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1457 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1458
1459 page_cache_release(obj_priv->pages[i]);
1460 }
673a394b
EA
1461 obj_priv->dirty = 0;
1462
8e7d2b2c 1463 drm_free_large(obj_priv->pages);
856fa198 1464 obj_priv->pages = NULL;
673a394b
EA
1465}
1466
1467static void
852835f3
ZN
1468i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1469 struct intel_ring_buffer *ring)
673a394b
EA
1470{
1471 struct drm_device *dev = obj->dev;
1472 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1473 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1474 BUG_ON(ring == NULL);
1475 obj_priv->ring = ring;
673a394b
EA
1476
1477 /* Add a reference if we're newly entering the active list. */
1478 if (!obj_priv->active) {
1479 drm_gem_object_reference(obj);
1480 obj_priv->active = 1;
1481 }
1482 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1483 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1484 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1485 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1486 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1487}
1488
ce44b0ea
EA
1489static void
1490i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1491{
1492 struct drm_device *dev = obj->dev;
1493 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1494 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1495
1496 BUG_ON(!obj_priv->active);
1497 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1498 obj_priv->last_rendering_seqno = 0;
1499}
673a394b 1500
963b4836
CW
1501/* Immediately discard the backing storage */
1502static void
1503i915_gem_object_truncate(struct drm_gem_object *obj)
1504{
23010e43 1505 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1506 struct inode *inode;
963b4836 1507
bb6baf76
CW
1508 inode = obj->filp->f_path.dentry->d_inode;
1509 if (inode->i_op->truncate)
1510 inode->i_op->truncate (inode);
1511
1512 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1513}
1514
1515static inline int
1516i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1517{
1518 return obj_priv->madv == I915_MADV_DONTNEED;
1519}
1520
673a394b
EA
1521static void
1522i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1523{
1524 struct drm_device *dev = obj->dev;
1525 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1526 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1527
1528 i915_verify_inactive(dev, __FILE__, __LINE__);
1529 if (obj_priv->pin_count != 0)
1530 list_del_init(&obj_priv->list);
1531 else
1532 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1533
99fcb766
DV
1534 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1535
ce44b0ea 1536 obj_priv->last_rendering_seqno = 0;
852835f3 1537 obj_priv->ring = NULL;
673a394b
EA
1538 if (obj_priv->active) {
1539 obj_priv->active = 0;
1540 drm_gem_object_unreference(obj);
1541 }
1542 i915_verify_inactive(dev, __FILE__, __LINE__);
1543}
1544
63560396
DV
1545static void
1546i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1547 uint32_t flush_domains, uint32_t seqno,
1548 struct intel_ring_buffer *ring)
63560396
DV
1549{
1550 drm_i915_private_t *dev_priv = dev->dev_private;
1551 struct drm_i915_gem_object *obj_priv, *next;
1552
1553 list_for_each_entry_safe(obj_priv, next,
1554 &dev_priv->mm.gpu_write_list,
1555 gpu_write_list) {
a8089e84 1556 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1557
1558 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1559 obj->write_domain &&
1560 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1561 uint32_t old_write_domain = obj->write_domain;
1562
1563 obj->write_domain = 0;
1564 list_del_init(&obj_priv->gpu_write_list);
852835f3 1565 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1566
1567 /* update the fence lru list */
007cc8ac
DV
1568 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1569 struct drm_i915_fence_reg *reg =
1570 &dev_priv->fence_regs[obj_priv->fence_reg];
1571 list_move_tail(&reg->lru_list,
63560396 1572 &dev_priv->mm.fence_list);
007cc8ac 1573 }
63560396
DV
1574
1575 trace_i915_gem_object_change_domain(obj,
1576 obj->read_domains,
1577 old_write_domain);
1578 }
1579 }
1580}
8187a2b7 1581
5a5a0c64 1582uint32_t
b962442e 1583i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1584 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1585{
1586 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1587 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1588 struct drm_i915_gem_request *request;
1589 uint32_t seqno;
1590 int was_empty;
673a394b 1591
b962442e
EA
1592 if (file_priv != NULL)
1593 i915_file_priv = file_priv->driver_priv;
1594
9a298b2a 1595 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1596 if (request == NULL)
1597 return 0;
1598
852835f3 1599 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1600
1601 request->seqno = seqno;
852835f3 1602 request->ring = ring;
673a394b 1603 request->emitted_jiffies = jiffies;
852835f3
ZN
1604 was_empty = list_empty(&ring->request_list);
1605 list_add_tail(&request->list, &ring->request_list);
1606
b962442e
EA
1607 if (i915_file_priv) {
1608 list_add_tail(&request->client_list,
1609 &i915_file_priv->mm.request_list);
1610 } else {
1611 INIT_LIST_HEAD(&request->client_list);
1612 }
673a394b 1613
ce44b0ea
EA
1614 /* Associate any objects on the flushing list matching the write
1615 * domain we're flushing with our flush.
1616 */
63560396 1617 if (flush_domains != 0)
852835f3 1618 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1619
f65d9421
BG
1620 if (!dev_priv->mm.suspended) {
1621 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1622 if (was_empty)
1623 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1624 }
673a394b
EA
1625 return seqno;
1626}
1627
1628/**
1629 * Command execution barrier
1630 *
1631 * Ensures that all commands in the ring are finished
1632 * before signalling the CPU
1633 */
3043c60c 1634static uint32_t
852835f3 1635i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1636{
673a394b 1637 uint32_t flush_domains = 0;
673a394b
EA
1638
1639 /* The sampler always gets flushed on i965 (sigh) */
1640 if (IS_I965G(dev))
1641 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1642
1643 ring->flush(dev, ring,
1644 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1645 return flush_domains;
1646}
1647
1648/**
1649 * Moves buffers associated only with the given active seqno from the active
1650 * to inactive list, potentially freeing them.
1651 */
1652static void
1653i915_gem_retire_request(struct drm_device *dev,
1654 struct drm_i915_gem_request *request)
1655{
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657
1c5d22f7
CW
1658 trace_i915_gem_request_retire(dev, request->seqno);
1659
673a394b
EA
1660 /* Move any buffers on the active list that are no longer referenced
1661 * by the ringbuffer to the flushing/inactive lists as appropriate.
1662 */
5e118f41 1663 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1664 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1665 struct drm_gem_object *obj;
1666 struct drm_i915_gem_object *obj_priv;
1667
852835f3 1668 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1669 struct drm_i915_gem_object,
1670 list);
a8089e84 1671 obj = &obj_priv->base;
673a394b
EA
1672
1673 /* If the seqno being retired doesn't match the oldest in the
1674 * list, then the oldest in the list must still be newer than
1675 * this seqno.
1676 */
1677 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1678 goto out;
de151cf6 1679
673a394b
EA
1680#if WATCH_LRU
1681 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1682 __func__, request->seqno, obj);
1683#endif
1684
ce44b0ea
EA
1685 if (obj->write_domain != 0)
1686 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1687 else {
1688 /* Take a reference on the object so it won't be
1689 * freed while the spinlock is held. The list
1690 * protection for this spinlock is safe when breaking
1691 * the lock like this since the next thing we do
1692 * is just get the head of the list again.
1693 */
1694 drm_gem_object_reference(obj);
673a394b 1695 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1696 spin_unlock(&dev_priv->mm.active_list_lock);
1697 drm_gem_object_unreference(obj);
1698 spin_lock(&dev_priv->mm.active_list_lock);
1699 }
673a394b 1700 }
5e118f41
CW
1701out:
1702 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1703}
1704
1705/**
1706 * Returns true if seq1 is later than seq2.
1707 */
22be1724 1708bool
673a394b
EA
1709i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1710{
1711 return (int32_t)(seq1 - seq2) >= 0;
1712}
1713
1714uint32_t
852835f3 1715i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1716 struct intel_ring_buffer *ring)
673a394b 1717{
852835f3 1718 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1719}
1720
1721/**
1722 * This function clears the request list as sequence numbers are passed.
1723 */
b09a1fec
CW
1724static void
1725i915_gem_retire_requests_ring(struct drm_device *dev,
1726 struct intel_ring_buffer *ring)
673a394b
EA
1727{
1728 drm_i915_private_t *dev_priv = dev->dev_private;
1729 uint32_t seqno;
1730
8187a2b7 1731 if (!ring->status_page.page_addr
852835f3 1732 || list_empty(&ring->request_list))
6c0594a3
KW
1733 return;
1734
852835f3 1735 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1736
852835f3 1737 while (!list_empty(&ring->request_list)) {
673a394b
EA
1738 struct drm_i915_gem_request *request;
1739 uint32_t retiring_seqno;
1740
852835f3 1741 request = list_first_entry(&ring->request_list,
673a394b
EA
1742 struct drm_i915_gem_request,
1743 list);
1744 retiring_seqno = request->seqno;
1745
1746 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1747 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1748 i915_gem_retire_request(dev, request);
1749
1750 list_del(&request->list);
b962442e 1751 list_del(&request->client_list);
9a298b2a 1752 kfree(request);
673a394b
EA
1753 } else
1754 break;
1755 }
9d34e5db
CW
1756
1757 if (unlikely (dev_priv->trace_irq_seqno &&
1758 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1759
1760 ring->user_irq_put(dev, ring);
9d34e5db
CW
1761 dev_priv->trace_irq_seqno = 0;
1762 }
673a394b
EA
1763}
1764
b09a1fec
CW
1765void
1766i915_gem_retire_requests(struct drm_device *dev)
1767{
1768 drm_i915_private_t *dev_priv = dev->dev_private;
1769
be72615b
CW
1770 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1771 struct drm_i915_gem_object *obj_priv, *tmp;
1772
1773 /* We must be careful that during unbind() we do not
1774 * accidentally infinitely recurse into retire requests.
1775 * Currently:
1776 * retire -> free -> unbind -> wait -> retire_ring
1777 */
1778 list_for_each_entry_safe(obj_priv, tmp,
1779 &dev_priv->mm.deferred_free_list,
1780 list)
1781 i915_gem_free_object_tail(&obj_priv->base);
1782 }
1783
b09a1fec
CW
1784 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1785 if (HAS_BSD(dev))
1786 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1787}
1788
673a394b
EA
1789void
1790i915_gem_retire_work_handler(struct work_struct *work)
1791{
1792 drm_i915_private_t *dev_priv;
1793 struct drm_device *dev;
1794
1795 dev_priv = container_of(work, drm_i915_private_t,
1796 mm.retire_work.work);
1797 dev = dev_priv->dev;
1798
1799 mutex_lock(&dev->struct_mutex);
b09a1fec 1800 i915_gem_retire_requests(dev);
d1b851fc 1801
6dbe2772 1802 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1803 (!list_empty(&dev_priv->render_ring.request_list) ||
1804 (HAS_BSD(dev) &&
1805 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1806 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1807 mutex_unlock(&dev->struct_mutex);
1808}
1809
5a5a0c64 1810int
852835f3
ZN
1811i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1812 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1813{
1814 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1815 u32 ier;
673a394b
EA
1816 int ret = 0;
1817
1818 BUG_ON(seqno == 0);
1819
ba1234d1 1820 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1821 return -EIO;
1822
852835f3 1823 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1824 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1825 ier = I915_READ(DEIER) | I915_READ(GTIER);
1826 else
1827 ier = I915_READ(IER);
802c7eb6
JB
1828 if (!ier) {
1829 DRM_ERROR("something (likely vbetool) disabled "
1830 "interrupts, re-enabling\n");
1831 i915_driver_irq_preinstall(dev);
1832 i915_driver_irq_postinstall(dev);
1833 }
1834
1c5d22f7
CW
1835 trace_i915_gem_request_wait_begin(dev, seqno);
1836
852835f3 1837 ring->waiting_gem_seqno = seqno;
8187a2b7 1838 ring->user_irq_get(dev, ring);
48764bf4 1839 if (interruptible)
852835f3
ZN
1840 ret = wait_event_interruptible(ring->irq_queue,
1841 i915_seqno_passed(
1842 ring->get_gem_seqno(dev, ring), seqno)
1843 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1844 else
852835f3
ZN
1845 wait_event(ring->irq_queue,
1846 i915_seqno_passed(
1847 ring->get_gem_seqno(dev, ring), seqno)
1848 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1849
8187a2b7 1850 ring->user_irq_put(dev, ring);
852835f3 1851 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1852
1853 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1854 }
ba1234d1 1855 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1856 ret = -EIO;
1857
1858 if (ret && ret != -ERESTARTSYS)
1859 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1860 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1861
1862 /* Directly dispatch request retiring. While we have the work queue
1863 * to handle this, the waiter on a request often wants an associated
1864 * buffer to have made it to the inactive list, and we would need
1865 * a separate wait queue to handle that.
1866 */
1867 if (ret == 0)
b09a1fec 1868 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1869
1870 return ret;
1871}
1872
48764bf4
DV
1873/**
1874 * Waits for a sequence number to be signaled, and cleans up the
1875 * request and object lists appropriately for that event.
1876 */
1877static int
852835f3
ZN
1878i915_wait_request(struct drm_device *dev, uint32_t seqno,
1879 struct intel_ring_buffer *ring)
48764bf4 1880{
852835f3 1881 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1882}
1883
8187a2b7
ZN
1884static void
1885i915_gem_flush(struct drm_device *dev,
1886 uint32_t invalidate_domains,
1887 uint32_t flush_domains)
1888{
1889 drm_i915_private_t *dev_priv = dev->dev_private;
1890 if (flush_domains & I915_GEM_DOMAIN_CPU)
1891 drm_agp_chipset_flush(dev);
1892 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1893 invalidate_domains,
1894 flush_domains);
d1b851fc
ZN
1895
1896 if (HAS_BSD(dev))
1897 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1898 invalidate_domains,
1899 flush_domains);
8187a2b7
ZN
1900}
1901
673a394b
EA
1902/**
1903 * Ensures that all rendering to the object has completed and the object is
1904 * safe to unbind from the GTT or access from the CPU.
1905 */
1906static int
1907i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1908{
1909 struct drm_device *dev = obj->dev;
23010e43 1910 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1911 int ret;
1912
e47c68e9
EA
1913 /* This function only exists to support waiting for existing rendering,
1914 * not for emitting required flushes.
673a394b 1915 */
e47c68e9 1916 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1917
1918 /* If there is rendering queued on the buffer being evicted, wait for
1919 * it.
1920 */
1921 if (obj_priv->active) {
1922#if WATCH_BUF
1923 DRM_INFO("%s: object %p wait for seqno %08x\n",
1924 __func__, obj, obj_priv->last_rendering_seqno);
1925#endif
852835f3
ZN
1926 ret = i915_wait_request(dev,
1927 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1928 if (ret != 0)
1929 return ret;
1930 }
1931
1932 return 0;
1933}
1934
1935/**
1936 * Unbinds an object from the GTT aperture.
1937 */
0f973f27 1938int
673a394b
EA
1939i915_gem_object_unbind(struct drm_gem_object *obj)
1940{
1941 struct drm_device *dev = obj->dev;
4a87b8ca 1942 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1943 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1944 int ret = 0;
1945
1946#if WATCH_BUF
1947 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1948 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1949#endif
1950 if (obj_priv->gtt_space == NULL)
1951 return 0;
1952
1953 if (obj_priv->pin_count != 0) {
1954 DRM_ERROR("Attempting to unbind pinned buffer\n");
1955 return -EINVAL;
1956 }
1957
5323fd04
EA
1958 /* blow away mappings if mapped through GTT */
1959 i915_gem_release_mmap(obj);
1960
673a394b
EA
1961 /* Move the object to the CPU domain to ensure that
1962 * any possible CPU writes while it's not in the GTT
1963 * are flushed when we go to remap it. This will
1964 * also ensure that all pending GPU writes are finished
1965 * before we unbind.
1966 */
e47c68e9 1967 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1968 if (ret == -ERESTARTSYS)
673a394b 1969 return ret;
8dc1775d
CW
1970 /* Continue on if we fail due to EIO, the GPU is hung so we
1971 * should be safe and we need to cleanup or else we might
1972 * cause memory corruption through use-after-free.
1973 */
673a394b 1974
5323fd04
EA
1975 BUG_ON(obj_priv->active);
1976
96b47b65
DV
1977 /* release the fence reg _after_ flushing */
1978 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1979 i915_gem_clear_fence_reg(obj);
1980
673a394b
EA
1981 if (obj_priv->agp_mem != NULL) {
1982 drm_unbind_agp(obj_priv->agp_mem);
1983 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1984 obj_priv->agp_mem = NULL;
1985 }
1986
856fa198 1987 i915_gem_object_put_pages(obj);
a32808c0 1988 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
1989
1990 if (obj_priv->gtt_space) {
1991 atomic_dec(&dev->gtt_count);
1992 atomic_sub(obj->size, &dev->gtt_memory);
1993
1994 drm_mm_put_block(obj_priv->gtt_space);
1995 obj_priv->gtt_space = NULL;
1996 }
1997
1998 /* Remove ourselves from the LRU list if present. */
4a87b8ca 1999 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2000 if (!list_empty(&obj_priv->list))
2001 list_del_init(&obj_priv->list);
4a87b8ca 2002 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2003
963b4836
CW
2004 if (i915_gem_object_is_purgeable(obj_priv))
2005 i915_gem_object_truncate(obj);
2006
1c5d22f7
CW
2007 trace_i915_gem_object_unbind(obj);
2008
8dc1775d 2009 return ret;
673a394b
EA
2010}
2011
b47eb4a2 2012int
4df2faf4
DV
2013i915_gpu_idle(struct drm_device *dev)
2014{
2015 drm_i915_private_t *dev_priv = dev->dev_private;
2016 bool lists_empty;
d1b851fc 2017 uint32_t seqno1, seqno2;
852835f3 2018 int ret;
4df2faf4
DV
2019
2020 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2021 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2022 list_empty(&dev_priv->render_ring.active_list) &&
2023 (!HAS_BSD(dev) ||
2024 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2025 spin_unlock(&dev_priv->mm.active_list_lock);
2026
2027 if (lists_empty)
2028 return 0;
2029
2030 /* Flush everything onto the inactive list. */
2031 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2032 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2033 &dev_priv->render_ring);
d1b851fc 2034 if (seqno1 == 0)
4df2faf4 2035 return -ENOMEM;
d1b851fc
ZN
2036 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2037
2038 if (HAS_BSD(dev)) {
2039 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2040 &dev_priv->bsd_ring);
2041 if (seqno2 == 0)
2042 return -ENOMEM;
2043
2044 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2045 if (ret)
2046 return ret;
2047 }
2048
4df2faf4 2049
852835f3 2050 return ret;
4df2faf4
DV
2051}
2052
6911a9b8 2053int
4bdadb97
CW
2054i915_gem_object_get_pages(struct drm_gem_object *obj,
2055 gfp_t gfpmask)
673a394b 2056{
23010e43 2057 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2058 int page_count, i;
2059 struct address_space *mapping;
2060 struct inode *inode;
2061 struct page *page;
673a394b 2062
778c3544
DV
2063 BUG_ON(obj_priv->pages_refcount
2064 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2065
856fa198 2066 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2067 return 0;
2068
2069 /* Get the list of pages out of our struct file. They'll be pinned
2070 * at this point until we release them.
2071 */
2072 page_count = obj->size / PAGE_SIZE;
856fa198 2073 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2074 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2075 if (obj_priv->pages == NULL) {
856fa198 2076 obj_priv->pages_refcount--;
673a394b
EA
2077 return -ENOMEM;
2078 }
2079
2080 inode = obj->filp->f_path.dentry->d_inode;
2081 mapping = inode->i_mapping;
2082 for (i = 0; i < page_count; i++) {
4bdadb97 2083 page = read_cache_page_gfp(mapping, i,
985b823b 2084 GFP_HIGHUSER |
4bdadb97 2085 __GFP_COLD |
cd9f040d 2086 __GFP_RECLAIMABLE |
4bdadb97 2087 gfpmask);
1f2b1013
CW
2088 if (IS_ERR(page))
2089 goto err_pages;
2090
856fa198 2091 obj_priv->pages[i] = page;
673a394b 2092 }
280b713b
EA
2093
2094 if (obj_priv->tiling_mode != I915_TILING_NONE)
2095 i915_gem_object_do_bit_17_swizzle(obj);
2096
673a394b 2097 return 0;
1f2b1013
CW
2098
2099err_pages:
2100 while (i--)
2101 page_cache_release(obj_priv->pages[i]);
2102
2103 drm_free_large(obj_priv->pages);
2104 obj_priv->pages = NULL;
2105 obj_priv->pages_refcount--;
2106 return PTR_ERR(page);
673a394b
EA
2107}
2108
4e901fdc
EA
2109static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2110{
2111 struct drm_gem_object *obj = reg->obj;
2112 struct drm_device *dev = obj->dev;
2113 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2114 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2115 int regnum = obj_priv->fence_reg;
2116 uint64_t val;
2117
2118 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2119 0xfffff000) << 32;
2120 val |= obj_priv->gtt_offset & 0xfffff000;
2121 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2122 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2123
2124 if (obj_priv->tiling_mode == I915_TILING_Y)
2125 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2126 val |= I965_FENCE_REG_VALID;
2127
2128 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2129}
2130
de151cf6
JB
2131static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2132{
2133 struct drm_gem_object *obj = reg->obj;
2134 struct drm_device *dev = obj->dev;
2135 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2136 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2137 int regnum = obj_priv->fence_reg;
2138 uint64_t val;
2139
2140 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2141 0xfffff000) << 32;
2142 val |= obj_priv->gtt_offset & 0xfffff000;
2143 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2144 if (obj_priv->tiling_mode == I915_TILING_Y)
2145 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2146 val |= I965_FENCE_REG_VALID;
2147
2148 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2149}
2150
2151static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2152{
2153 struct drm_gem_object *obj = reg->obj;
2154 struct drm_device *dev = obj->dev;
2155 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2156 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2157 int regnum = obj_priv->fence_reg;
0f973f27 2158 int tile_width;
dc529a4f 2159 uint32_t fence_reg, val;
de151cf6
JB
2160 uint32_t pitch_val;
2161
2162 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2163 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2164 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2165 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2166 return;
2167 }
2168
0f973f27
JB
2169 if (obj_priv->tiling_mode == I915_TILING_Y &&
2170 HAS_128_BYTE_Y_TILING(dev))
2171 tile_width = 128;
de151cf6 2172 else
0f973f27
JB
2173 tile_width = 512;
2174
2175 /* Note: pitch better be a power of two tile widths */
2176 pitch_val = obj_priv->stride / tile_width;
2177 pitch_val = ffs(pitch_val) - 1;
de151cf6 2178
c36a2a6d
DV
2179 if (obj_priv->tiling_mode == I915_TILING_Y &&
2180 HAS_128_BYTE_Y_TILING(dev))
2181 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2182 else
2183 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2184
de151cf6
JB
2185 val = obj_priv->gtt_offset;
2186 if (obj_priv->tiling_mode == I915_TILING_Y)
2187 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2188 val |= I915_FENCE_SIZE_BITS(obj->size);
2189 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2190 val |= I830_FENCE_REG_VALID;
2191
dc529a4f
EA
2192 if (regnum < 8)
2193 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2194 else
2195 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2196 I915_WRITE(fence_reg, val);
de151cf6
JB
2197}
2198
2199static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2200{
2201 struct drm_gem_object *obj = reg->obj;
2202 struct drm_device *dev = obj->dev;
2203 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2204 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2205 int regnum = obj_priv->fence_reg;
2206 uint32_t val;
2207 uint32_t pitch_val;
8d7773a3 2208 uint32_t fence_size_bits;
de151cf6 2209
8d7773a3 2210 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2211 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2212 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2213 __func__, obj_priv->gtt_offset);
de151cf6
JB
2214 return;
2215 }
2216
e76a16de
EA
2217 pitch_val = obj_priv->stride / 128;
2218 pitch_val = ffs(pitch_val) - 1;
2219 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2220
de151cf6
JB
2221 val = obj_priv->gtt_offset;
2222 if (obj_priv->tiling_mode == I915_TILING_Y)
2223 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2224 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2225 WARN_ON(fence_size_bits & ~0x00000f00);
2226 val |= fence_size_bits;
de151cf6
JB
2227 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2228 val |= I830_FENCE_REG_VALID;
2229
2230 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2231}
2232
ae3db24a
DV
2233static int i915_find_fence_reg(struct drm_device *dev)
2234{
2235 struct drm_i915_fence_reg *reg = NULL;
2236 struct drm_i915_gem_object *obj_priv = NULL;
2237 struct drm_i915_private *dev_priv = dev->dev_private;
2238 struct drm_gem_object *obj = NULL;
2239 int i, avail, ret;
2240
2241 /* First try to find a free reg */
2242 avail = 0;
2243 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2244 reg = &dev_priv->fence_regs[i];
2245 if (!reg->obj)
2246 return i;
2247
23010e43 2248 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2249 if (!obj_priv->pin_count)
2250 avail++;
2251 }
2252
2253 if (avail == 0)
2254 return -ENOSPC;
2255
2256 /* None available, try to steal one or wait for a user to finish */
2257 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2258 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2259 lru_list) {
2260 obj = reg->obj;
2261 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2262
2263 if (obj_priv->pin_count)
2264 continue;
2265
2266 /* found one! */
2267 i = obj_priv->fence_reg;
2268 break;
2269 }
2270
2271 BUG_ON(i == I915_FENCE_REG_NONE);
2272
2273 /* We only have a reference on obj from the active list. put_fence_reg
2274 * might drop that one, causing a use-after-free in it. So hold a
2275 * private reference to obj like the other callers of put_fence_reg
2276 * (set_tiling ioctl) do. */
2277 drm_gem_object_reference(obj);
2278 ret = i915_gem_object_put_fence_reg(obj);
2279 drm_gem_object_unreference(obj);
2280 if (ret != 0)
2281 return ret;
2282
2283 return i;
2284}
2285
de151cf6
JB
2286/**
2287 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2288 * @obj: object to map through a fence reg
2289 *
2290 * When mapping objects through the GTT, userspace wants to be able to write
2291 * to them without having to worry about swizzling if the object is tiled.
2292 *
2293 * This function walks the fence regs looking for a free one for @obj,
2294 * stealing one if it can't find any.
2295 *
2296 * It then sets up the reg based on the object's properties: address, pitch
2297 * and tiling format.
2298 */
8c4b8c3f
CW
2299int
2300i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2301{
2302 struct drm_device *dev = obj->dev;
79e53945 2303 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2304 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2305 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2306 int ret;
de151cf6 2307
a09ba7fa
EA
2308 /* Just update our place in the LRU if our fence is getting used. */
2309 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2310 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2311 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2312 return 0;
2313 }
2314
de151cf6
JB
2315 switch (obj_priv->tiling_mode) {
2316 case I915_TILING_NONE:
2317 WARN(1, "allocating a fence for non-tiled object?\n");
2318 break;
2319 case I915_TILING_X:
0f973f27
JB
2320 if (!obj_priv->stride)
2321 return -EINVAL;
2322 WARN((obj_priv->stride & (512 - 1)),
2323 "object 0x%08x is X tiled but has non-512B pitch\n",
2324 obj_priv->gtt_offset);
de151cf6
JB
2325 break;
2326 case I915_TILING_Y:
0f973f27
JB
2327 if (!obj_priv->stride)
2328 return -EINVAL;
2329 WARN((obj_priv->stride & (128 - 1)),
2330 "object 0x%08x is Y tiled but has non-128B pitch\n",
2331 obj_priv->gtt_offset);
de151cf6
JB
2332 break;
2333 }
2334
ae3db24a
DV
2335 ret = i915_find_fence_reg(dev);
2336 if (ret < 0)
2337 return ret;
de151cf6 2338
ae3db24a
DV
2339 obj_priv->fence_reg = ret;
2340 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2341 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2342
de151cf6
JB
2343 reg->obj = obj;
2344
4e901fdc
EA
2345 if (IS_GEN6(dev))
2346 sandybridge_write_fence_reg(reg);
2347 else if (IS_I965G(dev))
de151cf6
JB
2348 i965_write_fence_reg(reg);
2349 else if (IS_I9XX(dev))
2350 i915_write_fence_reg(reg);
2351 else
2352 i830_write_fence_reg(reg);
d9ddcb96 2353
ae3db24a
DV
2354 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2355 obj_priv->tiling_mode);
1c5d22f7 2356
d9ddcb96 2357 return 0;
de151cf6
JB
2358}
2359
2360/**
2361 * i915_gem_clear_fence_reg - clear out fence register info
2362 * @obj: object to clear
2363 *
2364 * Zeroes out the fence register itself and clears out the associated
2365 * data structures in dev_priv and obj_priv.
2366 */
2367static void
2368i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2369{
2370 struct drm_device *dev = obj->dev;
79e53945 2371 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2372 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2373 struct drm_i915_fence_reg *reg =
2374 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2375
4e901fdc
EA
2376 if (IS_GEN6(dev)) {
2377 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2378 (obj_priv->fence_reg * 8), 0);
2379 } else if (IS_I965G(dev)) {
de151cf6 2380 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2381 } else {
dc529a4f
EA
2382 uint32_t fence_reg;
2383
2384 if (obj_priv->fence_reg < 8)
2385 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2386 else
2387 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2388 8) * 4;
2389
2390 I915_WRITE(fence_reg, 0);
2391 }
de151cf6 2392
007cc8ac 2393 reg->obj = NULL;
de151cf6 2394 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2395 list_del_init(&reg->lru_list);
de151cf6
JB
2396}
2397
52dc7d32
CW
2398/**
2399 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2400 * to the buffer to finish, and then resets the fence register.
2401 * @obj: tiled object holding a fence register.
2402 *
2403 * Zeroes out the fence register itself and clears out the associated
2404 * data structures in dev_priv and obj_priv.
2405 */
2406int
2407i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2408{
2409 struct drm_device *dev = obj->dev;
23010e43 2410 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2411
2412 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2413 return 0;
2414
10ae9bd2
DV
2415 /* If we've changed tiling, GTT-mappings of the object
2416 * need to re-fault to ensure that the correct fence register
2417 * setup is in place.
2418 */
2419 i915_gem_release_mmap(obj);
2420
52dc7d32
CW
2421 /* On the i915, GPU access to tiled buffers is via a fence,
2422 * therefore we must wait for any outstanding access to complete
2423 * before clearing the fence.
2424 */
2425 if (!IS_I965G(dev)) {
2426 int ret;
2427
2dafb1e0
CW
2428 ret = i915_gem_object_flush_gpu_write_domain(obj);
2429 if (ret != 0)
2430 return ret;
2431
52dc7d32
CW
2432 ret = i915_gem_object_wait_rendering(obj);
2433 if (ret != 0)
2434 return ret;
2435 }
2436
4a726612 2437 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2438 i915_gem_clear_fence_reg (obj);
2439
2440 return 0;
2441}
2442
673a394b
EA
2443/**
2444 * Finds free space in the GTT aperture and binds the object there.
2445 */
2446static int
2447i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2448{
2449 struct drm_device *dev = obj->dev;
2450 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2451 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2452 struct drm_mm_node *free_space;
4bdadb97 2453 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2454 int ret;
673a394b 2455
bb6baf76 2456 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2457 DRM_ERROR("Attempting to bind a purgeable object\n");
2458 return -EINVAL;
2459 }
2460
673a394b 2461 if (alignment == 0)
0f973f27 2462 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2463 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2464 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2465 return -EINVAL;
2466 }
2467
654fc607
CW
2468 /* If the object is bigger than the entire aperture, reject it early
2469 * before evicting everything in a vain attempt to find space.
2470 */
2471 if (obj->size > dev->gtt_total) {
2472 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2473 return -E2BIG;
2474 }
2475
673a394b
EA
2476 search_free:
2477 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2478 obj->size, alignment, 0);
2479 if (free_space != NULL) {
2480 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2481 alignment);
db3307a9 2482 if (obj_priv->gtt_space != NULL)
673a394b 2483 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2484 }
2485 if (obj_priv->gtt_space == NULL) {
2486 /* If the gtt is empty and we're still having trouble
2487 * fitting our object in, we're out of memory.
2488 */
2489#if WATCH_LRU
2490 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2491#endif
0108a3ed 2492 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2493 if (ret)
673a394b 2494 return ret;
9731129c 2495
673a394b
EA
2496 goto search_free;
2497 }
2498
2499#if WATCH_BUF
cfd43c02 2500 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2501 obj->size, obj_priv->gtt_offset);
2502#endif
4bdadb97 2503 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2504 if (ret) {
2505 drm_mm_put_block(obj_priv->gtt_space);
2506 obj_priv->gtt_space = NULL;
07f73f69
CW
2507
2508 if (ret == -ENOMEM) {
2509 /* first try to clear up some space from the GTT */
0108a3ed
DV
2510 ret = i915_gem_evict_something(dev, obj->size,
2511 alignment);
07f73f69 2512 if (ret) {
07f73f69 2513 /* now try to shrink everyone else */
4bdadb97
CW
2514 if (gfpmask) {
2515 gfpmask = 0;
2516 goto search_free;
07f73f69
CW
2517 }
2518
2519 return ret;
2520 }
2521
2522 goto search_free;
2523 }
2524
673a394b
EA
2525 return ret;
2526 }
2527
673a394b
EA
2528 /* Create an AGP memory structure pointing at our pages, and bind it
2529 * into the GTT.
2530 */
2531 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2532 obj_priv->pages,
07f73f69 2533 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2534 obj_priv->gtt_offset,
2535 obj_priv->agp_type);
673a394b 2536 if (obj_priv->agp_mem == NULL) {
856fa198 2537 i915_gem_object_put_pages(obj);
673a394b
EA
2538 drm_mm_put_block(obj_priv->gtt_space);
2539 obj_priv->gtt_space = NULL;
07f73f69 2540
0108a3ed 2541 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2542 if (ret)
07f73f69 2543 return ret;
07f73f69
CW
2544
2545 goto search_free;
673a394b
EA
2546 }
2547 atomic_inc(&dev->gtt_count);
2548 atomic_add(obj->size, &dev->gtt_memory);
2549
bf1a1092
CW
2550 /* keep track of bounds object by adding it to the inactive list */
2551 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2552
673a394b
EA
2553 /* Assert that the object is not currently in any GPU domain. As it
2554 * wasn't in the GTT, there shouldn't be any way it could have been in
2555 * a GPU cache
2556 */
21d509e3
CW
2557 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2558 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2559
1c5d22f7
CW
2560 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2561
673a394b
EA
2562 return 0;
2563}
2564
2565void
2566i915_gem_clflush_object(struct drm_gem_object *obj)
2567{
23010e43 2568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2569
2570 /* If we don't have a page list set up, then we're not pinned
2571 * to GPU, and we can ignore the cache flush because it'll happen
2572 * again at bind time.
2573 */
856fa198 2574 if (obj_priv->pages == NULL)
673a394b
EA
2575 return;
2576
1c5d22f7 2577 trace_i915_gem_object_clflush(obj);
cfa16a0d 2578
856fa198 2579 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2580}
2581
e47c68e9 2582/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2583static int
e47c68e9
EA
2584i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2585{
2586 struct drm_device *dev = obj->dev;
1c5d22f7 2587 uint32_t old_write_domain;
852835f3 2588 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2589
2590 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2591 return 0;
e47c68e9
EA
2592
2593 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2594 old_write_domain = obj->write_domain;
e47c68e9 2595 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2596 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2597 return -ENOMEM;
1c5d22f7
CW
2598
2599 trace_i915_gem_object_change_domain(obj,
2600 obj->read_domains,
2601 old_write_domain);
2dafb1e0 2602 return 0;
e47c68e9
EA
2603}
2604
2605/** Flushes the GTT write domain for the object if it's dirty. */
2606static void
2607i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2608{
1c5d22f7
CW
2609 uint32_t old_write_domain;
2610
e47c68e9
EA
2611 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2612 return;
2613
2614 /* No actual flushing is required for the GTT write domain. Writes
2615 * to it immediately go to main memory as far as we know, so there's
2616 * no chipset flush. It also doesn't land in render cache.
2617 */
1c5d22f7 2618 old_write_domain = obj->write_domain;
e47c68e9 2619 obj->write_domain = 0;
1c5d22f7
CW
2620
2621 trace_i915_gem_object_change_domain(obj,
2622 obj->read_domains,
2623 old_write_domain);
e47c68e9
EA
2624}
2625
2626/** Flushes the CPU write domain for the object if it's dirty. */
2627static void
2628i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2629{
2630 struct drm_device *dev = obj->dev;
1c5d22f7 2631 uint32_t old_write_domain;
e47c68e9
EA
2632
2633 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2634 return;
2635
2636 i915_gem_clflush_object(obj);
2637 drm_agp_chipset_flush(dev);
1c5d22f7 2638 old_write_domain = obj->write_domain;
e47c68e9 2639 obj->write_domain = 0;
1c5d22f7
CW
2640
2641 trace_i915_gem_object_change_domain(obj,
2642 obj->read_domains,
2643 old_write_domain);
e47c68e9
EA
2644}
2645
2dafb1e0 2646int
6b95a207
KH
2647i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2648{
2dafb1e0
CW
2649 int ret = 0;
2650
6b95a207
KH
2651 switch (obj->write_domain) {
2652 case I915_GEM_DOMAIN_GTT:
2653 i915_gem_object_flush_gtt_write_domain(obj);
2654 break;
2655 case I915_GEM_DOMAIN_CPU:
2656 i915_gem_object_flush_cpu_write_domain(obj);
2657 break;
2658 default:
2dafb1e0 2659 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2660 break;
2661 }
2dafb1e0
CW
2662
2663 return ret;
6b95a207
KH
2664}
2665
2ef7eeaa
EA
2666/**
2667 * Moves a single object to the GTT read, and possibly write domain.
2668 *
2669 * This function returns when the move is complete, including waiting on
2670 * flushes to occur.
2671 */
79e53945 2672int
2ef7eeaa
EA
2673i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2674{
23010e43 2675 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2676 uint32_t old_write_domain, old_read_domains;
e47c68e9 2677 int ret;
2ef7eeaa 2678
02354392
EA
2679 /* Not valid to be called on unbound objects. */
2680 if (obj_priv->gtt_space == NULL)
2681 return -EINVAL;
2682
2dafb1e0
CW
2683 ret = i915_gem_object_flush_gpu_write_domain(obj);
2684 if (ret != 0)
2685 return ret;
2686
e47c68e9
EA
2687 /* Wait on any GPU rendering and flushing to occur. */
2688 ret = i915_gem_object_wait_rendering(obj);
2689 if (ret != 0)
2690 return ret;
2691
1c5d22f7
CW
2692 old_write_domain = obj->write_domain;
2693 old_read_domains = obj->read_domains;
2694
e47c68e9
EA
2695 /* If we're writing through the GTT domain, then CPU and GPU caches
2696 * will need to be invalidated at next use.
2ef7eeaa 2697 */
e47c68e9
EA
2698 if (write)
2699 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2700
e47c68e9 2701 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2702
e47c68e9
EA
2703 /* It should now be out of any other write domains, and we can update
2704 * the domain values for our changes.
2705 */
2706 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2707 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2708 if (write) {
2709 obj->write_domain = I915_GEM_DOMAIN_GTT;
2710 obj_priv->dirty = 1;
2ef7eeaa
EA
2711 }
2712
1c5d22f7
CW
2713 trace_i915_gem_object_change_domain(obj,
2714 old_read_domains,
2715 old_write_domain);
2716
e47c68e9
EA
2717 return 0;
2718}
2719
b9241ea3
ZW
2720/*
2721 * Prepare buffer for display plane. Use uninterruptible for possible flush
2722 * wait, as in modesetting process we're not supposed to be interrupted.
2723 */
2724int
2725i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2726{
2727 struct drm_device *dev = obj->dev;
23010e43 2728 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2729 uint32_t old_write_domain, old_read_domains;
2730 int ret;
2731
2732 /* Not valid to be called on unbound objects. */
2733 if (obj_priv->gtt_space == NULL)
2734 return -EINVAL;
2735
2dafb1e0
CW
2736 ret = i915_gem_object_flush_gpu_write_domain(obj);
2737 if (ret)
2738 return ret;
b9241ea3
ZW
2739
2740 /* Wait on any GPU rendering and flushing to occur. */
2741 if (obj_priv->active) {
2742#if WATCH_BUF
2743 DRM_INFO("%s: object %p wait for seqno %08x\n",
2744 __func__, obj, obj_priv->last_rendering_seqno);
2745#endif
852835f3
ZN
2746 ret = i915_do_wait_request(dev,
2747 obj_priv->last_rendering_seqno,
2748 0,
2749 obj_priv->ring);
b9241ea3
ZW
2750 if (ret != 0)
2751 return ret;
2752 }
2753
b118c1e3
CW
2754 i915_gem_object_flush_cpu_write_domain(obj);
2755
b9241ea3
ZW
2756 old_write_domain = obj->write_domain;
2757 old_read_domains = obj->read_domains;
2758
b9241ea3
ZW
2759 /* It should now be out of any other write domains, and we can update
2760 * the domain values for our changes.
2761 */
2762 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2763 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2764 obj->write_domain = I915_GEM_DOMAIN_GTT;
2765 obj_priv->dirty = 1;
2766
2767 trace_i915_gem_object_change_domain(obj,
2768 old_read_domains,
2769 old_write_domain);
2770
2771 return 0;
2772}
2773
e47c68e9
EA
2774/**
2775 * Moves a single object to the CPU read, and possibly write domain.
2776 *
2777 * This function returns when the move is complete, including waiting on
2778 * flushes to occur.
2779 */
2780static int
2781i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2782{
1c5d22f7 2783 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2784 int ret;
2785
2dafb1e0
CW
2786 ret = i915_gem_object_flush_gpu_write_domain(obj);
2787 if (ret)
2788 return ret;
2789
2ef7eeaa 2790 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2791 ret = i915_gem_object_wait_rendering(obj);
2792 if (ret != 0)
2793 return ret;
2ef7eeaa 2794
e47c68e9 2795 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2796
e47c68e9
EA
2797 /* If we have a partially-valid cache of the object in the CPU,
2798 * finish invalidating it and free the per-page flags.
2ef7eeaa 2799 */
e47c68e9 2800 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2801
1c5d22f7
CW
2802 old_write_domain = obj->write_domain;
2803 old_read_domains = obj->read_domains;
2804
e47c68e9
EA
2805 /* Flush the CPU cache if it's still invalid. */
2806 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2807 i915_gem_clflush_object(obj);
2ef7eeaa 2808
e47c68e9 2809 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2810 }
2811
2812 /* It should now be out of any other write domains, and we can update
2813 * the domain values for our changes.
2814 */
e47c68e9
EA
2815 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2816
2817 /* If we're writing through the CPU, then the GPU read domains will
2818 * need to be invalidated at next use.
2819 */
2820 if (write) {
2821 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2822 obj->write_domain = I915_GEM_DOMAIN_CPU;
2823 }
2ef7eeaa 2824
1c5d22f7
CW
2825 trace_i915_gem_object_change_domain(obj,
2826 old_read_domains,
2827 old_write_domain);
2828
2ef7eeaa
EA
2829 return 0;
2830}
2831
673a394b
EA
2832/*
2833 * Set the next domain for the specified object. This
2834 * may not actually perform the necessary flushing/invaliding though,
2835 * as that may want to be batched with other set_domain operations
2836 *
2837 * This is (we hope) the only really tricky part of gem. The goal
2838 * is fairly simple -- track which caches hold bits of the object
2839 * and make sure they remain coherent. A few concrete examples may
2840 * help to explain how it works. For shorthand, we use the notation
2841 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2842 * a pair of read and write domain masks.
2843 *
2844 * Case 1: the batch buffer
2845 *
2846 * 1. Allocated
2847 * 2. Written by CPU
2848 * 3. Mapped to GTT
2849 * 4. Read by GPU
2850 * 5. Unmapped from GTT
2851 * 6. Freed
2852 *
2853 * Let's take these a step at a time
2854 *
2855 * 1. Allocated
2856 * Pages allocated from the kernel may still have
2857 * cache contents, so we set them to (CPU, CPU) always.
2858 * 2. Written by CPU (using pwrite)
2859 * The pwrite function calls set_domain (CPU, CPU) and
2860 * this function does nothing (as nothing changes)
2861 * 3. Mapped by GTT
2862 * This function asserts that the object is not
2863 * currently in any GPU-based read or write domains
2864 * 4. Read by GPU
2865 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2866 * As write_domain is zero, this function adds in the
2867 * current read domains (CPU+COMMAND, 0).
2868 * flush_domains is set to CPU.
2869 * invalidate_domains is set to COMMAND
2870 * clflush is run to get data out of the CPU caches
2871 * then i915_dev_set_domain calls i915_gem_flush to
2872 * emit an MI_FLUSH and drm_agp_chipset_flush
2873 * 5. Unmapped from GTT
2874 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2875 * flush_domains and invalidate_domains end up both zero
2876 * so no flushing/invalidating happens
2877 * 6. Freed
2878 * yay, done
2879 *
2880 * Case 2: The shared render buffer
2881 *
2882 * 1. Allocated
2883 * 2. Mapped to GTT
2884 * 3. Read/written by GPU
2885 * 4. set_domain to (CPU,CPU)
2886 * 5. Read/written by CPU
2887 * 6. Read/written by GPU
2888 *
2889 * 1. Allocated
2890 * Same as last example, (CPU, CPU)
2891 * 2. Mapped to GTT
2892 * Nothing changes (assertions find that it is not in the GPU)
2893 * 3. Read/written by GPU
2894 * execbuffer calls set_domain (RENDER, RENDER)
2895 * flush_domains gets CPU
2896 * invalidate_domains gets GPU
2897 * clflush (obj)
2898 * MI_FLUSH and drm_agp_chipset_flush
2899 * 4. set_domain (CPU, CPU)
2900 * flush_domains gets GPU
2901 * invalidate_domains gets CPU
2902 * wait_rendering (obj) to make sure all drawing is complete.
2903 * This will include an MI_FLUSH to get the data from GPU
2904 * to memory
2905 * clflush (obj) to invalidate the CPU cache
2906 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2907 * 5. Read/written by CPU
2908 * cache lines are loaded and dirtied
2909 * 6. Read written by GPU
2910 * Same as last GPU access
2911 *
2912 * Case 3: The constant buffer
2913 *
2914 * 1. Allocated
2915 * 2. Written by CPU
2916 * 3. Read by GPU
2917 * 4. Updated (written) by CPU again
2918 * 5. Read by GPU
2919 *
2920 * 1. Allocated
2921 * (CPU, CPU)
2922 * 2. Written by CPU
2923 * (CPU, CPU)
2924 * 3. Read by GPU
2925 * (CPU+RENDER, 0)
2926 * flush_domains = CPU
2927 * invalidate_domains = RENDER
2928 * clflush (obj)
2929 * MI_FLUSH
2930 * drm_agp_chipset_flush
2931 * 4. Updated (written) by CPU again
2932 * (CPU, CPU)
2933 * flush_domains = 0 (no previous write domain)
2934 * invalidate_domains = 0 (no new read domains)
2935 * 5. Read by GPU
2936 * (CPU+RENDER, 0)
2937 * flush_domains = CPU
2938 * invalidate_domains = RENDER
2939 * clflush (obj)
2940 * MI_FLUSH
2941 * drm_agp_chipset_flush
2942 */
c0d90829 2943static void
8b0e378a 2944i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2945{
2946 struct drm_device *dev = obj->dev;
88f356b7 2947 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2948 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2949 uint32_t invalidate_domains = 0;
2950 uint32_t flush_domains = 0;
1c5d22f7 2951 uint32_t old_read_domains;
e47c68e9 2952
8b0e378a
EA
2953 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2954 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2955
652c393a
JB
2956 intel_mark_busy(dev, obj);
2957
673a394b
EA
2958#if WATCH_BUF
2959 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2960 __func__, obj,
8b0e378a
EA
2961 obj->read_domains, obj->pending_read_domains,
2962 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2963#endif
2964 /*
2965 * If the object isn't moving to a new write domain,
2966 * let the object stay in multiple read domains
2967 */
8b0e378a
EA
2968 if (obj->pending_write_domain == 0)
2969 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2970 else
2971 obj_priv->dirty = 1;
2972
2973 /*
2974 * Flush the current write domain if
2975 * the new read domains don't match. Invalidate
2976 * any read domains which differ from the old
2977 * write domain
2978 */
8b0e378a
EA
2979 if (obj->write_domain &&
2980 obj->write_domain != obj->pending_read_domains) {
673a394b 2981 flush_domains |= obj->write_domain;
8b0e378a
EA
2982 invalidate_domains |=
2983 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2984 }
2985 /*
2986 * Invalidate any read caches which may have
2987 * stale data. That is, any new read domains.
2988 */
8b0e378a 2989 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2990 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2991#if WATCH_BUF
2992 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2993 __func__, flush_domains, invalidate_domains);
2994#endif
673a394b
EA
2995 i915_gem_clflush_object(obj);
2996 }
2997
1c5d22f7
CW
2998 old_read_domains = obj->read_domains;
2999
efbeed96
EA
3000 /* The actual obj->write_domain will be updated with
3001 * pending_write_domain after we emit the accumulated flush for all
3002 * of our domain changes in execbuffers (which clears objects'
3003 * write_domains). So if we have a current write domain that we
3004 * aren't changing, set pending_write_domain to that.
3005 */
3006 if (flush_domains == 0 && obj->pending_write_domain == 0)
3007 obj->pending_write_domain = obj->write_domain;
8b0e378a 3008 obj->read_domains = obj->pending_read_domains;
673a394b 3009
88f356b7
CW
3010 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3011 if (obj_priv->ring == &dev_priv->render_ring)
3012 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3013 else if (obj_priv->ring == &dev_priv->bsd_ring)
3014 dev_priv->flush_rings |= FLUSH_BSD_RING;
3015 }
3016
673a394b
EA
3017 dev->invalidate_domains |= invalidate_domains;
3018 dev->flush_domains |= flush_domains;
3019#if WATCH_BUF
3020 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3021 __func__,
3022 obj->read_domains, obj->write_domain,
3023 dev->invalidate_domains, dev->flush_domains);
3024#endif
1c5d22f7
CW
3025
3026 trace_i915_gem_object_change_domain(obj,
3027 old_read_domains,
3028 obj->write_domain);
673a394b
EA
3029}
3030
3031/**
e47c68e9 3032 * Moves the object from a partially CPU read to a full one.
673a394b 3033 *
e47c68e9
EA
3034 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3035 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3036 */
e47c68e9
EA
3037static void
3038i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3039{
23010e43 3040 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3041
e47c68e9
EA
3042 if (!obj_priv->page_cpu_valid)
3043 return;
3044
3045 /* If we're partially in the CPU read domain, finish moving it in.
3046 */
3047 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3048 int i;
3049
3050 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3051 if (obj_priv->page_cpu_valid[i])
3052 continue;
856fa198 3053 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3054 }
e47c68e9
EA
3055 }
3056
3057 /* Free the page_cpu_valid mappings which are now stale, whether
3058 * or not we've got I915_GEM_DOMAIN_CPU.
3059 */
9a298b2a 3060 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3061 obj_priv->page_cpu_valid = NULL;
3062}
3063
3064/**
3065 * Set the CPU read domain on a range of the object.
3066 *
3067 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3068 * not entirely valid. The page_cpu_valid member of the object flags which
3069 * pages have been flushed, and will be respected by
3070 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3071 * of the whole object.
3072 *
3073 * This function returns when the move is complete, including waiting on
3074 * flushes to occur.
3075 */
3076static int
3077i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3078 uint64_t offset, uint64_t size)
3079{
23010e43 3080 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3081 uint32_t old_read_domains;
e47c68e9 3082 int i, ret;
673a394b 3083
e47c68e9
EA
3084 if (offset == 0 && size == obj->size)
3085 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3086
2dafb1e0
CW
3087 ret = i915_gem_object_flush_gpu_write_domain(obj);
3088 if (ret)
3089 return ret;
3090
e47c68e9 3091 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3092 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3093 if (ret != 0)
6a47baa6 3094 return ret;
e47c68e9
EA
3095 i915_gem_object_flush_gtt_write_domain(obj);
3096
3097 /* If we're already fully in the CPU read domain, we're done. */
3098 if (obj_priv->page_cpu_valid == NULL &&
3099 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3100 return 0;
673a394b 3101
e47c68e9
EA
3102 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3103 * newly adding I915_GEM_DOMAIN_CPU
3104 */
673a394b 3105 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3106 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3107 GFP_KERNEL);
e47c68e9
EA
3108 if (obj_priv->page_cpu_valid == NULL)
3109 return -ENOMEM;
3110 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3111 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3112
3113 /* Flush the cache on any pages that are still invalid from the CPU's
3114 * perspective.
3115 */
e47c68e9
EA
3116 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3117 i++) {
673a394b
EA
3118 if (obj_priv->page_cpu_valid[i])
3119 continue;
3120
856fa198 3121 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3122
3123 obj_priv->page_cpu_valid[i] = 1;
3124 }
3125
e47c68e9
EA
3126 /* It should now be out of any other write domains, and we can update
3127 * the domain values for our changes.
3128 */
3129 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3130
1c5d22f7 3131 old_read_domains = obj->read_domains;
e47c68e9
EA
3132 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3133
1c5d22f7
CW
3134 trace_i915_gem_object_change_domain(obj,
3135 old_read_domains,
3136 obj->write_domain);
3137
673a394b
EA
3138 return 0;
3139}
3140
673a394b
EA
3141/**
3142 * Pin an object to the GTT and evaluate the relocations landing in it.
3143 */
3144static int
3145i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3146 struct drm_file *file_priv,
76446cac 3147 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3148 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3149{
3150 struct drm_device *dev = obj->dev;
0839ccb8 3151 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3152 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3153 int i, ret;
0839ccb8 3154 void __iomem *reloc_page;
76446cac
JB
3155 bool need_fence;
3156
3157 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3158 obj_priv->tiling_mode != I915_TILING_NONE;
3159
3160 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3161 if (need_fence &&
3162 !i915_gem_object_fence_offset_ok(obj,
3163 obj_priv->tiling_mode)) {
3164 ret = i915_gem_object_unbind(obj);
3165 if (ret)
3166 return ret;
3167 }
673a394b
EA
3168
3169 /* Choose the GTT offset for our buffer and put it there. */
3170 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3171 if (ret)
3172 return ret;
3173
76446cac
JB
3174 /*
3175 * Pre-965 chips need a fence register set up in order to
3176 * properly handle blits to/from tiled surfaces.
3177 */
3178 if (need_fence) {
3179 ret = i915_gem_object_get_fence_reg(obj);
3180 if (ret != 0) {
76446cac
JB
3181 i915_gem_object_unpin(obj);
3182 return ret;
3183 }
3184 }
3185
673a394b
EA
3186 entry->offset = obj_priv->gtt_offset;
3187
673a394b
EA
3188 /* Apply the relocations, using the GTT aperture to avoid cache
3189 * flushing requirements.
3190 */
3191 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3192 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3193 struct drm_gem_object *target_obj;
3194 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3195 uint32_t reloc_val, reloc_offset;
3196 uint32_t __iomem *reloc_entry;
673a394b 3197
673a394b 3198 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3199 reloc->target_handle);
673a394b
EA
3200 if (target_obj == NULL) {
3201 i915_gem_object_unpin(obj);
3202 return -EBADF;
3203 }
23010e43 3204 target_obj_priv = to_intel_bo(target_obj);
673a394b 3205
8542a0bb
CW
3206#if WATCH_RELOC
3207 DRM_INFO("%s: obj %p offset %08x target %d "
3208 "read %08x write %08x gtt %08x "
3209 "presumed %08x delta %08x\n",
3210 __func__,
3211 obj,
3212 (int) reloc->offset,
3213 (int) reloc->target_handle,
3214 (int) reloc->read_domains,
3215 (int) reloc->write_domain,
3216 (int) target_obj_priv->gtt_offset,
3217 (int) reloc->presumed_offset,
3218 reloc->delta);
3219#endif
3220
673a394b
EA
3221 /* The target buffer should have appeared before us in the
3222 * exec_object list, so it should have a GTT space bound by now.
3223 */
3224 if (target_obj_priv->gtt_space == NULL) {
3225 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3226 reloc->target_handle);
673a394b
EA
3227 drm_gem_object_unreference(target_obj);
3228 i915_gem_object_unpin(obj);
3229 return -EINVAL;
3230 }
3231
8542a0bb 3232 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3233 if (reloc->write_domain & (reloc->write_domain - 1)) {
3234 DRM_ERROR("reloc with multiple write domains: "
3235 "obj %p target %d offset %d "
3236 "read %08x write %08x",
3237 obj, reloc->target_handle,
3238 (int) reloc->offset,
3239 reloc->read_domains,
3240 reloc->write_domain);
3241 return -EINVAL;
3242 }
40a5f0de
EA
3243 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3244 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3245 DRM_ERROR("reloc with read/write CPU domains: "
3246 "obj %p target %d offset %d "
3247 "read %08x write %08x",
40a5f0de
EA
3248 obj, reloc->target_handle,
3249 (int) reloc->offset,
3250 reloc->read_domains,
3251 reloc->write_domain);
491152b8
CW
3252 drm_gem_object_unreference(target_obj);
3253 i915_gem_object_unpin(obj);
e47c68e9
EA
3254 return -EINVAL;
3255 }
40a5f0de
EA
3256 if (reloc->write_domain && target_obj->pending_write_domain &&
3257 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3258 DRM_ERROR("Write domain conflict: "
3259 "obj %p target %d offset %d "
3260 "new %08x old %08x\n",
40a5f0de
EA
3261 obj, reloc->target_handle,
3262 (int) reloc->offset,
3263 reloc->write_domain,
673a394b
EA
3264 target_obj->pending_write_domain);
3265 drm_gem_object_unreference(target_obj);
3266 i915_gem_object_unpin(obj);
3267 return -EINVAL;
3268 }
3269
40a5f0de
EA
3270 target_obj->pending_read_domains |= reloc->read_domains;
3271 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3272
3273 /* If the relocation already has the right value in it, no
3274 * more work needs to be done.
3275 */
40a5f0de 3276 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3277 drm_gem_object_unreference(target_obj);
3278 continue;
3279 }
3280
8542a0bb
CW
3281 /* Check that the relocation address is valid... */
3282 if (reloc->offset > obj->size - 4) {
3283 DRM_ERROR("Relocation beyond object bounds: "
3284 "obj %p target %d offset %d size %d.\n",
3285 obj, reloc->target_handle,
3286 (int) reloc->offset, (int) obj->size);
3287 drm_gem_object_unreference(target_obj);
3288 i915_gem_object_unpin(obj);
3289 return -EINVAL;
3290 }
3291 if (reloc->offset & 3) {
3292 DRM_ERROR("Relocation not 4-byte aligned: "
3293 "obj %p target %d offset %d.\n",
3294 obj, reloc->target_handle,
3295 (int) reloc->offset);
3296 drm_gem_object_unreference(target_obj);
3297 i915_gem_object_unpin(obj);
3298 return -EINVAL;
3299 }
3300
3301 /* and points to somewhere within the target object. */
3302 if (reloc->delta >= target_obj->size) {
3303 DRM_ERROR("Relocation beyond target object bounds: "
3304 "obj %p target %d delta %d size %d.\n",
3305 obj, reloc->target_handle,
3306 (int) reloc->delta, (int) target_obj->size);
3307 drm_gem_object_unreference(target_obj);
3308 i915_gem_object_unpin(obj);
3309 return -EINVAL;
3310 }
3311
2ef7eeaa
EA
3312 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3313 if (ret != 0) {
3314 drm_gem_object_unreference(target_obj);
3315 i915_gem_object_unpin(obj);
3316 return -EINVAL;
673a394b
EA
3317 }
3318
3319 /* Map the page containing the relocation we're going to
3320 * perform.
3321 */
40a5f0de 3322 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3323 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3324 (reloc_offset &
fca3ec01
CW
3325 ~(PAGE_SIZE - 1)),
3326 KM_USER0);
3043c60c 3327 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3328 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3329 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3330
3331#if WATCH_BUF
3332 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3333 obj, (unsigned int) reloc->offset,
673a394b
EA
3334 readl(reloc_entry), reloc_val);
3335#endif
3336 writel(reloc_val, reloc_entry);
fca3ec01 3337 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3338
40a5f0de
EA
3339 /* The updated presumed offset for this entry will be
3340 * copied back out to the user.
673a394b 3341 */
40a5f0de 3342 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3343
3344 drm_gem_object_unreference(target_obj);
3345 }
3346
673a394b
EA
3347#if WATCH_BUF
3348 if (0)
3349 i915_gem_dump_object(obj, 128, __func__, ~0);
3350#endif
3351 return 0;
3352}
3353
673a394b
EA
3354/* Throttle our rendering by waiting until the ring has completed our requests
3355 * emitted over 20 msec ago.
3356 *
b962442e
EA
3357 * Note that if we were to use the current jiffies each time around the loop,
3358 * we wouldn't escape the function with any frames outstanding if the time to
3359 * render a frame was over 20ms.
3360 *
673a394b
EA
3361 * This should get us reasonable parallelism between CPU and GPU but also
3362 * relatively low latency when blocking on a particular request to finish.
3363 */
3364static int
3365i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3366{
3367 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3368 int ret = 0;
b962442e 3369 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3370
3371 mutex_lock(&dev->struct_mutex);
b962442e
EA
3372 while (!list_empty(&i915_file_priv->mm.request_list)) {
3373 struct drm_i915_gem_request *request;
3374
3375 request = list_first_entry(&i915_file_priv->mm.request_list,
3376 struct drm_i915_gem_request,
3377 client_list);
3378
3379 if (time_after_eq(request->emitted_jiffies, recent_enough))
3380 break;
3381
852835f3 3382 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3383 if (ret != 0)
3384 break;
3385 }
673a394b 3386 mutex_unlock(&dev->struct_mutex);
b962442e 3387
673a394b
EA
3388 return ret;
3389}
3390
40a5f0de 3391static int
76446cac 3392i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3393 uint32_t buffer_count,
3394 struct drm_i915_gem_relocation_entry **relocs)
3395{
3396 uint32_t reloc_count = 0, reloc_index = 0, i;
3397 int ret;
3398
3399 *relocs = NULL;
3400 for (i = 0; i < buffer_count; i++) {
3401 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3402 return -EINVAL;
3403 reloc_count += exec_list[i].relocation_count;
3404 }
3405
8e7d2b2c 3406 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3407 if (*relocs == NULL) {
3408 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3409 return -ENOMEM;
76446cac 3410 }
40a5f0de
EA
3411
3412 for (i = 0; i < buffer_count; i++) {
3413 struct drm_i915_gem_relocation_entry __user *user_relocs;
3414
3415 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3416
3417 ret = copy_from_user(&(*relocs)[reloc_index],
3418 user_relocs,
3419 exec_list[i].relocation_count *
3420 sizeof(**relocs));
3421 if (ret != 0) {
8e7d2b2c 3422 drm_free_large(*relocs);
40a5f0de 3423 *relocs = NULL;
2bc43b5c 3424 return -EFAULT;
40a5f0de
EA
3425 }
3426
3427 reloc_index += exec_list[i].relocation_count;
3428 }
3429
2bc43b5c 3430 return 0;
40a5f0de
EA
3431}
3432
3433static int
76446cac 3434i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3435 uint32_t buffer_count,
3436 struct drm_i915_gem_relocation_entry *relocs)
3437{
3438 uint32_t reloc_count = 0, i;
2bc43b5c 3439 int ret = 0;
40a5f0de 3440
93533c29
CW
3441 if (relocs == NULL)
3442 return 0;
3443
40a5f0de
EA
3444 for (i = 0; i < buffer_count; i++) {
3445 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3446 int unwritten;
40a5f0de
EA
3447
3448 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3449
2bc43b5c
FM
3450 unwritten = copy_to_user(user_relocs,
3451 &relocs[reloc_count],
3452 exec_list[i].relocation_count *
3453 sizeof(*relocs));
3454
3455 if (unwritten) {
3456 ret = -EFAULT;
3457 goto err;
40a5f0de
EA
3458 }
3459
3460 reloc_count += exec_list[i].relocation_count;
3461 }
3462
2bc43b5c 3463err:
8e7d2b2c 3464 drm_free_large(relocs);
40a5f0de
EA
3465
3466 return ret;
3467}
3468
83d60795 3469static int
76446cac 3470i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3471 uint64_t exec_offset)
3472{
3473 uint32_t exec_start, exec_len;
3474
3475 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3476 exec_len = (uint32_t) exec->batch_len;
3477
3478 if ((exec_start | exec_len) & 0x7)
3479 return -EINVAL;
3480
3481 if (!exec_start)
3482 return -EINVAL;
3483
3484 return 0;
3485}
3486
6b95a207
KH
3487static int
3488i915_gem_wait_for_pending_flip(struct drm_device *dev,
3489 struct drm_gem_object **object_list,
3490 int count)
3491{
3492 drm_i915_private_t *dev_priv = dev->dev_private;
3493 struct drm_i915_gem_object *obj_priv;
3494 DEFINE_WAIT(wait);
3495 int i, ret = 0;
3496
3497 for (;;) {
3498 prepare_to_wait(&dev_priv->pending_flip_queue,
3499 &wait, TASK_INTERRUPTIBLE);
3500 for (i = 0; i < count; i++) {
23010e43 3501 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3502 if (atomic_read(&obj_priv->pending_flip) > 0)
3503 break;
3504 }
3505 if (i == count)
3506 break;
3507
3508 if (!signal_pending(current)) {
3509 mutex_unlock(&dev->struct_mutex);
3510 schedule();
3511 mutex_lock(&dev->struct_mutex);
3512 continue;
3513 }
3514 ret = -ERESTARTSYS;
3515 break;
3516 }
3517 finish_wait(&dev_priv->pending_flip_queue, &wait);
3518
3519 return ret;
3520}
3521
43b27f40 3522
673a394b 3523int
76446cac
JB
3524i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3525 struct drm_file *file_priv,
3526 struct drm_i915_gem_execbuffer2 *args,
3527 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3528{
3529 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3530 struct drm_gem_object **object_list = NULL;
3531 struct drm_gem_object *batch_obj;
b70d11da 3532 struct drm_i915_gem_object *obj_priv;
201361a5 3533 struct drm_clip_rect *cliprects = NULL;
93533c29 3534 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3535 int ret = 0, ret2, i, pinned = 0;
673a394b 3536 uint64_t exec_offset;
40a5f0de 3537 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3538 int pin_tries, flips;
673a394b 3539
852835f3
ZN
3540 struct intel_ring_buffer *ring = NULL;
3541
673a394b
EA
3542#if WATCH_EXEC
3543 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3544 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3545#endif
d1b851fc
ZN
3546 if (args->flags & I915_EXEC_BSD) {
3547 if (!HAS_BSD(dev)) {
3548 DRM_ERROR("execbuf with wrong flag\n");
3549 return -EINVAL;
3550 }
3551 ring = &dev_priv->bsd_ring;
3552 } else {
3553 ring = &dev_priv->render_ring;
3554 }
3555
4f481ed2
EA
3556 if (args->buffer_count < 1) {
3557 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3558 return -EINVAL;
3559 }
c8e0f93a 3560 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3561 if (object_list == NULL) {
3562 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3563 args->buffer_count);
3564 ret = -ENOMEM;
3565 goto pre_mutex_err;
3566 }
673a394b 3567
201361a5 3568 if (args->num_cliprects != 0) {
9a298b2a
EA
3569 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3570 GFP_KERNEL);
a40e8d31
OA
3571 if (cliprects == NULL) {
3572 ret = -ENOMEM;
201361a5 3573 goto pre_mutex_err;
a40e8d31 3574 }
201361a5
EA
3575
3576 ret = copy_from_user(cliprects,
3577 (struct drm_clip_rect __user *)
3578 (uintptr_t) args->cliprects_ptr,
3579 sizeof(*cliprects) * args->num_cliprects);
3580 if (ret != 0) {
3581 DRM_ERROR("copy %d cliprects failed: %d\n",
3582 args->num_cliprects, ret);
3583 goto pre_mutex_err;
3584 }
3585 }
3586
40a5f0de
EA
3587 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3588 &relocs);
3589 if (ret != 0)
3590 goto pre_mutex_err;
3591
673a394b
EA
3592 mutex_lock(&dev->struct_mutex);
3593
3594 i915_verify_inactive(dev, __FILE__, __LINE__);
3595
ba1234d1 3596 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3597 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3598 ret = -EIO;
3599 goto pre_mutex_err;
673a394b
EA
3600 }
3601
3602 if (dev_priv->mm.suspended) {
673a394b 3603 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3604 ret = -EBUSY;
3605 goto pre_mutex_err;
673a394b
EA
3606 }
3607
ac94a962 3608 /* Look up object handles */
6b95a207 3609 flips = 0;
673a394b
EA
3610 for (i = 0; i < args->buffer_count; i++) {
3611 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3612 exec_list[i].handle);
3613 if (object_list[i] == NULL) {
3614 DRM_ERROR("Invalid object handle %d at index %d\n",
3615 exec_list[i].handle, i);
0ce907f8
CW
3616 /* prevent error path from reading uninitialized data */
3617 args->buffer_count = i + 1;
673a394b
EA
3618 ret = -EBADF;
3619 goto err;
3620 }
b70d11da 3621
23010e43 3622 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3623 if (obj_priv->in_execbuffer) {
3624 DRM_ERROR("Object %p appears more than once in object list\n",
3625 object_list[i]);
0ce907f8
CW
3626 /* prevent error path from reading uninitialized data */
3627 args->buffer_count = i + 1;
b70d11da
KH
3628 ret = -EBADF;
3629 goto err;
3630 }
3631 obj_priv->in_execbuffer = true;
6b95a207
KH
3632 flips += atomic_read(&obj_priv->pending_flip);
3633 }
3634
3635 if (flips > 0) {
3636 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3637 args->buffer_count);
3638 if (ret)
3639 goto err;
ac94a962 3640 }
673a394b 3641
ac94a962
KP
3642 /* Pin and relocate */
3643 for (pin_tries = 0; ; pin_tries++) {
3644 ret = 0;
40a5f0de
EA
3645 reloc_index = 0;
3646
ac94a962
KP
3647 for (i = 0; i < args->buffer_count; i++) {
3648 object_list[i]->pending_read_domains = 0;
3649 object_list[i]->pending_write_domain = 0;
3650 ret = i915_gem_object_pin_and_relocate(object_list[i],
3651 file_priv,
40a5f0de
EA
3652 &exec_list[i],
3653 &relocs[reloc_index]);
ac94a962
KP
3654 if (ret)
3655 break;
3656 pinned = i + 1;
40a5f0de 3657 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3658 }
3659 /* success */
3660 if (ret == 0)
3661 break;
3662
3663 /* error other than GTT full, or we've already tried again */
2939e1f5 3664 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3665 if (ret != -ERESTARTSYS) {
3666 unsigned long long total_size = 0;
3d1cc470
CW
3667 int num_fences = 0;
3668 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3669 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3670
07f73f69 3671 total_size += object_list[i]->size;
3d1cc470
CW
3672 num_fences +=
3673 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3674 obj_priv->tiling_mode != I915_TILING_NONE;
3675 }
3676 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3677 pinned+1, args->buffer_count,
3d1cc470
CW
3678 total_size, num_fences,
3679 ret);
07f73f69
CW
3680 DRM_ERROR("%d objects [%d pinned], "
3681 "%d object bytes [%d pinned], "
3682 "%d/%d gtt bytes\n",
3683 atomic_read(&dev->object_count),
3684 atomic_read(&dev->pin_count),
3685 atomic_read(&dev->object_memory),
3686 atomic_read(&dev->pin_memory),
3687 atomic_read(&dev->gtt_memory),
3688 dev->gtt_total);
3689 }
673a394b
EA
3690 goto err;
3691 }
ac94a962
KP
3692
3693 /* unpin all of our buffers */
3694 for (i = 0; i < pinned; i++)
3695 i915_gem_object_unpin(object_list[i]);
b1177636 3696 pinned = 0;
ac94a962
KP
3697
3698 /* evict everyone we can from the aperture */
3699 ret = i915_gem_evict_everything(dev);
07f73f69 3700 if (ret && ret != -ENOSPC)
ac94a962 3701 goto err;
673a394b
EA
3702 }
3703
3704 /* Set the pending read domains for the batch buffer to COMMAND */
3705 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3706 if (batch_obj->pending_write_domain) {
3707 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3708 ret = -EINVAL;
3709 goto err;
3710 }
3711 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3712
83d60795
CW
3713 /* Sanity check the batch buffer, prior to moving objects */
3714 exec_offset = exec_list[args->buffer_count - 1].offset;
3715 ret = i915_gem_check_execbuffer (args, exec_offset);
3716 if (ret != 0) {
3717 DRM_ERROR("execbuf with invalid offset/length\n");
3718 goto err;
3719 }
3720
673a394b
EA
3721 i915_verify_inactive(dev, __FILE__, __LINE__);
3722
646f0f6e
KP
3723 /* Zero the global flush/invalidate flags. These
3724 * will be modified as new domains are computed
3725 * for each object
3726 */
3727 dev->invalidate_domains = 0;
3728 dev->flush_domains = 0;
88f356b7 3729 dev_priv->flush_rings = 0;
646f0f6e 3730
673a394b
EA
3731 for (i = 0; i < args->buffer_count; i++) {
3732 struct drm_gem_object *obj = object_list[i];
673a394b 3733
646f0f6e 3734 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3735 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3736 }
3737
3738 i915_verify_inactive(dev, __FILE__, __LINE__);
3739
646f0f6e
KP
3740 if (dev->invalidate_domains | dev->flush_domains) {
3741#if WATCH_EXEC
3742 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3743 __func__,
3744 dev->invalidate_domains,
3745 dev->flush_domains);
3746#endif
3747 i915_gem_flush(dev,
3748 dev->invalidate_domains,
3749 dev->flush_domains);
88f356b7 3750 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
b962442e 3751 (void)i915_add_request(dev, file_priv,
88f356b7
CW
3752 dev->flush_domains,
3753 &dev_priv->render_ring);
3754 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3755 (void)i915_add_request(dev, file_priv,
3756 dev->flush_domains,
3757 &dev_priv->bsd_ring);
646f0f6e 3758 }
673a394b 3759
efbeed96
EA
3760 for (i = 0; i < args->buffer_count; i++) {
3761 struct drm_gem_object *obj = object_list[i];
23010e43 3762 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3763 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3764
3765 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3766 if (obj->write_domain)
3767 list_move_tail(&obj_priv->gpu_write_list,
3768 &dev_priv->mm.gpu_write_list);
3769 else
3770 list_del_init(&obj_priv->gpu_write_list);
3771
1c5d22f7
CW
3772 trace_i915_gem_object_change_domain(obj,
3773 obj->read_domains,
3774 old_write_domain);
efbeed96
EA
3775 }
3776
673a394b
EA
3777 i915_verify_inactive(dev, __FILE__, __LINE__);
3778
3779#if WATCH_COHERENCY
3780 for (i = 0; i < args->buffer_count; i++) {
3781 i915_gem_object_check_coherency(object_list[i],
3782 exec_list[i].handle);
3783 }
3784#endif
3785
673a394b 3786#if WATCH_EXEC
6911a9b8 3787 i915_gem_dump_object(batch_obj,
673a394b
EA
3788 args->batch_len,
3789 __func__,
3790 ~0);
3791#endif
3792
673a394b 3793 /* Exec the batchbuffer */
852835f3
ZN
3794 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3795 cliprects, exec_offset);
673a394b
EA
3796 if (ret) {
3797 DRM_ERROR("dispatch failed %d\n", ret);
3798 goto err;
3799 }
3800
3801 /*
3802 * Ensure that the commands in the batch buffer are
3803 * finished before the interrupt fires
3804 */
852835f3 3805 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3806
3807 i915_verify_inactive(dev, __FILE__, __LINE__);
3808
3809 /*
3810 * Get a seqno representing the execution of the current buffer,
3811 * which we can wait on. We would like to mitigate these interrupts,
3812 * likely by only creating seqnos occasionally (so that we have
3813 * *some* interrupts representing completion of buffers that we can
3814 * wait on when trying to clear up gtt space).
3815 */
852835f3 3816 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3817 BUG_ON(seqno == 0);
673a394b
EA
3818 for (i = 0; i < args->buffer_count; i++) {
3819 struct drm_gem_object *obj = object_list[i];
852835f3 3820 obj_priv = to_intel_bo(obj);
673a394b 3821
852835f3 3822 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3823#if WATCH_LRU
3824 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3825#endif
3826 }
3827#if WATCH_LRU
3828 i915_dump_lru(dev, __func__);
3829#endif
3830
3831 i915_verify_inactive(dev, __FILE__, __LINE__);
3832
673a394b 3833err:
aad87dff
JL
3834 for (i = 0; i < pinned; i++)
3835 i915_gem_object_unpin(object_list[i]);
3836
b70d11da
KH
3837 for (i = 0; i < args->buffer_count; i++) {
3838 if (object_list[i]) {
23010e43 3839 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3840 obj_priv->in_execbuffer = false;
3841 }
aad87dff 3842 drm_gem_object_unreference(object_list[i]);
b70d11da 3843 }
673a394b 3844
673a394b
EA
3845 mutex_unlock(&dev->struct_mutex);
3846
93533c29 3847pre_mutex_err:
40a5f0de
EA
3848 /* Copy the updated relocations out regardless of current error
3849 * state. Failure to update the relocs would mean that the next
3850 * time userland calls execbuf, it would do so with presumed offset
3851 * state that didn't match the actual object state.
3852 */
3853 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3854 relocs);
3855 if (ret2 != 0) {
3856 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3857
3858 if (ret == 0)
3859 ret = ret2;
3860 }
3861
8e7d2b2c 3862 drm_free_large(object_list);
9a298b2a 3863 kfree(cliprects);
673a394b
EA
3864
3865 return ret;
3866}
3867
76446cac
JB
3868/*
3869 * Legacy execbuffer just creates an exec2 list from the original exec object
3870 * list array and passes it to the real function.
3871 */
3872int
3873i915_gem_execbuffer(struct drm_device *dev, void *data,
3874 struct drm_file *file_priv)
3875{
3876 struct drm_i915_gem_execbuffer *args = data;
3877 struct drm_i915_gem_execbuffer2 exec2;
3878 struct drm_i915_gem_exec_object *exec_list = NULL;
3879 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3880 int ret, i;
3881
3882#if WATCH_EXEC
3883 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3884 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3885#endif
3886
3887 if (args->buffer_count < 1) {
3888 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3889 return -EINVAL;
3890 }
3891
3892 /* Copy in the exec list from userland */
3893 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3894 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3895 if (exec_list == NULL || exec2_list == NULL) {
3896 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3897 args->buffer_count);
3898 drm_free_large(exec_list);
3899 drm_free_large(exec2_list);
3900 return -ENOMEM;
3901 }
3902 ret = copy_from_user(exec_list,
3903 (struct drm_i915_relocation_entry __user *)
3904 (uintptr_t) args->buffers_ptr,
3905 sizeof(*exec_list) * args->buffer_count);
3906 if (ret != 0) {
3907 DRM_ERROR("copy %d exec entries failed %d\n",
3908 args->buffer_count, ret);
3909 drm_free_large(exec_list);
3910 drm_free_large(exec2_list);
3911 return -EFAULT;
3912 }
3913
3914 for (i = 0; i < args->buffer_count; i++) {
3915 exec2_list[i].handle = exec_list[i].handle;
3916 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3917 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3918 exec2_list[i].alignment = exec_list[i].alignment;
3919 exec2_list[i].offset = exec_list[i].offset;
3920 if (!IS_I965G(dev))
3921 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3922 else
3923 exec2_list[i].flags = 0;
3924 }
3925
3926 exec2.buffers_ptr = args->buffers_ptr;
3927 exec2.buffer_count = args->buffer_count;
3928 exec2.batch_start_offset = args->batch_start_offset;
3929 exec2.batch_len = args->batch_len;
3930 exec2.DR1 = args->DR1;
3931 exec2.DR4 = args->DR4;
3932 exec2.num_cliprects = args->num_cliprects;
3933 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3934 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3935
3936 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3937 if (!ret) {
3938 /* Copy the new buffer offsets back to the user's exec list. */
3939 for (i = 0; i < args->buffer_count; i++)
3940 exec_list[i].offset = exec2_list[i].offset;
3941 /* ... and back out to userspace */
3942 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3943 (uintptr_t) args->buffers_ptr,
3944 exec_list,
3945 sizeof(*exec_list) * args->buffer_count);
3946 if (ret) {
3947 ret = -EFAULT;
3948 DRM_ERROR("failed to copy %d exec entries "
3949 "back to user (%d)\n",
3950 args->buffer_count, ret);
3951 }
76446cac
JB
3952 }
3953
3954 drm_free_large(exec_list);
3955 drm_free_large(exec2_list);
3956 return ret;
3957}
3958
3959int
3960i915_gem_execbuffer2(struct drm_device *dev, void *data,
3961 struct drm_file *file_priv)
3962{
3963 struct drm_i915_gem_execbuffer2 *args = data;
3964 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3965 int ret;
3966
3967#if WATCH_EXEC
3968 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3969 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3970#endif
3971
3972 if (args->buffer_count < 1) {
3973 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3974 return -EINVAL;
3975 }
3976
3977 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3978 if (exec2_list == NULL) {
3979 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3980 args->buffer_count);
3981 return -ENOMEM;
3982 }
3983 ret = copy_from_user(exec2_list,
3984 (struct drm_i915_relocation_entry __user *)
3985 (uintptr_t) args->buffers_ptr,
3986 sizeof(*exec2_list) * args->buffer_count);
3987 if (ret != 0) {
3988 DRM_ERROR("copy %d exec entries failed %d\n",
3989 args->buffer_count, ret);
3990 drm_free_large(exec2_list);
3991 return -EFAULT;
3992 }
3993
3994 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3995 if (!ret) {
3996 /* Copy the new buffer offsets back to the user's exec list. */
3997 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3998 (uintptr_t) args->buffers_ptr,
3999 exec2_list,
4000 sizeof(*exec2_list) * args->buffer_count);
4001 if (ret) {
4002 ret = -EFAULT;
4003 DRM_ERROR("failed to copy %d exec entries "
4004 "back to user (%d)\n",
4005 args->buffer_count, ret);
4006 }
4007 }
4008
4009 drm_free_large(exec2_list);
4010 return ret;
4011}
4012
673a394b
EA
4013int
4014i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4015{
4016 struct drm_device *dev = obj->dev;
23010e43 4017 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4018 int ret;
4019
778c3544
DV
4020 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4021
673a394b 4022 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4023
4024 if (obj_priv->gtt_space != NULL) {
4025 if (alignment == 0)
4026 alignment = i915_gem_get_gtt_alignment(obj);
4027 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4028 WARN(obj_priv->pin_count,
4029 "bo is already pinned with incorrect alignment:"
4030 " offset=%x, req.alignment=%x\n",
4031 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4032 ret = i915_gem_object_unbind(obj);
4033 if (ret)
4034 return ret;
4035 }
4036 }
4037
673a394b
EA
4038 if (obj_priv->gtt_space == NULL) {
4039 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4040 if (ret)
673a394b 4041 return ret;
22c344e9 4042 }
76446cac 4043
673a394b
EA
4044 obj_priv->pin_count++;
4045
4046 /* If the object is not active and not pending a flush,
4047 * remove it from the inactive list
4048 */
4049 if (obj_priv->pin_count == 1) {
4050 atomic_inc(&dev->pin_count);
4051 atomic_add(obj->size, &dev->pin_memory);
4052 if (!obj_priv->active &&
bf1a1092 4053 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4054 list_del_init(&obj_priv->list);
4055 }
4056 i915_verify_inactive(dev, __FILE__, __LINE__);
4057
4058 return 0;
4059}
4060
4061void
4062i915_gem_object_unpin(struct drm_gem_object *obj)
4063{
4064 struct drm_device *dev = obj->dev;
4065 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4066 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4067
4068 i915_verify_inactive(dev, __FILE__, __LINE__);
4069 obj_priv->pin_count--;
4070 BUG_ON(obj_priv->pin_count < 0);
4071 BUG_ON(obj_priv->gtt_space == NULL);
4072
4073 /* If the object is no longer pinned, and is
4074 * neither active nor being flushed, then stick it on
4075 * the inactive list
4076 */
4077 if (obj_priv->pin_count == 0) {
4078 if (!obj_priv->active &&
21d509e3 4079 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4080 list_move_tail(&obj_priv->list,
4081 &dev_priv->mm.inactive_list);
4082 atomic_dec(&dev->pin_count);
4083 atomic_sub(obj->size, &dev->pin_memory);
4084 }
4085 i915_verify_inactive(dev, __FILE__, __LINE__);
4086}
4087
4088int
4089i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4090 struct drm_file *file_priv)
4091{
4092 struct drm_i915_gem_pin *args = data;
4093 struct drm_gem_object *obj;
4094 struct drm_i915_gem_object *obj_priv;
4095 int ret;
4096
4097 mutex_lock(&dev->struct_mutex);
4098
4099 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4100 if (obj == NULL) {
4101 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4102 args->handle);
4103 mutex_unlock(&dev->struct_mutex);
4104 return -EBADF;
4105 }
23010e43 4106 obj_priv = to_intel_bo(obj);
673a394b 4107
bb6baf76
CW
4108 if (obj_priv->madv != I915_MADV_WILLNEED) {
4109 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4110 drm_gem_object_unreference(obj);
4111 mutex_unlock(&dev->struct_mutex);
4112 return -EINVAL;
4113 }
4114
79e53945
JB
4115 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4116 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4117 args->handle);
96dec61d 4118 drm_gem_object_unreference(obj);
673a394b 4119 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4120 return -EINVAL;
4121 }
4122
4123 obj_priv->user_pin_count++;
4124 obj_priv->pin_filp = file_priv;
4125 if (obj_priv->user_pin_count == 1) {
4126 ret = i915_gem_object_pin(obj, args->alignment);
4127 if (ret != 0) {
4128 drm_gem_object_unreference(obj);
4129 mutex_unlock(&dev->struct_mutex);
4130 return ret;
4131 }
673a394b
EA
4132 }
4133
4134 /* XXX - flush the CPU caches for pinned objects
4135 * as the X server doesn't manage domains yet
4136 */
e47c68e9 4137 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4138 args->offset = obj_priv->gtt_offset;
4139 drm_gem_object_unreference(obj);
4140 mutex_unlock(&dev->struct_mutex);
4141
4142 return 0;
4143}
4144
4145int
4146i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4147 struct drm_file *file_priv)
4148{
4149 struct drm_i915_gem_pin *args = data;
4150 struct drm_gem_object *obj;
79e53945 4151 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4152
4153 mutex_lock(&dev->struct_mutex);
4154
4155 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4156 if (obj == NULL) {
4157 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4158 args->handle);
4159 mutex_unlock(&dev->struct_mutex);
4160 return -EBADF;
4161 }
4162
23010e43 4163 obj_priv = to_intel_bo(obj);
79e53945
JB
4164 if (obj_priv->pin_filp != file_priv) {
4165 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4166 args->handle);
4167 drm_gem_object_unreference(obj);
4168 mutex_unlock(&dev->struct_mutex);
4169 return -EINVAL;
4170 }
4171 obj_priv->user_pin_count--;
4172 if (obj_priv->user_pin_count == 0) {
4173 obj_priv->pin_filp = NULL;
4174 i915_gem_object_unpin(obj);
4175 }
673a394b
EA
4176
4177 drm_gem_object_unreference(obj);
4178 mutex_unlock(&dev->struct_mutex);
4179 return 0;
4180}
4181
4182int
4183i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4184 struct drm_file *file_priv)
4185{
4186 struct drm_i915_gem_busy *args = data;
4187 struct drm_gem_object *obj;
4188 struct drm_i915_gem_object *obj_priv;
4189
673a394b
EA
4190 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4191 if (obj == NULL) {
4192 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4193 args->handle);
673a394b
EA
4194 return -EBADF;
4195 }
4196
b1ce786c 4197 mutex_lock(&dev->struct_mutex);
d1b851fc 4198
0be555b6
CW
4199 /* Count all active objects as busy, even if they are currently not used
4200 * by the gpu. Users of this interface expect objects to eventually
4201 * become non-busy without any further actions, therefore emit any
4202 * necessary flushes here.
c4de0a5d 4203 */
0be555b6
CW
4204 obj_priv = to_intel_bo(obj);
4205 args->busy = obj_priv->active;
4206 if (args->busy) {
4207 /* Unconditionally flush objects, even when the gpu still uses this
4208 * object. Userspace calling this function indicates that it wants to
4209 * use this buffer rather sooner than later, so issuing the required
4210 * flush earlier is beneficial.
4211 */
4212 if (obj->write_domain) {
4213 i915_gem_flush(dev, 0, obj->write_domain);
4214 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4215 }
4216
4217 /* Update the active list for the hardware's current position.
4218 * Otherwise this only updates on a delayed timer or when irqs
4219 * are actually unmasked, and our working set ends up being
4220 * larger than required.
4221 */
4222 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4223
4224 args->busy = obj_priv->active;
4225 }
673a394b
EA
4226
4227 drm_gem_object_unreference(obj);
4228 mutex_unlock(&dev->struct_mutex);
4229 return 0;
4230}
4231
4232int
4233i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4234 struct drm_file *file_priv)
4235{
4236 return i915_gem_ring_throttle(dev, file_priv);
4237}
4238
3ef94daa
CW
4239int
4240i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4241 struct drm_file *file_priv)
4242{
4243 struct drm_i915_gem_madvise *args = data;
4244 struct drm_gem_object *obj;
4245 struct drm_i915_gem_object *obj_priv;
4246
4247 switch (args->madv) {
4248 case I915_MADV_DONTNEED:
4249 case I915_MADV_WILLNEED:
4250 break;
4251 default:
4252 return -EINVAL;
4253 }
4254
4255 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4256 if (obj == NULL) {
4257 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4258 args->handle);
4259 return -EBADF;
4260 }
4261
4262 mutex_lock(&dev->struct_mutex);
23010e43 4263 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4264
4265 if (obj_priv->pin_count) {
4266 drm_gem_object_unreference(obj);
4267 mutex_unlock(&dev->struct_mutex);
4268
4269 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4270 return -EINVAL;
4271 }
4272
bb6baf76
CW
4273 if (obj_priv->madv != __I915_MADV_PURGED)
4274 obj_priv->madv = args->madv;
3ef94daa 4275
2d7ef395
CW
4276 /* if the object is no longer bound, discard its backing storage */
4277 if (i915_gem_object_is_purgeable(obj_priv) &&
4278 obj_priv->gtt_space == NULL)
4279 i915_gem_object_truncate(obj);
4280
bb6baf76
CW
4281 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4282
3ef94daa
CW
4283 drm_gem_object_unreference(obj);
4284 mutex_unlock(&dev->struct_mutex);
4285
4286 return 0;
4287}
4288
ac52bc56
DV
4289struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4290 size_t size)
4291{
c397b908 4292 struct drm_i915_gem_object *obj;
ac52bc56 4293
c397b908
DV
4294 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4295 if (obj == NULL)
4296 return NULL;
673a394b 4297
c397b908
DV
4298 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4299 kfree(obj);
4300 return NULL;
4301 }
673a394b 4302
c397b908
DV
4303 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4304 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4305
c397b908 4306 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4307 obj->base.driver_private = NULL;
c397b908
DV
4308 obj->fence_reg = I915_FENCE_REG_NONE;
4309 INIT_LIST_HEAD(&obj->list);
4310 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4311 obj->madv = I915_MADV_WILLNEED;
de151cf6 4312
c397b908
DV
4313 trace_i915_gem_object_create(&obj->base);
4314
4315 return &obj->base;
4316}
4317
4318int i915_gem_init_object(struct drm_gem_object *obj)
4319{
4320 BUG();
de151cf6 4321
673a394b
EA
4322 return 0;
4323}
4324
be72615b 4325static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4326{
de151cf6 4327 struct drm_device *dev = obj->dev;
be72615b 4328 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4329 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4330 int ret;
673a394b 4331
be72615b
CW
4332 ret = i915_gem_object_unbind(obj);
4333 if (ret == -ERESTARTSYS) {
4334 list_move(&obj_priv->list,
4335 &dev_priv->mm.deferred_free_list);
4336 return;
4337 }
673a394b 4338
7e616158
CW
4339 if (obj_priv->mmap_offset)
4340 i915_gem_free_mmap_offset(obj);
de151cf6 4341
c397b908
DV
4342 drm_gem_object_release(obj);
4343
9a298b2a 4344 kfree(obj_priv->page_cpu_valid);
280b713b 4345 kfree(obj_priv->bit_17);
c397b908 4346 kfree(obj_priv);
673a394b
EA
4347}
4348
be72615b
CW
4349void i915_gem_free_object(struct drm_gem_object *obj)
4350{
4351 struct drm_device *dev = obj->dev;
4352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4353
4354 trace_i915_gem_object_destroy(obj);
4355
4356 while (obj_priv->pin_count > 0)
4357 i915_gem_object_unpin(obj);
4358
4359 if (obj_priv->phys_obj)
4360 i915_gem_detach_phys_object(dev, obj);
4361
4362 i915_gem_free_object_tail(obj);
4363}
4364
29105ccc
CW
4365int
4366i915_gem_idle(struct drm_device *dev)
4367{
4368 drm_i915_private_t *dev_priv = dev->dev_private;
4369 int ret;
28dfe52a 4370
29105ccc 4371 mutex_lock(&dev->struct_mutex);
1c5d22f7 4372
8187a2b7 4373 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4374 (dev_priv->render_ring.gem_object == NULL) ||
4375 (HAS_BSD(dev) &&
4376 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4377 mutex_unlock(&dev->struct_mutex);
4378 return 0;
28dfe52a
EA
4379 }
4380
29105ccc 4381 ret = i915_gpu_idle(dev);
6dbe2772
KP
4382 if (ret) {
4383 mutex_unlock(&dev->struct_mutex);
673a394b 4384 return ret;
6dbe2772 4385 }
673a394b 4386
29105ccc
CW
4387 /* Under UMS, be paranoid and evict. */
4388 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4389 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4390 if (ret) {
4391 mutex_unlock(&dev->struct_mutex);
4392 return ret;
4393 }
4394 }
4395
4396 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4397 * We need to replace this with a semaphore, or something.
4398 * And not confound mm.suspended!
4399 */
4400 dev_priv->mm.suspended = 1;
4401 del_timer(&dev_priv->hangcheck_timer);
4402
4403 i915_kernel_lost_context(dev);
6dbe2772 4404 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4405
6dbe2772
KP
4406 mutex_unlock(&dev->struct_mutex);
4407
29105ccc
CW
4408 /* Cancel the retire work handler, which should be idle now. */
4409 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4410
673a394b
EA
4411 return 0;
4412}
4413
e552eb70
JB
4414/*
4415 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4416 * over cache flushing.
4417 */
8187a2b7 4418static int
e552eb70
JB
4419i915_gem_init_pipe_control(struct drm_device *dev)
4420{
4421 drm_i915_private_t *dev_priv = dev->dev_private;
4422 struct drm_gem_object *obj;
4423 struct drm_i915_gem_object *obj_priv;
4424 int ret;
4425
34dc4d44 4426 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4427 if (obj == NULL) {
4428 DRM_ERROR("Failed to allocate seqno page\n");
4429 ret = -ENOMEM;
4430 goto err;
4431 }
4432 obj_priv = to_intel_bo(obj);
4433 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4434
4435 ret = i915_gem_object_pin(obj, 4096);
4436 if (ret)
4437 goto err_unref;
4438
4439 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4440 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4441 if (dev_priv->seqno_page == NULL)
4442 goto err_unpin;
4443
4444 dev_priv->seqno_obj = obj;
4445 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4446
4447 return 0;
4448
4449err_unpin:
4450 i915_gem_object_unpin(obj);
4451err_unref:
4452 drm_gem_object_unreference(obj);
4453err:
4454 return ret;
4455}
4456
8187a2b7
ZN
4457
4458static void
e552eb70
JB
4459i915_gem_cleanup_pipe_control(struct drm_device *dev)
4460{
4461 drm_i915_private_t *dev_priv = dev->dev_private;
4462 struct drm_gem_object *obj;
4463 struct drm_i915_gem_object *obj_priv;
4464
4465 obj = dev_priv->seqno_obj;
4466 obj_priv = to_intel_bo(obj);
4467 kunmap(obj_priv->pages[0]);
4468 i915_gem_object_unpin(obj);
4469 drm_gem_object_unreference(obj);
4470 dev_priv->seqno_obj = NULL;
4471
4472 dev_priv->seqno_page = NULL;
673a394b
EA
4473}
4474
8187a2b7
ZN
4475int
4476i915_gem_init_ringbuffer(struct drm_device *dev)
4477{
4478 drm_i915_private_t *dev_priv = dev->dev_private;
4479 int ret;
68f95ba9 4480
8187a2b7 4481 dev_priv->render_ring = render_ring;
68f95ba9 4482
8187a2b7
ZN
4483 if (!I915_NEED_GFX_HWS(dev)) {
4484 dev_priv->render_ring.status_page.page_addr
4485 = dev_priv->status_page_dmah->vaddr;
4486 memset(dev_priv->render_ring.status_page.page_addr,
4487 0, PAGE_SIZE);
4488 }
68f95ba9 4489
8187a2b7
ZN
4490 if (HAS_PIPE_CONTROL(dev)) {
4491 ret = i915_gem_init_pipe_control(dev);
4492 if (ret)
4493 return ret;
4494 }
68f95ba9 4495
8187a2b7 4496 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4497 if (ret)
4498 goto cleanup_pipe_control;
4499
4500 if (HAS_BSD(dev)) {
d1b851fc
ZN
4501 dev_priv->bsd_ring = bsd_ring;
4502 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4503 if (ret)
4504 goto cleanup_render_ring;
d1b851fc 4505 }
68f95ba9 4506
6f392d54
CW
4507 dev_priv->next_seqno = 1;
4508
68f95ba9
CW
4509 return 0;
4510
4511cleanup_render_ring:
4512 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4513cleanup_pipe_control:
4514 if (HAS_PIPE_CONTROL(dev))
4515 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4516 return ret;
4517}
4518
4519void
4520i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4521{
4522 drm_i915_private_t *dev_priv = dev->dev_private;
4523
4524 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4525 if (HAS_BSD(dev))
4526 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4527 if (HAS_PIPE_CONTROL(dev))
4528 i915_gem_cleanup_pipe_control(dev);
4529}
4530
673a394b
EA
4531int
4532i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4533 struct drm_file *file_priv)
4534{
4535 drm_i915_private_t *dev_priv = dev->dev_private;
4536 int ret;
4537
79e53945
JB
4538 if (drm_core_check_feature(dev, DRIVER_MODESET))
4539 return 0;
4540
ba1234d1 4541 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4542 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4543 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4544 }
4545
673a394b 4546 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4547 dev_priv->mm.suspended = 0;
4548
4549 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4550 if (ret != 0) {
4551 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4552 return ret;
d816f6ac 4553 }
9bb2d6f9 4554
5e118f41 4555 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4556 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4557 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4558 spin_unlock(&dev_priv->mm.active_list_lock);
4559
673a394b
EA
4560 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4561 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4562 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4563 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4564 mutex_unlock(&dev->struct_mutex);
dbb19d30 4565
5f35308b
CW
4566 ret = drm_irq_install(dev);
4567 if (ret)
4568 goto cleanup_ringbuffer;
dbb19d30 4569
673a394b 4570 return 0;
5f35308b
CW
4571
4572cleanup_ringbuffer:
4573 mutex_lock(&dev->struct_mutex);
4574 i915_gem_cleanup_ringbuffer(dev);
4575 dev_priv->mm.suspended = 1;
4576 mutex_unlock(&dev->struct_mutex);
4577
4578 return ret;
673a394b
EA
4579}
4580
4581int
4582i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4583 struct drm_file *file_priv)
4584{
79e53945
JB
4585 if (drm_core_check_feature(dev, DRIVER_MODESET))
4586 return 0;
4587
dbb19d30 4588 drm_irq_uninstall(dev);
e6890f6f 4589 return i915_gem_idle(dev);
673a394b
EA
4590}
4591
4592void
4593i915_gem_lastclose(struct drm_device *dev)
4594{
4595 int ret;
673a394b 4596
e806b495
EA
4597 if (drm_core_check_feature(dev, DRIVER_MODESET))
4598 return;
4599
6dbe2772
KP
4600 ret = i915_gem_idle(dev);
4601 if (ret)
4602 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4603}
4604
4605void
4606i915_gem_load(struct drm_device *dev)
4607{
b5aa8a0f 4608 int i;
673a394b
EA
4609 drm_i915_private_t *dev_priv = dev->dev_private;
4610
5e118f41 4611 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4612 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4613 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4614 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4615 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4616 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4617 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4618 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4619 if (HAS_BSD(dev)) {
4620 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4621 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4622 }
007cc8ac
DV
4623 for (i = 0; i < 16; i++)
4624 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4625 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4626 i915_gem_retire_work_handler);
31169714
CW
4627 spin_lock(&shrink_list_lock);
4628 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4629 spin_unlock(&shrink_list_lock);
4630
94400120
DA
4631 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4632 if (IS_GEN3(dev)) {
4633 u32 tmp = I915_READ(MI_ARB_STATE);
4634 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4635 /* arb state is a masked write, so set bit + bit in mask */
4636 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4637 I915_WRITE(MI_ARB_STATE, tmp);
4638 }
4639 }
4640
de151cf6 4641 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4642 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4643 dev_priv->fence_reg_start = 3;
de151cf6 4644
0f973f27 4645 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4646 dev_priv->num_fence_regs = 16;
4647 else
4648 dev_priv->num_fence_regs = 8;
4649
b5aa8a0f
GH
4650 /* Initialize fence registers to zero */
4651 if (IS_I965G(dev)) {
4652 for (i = 0; i < 16; i++)
4653 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4654 } else {
4655 for (i = 0; i < 8; i++)
4656 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4657 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4658 for (i = 0; i < 8; i++)
4659 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4660 }
673a394b 4661 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4662 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4663}
71acb5eb
DA
4664
4665/*
4666 * Create a physically contiguous memory object for this object
4667 * e.g. for cursor + overlay regs
4668 */
4669int i915_gem_init_phys_object(struct drm_device *dev,
4670 int id, int size)
4671{
4672 drm_i915_private_t *dev_priv = dev->dev_private;
4673 struct drm_i915_gem_phys_object *phys_obj;
4674 int ret;
4675
4676 if (dev_priv->mm.phys_objs[id - 1] || !size)
4677 return 0;
4678
9a298b2a 4679 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4680 if (!phys_obj)
4681 return -ENOMEM;
4682
4683 phys_obj->id = id;
4684
e6be8d9d 4685 phys_obj->handle = drm_pci_alloc(dev, size, 0);
71acb5eb
DA
4686 if (!phys_obj->handle) {
4687 ret = -ENOMEM;
4688 goto kfree_obj;
4689 }
4690#ifdef CONFIG_X86
4691 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4692#endif
4693
4694 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4695
4696 return 0;
4697kfree_obj:
9a298b2a 4698 kfree(phys_obj);
71acb5eb
DA
4699 return ret;
4700}
4701
4702void i915_gem_free_phys_object(struct drm_device *dev, int id)
4703{
4704 drm_i915_private_t *dev_priv = dev->dev_private;
4705 struct drm_i915_gem_phys_object *phys_obj;
4706
4707 if (!dev_priv->mm.phys_objs[id - 1])
4708 return;
4709
4710 phys_obj = dev_priv->mm.phys_objs[id - 1];
4711 if (phys_obj->cur_obj) {
4712 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4713 }
4714
4715#ifdef CONFIG_X86
4716 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4717#endif
4718 drm_pci_free(dev, phys_obj->handle);
4719 kfree(phys_obj);
4720 dev_priv->mm.phys_objs[id - 1] = NULL;
4721}
4722
4723void i915_gem_free_all_phys_object(struct drm_device *dev)
4724{
4725 int i;
4726
260883c8 4727 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4728 i915_gem_free_phys_object(dev, i);
4729}
4730
4731void i915_gem_detach_phys_object(struct drm_device *dev,
4732 struct drm_gem_object *obj)
4733{
4734 struct drm_i915_gem_object *obj_priv;
4735 int i;
4736 int ret;
4737 int page_count;
4738
23010e43 4739 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4740 if (!obj_priv->phys_obj)
4741 return;
4742
4bdadb97 4743 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4744 if (ret)
4745 goto out;
4746
4747 page_count = obj->size / PAGE_SIZE;
4748
4749 for (i = 0; i < page_count; i++) {
856fa198 4750 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4751 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4752
4753 memcpy(dst, src, PAGE_SIZE);
4754 kunmap_atomic(dst, KM_USER0);
4755 }
856fa198 4756 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4757 drm_agp_chipset_flush(dev);
d78b47b9
CW
4758
4759 i915_gem_object_put_pages(obj);
71acb5eb
DA
4760out:
4761 obj_priv->phys_obj->cur_obj = NULL;
4762 obj_priv->phys_obj = NULL;
4763}
4764
4765int
4766i915_gem_attach_phys_object(struct drm_device *dev,
4767 struct drm_gem_object *obj, int id)
4768{
4769 drm_i915_private_t *dev_priv = dev->dev_private;
4770 struct drm_i915_gem_object *obj_priv;
4771 int ret = 0;
4772 int page_count;
4773 int i;
4774
4775 if (id > I915_MAX_PHYS_OBJECT)
4776 return -EINVAL;
4777
23010e43 4778 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4779
4780 if (obj_priv->phys_obj) {
4781 if (obj_priv->phys_obj->id == id)
4782 return 0;
4783 i915_gem_detach_phys_object(dev, obj);
4784 }
4785
4786
4787 /* create a new object */
4788 if (!dev_priv->mm.phys_objs[id - 1]) {
4789 ret = i915_gem_init_phys_object(dev, id,
4790 obj->size);
4791 if (ret) {
aeb565df 4792 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4793 goto out;
4794 }
4795 }
4796
4797 /* bind to the object */
4798 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4799 obj_priv->phys_obj->cur_obj = obj;
4800
4bdadb97 4801 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4802 if (ret) {
4803 DRM_ERROR("failed to get page list\n");
4804 goto out;
4805 }
4806
4807 page_count = obj->size / PAGE_SIZE;
4808
4809 for (i = 0; i < page_count; i++) {
856fa198 4810 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4811 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4812
4813 memcpy(dst, src, PAGE_SIZE);
4814 kunmap_atomic(src, KM_USER0);
4815 }
4816
d78b47b9
CW
4817 i915_gem_object_put_pages(obj);
4818
71acb5eb
DA
4819 return 0;
4820out:
4821 return ret;
4822}
4823
4824static int
4825i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4826 struct drm_i915_gem_pwrite *args,
4827 struct drm_file *file_priv)
4828{
23010e43 4829 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4830 void *obj_addr;
4831 int ret;
4832 char __user *user_data;
4833
4834 user_data = (char __user *) (uintptr_t) args->data_ptr;
4835 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4836
44d98a61 4837 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4838 ret = copy_from_user(obj_addr, user_data, args->size);
4839 if (ret)
4840 return -EFAULT;
4841
4842 drm_agp_chipset_flush(dev);
4843 return 0;
4844}
b962442e
EA
4845
4846void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4847{
4848 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4849
4850 /* Clean up our request list when the client is going away, so that
4851 * later retire_requests won't dereference our soon-to-be-gone
4852 * file_priv.
4853 */
4854 mutex_lock(&dev->struct_mutex);
4855 while (!list_empty(&i915_file_priv->mm.request_list))
4856 list_del_init(i915_file_priv->mm.request_list.next);
4857 mutex_unlock(&dev->struct_mutex);
4858}
31169714 4859
1637ef41
CW
4860static int
4861i915_gpu_is_active(struct drm_device *dev)
4862{
4863 drm_i915_private_t *dev_priv = dev->dev_private;
4864 int lists_empty;
4865
4866 spin_lock(&dev_priv->mm.active_list_lock);
4867 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4868 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4869 if (HAS_BSD(dev))
4870 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4871 spin_unlock(&dev_priv->mm.active_list_lock);
4872
4873 return !lists_empty;
4874}
4875
31169714 4876static int
7f8275d0 4877i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4878{
4879 drm_i915_private_t *dev_priv, *next_dev;
4880 struct drm_i915_gem_object *obj_priv, *next_obj;
4881 int cnt = 0;
4882 int would_deadlock = 1;
4883
4884 /* "fast-path" to count number of available objects */
4885 if (nr_to_scan == 0) {
4886 spin_lock(&shrink_list_lock);
4887 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4888 struct drm_device *dev = dev_priv->dev;
4889
4890 if (mutex_trylock(&dev->struct_mutex)) {
4891 list_for_each_entry(obj_priv,
4892 &dev_priv->mm.inactive_list,
4893 list)
4894 cnt++;
4895 mutex_unlock(&dev->struct_mutex);
4896 }
4897 }
4898 spin_unlock(&shrink_list_lock);
4899
4900 return (cnt / 100) * sysctl_vfs_cache_pressure;
4901 }
4902
4903 spin_lock(&shrink_list_lock);
4904
1637ef41 4905rescan:
31169714
CW
4906 /* first scan for clean buffers */
4907 list_for_each_entry_safe(dev_priv, next_dev,
4908 &shrink_list, mm.shrink_list) {
4909 struct drm_device *dev = dev_priv->dev;
4910
4911 if (! mutex_trylock(&dev->struct_mutex))
4912 continue;
4913
4914 spin_unlock(&shrink_list_lock);
b09a1fec 4915 i915_gem_retire_requests(dev);
31169714
CW
4916
4917 list_for_each_entry_safe(obj_priv, next_obj,
4918 &dev_priv->mm.inactive_list,
4919 list) {
4920 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4921 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4922 if (--nr_to_scan <= 0)
4923 break;
4924 }
4925 }
4926
4927 spin_lock(&shrink_list_lock);
4928 mutex_unlock(&dev->struct_mutex);
4929
963b4836
CW
4930 would_deadlock = 0;
4931
31169714
CW
4932 if (nr_to_scan <= 0)
4933 break;
4934 }
4935
4936 /* second pass, evict/count anything still on the inactive list */
4937 list_for_each_entry_safe(dev_priv, next_dev,
4938 &shrink_list, mm.shrink_list) {
4939 struct drm_device *dev = dev_priv->dev;
4940
4941 if (! mutex_trylock(&dev->struct_mutex))
4942 continue;
4943
4944 spin_unlock(&shrink_list_lock);
4945
4946 list_for_each_entry_safe(obj_priv, next_obj,
4947 &dev_priv->mm.inactive_list,
4948 list) {
4949 if (nr_to_scan > 0) {
a8089e84 4950 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4951 nr_to_scan--;
4952 } else
4953 cnt++;
4954 }
4955
4956 spin_lock(&shrink_list_lock);
4957 mutex_unlock(&dev->struct_mutex);
4958
4959 would_deadlock = 0;
4960 }
4961
1637ef41
CW
4962 if (nr_to_scan) {
4963 int active = 0;
4964
4965 /*
4966 * We are desperate for pages, so as a last resort, wait
4967 * for the GPU to finish and discard whatever we can.
4968 * This has a dramatic impact to reduce the number of
4969 * OOM-killer events whilst running the GPU aggressively.
4970 */
4971 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4972 struct drm_device *dev = dev_priv->dev;
4973
4974 if (!mutex_trylock(&dev->struct_mutex))
4975 continue;
4976
4977 spin_unlock(&shrink_list_lock);
4978
4979 if (i915_gpu_is_active(dev)) {
4980 i915_gpu_idle(dev);
4981 active++;
4982 }
4983
4984 spin_lock(&shrink_list_lock);
4985 mutex_unlock(&dev->struct_mutex);
4986 }
4987
4988 if (active)
4989 goto rescan;
4990 }
4991
31169714
CW
4992 spin_unlock(&shrink_list_lock);
4993
4994 if (would_deadlock)
4995 return -1;
4996 else if (cnt > 0)
4997 return (cnt / 100) * sysctl_vfs_cache_pressure;
4998 else
4999 return 0;
5000}
5001
5002static struct shrinker shrinker = {
5003 .shrink = i915_gem_shrink,
5004 .seeks = DEFAULT_SEEKS,
5005};
5006
5007__init void
5008i915_gem_shrinker_init(void)
5009{
5010 register_shrinker(&shrinker);
5011}
5012
5013__exit void
5014i915_gem_shrinker_exit(void)
5015{
5016 unregister_shrinker(&shrinker);
5017}