]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915|intel-gtt: consolidate intel-gtt.h headers
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
0f8c6d7c
CW
38struct change_domains {
39 uint32_t invalidate_domains;
40 uint32_t flush_domains;
41 uint32_t flush_rings;
42};
43
a00b10c3
CW
44static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
45static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
ba3d8d74
DV
46
47static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
48 bool pipelined);
e47c68e9
EA
49static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
50static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
51static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
52 int write);
53static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
54 uint64_t offset,
55 uint64_t size);
56static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
57static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
58 bool interruptible);
de151cf6 59static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
a00b10c3 60 unsigned alignment,
75e9e915 61 bool map_and_fenceable);
de151cf6 62static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
63static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
64 struct drm_i915_gem_pwrite *args,
65 struct drm_file *file_priv);
be72615b 66static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 67
17250b71
CW
68static int i915_gem_inactive_shrink(struct shrinker *shrinker,
69 int nr_to_scan,
70 gfp_t gfp_mask);
71
31169714 72
73aa808f
CW
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
88static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
a00b10c3 89 struct drm_i915_gem_object *obj)
73aa808f
CW
90{
91 dev_priv->mm.gtt_count++;
a00b10c3
CW
92 dev_priv->mm.gtt_memory += obj->gtt_space->size;
93 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 94 dev_priv->mm.mappable_gtt_used +=
a00b10c3
CW
95 min_t(size_t, obj->gtt_space->size,
96 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 97 }
73aa808f
CW
98}
99
100static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
a00b10c3 101 struct drm_i915_gem_object *obj)
73aa808f
CW
102{
103 dev_priv->mm.gtt_count--;
a00b10c3
CW
104 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
105 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 106 dev_priv->mm.mappable_gtt_used -=
a00b10c3
CW
107 min_t(size_t, obj->gtt_space->size,
108 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a
DV
109 }
110}
111
112/**
113 * Update the mappable working set counters. Call _only_ when there is a change
114 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
115 * @mappable: new state the changed mappable flag (either pin_ or fault_).
116 */
117static void
118i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
a00b10c3 119 struct drm_i915_gem_object *obj,
fb7d516a
DV
120 bool mappable)
121{
fb7d516a 122 if (mappable) {
a00b10c3 123 if (obj->pin_mappable && obj->fault_mappable)
fb7d516a
DV
124 /* Combined state was already mappable. */
125 return;
126 dev_priv->mm.gtt_mappable_count++;
a00b10c3 127 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
fb7d516a 128 } else {
a00b10c3 129 if (obj->pin_mappable || obj->fault_mappable)
fb7d516a
DV
130 /* Combined state still mappable. */
131 return;
132 dev_priv->mm.gtt_mappable_count--;
a00b10c3 133 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
fb7d516a 134 }
73aa808f
CW
135}
136
137static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
a00b10c3 138 struct drm_i915_gem_object *obj,
fb7d516a 139 bool mappable)
73aa808f
CW
140{
141 dev_priv->mm.pin_count++;
a00b10c3 142 dev_priv->mm.pin_memory += obj->gtt_space->size;
fb7d516a 143 if (mappable) {
a00b10c3 144 obj->pin_mappable = true;
fb7d516a
DV
145 i915_gem_info_update_mappable(dev_priv, obj, true);
146 }
73aa808f
CW
147}
148
149static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
a00b10c3 150 struct drm_i915_gem_object *obj)
73aa808f
CW
151{
152 dev_priv->mm.pin_count--;
a00b10c3
CW
153 dev_priv->mm.pin_memory -= obj->gtt_space->size;
154 if (obj->pin_mappable) {
155 obj->pin_mappable = false;
fb7d516a
DV
156 i915_gem_info_update_mappable(dev_priv, obj, false);
157 }
73aa808f
CW
158}
159
30dbf0c0
CW
160int
161i915_gem_check_is_wedged(struct drm_device *dev)
162{
163 struct drm_i915_private *dev_priv = dev->dev_private;
164 struct completion *x = &dev_priv->error_completion;
165 unsigned long flags;
166 int ret;
167
168 if (!atomic_read(&dev_priv->mm.wedged))
169 return 0;
170
171 ret = wait_for_completion_interruptible(x);
172 if (ret)
173 return ret;
174
175 /* Success, we reset the GPU! */
176 if (!atomic_read(&dev_priv->mm.wedged))
177 return 0;
178
179 /* GPU is hung, bump the completion count to account for
180 * the token we just consumed so that we never hit zero and
181 * end up waiting upon a subsequent completion event that
182 * will never happen.
183 */
184 spin_lock_irqsave(&x->wait.lock, flags);
185 x->done++;
186 spin_unlock_irqrestore(&x->wait.lock, flags);
187 return -EIO;
188}
189
76c1dec1
CW
190static int i915_mutex_lock_interruptible(struct drm_device *dev)
191{
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 int ret;
194
195 ret = i915_gem_check_is_wedged(dev);
196 if (ret)
197 return ret;
198
199 ret = mutex_lock_interruptible(&dev->struct_mutex);
200 if (ret)
201 return ret;
202
203 if (atomic_read(&dev_priv->mm.wedged)) {
204 mutex_unlock(&dev->struct_mutex);
205 return -EAGAIN;
206 }
207
23bc5982 208 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
209 return 0;
210}
30dbf0c0 211
7d1c4804
CW
212static inline bool
213i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
214{
215 return obj_priv->gtt_space &&
216 !obj_priv->active &&
217 obj_priv->pin_count == 0;
218}
219
73aa808f
CW
220int i915_gem_do_init(struct drm_device *dev,
221 unsigned long start,
53984635 222 unsigned long mappable_end,
79e53945 223 unsigned long end)
673a394b
EA
224{
225 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 226
79e53945
JB
227 if (start >= end ||
228 (start & (PAGE_SIZE - 1)) != 0 ||
229 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
230 return -EINVAL;
231 }
232
79e53945
JB
233 drm_mm_init(&dev_priv->mm.gtt_space, start,
234 end - start);
673a394b 235
73aa808f 236 dev_priv->mm.gtt_total = end - start;
fb7d516a 237 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 238 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
239
240 return 0;
241}
673a394b 242
79e53945
JB
243int
244i915_gem_init_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file_priv)
246{
247 struct drm_i915_gem_init *args = data;
248 int ret;
249
250 mutex_lock(&dev->struct_mutex);
53984635 251 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
252 mutex_unlock(&dev->struct_mutex);
253
79e53945 254 return ret;
673a394b
EA
255}
256
5a125c3c
EA
257int
258i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
259 struct drm_file *file_priv)
260{
73aa808f 261 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 262 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
263
264 if (!(dev->driver->driver_features & DRIVER_GEM))
265 return -ENODEV;
266
73aa808f
CW
267 mutex_lock(&dev->struct_mutex);
268 args->aper_size = dev_priv->mm.gtt_total;
269 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
270 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
271
272 return 0;
273}
274
673a394b
EA
275
276/**
277 * Creates a new mm object and returns a handle to it.
278 */
279int
280i915_gem_create_ioctl(struct drm_device *dev, void *data,
281 struct drm_file *file_priv)
282{
283 struct drm_i915_gem_create *args = data;
284 struct drm_gem_object *obj;
a1a2d1d3
PP
285 int ret;
286 u32 handle;
673a394b
EA
287
288 args->size = roundup(args->size, PAGE_SIZE);
289
290 /* Allocate the new object */
ac52bc56 291 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
292 if (obj == NULL)
293 return -ENOMEM;
294
295 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 296 if (ret) {
202f2fef
CW
297 drm_gem_object_release(obj);
298 i915_gem_info_remove_obj(dev->dev_private, obj->size);
299 kfree(obj);
673a394b 300 return ret;
1dfd9754 301 }
673a394b 302
202f2fef
CW
303 /* drop reference from allocate - handle holds it now */
304 drm_gem_object_unreference(obj);
305 trace_i915_gem_object_create(obj);
306
1dfd9754 307 args->handle = handle;
673a394b
EA
308 return 0;
309}
310
280b713b
EA
311static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
312{
313 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 314 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
315
316 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
317 obj_priv->tiling_mode != I915_TILING_NONE;
318}
319
99a03df5 320static inline void
40123c1f
EA
321slow_shmem_copy(struct page *dst_page,
322 int dst_offset,
323 struct page *src_page,
324 int src_offset,
325 int length)
326{
327 char *dst_vaddr, *src_vaddr;
328
99a03df5
CW
329 dst_vaddr = kmap(dst_page);
330 src_vaddr = kmap(src_page);
40123c1f
EA
331
332 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
333
99a03df5
CW
334 kunmap(src_page);
335 kunmap(dst_page);
40123c1f
EA
336}
337
99a03df5 338static inline void
280b713b
EA
339slow_shmem_bit17_copy(struct page *gpu_page,
340 int gpu_offset,
341 struct page *cpu_page,
342 int cpu_offset,
343 int length,
344 int is_read)
345{
346 char *gpu_vaddr, *cpu_vaddr;
347
348 /* Use the unswizzled path if this page isn't affected. */
349 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
350 if (is_read)
351 return slow_shmem_copy(cpu_page, cpu_offset,
352 gpu_page, gpu_offset, length);
353 else
354 return slow_shmem_copy(gpu_page, gpu_offset,
355 cpu_page, cpu_offset, length);
356 }
357
99a03df5
CW
358 gpu_vaddr = kmap(gpu_page);
359 cpu_vaddr = kmap(cpu_page);
280b713b
EA
360
361 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
362 * XORing with the other bits (A9 for Y, A9 and A10 for X)
363 */
364 while (length > 0) {
365 int cacheline_end = ALIGN(gpu_offset + 1, 64);
366 int this_length = min(cacheline_end - gpu_offset, length);
367 int swizzled_gpu_offset = gpu_offset ^ 64;
368
369 if (is_read) {
370 memcpy(cpu_vaddr + cpu_offset,
371 gpu_vaddr + swizzled_gpu_offset,
372 this_length);
373 } else {
374 memcpy(gpu_vaddr + swizzled_gpu_offset,
375 cpu_vaddr + cpu_offset,
376 this_length);
377 }
378 cpu_offset += this_length;
379 gpu_offset += this_length;
380 length -= this_length;
381 }
382
99a03df5
CW
383 kunmap(cpu_page);
384 kunmap(gpu_page);
280b713b
EA
385}
386
eb01459f
EA
387/**
388 * This is the fast shmem pread path, which attempts to copy_from_user directly
389 * from the backing pages of the object to the user's address space. On a
390 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
391 */
392static int
393i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
394 struct drm_i915_gem_pread *args,
395 struct drm_file *file_priv)
396{
23010e43 397 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e5281ccd 398 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
eb01459f 399 ssize_t remain;
e5281ccd 400 loff_t offset;
eb01459f
EA
401 char __user *user_data;
402 int page_offset, page_length;
eb01459f
EA
403
404 user_data = (char __user *) (uintptr_t) args->data_ptr;
405 remain = args->size;
406
23010e43 407 obj_priv = to_intel_bo(obj);
eb01459f
EA
408 offset = args->offset;
409
410 while (remain > 0) {
e5281ccd
CW
411 struct page *page;
412 char *vaddr;
413 int ret;
414
eb01459f
EA
415 /* Operation in this page
416 *
eb01459f
EA
417 * page_offset = offset within page
418 * page_length = bytes to copy for this page
419 */
eb01459f
EA
420 page_offset = offset & (PAGE_SIZE-1);
421 page_length = remain;
422 if ((page_offset + remain) > PAGE_SIZE)
423 page_length = PAGE_SIZE - page_offset;
424
e5281ccd
CW
425 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
426 GFP_HIGHUSER | __GFP_RECLAIMABLE);
427 if (IS_ERR(page))
428 return PTR_ERR(page);
429
430 vaddr = kmap_atomic(page);
431 ret = __copy_to_user_inatomic(user_data,
432 vaddr + page_offset,
433 page_length);
434 kunmap_atomic(vaddr);
435
436 mark_page_accessed(page);
437 page_cache_release(page);
438 if (ret)
4f27b75d 439 return -EFAULT;
eb01459f
EA
440
441 remain -= page_length;
442 user_data += page_length;
443 offset += page_length;
444 }
445
4f27b75d 446 return 0;
eb01459f
EA
447}
448
449/**
450 * This is the fallback shmem pread path, which allocates temporary storage
451 * in kernel space to copy_to_user into outside of the struct_mutex, so we
452 * can copy out of the object's backing pages while holding the struct mutex
453 * and not take page faults.
454 */
455static int
456i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
457 struct drm_i915_gem_pread *args,
458 struct drm_file *file_priv)
459{
e5281ccd 460 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
462 struct mm_struct *mm = current->mm;
463 struct page **user_pages;
464 ssize_t remain;
465 loff_t offset, pinned_pages, i;
466 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
467 int shmem_page_offset;
468 int data_page_index, data_page_offset;
eb01459f
EA
469 int page_length;
470 int ret;
471 uint64_t data_ptr = args->data_ptr;
280b713b 472 int do_bit17_swizzling;
eb01459f
EA
473
474 remain = args->size;
475
476 /* Pin the user pages containing the data. We can't fault while
477 * holding the struct mutex, yet we want to hold it while
478 * dereferencing the user data.
479 */
480 first_data_page = data_ptr / PAGE_SIZE;
481 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
482 num_pages = last_data_page - first_data_page + 1;
483
4f27b75d 484 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
485 if (user_pages == NULL)
486 return -ENOMEM;
487
4f27b75d 488 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
489 down_read(&mm->mmap_sem);
490 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 491 num_pages, 1, 0, user_pages, NULL);
eb01459f 492 up_read(&mm->mmap_sem);
4f27b75d 493 mutex_lock(&dev->struct_mutex);
eb01459f
EA
494 if (pinned_pages < num_pages) {
495 ret = -EFAULT;
4f27b75d 496 goto out;
eb01459f
EA
497 }
498
4f27b75d
CW
499 ret = i915_gem_object_set_cpu_read_domain_range(obj,
500 args->offset,
501 args->size);
07f73f69 502 if (ret)
4f27b75d 503 goto out;
eb01459f 504
4f27b75d 505 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 506
23010e43 507 obj_priv = to_intel_bo(obj);
eb01459f
EA
508 offset = args->offset;
509
510 while (remain > 0) {
e5281ccd
CW
511 struct page *page;
512
eb01459f
EA
513 /* Operation in this page
514 *
eb01459f
EA
515 * shmem_page_offset = offset within page in shmem file
516 * data_page_index = page number in get_user_pages return
517 * data_page_offset = offset with data_page_index page.
518 * page_length = bytes to copy for this page
519 */
eb01459f
EA
520 shmem_page_offset = offset & ~PAGE_MASK;
521 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
522 data_page_offset = data_ptr & ~PAGE_MASK;
523
524 page_length = remain;
525 if ((shmem_page_offset + page_length) > PAGE_SIZE)
526 page_length = PAGE_SIZE - shmem_page_offset;
527 if ((data_page_offset + page_length) > PAGE_SIZE)
528 page_length = PAGE_SIZE - data_page_offset;
529
e5281ccd
CW
530 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
531 GFP_HIGHUSER | __GFP_RECLAIMABLE);
532 if (IS_ERR(page))
533 return PTR_ERR(page);
534
280b713b 535 if (do_bit17_swizzling) {
e5281ccd 536 slow_shmem_bit17_copy(page,
280b713b 537 shmem_page_offset,
99a03df5
CW
538 user_pages[data_page_index],
539 data_page_offset,
540 page_length,
541 1);
542 } else {
543 slow_shmem_copy(user_pages[data_page_index],
544 data_page_offset,
e5281ccd 545 page,
99a03df5
CW
546 shmem_page_offset,
547 page_length);
280b713b 548 }
eb01459f 549
e5281ccd
CW
550 mark_page_accessed(page);
551 page_cache_release(page);
552
eb01459f
EA
553 remain -= page_length;
554 data_ptr += page_length;
555 offset += page_length;
556 }
557
4f27b75d 558out:
eb01459f
EA
559 for (i = 0; i < pinned_pages; i++) {
560 SetPageDirty(user_pages[i]);
e5281ccd 561 mark_page_accessed(user_pages[i]);
eb01459f
EA
562 page_cache_release(user_pages[i]);
563 }
8e7d2b2c 564 drm_free_large(user_pages);
eb01459f
EA
565
566 return ret;
567}
568
673a394b
EA
569/**
570 * Reads data from the object referenced by handle.
571 *
572 * On error, the contents of *data are undefined.
573 */
574int
575i915_gem_pread_ioctl(struct drm_device *dev, void *data,
576 struct drm_file *file_priv)
577{
578 struct drm_i915_gem_pread *args = data;
579 struct drm_gem_object *obj;
580 struct drm_i915_gem_object *obj_priv;
35b62a89 581 int ret = 0;
673a394b 582
51311d0a
CW
583 if (args->size == 0)
584 return 0;
585
586 if (!access_ok(VERIFY_WRITE,
587 (char __user *)(uintptr_t)args->data_ptr,
588 args->size))
589 return -EFAULT;
590
591 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
592 args->size);
593 if (ret)
594 return -EFAULT;
595
4f27b75d 596 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 597 if (ret)
4f27b75d 598 return ret;
673a394b
EA
599
600 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
601 if (obj == NULL) {
602 ret = -ENOENT;
603 goto unlock;
4f27b75d 604 }
23010e43 605 obj_priv = to_intel_bo(obj);
673a394b 606
7dcd2499
CW
607 /* Bounds check source. */
608 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 609 ret = -EINVAL;
35b62a89 610 goto out;
ce9d419d
CW
611 }
612
4f27b75d
CW
613 ret = i915_gem_object_set_cpu_read_domain_range(obj,
614 args->offset,
615 args->size);
616 if (ret)
e5281ccd 617 goto out;
4f27b75d
CW
618
619 ret = -EFAULT;
620 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 621 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
622 if (ret == -EFAULT)
623 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 624
35b62a89 625out:
4f27b75d 626 drm_gem_object_unreference(obj);
1d7cfea1 627unlock:
4f27b75d 628 mutex_unlock(&dev->struct_mutex);
eb01459f 629 return ret;
673a394b
EA
630}
631
0839ccb8
KP
632/* This is the fast write path which cannot handle
633 * page faults in the source data
9b7530cc 634 */
0839ccb8
KP
635
636static inline int
637fast_user_write(struct io_mapping *mapping,
638 loff_t page_base, int page_offset,
639 char __user *user_data,
640 int length)
9b7530cc 641{
9b7530cc 642 char *vaddr_atomic;
0839ccb8 643 unsigned long unwritten;
9b7530cc 644
3e4d3af5 645 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
646 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
647 user_data, length);
3e4d3af5 648 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 649 return unwritten;
0839ccb8
KP
650}
651
652/* Here's the write path which can sleep for
653 * page faults
654 */
655
ab34c226 656static inline void
3de09aa3
EA
657slow_kernel_write(struct io_mapping *mapping,
658 loff_t gtt_base, int gtt_offset,
659 struct page *user_page, int user_offset,
660 int length)
0839ccb8 661{
ab34c226
CW
662 char __iomem *dst_vaddr;
663 char *src_vaddr;
0839ccb8 664
ab34c226
CW
665 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
666 src_vaddr = kmap(user_page);
667
668 memcpy_toio(dst_vaddr + gtt_offset,
669 src_vaddr + user_offset,
670 length);
671
672 kunmap(user_page);
673 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
674}
675
3de09aa3
EA
676/**
677 * This is the fast pwrite path, where we copy the data directly from the
678 * user into the GTT, uncached.
679 */
673a394b 680static int
3de09aa3
EA
681i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
682 struct drm_i915_gem_pwrite *args,
683 struct drm_file *file_priv)
673a394b 684{
23010e43 685 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 686 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 687 ssize_t remain;
0839ccb8 688 loff_t offset, page_base;
673a394b 689 char __user *user_data;
0839ccb8 690 int page_offset, page_length;
673a394b
EA
691
692 user_data = (char __user *) (uintptr_t) args->data_ptr;
693 remain = args->size;
673a394b 694
23010e43 695 obj_priv = to_intel_bo(obj);
673a394b 696 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
697
698 while (remain > 0) {
699 /* Operation in this page
700 *
0839ccb8
KP
701 * page_base = page offset within aperture
702 * page_offset = offset within page
703 * page_length = bytes to copy for this page
673a394b 704 */
0839ccb8
KP
705 page_base = (offset & ~(PAGE_SIZE-1));
706 page_offset = offset & (PAGE_SIZE-1);
707 page_length = remain;
708 if ((page_offset + remain) > PAGE_SIZE)
709 page_length = PAGE_SIZE - page_offset;
710
0839ccb8 711 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
712 * source page isn't available. Return the error and we'll
713 * retry in the slow path.
0839ccb8 714 */
fbd5a26d
CW
715 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
716 page_offset, user_data, page_length))
717
718 return -EFAULT;
673a394b 719
0839ccb8
KP
720 remain -= page_length;
721 user_data += page_length;
722 offset += page_length;
673a394b 723 }
673a394b 724
fbd5a26d 725 return 0;
673a394b
EA
726}
727
3de09aa3
EA
728/**
729 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
730 * the memory and maps it using kmap_atomic for copying.
731 *
732 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
733 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
734 */
3043c60c 735static int
3de09aa3
EA
736i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
737 struct drm_i915_gem_pwrite *args,
738 struct drm_file *file_priv)
673a394b 739{
23010e43 740 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
741 drm_i915_private_t *dev_priv = dev->dev_private;
742 ssize_t remain;
743 loff_t gtt_page_base, offset;
744 loff_t first_data_page, last_data_page, num_pages;
745 loff_t pinned_pages, i;
746 struct page **user_pages;
747 struct mm_struct *mm = current->mm;
748 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 749 int ret;
3de09aa3
EA
750 uint64_t data_ptr = args->data_ptr;
751
752 remain = args->size;
753
754 /* Pin the user pages containing the data. We can't fault while
755 * holding the struct mutex, and all of the pwrite implementations
756 * want to hold it while dereferencing the user data.
757 */
758 first_data_page = data_ptr / PAGE_SIZE;
759 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
760 num_pages = last_data_page - first_data_page + 1;
761
fbd5a26d 762 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
763 if (user_pages == NULL)
764 return -ENOMEM;
765
fbd5a26d 766 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
767 down_read(&mm->mmap_sem);
768 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
769 num_pages, 0, 0, user_pages, NULL);
770 up_read(&mm->mmap_sem);
fbd5a26d 771 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
772 if (pinned_pages < num_pages) {
773 ret = -EFAULT;
774 goto out_unpin_pages;
775 }
673a394b 776
3de09aa3
EA
777 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
778 if (ret)
fbd5a26d 779 goto out_unpin_pages;
3de09aa3 780
23010e43 781 obj_priv = to_intel_bo(obj);
3de09aa3
EA
782 offset = obj_priv->gtt_offset + args->offset;
783
784 while (remain > 0) {
785 /* Operation in this page
786 *
787 * gtt_page_base = page offset within aperture
788 * gtt_page_offset = offset within page in aperture
789 * data_page_index = page number in get_user_pages return
790 * data_page_offset = offset with data_page_index page.
791 * page_length = bytes to copy for this page
792 */
793 gtt_page_base = offset & PAGE_MASK;
794 gtt_page_offset = offset & ~PAGE_MASK;
795 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
796 data_page_offset = data_ptr & ~PAGE_MASK;
797
798 page_length = remain;
799 if ((gtt_page_offset + page_length) > PAGE_SIZE)
800 page_length = PAGE_SIZE - gtt_page_offset;
801 if ((data_page_offset + page_length) > PAGE_SIZE)
802 page_length = PAGE_SIZE - data_page_offset;
803
ab34c226
CW
804 slow_kernel_write(dev_priv->mm.gtt_mapping,
805 gtt_page_base, gtt_page_offset,
806 user_pages[data_page_index],
807 data_page_offset,
808 page_length);
3de09aa3
EA
809
810 remain -= page_length;
811 offset += page_length;
812 data_ptr += page_length;
813 }
814
3de09aa3
EA
815out_unpin_pages:
816 for (i = 0; i < pinned_pages; i++)
817 page_cache_release(user_pages[i]);
8e7d2b2c 818 drm_free_large(user_pages);
3de09aa3
EA
819
820 return ret;
821}
822
40123c1f
EA
823/**
824 * This is the fast shmem pwrite path, which attempts to directly
825 * copy_from_user into the kmapped pages backing the object.
826 */
3043c60c 827static int
40123c1f
EA
828i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
829 struct drm_i915_gem_pwrite *args,
830 struct drm_file *file_priv)
673a394b 831{
e5281ccd 832 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 833 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f 834 ssize_t remain;
e5281ccd 835 loff_t offset;
40123c1f
EA
836 char __user *user_data;
837 int page_offset, page_length;
40123c1f
EA
838
839 user_data = (char __user *) (uintptr_t) args->data_ptr;
840 remain = args->size;
673a394b 841
23010e43 842 obj_priv = to_intel_bo(obj);
40123c1f
EA
843 offset = args->offset;
844 obj_priv->dirty = 1;
845
846 while (remain > 0) {
e5281ccd
CW
847 struct page *page;
848 char *vaddr;
849 int ret;
850
40123c1f
EA
851 /* Operation in this page
852 *
40123c1f
EA
853 * page_offset = offset within page
854 * page_length = bytes to copy for this page
855 */
40123c1f
EA
856 page_offset = offset & (PAGE_SIZE-1);
857 page_length = remain;
858 if ((page_offset + remain) > PAGE_SIZE)
859 page_length = PAGE_SIZE - page_offset;
860
e5281ccd
CW
861 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
862 GFP_HIGHUSER | __GFP_RECLAIMABLE);
863 if (IS_ERR(page))
864 return PTR_ERR(page);
865
866 vaddr = kmap_atomic(page, KM_USER0);
867 ret = __copy_from_user_inatomic(vaddr + page_offset,
868 user_data,
869 page_length);
870 kunmap_atomic(vaddr, KM_USER0);
871
872 set_page_dirty(page);
873 mark_page_accessed(page);
874 page_cache_release(page);
875
876 /* If we get a fault while copying data, then (presumably) our
877 * source page isn't available. Return the error and we'll
878 * retry in the slow path.
879 */
880 if (ret)
fbd5a26d 881 return -EFAULT;
40123c1f
EA
882
883 remain -= page_length;
884 user_data += page_length;
885 offset += page_length;
886 }
887
fbd5a26d 888 return 0;
40123c1f
EA
889}
890
891/**
892 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
893 * the memory and maps it using kmap_atomic for copying.
894 *
895 * This avoids taking mmap_sem for faulting on the user's address while the
896 * struct_mutex is held.
897 */
898static int
899i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
900 struct drm_i915_gem_pwrite *args,
901 struct drm_file *file_priv)
902{
e5281ccd 903 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 904 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
905 struct mm_struct *mm = current->mm;
906 struct page **user_pages;
907 ssize_t remain;
908 loff_t offset, pinned_pages, i;
909 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 910 int shmem_page_offset;
40123c1f
EA
911 int data_page_index, data_page_offset;
912 int page_length;
913 int ret;
914 uint64_t data_ptr = args->data_ptr;
280b713b 915 int do_bit17_swizzling;
40123c1f
EA
916
917 remain = args->size;
918
919 /* Pin the user pages containing the data. We can't fault while
920 * holding the struct mutex, and all of the pwrite implementations
921 * want to hold it while dereferencing the user data.
922 */
923 first_data_page = data_ptr / PAGE_SIZE;
924 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
925 num_pages = last_data_page - first_data_page + 1;
926
4f27b75d 927 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
928 if (user_pages == NULL)
929 return -ENOMEM;
930
fbd5a26d 931 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
932 down_read(&mm->mmap_sem);
933 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
934 num_pages, 0, 0, user_pages, NULL);
935 up_read(&mm->mmap_sem);
fbd5a26d 936 mutex_lock(&dev->struct_mutex);
40123c1f
EA
937 if (pinned_pages < num_pages) {
938 ret = -EFAULT;
fbd5a26d 939 goto out;
673a394b
EA
940 }
941
fbd5a26d 942 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 943 if (ret)
fbd5a26d 944 goto out;
40123c1f 945
fbd5a26d 946 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 947
23010e43 948 obj_priv = to_intel_bo(obj);
673a394b 949 offset = args->offset;
40123c1f 950 obj_priv->dirty = 1;
673a394b 951
40123c1f 952 while (remain > 0) {
e5281ccd
CW
953 struct page *page;
954
40123c1f
EA
955 /* Operation in this page
956 *
40123c1f
EA
957 * shmem_page_offset = offset within page in shmem file
958 * data_page_index = page number in get_user_pages return
959 * data_page_offset = offset with data_page_index page.
960 * page_length = bytes to copy for this page
961 */
40123c1f
EA
962 shmem_page_offset = offset & ~PAGE_MASK;
963 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
964 data_page_offset = data_ptr & ~PAGE_MASK;
965
966 page_length = remain;
967 if ((shmem_page_offset + page_length) > PAGE_SIZE)
968 page_length = PAGE_SIZE - shmem_page_offset;
969 if ((data_page_offset + page_length) > PAGE_SIZE)
970 page_length = PAGE_SIZE - data_page_offset;
971
e5281ccd
CW
972 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
973 GFP_HIGHUSER | __GFP_RECLAIMABLE);
974 if (IS_ERR(page)) {
975 ret = PTR_ERR(page);
976 goto out;
977 }
978
280b713b 979 if (do_bit17_swizzling) {
e5281ccd 980 slow_shmem_bit17_copy(page,
280b713b
EA
981 shmem_page_offset,
982 user_pages[data_page_index],
983 data_page_offset,
99a03df5
CW
984 page_length,
985 0);
986 } else {
e5281ccd 987 slow_shmem_copy(page,
99a03df5
CW
988 shmem_page_offset,
989 user_pages[data_page_index],
990 data_page_offset,
991 page_length);
280b713b 992 }
40123c1f 993
e5281ccd
CW
994 set_page_dirty(page);
995 mark_page_accessed(page);
996 page_cache_release(page);
997
40123c1f
EA
998 remain -= page_length;
999 data_ptr += page_length;
1000 offset += page_length;
673a394b
EA
1001 }
1002
fbd5a26d 1003out:
40123c1f
EA
1004 for (i = 0; i < pinned_pages; i++)
1005 page_cache_release(user_pages[i]);
8e7d2b2c 1006 drm_free_large(user_pages);
673a394b 1007
40123c1f 1008 return ret;
673a394b
EA
1009}
1010
1011/**
1012 * Writes data to the object referenced by handle.
1013 *
1014 * On error, the contents of the buffer that were to be modified are undefined.
1015 */
1016int
1017i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1018 struct drm_file *file)
673a394b
EA
1019{
1020 struct drm_i915_gem_pwrite *args = data;
1021 struct drm_gem_object *obj;
1022 struct drm_i915_gem_object *obj_priv;
51311d0a
CW
1023 int ret;
1024
1025 if (args->size == 0)
1026 return 0;
1027
1028 if (!access_ok(VERIFY_READ,
1029 (char __user *)(uintptr_t)args->data_ptr,
1030 args->size))
1031 return -EFAULT;
1032
1033 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1034 args->size);
1035 if (ret)
1036 return -EFAULT;
673a394b 1037
fbd5a26d 1038 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1039 if (ret)
fbd5a26d 1040 return ret;
1d7cfea1
CW
1041
1042 obj = drm_gem_object_lookup(dev, file, args->handle);
1043 if (obj == NULL) {
1044 ret = -ENOENT;
1045 goto unlock;
fbd5a26d 1046 }
23010e43 1047 obj_priv = to_intel_bo(obj);
673a394b 1048
7dcd2499
CW
1049 /* Bounds check destination. */
1050 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1051 ret = -EINVAL;
35b62a89 1052 goto out;
ce9d419d
CW
1053 }
1054
673a394b
EA
1055 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1056 * it would end up going through the fenced access, and we'll get
1057 * different detiling behavior between reading and writing.
1058 * pread/pwrite currently are reading and writing from the CPU
1059 * perspective, requiring manual detiling by the client.
1060 */
71acb5eb 1061 if (obj_priv->phys_obj)
fbd5a26d 1062 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1063 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1064 obj_priv->gtt_space &&
9b8c4a0b 1065 obj->write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1066 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1067 if (ret)
1068 goto out;
1069
1070 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1071 if (ret)
1072 goto out_unpin;
1073
1074 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1075 if (ret == -EFAULT)
1076 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1077
1078out_unpin:
1079 i915_gem_object_unpin(obj);
40123c1f 1080 } else {
fbd5a26d
CW
1081 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1082 if (ret)
e5281ccd 1083 goto out;
673a394b 1084
fbd5a26d
CW
1085 ret = -EFAULT;
1086 if (!i915_gem_object_needs_bit17_swizzle(obj))
1087 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1088 if (ret == -EFAULT)
1089 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1090 }
673a394b 1091
35b62a89 1092out:
fbd5a26d 1093 drm_gem_object_unreference(obj);
1d7cfea1 1094unlock:
fbd5a26d 1095 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1096 return ret;
1097}
1098
1099/**
2ef7eeaa
EA
1100 * Called when user space prepares to use an object with the CPU, either
1101 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1102 */
1103int
1104i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1105 struct drm_file *file_priv)
1106{
a09ba7fa 1107 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1108 struct drm_i915_gem_set_domain *args = data;
1109 struct drm_gem_object *obj;
652c393a 1110 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1111 uint32_t read_domains = args->read_domains;
1112 uint32_t write_domain = args->write_domain;
673a394b
EA
1113 int ret;
1114
1115 if (!(dev->driver->driver_features & DRIVER_GEM))
1116 return -ENODEV;
1117
2ef7eeaa 1118 /* Only handle setting domains to types used by the CPU. */
21d509e3 1119 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1120 return -EINVAL;
1121
21d509e3 1122 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1123 return -EINVAL;
1124
1125 /* Having something in the write domain implies it's in the read
1126 * domain, and only that read domain. Enforce that in the request.
1127 */
1128 if (write_domain != 0 && read_domains != write_domain)
1129 return -EINVAL;
1130
76c1dec1 1131 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1132 if (ret)
76c1dec1 1133 return ret;
1d7cfea1 1134
673a394b 1135 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1136 if (obj == NULL) {
1137 ret = -ENOENT;
1138 goto unlock;
76c1dec1 1139 }
23010e43 1140 obj_priv = to_intel_bo(obj);
673a394b 1141
652c393a
JB
1142 intel_mark_busy(dev, obj);
1143
2ef7eeaa
EA
1144 if (read_domains & I915_GEM_DOMAIN_GTT) {
1145 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1146
a09ba7fa
EA
1147 /* Update the LRU on the fence for the CPU access that's
1148 * about to occur.
1149 */
1150 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1151 struct drm_i915_fence_reg *reg =
1152 &dev_priv->fence_regs[obj_priv->fence_reg];
1153 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1154 &dev_priv->mm.fence_list);
1155 }
1156
02354392
EA
1157 /* Silently promote "you're not bound, there was nothing to do"
1158 * to success, since the client was just asking us to
1159 * make sure everything was done.
1160 */
1161 if (ret == -EINVAL)
1162 ret = 0;
2ef7eeaa 1163 } else {
e47c68e9 1164 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1165 }
1166
7d1c4804
CW
1167 /* Maintain LRU order of "inactive" objects */
1168 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1169 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1170
673a394b 1171 drm_gem_object_unreference(obj);
1d7cfea1 1172unlock:
673a394b
EA
1173 mutex_unlock(&dev->struct_mutex);
1174 return ret;
1175}
1176
1177/**
1178 * Called when user space has done writes to this buffer
1179 */
1180int
1181i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file_priv)
1183{
1184 struct drm_i915_gem_sw_finish *args = data;
1185 struct drm_gem_object *obj;
673a394b
EA
1186 int ret = 0;
1187
1188 if (!(dev->driver->driver_features & DRIVER_GEM))
1189 return -ENODEV;
1190
76c1dec1 1191 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1192 if (ret)
76c1dec1 1193 return ret;
1d7cfea1 1194
673a394b
EA
1195 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1196 if (obj == NULL) {
1d7cfea1
CW
1197 ret = -ENOENT;
1198 goto unlock;
673a394b
EA
1199 }
1200
673a394b 1201 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1202 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1203 i915_gem_object_flush_cpu_write_domain(obj);
1204
673a394b 1205 drm_gem_object_unreference(obj);
1d7cfea1 1206unlock:
673a394b
EA
1207 mutex_unlock(&dev->struct_mutex);
1208 return ret;
1209}
1210
1211/**
1212 * Maps the contents of an object, returning the address it is mapped
1213 * into.
1214 *
1215 * While the mapping holds a reference on the contents of the object, it doesn't
1216 * imply a ref on the object itself.
1217 */
1218int
1219i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1220 struct drm_file *file_priv)
1221{
da761a6e 1222 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1223 struct drm_i915_gem_mmap *args = data;
1224 struct drm_gem_object *obj;
1225 loff_t offset;
1226 unsigned long addr;
1227
1228 if (!(dev->driver->driver_features & DRIVER_GEM))
1229 return -ENODEV;
1230
1231 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1232 if (obj == NULL)
bf79cb91 1233 return -ENOENT;
673a394b 1234
da761a6e
CW
1235 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1236 drm_gem_object_unreference_unlocked(obj);
1237 return -E2BIG;
1238 }
1239
673a394b
EA
1240 offset = args->offset;
1241
1242 down_write(&current->mm->mmap_sem);
1243 addr = do_mmap(obj->filp, 0, args->size,
1244 PROT_READ | PROT_WRITE, MAP_SHARED,
1245 args->offset);
1246 up_write(&current->mm->mmap_sem);
bc9025bd 1247 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1248 if (IS_ERR((void *)addr))
1249 return addr;
1250
1251 args->addr_ptr = (uint64_t) addr;
1252
1253 return 0;
1254}
1255
de151cf6
JB
1256/**
1257 * i915_gem_fault - fault a page into the GTT
1258 * vma: VMA in question
1259 * vmf: fault info
1260 *
1261 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1262 * from userspace. The fault handler takes care of binding the object to
1263 * the GTT (if needed), allocating and programming a fence register (again,
1264 * only if needed based on whether the old reg is still valid or the object
1265 * is tiled) and inserting a new PTE into the faulting process.
1266 *
1267 * Note that the faulting process may involve evicting existing objects
1268 * from the GTT and/or fence registers to make room. So performance may
1269 * suffer if the GTT working set is large or there are few fence registers
1270 * left.
1271 */
1272int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1273{
1274 struct drm_gem_object *obj = vma->vm_private_data;
1275 struct drm_device *dev = obj->dev;
7d1c4804 1276 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1277 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1278 pgoff_t page_offset;
1279 unsigned long pfn;
1280 int ret = 0;
0f973f27 1281 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1282
1283 /* We don't use vmf->pgoff since that has the fake offset */
1284 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1285 PAGE_SHIFT;
1286
1287 /* Now bind it into the GTT if needed */
1288 mutex_lock(&dev->struct_mutex);
fb7d516a 1289 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
a00b10c3
CW
1290
1291 if (obj_priv->gtt_space) {
75e9e915 1292 if (!obj_priv->map_and_fenceable) {
a00b10c3
CW
1293 ret = i915_gem_object_unbind(obj);
1294 if (ret)
1295 goto unlock;
1296 }
1297 }
16e809ac 1298
de151cf6 1299 if (!obj_priv->gtt_space) {
75e9e915 1300 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1301 if (ret)
1302 goto unlock;
de151cf6
JB
1303 }
1304
4a684a41
CW
1305 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1306 if (ret)
1307 goto unlock;
1308
fb7d516a
DV
1309 if (!obj_priv->fault_mappable) {
1310 obj_priv->fault_mappable = true;
a00b10c3 1311 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
fb7d516a
DV
1312 }
1313
de151cf6 1314 /* Need a new fence register? */
a09ba7fa 1315 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1316 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1317 if (ret)
1318 goto unlock;
d9ddcb96 1319 }
de151cf6 1320
7d1c4804 1321 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1322 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1323
de151cf6
JB
1324 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1325 page_offset;
1326
1327 /* Finally, remap it using the new GTT offset */
1328 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1329unlock:
de151cf6
JB
1330 mutex_unlock(&dev->struct_mutex);
1331
1332 switch (ret) {
045e769a
CW
1333 case -EAGAIN:
1334 set_need_resched();
c715089f
CW
1335 case 0:
1336 case -ERESTARTSYS:
1337 return VM_FAULT_NOPAGE;
de151cf6 1338 case -ENOMEM:
de151cf6 1339 return VM_FAULT_OOM;
de151cf6 1340 default:
c715089f 1341 return VM_FAULT_SIGBUS;
de151cf6
JB
1342 }
1343}
1344
1345/**
1346 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1347 * @obj: obj in question
1348 *
1349 * GEM memory mapping works by handing back to userspace a fake mmap offset
1350 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1351 * up the object based on the offset and sets up the various memory mapping
1352 * structures.
1353 *
1354 * This routine allocates and attaches a fake offset for @obj.
1355 */
1356static int
1357i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1358{
1359 struct drm_device *dev = obj->dev;
1360 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1361 struct drm_map_list *list;
f77d390c 1362 struct drm_local_map *map;
de151cf6
JB
1363 int ret = 0;
1364
1365 /* Set the object up for mmap'ing */
1366 list = &obj->map_list;
9a298b2a 1367 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1368 if (!list->map)
1369 return -ENOMEM;
1370
1371 map = list->map;
1372 map->type = _DRM_GEM;
1373 map->size = obj->size;
1374 map->handle = obj;
1375
1376 /* Get a DRM GEM mmap offset allocated... */
1377 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1378 obj->size / PAGE_SIZE, 0, 0);
1379 if (!list->file_offset_node) {
1380 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1381 ret = -ENOSPC;
de151cf6
JB
1382 goto out_free_list;
1383 }
1384
1385 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1386 obj->size / PAGE_SIZE, 0);
1387 if (!list->file_offset_node) {
1388 ret = -ENOMEM;
1389 goto out_free_list;
1390 }
1391
1392 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1393 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1394 if (ret) {
de151cf6
JB
1395 DRM_ERROR("failed to add to map hash\n");
1396 goto out_free_mm;
1397 }
1398
de151cf6
JB
1399 return 0;
1400
1401out_free_mm:
1402 drm_mm_put_block(list->file_offset_node);
1403out_free_list:
9a298b2a 1404 kfree(list->map);
39a01d1f 1405 list->map = NULL;
de151cf6
JB
1406
1407 return ret;
1408}
1409
901782b2
CW
1410/**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
af901ca1 1414 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
d05ca301 1424void
901782b2
CW
1425i915_gem_release_mmap(struct drm_gem_object *obj)
1426{
1427 struct drm_device *dev = obj->dev;
fb7d516a 1428 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1429 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2 1430
39a01d1f 1431 if (unlikely(obj->map_list.map && dev->dev_mapping))
901782b2 1432 unmap_mapping_range(dev->dev_mapping,
39a01d1f
CW
1433 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1434 obj->size, 1);
fb7d516a
DV
1435
1436 if (obj_priv->fault_mappable) {
1437 obj_priv->fault_mappable = false;
a00b10c3 1438 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
fb7d516a 1439 }
901782b2
CW
1440}
1441
ab00b3e5
JB
1442static void
1443i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1444{
1445 struct drm_device *dev = obj->dev;
ab00b3e5 1446 struct drm_gem_mm *mm = dev->mm_private;
39a01d1f 1447 struct drm_map_list *list = &obj->map_list;
ab00b3e5 1448
ab00b3e5 1449 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1450 drm_mm_put_block(list->file_offset_node);
1451 kfree(list->map);
1452 list->map = NULL;
ab00b3e5
JB
1453}
1454
de151cf6
JB
1455/**
1456 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1457 * @obj: object to check
1458 *
1459 * Return the required GTT alignment for an object, taking into account
5e783301 1460 * potential fence register mapping.
de151cf6
JB
1461 */
1462static uint32_t
a00b10c3 1463i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
de151cf6 1464{
a00b10c3 1465 struct drm_device *dev = obj_priv->base.dev;
de151cf6
JB
1466
1467 /*
1468 * Minimum alignment is 4k (GTT page size), but might be greater
1469 * if a fence register is needed for the object.
1470 */
a00b10c3
CW
1471 if (INTEL_INFO(dev)->gen >= 4 ||
1472 obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1473 return 4096;
1474
a00b10c3
CW
1475 /*
1476 * Previous chips need to be aligned to the size of the smallest
1477 * fence register that can contain the object.
1478 */
1479 return i915_gem_get_gtt_size(obj_priv);
1480}
1481
5e783301
DV
1482/**
1483 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1484 * unfenced object
1485 * @obj: object to check
1486 *
1487 * Return the required GTT alignment for an object, only taking into account
1488 * unfenced tiled surface requirements.
1489 */
1490static uint32_t
1491i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1492{
1493 struct drm_device *dev = obj_priv->base.dev;
1494 int tile_height;
1495
1496 /*
1497 * Minimum alignment is 4k (GTT page size) for sane hw.
1498 */
1499 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1500 obj_priv->tiling_mode == I915_TILING_NONE)
1501 return 4096;
1502
1503 /*
1504 * Older chips need unfenced tiled buffers to be aligned to the left
1505 * edge of an even tile row (where tile rows are counted as if the bo is
1506 * placed in a fenced gtt region).
1507 */
1508 if (IS_GEN2(dev) ||
1509 (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1510 tile_height = 32;
1511 else
1512 tile_height = 8;
1513
1514 return tile_height * obj_priv->stride * 2;
1515}
1516
a00b10c3
CW
1517static uint32_t
1518i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1519{
1520 struct drm_device *dev = obj_priv->base.dev;
1521 uint32_t size;
1522
1523 /*
1524 * Minimum alignment is 4k (GTT page size), but might be greater
1525 * if a fence register is needed for the object.
1526 */
1527 if (INTEL_INFO(dev)->gen >= 4)
1528 return obj_priv->base.size;
1529
de151cf6
JB
1530 /*
1531 * Previous chips need to be aligned to the size of the smallest
1532 * fence register that can contain the object.
1533 */
a6c45cf0 1534 if (INTEL_INFO(dev)->gen == 3)
a00b10c3 1535 size = 1024*1024;
de151cf6 1536 else
a00b10c3 1537 size = 512*1024;
de151cf6 1538
a00b10c3
CW
1539 while (size < obj_priv->base.size)
1540 size <<= 1;
de151cf6 1541
a00b10c3 1542 return size;
de151cf6
JB
1543}
1544
1545/**
1546 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1547 * @dev: DRM device
1548 * @data: GTT mapping ioctl data
1549 * @file_priv: GEM object info
1550 *
1551 * Simply returns the fake offset to userspace so it can mmap it.
1552 * The mmap call will end up in drm_gem_mmap(), which will set things
1553 * up so we can get faults in the handler above.
1554 *
1555 * The fault handler will take care of binding the object into the GTT
1556 * (since it may have been evicted to make room for something), allocating
1557 * a fence register, and mapping the appropriate aperture address into
1558 * userspace.
1559 */
1560int
1561i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1562 struct drm_file *file_priv)
1563{
da761a6e 1564 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1565 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1566 struct drm_gem_object *obj;
1567 struct drm_i915_gem_object *obj_priv;
1568 int ret;
1569
1570 if (!(dev->driver->driver_features & DRIVER_GEM))
1571 return -ENODEV;
1572
76c1dec1 1573 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1574 if (ret)
76c1dec1 1575 return ret;
de151cf6 1576
1d7cfea1
CW
1577 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1578 if (obj == NULL) {
1579 ret = -ENOENT;
1580 goto unlock;
1581 }
23010e43 1582 obj_priv = to_intel_bo(obj);
de151cf6 1583
da761a6e
CW
1584 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1585 ret = -E2BIG;
1586 goto unlock;
1587 }
1588
ab18282d
CW
1589 if (obj_priv->madv != I915_MADV_WILLNEED) {
1590 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1591 ret = -EINVAL;
1592 goto out;
ab18282d
CW
1593 }
1594
39a01d1f 1595 if (!obj->map_list.map) {
de151cf6 1596 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1597 if (ret)
1598 goto out;
de151cf6
JB
1599 }
1600
39a01d1f 1601 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
de151cf6 1602
1d7cfea1 1603out:
de151cf6 1604 drm_gem_object_unreference(obj);
1d7cfea1 1605unlock:
de151cf6 1606 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1607 return ret;
de151cf6
JB
1608}
1609
e5281ccd
CW
1610static int
1611i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1612 gfp_t gfpmask)
1613{
1614 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1615 int page_count, i;
1616 struct address_space *mapping;
1617 struct inode *inode;
1618 struct page *page;
1619
1620 /* Get the list of pages out of our struct file. They'll be pinned
1621 * at this point until we release them.
1622 */
1623 page_count = obj->size / PAGE_SIZE;
1624 BUG_ON(obj_priv->pages != NULL);
1625 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1626 if (obj_priv->pages == NULL)
1627 return -ENOMEM;
1628
1629 inode = obj->filp->f_path.dentry->d_inode;
1630 mapping = inode->i_mapping;
1631 for (i = 0; i < page_count; i++) {
1632 page = read_cache_page_gfp(mapping, i,
1633 GFP_HIGHUSER |
1634 __GFP_COLD |
1635 __GFP_RECLAIMABLE |
1636 gfpmask);
1637 if (IS_ERR(page))
1638 goto err_pages;
1639
1640 obj_priv->pages[i] = page;
1641 }
1642
1643 if (obj_priv->tiling_mode != I915_TILING_NONE)
1644 i915_gem_object_do_bit_17_swizzle(obj);
1645
1646 return 0;
1647
1648err_pages:
1649 while (i--)
1650 page_cache_release(obj_priv->pages[i]);
1651
1652 drm_free_large(obj_priv->pages);
1653 obj_priv->pages = NULL;
1654 return PTR_ERR(page);
1655}
1656
5cdf5881 1657static void
e5281ccd 1658i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
673a394b 1659{
23010e43 1660 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1661 int page_count = obj->size / PAGE_SIZE;
1662 int i;
1663
bb6baf76 1664 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1665
280b713b
EA
1666 if (obj_priv->tiling_mode != I915_TILING_NONE)
1667 i915_gem_object_save_bit_17_swizzle(obj);
1668
3ef94daa 1669 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1670 obj_priv->dirty = 0;
3ef94daa
CW
1671
1672 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1673 if (obj_priv->dirty)
1674 set_page_dirty(obj_priv->pages[i]);
1675
1676 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1677 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1678
1679 page_cache_release(obj_priv->pages[i]);
1680 }
673a394b
EA
1681 obj_priv->dirty = 0;
1682
8e7d2b2c 1683 drm_free_large(obj_priv->pages);
856fa198 1684 obj_priv->pages = NULL;
673a394b
EA
1685}
1686
a56ba56c
CW
1687static uint32_t
1688i915_gem_next_request_seqno(struct drm_device *dev,
1689 struct intel_ring_buffer *ring)
1690{
1691 drm_i915_private_t *dev_priv = dev->dev_private;
5d97eb69 1692 return ring->outstanding_lazy_request = dev_priv->next_seqno;
a56ba56c
CW
1693}
1694
673a394b 1695static void
617dbe27 1696i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1697 struct intel_ring_buffer *ring)
673a394b
EA
1698{
1699 struct drm_device *dev = obj->dev;
69dc4987 1700 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1701 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1702 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1703
852835f3
ZN
1704 BUG_ON(ring == NULL);
1705 obj_priv->ring = ring;
673a394b
EA
1706
1707 /* Add a reference if we're newly entering the active list. */
1708 if (!obj_priv->active) {
1709 drm_gem_object_reference(obj);
1710 obj_priv->active = 1;
1711 }
e35a41de 1712
673a394b 1713 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1714 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1715 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1716 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1717}
1718
ce44b0ea
EA
1719static void
1720i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1721{
1722 struct drm_device *dev = obj->dev;
1723 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1724 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1725
1726 BUG_ON(!obj_priv->active);
69dc4987
CW
1727 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1728 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1729 obj_priv->last_rendering_seqno = 0;
1730}
673a394b 1731
963b4836
CW
1732/* Immediately discard the backing storage */
1733static void
1734i915_gem_object_truncate(struct drm_gem_object *obj)
1735{
23010e43 1736 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1737 struct inode *inode;
963b4836 1738
ae9fed6b
CW
1739 /* Our goal here is to return as much of the memory as
1740 * is possible back to the system as we are called from OOM.
1741 * To do this we must instruct the shmfs to drop all of its
1742 * backing pages, *now*. Here we mirror the actions taken
1743 * when by shmem_delete_inode() to release the backing store.
1744 */
bb6baf76 1745 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1746 truncate_inode_pages(inode->i_mapping, 0);
1747 if (inode->i_op->truncate_range)
1748 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1749
1750 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1751}
1752
1753static inline int
1754i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1755{
1756 return obj_priv->madv == I915_MADV_DONTNEED;
1757}
1758
673a394b
EA
1759static void
1760i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1761{
1762 struct drm_device *dev = obj->dev;
1763 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1764 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1765
673a394b 1766 if (obj_priv->pin_count != 0)
69dc4987 1767 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1768 else
69dc4987
CW
1769 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1770 list_del_init(&obj_priv->ring_list);
673a394b 1771
99fcb766
DV
1772 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1773
ce44b0ea 1774 obj_priv->last_rendering_seqno = 0;
852835f3 1775 obj_priv->ring = NULL;
673a394b
EA
1776 if (obj_priv->active) {
1777 obj_priv->active = 0;
1778 drm_gem_object_unreference(obj);
1779 }
23bc5982 1780 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1781}
1782
63560396
DV
1783static void
1784i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1785 uint32_t flush_domains,
852835f3 1786 struct intel_ring_buffer *ring)
63560396
DV
1787{
1788 drm_i915_private_t *dev_priv = dev->dev_private;
1789 struct drm_i915_gem_object *obj_priv, *next;
1790
1791 list_for_each_entry_safe(obj_priv, next,
64193406 1792 &ring->gpu_write_list,
63560396 1793 gpu_write_list) {
a8089e84 1794 struct drm_gem_object *obj = &obj_priv->base;
63560396 1795
64193406 1796 if (obj->write_domain & flush_domains) {
63560396
DV
1797 uint32_t old_write_domain = obj->write_domain;
1798
1799 obj->write_domain = 0;
1800 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1801 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1802
1803 /* update the fence lru list */
007cc8ac
DV
1804 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1805 struct drm_i915_fence_reg *reg =
1806 &dev_priv->fence_regs[obj_priv->fence_reg];
1807 list_move_tail(&reg->lru_list,
63560396 1808 &dev_priv->mm.fence_list);
007cc8ac 1809 }
63560396
DV
1810
1811 trace_i915_gem_object_change_domain(obj,
1812 obj->read_domains,
1813 old_write_domain);
1814 }
1815 }
1816}
8187a2b7 1817
3cce469c 1818int
8a1a49f9 1819i915_add_request(struct drm_device *dev,
f787a5f5 1820 struct drm_file *file,
8dc5d147 1821 struct drm_i915_gem_request *request,
8a1a49f9 1822 struct intel_ring_buffer *ring)
673a394b
EA
1823{
1824 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1825 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1826 uint32_t seqno;
1827 int was_empty;
3cce469c
CW
1828 int ret;
1829
1830 BUG_ON(request == NULL);
673a394b 1831
f787a5f5
CW
1832 if (file != NULL)
1833 file_priv = file->driver_priv;
b962442e 1834
3cce469c
CW
1835 ret = ring->add_request(ring, &seqno);
1836 if (ret)
1837 return ret;
673a394b 1838
a56ba56c 1839 ring->outstanding_lazy_request = false;
673a394b
EA
1840
1841 request->seqno = seqno;
852835f3 1842 request->ring = ring;
673a394b 1843 request->emitted_jiffies = jiffies;
852835f3
ZN
1844 was_empty = list_empty(&ring->request_list);
1845 list_add_tail(&request->list, &ring->request_list);
1846
f787a5f5 1847 if (file_priv) {
1c25595f 1848 spin_lock(&file_priv->mm.lock);
f787a5f5 1849 request->file_priv = file_priv;
b962442e 1850 list_add_tail(&request->client_list,
f787a5f5 1851 &file_priv->mm.request_list);
1c25595f 1852 spin_unlock(&file_priv->mm.lock);
b962442e 1853 }
673a394b 1854
f65d9421 1855 if (!dev_priv->mm.suspended) {
b3b079db
CW
1856 mod_timer(&dev_priv->hangcheck_timer,
1857 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1858 if (was_empty)
b3b079db
CW
1859 queue_delayed_work(dev_priv->wq,
1860 &dev_priv->mm.retire_work, HZ);
f65d9421 1861 }
3cce469c 1862 return 0;
673a394b
EA
1863}
1864
1865/**
1866 * Command execution barrier
1867 *
1868 * Ensures that all commands in the ring are finished
1869 * before signalling the CPU
1870 */
8a1a49f9 1871static void
852835f3 1872i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1873{
673a394b 1874 uint32_t flush_domains = 0;
673a394b
EA
1875
1876 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1877 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1878 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1879
78501eac 1880 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1881}
1882
f787a5f5
CW
1883static inline void
1884i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1885{
1c25595f 1886 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1887
1c25595f
CW
1888 if (!file_priv)
1889 return;
1c5d22f7 1890
1c25595f
CW
1891 spin_lock(&file_priv->mm.lock);
1892 list_del(&request->client_list);
1893 request->file_priv = NULL;
1894 spin_unlock(&file_priv->mm.lock);
673a394b 1895}
673a394b 1896
dfaae392
CW
1897static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1898 struct intel_ring_buffer *ring)
9375e446 1899{
dfaae392
CW
1900 while (!list_empty(&ring->request_list)) {
1901 struct drm_i915_gem_request *request;
673a394b 1902
dfaae392
CW
1903 request = list_first_entry(&ring->request_list,
1904 struct drm_i915_gem_request,
1905 list);
de151cf6 1906
dfaae392 1907 list_del(&request->list);
f787a5f5 1908 i915_gem_request_remove_from_client(request);
dfaae392
CW
1909 kfree(request);
1910 }
673a394b 1911
dfaae392 1912 while (!list_empty(&ring->active_list)) {
9375e446
CW
1913 struct drm_i915_gem_object *obj_priv;
1914
dfaae392 1915 obj_priv = list_first_entry(&ring->active_list,
9375e446 1916 struct drm_i915_gem_object,
69dc4987 1917 ring_list);
9375e446
CW
1918
1919 obj_priv->base.write_domain = 0;
dfaae392 1920 list_del_init(&obj_priv->gpu_write_list);
9375e446 1921 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1922 }
1923}
1924
069efc1d 1925void i915_gem_reset(struct drm_device *dev)
673a394b 1926{
77f01230
CW
1927 struct drm_i915_private *dev_priv = dev->dev_private;
1928 struct drm_i915_gem_object *obj_priv;
069efc1d 1929 int i;
673a394b 1930
dfaae392 1931 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1932 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1933 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1934
1935 /* Remove anything from the flushing lists. The GPU cache is likely
1936 * to be lost on reset along with the data, so simply move the
1937 * lost bo to the inactive list.
1938 */
1939 while (!list_empty(&dev_priv->mm.flushing_list)) {
1940 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1941 struct drm_i915_gem_object,
69dc4987 1942 mm_list);
dfaae392
CW
1943
1944 obj_priv->base.write_domain = 0;
1945 list_del_init(&obj_priv->gpu_write_list);
1946 i915_gem_object_move_to_inactive(&obj_priv->base);
1947 }
1948
1949 /* Move everything out of the GPU domains to ensure we do any
1950 * necessary invalidation upon reuse.
1951 */
77f01230
CW
1952 list_for_each_entry(obj_priv,
1953 &dev_priv->mm.inactive_list,
69dc4987 1954 mm_list)
77f01230
CW
1955 {
1956 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1957 }
069efc1d
CW
1958
1959 /* The fence registers are invalidated so clear them out */
1960 for (i = 0; i < 16; i++) {
1961 struct drm_i915_fence_reg *reg;
1962
1963 reg = &dev_priv->fence_regs[i];
1964 if (!reg->obj)
1965 continue;
1966
1967 i915_gem_clear_fence_reg(reg->obj);
1968 }
673a394b
EA
1969}
1970
1971/**
1972 * This function clears the request list as sequence numbers are passed.
1973 */
b09a1fec
CW
1974static void
1975i915_gem_retire_requests_ring(struct drm_device *dev,
1976 struct intel_ring_buffer *ring)
673a394b
EA
1977{
1978 drm_i915_private_t *dev_priv = dev->dev_private;
1979 uint32_t seqno;
1980
b84d5f0c
CW
1981 if (!ring->status_page.page_addr ||
1982 list_empty(&ring->request_list))
6c0594a3
KW
1983 return;
1984
23bc5982 1985 WARN_ON(i915_verify_lists(dev));
673a394b 1986
78501eac 1987 seqno = ring->get_seqno(ring);
852835f3 1988 while (!list_empty(&ring->request_list)) {
673a394b 1989 struct drm_i915_gem_request *request;
673a394b 1990
852835f3 1991 request = list_first_entry(&ring->request_list,
673a394b
EA
1992 struct drm_i915_gem_request,
1993 list);
673a394b 1994
dfaae392 1995 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1996 break;
1997
1998 trace_i915_gem_request_retire(dev, request->seqno);
1999
2000 list_del(&request->list);
f787a5f5 2001 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2002 kfree(request);
2003 }
673a394b 2004
b84d5f0c
CW
2005 /* Move any buffers on the active list that are no longer referenced
2006 * by the ringbuffer to the flushing/inactive lists as appropriate.
2007 */
2008 while (!list_empty(&ring->active_list)) {
2009 struct drm_gem_object *obj;
2010 struct drm_i915_gem_object *obj_priv;
2011
2012 obj_priv = list_first_entry(&ring->active_list,
2013 struct drm_i915_gem_object,
69dc4987 2014 ring_list);
673a394b 2015
dfaae392 2016 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 2017 break;
b84d5f0c
CW
2018
2019 obj = &obj_priv->base;
b84d5f0c
CW
2020 if (obj->write_domain != 0)
2021 i915_gem_object_move_to_flushing(obj);
2022 else
2023 i915_gem_object_move_to_inactive(obj);
673a394b 2024 }
9d34e5db
CW
2025
2026 if (unlikely (dev_priv->trace_irq_seqno &&
2027 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 2028 ring->user_irq_put(ring);
9d34e5db
CW
2029 dev_priv->trace_irq_seqno = 0;
2030 }
23bc5982
CW
2031
2032 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2033}
2034
b09a1fec
CW
2035void
2036i915_gem_retire_requests(struct drm_device *dev)
2037{
2038 drm_i915_private_t *dev_priv = dev->dev_private;
2039
be72615b
CW
2040 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2041 struct drm_i915_gem_object *obj_priv, *tmp;
2042
2043 /* We must be careful that during unbind() we do not
2044 * accidentally infinitely recurse into retire requests.
2045 * Currently:
2046 * retire -> free -> unbind -> wait -> retire_ring
2047 */
2048 list_for_each_entry_safe(obj_priv, tmp,
2049 &dev_priv->mm.deferred_free_list,
69dc4987 2050 mm_list)
be72615b
CW
2051 i915_gem_free_object_tail(&obj_priv->base);
2052 }
2053
b09a1fec 2054 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2055 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2056 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2057}
2058
75ef9da2 2059static void
673a394b
EA
2060i915_gem_retire_work_handler(struct work_struct *work)
2061{
2062 drm_i915_private_t *dev_priv;
2063 struct drm_device *dev;
2064
2065 dev_priv = container_of(work, drm_i915_private_t,
2066 mm.retire_work.work);
2067 dev = dev_priv->dev;
2068
891b48cf
CW
2069 /* Come back later if the device is busy... */
2070 if (!mutex_trylock(&dev->struct_mutex)) {
2071 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2072 return;
2073 }
2074
b09a1fec 2075 i915_gem_retire_requests(dev);
d1b851fc 2076
6dbe2772 2077 if (!dev_priv->mm.suspended &&
d1b851fc 2078 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2079 !list_empty(&dev_priv->bsd_ring.request_list) ||
2080 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2081 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2082 mutex_unlock(&dev->struct_mutex);
2083}
2084
5a5a0c64 2085int
852835f3 2086i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2087 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2088{
2089 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2090 u32 ier;
673a394b
EA
2091 int ret = 0;
2092
2093 BUG_ON(seqno == 0);
2094
ba1234d1 2095 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2096 return -EAGAIN;
2097
5d97eb69 2098 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2099 struct drm_i915_gem_request *request;
2100
2101 request = kzalloc(sizeof(*request), GFP_KERNEL);
2102 if (request == NULL)
e35a41de 2103 return -ENOMEM;
3cce469c
CW
2104
2105 ret = i915_add_request(dev, NULL, request, ring);
2106 if (ret) {
2107 kfree(request);
2108 return ret;
2109 }
2110
2111 seqno = request->seqno;
e35a41de 2112 }
ffed1d09 2113
78501eac 2114 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2115 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2116 ier = I915_READ(DEIER) | I915_READ(GTIER);
2117 else
2118 ier = I915_READ(IER);
802c7eb6
JB
2119 if (!ier) {
2120 DRM_ERROR("something (likely vbetool) disabled "
2121 "interrupts, re-enabling\n");
2122 i915_driver_irq_preinstall(dev);
2123 i915_driver_irq_postinstall(dev);
2124 }
2125
1c5d22f7
CW
2126 trace_i915_gem_request_wait_begin(dev, seqno);
2127
b2223497 2128 ring->waiting_seqno = seqno;
78501eac 2129 ring->user_irq_get(ring);
48764bf4 2130 if (interruptible)
852835f3 2131 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2132 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2133 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2134 else
852835f3 2135 wait_event(ring->irq_queue,
78501eac 2136 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2137 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2138
78501eac 2139 ring->user_irq_put(ring);
b2223497 2140 ring->waiting_seqno = 0;
1c5d22f7
CW
2141
2142 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2143 }
ba1234d1 2144 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2145 ret = -EAGAIN;
673a394b
EA
2146
2147 if (ret && ret != -ERESTARTSYS)
8bff917c 2148 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2149 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2150 dev_priv->next_seqno);
673a394b
EA
2151
2152 /* Directly dispatch request retiring. While we have the work queue
2153 * to handle this, the waiter on a request often wants an associated
2154 * buffer to have made it to the inactive list, and we would need
2155 * a separate wait queue to handle that.
2156 */
2157 if (ret == 0)
b09a1fec 2158 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2159
2160 return ret;
2161}
2162
48764bf4
DV
2163/**
2164 * Waits for a sequence number to be signaled, and cleans up the
2165 * request and object lists appropriately for that event.
2166 */
2167static int
852835f3 2168i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2169 struct intel_ring_buffer *ring)
48764bf4 2170{
852835f3 2171 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2172}
2173
20f0cd55 2174static void
9220434a 2175i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2176 struct drm_file *file_priv,
9220434a
CW
2177 struct intel_ring_buffer *ring,
2178 uint32_t invalidate_domains,
2179 uint32_t flush_domains)
2180{
78501eac 2181 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2182 i915_gem_process_flushing_list(dev, flush_domains, ring);
2183}
2184
8187a2b7
ZN
2185static void
2186i915_gem_flush(struct drm_device *dev,
c78ec30b 2187 struct drm_file *file_priv,
8187a2b7 2188 uint32_t invalidate_domains,
9220434a
CW
2189 uint32_t flush_domains,
2190 uint32_t flush_rings)
8187a2b7
ZN
2191{
2192 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2193
8187a2b7
ZN
2194 if (flush_domains & I915_GEM_DOMAIN_CPU)
2195 drm_agp_chipset_flush(dev);
8bff917c 2196
9220434a
CW
2197 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2198 if (flush_rings & RING_RENDER)
c78ec30b 2199 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2200 &dev_priv->render_ring,
2201 invalidate_domains, flush_domains);
2202 if (flush_rings & RING_BSD)
c78ec30b 2203 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2204 &dev_priv->bsd_ring,
2205 invalidate_domains, flush_domains);
549f7365
CW
2206 if (flush_rings & RING_BLT)
2207 i915_gem_flush_ring(dev, file_priv,
2208 &dev_priv->blt_ring,
2209 invalidate_domains, flush_domains);
9220434a 2210 }
8187a2b7
ZN
2211}
2212
673a394b
EA
2213/**
2214 * Ensures that all rendering to the object has completed and the object is
2215 * safe to unbind from the GTT or access from the CPU.
2216 */
2217static int
2cf34d7b
CW
2218i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2219 bool interruptible)
673a394b
EA
2220{
2221 struct drm_device *dev = obj->dev;
23010e43 2222 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2223 int ret;
2224
e47c68e9
EA
2225 /* This function only exists to support waiting for existing rendering,
2226 * not for emitting required flushes.
673a394b 2227 */
e47c68e9 2228 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2229
2230 /* If there is rendering queued on the buffer being evicted, wait for
2231 * it.
2232 */
2233 if (obj_priv->active) {
2cf34d7b
CW
2234 ret = i915_do_wait_request(dev,
2235 obj_priv->last_rendering_seqno,
2236 interruptible,
2237 obj_priv->ring);
2238 if (ret)
673a394b
EA
2239 return ret;
2240 }
2241
2242 return 0;
2243}
2244
2245/**
2246 * Unbinds an object from the GTT aperture.
2247 */
0f973f27 2248int
673a394b
EA
2249i915_gem_object_unbind(struct drm_gem_object *obj)
2250{
2251 struct drm_device *dev = obj->dev;
73aa808f 2252 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2253 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2254 int ret = 0;
2255
673a394b
EA
2256 if (obj_priv->gtt_space == NULL)
2257 return 0;
2258
2259 if (obj_priv->pin_count != 0) {
2260 DRM_ERROR("Attempting to unbind pinned buffer\n");
2261 return -EINVAL;
2262 }
2263
5323fd04
EA
2264 /* blow away mappings if mapped through GTT */
2265 i915_gem_release_mmap(obj);
2266
673a394b
EA
2267 /* Move the object to the CPU domain to ensure that
2268 * any possible CPU writes while it's not in the GTT
2269 * are flushed when we go to remap it. This will
2270 * also ensure that all pending GPU writes are finished
2271 * before we unbind.
2272 */
e47c68e9 2273 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2274 if (ret == -ERESTARTSYS)
673a394b 2275 return ret;
8dc1775d
CW
2276 /* Continue on if we fail due to EIO, the GPU is hung so we
2277 * should be safe and we need to cleanup or else we might
2278 * cause memory corruption through use-after-free.
2279 */
812ed492
CW
2280 if (ret) {
2281 i915_gem_clflush_object(obj);
2282 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2283 }
673a394b 2284
96b47b65
DV
2285 /* release the fence reg _after_ flushing */
2286 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2287 i915_gem_clear_fence_reg(obj);
2288
73aa808f
CW
2289 drm_unbind_agp(obj_priv->agp_mem);
2290 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2291
e5281ccd 2292 i915_gem_object_put_pages_gtt(obj);
673a394b 2293
a00b10c3 2294 i915_gem_info_remove_gtt(dev_priv, obj_priv);
69dc4987 2295 list_del_init(&obj_priv->mm_list);
75e9e915
DV
2296 /* Avoid an unnecessary call to unbind on rebind. */
2297 obj_priv->map_and_fenceable = true;
673a394b 2298
73aa808f
CW
2299 drm_mm_put_block(obj_priv->gtt_space);
2300 obj_priv->gtt_space = NULL;
9af90d19 2301 obj_priv->gtt_offset = 0;
673a394b 2302
963b4836
CW
2303 if (i915_gem_object_is_purgeable(obj_priv))
2304 i915_gem_object_truncate(obj);
2305
1c5d22f7
CW
2306 trace_i915_gem_object_unbind(obj);
2307
8dc1775d 2308 return ret;
673a394b
EA
2309}
2310
a56ba56c
CW
2311static int i915_ring_idle(struct drm_device *dev,
2312 struct intel_ring_buffer *ring)
2313{
395b70be 2314 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2315 return 0;
2316
a56ba56c
CW
2317 i915_gem_flush_ring(dev, NULL, ring,
2318 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2319 return i915_wait_request(dev,
2320 i915_gem_next_request_seqno(dev, ring),
2321 ring);
2322}
2323
b47eb4a2 2324int
4df2faf4
DV
2325i915_gpu_idle(struct drm_device *dev)
2326{
2327 drm_i915_private_t *dev_priv = dev->dev_private;
2328 bool lists_empty;
852835f3 2329 int ret;
4df2faf4 2330
d1b851fc 2331 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2332 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2333 if (lists_empty)
2334 return 0;
2335
2336 /* Flush everything onto the inactive list. */
a56ba56c 2337 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2338 if (ret)
2339 return ret;
d1b851fc 2340
87acb0a5
CW
2341 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2342 if (ret)
2343 return ret;
d1b851fc 2344
549f7365
CW
2345 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2346 if (ret)
2347 return ret;
4df2faf4 2348
8a1a49f9 2349 return 0;
4df2faf4
DV
2350}
2351
a00b10c3 2352static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
4e901fdc 2353{
4e901fdc
EA
2354 struct drm_device *dev = obj->dev;
2355 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2356 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2357 u32 size = i915_gem_get_gtt_size(obj_priv);
4e901fdc
EA
2358 int regnum = obj_priv->fence_reg;
2359 uint64_t val;
2360
a00b10c3 2361 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
4e901fdc
EA
2362 0xfffff000) << 32;
2363 val |= obj_priv->gtt_offset & 0xfffff000;
2364 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2365 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2366
2367 if (obj_priv->tiling_mode == I915_TILING_Y)
2368 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2369 val |= I965_FENCE_REG_VALID;
2370
2371 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2372}
2373
a00b10c3 2374static void i965_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2375{
de151cf6
JB
2376 struct drm_device *dev = obj->dev;
2377 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2378 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2379 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2380 int regnum = obj_priv->fence_reg;
2381 uint64_t val;
2382
a00b10c3 2383 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
de151cf6
JB
2384 0xfffff000) << 32;
2385 val |= obj_priv->gtt_offset & 0xfffff000;
2386 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2387 if (obj_priv->tiling_mode == I915_TILING_Y)
2388 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2389 val |= I965_FENCE_REG_VALID;
2390
2391 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2392}
2393
a00b10c3 2394static void i915_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2395{
de151cf6
JB
2396 struct drm_device *dev = obj->dev;
2397 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3
CW
2399 u32 size = i915_gem_get_gtt_size(obj_priv);
2400 uint32_t fence_reg, val, pitch_val;
0f973f27 2401 int tile_width;
de151cf6
JB
2402
2403 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
a00b10c3
CW
2404 (obj_priv->gtt_offset & (size - 1))) {
2405 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
75e9e915 2406 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
a00b10c3 2407 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
de151cf6
JB
2408 return;
2409 }
2410
0f973f27
JB
2411 if (obj_priv->tiling_mode == I915_TILING_Y &&
2412 HAS_128_BYTE_Y_TILING(dev))
2413 tile_width = 128;
de151cf6 2414 else
0f973f27
JB
2415 tile_width = 512;
2416
2417 /* Note: pitch better be a power of two tile widths */
2418 pitch_val = obj_priv->stride / tile_width;
2419 pitch_val = ffs(pitch_val) - 1;
de151cf6 2420
c36a2a6d
DV
2421 if (obj_priv->tiling_mode == I915_TILING_Y &&
2422 HAS_128_BYTE_Y_TILING(dev))
2423 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2424 else
2425 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2426
de151cf6
JB
2427 val = obj_priv->gtt_offset;
2428 if (obj_priv->tiling_mode == I915_TILING_Y)
2429 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2430 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2431 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2432 val |= I830_FENCE_REG_VALID;
2433
a00b10c3
CW
2434 fence_reg = obj_priv->fence_reg;
2435 if (fence_reg < 8)
2436 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2437 else
a00b10c3 2438 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2439 I915_WRITE(fence_reg, val);
de151cf6
JB
2440}
2441
a00b10c3 2442static void i830_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2443{
de151cf6
JB
2444 struct drm_device *dev = obj->dev;
2445 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2446 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2447 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2448 int regnum = obj_priv->fence_reg;
2449 uint32_t val;
2450 uint32_t pitch_val;
8d7773a3 2451 uint32_t fence_size_bits;
de151cf6 2452
8d7773a3 2453 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2454 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2455 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2456 __func__, obj_priv->gtt_offset);
de151cf6
JB
2457 return;
2458 }
2459
e76a16de
EA
2460 pitch_val = obj_priv->stride / 128;
2461 pitch_val = ffs(pitch_val) - 1;
2462 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2463
de151cf6
JB
2464 val = obj_priv->gtt_offset;
2465 if (obj_priv->tiling_mode == I915_TILING_Y)
2466 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2467 fence_size_bits = I830_FENCE_SIZE_BITS(size);
8d7773a3
DV
2468 WARN_ON(fence_size_bits & ~0x00000f00);
2469 val |= fence_size_bits;
de151cf6
JB
2470 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2471 val |= I830_FENCE_REG_VALID;
2472
2473 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2474}
2475
2cf34d7b
CW
2476static int i915_find_fence_reg(struct drm_device *dev,
2477 bool interruptible)
ae3db24a 2478{
ae3db24a 2479 struct drm_i915_private *dev_priv = dev->dev_private;
a00b10c3
CW
2480 struct drm_i915_fence_reg *reg;
2481 struct drm_i915_gem_object *obj_priv = NULL;
ae3db24a
DV
2482 int i, avail, ret;
2483
2484 /* First try to find a free reg */
2485 avail = 0;
2486 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2487 reg = &dev_priv->fence_regs[i];
2488 if (!reg->obj)
2489 return i;
2490
23010e43 2491 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2492 if (!obj_priv->pin_count)
2493 avail++;
2494 }
2495
2496 if (avail == 0)
2497 return -ENOSPC;
2498
2499 /* None available, try to steal one or wait for a user to finish */
a00b10c3 2500 avail = I915_FENCE_REG_NONE;
007cc8ac
DV
2501 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2502 lru_list) {
a00b10c3 2503 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2504 if (obj_priv->pin_count)
2505 continue;
2506
2507 /* found one! */
a00b10c3 2508 avail = obj_priv->fence_reg;
ae3db24a
DV
2509 break;
2510 }
2511
a00b10c3 2512 BUG_ON(avail == I915_FENCE_REG_NONE);
ae3db24a
DV
2513
2514 /* We only have a reference on obj from the active list. put_fence_reg
2515 * might drop that one, causing a use-after-free in it. So hold a
2516 * private reference to obj like the other callers of put_fence_reg
2517 * (set_tiling ioctl) do. */
a00b10c3
CW
2518 drm_gem_object_reference(&obj_priv->base);
2519 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2520 drm_gem_object_unreference(&obj_priv->base);
ae3db24a
DV
2521 if (ret != 0)
2522 return ret;
2523
a00b10c3 2524 return avail;
ae3db24a
DV
2525}
2526
de151cf6
JB
2527/**
2528 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2529 * @obj: object to map through a fence reg
2530 *
2531 * When mapping objects through the GTT, userspace wants to be able to write
2532 * to them without having to worry about swizzling if the object is tiled.
2533 *
2534 * This function walks the fence regs looking for a free one for @obj,
2535 * stealing one if it can't find any.
2536 *
2537 * It then sets up the reg based on the object's properties: address, pitch
2538 * and tiling format.
2539 */
8c4b8c3f 2540int
2cf34d7b
CW
2541i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2542 bool interruptible)
de151cf6
JB
2543{
2544 struct drm_device *dev = obj->dev;
79e53945 2545 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2546 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2547 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2548 int ret;
de151cf6 2549
a09ba7fa
EA
2550 /* Just update our place in the LRU if our fence is getting used. */
2551 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2552 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2553 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2554 return 0;
2555 }
2556
de151cf6
JB
2557 switch (obj_priv->tiling_mode) {
2558 case I915_TILING_NONE:
2559 WARN(1, "allocating a fence for non-tiled object?\n");
2560 break;
2561 case I915_TILING_X:
0f973f27
JB
2562 if (!obj_priv->stride)
2563 return -EINVAL;
2564 WARN((obj_priv->stride & (512 - 1)),
2565 "object 0x%08x is X tiled but has non-512B pitch\n",
2566 obj_priv->gtt_offset);
de151cf6
JB
2567 break;
2568 case I915_TILING_Y:
0f973f27
JB
2569 if (!obj_priv->stride)
2570 return -EINVAL;
2571 WARN((obj_priv->stride & (128 - 1)),
2572 "object 0x%08x is Y tiled but has non-128B pitch\n",
2573 obj_priv->gtt_offset);
de151cf6
JB
2574 break;
2575 }
2576
2cf34d7b 2577 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2578 if (ret < 0)
2579 return ret;
de151cf6 2580
ae3db24a
DV
2581 obj_priv->fence_reg = ret;
2582 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2583 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2584
de151cf6
JB
2585 reg->obj = obj;
2586
e259befd
CW
2587 switch (INTEL_INFO(dev)->gen) {
2588 case 6:
a00b10c3 2589 sandybridge_write_fence_reg(obj);
e259befd
CW
2590 break;
2591 case 5:
2592 case 4:
a00b10c3 2593 i965_write_fence_reg(obj);
e259befd
CW
2594 break;
2595 case 3:
a00b10c3 2596 i915_write_fence_reg(obj);
e259befd
CW
2597 break;
2598 case 2:
a00b10c3 2599 i830_write_fence_reg(obj);
e259befd
CW
2600 break;
2601 }
d9ddcb96 2602
a00b10c3
CW
2603 trace_i915_gem_object_get_fence(obj,
2604 obj_priv->fence_reg,
2605 obj_priv->tiling_mode);
1c5d22f7 2606
d9ddcb96 2607 return 0;
de151cf6
JB
2608}
2609
2610/**
2611 * i915_gem_clear_fence_reg - clear out fence register info
2612 * @obj: object to clear
2613 *
2614 * Zeroes out the fence register itself and clears out the associated
2615 * data structures in dev_priv and obj_priv.
2616 */
2617static void
2618i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2619{
2620 struct drm_device *dev = obj->dev;
79e53945 2621 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2622 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2623 struct drm_i915_fence_reg *reg =
2624 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2625 uint32_t fence_reg;
de151cf6 2626
e259befd
CW
2627 switch (INTEL_INFO(dev)->gen) {
2628 case 6:
4e901fdc
EA
2629 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2630 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2631 break;
2632 case 5:
2633 case 4:
de151cf6 2634 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2635 break;
2636 case 3:
9b74f734 2637 if (obj_priv->fence_reg >= 8)
e259befd 2638 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2639 else
e259befd
CW
2640 case 2:
2641 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2642
2643 I915_WRITE(fence_reg, 0);
e259befd 2644 break;
dc529a4f 2645 }
de151cf6 2646
007cc8ac 2647 reg->obj = NULL;
de151cf6 2648 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2649 list_del_init(&reg->lru_list);
de151cf6
JB
2650}
2651
52dc7d32
CW
2652/**
2653 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2654 * to the buffer to finish, and then resets the fence register.
2655 * @obj: tiled object holding a fence register.
2cf34d7b 2656 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2657 *
2658 * Zeroes out the fence register itself and clears out the associated
2659 * data structures in dev_priv and obj_priv.
2660 */
2661int
2cf34d7b
CW
2662i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2663 bool interruptible)
52dc7d32
CW
2664{
2665 struct drm_device *dev = obj->dev;
53640e1d 2666 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2667 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2668 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2669
2670 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2671 return 0;
2672
10ae9bd2
DV
2673 /* If we've changed tiling, GTT-mappings of the object
2674 * need to re-fault to ensure that the correct fence register
2675 * setup is in place.
2676 */
2677 i915_gem_release_mmap(obj);
2678
52dc7d32
CW
2679 /* On the i915, GPU access to tiled buffers is via a fence,
2680 * therefore we must wait for any outstanding access to complete
2681 * before clearing the fence.
2682 */
53640e1d
CW
2683 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2684 if (reg->gpu) {
52dc7d32
CW
2685 int ret;
2686
2cf34d7b 2687 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2688 if (ret)
2dafb1e0
CW
2689 return ret;
2690
2cf34d7b 2691 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2692 if (ret)
52dc7d32 2693 return ret;
53640e1d
CW
2694
2695 reg->gpu = false;
52dc7d32
CW
2696 }
2697
4a726612 2698 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2699 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2700
2701 return 0;
2702}
2703
673a394b
EA
2704/**
2705 * Finds free space in the GTT aperture and binds the object there.
2706 */
2707static int
920afa77
DV
2708i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2709 unsigned alignment,
75e9e915 2710 bool map_and_fenceable)
673a394b
EA
2711{
2712 struct drm_device *dev = obj->dev;
2713 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2714 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2715 struct drm_mm_node *free_space;
a00b10c3 2716 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2717 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2718 bool mappable, fenceable;
07f73f69 2719 int ret;
673a394b 2720
bb6baf76 2721 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2722 DRM_ERROR("Attempting to bind a purgeable object\n");
2723 return -EINVAL;
2724 }
2725
a00b10c3
CW
2726 fence_size = i915_gem_get_gtt_size(obj_priv);
2727 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
5e783301 2728 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
a00b10c3 2729
673a394b 2730 if (alignment == 0)
5e783301
DV
2731 alignment = map_and_fenceable ? fence_alignment :
2732 unfenced_alignment;
75e9e915 2733 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2734 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2735 return -EINVAL;
2736 }
2737
75e9e915 2738 size = map_and_fenceable ? fence_size : obj->size;
a00b10c3 2739
654fc607
CW
2740 /* If the object is bigger than the entire aperture, reject it early
2741 * before evicting everything in a vain attempt to find space.
2742 */
920afa77 2743 if (obj->size >
75e9e915 2744 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2745 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2746 return -E2BIG;
2747 }
2748
673a394b 2749 search_free:
75e9e915 2750 if (map_and_fenceable)
920afa77
DV
2751 free_space =
2752 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2753 size, alignment, 0,
920afa77
DV
2754 dev_priv->mm.gtt_mappable_end,
2755 0);
2756 else
2757 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2758 size, alignment, 0);
920afa77
DV
2759
2760 if (free_space != NULL) {
75e9e915 2761 if (map_and_fenceable)
920afa77
DV
2762 obj_priv->gtt_space =
2763 drm_mm_get_block_range_generic(free_space,
a00b10c3 2764 size, alignment, 0,
920afa77
DV
2765 dev_priv->mm.gtt_mappable_end,
2766 0);
2767 else
2768 obj_priv->gtt_space =
a00b10c3 2769 drm_mm_get_block(free_space, size, alignment);
920afa77 2770 }
673a394b
EA
2771 if (obj_priv->gtt_space == NULL) {
2772 /* If the gtt is empty and we're still having trouble
2773 * fitting our object in, we're out of memory.
2774 */
75e9e915
DV
2775 ret = i915_gem_evict_something(dev, size, alignment,
2776 map_and_fenceable);
9731129c 2777 if (ret)
673a394b 2778 return ret;
9731129c 2779
673a394b
EA
2780 goto search_free;
2781 }
2782
e5281ccd 2783 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b
EA
2784 if (ret) {
2785 drm_mm_put_block(obj_priv->gtt_space);
2786 obj_priv->gtt_space = NULL;
07f73f69
CW
2787
2788 if (ret == -ENOMEM) {
2789 /* first try to clear up some space from the GTT */
a00b10c3 2790 ret = i915_gem_evict_something(dev, size,
75e9e915
DV
2791 alignment,
2792 map_and_fenceable);
07f73f69 2793 if (ret) {
07f73f69 2794 /* now try to shrink everyone else */
4bdadb97
CW
2795 if (gfpmask) {
2796 gfpmask = 0;
2797 goto search_free;
07f73f69
CW
2798 }
2799
2800 return ret;
2801 }
2802
2803 goto search_free;
2804 }
2805
673a394b
EA
2806 return ret;
2807 }
2808
673a394b
EA
2809 /* Create an AGP memory structure pointing at our pages, and bind it
2810 * into the GTT.
2811 */
2812 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2813 obj_priv->pages,
07f73f69 2814 obj->size >> PAGE_SHIFT,
9af90d19 2815 obj_priv->gtt_space->start,
ba1eb1d8 2816 obj_priv->agp_type);
673a394b 2817 if (obj_priv->agp_mem == NULL) {
e5281ccd 2818 i915_gem_object_put_pages_gtt(obj);
673a394b
EA
2819 drm_mm_put_block(obj_priv->gtt_space);
2820 obj_priv->gtt_space = NULL;
07f73f69 2821
a00b10c3 2822 ret = i915_gem_evict_something(dev, size,
75e9e915 2823 alignment, map_and_fenceable);
9731129c 2824 if (ret)
07f73f69 2825 return ret;
07f73f69
CW
2826
2827 goto search_free;
673a394b 2828 }
673a394b 2829
fb7d516a
DV
2830 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2831
bf1a1092 2832 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2833 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
a00b10c3 2834 i915_gem_info_add_gtt(dev_priv, obj_priv);
bf1a1092 2835
673a394b
EA
2836 /* Assert that the object is not currently in any GPU domain. As it
2837 * wasn't in the GTT, there shouldn't be any way it could have been in
2838 * a GPU cache
2839 */
21d509e3
CW
2840 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2841 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2842
75e9e915 2843 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
1c5d22f7 2844
75e9e915 2845 fenceable =
a00b10c3
CW
2846 obj_priv->gtt_space->size == fence_size &&
2847 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2848
75e9e915 2849 mappable =
a00b10c3
CW
2850 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2851
75e9e915
DV
2852 obj_priv->map_and_fenceable = mappable && fenceable;
2853
673a394b
EA
2854 return 0;
2855}
2856
2857void
2858i915_gem_clflush_object(struct drm_gem_object *obj)
2859{
23010e43 2860 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2861
2862 /* If we don't have a page list set up, then we're not pinned
2863 * to GPU, and we can ignore the cache flush because it'll happen
2864 * again at bind time.
2865 */
856fa198 2866 if (obj_priv->pages == NULL)
673a394b
EA
2867 return;
2868
1c5d22f7 2869 trace_i915_gem_object_clflush(obj);
cfa16a0d 2870
856fa198 2871 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2872}
2873
e47c68e9 2874/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2875static int
ba3d8d74
DV
2876i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2877 bool pipelined)
e47c68e9
EA
2878{
2879 struct drm_device *dev = obj->dev;
e47c68e9
EA
2880
2881 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2882 return 0;
e47c68e9
EA
2883
2884 /* Queue the GPU write cache flushing we need. */
c78ec30b 2885 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2886 to_intel_bo(obj)->ring,
2887 0, obj->write_domain);
48b956c5 2888 BUG_ON(obj->write_domain);
1c5d22f7 2889
ba3d8d74
DV
2890 if (pipelined)
2891 return 0;
2892
2cf34d7b 2893 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2894}
2895
2896/** Flushes the GTT write domain for the object if it's dirty. */
2897static void
2898i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2899{
1c5d22f7
CW
2900 uint32_t old_write_domain;
2901
e47c68e9
EA
2902 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2903 return;
2904
2905 /* No actual flushing is required for the GTT write domain. Writes
2906 * to it immediately go to main memory as far as we know, so there's
2907 * no chipset flush. It also doesn't land in render cache.
2908 */
4a684a41
CW
2909 i915_gem_release_mmap(obj);
2910
1c5d22f7 2911 old_write_domain = obj->write_domain;
e47c68e9 2912 obj->write_domain = 0;
1c5d22f7
CW
2913
2914 trace_i915_gem_object_change_domain(obj,
2915 obj->read_domains,
2916 old_write_domain);
e47c68e9
EA
2917}
2918
2919/** Flushes the CPU write domain for the object if it's dirty. */
2920static void
2921i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2922{
2923 struct drm_device *dev = obj->dev;
1c5d22f7 2924 uint32_t old_write_domain;
e47c68e9
EA
2925
2926 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2927 return;
2928
2929 i915_gem_clflush_object(obj);
2930 drm_agp_chipset_flush(dev);
1c5d22f7 2931 old_write_domain = obj->write_domain;
e47c68e9 2932 obj->write_domain = 0;
1c5d22f7
CW
2933
2934 trace_i915_gem_object_change_domain(obj,
2935 obj->read_domains,
2936 old_write_domain);
e47c68e9
EA
2937}
2938
2ef7eeaa
EA
2939/**
2940 * Moves a single object to the GTT read, and possibly write domain.
2941 *
2942 * This function returns when the move is complete, including waiting on
2943 * flushes to occur.
2944 */
79e53945 2945int
2ef7eeaa
EA
2946i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2947{
23010e43 2948 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2949 uint32_t old_write_domain, old_read_domains;
e47c68e9 2950 int ret;
2ef7eeaa 2951
02354392
EA
2952 /* Not valid to be called on unbound objects. */
2953 if (obj_priv->gtt_space == NULL)
2954 return -EINVAL;
2955
ba3d8d74 2956 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2957 if (ret != 0)
2958 return ret;
2959
7213342d 2960 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2961
ba3d8d74 2962 if (write) {
2cf34d7b 2963 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2964 if (ret)
2965 return ret;
ba3d8d74 2966 }
e47c68e9 2967
1c5d22f7
CW
2968 old_write_domain = obj->write_domain;
2969 old_read_domains = obj->read_domains;
2970
e47c68e9
EA
2971 /* It should now be out of any other write domains, and we can update
2972 * the domain values for our changes.
2973 */
2974 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2975 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2976 if (write) {
7213342d 2977 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2978 obj->write_domain = I915_GEM_DOMAIN_GTT;
2979 obj_priv->dirty = 1;
2ef7eeaa
EA
2980 }
2981
1c5d22f7
CW
2982 trace_i915_gem_object_change_domain(obj,
2983 old_read_domains,
2984 old_write_domain);
2985
e47c68e9
EA
2986 return 0;
2987}
2988
b9241ea3
ZW
2989/*
2990 * Prepare buffer for display plane. Use uninterruptible for possible flush
2991 * wait, as in modesetting process we're not supposed to be interrupted.
2992 */
2993int
48b956c5
CW
2994i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2995 bool pipelined)
b9241ea3 2996{
23010e43 2997 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2998 uint32_t old_read_domains;
b9241ea3
ZW
2999 int ret;
3000
3001 /* Not valid to be called on unbound objects. */
3002 if (obj_priv->gtt_space == NULL)
3003 return -EINVAL;
3004
ced270fa 3005 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
3006 if (ret)
3007 return ret;
b9241ea3 3008
ced270fa
CW
3009 /* Currently, we are always called from an non-interruptible context. */
3010 if (!pipelined) {
3011 ret = i915_gem_object_wait_rendering(obj, false);
3012 if (ret)
b9241ea3
ZW
3013 return ret;
3014 }
3015
b118c1e3
CW
3016 i915_gem_object_flush_cpu_write_domain(obj);
3017
b9241ea3 3018 old_read_domains = obj->read_domains;
c78ec30b 3019 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3020
3021 trace_i915_gem_object_change_domain(obj,
3022 old_read_domains,
ba3d8d74 3023 obj->write_domain);
b9241ea3
ZW
3024
3025 return 0;
3026}
3027
85345517
CW
3028int
3029i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3030 bool interruptible)
3031{
3032 if (!obj->active)
3033 return 0;
3034
3035 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
3036 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
3037 0, obj->base.write_domain);
3038
3039 return i915_gem_object_wait_rendering(&obj->base, interruptible);
3040}
3041
e47c68e9
EA
3042/**
3043 * Moves a single object to the CPU read, and possibly write domain.
3044 *
3045 * This function returns when the move is complete, including waiting on
3046 * flushes to occur.
3047 */
3048static int
3049i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3050{
1c5d22f7 3051 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3052 int ret;
3053
ba3d8d74 3054 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3055 if (ret != 0)
3056 return ret;
2ef7eeaa 3057
e47c68e9 3058 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3059
e47c68e9
EA
3060 /* If we have a partially-valid cache of the object in the CPU,
3061 * finish invalidating it and free the per-page flags.
2ef7eeaa 3062 */
e47c68e9 3063 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3064
7213342d 3065 if (write) {
2cf34d7b 3066 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3067 if (ret)
3068 return ret;
3069 }
3070
1c5d22f7
CW
3071 old_write_domain = obj->write_domain;
3072 old_read_domains = obj->read_domains;
3073
e47c68e9
EA
3074 /* Flush the CPU cache if it's still invalid. */
3075 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3076 i915_gem_clflush_object(obj);
2ef7eeaa 3077
e47c68e9 3078 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3079 }
3080
3081 /* It should now be out of any other write domains, and we can update
3082 * the domain values for our changes.
3083 */
e47c68e9
EA
3084 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3085
3086 /* If we're writing through the CPU, then the GPU read domains will
3087 * need to be invalidated at next use.
3088 */
3089 if (write) {
c78ec30b 3090 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3091 obj->write_domain = I915_GEM_DOMAIN_CPU;
3092 }
2ef7eeaa 3093
1c5d22f7
CW
3094 trace_i915_gem_object_change_domain(obj,
3095 old_read_domains,
3096 old_write_domain);
3097
2ef7eeaa
EA
3098 return 0;
3099}
3100
673a394b
EA
3101/*
3102 * Set the next domain for the specified object. This
3103 * may not actually perform the necessary flushing/invaliding though,
3104 * as that may want to be batched with other set_domain operations
3105 *
3106 * This is (we hope) the only really tricky part of gem. The goal
3107 * is fairly simple -- track which caches hold bits of the object
3108 * and make sure they remain coherent. A few concrete examples may
3109 * help to explain how it works. For shorthand, we use the notation
3110 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3111 * a pair of read and write domain masks.
3112 *
3113 * Case 1: the batch buffer
3114 *
3115 * 1. Allocated
3116 * 2. Written by CPU
3117 * 3. Mapped to GTT
3118 * 4. Read by GPU
3119 * 5. Unmapped from GTT
3120 * 6. Freed
3121 *
3122 * Let's take these a step at a time
3123 *
3124 * 1. Allocated
3125 * Pages allocated from the kernel may still have
3126 * cache contents, so we set them to (CPU, CPU) always.
3127 * 2. Written by CPU (using pwrite)
3128 * The pwrite function calls set_domain (CPU, CPU) and
3129 * this function does nothing (as nothing changes)
3130 * 3. Mapped by GTT
3131 * This function asserts that the object is not
3132 * currently in any GPU-based read or write domains
3133 * 4. Read by GPU
3134 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3135 * As write_domain is zero, this function adds in the
3136 * current read domains (CPU+COMMAND, 0).
3137 * flush_domains is set to CPU.
3138 * invalidate_domains is set to COMMAND
3139 * clflush is run to get data out of the CPU caches
3140 * then i915_dev_set_domain calls i915_gem_flush to
3141 * emit an MI_FLUSH and drm_agp_chipset_flush
3142 * 5. Unmapped from GTT
3143 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3144 * flush_domains and invalidate_domains end up both zero
3145 * so no flushing/invalidating happens
3146 * 6. Freed
3147 * yay, done
3148 *
3149 * Case 2: The shared render buffer
3150 *
3151 * 1. Allocated
3152 * 2. Mapped to GTT
3153 * 3. Read/written by GPU
3154 * 4. set_domain to (CPU,CPU)
3155 * 5. Read/written by CPU
3156 * 6. Read/written by GPU
3157 *
3158 * 1. Allocated
3159 * Same as last example, (CPU, CPU)
3160 * 2. Mapped to GTT
3161 * Nothing changes (assertions find that it is not in the GPU)
3162 * 3. Read/written by GPU
3163 * execbuffer calls set_domain (RENDER, RENDER)
3164 * flush_domains gets CPU
3165 * invalidate_domains gets GPU
3166 * clflush (obj)
3167 * MI_FLUSH and drm_agp_chipset_flush
3168 * 4. set_domain (CPU, CPU)
3169 * flush_domains gets GPU
3170 * invalidate_domains gets CPU
3171 * wait_rendering (obj) to make sure all drawing is complete.
3172 * This will include an MI_FLUSH to get the data from GPU
3173 * to memory
3174 * clflush (obj) to invalidate the CPU cache
3175 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3176 * 5. Read/written by CPU
3177 * cache lines are loaded and dirtied
3178 * 6. Read written by GPU
3179 * Same as last GPU access
3180 *
3181 * Case 3: The constant buffer
3182 *
3183 * 1. Allocated
3184 * 2. Written by CPU
3185 * 3. Read by GPU
3186 * 4. Updated (written) by CPU again
3187 * 5. Read by GPU
3188 *
3189 * 1. Allocated
3190 * (CPU, CPU)
3191 * 2. Written by CPU
3192 * (CPU, CPU)
3193 * 3. Read by GPU
3194 * (CPU+RENDER, 0)
3195 * flush_domains = CPU
3196 * invalidate_domains = RENDER
3197 * clflush (obj)
3198 * MI_FLUSH
3199 * drm_agp_chipset_flush
3200 * 4. Updated (written) by CPU again
3201 * (CPU, CPU)
3202 * flush_domains = 0 (no previous write domain)
3203 * invalidate_domains = 0 (no new read domains)
3204 * 5. Read by GPU
3205 * (CPU+RENDER, 0)
3206 * flush_domains = CPU
3207 * invalidate_domains = RENDER
3208 * clflush (obj)
3209 * MI_FLUSH
3210 * drm_agp_chipset_flush
3211 */
c0d90829 3212static void
b6651458 3213i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
0f8c6d7c
CW
3214 struct intel_ring_buffer *ring,
3215 struct change_domains *cd)
673a394b 3216{
23010e43 3217 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3218 uint32_t invalidate_domains = 0;
3219 uint32_t flush_domains = 0;
652c393a 3220
673a394b
EA
3221 /*
3222 * If the object isn't moving to a new write domain,
3223 * let the object stay in multiple read domains
3224 */
8b0e378a
EA
3225 if (obj->pending_write_domain == 0)
3226 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3227
3228 /*
3229 * Flush the current write domain if
3230 * the new read domains don't match. Invalidate
3231 * any read domains which differ from the old
3232 * write domain
3233 */
8b0e378a 3234 if (obj->write_domain &&
13b29289
CW
3235 (obj->write_domain != obj->pending_read_domains ||
3236 obj_priv->ring != ring)) {
673a394b 3237 flush_domains |= obj->write_domain;
8b0e378a
EA
3238 invalidate_domains |=
3239 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3240 }
3241 /*
3242 * Invalidate any read caches which may have
3243 * stale data. That is, any new read domains.
3244 */
8b0e378a 3245 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3246 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3247 i915_gem_clflush_object(obj);
673a394b 3248
4a684a41
CW
3249 /* blow away mappings if mapped through GTT */
3250 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3251 i915_gem_release_mmap(obj);
3252
efbeed96
EA
3253 /* The actual obj->write_domain will be updated with
3254 * pending_write_domain after we emit the accumulated flush for all
3255 * of our domain changes in execbuffers (which clears objects'
3256 * write_domains). So if we have a current write domain that we
3257 * aren't changing, set pending_write_domain to that.
3258 */
3259 if (flush_domains == 0 && obj->pending_write_domain == 0)
3260 obj->pending_write_domain = obj->write_domain;
673a394b 3261
0f8c6d7c
CW
3262 cd->invalidate_domains |= invalidate_domains;
3263 cd->flush_domains |= flush_domains;
b6651458 3264 if (flush_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3265 cd->flush_rings |= obj_priv->ring->id;
b6651458 3266 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3267 cd->flush_rings |= ring->id;
673a394b
EA
3268}
3269
3270/**
e47c68e9 3271 * Moves the object from a partially CPU read to a full one.
673a394b 3272 *
e47c68e9
EA
3273 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3274 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3275 */
e47c68e9
EA
3276static void
3277i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3278{
23010e43 3279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3280
e47c68e9
EA
3281 if (!obj_priv->page_cpu_valid)
3282 return;
3283
3284 /* If we're partially in the CPU read domain, finish moving it in.
3285 */
3286 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3287 int i;
3288
3289 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3290 if (obj_priv->page_cpu_valid[i])
3291 continue;
856fa198 3292 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3293 }
e47c68e9
EA
3294 }
3295
3296 /* Free the page_cpu_valid mappings which are now stale, whether
3297 * or not we've got I915_GEM_DOMAIN_CPU.
3298 */
9a298b2a 3299 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3300 obj_priv->page_cpu_valid = NULL;
3301}
3302
3303/**
3304 * Set the CPU read domain on a range of the object.
3305 *
3306 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3307 * not entirely valid. The page_cpu_valid member of the object flags which
3308 * pages have been flushed, and will be respected by
3309 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3310 * of the whole object.
3311 *
3312 * This function returns when the move is complete, including waiting on
3313 * flushes to occur.
3314 */
3315static int
3316i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3317 uint64_t offset, uint64_t size)
3318{
23010e43 3319 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3320 uint32_t old_read_domains;
e47c68e9 3321 int i, ret;
673a394b 3322
e47c68e9
EA
3323 if (offset == 0 && size == obj->size)
3324 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3325
ba3d8d74 3326 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3327 if (ret != 0)
6a47baa6 3328 return ret;
e47c68e9
EA
3329 i915_gem_object_flush_gtt_write_domain(obj);
3330
3331 /* If we're already fully in the CPU read domain, we're done. */
3332 if (obj_priv->page_cpu_valid == NULL &&
3333 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3334 return 0;
673a394b 3335
e47c68e9
EA
3336 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3337 * newly adding I915_GEM_DOMAIN_CPU
3338 */
673a394b 3339 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3340 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3341 GFP_KERNEL);
e47c68e9
EA
3342 if (obj_priv->page_cpu_valid == NULL)
3343 return -ENOMEM;
3344 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3345 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3346
3347 /* Flush the cache on any pages that are still invalid from the CPU's
3348 * perspective.
3349 */
e47c68e9
EA
3350 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3351 i++) {
673a394b
EA
3352 if (obj_priv->page_cpu_valid[i])
3353 continue;
3354
856fa198 3355 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3356
3357 obj_priv->page_cpu_valid[i] = 1;
3358 }
3359
e47c68e9
EA
3360 /* It should now be out of any other write domains, and we can update
3361 * the domain values for our changes.
3362 */
3363 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3364
1c5d22f7 3365 old_read_domains = obj->read_domains;
e47c68e9
EA
3366 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3367
1c5d22f7
CW
3368 trace_i915_gem_object_change_domain(obj,
3369 old_read_domains,
3370 obj->write_domain);
3371
673a394b
EA
3372 return 0;
3373}
3374
673a394b 3375static int
bcf50e27
CW
3376i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
3377 struct drm_file *file_priv,
3378 struct drm_i915_gem_exec_object2 *entry,
3379 struct drm_i915_gem_relocation_entry *reloc)
673a394b 3380{
9af90d19 3381 struct drm_device *dev = obj->base.dev;
bcf50e27
CW
3382 struct drm_gem_object *target_obj;
3383 uint32_t target_offset;
3384 int ret = -EINVAL;
673a394b 3385
bcf50e27
CW
3386 target_obj = drm_gem_object_lookup(dev, file_priv,
3387 reloc->target_handle);
3388 if (target_obj == NULL)
3389 return -ENOENT;
673a394b 3390
bcf50e27 3391 target_offset = to_intel_bo(target_obj)->gtt_offset;
76446cac 3392
bcf50e27
CW
3393#if WATCH_RELOC
3394 DRM_INFO("%s: obj %p offset %08x target %d "
3395 "read %08x write %08x gtt %08x "
3396 "presumed %08x delta %08x\n",
3397 __func__,
3398 obj,
3399 (int) reloc->offset,
3400 (int) reloc->target_handle,
3401 (int) reloc->read_domains,
3402 (int) reloc->write_domain,
3403 (int) target_offset,
3404 (int) reloc->presumed_offset,
3405 reloc->delta);
3406#endif
673a394b 3407
bcf50e27
CW
3408 /* The target buffer should have appeared before us in the
3409 * exec_object list, so it should have a GTT space bound by now.
3410 */
3411 if (target_offset == 0) {
3412 DRM_ERROR("No GTT space found for object %d\n",
3413 reloc->target_handle);
3414 goto err;
3415 }
9af90d19 3416
bcf50e27
CW
3417 /* Validate that the target is in a valid r/w GPU domain */
3418 if (reloc->write_domain & (reloc->write_domain - 1)) {
3419 DRM_ERROR("reloc with multiple write domains: "
3420 "obj %p target %d offset %d "
3421 "read %08x write %08x",
3422 obj, reloc->target_handle,
3423 (int) reloc->offset,
3424 reloc->read_domains,
3425 reloc->write_domain);
3426 goto err;
3427 }
3428 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3429 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3430 DRM_ERROR("reloc with read/write CPU domains: "
3431 "obj %p target %d offset %d "
3432 "read %08x write %08x",
3433 obj, reloc->target_handle,
3434 (int) reloc->offset,
3435 reloc->read_domains,
3436 reloc->write_domain);
3437 goto err;
3438 }
3439 if (reloc->write_domain && target_obj->pending_write_domain &&
3440 reloc->write_domain != target_obj->pending_write_domain) {
3441 DRM_ERROR("Write domain conflict: "
3442 "obj %p target %d offset %d "
3443 "new %08x old %08x\n",
3444 obj, reloc->target_handle,
3445 (int) reloc->offset,
3446 reloc->write_domain,
3447 target_obj->pending_write_domain);
3448 goto err;
3449 }
673a394b 3450
bcf50e27
CW
3451 target_obj->pending_read_domains |= reloc->read_domains;
3452 target_obj->pending_write_domain |= reloc->write_domain;
8542a0bb 3453
bcf50e27
CW
3454 /* If the relocation already has the right value in it, no
3455 * more work needs to be done.
3456 */
3457 if (target_offset == reloc->presumed_offset)
3458 goto out;
673a394b 3459
bcf50e27
CW
3460 /* Check that the relocation address is valid... */
3461 if (reloc->offset > obj->base.size - 4) {
3462 DRM_ERROR("Relocation beyond object bounds: "
3463 "obj %p target %d offset %d size %d.\n",
3464 obj, reloc->target_handle,
3465 (int) reloc->offset,
3466 (int) obj->base.size);
3467 goto err;
3468 }
3469 if (reloc->offset & 3) {
3470 DRM_ERROR("Relocation not 4-byte aligned: "
3471 "obj %p target %d offset %d.\n",
3472 obj, reloc->target_handle,
3473 (int) reloc->offset);
3474 goto err;
3475 }
673a394b 3476
bcf50e27
CW
3477 /* and points to somewhere within the target object. */
3478 if (reloc->delta >= target_obj->size) {
3479 DRM_ERROR("Relocation beyond target object bounds: "
3480 "obj %p target %d delta %d size %d.\n",
3481 obj, reloc->target_handle,
3482 (int) reloc->delta,
3483 (int) target_obj->size);
3484 goto err;
3485 }
673a394b 3486
bcf50e27
CW
3487 reloc->delta += target_offset;
3488 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3489 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
3490 char *vaddr;
673a394b 3491
bcf50e27
CW
3492 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
3493 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
3494 kunmap_atomic(vaddr);
3495 } else {
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 uint32_t __iomem *reloc_entry;
3498 void __iomem *reloc_page;
8542a0bb 3499
bcf50e27
CW
3500 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3501 if (ret)
3502 goto err;
673a394b 3503
bcf50e27
CW
3504 /* Map the page containing the relocation we're going to perform. */
3505 reloc->offset += obj->gtt_offset;
3506 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3507 reloc->offset & PAGE_MASK);
3508 reloc_entry = (uint32_t __iomem *)
3509 (reloc_page + (reloc->offset & ~PAGE_MASK));
3510 iowrite32(reloc->delta, reloc_entry);
3511 io_mapping_unmap_atomic(reloc_page);
3512 }
673a394b 3513
bcf50e27
CW
3514 /* and update the user's relocation entry */
3515 reloc->presumed_offset = target_offset;
b962442e 3516
bcf50e27
CW
3517out:
3518 ret = 0;
3519err:
3520 drm_gem_object_unreference(target_obj);
3521 return ret;
3522}
b962442e 3523
bcf50e27
CW
3524static int
3525i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
3526 struct drm_file *file_priv,
3527 struct drm_i915_gem_exec_object2 *entry)
3528{
3529 struct drm_i915_gem_relocation_entry __user *user_relocs;
3530 int i, ret;
3531
3532 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3533 for (i = 0; i < entry->relocation_count; i++) {
3534 struct drm_i915_gem_relocation_entry reloc;
3535
3536 if (__copy_from_user_inatomic(&reloc,
3537 user_relocs+i,
3538 sizeof(reloc)))
3539 return -EFAULT;
3540
3541 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
3542 if (ret)
3543 return ret;
b962442e 3544
b5dc608c 3545 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
bcf50e27
CW
3546 &reloc.presumed_offset,
3547 sizeof(reloc.presumed_offset)))
3548 return -EFAULT;
b962442e 3549 }
b962442e 3550
bcf50e27
CW
3551 return 0;
3552}
3553
3554static int
3555i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
3556 struct drm_file *file_priv,
3557 struct drm_i915_gem_exec_object2 *entry,
3558 struct drm_i915_gem_relocation_entry *relocs)
3559{
3560 int i, ret;
3561
3562 for (i = 0; i < entry->relocation_count; i++) {
3563 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
3564 if (ret)
3565 return ret;
3566 }
3567
3568 return 0;
673a394b
EA
3569}
3570
40a5f0de 3571static int
bcf50e27
CW
3572i915_gem_execbuffer_relocate(struct drm_device *dev,
3573 struct drm_file *file,
3574 struct drm_gem_object **object_list,
3575 struct drm_i915_gem_exec_object2 *exec_list,
3576 int count)
3577{
3578 int i, ret;
3579
3580 for (i = 0; i < count; i++) {
3581 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3582 obj->base.pending_read_domains = 0;
3583 obj->base.pending_write_domain = 0;
3584 ret = i915_gem_execbuffer_relocate_object(obj, file,
3585 &exec_list[i]);
3586 if (ret)
3587 return ret;
3588 }
3589
3590 return 0;
673a394b
EA
3591}
3592
40a5f0de 3593static int
bcf50e27
CW
3594i915_gem_execbuffer_reserve(struct drm_device *dev,
3595 struct drm_file *file,
3596 struct drm_gem_object **object_list,
3597 struct drm_i915_gem_exec_object2 *exec_list,
3598 int count)
40a5f0de 3599{
9af90d19
CW
3600 struct drm_i915_private *dev_priv = dev->dev_private;
3601 int ret, i, retry;
40a5f0de 3602
9af90d19 3603 /* attempt to pin all of the buffers into the GTT */
5eac3ab4
CW
3604 retry = 0;
3605 do {
9af90d19
CW
3606 ret = 0;
3607 for (i = 0; i < count; i++) {
3608 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3609 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3610 bool need_fence =
3611 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3612 obj->tiling_mode != I915_TILING_NONE;
3613
16e809ac
DV
3614 /* g33/pnv can't fence buffers in the unmappable part */
3615 bool need_mappable =
3616 entry->relocation_count ? true : need_fence;
3617
9af90d19 3618 /* Check fence reg constraints and rebind if necessary */
75e9e915 3619 if (need_mappable && !obj->map_and_fenceable) {
9af90d19
CW
3620 ret = i915_gem_object_unbind(&obj->base);
3621 if (ret)
3622 break;
3623 }
40a5f0de 3624
920afa77 3625 ret = i915_gem_object_pin(&obj->base,
16e809ac 3626 entry->alignment,
75e9e915 3627 need_mappable);
9af90d19
CW
3628 if (ret)
3629 break;
40a5f0de 3630
9af90d19
CW
3631 /*
3632 * Pre-965 chips need a fence register set up in order
3633 * to properly handle blits to/from tiled surfaces.
3634 */
3635 if (need_fence) {
3636 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3637 if (ret) {
3638 i915_gem_object_unpin(&obj->base);
3639 break;
3640 }
40a5f0de 3641
9af90d19
CW
3642 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3643 }
40a5f0de 3644
9af90d19 3645 entry->offset = obj->gtt_offset;
40a5f0de
EA
3646 }
3647
9af90d19
CW
3648 while (i--)
3649 i915_gem_object_unpin(object_list[i]);
3650
5eac3ab4 3651 if (ret != -ENOSPC || retry > 1)
9af90d19
CW
3652 return ret;
3653
5eac3ab4
CW
3654 /* First attempt, just clear anything that is purgeable.
3655 * Second attempt, clear the entire GTT.
3656 */
3657 ret = i915_gem_evict_everything(dev, retry == 0);
9af90d19
CW
3658 if (ret)
3659 return ret;
40a5f0de 3660
5eac3ab4
CW
3661 retry++;
3662 } while (1);
40a5f0de
EA
3663}
3664
bcf50e27
CW
3665static int
3666i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
3667 struct drm_file *file,
3668 struct drm_gem_object **object_list,
3669 struct drm_i915_gem_exec_object2 *exec_list,
3670 int count)
3671{
3672 struct drm_i915_gem_relocation_entry *reloc;
3673 int i, total, ret;
3674
3675 for (i = 0; i < count; i++) {
3676 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3677 obj->in_execbuffer = false;
3678 }
3679
3680 mutex_unlock(&dev->struct_mutex);
3681
3682 total = 0;
3683 for (i = 0; i < count; i++)
3684 total += exec_list[i].relocation_count;
3685
3686 reloc = drm_malloc_ab(total, sizeof(*reloc));
3687 if (reloc == NULL) {
3688 mutex_lock(&dev->struct_mutex);
3689 return -ENOMEM;
3690 }
3691
3692 total = 0;
3693 for (i = 0; i < count; i++) {
3694 struct drm_i915_gem_relocation_entry __user *user_relocs;
3695
3696 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3697
3698 if (copy_from_user(reloc+total, user_relocs,
3699 exec_list[i].relocation_count *
3700 sizeof(*reloc))) {
3701 ret = -EFAULT;
3702 mutex_lock(&dev->struct_mutex);
3703 goto err;
3704 }
3705
3706 total += exec_list[i].relocation_count;
3707 }
3708
3709 ret = i915_mutex_lock_interruptible(dev);
3710 if (ret) {
3711 mutex_lock(&dev->struct_mutex);
3712 goto err;
3713 }
3714
3715 ret = i915_gem_execbuffer_reserve(dev, file,
3716 object_list, exec_list,
3717 count);
3718 if (ret)
3719 goto err;
3720
3721 total = 0;
3722 for (i = 0; i < count; i++) {
3723 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3724 obj->base.pending_read_domains = 0;
3725 obj->base.pending_write_domain = 0;
3726 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
3727 &exec_list[i],
3728 reloc + total);
3729 if (ret)
3730 goto err;
3731
3732 total += exec_list[i].relocation_count;
3733 }
3734
3735 /* Leave the user relocations as are, this is the painfully slow path,
3736 * and we want to avoid the complication of dropping the lock whilst
3737 * having buffers reserved in the aperture and so causing spurious
3738 * ENOSPC for random operations.
3739 */
3740
3741err:
3742 drm_free_large(reloc);
3743 return ret;
3744}
3745
13b29289
CW
3746static int
3747i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3748 struct drm_file *file,
3749 struct intel_ring_buffer *ring,
3750 struct drm_gem_object **objects,
3751 int count)
3752{
0f8c6d7c 3753 struct change_domains cd;
13b29289
CW
3754 int ret, i;
3755
0f8c6d7c
CW
3756 cd.invalidate_domains = 0;
3757 cd.flush_domains = 0;
3758 cd.flush_rings = 0;
13b29289 3759 for (i = 0; i < count; i++)
0f8c6d7c 3760 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
13b29289 3761
0f8c6d7c 3762 if (cd.invalidate_domains | cd.flush_domains) {
13b29289
CW
3763#if WATCH_EXEC
3764 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3765 __func__,
0f8c6d7c
CW
3766 cd.invalidate_domains,
3767 cd.flush_domains);
13b29289
CW
3768#endif
3769 i915_gem_flush(dev, file,
0f8c6d7c
CW
3770 cd.invalidate_domains,
3771 cd.flush_domains,
3772 cd.flush_rings);
13b29289
CW
3773 }
3774
3775 for (i = 0; i < count; i++) {
3776 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3777 /* XXX replace with semaphores */
3778 if (obj->ring && ring != obj->ring) {
3779 ret = i915_gem_object_wait_rendering(&obj->base, true);
3780 if (ret)
3781 return ret;
3782 }
3783 }
3784
3785 return 0;
3786}
3787
673a394b
EA
3788/* Throttle our rendering by waiting until the ring has completed our requests
3789 * emitted over 20 msec ago.
3790 *
b962442e
EA
3791 * Note that if we were to use the current jiffies each time around the loop,
3792 * we wouldn't escape the function with any frames outstanding if the time to
3793 * render a frame was over 20ms.
3794 *
673a394b
EA
3795 * This should get us reasonable parallelism between CPU and GPU but also
3796 * relatively low latency when blocking on a particular request to finish.
3797 */
40a5f0de 3798static int
f787a5f5 3799i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3800{
f787a5f5
CW
3801 struct drm_i915_private *dev_priv = dev->dev_private;
3802 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3803 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3804 struct drm_i915_gem_request *request;
3805 struct intel_ring_buffer *ring = NULL;
3806 u32 seqno = 0;
3807 int ret;
93533c29 3808
1c25595f 3809 spin_lock(&file_priv->mm.lock);
f787a5f5 3810 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3811 if (time_after_eq(request->emitted_jiffies, recent_enough))
3812 break;
40a5f0de 3813
f787a5f5
CW
3814 ring = request->ring;
3815 seqno = request->seqno;
b962442e 3816 }
1c25595f 3817 spin_unlock(&file_priv->mm.lock);
40a5f0de 3818
f787a5f5
CW
3819 if (seqno == 0)
3820 return 0;
2bc43b5c 3821
f787a5f5 3822 ret = 0;
78501eac 3823 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3824 /* And wait for the seqno passing without holding any locks and
3825 * causing extra latency for others. This is safe as the irq
3826 * generation is designed to be run atomically and so is
3827 * lockless.
3828 */
78501eac 3829 ring->user_irq_get(ring);
f787a5f5 3830 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3831 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3832 || atomic_read(&dev_priv->mm.wedged));
78501eac 3833 ring->user_irq_put(ring);
40a5f0de 3834
f787a5f5
CW
3835 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3836 ret = -EIO;
40a5f0de
EA
3837 }
3838
f787a5f5
CW
3839 if (ret == 0)
3840 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3841
3842 return ret;
3843}
3844
83d60795 3845static int
2549d6c2
CW
3846i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3847 uint64_t exec_offset)
83d60795
CW
3848{
3849 uint32_t exec_start, exec_len;
3850
3851 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3852 exec_len = (uint32_t) exec->batch_len;
3853
3854 if ((exec_start | exec_len) & 0x7)
3855 return -EINVAL;
3856
3857 if (!exec_start)
3858 return -EINVAL;
3859
3860 return 0;
3861}
3862
6b95a207 3863static int
2549d6c2
CW
3864validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3865 int count)
6b95a207 3866{
2549d6c2 3867 int i;
6b95a207 3868
2549d6c2
CW
3869 for (i = 0; i < count; i++) {
3870 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
d1d78830 3871 int length; /* limited by fault_in_pages_readable() */
6b95a207 3872
d1d78830
CW
3873 /* First check for malicious input causing overflow */
3874 if (exec[i].relocation_count >
3875 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3876 return -EINVAL;
6b95a207 3877
d1d78830
CW
3878 length = exec[i].relocation_count *
3879 sizeof(struct drm_i915_gem_relocation_entry);
2549d6c2
CW
3880 if (!access_ok(VERIFY_READ, ptr, length))
3881 return -EFAULT;
40a5f0de 3882
b5dc608c
CW
3883 /* we may also need to update the presumed offsets */
3884 if (!access_ok(VERIFY_WRITE, ptr, length))
3885 return -EFAULT;
3886
2549d6c2
CW
3887 if (fault_in_pages_readable(ptr, length))
3888 return -EFAULT;
6b95a207 3889 }
6b95a207 3890
83d60795 3891 return 0;
6b95a207
KH
3892}
3893
8dc5d147 3894static int
76446cac 3895i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3896 struct drm_file *file,
76446cac
JB
3897 struct drm_i915_gem_execbuffer2 *args,
3898 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3899{
3900 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3901 struct drm_gem_object **object_list = NULL;
3902 struct drm_gem_object *batch_obj;
201361a5 3903 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3904 struct drm_i915_gem_request *request = NULL;
9af90d19 3905 int ret, i, flips;
673a394b 3906 uint64_t exec_offset;
673a394b 3907
852835f3
ZN
3908 struct intel_ring_buffer *ring = NULL;
3909
30dbf0c0
CW
3910 ret = i915_gem_check_is_wedged(dev);
3911 if (ret)
3912 return ret;
3913
2549d6c2
CW
3914 ret = validate_exec_list(exec_list, args->buffer_count);
3915 if (ret)
3916 return ret;
3917
673a394b
EA
3918#if WATCH_EXEC
3919 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3920 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3921#endif
549f7365
CW
3922 switch (args->flags & I915_EXEC_RING_MASK) {
3923 case I915_EXEC_DEFAULT:
3924 case I915_EXEC_RENDER:
3925 ring = &dev_priv->render_ring;
3926 break;
3927 case I915_EXEC_BSD:
d1b851fc 3928 if (!HAS_BSD(dev)) {
549f7365 3929 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3930 return -EINVAL;
3931 }
3932 ring = &dev_priv->bsd_ring;
549f7365
CW
3933 break;
3934 case I915_EXEC_BLT:
3935 if (!HAS_BLT(dev)) {
3936 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3937 return -EINVAL;
3938 }
3939 ring = &dev_priv->blt_ring;
3940 break;
3941 default:
3942 DRM_ERROR("execbuf with unknown ring: %d\n",
3943 (int)(args->flags & I915_EXEC_RING_MASK));
3944 return -EINVAL;
d1b851fc
ZN
3945 }
3946
4f481ed2
EA
3947 if (args->buffer_count < 1) {
3948 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3949 return -EINVAL;
3950 }
c8e0f93a 3951 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3952 if (object_list == NULL) {
3953 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3954 args->buffer_count);
3955 ret = -ENOMEM;
3956 goto pre_mutex_err;
3957 }
673a394b 3958
201361a5 3959 if (args->num_cliprects != 0) {
9a298b2a
EA
3960 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3961 GFP_KERNEL);
a40e8d31
OA
3962 if (cliprects == NULL) {
3963 ret = -ENOMEM;
201361a5 3964 goto pre_mutex_err;
a40e8d31 3965 }
201361a5
EA
3966
3967 ret = copy_from_user(cliprects,
3968 (struct drm_clip_rect __user *)
3969 (uintptr_t) args->cliprects_ptr,
3970 sizeof(*cliprects) * args->num_cliprects);
3971 if (ret != 0) {
3972 DRM_ERROR("copy %d cliprects failed: %d\n",
3973 args->num_cliprects, ret);
c877cdce 3974 ret = -EFAULT;
201361a5
EA
3975 goto pre_mutex_err;
3976 }
3977 }
3978
8dc5d147
CW
3979 request = kzalloc(sizeof(*request), GFP_KERNEL);
3980 if (request == NULL) {
3981 ret = -ENOMEM;
40a5f0de 3982 goto pre_mutex_err;
8dc5d147 3983 }
40a5f0de 3984
76c1dec1
CW
3985 ret = i915_mutex_lock_interruptible(dev);
3986 if (ret)
a198bc80 3987 goto pre_mutex_err;
673a394b
EA
3988
3989 if (dev_priv->mm.suspended) {
673a394b 3990 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3991 ret = -EBUSY;
3992 goto pre_mutex_err;
673a394b
EA
3993 }
3994
ac94a962 3995 /* Look up object handles */
673a394b 3996 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3997 struct drm_i915_gem_object *obj_priv;
3998
9af90d19 3999 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
4000 exec_list[i].handle);
4001 if (object_list[i] == NULL) {
4002 DRM_ERROR("Invalid object handle %d at index %d\n",
4003 exec_list[i].handle, i);
0ce907f8
CW
4004 /* prevent error path from reading uninitialized data */
4005 args->buffer_count = i + 1;
bf79cb91 4006 ret = -ENOENT;
673a394b
EA
4007 goto err;
4008 }
b70d11da 4009
23010e43 4010 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
4011 if (obj_priv->in_execbuffer) {
4012 DRM_ERROR("Object %p appears more than once in object list\n",
4013 object_list[i]);
0ce907f8
CW
4014 /* prevent error path from reading uninitialized data */
4015 args->buffer_count = i + 1;
bf79cb91 4016 ret = -EINVAL;
b70d11da
KH
4017 goto err;
4018 }
4019 obj_priv->in_execbuffer = true;
ac94a962 4020 }
673a394b 4021
9af90d19 4022 /* Move the objects en-masse into the GTT, evicting if necessary. */
bcf50e27
CW
4023 ret = i915_gem_execbuffer_reserve(dev, file,
4024 object_list, exec_list,
4025 args->buffer_count);
9af90d19
CW
4026 if (ret)
4027 goto err;
ac94a962 4028
9af90d19 4029 /* The objects are in their final locations, apply the relocations. */
bcf50e27
CW
4030 ret = i915_gem_execbuffer_relocate(dev, file,
4031 object_list, exec_list,
4032 args->buffer_count);
4033 if (ret) {
4034 if (ret == -EFAULT) {
4035 ret = i915_gem_execbuffer_relocate_slow(dev, file,
4036 object_list,
4037 exec_list,
4038 args->buffer_count);
4039 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
4040 }
9af90d19 4041 if (ret)
ac94a962 4042 goto err;
673a394b
EA
4043 }
4044
4045 /* Set the pending read domains for the batch buffer to COMMAND */
4046 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
4047 if (batch_obj->pending_write_domain) {
4048 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
4049 ret = -EINVAL;
4050 goto err;
4051 }
4052 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 4053
9af90d19
CW
4054 /* Sanity check the batch buffer */
4055 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
4056 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
4057 if (ret != 0) {
4058 DRM_ERROR("execbuf with invalid offset/length\n");
4059 goto err;
4060 }
4061
13b29289
CW
4062 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
4063 object_list, args->buffer_count);
4064 if (ret)
4065 goto err;
673a394b 4066
673a394b
EA
4067#if WATCH_COHERENCY
4068 for (i = 0; i < args->buffer_count; i++) {
4069 i915_gem_object_check_coherency(object_list[i],
4070 exec_list[i].handle);
4071 }
4072#endif
4073
673a394b 4074#if WATCH_EXEC
6911a9b8 4075 i915_gem_dump_object(batch_obj,
673a394b
EA
4076 args->batch_len,
4077 __func__,
4078 ~0);
4079#endif
4080
e59f2bac
CW
4081 /* Check for any pending flips. As we only maintain a flip queue depth
4082 * of 1, we can simply insert a WAIT for the next display flip prior
4083 * to executing the batch and avoid stalling the CPU.
4084 */
4085 flips = 0;
4086 for (i = 0; i < args->buffer_count; i++) {
4087 if (object_list[i]->write_domain)
4088 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
4089 }
4090 if (flips) {
4091 int plane, flip_mask;
4092
4093 for (plane = 0; flips >> plane; plane++) {
4094 if (((flips >> plane) & 1) == 0)
4095 continue;
4096
4097 if (plane)
4098 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
4099 else
4100 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
4101
e1f99ce6
CW
4102 ret = intel_ring_begin(ring, 2);
4103 if (ret)
4104 goto err;
4105
78501eac
CW
4106 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
4107 intel_ring_emit(ring, MI_NOOP);
4108 intel_ring_advance(ring);
e59f2bac
CW
4109 }
4110 }
4111
673a394b 4112 /* Exec the batchbuffer */
78501eac 4113 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
4114 if (ret) {
4115 DRM_ERROR("dispatch failed %d\n", ret);
4116 goto err;
4117 }
4118
673a394b
EA
4119 for (i = 0; i < args->buffer_count; i++) {
4120 struct drm_gem_object *obj = object_list[i];
673a394b 4121
7e318e18
CW
4122 obj->read_domains = obj->pending_read_domains;
4123 obj->write_domain = obj->pending_write_domain;
4124
617dbe27 4125 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
4126 if (obj->write_domain) {
4127 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4128 obj_priv->dirty = 1;
4129 list_move_tail(&obj_priv->gpu_write_list,
64193406 4130 &ring->gpu_write_list);
7e318e18
CW
4131 intel_mark_busy(dev, obj);
4132 }
4133
4134 trace_i915_gem_object_change_domain(obj,
4135 obj->read_domains,
4136 obj->write_domain);
673a394b 4137 }
673a394b 4138
7e318e18
CW
4139 /*
4140 * Ensure that the commands in the batch buffer are
4141 * finished before the interrupt fires
4142 */
4143 i915_retire_commands(dev, ring);
4144
3cce469c 4145 if (i915_add_request(dev, file, request, ring))
5d97eb69 4146 i915_gem_next_request_seqno(dev, ring);
3cce469c
CW
4147 else
4148 request = NULL;
673a394b 4149
673a394b 4150err:
b70d11da 4151 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
4152 if (object_list[i] == NULL)
4153 break;
4154
4155 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 4156 drm_gem_object_unreference(object_list[i]);
b70d11da 4157 }
673a394b 4158
673a394b
EA
4159 mutex_unlock(&dev->struct_mutex);
4160
93533c29 4161pre_mutex_err:
8e7d2b2c 4162 drm_free_large(object_list);
9a298b2a 4163 kfree(cliprects);
8dc5d147 4164 kfree(request);
673a394b
EA
4165
4166 return ret;
4167}
4168
76446cac
JB
4169/*
4170 * Legacy execbuffer just creates an exec2 list from the original exec object
4171 * list array and passes it to the real function.
4172 */
4173int
4174i915_gem_execbuffer(struct drm_device *dev, void *data,
4175 struct drm_file *file_priv)
4176{
4177 struct drm_i915_gem_execbuffer *args = data;
4178 struct drm_i915_gem_execbuffer2 exec2;
4179 struct drm_i915_gem_exec_object *exec_list = NULL;
4180 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4181 int ret, i;
4182
4183#if WATCH_EXEC
4184 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4185 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4186#endif
4187
4188 if (args->buffer_count < 1) {
4189 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4190 return -EINVAL;
4191 }
4192
4193 /* Copy in the exec list from userland */
4194 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4195 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4196 if (exec_list == NULL || exec2_list == NULL) {
4197 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4198 args->buffer_count);
4199 drm_free_large(exec_list);
4200 drm_free_large(exec2_list);
4201 return -ENOMEM;
4202 }
4203 ret = copy_from_user(exec_list,
4204 (struct drm_i915_relocation_entry __user *)
4205 (uintptr_t) args->buffers_ptr,
4206 sizeof(*exec_list) * args->buffer_count);
4207 if (ret != 0) {
4208 DRM_ERROR("copy %d exec entries failed %d\n",
4209 args->buffer_count, ret);
4210 drm_free_large(exec_list);
4211 drm_free_large(exec2_list);
4212 return -EFAULT;
4213 }
4214
4215 for (i = 0; i < args->buffer_count; i++) {
4216 exec2_list[i].handle = exec_list[i].handle;
4217 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4218 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4219 exec2_list[i].alignment = exec_list[i].alignment;
4220 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4221 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4222 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4223 else
4224 exec2_list[i].flags = 0;
4225 }
4226
4227 exec2.buffers_ptr = args->buffers_ptr;
4228 exec2.buffer_count = args->buffer_count;
4229 exec2.batch_start_offset = args->batch_start_offset;
4230 exec2.batch_len = args->batch_len;
4231 exec2.DR1 = args->DR1;
4232 exec2.DR4 = args->DR4;
4233 exec2.num_cliprects = args->num_cliprects;
4234 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4235 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4236
4237 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4238 if (!ret) {
4239 /* Copy the new buffer offsets back to the user's exec list. */
4240 for (i = 0; i < args->buffer_count; i++)
4241 exec_list[i].offset = exec2_list[i].offset;
4242 /* ... and back out to userspace */
4243 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4244 (uintptr_t) args->buffers_ptr,
4245 exec_list,
4246 sizeof(*exec_list) * args->buffer_count);
4247 if (ret) {
4248 ret = -EFAULT;
4249 DRM_ERROR("failed to copy %d exec entries "
4250 "back to user (%d)\n",
4251 args->buffer_count, ret);
4252 }
76446cac
JB
4253 }
4254
4255 drm_free_large(exec_list);
4256 drm_free_large(exec2_list);
4257 return ret;
4258}
4259
4260int
4261i915_gem_execbuffer2(struct drm_device *dev, void *data,
4262 struct drm_file *file_priv)
4263{
4264 struct drm_i915_gem_execbuffer2 *args = data;
4265 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4266 int ret;
4267
4268#if WATCH_EXEC
4269 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4270 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4271#endif
4272
4273 if (args->buffer_count < 1) {
4274 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4275 return -EINVAL;
4276 }
4277
4278 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4279 if (exec2_list == NULL) {
4280 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4281 args->buffer_count);
4282 return -ENOMEM;
4283 }
4284 ret = copy_from_user(exec2_list,
4285 (struct drm_i915_relocation_entry __user *)
4286 (uintptr_t) args->buffers_ptr,
4287 sizeof(*exec2_list) * args->buffer_count);
4288 if (ret != 0) {
4289 DRM_ERROR("copy %d exec entries failed %d\n",
4290 args->buffer_count, ret);
4291 drm_free_large(exec2_list);
4292 return -EFAULT;
4293 }
4294
4295 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4296 if (!ret) {
4297 /* Copy the new buffer offsets back to the user's exec list. */
4298 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4299 (uintptr_t) args->buffers_ptr,
4300 exec2_list,
4301 sizeof(*exec2_list) * args->buffer_count);
4302 if (ret) {
4303 ret = -EFAULT;
4304 DRM_ERROR("failed to copy %d exec entries "
4305 "back to user (%d)\n",
4306 args->buffer_count, ret);
4307 }
4308 }
4309
4310 drm_free_large(exec2_list);
4311 return ret;
4312}
4313
673a394b 4314int
920afa77 4315i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
75e9e915 4316 bool map_and_fenceable)
673a394b
EA
4317{
4318 struct drm_device *dev = obj->dev;
f13d3f73 4319 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4320 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4321 int ret;
4322
778c3544 4323 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
75e9e915 4324 BUG_ON(map_and_fenceable && !map_and_fenceable);
23bc5982 4325 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4326
4327 if (obj_priv->gtt_space != NULL) {
a00b10c3 4328 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
75e9e915 4329 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
ae7d49d8
CW
4330 WARN(obj_priv->pin_count,
4331 "bo is already pinned with incorrect alignment:"
75e9e915
DV
4332 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4333 " obj->map_and_fenceable=%d\n",
a00b10c3 4334 obj_priv->gtt_offset, alignment,
75e9e915
DV
4335 map_and_fenceable,
4336 obj_priv->map_and_fenceable);
ac0c6b5a
CW
4337 ret = i915_gem_object_unbind(obj);
4338 if (ret)
4339 return ret;
4340 }
4341 }
4342
673a394b 4343 if (obj_priv->gtt_space == NULL) {
a00b10c3 4344 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 4345 map_and_fenceable);
9731129c 4346 if (ret)
673a394b 4347 return ret;
22c344e9 4348 }
76446cac 4349
7465378f 4350 if (obj_priv->pin_count++ == 0) {
75e9e915 4351 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
f13d3f73 4352 if (!obj_priv->active)
69dc4987 4353 list_move_tail(&obj_priv->mm_list,
f13d3f73 4354 &dev_priv->mm.pinned_list);
673a394b 4355 }
75e9e915 4356 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
673a394b 4357
23bc5982 4358 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4359 return 0;
4360}
4361
4362void
4363i915_gem_object_unpin(struct drm_gem_object *obj)
4364{
4365 struct drm_device *dev = obj->dev;
4366 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4367 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4368
23bc5982 4369 WARN_ON(i915_verify_lists(dev));
7465378f 4370 BUG_ON(obj_priv->pin_count == 0);
673a394b
EA
4371 BUG_ON(obj_priv->gtt_space == NULL);
4372
7465378f 4373 if (--obj_priv->pin_count == 0) {
f13d3f73 4374 if (!obj_priv->active)
69dc4987 4375 list_move_tail(&obj_priv->mm_list,
673a394b 4376 &dev_priv->mm.inactive_list);
a00b10c3 4377 i915_gem_info_remove_pin(dev_priv, obj_priv);
673a394b 4378 }
23bc5982 4379 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4380}
4381
4382int
4383i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4384 struct drm_file *file_priv)
4385{
4386 struct drm_i915_gem_pin *args = data;
4387 struct drm_gem_object *obj;
4388 struct drm_i915_gem_object *obj_priv;
4389 int ret;
4390
1d7cfea1
CW
4391 ret = i915_mutex_lock_interruptible(dev);
4392 if (ret)
4393 return ret;
673a394b
EA
4394
4395 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4396 if (obj == NULL) {
1d7cfea1
CW
4397 ret = -ENOENT;
4398 goto unlock;
673a394b 4399 }
23010e43 4400 obj_priv = to_intel_bo(obj);
673a394b 4401
bb6baf76
CW
4402 if (obj_priv->madv != I915_MADV_WILLNEED) {
4403 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4404 ret = -EINVAL;
4405 goto out;
3ef94daa
CW
4406 }
4407
79e53945
JB
4408 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4409 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4410 args->handle);
1d7cfea1
CW
4411 ret = -EINVAL;
4412 goto out;
79e53945
JB
4413 }
4414
4415 obj_priv->user_pin_count++;
4416 obj_priv->pin_filp = file_priv;
4417 if (obj_priv->user_pin_count == 1) {
75e9e915 4418 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4419 if (ret)
4420 goto out;
673a394b
EA
4421 }
4422
4423 /* XXX - flush the CPU caches for pinned objects
4424 * as the X server doesn't manage domains yet
4425 */
e47c68e9 4426 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4427 args->offset = obj_priv->gtt_offset;
1d7cfea1 4428out:
673a394b 4429 drm_gem_object_unreference(obj);
1d7cfea1 4430unlock:
673a394b 4431 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4432 return ret;
673a394b
EA
4433}
4434
4435int
4436i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4437 struct drm_file *file_priv)
4438{
4439 struct drm_i915_gem_pin *args = data;
4440 struct drm_gem_object *obj;
79e53945 4441 struct drm_i915_gem_object *obj_priv;
76c1dec1 4442 int ret;
673a394b 4443
1d7cfea1
CW
4444 ret = i915_mutex_lock_interruptible(dev);
4445 if (ret)
4446 return ret;
673a394b
EA
4447
4448 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4449 if (obj == NULL) {
1d7cfea1
CW
4450 ret = -ENOENT;
4451 goto unlock;
673a394b 4452 }
23010e43 4453 obj_priv = to_intel_bo(obj);
76c1dec1 4454
79e53945
JB
4455 if (obj_priv->pin_filp != file_priv) {
4456 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4457 args->handle);
1d7cfea1
CW
4458 ret = -EINVAL;
4459 goto out;
79e53945
JB
4460 }
4461 obj_priv->user_pin_count--;
4462 if (obj_priv->user_pin_count == 0) {
4463 obj_priv->pin_filp = NULL;
4464 i915_gem_object_unpin(obj);
4465 }
673a394b 4466
1d7cfea1 4467out:
673a394b 4468 drm_gem_object_unreference(obj);
1d7cfea1 4469unlock:
673a394b 4470 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4471 return ret;
673a394b
EA
4472}
4473
4474int
4475i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4476 struct drm_file *file_priv)
4477{
4478 struct drm_i915_gem_busy *args = data;
4479 struct drm_gem_object *obj;
4480 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4481 int ret;
4482
76c1dec1 4483 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4484 if (ret)
76c1dec1 4485 return ret;
673a394b 4486
673a394b
EA
4487 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4488 if (obj == NULL) {
1d7cfea1
CW
4489 ret = -ENOENT;
4490 goto unlock;
673a394b 4491 }
1d7cfea1 4492 obj_priv = to_intel_bo(obj);
d1b851fc 4493
0be555b6
CW
4494 /* Count all active objects as busy, even if they are currently not used
4495 * by the gpu. Users of this interface expect objects to eventually
4496 * become non-busy without any further actions, therefore emit any
4497 * necessary flushes here.
c4de0a5d 4498 */
0be555b6
CW
4499 args->busy = obj_priv->active;
4500 if (args->busy) {
4501 /* Unconditionally flush objects, even when the gpu still uses this
4502 * object. Userspace calling this function indicates that it wants to
4503 * use this buffer rather sooner than later, so issuing the required
4504 * flush earlier is beneficial.
4505 */
c78ec30b
CW
4506 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4507 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4508 obj_priv->ring,
4509 0, obj->write_domain);
0be555b6
CW
4510
4511 /* Update the active list for the hardware's current position.
4512 * Otherwise this only updates on a delayed timer or when irqs
4513 * are actually unmasked, and our working set ends up being
4514 * larger than required.
4515 */
4516 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4517
4518 args->busy = obj_priv->active;
4519 }
673a394b
EA
4520
4521 drm_gem_object_unreference(obj);
1d7cfea1 4522unlock:
673a394b 4523 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4524 return ret;
673a394b
EA
4525}
4526
4527int
4528i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4529 struct drm_file *file_priv)
4530{
4531 return i915_gem_ring_throttle(dev, file_priv);
4532}
4533
3ef94daa
CW
4534int
4535i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4536 struct drm_file *file_priv)
4537{
4538 struct drm_i915_gem_madvise *args = data;
4539 struct drm_gem_object *obj;
4540 struct drm_i915_gem_object *obj_priv;
76c1dec1 4541 int ret;
3ef94daa
CW
4542
4543 switch (args->madv) {
4544 case I915_MADV_DONTNEED:
4545 case I915_MADV_WILLNEED:
4546 break;
4547 default:
4548 return -EINVAL;
4549 }
4550
1d7cfea1
CW
4551 ret = i915_mutex_lock_interruptible(dev);
4552 if (ret)
4553 return ret;
4554
3ef94daa
CW
4555 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4556 if (obj == NULL) {
1d7cfea1
CW
4557 ret = -ENOENT;
4558 goto unlock;
3ef94daa 4559 }
23010e43 4560 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4561
4562 if (obj_priv->pin_count) {
1d7cfea1
CW
4563 ret = -EINVAL;
4564 goto out;
3ef94daa
CW
4565 }
4566
bb6baf76
CW
4567 if (obj_priv->madv != __I915_MADV_PURGED)
4568 obj_priv->madv = args->madv;
3ef94daa 4569
2d7ef395
CW
4570 /* if the object is no longer bound, discard its backing storage */
4571 if (i915_gem_object_is_purgeable(obj_priv) &&
4572 obj_priv->gtt_space == NULL)
4573 i915_gem_object_truncate(obj);
4574
bb6baf76
CW
4575 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4576
1d7cfea1 4577out:
3ef94daa 4578 drm_gem_object_unreference(obj);
1d7cfea1 4579unlock:
3ef94daa 4580 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4581 return ret;
3ef94daa
CW
4582}
4583
ac52bc56
DV
4584struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4585 size_t size)
4586{
73aa808f 4587 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4588 struct drm_i915_gem_object *obj;
ac52bc56 4589
c397b908
DV
4590 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4591 if (obj == NULL)
4592 return NULL;
673a394b 4593
c397b908
DV
4594 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4595 kfree(obj);
4596 return NULL;
4597 }
673a394b 4598
73aa808f
CW
4599 i915_gem_info_add_obj(dev_priv, size);
4600
c397b908
DV
4601 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4602 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4603
c397b908 4604 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4605 obj->base.driver_private = NULL;
c397b908 4606 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4607 INIT_LIST_HEAD(&obj->mm_list);
4608 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4609 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4610 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
4611 /* Avoid an unnecessary call to unbind on the first bind. */
4612 obj->map_and_fenceable = true;
de151cf6 4613
c397b908
DV
4614 return &obj->base;
4615}
4616
4617int i915_gem_init_object(struct drm_gem_object *obj)
4618{
4619 BUG();
de151cf6 4620
673a394b
EA
4621 return 0;
4622}
4623
be72615b 4624static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4625{
de151cf6 4626 struct drm_device *dev = obj->dev;
be72615b 4627 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4628 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4629 int ret;
673a394b 4630
be72615b
CW
4631 ret = i915_gem_object_unbind(obj);
4632 if (ret == -ERESTARTSYS) {
69dc4987 4633 list_move(&obj_priv->mm_list,
be72615b
CW
4634 &dev_priv->mm.deferred_free_list);
4635 return;
4636 }
673a394b 4637
39a01d1f 4638 if (obj->map_list.map)
7e616158 4639 i915_gem_free_mmap_offset(obj);
de151cf6 4640
c397b908 4641 drm_gem_object_release(obj);
73aa808f 4642 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4643
9a298b2a 4644 kfree(obj_priv->page_cpu_valid);
280b713b 4645 kfree(obj_priv->bit_17);
c397b908 4646 kfree(obj_priv);
673a394b
EA
4647}
4648
be72615b
CW
4649void i915_gem_free_object(struct drm_gem_object *obj)
4650{
4651 struct drm_device *dev = obj->dev;
4652 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4653
4654 trace_i915_gem_object_destroy(obj);
4655
4656 while (obj_priv->pin_count > 0)
4657 i915_gem_object_unpin(obj);
4658
4659 if (obj_priv->phys_obj)
4660 i915_gem_detach_phys_object(dev, obj);
4661
4662 i915_gem_free_object_tail(obj);
4663}
4664
29105ccc
CW
4665int
4666i915_gem_idle(struct drm_device *dev)
4667{
4668 drm_i915_private_t *dev_priv = dev->dev_private;
4669 int ret;
28dfe52a 4670
29105ccc 4671 mutex_lock(&dev->struct_mutex);
1c5d22f7 4672
87acb0a5 4673 if (dev_priv->mm.suspended) {
29105ccc
CW
4674 mutex_unlock(&dev->struct_mutex);
4675 return 0;
28dfe52a
EA
4676 }
4677
29105ccc 4678 ret = i915_gpu_idle(dev);
6dbe2772
KP
4679 if (ret) {
4680 mutex_unlock(&dev->struct_mutex);
673a394b 4681 return ret;
6dbe2772 4682 }
673a394b 4683
29105ccc
CW
4684 /* Under UMS, be paranoid and evict. */
4685 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 4686 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
4687 if (ret) {
4688 mutex_unlock(&dev->struct_mutex);
4689 return ret;
4690 }
4691 }
4692
4693 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4694 * We need to replace this with a semaphore, or something.
4695 * And not confound mm.suspended!
4696 */
4697 dev_priv->mm.suspended = 1;
bc0c7f14 4698 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4699
4700 i915_kernel_lost_context(dev);
6dbe2772 4701 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4702
6dbe2772
KP
4703 mutex_unlock(&dev->struct_mutex);
4704
29105ccc
CW
4705 /* Cancel the retire work handler, which should be idle now. */
4706 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4707
673a394b
EA
4708 return 0;
4709}
4710
e552eb70
JB
4711/*
4712 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4713 * over cache flushing.
4714 */
8187a2b7 4715static int
e552eb70
JB
4716i915_gem_init_pipe_control(struct drm_device *dev)
4717{
4718 drm_i915_private_t *dev_priv = dev->dev_private;
4719 struct drm_gem_object *obj;
4720 struct drm_i915_gem_object *obj_priv;
4721 int ret;
4722
34dc4d44 4723 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4724 if (obj == NULL) {
4725 DRM_ERROR("Failed to allocate seqno page\n");
4726 ret = -ENOMEM;
4727 goto err;
4728 }
4729 obj_priv = to_intel_bo(obj);
4730 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4731
75e9e915 4732 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4733 if (ret)
4734 goto err_unref;
4735
4736 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4737 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4738 if (dev_priv->seqno_page == NULL)
4739 goto err_unpin;
4740
4741 dev_priv->seqno_obj = obj;
4742 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4743
4744 return 0;
4745
4746err_unpin:
4747 i915_gem_object_unpin(obj);
4748err_unref:
4749 drm_gem_object_unreference(obj);
4750err:
4751 return ret;
4752}
4753
8187a2b7
ZN
4754
4755static void
e552eb70
JB
4756i915_gem_cleanup_pipe_control(struct drm_device *dev)
4757{
4758 drm_i915_private_t *dev_priv = dev->dev_private;
4759 struct drm_gem_object *obj;
4760 struct drm_i915_gem_object *obj_priv;
4761
4762 obj = dev_priv->seqno_obj;
4763 obj_priv = to_intel_bo(obj);
4764 kunmap(obj_priv->pages[0]);
4765 i915_gem_object_unpin(obj);
4766 drm_gem_object_unreference(obj);
4767 dev_priv->seqno_obj = NULL;
4768
4769 dev_priv->seqno_page = NULL;
673a394b
EA
4770}
4771
8187a2b7
ZN
4772int
4773i915_gem_init_ringbuffer(struct drm_device *dev)
4774{
4775 drm_i915_private_t *dev_priv = dev->dev_private;
4776 int ret;
68f95ba9 4777
8187a2b7
ZN
4778 if (HAS_PIPE_CONTROL(dev)) {
4779 ret = i915_gem_init_pipe_control(dev);
4780 if (ret)
4781 return ret;
4782 }
68f95ba9 4783
5c1143bb 4784 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4785 if (ret)
4786 goto cleanup_pipe_control;
4787
4788 if (HAS_BSD(dev)) {
5c1143bb 4789 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4790 if (ret)
4791 goto cleanup_render_ring;
d1b851fc 4792 }
68f95ba9 4793
549f7365
CW
4794 if (HAS_BLT(dev)) {
4795 ret = intel_init_blt_ring_buffer(dev);
4796 if (ret)
4797 goto cleanup_bsd_ring;
4798 }
4799
6f392d54
CW
4800 dev_priv->next_seqno = 1;
4801
68f95ba9
CW
4802 return 0;
4803
549f7365 4804cleanup_bsd_ring:
78501eac 4805 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4806cleanup_render_ring:
78501eac 4807 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4808cleanup_pipe_control:
4809 if (HAS_PIPE_CONTROL(dev))
4810 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4811 return ret;
4812}
4813
4814void
4815i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4816{
4817 drm_i915_private_t *dev_priv = dev->dev_private;
4818
78501eac
CW
4819 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4820 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4821 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4822 if (HAS_PIPE_CONTROL(dev))
4823 i915_gem_cleanup_pipe_control(dev);
4824}
4825
673a394b
EA
4826int
4827i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4828 struct drm_file *file_priv)
4829{
4830 drm_i915_private_t *dev_priv = dev->dev_private;
4831 int ret;
4832
79e53945
JB
4833 if (drm_core_check_feature(dev, DRIVER_MODESET))
4834 return 0;
4835
ba1234d1 4836 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4837 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4838 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4839 }
4840
673a394b 4841 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4842 dev_priv->mm.suspended = 0;
4843
4844 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4845 if (ret != 0) {
4846 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4847 return ret;
d816f6ac 4848 }
9bb2d6f9 4849
69dc4987 4850 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4851 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4852 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4853 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4854 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4855 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4856 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4857 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4858 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4859 mutex_unlock(&dev->struct_mutex);
dbb19d30 4860
5f35308b
CW
4861 ret = drm_irq_install(dev);
4862 if (ret)
4863 goto cleanup_ringbuffer;
dbb19d30 4864
673a394b 4865 return 0;
5f35308b
CW
4866
4867cleanup_ringbuffer:
4868 mutex_lock(&dev->struct_mutex);
4869 i915_gem_cleanup_ringbuffer(dev);
4870 dev_priv->mm.suspended = 1;
4871 mutex_unlock(&dev->struct_mutex);
4872
4873 return ret;
673a394b
EA
4874}
4875
4876int
4877i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4878 struct drm_file *file_priv)
4879{
79e53945
JB
4880 if (drm_core_check_feature(dev, DRIVER_MODESET))
4881 return 0;
4882
dbb19d30 4883 drm_irq_uninstall(dev);
e6890f6f 4884 return i915_gem_idle(dev);
673a394b
EA
4885}
4886
4887void
4888i915_gem_lastclose(struct drm_device *dev)
4889{
4890 int ret;
673a394b 4891
e806b495
EA
4892 if (drm_core_check_feature(dev, DRIVER_MODESET))
4893 return;
4894
6dbe2772
KP
4895 ret = i915_gem_idle(dev);
4896 if (ret)
4897 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4898}
4899
64193406
CW
4900static void
4901init_ring_lists(struct intel_ring_buffer *ring)
4902{
4903 INIT_LIST_HEAD(&ring->active_list);
4904 INIT_LIST_HEAD(&ring->request_list);
4905 INIT_LIST_HEAD(&ring->gpu_write_list);
4906}
4907
673a394b
EA
4908void
4909i915_gem_load(struct drm_device *dev)
4910{
b5aa8a0f 4911 int i;
673a394b
EA
4912 drm_i915_private_t *dev_priv = dev->dev_private;
4913
69dc4987 4914 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4915 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4916 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4917 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4918 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4919 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4920 init_ring_lists(&dev_priv->render_ring);
4921 init_ring_lists(&dev_priv->bsd_ring);
4922 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4923 for (i = 0; i < 16; i++)
4924 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4925 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4926 i915_gem_retire_work_handler);
30dbf0c0 4927 init_completion(&dev_priv->error_completion);
31169714 4928
94400120
DA
4929 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4930 if (IS_GEN3(dev)) {
4931 u32 tmp = I915_READ(MI_ARB_STATE);
4932 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4933 /* arb state is a masked write, so set bit + bit in mask */
4934 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4935 I915_WRITE(MI_ARB_STATE, tmp);
4936 }
4937 }
4938
de151cf6 4939 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4940 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4941 dev_priv->fence_reg_start = 3;
de151cf6 4942
a6c45cf0 4943 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4944 dev_priv->num_fence_regs = 16;
4945 else
4946 dev_priv->num_fence_regs = 8;
4947
b5aa8a0f 4948 /* Initialize fence registers to zero */
a6c45cf0
CW
4949 switch (INTEL_INFO(dev)->gen) {
4950 case 6:
4951 for (i = 0; i < 16; i++)
4952 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4953 break;
4954 case 5:
4955 case 4:
b5aa8a0f
GH
4956 for (i = 0; i < 16; i++)
4957 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4958 break;
4959 case 3:
b5aa8a0f
GH
4960 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4961 for (i = 0; i < 8; i++)
4962 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4963 case 2:
4964 for (i = 0; i < 8; i++)
4965 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4966 break;
b5aa8a0f 4967 }
673a394b 4968 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4969 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4970
4971 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4972 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4973 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4974}
71acb5eb
DA
4975
4976/*
4977 * Create a physically contiguous memory object for this object
4978 * e.g. for cursor + overlay regs
4979 */
995b6762
CW
4980static int i915_gem_init_phys_object(struct drm_device *dev,
4981 int id, int size, int align)
71acb5eb
DA
4982{
4983 drm_i915_private_t *dev_priv = dev->dev_private;
4984 struct drm_i915_gem_phys_object *phys_obj;
4985 int ret;
4986
4987 if (dev_priv->mm.phys_objs[id - 1] || !size)
4988 return 0;
4989
9a298b2a 4990 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4991 if (!phys_obj)
4992 return -ENOMEM;
4993
4994 phys_obj->id = id;
4995
6eeefaf3 4996 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4997 if (!phys_obj->handle) {
4998 ret = -ENOMEM;
4999 goto kfree_obj;
5000 }
5001#ifdef CONFIG_X86
5002 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5003#endif
5004
5005 dev_priv->mm.phys_objs[id - 1] = phys_obj;
5006
5007 return 0;
5008kfree_obj:
9a298b2a 5009 kfree(phys_obj);
71acb5eb
DA
5010 return ret;
5011}
5012
995b6762 5013static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
5014{
5015 drm_i915_private_t *dev_priv = dev->dev_private;
5016 struct drm_i915_gem_phys_object *phys_obj;
5017
5018 if (!dev_priv->mm.phys_objs[id - 1])
5019 return;
5020
5021 phys_obj = dev_priv->mm.phys_objs[id - 1];
5022 if (phys_obj->cur_obj) {
5023 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
5024 }
5025
5026#ifdef CONFIG_X86
5027 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5028#endif
5029 drm_pci_free(dev, phys_obj->handle);
5030 kfree(phys_obj);
5031 dev_priv->mm.phys_objs[id - 1] = NULL;
5032}
5033
5034void i915_gem_free_all_phys_object(struct drm_device *dev)
5035{
5036 int i;
5037
260883c8 5038 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
5039 i915_gem_free_phys_object(dev, i);
5040}
5041
5042void i915_gem_detach_phys_object(struct drm_device *dev,
5043 struct drm_gem_object *obj)
5044{
e5281ccd
CW
5045 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5046 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5047 char *vaddr;
71acb5eb 5048 int i;
71acb5eb
DA
5049 int page_count;
5050
71acb5eb
DA
5051 if (!obj_priv->phys_obj)
5052 return;
e5281ccd 5053 vaddr = obj_priv->phys_obj->handle->vaddr;
71acb5eb
DA
5054
5055 page_count = obj->size / PAGE_SIZE;
5056
5057 for (i = 0; i < page_count; i++) {
e5281ccd
CW
5058 struct page *page = read_cache_page_gfp(mapping, i,
5059 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5060 if (!IS_ERR(page)) {
5061 char *dst = kmap_atomic(page);
5062 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
5063 kunmap_atomic(dst);
5064
5065 drm_clflush_pages(&page, 1);
5066
5067 set_page_dirty(page);
5068 mark_page_accessed(page);
5069 page_cache_release(page);
5070 }
71acb5eb 5071 }
71acb5eb 5072 drm_agp_chipset_flush(dev);
d78b47b9 5073
71acb5eb
DA
5074 obj_priv->phys_obj->cur_obj = NULL;
5075 obj_priv->phys_obj = NULL;
5076}
5077
5078int
5079i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
5080 struct drm_gem_object *obj,
5081 int id,
5082 int align)
71acb5eb 5083{
e5281ccd 5084 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
71acb5eb
DA
5085 drm_i915_private_t *dev_priv = dev->dev_private;
5086 struct drm_i915_gem_object *obj_priv;
5087 int ret = 0;
5088 int page_count;
5089 int i;
5090
5091 if (id > I915_MAX_PHYS_OBJECT)
5092 return -EINVAL;
5093
23010e43 5094 obj_priv = to_intel_bo(obj);
71acb5eb
DA
5095
5096 if (obj_priv->phys_obj) {
5097 if (obj_priv->phys_obj->id == id)
5098 return 0;
5099 i915_gem_detach_phys_object(dev, obj);
5100 }
5101
71acb5eb
DA
5102 /* create a new object */
5103 if (!dev_priv->mm.phys_objs[id - 1]) {
5104 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 5105 obj->size, align);
71acb5eb 5106 if (ret) {
aeb565df 5107 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
e5281ccd 5108 return ret;
71acb5eb
DA
5109 }
5110 }
5111
5112 /* bind to the object */
5113 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5114 obj_priv->phys_obj->cur_obj = obj;
5115
71acb5eb
DA
5116 page_count = obj->size / PAGE_SIZE;
5117
5118 for (i = 0; i < page_count; i++) {
e5281ccd
CW
5119 struct page *page;
5120 char *dst, *src;
5121
5122 page = read_cache_page_gfp(mapping, i,
5123 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5124 if (IS_ERR(page))
5125 return PTR_ERR(page);
71acb5eb 5126
ff75b9bc 5127 src = kmap_atomic(page);
e5281ccd 5128 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 5129 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 5130 kunmap_atomic(src);
71acb5eb 5131
e5281ccd
CW
5132 mark_page_accessed(page);
5133 page_cache_release(page);
5134 }
d78b47b9 5135
71acb5eb 5136 return 0;
71acb5eb
DA
5137}
5138
5139static int
5140i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5141 struct drm_i915_gem_pwrite *args,
5142 struct drm_file *file_priv)
5143{
23010e43 5144 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b47b30cc
CW
5145 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
5146 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 5147
b47b30cc 5148 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
71acb5eb 5149
b47b30cc
CW
5150 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
5151 unsigned long unwritten;
5152
5153 /* The physical object once assigned is fixed for the lifetime
5154 * of the obj, so we can safely drop the lock and continue
5155 * to access vaddr.
5156 */
5157 mutex_unlock(&dev->struct_mutex);
5158 unwritten = copy_from_user(vaddr, user_data, args->size);
5159 mutex_lock(&dev->struct_mutex);
5160 if (unwritten)
5161 return -EFAULT;
5162 }
71acb5eb
DA
5163
5164 drm_agp_chipset_flush(dev);
5165 return 0;
5166}
b962442e 5167
f787a5f5 5168void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5169{
f787a5f5 5170 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5171
5172 /* Clean up our request list when the client is going away, so that
5173 * later retire_requests won't dereference our soon-to-be-gone
5174 * file_priv.
5175 */
1c25595f 5176 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5177 while (!list_empty(&file_priv->mm.request_list)) {
5178 struct drm_i915_gem_request *request;
5179
5180 request = list_first_entry(&file_priv->mm.request_list,
5181 struct drm_i915_gem_request,
5182 client_list);
5183 list_del(&request->client_list);
5184 request->file_priv = NULL;
5185 }
1c25595f 5186 spin_unlock(&file_priv->mm.lock);
b962442e 5187}
31169714 5188
1637ef41
CW
5189static int
5190i915_gpu_is_active(struct drm_device *dev)
5191{
5192 drm_i915_private_t *dev_priv = dev->dev_private;
5193 int lists_empty;
5194
1637ef41 5195 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 5196 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
5197
5198 return !lists_empty;
5199}
5200
31169714 5201static int
17250b71
CW
5202i915_gem_inactive_shrink(struct shrinker *shrinker,
5203 int nr_to_scan,
5204 gfp_t gfp_mask)
31169714 5205{
17250b71
CW
5206 struct drm_i915_private *dev_priv =
5207 container_of(shrinker,
5208 struct drm_i915_private,
5209 mm.inactive_shrinker);
5210 struct drm_device *dev = dev_priv->dev;
5211 struct drm_i915_gem_object *obj, *next;
5212 int cnt;
5213
5214 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 5215 return 0;
31169714
CW
5216
5217 /* "fast-path" to count number of available objects */
5218 if (nr_to_scan == 0) {
17250b71
CW
5219 cnt = 0;
5220 list_for_each_entry(obj,
5221 &dev_priv->mm.inactive_list,
5222 mm_list)
5223 cnt++;
5224 mutex_unlock(&dev->struct_mutex);
5225 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5226 }
5227
1637ef41 5228rescan:
31169714 5229 /* first scan for clean buffers */
17250b71 5230 i915_gem_retire_requests(dev);
31169714 5231
17250b71
CW
5232 list_for_each_entry_safe(obj, next,
5233 &dev_priv->mm.inactive_list,
5234 mm_list) {
5235 if (i915_gem_object_is_purgeable(obj)) {
5236 i915_gem_object_unbind(&obj->base);
5237 if (--nr_to_scan == 0)
5238 break;
31169714 5239 }
31169714
CW
5240 }
5241
5242 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5243 cnt = 0;
5244 list_for_each_entry_safe(obj, next,
5245 &dev_priv->mm.inactive_list,
5246 mm_list) {
5247 if (nr_to_scan) {
5248 i915_gem_object_unbind(&obj->base);
5249 nr_to_scan--;
5250 } else
5251 cnt++;
5252 }
5253
5254 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5255 /*
5256 * We are desperate for pages, so as a last resort, wait
5257 * for the GPU to finish and discard whatever we can.
5258 * This has a dramatic impact to reduce the number of
5259 * OOM-killer events whilst running the GPU aggressively.
5260 */
17250b71 5261 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5262 goto rescan;
5263 }
17250b71
CW
5264 mutex_unlock(&dev->struct_mutex);
5265 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5266}