]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: refuse to load on gen6+ without kms
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
d9e86c0e
CW
45static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
05394f39
CW
47static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
71acb5eb 49 struct drm_i915_gem_pwrite *args,
05394f39
CW
50 struct drm_file *file);
51static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 52
17250b71 53static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 54 struct shrink_control *sc);
8c59967c 55static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 56
73aa808f
CW
57/* some bookkeeping */
58static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
59 size_t size)
60{
61 dev_priv->mm.object_count++;
62 dev_priv->mm.object_memory += size;
63}
64
65static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 dev_priv->mm.object_count--;
69 dev_priv->mm.object_memory -= size;
70}
71
21dd3734
CW
72static int
73i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
74{
75 struct drm_i915_private *dev_priv = dev->dev_private;
76 struct completion *x = &dev_priv->error_completion;
77 unsigned long flags;
78 int ret;
79
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 ret = wait_for_completion_interruptible(x);
84 if (ret)
85 return ret;
86
21dd3734
CW
87 if (atomic_read(&dev_priv->mm.wedged)) {
88 /* GPU is hung, bump the completion count to account for
89 * the token we just consumed so that we never hit zero and
90 * end up waiting upon a subsequent completion event that
91 * will never happen.
92 */
93 spin_lock_irqsave(&x->wait.lock, flags);
94 x->done++;
95 spin_unlock_irqrestore(&x->wait.lock, flags);
96 }
97 return 0;
30dbf0c0
CW
98}
99
54cf91dc 100int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 101{
76c1dec1
CW
102 int ret;
103
21dd3734 104 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
105 if (ret)
106 return ret;
107
108 ret = mutex_lock_interruptible(&dev->struct_mutex);
109 if (ret)
110 return ret;
111
23bc5982 112 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
113 return 0;
114}
30dbf0c0 115
7d1c4804 116static inline bool
05394f39 117i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 118{
05394f39 119 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
120}
121
79e53945
JB
122int
123i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 124 struct drm_file *file)
79e53945
JB
125{
126 struct drm_i915_gem_init *args = data;
2021746e
CW
127
128 if (args->gtt_start >= args->gtt_end ||
129 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
130 return -EINVAL;
79e53945
JB
131
132 mutex_lock(&dev->struct_mutex);
644ec02b
DV
133 i915_gem_init_global_gtt(dev, args->gtt_start,
134 args->gtt_end, args->gtt_end);
673a394b
EA
135 mutex_unlock(&dev->struct_mutex);
136
2021746e 137 return 0;
673a394b
EA
138}
139
5a125c3c
EA
140int
141i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 142 struct drm_file *file)
5a125c3c 143{
73aa808f 144 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 145 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
146 struct drm_i915_gem_object *obj;
147 size_t pinned;
5a125c3c
EA
148
149 if (!(dev->driver->driver_features & DRIVER_GEM))
150 return -ENODEV;
151
6299f992 152 pinned = 0;
73aa808f 153 mutex_lock(&dev->struct_mutex);
6299f992
CW
154 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
155 pinned += obj->gtt_space->size;
73aa808f 156 mutex_unlock(&dev->struct_mutex);
5a125c3c 157
6299f992 158 args->aper_size = dev_priv->mm.gtt_total;
0206e353 159 args->aper_available_size = args->aper_size - pinned;
6299f992 160
5a125c3c
EA
161 return 0;
162}
163
ff72145b
DA
164static int
165i915_gem_create(struct drm_file *file,
166 struct drm_device *dev,
167 uint64_t size,
168 uint32_t *handle_p)
673a394b 169{
05394f39 170 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
171 int ret;
172 u32 handle;
673a394b 173
ff72145b 174 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
175 if (size == 0)
176 return -EINVAL;
673a394b
EA
177
178 /* Allocate the new object */
ff72145b 179 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
180 if (obj == NULL)
181 return -ENOMEM;
182
05394f39 183 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 184 if (ret) {
05394f39
CW
185 drm_gem_object_release(&obj->base);
186 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 187 kfree(obj);
673a394b 188 return ret;
1dfd9754 189 }
673a394b 190
202f2fef 191 /* drop reference from allocate - handle holds it now */
05394f39 192 drm_gem_object_unreference(&obj->base);
202f2fef
CW
193 trace_i915_gem_object_create(obj);
194
ff72145b 195 *handle_p = handle;
673a394b
EA
196 return 0;
197}
198
ff72145b
DA
199int
200i915_gem_dumb_create(struct drm_file *file,
201 struct drm_device *dev,
202 struct drm_mode_create_dumb *args)
203{
204 /* have to work out size/pitch and return them */
ed0291fd 205 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
206 args->size = args->pitch * args->height;
207 return i915_gem_create(file, dev,
208 args->size, &args->handle);
209}
210
211int i915_gem_dumb_destroy(struct drm_file *file,
212 struct drm_device *dev,
213 uint32_t handle)
214{
215 return drm_gem_handle_delete(file, handle);
216}
217
218/**
219 * Creates a new mm object and returns a handle to it.
220 */
221int
222i915_gem_create_ioctl(struct drm_device *dev, void *data,
223 struct drm_file *file)
224{
225 struct drm_i915_gem_create *args = data;
226 return i915_gem_create(file, dev,
227 args->size, &args->handle);
228}
229
05394f39 230static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 231{
05394f39 232 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
233
234 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 235 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
236}
237
8461d226
DV
238static inline int
239__copy_to_user_swizzled(char __user *cpu_vaddr,
240 const char *gpu_vaddr, int gpu_offset,
241 int length)
242{
243 int ret, cpu_offset = 0;
244
245 while (length > 0) {
246 int cacheline_end = ALIGN(gpu_offset + 1, 64);
247 int this_length = min(cacheline_end - gpu_offset, length);
248 int swizzled_gpu_offset = gpu_offset ^ 64;
249
250 ret = __copy_to_user(cpu_vaddr + cpu_offset,
251 gpu_vaddr + swizzled_gpu_offset,
252 this_length);
253 if (ret)
254 return ret + length;
255
256 cpu_offset += this_length;
257 gpu_offset += this_length;
258 length -= this_length;
259 }
260
261 return 0;
262}
263
8c59967c
DV
264static inline int
265__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
266 const char *cpu_vaddr,
267 int length)
268{
269 int ret, cpu_offset = 0;
270
271 while (length > 0) {
272 int cacheline_end = ALIGN(gpu_offset + 1, 64);
273 int this_length = min(cacheline_end - gpu_offset, length);
274 int swizzled_gpu_offset = gpu_offset ^ 64;
275
276 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
277 cpu_vaddr + cpu_offset,
278 this_length);
279 if (ret)
280 return ret + length;
281
282 cpu_offset += this_length;
283 gpu_offset += this_length;
284 length -= this_length;
285 }
286
287 return 0;
288}
289
d174bd64
DV
290/* Per-page copy function for the shmem pread fastpath.
291 * Flushes invalid cachelines before reading the target if
292 * needs_clflush is set. */
293static int
294shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
295 char __user *user_data,
296 bool page_do_bit17_swizzling, bool needs_clflush)
297{
298 char *vaddr;
299 int ret;
300
e7e58eb5 301 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
302 return -EINVAL;
303
304 vaddr = kmap_atomic(page);
305 if (needs_clflush)
306 drm_clflush_virt_range(vaddr + shmem_page_offset,
307 page_length);
308 ret = __copy_to_user_inatomic(user_data,
309 vaddr + shmem_page_offset,
310 page_length);
311 kunmap_atomic(vaddr);
312
313 return ret;
314}
315
23c18c71
DV
316static void
317shmem_clflush_swizzled_range(char *addr, unsigned long length,
318 bool swizzled)
319{
e7e58eb5 320 if (unlikely(swizzled)) {
23c18c71
DV
321 unsigned long start = (unsigned long) addr;
322 unsigned long end = (unsigned long) addr + length;
323
324 /* For swizzling simply ensure that we always flush both
325 * channels. Lame, but simple and it works. Swizzled
326 * pwrite/pread is far from a hotpath - current userspace
327 * doesn't use it at all. */
328 start = round_down(start, 128);
329 end = round_up(end, 128);
330
331 drm_clflush_virt_range((void *)start, end - start);
332 } else {
333 drm_clflush_virt_range(addr, length);
334 }
335
336}
337
d174bd64
DV
338/* Only difference to the fast-path function is that this can handle bit17
339 * and uses non-atomic copy and kmap functions. */
340static int
341shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
342 char __user *user_data,
343 bool page_do_bit17_swizzling, bool needs_clflush)
344{
345 char *vaddr;
346 int ret;
347
348 vaddr = kmap(page);
349 if (needs_clflush)
23c18c71
DV
350 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
351 page_length,
352 page_do_bit17_swizzling);
d174bd64
DV
353
354 if (page_do_bit17_swizzling)
355 ret = __copy_to_user_swizzled(user_data,
356 vaddr, shmem_page_offset,
357 page_length);
358 else
359 ret = __copy_to_user(user_data,
360 vaddr + shmem_page_offset,
361 page_length);
362 kunmap(page);
363
364 return ret;
365}
366
eb01459f 367static int
dbf7bff0
DV
368i915_gem_shmem_pread(struct drm_device *dev,
369 struct drm_i915_gem_object *obj,
370 struct drm_i915_gem_pread *args,
371 struct drm_file *file)
eb01459f 372{
05394f39 373 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 374 char __user *user_data;
eb01459f 375 ssize_t remain;
8461d226 376 loff_t offset;
eb2c0c81 377 int shmem_page_offset, page_length, ret = 0;
8461d226 378 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 379 int hit_slowpath = 0;
96d79b52 380 int prefaulted = 0;
8489731c 381 int needs_clflush = 0;
692a576b 382 int release_page;
eb01459f 383
8461d226 384 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
385 remain = args->size;
386
8461d226 387 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 388
8489731c
DV
389 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
390 /* If we're not in the cpu read domain, set ourself into the gtt
391 * read domain and manually flush cachelines (if required). This
392 * optimizes for the case when the gpu will dirty the data
393 * anyway again before the next pread happens. */
394 if (obj->cache_level == I915_CACHE_NONE)
395 needs_clflush = 1;
396 ret = i915_gem_object_set_to_gtt_domain(obj, false);
397 if (ret)
398 return ret;
399 }
400
8461d226 401 offset = args->offset;
eb01459f 402
eb01459f 403 while (remain > 0) {
e5281ccd
CW
404 struct page *page;
405
eb01459f
EA
406 /* Operation in this page
407 *
eb01459f 408 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
409 * page_length = bytes to copy for this page
410 */
c8cbbb8b 411 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
412 page_length = remain;
413 if ((shmem_page_offset + page_length) > PAGE_SIZE)
414 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 415
692a576b
DV
416 if (obj->pages) {
417 page = obj->pages[offset >> PAGE_SHIFT];
418 release_page = 0;
419 } else {
420 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
421 if (IS_ERR(page)) {
422 ret = PTR_ERR(page);
423 goto out;
424 }
425 release_page = 1;
b65552f0 426 }
e5281ccd 427
8461d226
DV
428 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
429 (page_to_phys(page) & (1 << 17)) != 0;
430
d174bd64
DV
431 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
432 user_data, page_do_bit17_swizzling,
433 needs_clflush);
434 if (ret == 0)
435 goto next_page;
dbf7bff0
DV
436
437 hit_slowpath = 1;
692a576b 438 page_cache_get(page);
dbf7bff0
DV
439 mutex_unlock(&dev->struct_mutex);
440
96d79b52 441 if (!prefaulted) {
f56f821f 442 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
443 /* Userspace is tricking us, but we've already clobbered
444 * its pages with the prefault and promised to write the
445 * data up to the first fault. Hence ignore any errors
446 * and just continue. */
447 (void)ret;
448 prefaulted = 1;
449 }
450
d174bd64
DV
451 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
452 user_data, page_do_bit17_swizzling,
453 needs_clflush);
eb01459f 454
dbf7bff0 455 mutex_lock(&dev->struct_mutex);
692a576b 456 page_cache_release(page);
dbf7bff0 457next_page:
e5281ccd 458 mark_page_accessed(page);
692a576b
DV
459 if (release_page)
460 page_cache_release(page);
e5281ccd 461
8461d226
DV
462 if (ret) {
463 ret = -EFAULT;
464 goto out;
465 }
466
eb01459f 467 remain -= page_length;
8461d226 468 user_data += page_length;
eb01459f
EA
469 offset += page_length;
470 }
471
4f27b75d 472out:
dbf7bff0
DV
473 if (hit_slowpath) {
474 /* Fixup: Kill any reinstated backing storage pages */
475 if (obj->madv == __I915_MADV_PURGED)
476 i915_gem_object_truncate(obj);
477 }
eb01459f
EA
478
479 return ret;
480}
481
673a394b
EA
482/**
483 * Reads data from the object referenced by handle.
484 *
485 * On error, the contents of *data are undefined.
486 */
487int
488i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 489 struct drm_file *file)
673a394b
EA
490{
491 struct drm_i915_gem_pread *args = data;
05394f39 492 struct drm_i915_gem_object *obj;
35b62a89 493 int ret = 0;
673a394b 494
51311d0a
CW
495 if (args->size == 0)
496 return 0;
497
498 if (!access_ok(VERIFY_WRITE,
499 (char __user *)(uintptr_t)args->data_ptr,
500 args->size))
501 return -EFAULT;
502
4f27b75d 503 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 504 if (ret)
4f27b75d 505 return ret;
673a394b 506
05394f39 507 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 508 if (&obj->base == NULL) {
1d7cfea1
CW
509 ret = -ENOENT;
510 goto unlock;
4f27b75d 511 }
673a394b 512
7dcd2499 513 /* Bounds check source. */
05394f39
CW
514 if (args->offset > obj->base.size ||
515 args->size > obj->base.size - args->offset) {
ce9d419d 516 ret = -EINVAL;
35b62a89 517 goto out;
ce9d419d
CW
518 }
519
db53a302
CW
520 trace_i915_gem_object_pread(obj, args->offset, args->size);
521
dbf7bff0 522 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 523
35b62a89 524out:
05394f39 525 drm_gem_object_unreference(&obj->base);
1d7cfea1 526unlock:
4f27b75d 527 mutex_unlock(&dev->struct_mutex);
eb01459f 528 return ret;
673a394b
EA
529}
530
0839ccb8
KP
531/* This is the fast write path which cannot handle
532 * page faults in the source data
9b7530cc 533 */
0839ccb8
KP
534
535static inline int
536fast_user_write(struct io_mapping *mapping,
537 loff_t page_base, int page_offset,
538 char __user *user_data,
539 int length)
9b7530cc 540{
9b7530cc 541 char *vaddr_atomic;
0839ccb8 542 unsigned long unwritten;
9b7530cc 543
3e4d3af5 544 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
545 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
546 user_data, length);
3e4d3af5 547 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 548 return unwritten;
0839ccb8
KP
549}
550
3de09aa3
EA
551/**
552 * This is the fast pwrite path, where we copy the data directly from the
553 * user into the GTT, uncached.
554 */
673a394b 555static int
05394f39
CW
556i915_gem_gtt_pwrite_fast(struct drm_device *dev,
557 struct drm_i915_gem_object *obj,
3de09aa3 558 struct drm_i915_gem_pwrite *args,
05394f39 559 struct drm_file *file)
673a394b 560{
0839ccb8 561 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 562 ssize_t remain;
0839ccb8 563 loff_t offset, page_base;
673a394b 564 char __user *user_data;
935aaa69
DV
565 int page_offset, page_length, ret;
566
567 ret = i915_gem_object_pin(obj, 0, true);
568 if (ret)
569 goto out;
570
571 ret = i915_gem_object_set_to_gtt_domain(obj, true);
572 if (ret)
573 goto out_unpin;
574
575 ret = i915_gem_object_put_fence(obj);
576 if (ret)
577 goto out_unpin;
673a394b
EA
578
579 user_data = (char __user *) (uintptr_t) args->data_ptr;
580 remain = args->size;
673a394b 581
05394f39 582 offset = obj->gtt_offset + args->offset;
673a394b
EA
583
584 while (remain > 0) {
585 /* Operation in this page
586 *
0839ccb8
KP
587 * page_base = page offset within aperture
588 * page_offset = offset within page
589 * page_length = bytes to copy for this page
673a394b 590 */
c8cbbb8b
CW
591 page_base = offset & PAGE_MASK;
592 page_offset = offset_in_page(offset);
0839ccb8
KP
593 page_length = remain;
594 if ((page_offset + remain) > PAGE_SIZE)
595 page_length = PAGE_SIZE - page_offset;
596
0839ccb8 597 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
598 * source page isn't available. Return the error and we'll
599 * retry in the slow path.
0839ccb8 600 */
fbd5a26d 601 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
602 page_offset, user_data, page_length)) {
603 ret = -EFAULT;
604 goto out_unpin;
605 }
673a394b 606
0839ccb8
KP
607 remain -= page_length;
608 user_data += page_length;
609 offset += page_length;
673a394b 610 }
673a394b 611
935aaa69
DV
612out_unpin:
613 i915_gem_object_unpin(obj);
614out:
3de09aa3
EA
615 return ret;
616}
617
d174bd64
DV
618/* Per-page copy function for the shmem pwrite fastpath.
619 * Flushes invalid cachelines before writing to the target if
620 * needs_clflush_before is set and flushes out any written cachelines after
621 * writing if needs_clflush is set. */
622static int
623shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
624 char __user *user_data,
625 bool page_do_bit17_swizzling,
626 bool needs_clflush_before,
627 bool needs_clflush_after)
628{
629 char *vaddr;
630 int ret;
631
e7e58eb5 632 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
633 return -EINVAL;
634
635 vaddr = kmap_atomic(page);
636 if (needs_clflush_before)
637 drm_clflush_virt_range(vaddr + shmem_page_offset,
638 page_length);
639 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
640 user_data,
641 page_length);
642 if (needs_clflush_after)
643 drm_clflush_virt_range(vaddr + shmem_page_offset,
644 page_length);
645 kunmap_atomic(vaddr);
646
647 return ret;
648}
649
650/* Only difference to the fast-path function is that this can handle bit17
651 * and uses non-atomic copy and kmap functions. */
652static int
653shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658{
659 char *vaddr;
660 int ret;
661
662 vaddr = kmap(page);
e7e58eb5 663 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
664 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
665 page_length,
666 page_do_bit17_swizzling);
d174bd64
DV
667 if (page_do_bit17_swizzling)
668 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
669 user_data,
670 page_length);
671 else
672 ret = __copy_from_user(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
23c18c71
DV
676 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
677 page_length,
678 page_do_bit17_swizzling);
d174bd64
DV
679 kunmap(page);
680
681 return ret;
682}
683
3043c60c 684static int
e244a443
DV
685i915_gem_shmem_pwrite(struct drm_device *dev,
686 struct drm_i915_gem_object *obj,
687 struct drm_i915_gem_pwrite *args,
688 struct drm_file *file)
40123c1f 689{
05394f39 690 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 691 ssize_t remain;
8c59967c
DV
692 loff_t offset;
693 char __user *user_data;
eb2c0c81 694 int shmem_page_offset, page_length, ret = 0;
8c59967c 695 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 696 int hit_slowpath = 0;
58642885
DV
697 int needs_clflush_after = 0;
698 int needs_clflush_before = 0;
692a576b 699 int release_page;
40123c1f 700
8c59967c 701 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
702 remain = args->size;
703
8c59967c 704 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 705
58642885
DV
706 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
707 /* If we're not in the cpu write domain, set ourself into the gtt
708 * write domain and manually flush cachelines (if required). This
709 * optimizes for the case when the gpu will use the data
710 * right away and we therefore have to clflush anyway. */
711 if (obj->cache_level == I915_CACHE_NONE)
712 needs_clflush_after = 1;
713 ret = i915_gem_object_set_to_gtt_domain(obj, true);
714 if (ret)
715 return ret;
716 }
717 /* Same trick applies for invalidate partially written cachelines before
718 * writing. */
719 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
720 && obj->cache_level == I915_CACHE_NONE)
721 needs_clflush_before = 1;
722
673a394b 723 offset = args->offset;
05394f39 724 obj->dirty = 1;
673a394b 725
40123c1f 726 while (remain > 0) {
e5281ccd 727 struct page *page;
58642885 728 int partial_cacheline_write;
e5281ccd 729
40123c1f
EA
730 /* Operation in this page
731 *
40123c1f 732 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
733 * page_length = bytes to copy for this page
734 */
c8cbbb8b 735 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
736
737 page_length = remain;
738 if ((shmem_page_offset + page_length) > PAGE_SIZE)
739 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 740
58642885
DV
741 /* If we don't overwrite a cacheline completely we need to be
742 * careful to have up-to-date data by first clflushing. Don't
743 * overcomplicate things and flush the entire patch. */
744 partial_cacheline_write = needs_clflush_before &&
745 ((shmem_page_offset | page_length)
746 & (boot_cpu_data.x86_clflush_size - 1));
747
692a576b
DV
748 if (obj->pages) {
749 page = obj->pages[offset >> PAGE_SHIFT];
750 release_page = 0;
751 } else {
752 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
753 if (IS_ERR(page)) {
754 ret = PTR_ERR(page);
755 goto out;
756 }
757 release_page = 1;
e5281ccd
CW
758 }
759
8c59967c
DV
760 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
761 (page_to_phys(page) & (1 << 17)) != 0;
762
d174bd64
DV
763 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
764 user_data, page_do_bit17_swizzling,
765 partial_cacheline_write,
766 needs_clflush_after);
767 if (ret == 0)
768 goto next_page;
e244a443
DV
769
770 hit_slowpath = 1;
692a576b 771 page_cache_get(page);
e244a443
DV
772 mutex_unlock(&dev->struct_mutex);
773
d174bd64
DV
774 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
775 user_data, page_do_bit17_swizzling,
776 partial_cacheline_write,
777 needs_clflush_after);
40123c1f 778
e244a443 779 mutex_lock(&dev->struct_mutex);
692a576b 780 page_cache_release(page);
e244a443 781next_page:
e5281ccd
CW
782 set_page_dirty(page);
783 mark_page_accessed(page);
692a576b
DV
784 if (release_page)
785 page_cache_release(page);
e5281ccd 786
8c59967c
DV
787 if (ret) {
788 ret = -EFAULT;
789 goto out;
790 }
791
40123c1f 792 remain -= page_length;
8c59967c 793 user_data += page_length;
40123c1f 794 offset += page_length;
673a394b
EA
795 }
796
fbd5a26d 797out:
e244a443
DV
798 if (hit_slowpath) {
799 /* Fixup: Kill any reinstated backing storage pages */
800 if (obj->madv == __I915_MADV_PURGED)
801 i915_gem_object_truncate(obj);
802 /* and flush dirty cachelines in case the object isn't in the cpu write
803 * domain anymore. */
804 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
805 i915_gem_clflush_object(obj);
806 intel_gtt_chipset_flush();
807 }
8c59967c 808 }
673a394b 809
58642885
DV
810 if (needs_clflush_after)
811 intel_gtt_chipset_flush();
812
40123c1f 813 return ret;
673a394b
EA
814}
815
816/**
817 * Writes data to the object referenced by handle.
818 *
819 * On error, the contents of the buffer that were to be modified are undefined.
820 */
821int
822i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 823 struct drm_file *file)
673a394b
EA
824{
825 struct drm_i915_gem_pwrite *args = data;
05394f39 826 struct drm_i915_gem_object *obj;
51311d0a
CW
827 int ret;
828
829 if (args->size == 0)
830 return 0;
831
832 if (!access_ok(VERIFY_READ,
833 (char __user *)(uintptr_t)args->data_ptr,
834 args->size))
835 return -EFAULT;
836
f56f821f
DV
837 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
838 args->size);
51311d0a
CW
839 if (ret)
840 return -EFAULT;
673a394b 841
fbd5a26d 842 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 843 if (ret)
fbd5a26d 844 return ret;
1d7cfea1 845
05394f39 846 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 847 if (&obj->base == NULL) {
1d7cfea1
CW
848 ret = -ENOENT;
849 goto unlock;
fbd5a26d 850 }
673a394b 851
7dcd2499 852 /* Bounds check destination. */
05394f39
CW
853 if (args->offset > obj->base.size ||
854 args->size > obj->base.size - args->offset) {
ce9d419d 855 ret = -EINVAL;
35b62a89 856 goto out;
ce9d419d
CW
857 }
858
db53a302
CW
859 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
860
935aaa69 861 ret = -EFAULT;
673a394b
EA
862 /* We can only do the GTT pwrite on untiled buffers, as otherwise
863 * it would end up going through the fenced access, and we'll get
864 * different detiling behavior between reading and writing.
865 * pread/pwrite currently are reading and writing from the CPU
866 * perspective, requiring manual detiling by the client.
867 */
5c0480f2 868 if (obj->phys_obj) {
fbd5a26d 869 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
870 goto out;
871 }
872
873 if (obj->gtt_space &&
3ae53783 874 obj->cache_level == I915_CACHE_NONE &&
ffc62976 875 obj->map_and_fenceable &&
5c0480f2 876 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 877 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
878 /* Note that the gtt paths might fail with non-page-backed user
879 * pointers (e.g. gtt mappings when moving data between
880 * textures). Fallback to the shmem path in that case. */
fbd5a26d 881 }
673a394b 882
935aaa69
DV
883 if (ret == -EFAULT)
884 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 885
35b62a89 886out:
05394f39 887 drm_gem_object_unreference(&obj->base);
1d7cfea1 888unlock:
fbd5a26d 889 mutex_unlock(&dev->struct_mutex);
673a394b
EA
890 return ret;
891}
892
893/**
2ef7eeaa
EA
894 * Called when user space prepares to use an object with the CPU, either
895 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
896 */
897int
898i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 899 struct drm_file *file)
673a394b
EA
900{
901 struct drm_i915_gem_set_domain *args = data;
05394f39 902 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
903 uint32_t read_domains = args->read_domains;
904 uint32_t write_domain = args->write_domain;
673a394b
EA
905 int ret;
906
907 if (!(dev->driver->driver_features & DRIVER_GEM))
908 return -ENODEV;
909
2ef7eeaa 910 /* Only handle setting domains to types used by the CPU. */
21d509e3 911 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
912 return -EINVAL;
913
21d509e3 914 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
915 return -EINVAL;
916
917 /* Having something in the write domain implies it's in the read
918 * domain, and only that read domain. Enforce that in the request.
919 */
920 if (write_domain != 0 && read_domains != write_domain)
921 return -EINVAL;
922
76c1dec1 923 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 924 if (ret)
76c1dec1 925 return ret;
1d7cfea1 926
05394f39 927 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 928 if (&obj->base == NULL) {
1d7cfea1
CW
929 ret = -ENOENT;
930 goto unlock;
76c1dec1 931 }
673a394b 932
2ef7eeaa
EA
933 if (read_domains & I915_GEM_DOMAIN_GTT) {
934 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
935
936 /* Silently promote "you're not bound, there was nothing to do"
937 * to success, since the client was just asking us to
938 * make sure everything was done.
939 */
940 if (ret == -EINVAL)
941 ret = 0;
2ef7eeaa 942 } else {
e47c68e9 943 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
944 }
945
05394f39 946 drm_gem_object_unreference(&obj->base);
1d7cfea1 947unlock:
673a394b
EA
948 mutex_unlock(&dev->struct_mutex);
949 return ret;
950}
951
952/**
953 * Called when user space has done writes to this buffer
954 */
955int
956i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 957 struct drm_file *file)
673a394b
EA
958{
959 struct drm_i915_gem_sw_finish *args = data;
05394f39 960 struct drm_i915_gem_object *obj;
673a394b
EA
961 int ret = 0;
962
963 if (!(dev->driver->driver_features & DRIVER_GEM))
964 return -ENODEV;
965
76c1dec1 966 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 967 if (ret)
76c1dec1 968 return ret;
1d7cfea1 969
05394f39 970 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 971 if (&obj->base == NULL) {
1d7cfea1
CW
972 ret = -ENOENT;
973 goto unlock;
673a394b
EA
974 }
975
673a394b 976 /* Pinned buffers may be scanout, so flush the cache */
05394f39 977 if (obj->pin_count)
e47c68e9
EA
978 i915_gem_object_flush_cpu_write_domain(obj);
979
05394f39 980 drm_gem_object_unreference(&obj->base);
1d7cfea1 981unlock:
673a394b
EA
982 mutex_unlock(&dev->struct_mutex);
983 return ret;
984}
985
986/**
987 * Maps the contents of an object, returning the address it is mapped
988 * into.
989 *
990 * While the mapping holds a reference on the contents of the object, it doesn't
991 * imply a ref on the object itself.
992 */
993int
994i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_mmap *args = data;
998 struct drm_gem_object *obj;
673a394b
EA
999 unsigned long addr;
1000
1001 if (!(dev->driver->driver_features & DRIVER_GEM))
1002 return -ENODEV;
1003
05394f39 1004 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1005 if (obj == NULL)
bf79cb91 1006 return -ENOENT;
673a394b 1007
673a394b
EA
1008 down_write(&current->mm->mmap_sem);
1009 addr = do_mmap(obj->filp, 0, args->size,
1010 PROT_READ | PROT_WRITE, MAP_SHARED,
1011 args->offset);
1012 up_write(&current->mm->mmap_sem);
bc9025bd 1013 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1014 if (IS_ERR((void *)addr))
1015 return addr;
1016
1017 args->addr_ptr = (uint64_t) addr;
1018
1019 return 0;
1020}
1021
de151cf6
JB
1022/**
1023 * i915_gem_fault - fault a page into the GTT
1024 * vma: VMA in question
1025 * vmf: fault info
1026 *
1027 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1028 * from userspace. The fault handler takes care of binding the object to
1029 * the GTT (if needed), allocating and programming a fence register (again,
1030 * only if needed based on whether the old reg is still valid or the object
1031 * is tiled) and inserting a new PTE into the faulting process.
1032 *
1033 * Note that the faulting process may involve evicting existing objects
1034 * from the GTT and/or fence registers to make room. So performance may
1035 * suffer if the GTT working set is large or there are few fence registers
1036 * left.
1037 */
1038int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1039{
05394f39
CW
1040 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1041 struct drm_device *dev = obj->base.dev;
7d1c4804 1042 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1043 pgoff_t page_offset;
1044 unsigned long pfn;
1045 int ret = 0;
0f973f27 1046 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1047
1048 /* We don't use vmf->pgoff since that has the fake offset */
1049 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1050 PAGE_SHIFT;
1051
d9bc7e9f
CW
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto out;
a00b10c3 1055
db53a302
CW
1056 trace_i915_gem_object_fault(obj, page_offset, true, write);
1057
d9bc7e9f 1058 /* Now bind it into the GTT if needed */
919926ae
CW
1059 if (!obj->map_and_fenceable) {
1060 ret = i915_gem_object_unbind(obj);
1061 if (ret)
1062 goto unlock;
a00b10c3 1063 }
05394f39 1064 if (!obj->gtt_space) {
75e9e915 1065 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1066 if (ret)
1067 goto unlock;
de151cf6 1068
e92d03bf
EA
1069 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1070 if (ret)
1071 goto unlock;
1072 }
4a684a41 1073
74898d7e
DV
1074 if (!obj->has_global_gtt_mapping)
1075 i915_gem_gtt_bind_object(obj, obj->cache_level);
1076
d9e86c0e
CW
1077 if (obj->tiling_mode == I915_TILING_NONE)
1078 ret = i915_gem_object_put_fence(obj);
1079 else
ce453d81 1080 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1081 if (ret)
1082 goto unlock;
de151cf6 1083
05394f39
CW
1084 if (i915_gem_object_is_inactive(obj))
1085 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1086
6299f992
CW
1087 obj->fault_mappable = true;
1088
05394f39 1089 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1090 page_offset;
1091
1092 /* Finally, remap it using the new GTT offset */
1093 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1094unlock:
de151cf6 1095 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1096out:
de151cf6 1097 switch (ret) {
d9bc7e9f 1098 case -EIO:
045e769a 1099 case -EAGAIN:
d9bc7e9f
CW
1100 /* Give the error handler a chance to run and move the
1101 * objects off the GPU active list. Next time we service the
1102 * fault, we should be able to transition the page into the
1103 * GTT without touching the GPU (and so avoid further
1104 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1105 * with coherency, just lost writes.
1106 */
045e769a 1107 set_need_resched();
c715089f
CW
1108 case 0:
1109 case -ERESTARTSYS:
bed636ab 1110 case -EINTR:
c715089f 1111 return VM_FAULT_NOPAGE;
de151cf6 1112 case -ENOMEM:
de151cf6 1113 return VM_FAULT_OOM;
de151cf6 1114 default:
c715089f 1115 return VM_FAULT_SIGBUS;
de151cf6
JB
1116 }
1117}
1118
901782b2
CW
1119/**
1120 * i915_gem_release_mmap - remove physical page mappings
1121 * @obj: obj in question
1122 *
af901ca1 1123 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1124 * relinquish ownership of the pages back to the system.
1125 *
1126 * It is vital that we remove the page mapping if we have mapped a tiled
1127 * object through the GTT and then lose the fence register due to
1128 * resource pressure. Similarly if the object has been moved out of the
1129 * aperture, than pages mapped into userspace must be revoked. Removing the
1130 * mapping will then trigger a page fault on the next user access, allowing
1131 * fixup by i915_gem_fault().
1132 */
d05ca301 1133void
05394f39 1134i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1135{
6299f992
CW
1136 if (!obj->fault_mappable)
1137 return;
901782b2 1138
f6e47884
CW
1139 if (obj->base.dev->dev_mapping)
1140 unmap_mapping_range(obj->base.dev->dev_mapping,
1141 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1142 obj->base.size, 1);
fb7d516a 1143
6299f992 1144 obj->fault_mappable = false;
901782b2
CW
1145}
1146
92b88aeb 1147static uint32_t
e28f8711 1148i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1149{
e28f8711 1150 uint32_t gtt_size;
92b88aeb
CW
1151
1152 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1153 tiling_mode == I915_TILING_NONE)
1154 return size;
92b88aeb
CW
1155
1156 /* Previous chips need a power-of-two fence region when tiling */
1157 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1158 gtt_size = 1024*1024;
92b88aeb 1159 else
e28f8711 1160 gtt_size = 512*1024;
92b88aeb 1161
e28f8711
CW
1162 while (gtt_size < size)
1163 gtt_size <<= 1;
92b88aeb 1164
e28f8711 1165 return gtt_size;
92b88aeb
CW
1166}
1167
de151cf6
JB
1168/**
1169 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1170 * @obj: object to check
1171 *
1172 * Return the required GTT alignment for an object, taking into account
5e783301 1173 * potential fence register mapping.
de151cf6
JB
1174 */
1175static uint32_t
e28f8711
CW
1176i915_gem_get_gtt_alignment(struct drm_device *dev,
1177 uint32_t size,
1178 int tiling_mode)
de151cf6 1179{
de151cf6
JB
1180 /*
1181 * Minimum alignment is 4k (GTT page size), but might be greater
1182 * if a fence register is needed for the object.
1183 */
a00b10c3 1184 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1185 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1186 return 4096;
1187
a00b10c3
CW
1188 /*
1189 * Previous chips need to be aligned to the size of the smallest
1190 * fence register that can contain the object.
1191 */
e28f8711 1192 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1193}
1194
5e783301
DV
1195/**
1196 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1197 * unfenced object
e28f8711
CW
1198 * @dev: the device
1199 * @size: size of the object
1200 * @tiling_mode: tiling mode of the object
5e783301
DV
1201 *
1202 * Return the required GTT alignment for an object, only taking into account
1203 * unfenced tiled surface requirements.
1204 */
467cffba 1205uint32_t
e28f8711
CW
1206i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1207 uint32_t size,
1208 int tiling_mode)
5e783301 1209{
5e783301
DV
1210 /*
1211 * Minimum alignment is 4k (GTT page size) for sane hw.
1212 */
1213 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1214 tiling_mode == I915_TILING_NONE)
5e783301
DV
1215 return 4096;
1216
e28f8711
CW
1217 /* Previous hardware however needs to be aligned to a power-of-two
1218 * tile height. The simplest method for determining this is to reuse
1219 * the power-of-tile object size.
5e783301 1220 */
e28f8711 1221 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1222}
1223
de151cf6 1224int
ff72145b
DA
1225i915_gem_mmap_gtt(struct drm_file *file,
1226 struct drm_device *dev,
1227 uint32_t handle,
1228 uint64_t *offset)
de151cf6 1229{
da761a6e 1230 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1231 struct drm_i915_gem_object *obj;
de151cf6
JB
1232 int ret;
1233
1234 if (!(dev->driver->driver_features & DRIVER_GEM))
1235 return -ENODEV;
1236
76c1dec1 1237 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1238 if (ret)
76c1dec1 1239 return ret;
de151cf6 1240
ff72145b 1241 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1242 if (&obj->base == NULL) {
1d7cfea1
CW
1243 ret = -ENOENT;
1244 goto unlock;
1245 }
de151cf6 1246
05394f39 1247 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1248 ret = -E2BIG;
ff56b0bc 1249 goto out;
da761a6e
CW
1250 }
1251
05394f39 1252 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1253 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1254 ret = -EINVAL;
1255 goto out;
ab18282d
CW
1256 }
1257
05394f39 1258 if (!obj->base.map_list.map) {
b464e9a2 1259 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1260 if (ret)
1261 goto out;
de151cf6
JB
1262 }
1263
ff72145b 1264 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1265
1d7cfea1 1266out:
05394f39 1267 drm_gem_object_unreference(&obj->base);
1d7cfea1 1268unlock:
de151cf6 1269 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1270 return ret;
de151cf6
JB
1271}
1272
ff72145b
DA
1273/**
1274 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1275 * @dev: DRM device
1276 * @data: GTT mapping ioctl data
1277 * @file: GEM object info
1278 *
1279 * Simply returns the fake offset to userspace so it can mmap it.
1280 * The mmap call will end up in drm_gem_mmap(), which will set things
1281 * up so we can get faults in the handler above.
1282 *
1283 * The fault handler will take care of binding the object into the GTT
1284 * (since it may have been evicted to make room for something), allocating
1285 * a fence register, and mapping the appropriate aperture address into
1286 * userspace.
1287 */
1288int
1289i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1290 struct drm_file *file)
1291{
1292 struct drm_i915_gem_mmap_gtt *args = data;
1293
1294 if (!(dev->driver->driver_features & DRIVER_GEM))
1295 return -ENODEV;
1296
1297 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1298}
1299
1300
e5281ccd 1301static int
05394f39 1302i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1303 gfp_t gfpmask)
1304{
e5281ccd
CW
1305 int page_count, i;
1306 struct address_space *mapping;
1307 struct inode *inode;
1308 struct page *page;
1309
1310 /* Get the list of pages out of our struct file. They'll be pinned
1311 * at this point until we release them.
1312 */
05394f39
CW
1313 page_count = obj->base.size / PAGE_SIZE;
1314 BUG_ON(obj->pages != NULL);
1315 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1316 if (obj->pages == NULL)
e5281ccd
CW
1317 return -ENOMEM;
1318
05394f39 1319 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1320 mapping = inode->i_mapping;
5949eac4
HD
1321 gfpmask |= mapping_gfp_mask(mapping);
1322
e5281ccd 1323 for (i = 0; i < page_count; i++) {
5949eac4 1324 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1325 if (IS_ERR(page))
1326 goto err_pages;
1327
05394f39 1328 obj->pages[i] = page;
e5281ccd
CW
1329 }
1330
6dacfd2f 1331 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1332 i915_gem_object_do_bit_17_swizzle(obj);
1333
1334 return 0;
1335
1336err_pages:
1337 while (i--)
05394f39 1338 page_cache_release(obj->pages[i]);
e5281ccd 1339
05394f39
CW
1340 drm_free_large(obj->pages);
1341 obj->pages = NULL;
e5281ccd
CW
1342 return PTR_ERR(page);
1343}
1344
5cdf5881 1345static void
05394f39 1346i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1347{
05394f39 1348 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1349 int i;
1350
05394f39 1351 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1352
6dacfd2f 1353 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1354 i915_gem_object_save_bit_17_swizzle(obj);
1355
05394f39
CW
1356 if (obj->madv == I915_MADV_DONTNEED)
1357 obj->dirty = 0;
3ef94daa
CW
1358
1359 for (i = 0; i < page_count; i++) {
05394f39
CW
1360 if (obj->dirty)
1361 set_page_dirty(obj->pages[i]);
3ef94daa 1362
05394f39
CW
1363 if (obj->madv == I915_MADV_WILLNEED)
1364 mark_page_accessed(obj->pages[i]);
3ef94daa 1365
05394f39 1366 page_cache_release(obj->pages[i]);
3ef94daa 1367 }
05394f39 1368 obj->dirty = 0;
673a394b 1369
05394f39
CW
1370 drm_free_large(obj->pages);
1371 obj->pages = NULL;
673a394b
EA
1372}
1373
54cf91dc 1374void
05394f39 1375i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1376 struct intel_ring_buffer *ring,
1377 u32 seqno)
673a394b 1378{
05394f39 1379 struct drm_device *dev = obj->base.dev;
69dc4987 1380 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1381
852835f3 1382 BUG_ON(ring == NULL);
05394f39 1383 obj->ring = ring;
673a394b
EA
1384
1385 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1386 if (!obj->active) {
1387 drm_gem_object_reference(&obj->base);
1388 obj->active = 1;
673a394b 1389 }
e35a41de 1390
673a394b 1391 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1392 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1393 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1394
05394f39 1395 obj->last_rendering_seqno = seqno;
caea7476
CW
1396 if (obj->fenced_gpu_access) {
1397 struct drm_i915_fence_reg *reg;
1398
1399 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1400
1401 obj->last_fenced_seqno = seqno;
1402 obj->last_fenced_ring = ring;
1403
1404 reg = &dev_priv->fence_regs[obj->fence_reg];
1405 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1406 }
1407}
1408
1409static void
1410i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1411{
1412 list_del_init(&obj->ring_list);
1413 obj->last_rendering_seqno = 0;
673a394b
EA
1414}
1415
ce44b0ea 1416static void
05394f39 1417i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1418{
05394f39 1419 struct drm_device *dev = obj->base.dev;
ce44b0ea 1420 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1421
05394f39
CW
1422 BUG_ON(!obj->active);
1423 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1424
1425 i915_gem_object_move_off_active(obj);
1426}
1427
1428static void
1429i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1430{
1431 struct drm_device *dev = obj->base.dev;
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433
1434 if (obj->pin_count != 0)
1435 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1436 else
1437 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1438
1439 BUG_ON(!list_empty(&obj->gpu_write_list));
1440 BUG_ON(!obj->active);
1441 obj->ring = NULL;
1442
1443 i915_gem_object_move_off_active(obj);
1444 obj->fenced_gpu_access = false;
caea7476
CW
1445
1446 obj->active = 0;
87ca9c8a 1447 obj->pending_gpu_write = false;
caea7476
CW
1448 drm_gem_object_unreference(&obj->base);
1449
1450 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1451}
673a394b 1452
963b4836
CW
1453/* Immediately discard the backing storage */
1454static void
05394f39 1455i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1456{
bb6baf76 1457 struct inode *inode;
963b4836 1458
ae9fed6b
CW
1459 /* Our goal here is to return as much of the memory as
1460 * is possible back to the system as we are called from OOM.
1461 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1462 * backing pages, *now*.
ae9fed6b 1463 */
05394f39 1464 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1465 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1466
a14917ee
CW
1467 if (obj->base.map_list.map)
1468 drm_gem_free_mmap_offset(&obj->base);
1469
05394f39 1470 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1471}
1472
1473static inline int
05394f39 1474i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1475{
05394f39 1476 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1477}
1478
63560396 1479static void
db53a302
CW
1480i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1481 uint32_t flush_domains)
63560396 1482{
05394f39 1483 struct drm_i915_gem_object *obj, *next;
63560396 1484
05394f39 1485 list_for_each_entry_safe(obj, next,
64193406 1486 &ring->gpu_write_list,
63560396 1487 gpu_write_list) {
05394f39
CW
1488 if (obj->base.write_domain & flush_domains) {
1489 uint32_t old_write_domain = obj->base.write_domain;
63560396 1490
05394f39
CW
1491 obj->base.write_domain = 0;
1492 list_del_init(&obj->gpu_write_list);
1ec14ad3 1493 i915_gem_object_move_to_active(obj, ring,
db53a302 1494 i915_gem_next_request_seqno(ring));
63560396 1495
63560396 1496 trace_i915_gem_object_change_domain(obj,
05394f39 1497 obj->base.read_domains,
63560396
DV
1498 old_write_domain);
1499 }
1500 }
1501}
8187a2b7 1502
53d227f2
DV
1503static u32
1504i915_gem_get_seqno(struct drm_device *dev)
1505{
1506 drm_i915_private_t *dev_priv = dev->dev_private;
1507 u32 seqno = dev_priv->next_seqno;
1508
1509 /* reserve 0 for non-seqno */
1510 if (++dev_priv->next_seqno == 0)
1511 dev_priv->next_seqno = 1;
1512
1513 return seqno;
1514}
1515
1516u32
1517i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1518{
1519 if (ring->outstanding_lazy_request == 0)
1520 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1521
1522 return ring->outstanding_lazy_request;
1523}
1524
3cce469c 1525int
db53a302 1526i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1527 struct drm_file *file,
db53a302 1528 struct drm_i915_gem_request *request)
673a394b 1529{
db53a302 1530 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1531 uint32_t seqno;
a71d8d94 1532 u32 request_ring_position;
673a394b 1533 int was_empty;
3cce469c
CW
1534 int ret;
1535
1536 BUG_ON(request == NULL);
53d227f2 1537 seqno = i915_gem_next_request_seqno(ring);
673a394b 1538
a71d8d94
CW
1539 /* Record the position of the start of the request so that
1540 * should we detect the updated seqno part-way through the
1541 * GPU processing the request, we never over-estimate the
1542 * position of the head.
1543 */
1544 request_ring_position = intel_ring_get_tail(ring);
1545
3cce469c
CW
1546 ret = ring->add_request(ring, &seqno);
1547 if (ret)
1548 return ret;
673a394b 1549
db53a302 1550 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1551
1552 request->seqno = seqno;
852835f3 1553 request->ring = ring;
a71d8d94 1554 request->tail = request_ring_position;
673a394b 1555 request->emitted_jiffies = jiffies;
852835f3
ZN
1556 was_empty = list_empty(&ring->request_list);
1557 list_add_tail(&request->list, &ring->request_list);
1558
db53a302
CW
1559 if (file) {
1560 struct drm_i915_file_private *file_priv = file->driver_priv;
1561
1c25595f 1562 spin_lock(&file_priv->mm.lock);
f787a5f5 1563 request->file_priv = file_priv;
b962442e 1564 list_add_tail(&request->client_list,
f787a5f5 1565 &file_priv->mm.request_list);
1c25595f 1566 spin_unlock(&file_priv->mm.lock);
b962442e 1567 }
673a394b 1568
5391d0cf 1569 ring->outstanding_lazy_request = 0;
db53a302 1570
f65d9421 1571 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1572 if (i915_enable_hangcheck) {
1573 mod_timer(&dev_priv->hangcheck_timer,
1574 jiffies +
1575 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1576 }
f65d9421 1577 if (was_empty)
b3b079db
CW
1578 queue_delayed_work(dev_priv->wq,
1579 &dev_priv->mm.retire_work, HZ);
f65d9421 1580 }
3cce469c 1581 return 0;
673a394b
EA
1582}
1583
f787a5f5
CW
1584static inline void
1585i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1586{
1c25595f 1587 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1588
1c25595f
CW
1589 if (!file_priv)
1590 return;
1c5d22f7 1591
1c25595f 1592 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1593 if (request->file_priv) {
1594 list_del(&request->client_list);
1595 request->file_priv = NULL;
1596 }
1c25595f 1597 spin_unlock(&file_priv->mm.lock);
673a394b 1598}
673a394b 1599
dfaae392
CW
1600static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1601 struct intel_ring_buffer *ring)
9375e446 1602{
dfaae392
CW
1603 while (!list_empty(&ring->request_list)) {
1604 struct drm_i915_gem_request *request;
673a394b 1605
dfaae392
CW
1606 request = list_first_entry(&ring->request_list,
1607 struct drm_i915_gem_request,
1608 list);
de151cf6 1609
dfaae392 1610 list_del(&request->list);
f787a5f5 1611 i915_gem_request_remove_from_client(request);
dfaae392
CW
1612 kfree(request);
1613 }
673a394b 1614
dfaae392 1615 while (!list_empty(&ring->active_list)) {
05394f39 1616 struct drm_i915_gem_object *obj;
9375e446 1617
05394f39
CW
1618 obj = list_first_entry(&ring->active_list,
1619 struct drm_i915_gem_object,
1620 ring_list);
9375e446 1621
05394f39
CW
1622 obj->base.write_domain = 0;
1623 list_del_init(&obj->gpu_write_list);
1624 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1625 }
1626}
1627
312817a3
CW
1628static void i915_gem_reset_fences(struct drm_device *dev)
1629{
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 int i;
1632
4b9de737 1633 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1634 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1635 struct drm_i915_gem_object *obj = reg->obj;
1636
1637 if (!obj)
1638 continue;
1639
1640 if (obj->tiling_mode)
1641 i915_gem_release_mmap(obj);
1642
d9e86c0e
CW
1643 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1644 reg->obj->fenced_gpu_access = false;
1645 reg->obj->last_fenced_seqno = 0;
1646 reg->obj->last_fenced_ring = NULL;
1647 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1648 }
1649}
1650
069efc1d 1651void i915_gem_reset(struct drm_device *dev)
673a394b 1652{
77f01230 1653 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1654 struct drm_i915_gem_object *obj;
1ec14ad3 1655 int i;
673a394b 1656
1ec14ad3
CW
1657 for (i = 0; i < I915_NUM_RINGS; i++)
1658 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1659
1660 /* Remove anything from the flushing lists. The GPU cache is likely
1661 * to be lost on reset along with the data, so simply move the
1662 * lost bo to the inactive list.
1663 */
1664 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1665 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1666 struct drm_i915_gem_object,
1667 mm_list);
dfaae392 1668
05394f39
CW
1669 obj->base.write_domain = 0;
1670 list_del_init(&obj->gpu_write_list);
1671 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1672 }
1673
1674 /* Move everything out of the GPU domains to ensure we do any
1675 * necessary invalidation upon reuse.
1676 */
05394f39 1677 list_for_each_entry(obj,
77f01230 1678 &dev_priv->mm.inactive_list,
69dc4987 1679 mm_list)
77f01230 1680 {
05394f39 1681 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1682 }
069efc1d
CW
1683
1684 /* The fence registers are invalidated so clear them out */
312817a3 1685 i915_gem_reset_fences(dev);
673a394b
EA
1686}
1687
1688/**
1689 * This function clears the request list as sequence numbers are passed.
1690 */
a71d8d94 1691void
db53a302 1692i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1693{
673a394b 1694 uint32_t seqno;
1ec14ad3 1695 int i;
673a394b 1696
db53a302 1697 if (list_empty(&ring->request_list))
6c0594a3
KW
1698 return;
1699
db53a302 1700 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1701
78501eac 1702 seqno = ring->get_seqno(ring);
1ec14ad3 1703
076e2c0e 1704 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1705 if (seqno >= ring->sync_seqno[i])
1706 ring->sync_seqno[i] = 0;
1707
852835f3 1708 while (!list_empty(&ring->request_list)) {
673a394b 1709 struct drm_i915_gem_request *request;
673a394b 1710
852835f3 1711 request = list_first_entry(&ring->request_list,
673a394b
EA
1712 struct drm_i915_gem_request,
1713 list);
673a394b 1714
dfaae392 1715 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1716 break;
1717
db53a302 1718 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1719 /* We know the GPU must have read the request to have
1720 * sent us the seqno + interrupt, so use the position
1721 * of tail of the request to update the last known position
1722 * of the GPU head.
1723 */
1724 ring->last_retired_head = request->tail;
b84d5f0c
CW
1725
1726 list_del(&request->list);
f787a5f5 1727 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1728 kfree(request);
1729 }
673a394b 1730
b84d5f0c
CW
1731 /* Move any buffers on the active list that are no longer referenced
1732 * by the ringbuffer to the flushing/inactive lists as appropriate.
1733 */
1734 while (!list_empty(&ring->active_list)) {
05394f39 1735 struct drm_i915_gem_object *obj;
b84d5f0c 1736
0206e353 1737 obj = list_first_entry(&ring->active_list,
05394f39
CW
1738 struct drm_i915_gem_object,
1739 ring_list);
673a394b 1740
05394f39 1741 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1742 break;
b84d5f0c 1743
05394f39 1744 if (obj->base.write_domain != 0)
b84d5f0c
CW
1745 i915_gem_object_move_to_flushing(obj);
1746 else
1747 i915_gem_object_move_to_inactive(obj);
673a394b 1748 }
9d34e5db 1749
db53a302
CW
1750 if (unlikely(ring->trace_irq_seqno &&
1751 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1752 ring->irq_put(ring);
db53a302 1753 ring->trace_irq_seqno = 0;
9d34e5db 1754 }
23bc5982 1755
db53a302 1756 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1757}
1758
b09a1fec
CW
1759void
1760i915_gem_retire_requests(struct drm_device *dev)
1761{
1762 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1763 int i;
b09a1fec 1764
be72615b 1765 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1766 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1767
1768 /* We must be careful that during unbind() we do not
1769 * accidentally infinitely recurse into retire requests.
1770 * Currently:
1771 * retire -> free -> unbind -> wait -> retire_ring
1772 */
05394f39 1773 list_for_each_entry_safe(obj, next,
be72615b 1774 &dev_priv->mm.deferred_free_list,
69dc4987 1775 mm_list)
05394f39 1776 i915_gem_free_object_tail(obj);
be72615b
CW
1777 }
1778
1ec14ad3 1779 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1780 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1781}
1782
75ef9da2 1783static void
673a394b
EA
1784i915_gem_retire_work_handler(struct work_struct *work)
1785{
1786 drm_i915_private_t *dev_priv;
1787 struct drm_device *dev;
0a58705b
CW
1788 bool idle;
1789 int i;
673a394b
EA
1790
1791 dev_priv = container_of(work, drm_i915_private_t,
1792 mm.retire_work.work);
1793 dev = dev_priv->dev;
1794
891b48cf
CW
1795 /* Come back later if the device is busy... */
1796 if (!mutex_trylock(&dev->struct_mutex)) {
1797 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1798 return;
1799 }
1800
b09a1fec 1801 i915_gem_retire_requests(dev);
d1b851fc 1802
0a58705b
CW
1803 /* Send a periodic flush down the ring so we don't hold onto GEM
1804 * objects indefinitely.
1805 */
1806 idle = true;
1807 for (i = 0; i < I915_NUM_RINGS; i++) {
1808 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1809
1810 if (!list_empty(&ring->gpu_write_list)) {
1811 struct drm_i915_gem_request *request;
1812 int ret;
1813
db53a302
CW
1814 ret = i915_gem_flush_ring(ring,
1815 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1816 request = kzalloc(sizeof(*request), GFP_KERNEL);
1817 if (ret || request == NULL ||
db53a302 1818 i915_add_request(ring, NULL, request))
0a58705b
CW
1819 kfree(request);
1820 }
1821
1822 idle &= list_empty(&ring->request_list);
1823 }
1824
1825 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1826 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1827
673a394b
EA
1828 mutex_unlock(&dev->struct_mutex);
1829}
1830
db53a302
CW
1831/**
1832 * Waits for a sequence number to be signaled, and cleans up the
1833 * request and object lists appropriately for that event.
1834 */
5a5a0c64 1835int
db53a302 1836i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1837 uint32_t seqno,
1838 bool do_retire)
673a394b 1839{
db53a302 1840 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1841 u32 ier;
673a394b
EA
1842 int ret = 0;
1843
1844 BUG_ON(seqno == 0);
1845
d9bc7e9f
CW
1846 if (atomic_read(&dev_priv->mm.wedged)) {
1847 struct completion *x = &dev_priv->error_completion;
1848 bool recovery_complete;
1849 unsigned long flags;
1850
1851 /* Give the error handler a chance to run. */
1852 spin_lock_irqsave(&x->wait.lock, flags);
1853 recovery_complete = x->done > 0;
1854 spin_unlock_irqrestore(&x->wait.lock, flags);
1855
1856 return recovery_complete ? -EIO : -EAGAIN;
1857 }
30dbf0c0 1858
5d97eb69 1859 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1860 struct drm_i915_gem_request *request;
1861
1862 request = kzalloc(sizeof(*request), GFP_KERNEL);
1863 if (request == NULL)
e35a41de 1864 return -ENOMEM;
3cce469c 1865
db53a302 1866 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1867 if (ret) {
1868 kfree(request);
1869 return ret;
1870 }
1871
1872 seqno = request->seqno;
e35a41de 1873 }
ffed1d09 1874
78501eac 1875 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1876 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d 1877 ier = I915_READ(DEIER) | I915_READ(GTIER);
23e3f9b3
JB
1878 else if (IS_VALLEYVIEW(ring->dev))
1879 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
036a4a7d
ZW
1880 else
1881 ier = I915_READ(IER);
802c7eb6
JB
1882 if (!ier) {
1883 DRM_ERROR("something (likely vbetool) disabled "
1884 "interrupts, re-enabling\n");
f01c22fd
CW
1885 ring->dev->driver->irq_preinstall(ring->dev);
1886 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1887 }
1888
db53a302 1889 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1890
b2223497 1891 ring->waiting_seqno = seqno;
b13c2b96 1892 if (ring->irq_get(ring)) {
ce453d81 1893 if (dev_priv->mm.interruptible)
b13c2b96
CW
1894 ret = wait_event_interruptible(ring->irq_queue,
1895 i915_seqno_passed(ring->get_seqno(ring), seqno)
1896 || atomic_read(&dev_priv->mm.wedged));
1897 else
1898 wait_event(ring->irq_queue,
1899 i915_seqno_passed(ring->get_seqno(ring), seqno)
1900 || atomic_read(&dev_priv->mm.wedged));
1901
1902 ring->irq_put(ring);
e959b5db
EA
1903 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1904 seqno) ||
1905 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1906 ret = -EBUSY;
b2223497 1907 ring->waiting_seqno = 0;
1c5d22f7 1908
db53a302 1909 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1910 }
ba1234d1 1911 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1912 ret = -EAGAIN;
673a394b 1913
673a394b
EA
1914 /* Directly dispatch request retiring. While we have the work queue
1915 * to handle this, the waiter on a request often wants an associated
1916 * buffer to have made it to the inactive list, and we would need
1917 * a separate wait queue to handle that.
1918 */
b93f9cf1 1919 if (ret == 0 && do_retire)
db53a302 1920 i915_gem_retire_requests_ring(ring);
673a394b
EA
1921
1922 return ret;
1923}
1924
673a394b
EA
1925/**
1926 * Ensures that all rendering to the object has completed and the object is
1927 * safe to unbind from the GTT or access from the CPU.
1928 */
54cf91dc 1929int
ce453d81 1930i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1931{
673a394b
EA
1932 int ret;
1933
e47c68e9
EA
1934 /* This function only exists to support waiting for existing rendering,
1935 * not for emitting required flushes.
673a394b 1936 */
05394f39 1937 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1938
1939 /* If there is rendering queued on the buffer being evicted, wait for
1940 * it.
1941 */
05394f39 1942 if (obj->active) {
b93f9cf1
BW
1943 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1944 true);
2cf34d7b 1945 if (ret)
673a394b
EA
1946 return ret;
1947 }
1948
1949 return 0;
1950}
1951
b5ffc9bc
CW
1952static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1953{
1954 u32 old_write_domain, old_read_domains;
1955
b5ffc9bc
CW
1956 /* Act a barrier for all accesses through the GTT */
1957 mb();
1958
1959 /* Force a pagefault for domain tracking on next user access */
1960 i915_gem_release_mmap(obj);
1961
b97c3d9c
KP
1962 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1963 return;
1964
b5ffc9bc
CW
1965 old_read_domains = obj->base.read_domains;
1966 old_write_domain = obj->base.write_domain;
1967
1968 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
1969 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
1970
1971 trace_i915_gem_object_change_domain(obj,
1972 old_read_domains,
1973 old_write_domain);
1974}
1975
673a394b
EA
1976/**
1977 * Unbinds an object from the GTT aperture.
1978 */
0f973f27 1979int
05394f39 1980i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 1981{
7bddb01f 1982 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
1983 int ret = 0;
1984
05394f39 1985 if (obj->gtt_space == NULL)
673a394b
EA
1986 return 0;
1987
05394f39 1988 if (obj->pin_count != 0) {
673a394b
EA
1989 DRM_ERROR("Attempting to unbind pinned buffer\n");
1990 return -EINVAL;
1991 }
1992
a8198eea
CW
1993 ret = i915_gem_object_finish_gpu(obj);
1994 if (ret == -ERESTARTSYS)
1995 return ret;
1996 /* Continue on if we fail due to EIO, the GPU is hung so we
1997 * should be safe and we need to cleanup or else we might
1998 * cause memory corruption through use-after-free.
1999 */
2000
b5ffc9bc 2001 i915_gem_object_finish_gtt(obj);
5323fd04 2002
673a394b
EA
2003 /* Move the object to the CPU domain to ensure that
2004 * any possible CPU writes while it's not in the GTT
a8198eea 2005 * are flushed when we go to remap it.
673a394b 2006 */
a8198eea
CW
2007 if (ret == 0)
2008 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2009 if (ret == -ERESTARTSYS)
673a394b 2010 return ret;
812ed492 2011 if (ret) {
a8198eea
CW
2012 /* In the event of a disaster, abandon all caches and
2013 * hope for the best.
2014 */
812ed492 2015 i915_gem_clflush_object(obj);
05394f39 2016 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2017 }
673a394b 2018
96b47b65 2019 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2020 ret = i915_gem_object_put_fence(obj);
2021 if (ret == -ERESTARTSYS)
2022 return ret;
96b47b65 2023
db53a302
CW
2024 trace_i915_gem_object_unbind(obj);
2025
74898d7e
DV
2026 if (obj->has_global_gtt_mapping)
2027 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2028 if (obj->has_aliasing_ppgtt_mapping) {
2029 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2030 obj->has_aliasing_ppgtt_mapping = 0;
2031 }
74163907 2032 i915_gem_gtt_finish_object(obj);
7bddb01f 2033
e5281ccd 2034 i915_gem_object_put_pages_gtt(obj);
673a394b 2035
6299f992 2036 list_del_init(&obj->gtt_list);
05394f39 2037 list_del_init(&obj->mm_list);
75e9e915 2038 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2039 obj->map_and_fenceable = true;
673a394b 2040
05394f39
CW
2041 drm_mm_put_block(obj->gtt_space);
2042 obj->gtt_space = NULL;
2043 obj->gtt_offset = 0;
673a394b 2044
05394f39 2045 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2046 i915_gem_object_truncate(obj);
2047
8dc1775d 2048 return ret;
673a394b
EA
2049}
2050
88241785 2051int
db53a302 2052i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2053 uint32_t invalidate_domains,
2054 uint32_t flush_domains)
2055{
88241785
CW
2056 int ret;
2057
36d527de
CW
2058 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2059 return 0;
2060
db53a302
CW
2061 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2062
88241785
CW
2063 ret = ring->flush(ring, invalidate_domains, flush_domains);
2064 if (ret)
2065 return ret;
2066
36d527de
CW
2067 if (flush_domains & I915_GEM_GPU_DOMAINS)
2068 i915_gem_process_flushing_list(ring, flush_domains);
2069
88241785 2070 return 0;
54cf91dc
CW
2071}
2072
b93f9cf1 2073static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2074{
88241785
CW
2075 int ret;
2076
395b70be 2077 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2078 return 0;
2079
88241785 2080 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2081 ret = i915_gem_flush_ring(ring,
0ac74c6b 2082 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2083 if (ret)
2084 return ret;
2085 }
2086
b93f9cf1
BW
2087 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2088 do_retire);
a56ba56c
CW
2089}
2090
b93f9cf1 2091int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2092{
2093 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2094 int ret, i;
4df2faf4 2095
4df2faf4 2096 /* Flush everything onto the inactive list. */
1ec14ad3 2097 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2098 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2099 if (ret)
2100 return ret;
2101 }
4df2faf4 2102
8a1a49f9 2103 return 0;
4df2faf4
DV
2104}
2105
c6642782
DV
2106static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2107 struct intel_ring_buffer *pipelined)
4e901fdc 2108{
05394f39 2109 struct drm_device *dev = obj->base.dev;
4e901fdc 2110 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2111 u32 size = obj->gtt_space->size;
2112 int regnum = obj->fence_reg;
4e901fdc
EA
2113 uint64_t val;
2114
05394f39 2115 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2116 0xfffff000) << 32;
05394f39
CW
2117 val |= obj->gtt_offset & 0xfffff000;
2118 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2119 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2120
05394f39 2121 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2122 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2123 val |= I965_FENCE_REG_VALID;
2124
c6642782
DV
2125 if (pipelined) {
2126 int ret = intel_ring_begin(pipelined, 6);
2127 if (ret)
2128 return ret;
2129
2130 intel_ring_emit(pipelined, MI_NOOP);
2131 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2132 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2133 intel_ring_emit(pipelined, (u32)val);
2134 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2135 intel_ring_emit(pipelined, (u32)(val >> 32));
2136 intel_ring_advance(pipelined);
2137 } else
2138 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2139
2140 return 0;
4e901fdc
EA
2141}
2142
c6642782
DV
2143static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2144 struct intel_ring_buffer *pipelined)
de151cf6 2145{
05394f39 2146 struct drm_device *dev = obj->base.dev;
de151cf6 2147 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2148 u32 size = obj->gtt_space->size;
2149 int regnum = obj->fence_reg;
de151cf6
JB
2150 uint64_t val;
2151
05394f39 2152 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2153 0xfffff000) << 32;
05394f39
CW
2154 val |= obj->gtt_offset & 0xfffff000;
2155 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2156 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2157 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2158 val |= I965_FENCE_REG_VALID;
2159
c6642782
DV
2160 if (pipelined) {
2161 int ret = intel_ring_begin(pipelined, 6);
2162 if (ret)
2163 return ret;
2164
2165 intel_ring_emit(pipelined, MI_NOOP);
2166 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2167 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2168 intel_ring_emit(pipelined, (u32)val);
2169 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2170 intel_ring_emit(pipelined, (u32)(val >> 32));
2171 intel_ring_advance(pipelined);
2172 } else
2173 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2174
2175 return 0;
de151cf6
JB
2176}
2177
c6642782
DV
2178static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2179 struct intel_ring_buffer *pipelined)
de151cf6 2180{
05394f39 2181 struct drm_device *dev = obj->base.dev;
de151cf6 2182 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2183 u32 size = obj->gtt_space->size;
c6642782 2184 u32 fence_reg, val, pitch_val;
0f973f27 2185 int tile_width;
de151cf6 2186
c6642782
DV
2187 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2188 (size & -size) != size ||
2189 (obj->gtt_offset & (size - 1)),
2190 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2191 obj->gtt_offset, obj->map_and_fenceable, size))
2192 return -EINVAL;
de151cf6 2193
c6642782 2194 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2195 tile_width = 128;
de151cf6 2196 else
0f973f27
JB
2197 tile_width = 512;
2198
2199 /* Note: pitch better be a power of two tile widths */
05394f39 2200 pitch_val = obj->stride / tile_width;
0f973f27 2201 pitch_val = ffs(pitch_val) - 1;
de151cf6 2202
05394f39
CW
2203 val = obj->gtt_offset;
2204 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2205 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2206 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2207 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2208 val |= I830_FENCE_REG_VALID;
2209
05394f39 2210 fence_reg = obj->fence_reg;
a00b10c3
CW
2211 if (fence_reg < 8)
2212 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2213 else
a00b10c3 2214 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2215
2216 if (pipelined) {
2217 int ret = intel_ring_begin(pipelined, 4);
2218 if (ret)
2219 return ret;
2220
2221 intel_ring_emit(pipelined, MI_NOOP);
2222 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2223 intel_ring_emit(pipelined, fence_reg);
2224 intel_ring_emit(pipelined, val);
2225 intel_ring_advance(pipelined);
2226 } else
2227 I915_WRITE(fence_reg, val);
2228
2229 return 0;
de151cf6
JB
2230}
2231
c6642782
DV
2232static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2233 struct intel_ring_buffer *pipelined)
de151cf6 2234{
05394f39 2235 struct drm_device *dev = obj->base.dev;
de151cf6 2236 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2237 u32 size = obj->gtt_space->size;
2238 int regnum = obj->fence_reg;
de151cf6
JB
2239 uint32_t val;
2240 uint32_t pitch_val;
2241
c6642782
DV
2242 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2243 (size & -size) != size ||
2244 (obj->gtt_offset & (size - 1)),
2245 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2246 obj->gtt_offset, size))
2247 return -EINVAL;
de151cf6 2248
05394f39 2249 pitch_val = obj->stride / 128;
e76a16de 2250 pitch_val = ffs(pitch_val) - 1;
e76a16de 2251
05394f39
CW
2252 val = obj->gtt_offset;
2253 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2254 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2255 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2256 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2257 val |= I830_FENCE_REG_VALID;
2258
c6642782
DV
2259 if (pipelined) {
2260 int ret = intel_ring_begin(pipelined, 4);
2261 if (ret)
2262 return ret;
2263
2264 intel_ring_emit(pipelined, MI_NOOP);
2265 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2266 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2267 intel_ring_emit(pipelined, val);
2268 intel_ring_advance(pipelined);
2269 } else
2270 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2271
2272 return 0;
de151cf6
JB
2273}
2274
d9e86c0e
CW
2275static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2276{
2277 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2278}
2279
2280static int
2281i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2282 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2283{
2284 int ret;
2285
2286 if (obj->fenced_gpu_access) {
88241785 2287 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2288 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2289 0, obj->base.write_domain);
2290 if (ret)
2291 return ret;
2292 }
d9e86c0e
CW
2293
2294 obj->fenced_gpu_access = false;
2295 }
2296
2297 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2298 if (!ring_passed_seqno(obj->last_fenced_ring,
2299 obj->last_fenced_seqno)) {
db53a302 2300 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2301 obj->last_fenced_seqno,
2302 true);
d9e86c0e
CW
2303 if (ret)
2304 return ret;
2305 }
2306
2307 obj->last_fenced_seqno = 0;
2308 obj->last_fenced_ring = NULL;
2309 }
2310
63256ec5
CW
2311 /* Ensure that all CPU reads are completed before installing a fence
2312 * and all writes before removing the fence.
2313 */
2314 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2315 mb();
2316
d9e86c0e
CW
2317 return 0;
2318}
2319
2320int
2321i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2322{
2323 int ret;
2324
2325 if (obj->tiling_mode)
2326 i915_gem_release_mmap(obj);
2327
ce453d81 2328 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2329 if (ret)
2330 return ret;
2331
2332 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2333 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2334
2335 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2336 i915_gem_clear_fence_reg(obj->base.dev,
2337 &dev_priv->fence_regs[obj->fence_reg]);
2338
2339 obj->fence_reg = I915_FENCE_REG_NONE;
2340 }
2341
2342 return 0;
2343}
2344
2345static struct drm_i915_fence_reg *
2346i915_find_fence_reg(struct drm_device *dev,
2347 struct intel_ring_buffer *pipelined)
ae3db24a 2348{
ae3db24a 2349 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2350 struct drm_i915_fence_reg *reg, *first, *avail;
2351 int i;
ae3db24a
DV
2352
2353 /* First try to find a free reg */
d9e86c0e 2354 avail = NULL;
ae3db24a
DV
2355 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2356 reg = &dev_priv->fence_regs[i];
2357 if (!reg->obj)
d9e86c0e 2358 return reg;
ae3db24a 2359
1690e1eb 2360 if (!reg->pin_count)
d9e86c0e 2361 avail = reg;
ae3db24a
DV
2362 }
2363
d9e86c0e
CW
2364 if (avail == NULL)
2365 return NULL;
ae3db24a
DV
2366
2367 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2368 avail = first = NULL;
2369 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2370 if (reg->pin_count)
ae3db24a
DV
2371 continue;
2372
d9e86c0e
CW
2373 if (first == NULL)
2374 first = reg;
2375
2376 if (!pipelined ||
2377 !reg->obj->last_fenced_ring ||
2378 reg->obj->last_fenced_ring == pipelined) {
2379 avail = reg;
2380 break;
2381 }
ae3db24a
DV
2382 }
2383
d9e86c0e
CW
2384 if (avail == NULL)
2385 avail = first;
ae3db24a 2386
a00b10c3 2387 return avail;
ae3db24a
DV
2388}
2389
de151cf6 2390/**
d9e86c0e 2391 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2392 * @obj: object to map through a fence reg
d9e86c0e
CW
2393 * @pipelined: ring on which to queue the change, or NULL for CPU access
2394 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2395 *
2396 * When mapping objects through the GTT, userspace wants to be able to write
2397 * to them without having to worry about swizzling if the object is tiled.
2398 *
2399 * This function walks the fence regs looking for a free one for @obj,
2400 * stealing one if it can't find any.
2401 *
2402 * It then sets up the reg based on the object's properties: address, pitch
2403 * and tiling format.
2404 */
8c4b8c3f 2405int
d9e86c0e 2406i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2407 struct intel_ring_buffer *pipelined)
de151cf6 2408{
05394f39 2409 struct drm_device *dev = obj->base.dev;
79e53945 2410 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2411 struct drm_i915_fence_reg *reg;
ae3db24a 2412 int ret;
de151cf6 2413
6bda10d1
CW
2414 /* XXX disable pipelining. There are bugs. Shocking. */
2415 pipelined = NULL;
2416
d9e86c0e 2417 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2418 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2419 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2420 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2421
29c5a587
CW
2422 if (obj->tiling_changed) {
2423 ret = i915_gem_object_flush_fence(obj, pipelined);
2424 if (ret)
2425 return ret;
2426
2427 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2428 pipelined = NULL;
2429
2430 if (pipelined) {
2431 reg->setup_seqno =
2432 i915_gem_next_request_seqno(pipelined);
2433 obj->last_fenced_seqno = reg->setup_seqno;
2434 obj->last_fenced_ring = pipelined;
2435 }
2436
2437 goto update;
2438 }
d9e86c0e
CW
2439
2440 if (!pipelined) {
2441 if (reg->setup_seqno) {
2442 if (!ring_passed_seqno(obj->last_fenced_ring,
2443 reg->setup_seqno)) {
db53a302 2444 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2445 reg->setup_seqno,
2446 true);
d9e86c0e
CW
2447 if (ret)
2448 return ret;
2449 }
2450
2451 reg->setup_seqno = 0;
2452 }
2453 } else if (obj->last_fenced_ring &&
2454 obj->last_fenced_ring != pipelined) {
ce453d81 2455 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2456 if (ret)
2457 return ret;
d9e86c0e
CW
2458 }
2459
a09ba7fa
EA
2460 return 0;
2461 }
2462
d9e86c0e
CW
2463 reg = i915_find_fence_reg(dev, pipelined);
2464 if (reg == NULL)
39965b37 2465 return -EDEADLK;
de151cf6 2466
ce453d81 2467 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2468 if (ret)
ae3db24a 2469 return ret;
de151cf6 2470
d9e86c0e
CW
2471 if (reg->obj) {
2472 struct drm_i915_gem_object *old = reg->obj;
2473
2474 drm_gem_object_reference(&old->base);
2475
2476 if (old->tiling_mode)
2477 i915_gem_release_mmap(old);
2478
ce453d81 2479 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2480 if (ret) {
2481 drm_gem_object_unreference(&old->base);
2482 return ret;
2483 }
2484
2485 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2486 pipelined = NULL;
2487
2488 old->fence_reg = I915_FENCE_REG_NONE;
2489 old->last_fenced_ring = pipelined;
2490 old->last_fenced_seqno =
db53a302 2491 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2492
2493 drm_gem_object_unreference(&old->base);
2494 } else if (obj->last_fenced_seqno == 0)
2495 pipelined = NULL;
a09ba7fa 2496
de151cf6 2497 reg->obj = obj;
d9e86c0e
CW
2498 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2499 obj->fence_reg = reg - dev_priv->fence_regs;
2500 obj->last_fenced_ring = pipelined;
de151cf6 2501
d9e86c0e 2502 reg->setup_seqno =
db53a302 2503 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2504 obj->last_fenced_seqno = reg->setup_seqno;
2505
2506update:
2507 obj->tiling_changed = false;
e259befd 2508 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2509 case 7:
e259befd 2510 case 6:
c6642782 2511 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2512 break;
2513 case 5:
2514 case 4:
c6642782 2515 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2516 break;
2517 case 3:
c6642782 2518 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2519 break;
2520 case 2:
c6642782 2521 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2522 break;
2523 }
d9ddcb96 2524
c6642782 2525 return ret;
de151cf6
JB
2526}
2527
2528/**
2529 * i915_gem_clear_fence_reg - clear out fence register info
2530 * @obj: object to clear
2531 *
2532 * Zeroes out the fence register itself and clears out the associated
05394f39 2533 * data structures in dev_priv and obj.
de151cf6
JB
2534 */
2535static void
d9e86c0e
CW
2536i915_gem_clear_fence_reg(struct drm_device *dev,
2537 struct drm_i915_fence_reg *reg)
de151cf6 2538{
79e53945 2539 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2540 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2541
e259befd 2542 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2543 case 7:
e259befd 2544 case 6:
d9e86c0e 2545 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2546 break;
2547 case 5:
2548 case 4:
d9e86c0e 2549 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2550 break;
2551 case 3:
d9e86c0e
CW
2552 if (fence_reg >= 8)
2553 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2554 else
e259befd 2555 case 2:
d9e86c0e 2556 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2557
2558 I915_WRITE(fence_reg, 0);
e259befd 2559 break;
dc529a4f 2560 }
de151cf6 2561
007cc8ac 2562 list_del_init(&reg->lru_list);
d9e86c0e
CW
2563 reg->obj = NULL;
2564 reg->setup_seqno = 0;
1690e1eb 2565 reg->pin_count = 0;
52dc7d32
CW
2566}
2567
673a394b
EA
2568/**
2569 * Finds free space in the GTT aperture and binds the object there.
2570 */
2571static int
05394f39 2572i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2573 unsigned alignment,
75e9e915 2574 bool map_and_fenceable)
673a394b 2575{
05394f39 2576 struct drm_device *dev = obj->base.dev;
673a394b 2577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2578 struct drm_mm_node *free_space;
a00b10c3 2579 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2580 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2581 bool mappable, fenceable;
07f73f69 2582 int ret;
673a394b 2583
05394f39 2584 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2585 DRM_ERROR("Attempting to bind a purgeable object\n");
2586 return -EINVAL;
2587 }
2588
e28f8711
CW
2589 fence_size = i915_gem_get_gtt_size(dev,
2590 obj->base.size,
2591 obj->tiling_mode);
2592 fence_alignment = i915_gem_get_gtt_alignment(dev,
2593 obj->base.size,
2594 obj->tiling_mode);
2595 unfenced_alignment =
2596 i915_gem_get_unfenced_gtt_alignment(dev,
2597 obj->base.size,
2598 obj->tiling_mode);
a00b10c3 2599
673a394b 2600 if (alignment == 0)
5e783301
DV
2601 alignment = map_and_fenceable ? fence_alignment :
2602 unfenced_alignment;
75e9e915 2603 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2604 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2605 return -EINVAL;
2606 }
2607
05394f39 2608 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2609
654fc607
CW
2610 /* If the object is bigger than the entire aperture, reject it early
2611 * before evicting everything in a vain attempt to find space.
2612 */
05394f39 2613 if (obj->base.size >
75e9e915 2614 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2615 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2616 return -E2BIG;
2617 }
2618
673a394b 2619 search_free:
75e9e915 2620 if (map_and_fenceable)
920afa77
DV
2621 free_space =
2622 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2623 size, alignment, 0,
920afa77
DV
2624 dev_priv->mm.gtt_mappable_end,
2625 0);
2626 else
2627 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2628 size, alignment, 0);
920afa77
DV
2629
2630 if (free_space != NULL) {
75e9e915 2631 if (map_and_fenceable)
05394f39 2632 obj->gtt_space =
920afa77 2633 drm_mm_get_block_range_generic(free_space,
a00b10c3 2634 size, alignment, 0,
920afa77
DV
2635 dev_priv->mm.gtt_mappable_end,
2636 0);
2637 else
05394f39 2638 obj->gtt_space =
a00b10c3 2639 drm_mm_get_block(free_space, size, alignment);
920afa77 2640 }
05394f39 2641 if (obj->gtt_space == NULL) {
673a394b
EA
2642 /* If the gtt is empty and we're still having trouble
2643 * fitting our object in, we're out of memory.
2644 */
75e9e915
DV
2645 ret = i915_gem_evict_something(dev, size, alignment,
2646 map_and_fenceable);
9731129c 2647 if (ret)
673a394b 2648 return ret;
9731129c 2649
673a394b
EA
2650 goto search_free;
2651 }
2652
e5281ccd 2653 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2654 if (ret) {
05394f39
CW
2655 drm_mm_put_block(obj->gtt_space);
2656 obj->gtt_space = NULL;
07f73f69
CW
2657
2658 if (ret == -ENOMEM) {
809b6334
CW
2659 /* first try to reclaim some memory by clearing the GTT */
2660 ret = i915_gem_evict_everything(dev, false);
07f73f69 2661 if (ret) {
07f73f69 2662 /* now try to shrink everyone else */
4bdadb97
CW
2663 if (gfpmask) {
2664 gfpmask = 0;
2665 goto search_free;
07f73f69
CW
2666 }
2667
809b6334 2668 return -ENOMEM;
07f73f69
CW
2669 }
2670
2671 goto search_free;
2672 }
2673
673a394b
EA
2674 return ret;
2675 }
2676
74163907 2677 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2678 if (ret) {
e5281ccd 2679 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2680 drm_mm_put_block(obj->gtt_space);
2681 obj->gtt_space = NULL;
07f73f69 2682
809b6334 2683 if (i915_gem_evict_everything(dev, false))
07f73f69 2684 return ret;
07f73f69
CW
2685
2686 goto search_free;
673a394b 2687 }
0ebb9829
DV
2688
2689 if (!dev_priv->mm.aliasing_ppgtt)
2690 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2691
6299f992 2692 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2693 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2694
673a394b
EA
2695 /* Assert that the object is not currently in any GPU domain. As it
2696 * wasn't in the GTT, there shouldn't be any way it could have been in
2697 * a GPU cache
2698 */
05394f39
CW
2699 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2700 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2701
6299f992 2702 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2703
75e9e915 2704 fenceable =
05394f39 2705 obj->gtt_space->size == fence_size &&
0206e353 2706 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2707
75e9e915 2708 mappable =
05394f39 2709 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2710
05394f39 2711 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2712
db53a302 2713 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2714 return 0;
2715}
2716
2717void
05394f39 2718i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2719{
673a394b
EA
2720 /* If we don't have a page list set up, then we're not pinned
2721 * to GPU, and we can ignore the cache flush because it'll happen
2722 * again at bind time.
2723 */
05394f39 2724 if (obj->pages == NULL)
673a394b
EA
2725 return;
2726
9c23f7fc
CW
2727 /* If the GPU is snooping the contents of the CPU cache,
2728 * we do not need to manually clear the CPU cache lines. However,
2729 * the caches are only snooped when the render cache is
2730 * flushed/invalidated. As we always have to emit invalidations
2731 * and flushes when moving into and out of the RENDER domain, correct
2732 * snooping behaviour occurs naturally as the result of our domain
2733 * tracking.
2734 */
2735 if (obj->cache_level != I915_CACHE_NONE)
2736 return;
2737
1c5d22f7 2738 trace_i915_gem_object_clflush(obj);
cfa16a0d 2739
05394f39 2740 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2741}
2742
e47c68e9 2743/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2744static int
3619df03 2745i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2746{
05394f39 2747 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2748 return 0;
e47c68e9
EA
2749
2750 /* Queue the GPU write cache flushing we need. */
db53a302 2751 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2752}
2753
2754/** Flushes the GTT write domain for the object if it's dirty. */
2755static void
05394f39 2756i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2757{
1c5d22f7
CW
2758 uint32_t old_write_domain;
2759
05394f39 2760 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2761 return;
2762
63256ec5 2763 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2764 * to it immediately go to main memory as far as we know, so there's
2765 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2766 *
2767 * However, we do have to enforce the order so that all writes through
2768 * the GTT land before any writes to the device, such as updates to
2769 * the GATT itself.
e47c68e9 2770 */
63256ec5
CW
2771 wmb();
2772
05394f39
CW
2773 old_write_domain = obj->base.write_domain;
2774 obj->base.write_domain = 0;
1c5d22f7
CW
2775
2776 trace_i915_gem_object_change_domain(obj,
05394f39 2777 obj->base.read_domains,
1c5d22f7 2778 old_write_domain);
e47c68e9
EA
2779}
2780
2781/** Flushes the CPU write domain for the object if it's dirty. */
2782static void
05394f39 2783i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2784{
1c5d22f7 2785 uint32_t old_write_domain;
e47c68e9 2786
05394f39 2787 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2788 return;
2789
2790 i915_gem_clflush_object(obj);
40ce6575 2791 intel_gtt_chipset_flush();
05394f39
CW
2792 old_write_domain = obj->base.write_domain;
2793 obj->base.write_domain = 0;
1c5d22f7
CW
2794
2795 trace_i915_gem_object_change_domain(obj,
05394f39 2796 obj->base.read_domains,
1c5d22f7 2797 old_write_domain);
e47c68e9
EA
2798}
2799
2ef7eeaa
EA
2800/**
2801 * Moves a single object to the GTT read, and possibly write domain.
2802 *
2803 * This function returns when the move is complete, including waiting on
2804 * flushes to occur.
2805 */
79e53945 2806int
2021746e 2807i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2808{
1c5d22f7 2809 uint32_t old_write_domain, old_read_domains;
e47c68e9 2810 int ret;
2ef7eeaa 2811
02354392 2812 /* Not valid to be called on unbound objects. */
05394f39 2813 if (obj->gtt_space == NULL)
02354392
EA
2814 return -EINVAL;
2815
8d7e3de1
CW
2816 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2817 return 0;
2818
88241785
CW
2819 ret = i915_gem_object_flush_gpu_write_domain(obj);
2820 if (ret)
2821 return ret;
2822
87ca9c8a 2823 if (obj->pending_gpu_write || write) {
ce453d81 2824 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2825 if (ret)
2826 return ret;
2827 }
2dafb1e0 2828
7213342d 2829 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2830
05394f39
CW
2831 old_write_domain = obj->base.write_domain;
2832 old_read_domains = obj->base.read_domains;
1c5d22f7 2833
e47c68e9
EA
2834 /* It should now be out of any other write domains, and we can update
2835 * the domain values for our changes.
2836 */
05394f39
CW
2837 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2838 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2839 if (write) {
05394f39
CW
2840 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2841 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2842 obj->dirty = 1;
2ef7eeaa
EA
2843 }
2844
1c5d22f7
CW
2845 trace_i915_gem_object_change_domain(obj,
2846 old_read_domains,
2847 old_write_domain);
2848
e47c68e9
EA
2849 return 0;
2850}
2851
e4ffd173
CW
2852int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2853 enum i915_cache_level cache_level)
2854{
7bddb01f
DV
2855 struct drm_device *dev = obj->base.dev;
2856 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2857 int ret;
2858
2859 if (obj->cache_level == cache_level)
2860 return 0;
2861
2862 if (obj->pin_count) {
2863 DRM_DEBUG("can not change the cache level of pinned objects\n");
2864 return -EBUSY;
2865 }
2866
2867 if (obj->gtt_space) {
2868 ret = i915_gem_object_finish_gpu(obj);
2869 if (ret)
2870 return ret;
2871
2872 i915_gem_object_finish_gtt(obj);
2873
2874 /* Before SandyBridge, you could not use tiling or fence
2875 * registers with snooped memory, so relinquish any fences
2876 * currently pointing to our region in the aperture.
2877 */
2878 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2879 ret = i915_gem_object_put_fence(obj);
2880 if (ret)
2881 return ret;
2882 }
2883
74898d7e
DV
2884 if (obj->has_global_gtt_mapping)
2885 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2886 if (obj->has_aliasing_ppgtt_mapping)
2887 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2888 obj, cache_level);
e4ffd173
CW
2889 }
2890
2891 if (cache_level == I915_CACHE_NONE) {
2892 u32 old_read_domains, old_write_domain;
2893
2894 /* If we're coming from LLC cached, then we haven't
2895 * actually been tracking whether the data is in the
2896 * CPU cache or not, since we only allow one bit set
2897 * in obj->write_domain and have been skipping the clflushes.
2898 * Just set it to the CPU cache for now.
2899 */
2900 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2901 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2902
2903 old_read_domains = obj->base.read_domains;
2904 old_write_domain = obj->base.write_domain;
2905
2906 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2907 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 old_read_domains,
2911 old_write_domain);
2912 }
2913
2914 obj->cache_level = cache_level;
2915 return 0;
2916}
2917
b9241ea3 2918/*
2da3b9b9
CW
2919 * Prepare buffer for display plane (scanout, cursors, etc).
2920 * Can be called from an uninterruptible phase (modesetting) and allows
2921 * any flushes to be pipelined (for pageflips).
2922 *
2923 * For the display plane, we want to be in the GTT but out of any write
2924 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
2925 * ability to pipeline the waits, pinning and any additional subtleties
2926 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
2927 */
2928int
2da3b9b9
CW
2929i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2930 u32 alignment,
919926ae 2931 struct intel_ring_buffer *pipelined)
b9241ea3 2932{
2da3b9b9 2933 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2934 int ret;
2935
88241785
CW
2936 ret = i915_gem_object_flush_gpu_write_domain(obj);
2937 if (ret)
2938 return ret;
2939
0be73284 2940 if (pipelined != obj->ring) {
ce453d81 2941 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 2942 if (ret == -ERESTARTSYS)
b9241ea3
ZW
2943 return ret;
2944 }
2945
a7ef0640
EA
2946 /* The display engine is not coherent with the LLC cache on gen6. As
2947 * a result, we make sure that the pinning that is about to occur is
2948 * done with uncached PTEs. This is lowest common denominator for all
2949 * chipsets.
2950 *
2951 * However for gen6+, we could do better by using the GFDT bit instead
2952 * of uncaching, which would allow us to flush all the LLC-cached data
2953 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2954 */
2955 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2956 if (ret)
2957 return ret;
2958
2da3b9b9
CW
2959 /* As the user may map the buffer once pinned in the display plane
2960 * (e.g. libkms for the bootup splash), we have to ensure that we
2961 * always use map_and_fenceable for all scanout buffers.
2962 */
2963 ret = i915_gem_object_pin(obj, alignment, true);
2964 if (ret)
2965 return ret;
2966
b118c1e3
CW
2967 i915_gem_object_flush_cpu_write_domain(obj);
2968
2da3b9b9 2969 old_write_domain = obj->base.write_domain;
05394f39 2970 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2971
2972 /* It should now be out of any other write domains, and we can update
2973 * the domain values for our changes.
2974 */
2975 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2976 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2977
2978 trace_i915_gem_object_change_domain(obj,
2979 old_read_domains,
2da3b9b9 2980 old_write_domain);
b9241ea3
ZW
2981
2982 return 0;
2983}
2984
85345517 2985int
a8198eea 2986i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2987{
88241785
CW
2988 int ret;
2989
a8198eea 2990 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2991 return 0;
2992
88241785 2993 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2994 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2995 if (ret)
2996 return ret;
2997 }
85345517 2998
c501ae7f
CW
2999 ret = i915_gem_object_wait_rendering(obj);
3000 if (ret)
3001 return ret;
3002
a8198eea
CW
3003 /* Ensure that we invalidate the GPU's caches and TLBs. */
3004 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3005 return 0;
85345517
CW
3006}
3007
e47c68e9
EA
3008/**
3009 * Moves a single object to the CPU read, and possibly write domain.
3010 *
3011 * This function returns when the move is complete, including waiting on
3012 * flushes to occur.
3013 */
dabdfe02 3014int
919926ae 3015i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3016{
1c5d22f7 3017 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3018 int ret;
3019
8d7e3de1
CW
3020 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3021 return 0;
3022
88241785
CW
3023 ret = i915_gem_object_flush_gpu_write_domain(obj);
3024 if (ret)
3025 return ret;
3026
ce453d81 3027 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3028 if (ret)
e47c68e9 3029 return ret;
2ef7eeaa 3030
e47c68e9 3031 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3032
05394f39
CW
3033 old_write_domain = obj->base.write_domain;
3034 old_read_domains = obj->base.read_domains;
1c5d22f7 3035
e47c68e9 3036 /* Flush the CPU cache if it's still invalid. */
05394f39 3037 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3038 i915_gem_clflush_object(obj);
2ef7eeaa 3039
05394f39 3040 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3041 }
3042
3043 /* It should now be out of any other write domains, and we can update
3044 * the domain values for our changes.
3045 */
05394f39 3046 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3047
3048 /* If we're writing through the CPU, then the GPU read domains will
3049 * need to be invalidated at next use.
3050 */
3051 if (write) {
05394f39
CW
3052 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3053 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3054 }
2ef7eeaa 3055
1c5d22f7
CW
3056 trace_i915_gem_object_change_domain(obj,
3057 old_read_domains,
3058 old_write_domain);
3059
2ef7eeaa
EA
3060 return 0;
3061}
3062
673a394b
EA
3063/* Throttle our rendering by waiting until the ring has completed our requests
3064 * emitted over 20 msec ago.
3065 *
b962442e
EA
3066 * Note that if we were to use the current jiffies each time around the loop,
3067 * we wouldn't escape the function with any frames outstanding if the time to
3068 * render a frame was over 20ms.
3069 *
673a394b
EA
3070 * This should get us reasonable parallelism between CPU and GPU but also
3071 * relatively low latency when blocking on a particular request to finish.
3072 */
40a5f0de 3073static int
f787a5f5 3074i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3075{
f787a5f5
CW
3076 struct drm_i915_private *dev_priv = dev->dev_private;
3077 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3078 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3079 struct drm_i915_gem_request *request;
3080 struct intel_ring_buffer *ring = NULL;
3081 u32 seqno = 0;
3082 int ret;
93533c29 3083
e110e8d6
CW
3084 if (atomic_read(&dev_priv->mm.wedged))
3085 return -EIO;
3086
1c25595f 3087 spin_lock(&file_priv->mm.lock);
f787a5f5 3088 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3089 if (time_after_eq(request->emitted_jiffies, recent_enough))
3090 break;
40a5f0de 3091
f787a5f5
CW
3092 ring = request->ring;
3093 seqno = request->seqno;
b962442e 3094 }
1c25595f 3095 spin_unlock(&file_priv->mm.lock);
40a5f0de 3096
f787a5f5
CW
3097 if (seqno == 0)
3098 return 0;
2bc43b5c 3099
f787a5f5 3100 ret = 0;
78501eac 3101 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3102 /* And wait for the seqno passing without holding any locks and
3103 * causing extra latency for others. This is safe as the irq
3104 * generation is designed to be run atomically and so is
3105 * lockless.
3106 */
b13c2b96
CW
3107 if (ring->irq_get(ring)) {
3108 ret = wait_event_interruptible(ring->irq_queue,
3109 i915_seqno_passed(ring->get_seqno(ring), seqno)
3110 || atomic_read(&dev_priv->mm.wedged));
3111 ring->irq_put(ring);
40a5f0de 3112
b13c2b96
CW
3113 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3114 ret = -EIO;
e959b5db
EA
3115 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3116 seqno) ||
7ea29b13
EA
3117 atomic_read(&dev_priv->mm.wedged), 3000)) {
3118 ret = -EBUSY;
b13c2b96 3119 }
40a5f0de
EA
3120 }
3121
f787a5f5
CW
3122 if (ret == 0)
3123 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3124
3125 return ret;
3126}
3127
673a394b 3128int
05394f39
CW
3129i915_gem_object_pin(struct drm_i915_gem_object *obj,
3130 uint32_t alignment,
75e9e915 3131 bool map_and_fenceable)
673a394b 3132{
05394f39 3133 struct drm_device *dev = obj->base.dev;
f13d3f73 3134 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3135 int ret;
3136
05394f39 3137 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3138 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3139
05394f39
CW
3140 if (obj->gtt_space != NULL) {
3141 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3142 (map_and_fenceable && !obj->map_and_fenceable)) {
3143 WARN(obj->pin_count,
ae7d49d8 3144 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3145 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3146 " obj->map_and_fenceable=%d\n",
05394f39 3147 obj->gtt_offset, alignment,
75e9e915 3148 map_and_fenceable,
05394f39 3149 obj->map_and_fenceable);
ac0c6b5a
CW
3150 ret = i915_gem_object_unbind(obj);
3151 if (ret)
3152 return ret;
3153 }
3154 }
3155
05394f39 3156 if (obj->gtt_space == NULL) {
a00b10c3 3157 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3158 map_and_fenceable);
9731129c 3159 if (ret)
673a394b 3160 return ret;
22c344e9 3161 }
76446cac 3162
74898d7e
DV
3163 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3164 i915_gem_gtt_bind_object(obj, obj->cache_level);
3165
05394f39 3166 if (obj->pin_count++ == 0) {
05394f39
CW
3167 if (!obj->active)
3168 list_move_tail(&obj->mm_list,
f13d3f73 3169 &dev_priv->mm.pinned_list);
673a394b 3170 }
6299f992 3171 obj->pin_mappable |= map_and_fenceable;
673a394b 3172
23bc5982 3173 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3174 return 0;
3175}
3176
3177void
05394f39 3178i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3179{
05394f39 3180 struct drm_device *dev = obj->base.dev;
673a394b 3181 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3182
23bc5982 3183 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3184 BUG_ON(obj->pin_count == 0);
3185 BUG_ON(obj->gtt_space == NULL);
673a394b 3186
05394f39
CW
3187 if (--obj->pin_count == 0) {
3188 if (!obj->active)
3189 list_move_tail(&obj->mm_list,
673a394b 3190 &dev_priv->mm.inactive_list);
6299f992 3191 obj->pin_mappable = false;
673a394b 3192 }
23bc5982 3193 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3194}
3195
3196int
3197i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3198 struct drm_file *file)
673a394b
EA
3199{
3200 struct drm_i915_gem_pin *args = data;
05394f39 3201 struct drm_i915_gem_object *obj;
673a394b
EA
3202 int ret;
3203
1d7cfea1
CW
3204 ret = i915_mutex_lock_interruptible(dev);
3205 if (ret)
3206 return ret;
673a394b 3207
05394f39 3208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3209 if (&obj->base == NULL) {
1d7cfea1
CW
3210 ret = -ENOENT;
3211 goto unlock;
673a394b 3212 }
673a394b 3213
05394f39 3214 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3215 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3216 ret = -EINVAL;
3217 goto out;
3ef94daa
CW
3218 }
3219
05394f39 3220 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3221 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3222 args->handle);
1d7cfea1
CW
3223 ret = -EINVAL;
3224 goto out;
79e53945
JB
3225 }
3226
05394f39
CW
3227 obj->user_pin_count++;
3228 obj->pin_filp = file;
3229 if (obj->user_pin_count == 1) {
75e9e915 3230 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3231 if (ret)
3232 goto out;
673a394b
EA
3233 }
3234
3235 /* XXX - flush the CPU caches for pinned objects
3236 * as the X server doesn't manage domains yet
3237 */
e47c68e9 3238 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3239 args->offset = obj->gtt_offset;
1d7cfea1 3240out:
05394f39 3241 drm_gem_object_unreference(&obj->base);
1d7cfea1 3242unlock:
673a394b 3243 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3244 return ret;
673a394b
EA
3245}
3246
3247int
3248i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3249 struct drm_file *file)
673a394b
EA
3250{
3251 struct drm_i915_gem_pin *args = data;
05394f39 3252 struct drm_i915_gem_object *obj;
76c1dec1 3253 int ret;
673a394b 3254
1d7cfea1
CW
3255 ret = i915_mutex_lock_interruptible(dev);
3256 if (ret)
3257 return ret;
673a394b 3258
05394f39 3259 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3260 if (&obj->base == NULL) {
1d7cfea1
CW
3261 ret = -ENOENT;
3262 goto unlock;
673a394b 3263 }
76c1dec1 3264
05394f39 3265 if (obj->pin_filp != file) {
79e53945
JB
3266 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3267 args->handle);
1d7cfea1
CW
3268 ret = -EINVAL;
3269 goto out;
79e53945 3270 }
05394f39
CW
3271 obj->user_pin_count--;
3272 if (obj->user_pin_count == 0) {
3273 obj->pin_filp = NULL;
79e53945
JB
3274 i915_gem_object_unpin(obj);
3275 }
673a394b 3276
1d7cfea1 3277out:
05394f39 3278 drm_gem_object_unreference(&obj->base);
1d7cfea1 3279unlock:
673a394b 3280 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3281 return ret;
673a394b
EA
3282}
3283
3284int
3285i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3286 struct drm_file *file)
673a394b
EA
3287{
3288 struct drm_i915_gem_busy *args = data;
05394f39 3289 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3290 int ret;
3291
76c1dec1 3292 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3293 if (ret)
76c1dec1 3294 return ret;
673a394b 3295
05394f39 3296 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3297 if (&obj->base == NULL) {
1d7cfea1
CW
3298 ret = -ENOENT;
3299 goto unlock;
673a394b 3300 }
d1b851fc 3301
0be555b6
CW
3302 /* Count all active objects as busy, even if they are currently not used
3303 * by the gpu. Users of this interface expect objects to eventually
3304 * become non-busy without any further actions, therefore emit any
3305 * necessary flushes here.
c4de0a5d 3306 */
05394f39 3307 args->busy = obj->active;
0be555b6
CW
3308 if (args->busy) {
3309 /* Unconditionally flush objects, even when the gpu still uses this
3310 * object. Userspace calling this function indicates that it wants to
3311 * use this buffer rather sooner than later, so issuing the required
3312 * flush earlier is beneficial.
3313 */
1a1c6976 3314 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3315 ret = i915_gem_flush_ring(obj->ring,
88241785 3316 0, obj->base.write_domain);
1a1c6976
CW
3317 } else if (obj->ring->outstanding_lazy_request ==
3318 obj->last_rendering_seqno) {
3319 struct drm_i915_gem_request *request;
3320
7a194876
CW
3321 /* This ring is not being cleared by active usage,
3322 * so emit a request to do so.
3323 */
1a1c6976 3324 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3325 if (request) {
0206e353 3326 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3327 if (ret)
3328 kfree(request);
3329 } else
7a194876
CW
3330 ret = -ENOMEM;
3331 }
0be555b6
CW
3332
3333 /* Update the active list for the hardware's current position.
3334 * Otherwise this only updates on a delayed timer or when irqs
3335 * are actually unmasked, and our working set ends up being
3336 * larger than required.
3337 */
db53a302 3338 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3339
05394f39 3340 args->busy = obj->active;
0be555b6 3341 }
673a394b 3342
05394f39 3343 drm_gem_object_unreference(&obj->base);
1d7cfea1 3344unlock:
673a394b 3345 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3346 return ret;
673a394b
EA
3347}
3348
3349int
3350i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3351 struct drm_file *file_priv)
3352{
0206e353 3353 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3354}
3355
3ef94daa
CW
3356int
3357i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3358 struct drm_file *file_priv)
3359{
3360 struct drm_i915_gem_madvise *args = data;
05394f39 3361 struct drm_i915_gem_object *obj;
76c1dec1 3362 int ret;
3ef94daa
CW
3363
3364 switch (args->madv) {
3365 case I915_MADV_DONTNEED:
3366 case I915_MADV_WILLNEED:
3367 break;
3368 default:
3369 return -EINVAL;
3370 }
3371
1d7cfea1
CW
3372 ret = i915_mutex_lock_interruptible(dev);
3373 if (ret)
3374 return ret;
3375
05394f39 3376 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3377 if (&obj->base == NULL) {
1d7cfea1
CW
3378 ret = -ENOENT;
3379 goto unlock;
3ef94daa 3380 }
3ef94daa 3381
05394f39 3382 if (obj->pin_count) {
1d7cfea1
CW
3383 ret = -EINVAL;
3384 goto out;
3ef94daa
CW
3385 }
3386
05394f39
CW
3387 if (obj->madv != __I915_MADV_PURGED)
3388 obj->madv = args->madv;
3ef94daa 3389
2d7ef395 3390 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3391 if (i915_gem_object_is_purgeable(obj) &&
3392 obj->gtt_space == NULL)
2d7ef395
CW
3393 i915_gem_object_truncate(obj);
3394
05394f39 3395 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3396
1d7cfea1 3397out:
05394f39 3398 drm_gem_object_unreference(&obj->base);
1d7cfea1 3399unlock:
3ef94daa 3400 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3401 return ret;
3ef94daa
CW
3402}
3403
05394f39
CW
3404struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3405 size_t size)
ac52bc56 3406{
73aa808f 3407 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3408 struct drm_i915_gem_object *obj;
5949eac4 3409 struct address_space *mapping;
ac52bc56 3410
c397b908
DV
3411 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3412 if (obj == NULL)
3413 return NULL;
673a394b 3414
c397b908
DV
3415 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3416 kfree(obj);
3417 return NULL;
3418 }
673a394b 3419
5949eac4
HD
3420 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3421 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3422
73aa808f
CW
3423 i915_gem_info_add_obj(dev_priv, size);
3424
c397b908
DV
3425 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3426 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3427
3d29b842
ED
3428 if (HAS_LLC(dev)) {
3429 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3430 * cache) for about a 10% performance improvement
3431 * compared to uncached. Graphics requests other than
3432 * display scanout are coherent with the CPU in
3433 * accessing this cache. This means in this mode we
3434 * don't need to clflush on the CPU side, and on the
3435 * GPU side we only need to flush internal caches to
3436 * get data visible to the CPU.
3437 *
3438 * However, we maintain the display planes as UC, and so
3439 * need to rebind when first used as such.
3440 */
3441 obj->cache_level = I915_CACHE_LLC;
3442 } else
3443 obj->cache_level = I915_CACHE_NONE;
3444
62b8b215 3445 obj->base.driver_private = NULL;
c397b908 3446 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3447 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3448 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3449 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3450 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3451 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3452 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3453 /* Avoid an unnecessary call to unbind on the first bind. */
3454 obj->map_and_fenceable = true;
de151cf6 3455
05394f39 3456 return obj;
c397b908
DV
3457}
3458
3459int i915_gem_init_object(struct drm_gem_object *obj)
3460{
3461 BUG();
de151cf6 3462
673a394b
EA
3463 return 0;
3464}
3465
05394f39 3466static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3467{
05394f39 3468 struct drm_device *dev = obj->base.dev;
be72615b 3469 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3470 int ret;
673a394b 3471
be72615b
CW
3472 ret = i915_gem_object_unbind(obj);
3473 if (ret == -ERESTARTSYS) {
05394f39 3474 list_move(&obj->mm_list,
be72615b
CW
3475 &dev_priv->mm.deferred_free_list);
3476 return;
3477 }
673a394b 3478
26e12f89
CW
3479 trace_i915_gem_object_destroy(obj);
3480
05394f39 3481 if (obj->base.map_list.map)
b464e9a2 3482 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3483
05394f39
CW
3484 drm_gem_object_release(&obj->base);
3485 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3486
05394f39
CW
3487 kfree(obj->bit_17);
3488 kfree(obj);
673a394b
EA
3489}
3490
05394f39 3491void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3492{
05394f39
CW
3493 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3494 struct drm_device *dev = obj->base.dev;
be72615b 3495
05394f39 3496 while (obj->pin_count > 0)
be72615b
CW
3497 i915_gem_object_unpin(obj);
3498
05394f39 3499 if (obj->phys_obj)
be72615b
CW
3500 i915_gem_detach_phys_object(dev, obj);
3501
3502 i915_gem_free_object_tail(obj);
3503}
3504
29105ccc
CW
3505int
3506i915_gem_idle(struct drm_device *dev)
3507{
3508 drm_i915_private_t *dev_priv = dev->dev_private;
3509 int ret;
28dfe52a 3510
29105ccc 3511 mutex_lock(&dev->struct_mutex);
1c5d22f7 3512
87acb0a5 3513 if (dev_priv->mm.suspended) {
29105ccc
CW
3514 mutex_unlock(&dev->struct_mutex);
3515 return 0;
28dfe52a
EA
3516 }
3517
b93f9cf1 3518 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3519 if (ret) {
3520 mutex_unlock(&dev->struct_mutex);
673a394b 3521 return ret;
6dbe2772 3522 }
673a394b 3523
29105ccc
CW
3524 /* Under UMS, be paranoid and evict. */
3525 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3526 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3527 if (ret) {
3528 mutex_unlock(&dev->struct_mutex);
3529 return ret;
3530 }
3531 }
3532
312817a3
CW
3533 i915_gem_reset_fences(dev);
3534
29105ccc
CW
3535 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3536 * We need to replace this with a semaphore, or something.
3537 * And not confound mm.suspended!
3538 */
3539 dev_priv->mm.suspended = 1;
bc0c7f14 3540 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3541
3542 i915_kernel_lost_context(dev);
6dbe2772 3543 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3544
6dbe2772
KP
3545 mutex_unlock(&dev->struct_mutex);
3546
29105ccc
CW
3547 /* Cancel the retire work handler, which should be idle now. */
3548 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3549
673a394b
EA
3550 return 0;
3551}
3552
f691e2f4
DV
3553void i915_gem_init_swizzling(struct drm_device *dev)
3554{
3555 drm_i915_private_t *dev_priv = dev->dev_private;
3556
11782b02 3557 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3558 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3559 return;
3560
3561 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3562 DISP_TILE_SURFACE_SWIZZLING);
3563
11782b02
DV
3564 if (IS_GEN5(dev))
3565 return;
3566
f691e2f4
DV
3567 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3568 if (IS_GEN6(dev))
3569 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3570 else
3571 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3572}
e21af88d
DV
3573
3574void i915_gem_init_ppgtt(struct drm_device *dev)
3575{
3576 drm_i915_private_t *dev_priv = dev->dev_private;
3577 uint32_t pd_offset;
3578 struct intel_ring_buffer *ring;
3579 int i;
3580
3581 if (!dev_priv->mm.aliasing_ppgtt)
3582 return;
3583
3584 pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
3585 pd_offset /= 64; /* in cachelines, */
3586 pd_offset <<= 16;
3587
3588 if (INTEL_INFO(dev)->gen == 6) {
3589 uint32_t ecochk = I915_READ(GAM_ECOCHK);
3590 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3591 ECOCHK_PPGTT_CACHE64B);
3592 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3593 } else if (INTEL_INFO(dev)->gen >= 7) {
3594 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3595 /* GFX_MODE is per-ring on gen7+ */
3596 }
3597
3598 for (i = 0; i < I915_NUM_RINGS; i++) {
3599 ring = &dev_priv->ring[i];
3600
3601 if (INTEL_INFO(dev)->gen >= 7)
3602 I915_WRITE(RING_MODE_GEN7(ring),
3603 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3604
3605 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3606 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3607 }
3608}
3609
8187a2b7 3610int
f691e2f4 3611i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3612{
3613 drm_i915_private_t *dev_priv = dev->dev_private;
3614 int ret;
68f95ba9 3615
f691e2f4
DV
3616 i915_gem_init_swizzling(dev);
3617
5c1143bb 3618 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3619 if (ret)
b6913e4b 3620 return ret;
68f95ba9
CW
3621
3622 if (HAS_BSD(dev)) {
5c1143bb 3623 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3624 if (ret)
3625 goto cleanup_render_ring;
d1b851fc 3626 }
68f95ba9 3627
549f7365
CW
3628 if (HAS_BLT(dev)) {
3629 ret = intel_init_blt_ring_buffer(dev);
3630 if (ret)
3631 goto cleanup_bsd_ring;
3632 }
3633
6f392d54
CW
3634 dev_priv->next_seqno = 1;
3635
e21af88d
DV
3636 i915_gem_init_ppgtt(dev);
3637
68f95ba9
CW
3638 return 0;
3639
549f7365 3640cleanup_bsd_ring:
1ec14ad3 3641 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3642cleanup_render_ring:
1ec14ad3 3643 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3644 return ret;
3645}
3646
3647void
3648i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3649{
3650 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3651 int i;
8187a2b7 3652
1ec14ad3
CW
3653 for (i = 0; i < I915_NUM_RINGS; i++)
3654 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3655}
3656
673a394b
EA
3657int
3658i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3659 struct drm_file *file_priv)
3660{
3661 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3662 int ret, i;
673a394b 3663
79e53945
JB
3664 if (drm_core_check_feature(dev, DRIVER_MODESET))
3665 return 0;
3666
ba1234d1 3667 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3668 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3669 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3670 }
3671
673a394b 3672 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3673 dev_priv->mm.suspended = 0;
3674
f691e2f4 3675 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3676 if (ret != 0) {
3677 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3678 return ret;
d816f6ac 3679 }
9bb2d6f9 3680
69dc4987 3681 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3682 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3683 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3684 for (i = 0; i < I915_NUM_RINGS; i++) {
3685 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3686 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3687 }
673a394b 3688 mutex_unlock(&dev->struct_mutex);
dbb19d30 3689
5f35308b
CW
3690 ret = drm_irq_install(dev);
3691 if (ret)
3692 goto cleanup_ringbuffer;
dbb19d30 3693
673a394b 3694 return 0;
5f35308b
CW
3695
3696cleanup_ringbuffer:
3697 mutex_lock(&dev->struct_mutex);
3698 i915_gem_cleanup_ringbuffer(dev);
3699 dev_priv->mm.suspended = 1;
3700 mutex_unlock(&dev->struct_mutex);
3701
3702 return ret;
673a394b
EA
3703}
3704
3705int
3706i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3707 struct drm_file *file_priv)
3708{
79e53945
JB
3709 if (drm_core_check_feature(dev, DRIVER_MODESET))
3710 return 0;
3711
dbb19d30 3712 drm_irq_uninstall(dev);
e6890f6f 3713 return i915_gem_idle(dev);
673a394b
EA
3714}
3715
3716void
3717i915_gem_lastclose(struct drm_device *dev)
3718{
3719 int ret;
673a394b 3720
e806b495
EA
3721 if (drm_core_check_feature(dev, DRIVER_MODESET))
3722 return;
3723
6dbe2772
KP
3724 ret = i915_gem_idle(dev);
3725 if (ret)
3726 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3727}
3728
64193406
CW
3729static void
3730init_ring_lists(struct intel_ring_buffer *ring)
3731{
3732 INIT_LIST_HEAD(&ring->active_list);
3733 INIT_LIST_HEAD(&ring->request_list);
3734 INIT_LIST_HEAD(&ring->gpu_write_list);
3735}
3736
673a394b
EA
3737void
3738i915_gem_load(struct drm_device *dev)
3739{
b5aa8a0f 3740 int i;
673a394b
EA
3741 drm_i915_private_t *dev_priv = dev->dev_private;
3742
69dc4987 3743 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3744 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3745 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3746 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3747 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3748 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3749 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3750 for (i = 0; i < I915_NUM_RINGS; i++)
3751 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3752 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3753 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3754 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3755 i915_gem_retire_work_handler);
30dbf0c0 3756 init_completion(&dev_priv->error_completion);
31169714 3757
94400120
DA
3758 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3759 if (IS_GEN3(dev)) {
3760 u32 tmp = I915_READ(MI_ARB_STATE);
3761 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3762 /* arb state is a masked write, so set bit + bit in mask */
3763 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3764 I915_WRITE(MI_ARB_STATE, tmp);
3765 }
3766 }
3767
72bfa19c
CW
3768 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3769
de151cf6 3770 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3771 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3772 dev_priv->fence_reg_start = 3;
de151cf6 3773
a6c45cf0 3774 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3775 dev_priv->num_fence_regs = 16;
3776 else
3777 dev_priv->num_fence_regs = 8;
3778
b5aa8a0f 3779 /* Initialize fence registers to zero */
10ed13e4
EA
3780 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3781 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3782 }
10ed13e4 3783
673a394b 3784 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3785 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3786
ce453d81
CW
3787 dev_priv->mm.interruptible = true;
3788
17250b71
CW
3789 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3790 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3791 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3792}
71acb5eb
DA
3793
3794/*
3795 * Create a physically contiguous memory object for this object
3796 * e.g. for cursor + overlay regs
3797 */
995b6762
CW
3798static int i915_gem_init_phys_object(struct drm_device *dev,
3799 int id, int size, int align)
71acb5eb
DA
3800{
3801 drm_i915_private_t *dev_priv = dev->dev_private;
3802 struct drm_i915_gem_phys_object *phys_obj;
3803 int ret;
3804
3805 if (dev_priv->mm.phys_objs[id - 1] || !size)
3806 return 0;
3807
9a298b2a 3808 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3809 if (!phys_obj)
3810 return -ENOMEM;
3811
3812 phys_obj->id = id;
3813
6eeefaf3 3814 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3815 if (!phys_obj->handle) {
3816 ret = -ENOMEM;
3817 goto kfree_obj;
3818 }
3819#ifdef CONFIG_X86
3820 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3821#endif
3822
3823 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3824
3825 return 0;
3826kfree_obj:
9a298b2a 3827 kfree(phys_obj);
71acb5eb
DA
3828 return ret;
3829}
3830
995b6762 3831static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3832{
3833 drm_i915_private_t *dev_priv = dev->dev_private;
3834 struct drm_i915_gem_phys_object *phys_obj;
3835
3836 if (!dev_priv->mm.phys_objs[id - 1])
3837 return;
3838
3839 phys_obj = dev_priv->mm.phys_objs[id - 1];
3840 if (phys_obj->cur_obj) {
3841 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3842 }
3843
3844#ifdef CONFIG_X86
3845 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3846#endif
3847 drm_pci_free(dev, phys_obj->handle);
3848 kfree(phys_obj);
3849 dev_priv->mm.phys_objs[id - 1] = NULL;
3850}
3851
3852void i915_gem_free_all_phys_object(struct drm_device *dev)
3853{
3854 int i;
3855
260883c8 3856 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3857 i915_gem_free_phys_object(dev, i);
3858}
3859
3860void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3861 struct drm_i915_gem_object *obj)
71acb5eb 3862{
05394f39 3863 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3864 char *vaddr;
71acb5eb 3865 int i;
71acb5eb
DA
3866 int page_count;
3867
05394f39 3868 if (!obj->phys_obj)
71acb5eb 3869 return;
05394f39 3870 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3871
05394f39 3872 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3873 for (i = 0; i < page_count; i++) {
5949eac4 3874 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3875 if (!IS_ERR(page)) {
3876 char *dst = kmap_atomic(page);
3877 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3878 kunmap_atomic(dst);
3879
3880 drm_clflush_pages(&page, 1);
3881
3882 set_page_dirty(page);
3883 mark_page_accessed(page);
3884 page_cache_release(page);
3885 }
71acb5eb 3886 }
40ce6575 3887 intel_gtt_chipset_flush();
d78b47b9 3888
05394f39
CW
3889 obj->phys_obj->cur_obj = NULL;
3890 obj->phys_obj = NULL;
71acb5eb
DA
3891}
3892
3893int
3894i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3895 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3896 int id,
3897 int align)
71acb5eb 3898{
05394f39 3899 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3900 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3901 int ret = 0;
3902 int page_count;
3903 int i;
3904
3905 if (id > I915_MAX_PHYS_OBJECT)
3906 return -EINVAL;
3907
05394f39
CW
3908 if (obj->phys_obj) {
3909 if (obj->phys_obj->id == id)
71acb5eb
DA
3910 return 0;
3911 i915_gem_detach_phys_object(dev, obj);
3912 }
3913
71acb5eb
DA
3914 /* create a new object */
3915 if (!dev_priv->mm.phys_objs[id - 1]) {
3916 ret = i915_gem_init_phys_object(dev, id,
05394f39 3917 obj->base.size, align);
71acb5eb 3918 if (ret) {
05394f39
CW
3919 DRM_ERROR("failed to init phys object %d size: %zu\n",
3920 id, obj->base.size);
e5281ccd 3921 return ret;
71acb5eb
DA
3922 }
3923 }
3924
3925 /* bind to the object */
05394f39
CW
3926 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3927 obj->phys_obj->cur_obj = obj;
71acb5eb 3928
05394f39 3929 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3930
3931 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3932 struct page *page;
3933 char *dst, *src;
3934
5949eac4 3935 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3936 if (IS_ERR(page))
3937 return PTR_ERR(page);
71acb5eb 3938
ff75b9bc 3939 src = kmap_atomic(page);
05394f39 3940 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3941 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3942 kunmap_atomic(src);
71acb5eb 3943
e5281ccd
CW
3944 mark_page_accessed(page);
3945 page_cache_release(page);
3946 }
d78b47b9 3947
71acb5eb 3948 return 0;
71acb5eb
DA
3949}
3950
3951static int
05394f39
CW
3952i915_gem_phys_pwrite(struct drm_device *dev,
3953 struct drm_i915_gem_object *obj,
71acb5eb
DA
3954 struct drm_i915_gem_pwrite *args,
3955 struct drm_file *file_priv)
3956{
05394f39 3957 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3958 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3959
b47b30cc
CW
3960 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3961 unsigned long unwritten;
3962
3963 /* The physical object once assigned is fixed for the lifetime
3964 * of the obj, so we can safely drop the lock and continue
3965 * to access vaddr.
3966 */
3967 mutex_unlock(&dev->struct_mutex);
3968 unwritten = copy_from_user(vaddr, user_data, args->size);
3969 mutex_lock(&dev->struct_mutex);
3970 if (unwritten)
3971 return -EFAULT;
3972 }
71acb5eb 3973
40ce6575 3974 intel_gtt_chipset_flush();
71acb5eb
DA
3975 return 0;
3976}
b962442e 3977
f787a5f5 3978void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3979{
f787a5f5 3980 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3981
3982 /* Clean up our request list when the client is going away, so that
3983 * later retire_requests won't dereference our soon-to-be-gone
3984 * file_priv.
3985 */
1c25595f 3986 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3987 while (!list_empty(&file_priv->mm.request_list)) {
3988 struct drm_i915_gem_request *request;
3989
3990 request = list_first_entry(&file_priv->mm.request_list,
3991 struct drm_i915_gem_request,
3992 client_list);
3993 list_del(&request->client_list);
3994 request->file_priv = NULL;
3995 }
1c25595f 3996 spin_unlock(&file_priv->mm.lock);
b962442e 3997}
31169714 3998
1637ef41
CW
3999static int
4000i915_gpu_is_active(struct drm_device *dev)
4001{
4002 drm_i915_private_t *dev_priv = dev->dev_private;
4003 int lists_empty;
4004
1637ef41 4005 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4006 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4007
4008 return !lists_empty;
4009}
4010
31169714 4011static int
1495f230 4012i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4013{
17250b71
CW
4014 struct drm_i915_private *dev_priv =
4015 container_of(shrinker,
4016 struct drm_i915_private,
4017 mm.inactive_shrinker);
4018 struct drm_device *dev = dev_priv->dev;
4019 struct drm_i915_gem_object *obj, *next;
1495f230 4020 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4021 int cnt;
4022
4023 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4024 return 0;
31169714
CW
4025
4026 /* "fast-path" to count number of available objects */
4027 if (nr_to_scan == 0) {
17250b71
CW
4028 cnt = 0;
4029 list_for_each_entry(obj,
4030 &dev_priv->mm.inactive_list,
4031 mm_list)
4032 cnt++;
4033 mutex_unlock(&dev->struct_mutex);
4034 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4035 }
4036
1637ef41 4037rescan:
31169714 4038 /* first scan for clean buffers */
17250b71 4039 i915_gem_retire_requests(dev);
31169714 4040
17250b71
CW
4041 list_for_each_entry_safe(obj, next,
4042 &dev_priv->mm.inactive_list,
4043 mm_list) {
4044 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4045 if (i915_gem_object_unbind(obj) == 0 &&
4046 --nr_to_scan == 0)
17250b71 4047 break;
31169714 4048 }
31169714
CW
4049 }
4050
4051 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4052 cnt = 0;
4053 list_for_each_entry_safe(obj, next,
4054 &dev_priv->mm.inactive_list,
4055 mm_list) {
2021746e
CW
4056 if (nr_to_scan &&
4057 i915_gem_object_unbind(obj) == 0)
17250b71 4058 nr_to_scan--;
2021746e 4059 else
17250b71
CW
4060 cnt++;
4061 }
4062
4063 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4064 /*
4065 * We are desperate for pages, so as a last resort, wait
4066 * for the GPU to finish and discard whatever we can.
4067 * This has a dramatic impact to reduce the number of
4068 * OOM-killer events whilst running the GPU aggressively.
4069 */
b93f9cf1 4070 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4071 goto rescan;
4072 }
17250b71
CW
4073 mutex_unlock(&dev->struct_mutex);
4074 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4075}