]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Set guardband clipping workaround bit in the right register.
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
86a1ee26
CW
44 bool map_and_fenceable,
45 bool nonblocking);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
6c085a72
CW
59static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
61050808
CW
63static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64{
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
5d82e3e6 71 obj->fence_dirty = false;
61050808
CW
72 obj->fence_reg = I915_FENCE_REG_NONE;
73}
74
73aa808f
CW
75/* some bookkeeping */
76static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78{
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81}
82
83static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88}
89
21dd3734
CW
90static int
91i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
92{
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 unsigned long flags;
96 int ret;
97
98 if (!atomic_read(&dev_priv->mm.wedged))
99 return 0;
100
0a6759c6
DV
101 /*
102 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103 * userspace. If it takes that long something really bad is going on and
104 * we should simply try to bail out and fail as gracefully as possible.
105 */
106 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
30dbf0c0 113
21dd3734
CW
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 /* GPU is hung, bump the completion count to account for
116 * the token we just consumed so that we never hit zero and
117 * end up waiting upon a subsequent completion event that
118 * will never happen.
119 */
120 spin_lock_irqsave(&x->wait.lock, flags);
121 x->done++;
122 spin_unlock_irqrestore(&x->wait.lock, flags);
123 }
124 return 0;
30dbf0c0
CW
125}
126
54cf91dc 127int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 128{
76c1dec1
CW
129 int ret;
130
21dd3734 131 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
132 if (ret)
133 return ret;
134
135 ret = mutex_lock_interruptible(&dev->struct_mutex);
136 if (ret)
137 return ret;
138
23bc5982 139 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
140 return 0;
141}
30dbf0c0 142
7d1c4804 143static inline bool
05394f39 144i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 145{
6c085a72 146 return obj->gtt_space && !obj->active;
7d1c4804
CW
147}
148
79e53945
JB
149int
150i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 151 struct drm_file *file)
79e53945
JB
152{
153 struct drm_i915_gem_init *args = data;
2021746e 154
7bb6fb8d
DV
155 if (drm_core_check_feature(dev, DRIVER_MODESET))
156 return -ENODEV;
157
2021746e
CW
158 if (args->gtt_start >= args->gtt_end ||
159 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160 return -EINVAL;
79e53945 161
f534bc0b
DV
162 /* GEM with user mode setting was never supported on ilk and later. */
163 if (INTEL_INFO(dev)->gen >= 5)
164 return -ENODEV;
165
79e53945 166 mutex_lock(&dev->struct_mutex);
644ec02b
DV
167 i915_gem_init_global_gtt(dev, args->gtt_start,
168 args->gtt_end, args->gtt_end);
673a394b
EA
169 mutex_unlock(&dev->struct_mutex);
170
2021746e 171 return 0;
673a394b
EA
172}
173
5a125c3c
EA
174int
175i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 176 struct drm_file *file)
5a125c3c 177{
73aa808f 178 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 179 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
5a125c3c 182
6299f992 183 pinned = 0;
73aa808f 184 mutex_lock(&dev->struct_mutex);
6c085a72 185 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
186 if (obj->pin_count)
187 pinned += obj->gtt_space->size;
73aa808f 188 mutex_unlock(&dev->struct_mutex);
5a125c3c 189
6299f992 190 args->aper_size = dev_priv->mm.gtt_total;
0206e353 191 args->aper_available_size = args->aper_size - pinned;
6299f992 192
5a125c3c
EA
193 return 0;
194}
195
ff72145b
DA
196static int
197i915_gem_create(struct drm_file *file,
198 struct drm_device *dev,
199 uint64_t size,
200 uint32_t *handle_p)
673a394b 201{
05394f39 202 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
203 int ret;
204 u32 handle;
673a394b 205
ff72145b 206 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
207 if (size == 0)
208 return -EINVAL;
673a394b
EA
209
210 /* Allocate the new object */
ff72145b 211 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
212 if (obj == NULL)
213 return -ENOMEM;
214
05394f39 215 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 216 if (ret) {
05394f39
CW
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 219 kfree(obj);
673a394b 220 return ret;
1dfd9754 221 }
673a394b 222
202f2fef 223 /* drop reference from allocate - handle holds it now */
05394f39 224 drm_gem_object_unreference(&obj->base);
202f2fef
CW
225 trace_i915_gem_object_create(obj);
226
ff72145b 227 *handle_p = handle;
673a394b
EA
228 return 0;
229}
230
ff72145b
DA
231int
232i915_gem_dumb_create(struct drm_file *file,
233 struct drm_device *dev,
234 struct drm_mode_create_dumb *args)
235{
236 /* have to work out size/pitch and return them */
ed0291fd 237 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
238 args->size = args->pitch * args->height;
239 return i915_gem_create(file, dev,
240 args->size, &args->handle);
241}
242
243int i915_gem_dumb_destroy(struct drm_file *file,
244 struct drm_device *dev,
245 uint32_t handle)
246{
247 return drm_gem_handle_delete(file, handle);
248}
249
250/**
251 * Creates a new mm object and returns a handle to it.
252 */
253int
254i915_gem_create_ioctl(struct drm_device *dev, void *data,
255 struct drm_file *file)
256{
257 struct drm_i915_gem_create *args = data;
63ed2cb2 258
ff72145b
DA
259 return i915_gem_create(file, dev,
260 args->size, &args->handle);
261}
262
05394f39 263static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 264{
05394f39 265 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
266
267 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 268 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
269}
270
8461d226
DV
271static inline int
272__copy_to_user_swizzled(char __user *cpu_vaddr,
273 const char *gpu_vaddr, int gpu_offset,
274 int length)
275{
276 int ret, cpu_offset = 0;
277
278 while (length > 0) {
279 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280 int this_length = min(cacheline_end - gpu_offset, length);
281 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284 gpu_vaddr + swizzled_gpu_offset,
285 this_length);
286 if (ret)
287 return ret + length;
288
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
294 return 0;
295}
296
8c59967c 297static inline int
4f0c7cfb
BW
298__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299 const char __user *cpu_vaddr,
8c59967c
DV
300 int length)
301{
302 int ret, cpu_offset = 0;
303
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310 cpu_vaddr + cpu_offset,
311 this_length);
312 if (ret)
313 return ret + length;
314
315 cpu_offset += this_length;
316 gpu_offset += this_length;
317 length -= this_length;
318 }
319
320 return 0;
321}
322
d174bd64
DV
323/* Per-page copy function for the shmem pread fastpath.
324 * Flushes invalid cachelines before reading the target if
325 * needs_clflush is set. */
eb01459f 326static int
d174bd64
DV
327shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328 char __user *user_data,
329 bool page_do_bit17_swizzling, bool needs_clflush)
330{
331 char *vaddr;
332 int ret;
333
e7e58eb5 334 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
335 return -EINVAL;
336
337 vaddr = kmap_atomic(page);
338 if (needs_clflush)
339 drm_clflush_virt_range(vaddr + shmem_page_offset,
340 page_length);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + shmem_page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
f60d7f0c 346 return ret ? -EFAULT : 0;
d174bd64
DV
347}
348
23c18c71
DV
349static void
350shmem_clflush_swizzled_range(char *addr, unsigned long length,
351 bool swizzled)
352{
e7e58eb5 353 if (unlikely(swizzled)) {
23c18c71
DV
354 unsigned long start = (unsigned long) addr;
355 unsigned long end = (unsigned long) addr + length;
356
357 /* For swizzling simply ensure that we always flush both
358 * channels. Lame, but simple and it works. Swizzled
359 * pwrite/pread is far from a hotpath - current userspace
360 * doesn't use it at all. */
361 start = round_down(start, 128);
362 end = round_up(end, 128);
363
364 drm_clflush_virt_range((void *)start, end - start);
365 } else {
366 drm_clflush_virt_range(addr, length);
367 }
368
369}
370
d174bd64
DV
371/* Only difference to the fast-path function is that this can handle bit17
372 * and uses non-atomic copy and kmap functions. */
373static int
374shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377{
378 char *vaddr;
379 int ret;
380
381 vaddr = kmap(page);
382 if (needs_clflush)
23c18c71
DV
383 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384 page_length,
385 page_do_bit17_swizzling);
d174bd64
DV
386
387 if (page_do_bit17_swizzling)
388 ret = __copy_to_user_swizzled(user_data,
389 vaddr, shmem_page_offset,
390 page_length);
391 else
392 ret = __copy_to_user(user_data,
393 vaddr + shmem_page_offset,
394 page_length);
395 kunmap(page);
396
f60d7f0c 397 return ret ? - EFAULT : 0;
d174bd64
DV
398}
399
eb01459f 400static int
dbf7bff0
DV
401i915_gem_shmem_pread(struct drm_device *dev,
402 struct drm_i915_gem_object *obj,
403 struct drm_i915_gem_pread *args,
404 struct drm_file *file)
eb01459f 405{
8461d226 406 char __user *user_data;
eb01459f 407 ssize_t remain;
8461d226 408 loff_t offset;
eb2c0c81 409 int shmem_page_offset, page_length, ret = 0;
8461d226 410 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 411 int hit_slowpath = 0;
96d79b52 412 int prefaulted = 0;
8489731c 413 int needs_clflush = 0;
9da3da66
CW
414 struct scatterlist *sg;
415 int i;
eb01459f 416
8461d226 417 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
418 remain = args->size;
419
8461d226 420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 421
8489731c
DV
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
6c085a72
CW
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
8489731c 434 }
eb01459f 435
f60d7f0c
CW
436 ret = i915_gem_object_get_pages(obj);
437 if (ret)
438 return ret;
439
440 i915_gem_object_pin_pages(obj);
441
8461d226 442 offset = args->offset;
eb01459f 443
9da3da66 444 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
445 struct page *page;
446
9da3da66
CW
447 if (i < offset >> PAGE_SHIFT)
448 continue;
449
450 if (remain <= 0)
451 break;
452
eb01459f
EA
453 /* Operation in this page
454 *
eb01459f 455 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
456 * page_length = bytes to copy for this page
457 */
c8cbbb8b 458 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
459 page_length = remain;
460 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 462
9da3da66 463 page = sg_page(sg);
8461d226
DV
464 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465 (page_to_phys(page) & (1 << 17)) != 0;
466
d174bd64
DV
467 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468 user_data, page_do_bit17_swizzling,
469 needs_clflush);
470 if (ret == 0)
471 goto next_page;
dbf7bff0
DV
472
473 hit_slowpath = 1;
dbf7bff0
DV
474 mutex_unlock(&dev->struct_mutex);
475
96d79b52 476 if (!prefaulted) {
f56f821f 477 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
eb01459f 485
d174bd64
DV
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
eb01459f 489
dbf7bff0 490 mutex_lock(&dev->struct_mutex);
f60d7f0c 491
dbf7bff0 492next_page:
e5281ccd 493 mark_page_accessed(page);
e5281ccd 494
f60d7f0c 495 if (ret)
8461d226 496 goto out;
8461d226 497
eb01459f 498 remain -= page_length;
8461d226 499 user_data += page_length;
eb01459f
EA
500 offset += page_length;
501 }
502
4f27b75d 503out:
f60d7f0c
CW
504 i915_gem_object_unpin_pages(obj);
505
dbf7bff0
DV
506 if (hit_slowpath) {
507 /* Fixup: Kill any reinstated backing storage pages */
508 if (obj->madv == __I915_MADV_PURGED)
509 i915_gem_object_truncate(obj);
510 }
eb01459f
EA
511
512 return ret;
513}
514
673a394b
EA
515/**
516 * Reads data from the object referenced by handle.
517 *
518 * On error, the contents of *data are undefined.
519 */
520int
521i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 522 struct drm_file *file)
673a394b
EA
523{
524 struct drm_i915_gem_pread *args = data;
05394f39 525 struct drm_i915_gem_object *obj;
35b62a89 526 int ret = 0;
673a394b 527
51311d0a
CW
528 if (args->size == 0)
529 return 0;
530
531 if (!access_ok(VERIFY_WRITE,
532 (char __user *)(uintptr_t)args->data_ptr,
533 args->size))
534 return -EFAULT;
535
4f27b75d 536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 537 if (ret)
4f27b75d 538 return ret;
673a394b 539
05394f39 540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 541 if (&obj->base == NULL) {
1d7cfea1
CW
542 ret = -ENOENT;
543 goto unlock;
4f27b75d 544 }
673a394b 545
7dcd2499 546 /* Bounds check source. */
05394f39
CW
547 if (args->offset > obj->base.size ||
548 args->size > obj->base.size - args->offset) {
ce9d419d 549 ret = -EINVAL;
35b62a89 550 goto out;
ce9d419d
CW
551 }
552
1286ff73
DV
553 /* prime objects have no backing filp to GEM pread/pwrite
554 * pages from.
555 */
556 if (!obj->base.filp) {
557 ret = -EINVAL;
558 goto out;
559 }
560
db53a302
CW
561 trace_i915_gem_object_pread(obj, args->offset, args->size);
562
dbf7bff0 563 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 564
35b62a89 565out:
05394f39 566 drm_gem_object_unreference(&obj->base);
1d7cfea1 567unlock:
4f27b75d 568 mutex_unlock(&dev->struct_mutex);
eb01459f 569 return ret;
673a394b
EA
570}
571
0839ccb8
KP
572/* This is the fast write path which cannot handle
573 * page faults in the source data
9b7530cc 574 */
0839ccb8
KP
575
576static inline int
577fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
9b7530cc 581{
4f0c7cfb
BW
582 void __iomem *vaddr_atomic;
583 void *vaddr;
0839ccb8 584 unsigned long unwritten;
9b7530cc 585
3e4d3af5 586 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
587 /* We can use the cpu mem copy function because this is X86. */
588 vaddr = (void __force*)vaddr_atomic + page_offset;
589 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 590 user_data, length);
3e4d3af5 591 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 592 return unwritten;
0839ccb8
KP
593}
594
3de09aa3
EA
595/**
596 * This is the fast pwrite path, where we copy the data directly from the
597 * user into the GTT, uncached.
598 */
673a394b 599static int
05394f39
CW
600i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601 struct drm_i915_gem_object *obj,
3de09aa3 602 struct drm_i915_gem_pwrite *args,
05394f39 603 struct drm_file *file)
673a394b 604{
0839ccb8 605 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 606 ssize_t remain;
0839ccb8 607 loff_t offset, page_base;
673a394b 608 char __user *user_data;
935aaa69
DV
609 int page_offset, page_length, ret;
610
86a1ee26 611 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
612 if (ret)
613 goto out;
614
615 ret = i915_gem_object_set_to_gtt_domain(obj, true);
616 if (ret)
617 goto out_unpin;
618
619 ret = i915_gem_object_put_fence(obj);
620 if (ret)
621 goto out_unpin;
673a394b
EA
622
623 user_data = (char __user *) (uintptr_t) args->data_ptr;
624 remain = args->size;
673a394b 625
05394f39 626 offset = obj->gtt_offset + args->offset;
673a394b
EA
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
0839ccb8
KP
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
673a394b 634 */
c8cbbb8b
CW
635 page_base = offset & PAGE_MASK;
636 page_offset = offset_in_page(offset);
0839ccb8
KP
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
0839ccb8 641 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
642 * source page isn't available. Return the error and we'll
643 * retry in the slow path.
0839ccb8 644 */
fbd5a26d 645 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
646 page_offset, user_data, page_length)) {
647 ret = -EFAULT;
648 goto out_unpin;
649 }
673a394b 650
0839ccb8
KP
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
673a394b 654 }
673a394b 655
935aaa69
DV
656out_unpin:
657 i915_gem_object_unpin(obj);
658out:
3de09aa3 659 return ret;
673a394b
EA
660}
661
d174bd64
DV
662/* Per-page copy function for the shmem pwrite fastpath.
663 * Flushes invalid cachelines before writing to the target if
664 * needs_clflush_before is set and flushes out any written cachelines after
665 * writing if needs_clflush is set. */
3043c60c 666static int
d174bd64
DV
667shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668 char __user *user_data,
669 bool page_do_bit17_swizzling,
670 bool needs_clflush_before,
671 bool needs_clflush_after)
673a394b 672{
d174bd64 673 char *vaddr;
673a394b 674 int ret;
3de09aa3 675
e7e58eb5 676 if (unlikely(page_do_bit17_swizzling))
d174bd64 677 return -EINVAL;
3de09aa3 678
d174bd64
DV
679 vaddr = kmap_atomic(page);
680 if (needs_clflush_before)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684 user_data,
685 page_length);
686 if (needs_clflush_after)
687 drm_clflush_virt_range(vaddr + shmem_page_offset,
688 page_length);
689 kunmap_atomic(vaddr);
3de09aa3 690
755d2218 691 return ret ? -EFAULT : 0;
3de09aa3
EA
692}
693
d174bd64
DV
694/* Only difference to the fast-path function is that this can handle bit17
695 * and uses non-atomic copy and kmap functions. */
3043c60c 696static int
d174bd64
DV
697shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698 char __user *user_data,
699 bool page_do_bit17_swizzling,
700 bool needs_clflush_before,
701 bool needs_clflush_after)
673a394b 702{
d174bd64
DV
703 char *vaddr;
704 int ret;
e5281ccd 705
d174bd64 706 vaddr = kmap(page);
e7e58eb5 707 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
708 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709 page_length,
710 page_do_bit17_swizzling);
d174bd64
DV
711 if (page_do_bit17_swizzling)
712 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
713 user_data,
714 page_length);
d174bd64
DV
715 else
716 ret = __copy_from_user(vaddr + shmem_page_offset,
717 user_data,
718 page_length);
719 if (needs_clflush_after)
23c18c71
DV
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
d174bd64 723 kunmap(page);
40123c1f 724
755d2218 725 return ret ? -EFAULT : 0;
40123c1f
EA
726}
727
40123c1f 728static int
e244a443
DV
729i915_gem_shmem_pwrite(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file)
40123c1f 733{
40123c1f 734 ssize_t remain;
8c59967c
DV
735 loff_t offset;
736 char __user *user_data;
eb2c0c81 737 int shmem_page_offset, page_length, ret = 0;
8c59967c 738 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 739 int hit_slowpath = 0;
58642885
DV
740 int needs_clflush_after = 0;
741 int needs_clflush_before = 0;
9da3da66
CW
742 int i;
743 struct scatterlist *sg;
40123c1f 744
8c59967c 745 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
746 remain = args->size;
747
8c59967c 748 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 749
58642885
DV
750 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
751 /* If we're not in the cpu write domain, set ourself into the gtt
752 * write domain and manually flush cachelines (if required). This
753 * optimizes for the case when the gpu will use the data
754 * right away and we therefore have to clflush anyway. */
755 if (obj->cache_level == I915_CACHE_NONE)
756 needs_clflush_after = 1;
6c085a72
CW
757 if (obj->gtt_space) {
758 ret = i915_gem_object_set_to_gtt_domain(obj, true);
759 if (ret)
760 return ret;
761 }
58642885
DV
762 }
763 /* Same trick applies for invalidate partially written cachelines before
764 * writing. */
765 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
766 && obj->cache_level == I915_CACHE_NONE)
767 needs_clflush_before = 1;
768
755d2218
CW
769 ret = i915_gem_object_get_pages(obj);
770 if (ret)
771 return ret;
772
773 i915_gem_object_pin_pages(obj);
774
673a394b 775 offset = args->offset;
05394f39 776 obj->dirty = 1;
673a394b 777
9da3da66 778 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 779 struct page *page;
58642885 780 int partial_cacheline_write;
e5281ccd 781
9da3da66
CW
782 if (i < offset >> PAGE_SHIFT)
783 continue;
784
785 if (remain <= 0)
786 break;
787
40123c1f
EA
788 /* Operation in this page
789 *
40123c1f 790 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
791 * page_length = bytes to copy for this page
792 */
c8cbbb8b 793 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
794
795 page_length = remain;
796 if ((shmem_page_offset + page_length) > PAGE_SIZE)
797 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 798
58642885
DV
799 /* If we don't overwrite a cacheline completely we need to be
800 * careful to have up-to-date data by first clflushing. Don't
801 * overcomplicate things and flush the entire patch. */
802 partial_cacheline_write = needs_clflush_before &&
803 ((shmem_page_offset | page_length)
804 & (boot_cpu_data.x86_clflush_size - 1));
805
9da3da66 806 page = sg_page(sg);
8c59967c
DV
807 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808 (page_to_phys(page) & (1 << 17)) != 0;
809
d174bd64
DV
810 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
814 if (ret == 0)
815 goto next_page;
e244a443
DV
816
817 hit_slowpath = 1;
e244a443 818 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
819 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
820 user_data, page_do_bit17_swizzling,
821 partial_cacheline_write,
822 needs_clflush_after);
40123c1f 823
e244a443 824 mutex_lock(&dev->struct_mutex);
755d2218 825
e244a443 826next_page:
e5281ccd
CW
827 set_page_dirty(page);
828 mark_page_accessed(page);
e5281ccd 829
755d2218 830 if (ret)
8c59967c 831 goto out;
8c59967c 832
40123c1f 833 remain -= page_length;
8c59967c 834 user_data += page_length;
40123c1f 835 offset += page_length;
673a394b
EA
836 }
837
fbd5a26d 838out:
755d2218
CW
839 i915_gem_object_unpin_pages(obj);
840
e244a443
DV
841 if (hit_slowpath) {
842 /* Fixup: Kill any reinstated backing storage pages */
843 if (obj->madv == __I915_MADV_PURGED)
844 i915_gem_object_truncate(obj);
845 /* and flush dirty cachelines in case the object isn't in the cpu write
846 * domain anymore. */
847 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
848 i915_gem_clflush_object(obj);
849 intel_gtt_chipset_flush();
850 }
8c59967c 851 }
673a394b 852
58642885
DV
853 if (needs_clflush_after)
854 intel_gtt_chipset_flush();
855
40123c1f 856 return ret;
673a394b
EA
857}
858
859/**
860 * Writes data to the object referenced by handle.
861 *
862 * On error, the contents of the buffer that were to be modified are undefined.
863 */
864int
865i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 866 struct drm_file *file)
673a394b
EA
867{
868 struct drm_i915_gem_pwrite *args = data;
05394f39 869 struct drm_i915_gem_object *obj;
51311d0a
CW
870 int ret;
871
872 if (args->size == 0)
873 return 0;
874
875 if (!access_ok(VERIFY_READ,
876 (char __user *)(uintptr_t)args->data_ptr,
877 args->size))
878 return -EFAULT;
879
f56f821f
DV
880 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
881 args->size);
51311d0a
CW
882 if (ret)
883 return -EFAULT;
673a394b 884
fbd5a26d 885 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 886 if (ret)
fbd5a26d 887 return ret;
1d7cfea1 888
05394f39 889 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 890 if (&obj->base == NULL) {
1d7cfea1
CW
891 ret = -ENOENT;
892 goto unlock;
fbd5a26d 893 }
673a394b 894
7dcd2499 895 /* Bounds check destination. */
05394f39
CW
896 if (args->offset > obj->base.size ||
897 args->size > obj->base.size - args->offset) {
ce9d419d 898 ret = -EINVAL;
35b62a89 899 goto out;
ce9d419d
CW
900 }
901
1286ff73
DV
902 /* prime objects have no backing filp to GEM pread/pwrite
903 * pages from.
904 */
905 if (!obj->base.filp) {
906 ret = -EINVAL;
907 goto out;
908 }
909
db53a302
CW
910 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
911
935aaa69 912 ret = -EFAULT;
673a394b
EA
913 /* We can only do the GTT pwrite on untiled buffers, as otherwise
914 * it would end up going through the fenced access, and we'll get
915 * different detiling behavior between reading and writing.
916 * pread/pwrite currently are reading and writing from the CPU
917 * perspective, requiring manual detiling by the client.
918 */
5c0480f2 919 if (obj->phys_obj) {
fbd5a26d 920 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
921 goto out;
922 }
923
86a1ee26 924 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 925 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
fbd5a26d 931 }
673a394b 932
86a1ee26 933 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 935
35b62a89 936out:
05394f39 937 drm_gem_object_unreference(&obj->base);
1d7cfea1 938unlock:
fbd5a26d 939 mutex_unlock(&dev->struct_mutex);
673a394b
EA
940 return ret;
941}
942
b361237b
CW
943int
944i915_gem_check_wedge(struct drm_i915_private *dev_priv,
945 bool interruptible)
946{
947 if (atomic_read(&dev_priv->mm.wedged)) {
948 struct completion *x = &dev_priv->error_completion;
949 bool recovery_complete;
950 unsigned long flags;
951
952 /* Give the error handler a chance to run. */
953 spin_lock_irqsave(&x->wait.lock, flags);
954 recovery_complete = x->done > 0;
955 spin_unlock_irqrestore(&x->wait.lock, flags);
956
957 /* Non-interruptible callers can't handle -EAGAIN, hence return
958 * -EIO unconditionally for these. */
959 if (!interruptible)
960 return -EIO;
961
962 /* Recovery complete, but still wedged means reset failure. */
963 if (recovery_complete)
964 return -EIO;
965
966 return -EAGAIN;
967 }
968
969 return 0;
970}
971
972/*
973 * Compare seqno against outstanding lazy request. Emit a request if they are
974 * equal.
975 */
976static int
977i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
978{
979 int ret;
980
981 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
982
983 ret = 0;
984 if (seqno == ring->outstanding_lazy_request)
985 ret = i915_add_request(ring, NULL, NULL);
986
987 return ret;
988}
989
990/**
991 * __wait_seqno - wait until execution of seqno has finished
992 * @ring: the ring expected to report seqno
993 * @seqno: duh!
994 * @interruptible: do an interruptible wait (normally yes)
995 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
996 *
997 * Returns 0 if the seqno was found within the alloted time. Else returns the
998 * errno with remaining time filled in timeout argument.
999 */
1000static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1001 bool interruptible, struct timespec *timeout)
1002{
1003 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1004 struct timespec before, now, wait_time={1,0};
1005 unsigned long timeout_jiffies;
1006 long end;
1007 bool wait_forever = true;
1008 int ret;
1009
1010 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1011 return 0;
1012
1013 trace_i915_gem_request_wait_begin(ring, seqno);
1014
1015 if (timeout != NULL) {
1016 wait_time = *timeout;
1017 wait_forever = false;
1018 }
1019
1020 timeout_jiffies = timespec_to_jiffies(&wait_time);
1021
1022 if (WARN_ON(!ring->irq_get(ring)))
1023 return -ENODEV;
1024
1025 /* Record current time in case interrupted by signal, or wedged * */
1026 getrawmonotonic(&before);
1027
1028#define EXIT_COND \
1029 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1030 atomic_read(&dev_priv->mm.wedged))
1031 do {
1032 if (interruptible)
1033 end = wait_event_interruptible_timeout(ring->irq_queue,
1034 EXIT_COND,
1035 timeout_jiffies);
1036 else
1037 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1038 timeout_jiffies);
1039
1040 ret = i915_gem_check_wedge(dev_priv, interruptible);
1041 if (ret)
1042 end = ret;
1043 } while (end == 0 && wait_forever);
1044
1045 getrawmonotonic(&now);
1046
1047 ring->irq_put(ring);
1048 trace_i915_gem_request_wait_end(ring, seqno);
1049#undef EXIT_COND
1050
1051 if (timeout) {
1052 struct timespec sleep_time = timespec_sub(now, before);
1053 *timeout = timespec_sub(*timeout, sleep_time);
1054 }
1055
1056 switch (end) {
1057 case -EIO:
1058 case -EAGAIN: /* Wedged */
1059 case -ERESTARTSYS: /* Signal */
1060 return (int)end;
1061 case 0: /* Timeout */
1062 if (timeout)
1063 set_normalized_timespec(timeout, 0, 0);
1064 return -ETIME;
1065 default: /* Completed */
1066 WARN_ON(end < 0); /* We're not aware of other errors */
1067 return 0;
1068 }
1069}
1070
1071/**
1072 * Waits for a sequence number to be signaled, and cleans up the
1073 * request and object lists appropriately for that event.
1074 */
1075int
1076i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1077{
1078 struct drm_device *dev = ring->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 bool interruptible = dev_priv->mm.interruptible;
1081 int ret;
1082
1083 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1084 BUG_ON(seqno == 0);
1085
1086 ret = i915_gem_check_wedge(dev_priv, interruptible);
1087 if (ret)
1088 return ret;
1089
1090 ret = i915_gem_check_olr(ring, seqno);
1091 if (ret)
1092 return ret;
1093
1094 return __wait_seqno(ring, seqno, interruptible, NULL);
1095}
1096
1097/**
1098 * Ensures that all rendering to the object has completed and the object is
1099 * safe to unbind from the GTT or access from the CPU.
1100 */
1101static __must_check int
1102i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1103 bool readonly)
1104{
1105 struct intel_ring_buffer *ring = obj->ring;
1106 u32 seqno;
1107 int ret;
1108
1109 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1110 if (seqno == 0)
1111 return 0;
1112
1113 ret = i915_wait_seqno(ring, seqno);
1114 if (ret)
1115 return ret;
1116
1117 i915_gem_retire_requests_ring(ring);
1118
1119 /* Manually manage the write flush as we may have not yet
1120 * retired the buffer.
1121 */
1122 if (obj->last_write_seqno &&
1123 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1124 obj->last_write_seqno = 0;
1125 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126 }
1127
1128 return 0;
1129}
1130
3236f57a
CW
1131/* A nonblocking variant of the above wait. This is a highly dangerous routine
1132 * as the object state may change during this call.
1133 */
1134static __must_check int
1135i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1136 bool readonly)
1137{
1138 struct drm_device *dev = obj->base.dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct intel_ring_buffer *ring = obj->ring;
1141 u32 seqno;
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1145 BUG_ON(!dev_priv->mm.interruptible);
1146
1147 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1148 if (seqno == 0)
1149 return 0;
1150
1151 ret = i915_gem_check_wedge(dev_priv, true);
1152 if (ret)
1153 return ret;
1154
1155 ret = i915_gem_check_olr(ring, seqno);
1156 if (ret)
1157 return ret;
1158
1159 mutex_unlock(&dev->struct_mutex);
1160 ret = __wait_seqno(ring, seqno, true, NULL);
1161 mutex_lock(&dev->struct_mutex);
1162
1163 i915_gem_retire_requests_ring(ring);
1164
1165 /* Manually manage the write flush as we may have not yet
1166 * retired the buffer.
1167 */
1168 if (obj->last_write_seqno &&
1169 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1170 obj->last_write_seqno = 0;
1171 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1172 }
1173
1174 return ret;
1175}
1176
673a394b 1177/**
2ef7eeaa
EA
1178 * Called when user space prepares to use an object with the CPU, either
1179 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1180 */
1181int
1182i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1183 struct drm_file *file)
673a394b
EA
1184{
1185 struct drm_i915_gem_set_domain *args = data;
05394f39 1186 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1187 uint32_t read_domains = args->read_domains;
1188 uint32_t write_domain = args->write_domain;
673a394b
EA
1189 int ret;
1190
2ef7eeaa 1191 /* Only handle setting domains to types used by the CPU. */
21d509e3 1192 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1193 return -EINVAL;
1194
21d509e3 1195 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1196 return -EINVAL;
1197
1198 /* Having something in the write domain implies it's in the read
1199 * domain, and only that read domain. Enforce that in the request.
1200 */
1201 if (write_domain != 0 && read_domains != write_domain)
1202 return -EINVAL;
1203
76c1dec1 1204 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1205 if (ret)
76c1dec1 1206 return ret;
1d7cfea1 1207
05394f39 1208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1209 if (&obj->base == NULL) {
1d7cfea1
CW
1210 ret = -ENOENT;
1211 goto unlock;
76c1dec1 1212 }
673a394b 1213
3236f57a
CW
1214 /* Try to flush the object off the GPU without holding the lock.
1215 * We will repeat the flush holding the lock in the normal manner
1216 * to catch cases where we are gazumped.
1217 */
1218 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1219 if (ret)
1220 goto unref;
1221
2ef7eeaa
EA
1222 if (read_domains & I915_GEM_DOMAIN_GTT) {
1223 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1224
1225 /* Silently promote "you're not bound, there was nothing to do"
1226 * to success, since the client was just asking us to
1227 * make sure everything was done.
1228 */
1229 if (ret == -EINVAL)
1230 ret = 0;
2ef7eeaa 1231 } else {
e47c68e9 1232 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1233 }
1234
3236f57a 1235unref:
05394f39 1236 drm_gem_object_unreference(&obj->base);
1d7cfea1 1237unlock:
673a394b
EA
1238 mutex_unlock(&dev->struct_mutex);
1239 return ret;
1240}
1241
1242/**
1243 * Called when user space has done writes to this buffer
1244 */
1245int
1246i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1247 struct drm_file *file)
673a394b
EA
1248{
1249 struct drm_i915_gem_sw_finish *args = data;
05394f39 1250 struct drm_i915_gem_object *obj;
673a394b
EA
1251 int ret = 0;
1252
76c1dec1 1253 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1254 if (ret)
76c1dec1 1255 return ret;
1d7cfea1 1256
05394f39 1257 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1258 if (&obj->base == NULL) {
1d7cfea1
CW
1259 ret = -ENOENT;
1260 goto unlock;
673a394b
EA
1261 }
1262
673a394b 1263 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1264 if (obj->pin_count)
e47c68e9
EA
1265 i915_gem_object_flush_cpu_write_domain(obj);
1266
05394f39 1267 drm_gem_object_unreference(&obj->base);
1d7cfea1 1268unlock:
673a394b
EA
1269 mutex_unlock(&dev->struct_mutex);
1270 return ret;
1271}
1272
1273/**
1274 * Maps the contents of an object, returning the address it is mapped
1275 * into.
1276 *
1277 * While the mapping holds a reference on the contents of the object, it doesn't
1278 * imply a ref on the object itself.
1279 */
1280int
1281i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1282 struct drm_file *file)
673a394b
EA
1283{
1284 struct drm_i915_gem_mmap *args = data;
1285 struct drm_gem_object *obj;
673a394b
EA
1286 unsigned long addr;
1287
05394f39 1288 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1289 if (obj == NULL)
bf79cb91 1290 return -ENOENT;
673a394b 1291
1286ff73
DV
1292 /* prime objects have no backing filp to GEM mmap
1293 * pages from.
1294 */
1295 if (!obj->filp) {
1296 drm_gem_object_unreference_unlocked(obj);
1297 return -EINVAL;
1298 }
1299
6be5ceb0 1300 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1301 PROT_READ | PROT_WRITE, MAP_SHARED,
1302 args->offset);
bc9025bd 1303 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1304 if (IS_ERR((void *)addr))
1305 return addr;
1306
1307 args->addr_ptr = (uint64_t) addr;
1308
1309 return 0;
1310}
1311
de151cf6
JB
1312/**
1313 * i915_gem_fault - fault a page into the GTT
1314 * vma: VMA in question
1315 * vmf: fault info
1316 *
1317 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1318 * from userspace. The fault handler takes care of binding the object to
1319 * the GTT (if needed), allocating and programming a fence register (again,
1320 * only if needed based on whether the old reg is still valid or the object
1321 * is tiled) and inserting a new PTE into the faulting process.
1322 *
1323 * Note that the faulting process may involve evicting existing objects
1324 * from the GTT and/or fence registers to make room. So performance may
1325 * suffer if the GTT working set is large or there are few fence registers
1326 * left.
1327 */
1328int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1329{
05394f39
CW
1330 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1331 struct drm_device *dev = obj->base.dev;
7d1c4804 1332 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1333 pgoff_t page_offset;
1334 unsigned long pfn;
1335 int ret = 0;
0f973f27 1336 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1337
1338 /* We don't use vmf->pgoff since that has the fake offset */
1339 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1340 PAGE_SHIFT;
1341
d9bc7e9f
CW
1342 ret = i915_mutex_lock_interruptible(dev);
1343 if (ret)
1344 goto out;
a00b10c3 1345
db53a302
CW
1346 trace_i915_gem_object_fault(obj, page_offset, true, write);
1347
d9bc7e9f 1348 /* Now bind it into the GTT if needed */
919926ae
CW
1349 if (!obj->map_and_fenceable) {
1350 ret = i915_gem_object_unbind(obj);
1351 if (ret)
1352 goto unlock;
a00b10c3 1353 }
05394f39 1354 if (!obj->gtt_space) {
86a1ee26 1355 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
c715089f
CW
1356 if (ret)
1357 goto unlock;
de151cf6 1358
e92d03bf
EA
1359 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1360 if (ret)
1361 goto unlock;
1362 }
4a684a41 1363
74898d7e
DV
1364 if (!obj->has_global_gtt_mapping)
1365 i915_gem_gtt_bind_object(obj, obj->cache_level);
1366
06d98131 1367 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1368 if (ret)
1369 goto unlock;
de151cf6 1370
05394f39
CW
1371 if (i915_gem_object_is_inactive(obj))
1372 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1373
6299f992
CW
1374 obj->fault_mappable = true;
1375
dd2757f8 1376 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1377 page_offset;
1378
1379 /* Finally, remap it using the new GTT offset */
1380 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1381unlock:
de151cf6 1382 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1383out:
de151cf6 1384 switch (ret) {
d9bc7e9f 1385 case -EIO:
a9340cca
DV
1386 /* If this -EIO is due to a gpu hang, give the reset code a
1387 * chance to clean up the mess. Otherwise return the proper
1388 * SIGBUS. */
1389 if (!atomic_read(&dev_priv->mm.wedged))
1390 return VM_FAULT_SIGBUS;
045e769a 1391 case -EAGAIN:
d9bc7e9f
CW
1392 /* Give the error handler a chance to run and move the
1393 * objects off the GPU active list. Next time we service the
1394 * fault, we should be able to transition the page into the
1395 * GTT without touching the GPU (and so avoid further
1396 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1397 * with coherency, just lost writes.
1398 */
045e769a 1399 set_need_resched();
c715089f
CW
1400 case 0:
1401 case -ERESTARTSYS:
bed636ab 1402 case -EINTR:
e79e0fe3
DR
1403 case -EBUSY:
1404 /*
1405 * EBUSY is ok: this just means that another thread
1406 * already did the job.
1407 */
c715089f 1408 return VM_FAULT_NOPAGE;
de151cf6 1409 case -ENOMEM:
de151cf6 1410 return VM_FAULT_OOM;
de151cf6 1411 default:
4d0f817e 1412 WARN_ON_ONCE(ret);
c715089f 1413 return VM_FAULT_SIGBUS;
de151cf6
JB
1414 }
1415}
1416
901782b2
CW
1417/**
1418 * i915_gem_release_mmap - remove physical page mappings
1419 * @obj: obj in question
1420 *
af901ca1 1421 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1422 * relinquish ownership of the pages back to the system.
1423 *
1424 * It is vital that we remove the page mapping if we have mapped a tiled
1425 * object through the GTT and then lose the fence register due to
1426 * resource pressure. Similarly if the object has been moved out of the
1427 * aperture, than pages mapped into userspace must be revoked. Removing the
1428 * mapping will then trigger a page fault on the next user access, allowing
1429 * fixup by i915_gem_fault().
1430 */
d05ca301 1431void
05394f39 1432i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1433{
6299f992
CW
1434 if (!obj->fault_mappable)
1435 return;
901782b2 1436
f6e47884
CW
1437 if (obj->base.dev->dev_mapping)
1438 unmap_mapping_range(obj->base.dev->dev_mapping,
1439 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1440 obj->base.size, 1);
fb7d516a 1441
6299f992 1442 obj->fault_mappable = false;
901782b2
CW
1443}
1444
92b88aeb 1445static uint32_t
e28f8711 1446i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1447{
e28f8711 1448 uint32_t gtt_size;
92b88aeb
CW
1449
1450 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1451 tiling_mode == I915_TILING_NONE)
1452 return size;
92b88aeb
CW
1453
1454 /* Previous chips need a power-of-two fence region when tiling */
1455 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1456 gtt_size = 1024*1024;
92b88aeb 1457 else
e28f8711 1458 gtt_size = 512*1024;
92b88aeb 1459
e28f8711
CW
1460 while (gtt_size < size)
1461 gtt_size <<= 1;
92b88aeb 1462
e28f8711 1463 return gtt_size;
92b88aeb
CW
1464}
1465
de151cf6
JB
1466/**
1467 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1468 * @obj: object to check
1469 *
1470 * Return the required GTT alignment for an object, taking into account
5e783301 1471 * potential fence register mapping.
de151cf6
JB
1472 */
1473static uint32_t
e28f8711
CW
1474i915_gem_get_gtt_alignment(struct drm_device *dev,
1475 uint32_t size,
1476 int tiling_mode)
de151cf6 1477{
de151cf6
JB
1478 /*
1479 * Minimum alignment is 4k (GTT page size), but might be greater
1480 * if a fence register is needed for the object.
1481 */
a00b10c3 1482 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1483 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1484 return 4096;
1485
a00b10c3
CW
1486 /*
1487 * Previous chips need to be aligned to the size of the smallest
1488 * fence register that can contain the object.
1489 */
e28f8711 1490 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1491}
1492
5e783301
DV
1493/**
1494 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1495 * unfenced object
e28f8711
CW
1496 * @dev: the device
1497 * @size: size of the object
1498 * @tiling_mode: tiling mode of the object
5e783301
DV
1499 *
1500 * Return the required GTT alignment for an object, only taking into account
1501 * unfenced tiled surface requirements.
1502 */
467cffba 1503uint32_t
e28f8711
CW
1504i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1505 uint32_t size,
1506 int tiling_mode)
5e783301 1507{
5e783301
DV
1508 /*
1509 * Minimum alignment is 4k (GTT page size) for sane hw.
1510 */
1511 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1512 tiling_mode == I915_TILING_NONE)
5e783301
DV
1513 return 4096;
1514
e28f8711
CW
1515 /* Previous hardware however needs to be aligned to a power-of-two
1516 * tile height. The simplest method for determining this is to reuse
1517 * the power-of-tile object size.
5e783301 1518 */
e28f8711 1519 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1520}
1521
d8cb5086
CW
1522static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1523{
1524 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1525 int ret;
1526
1527 if (obj->base.map_list.map)
1528 return 0;
1529
1530 ret = drm_gem_create_mmap_offset(&obj->base);
1531 if (ret != -ENOSPC)
1532 return ret;
1533
1534 /* Badly fragmented mmap space? The only way we can recover
1535 * space is by destroying unwanted objects. We can't randomly release
1536 * mmap_offsets as userspace expects them to be persistent for the
1537 * lifetime of the objects. The closest we can is to release the
1538 * offsets on purgeable objects by truncating it and marking it purged,
1539 * which prevents userspace from ever using that object again.
1540 */
1541 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1542 ret = drm_gem_create_mmap_offset(&obj->base);
1543 if (ret != -ENOSPC)
1544 return ret;
1545
1546 i915_gem_shrink_all(dev_priv);
1547 return drm_gem_create_mmap_offset(&obj->base);
1548}
1549
1550static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1551{
1552 if (!obj->base.map_list.map)
1553 return;
1554
1555 drm_gem_free_mmap_offset(&obj->base);
1556}
1557
de151cf6 1558int
ff72145b
DA
1559i915_gem_mmap_gtt(struct drm_file *file,
1560 struct drm_device *dev,
1561 uint32_t handle,
1562 uint64_t *offset)
de151cf6 1563{
da761a6e 1564 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1565 struct drm_i915_gem_object *obj;
de151cf6
JB
1566 int ret;
1567
76c1dec1 1568 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1569 if (ret)
76c1dec1 1570 return ret;
de151cf6 1571
ff72145b 1572 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1573 if (&obj->base == NULL) {
1d7cfea1
CW
1574 ret = -ENOENT;
1575 goto unlock;
1576 }
de151cf6 1577
05394f39 1578 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1579 ret = -E2BIG;
ff56b0bc 1580 goto out;
da761a6e
CW
1581 }
1582
05394f39 1583 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1584 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1585 ret = -EINVAL;
1586 goto out;
ab18282d
CW
1587 }
1588
d8cb5086
CW
1589 ret = i915_gem_object_create_mmap_offset(obj);
1590 if (ret)
1591 goto out;
de151cf6 1592
ff72145b 1593 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1594
1d7cfea1 1595out:
05394f39 1596 drm_gem_object_unreference(&obj->base);
1d7cfea1 1597unlock:
de151cf6 1598 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1599 return ret;
de151cf6
JB
1600}
1601
ff72145b
DA
1602/**
1603 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1604 * @dev: DRM device
1605 * @data: GTT mapping ioctl data
1606 * @file: GEM object info
1607 *
1608 * Simply returns the fake offset to userspace so it can mmap it.
1609 * The mmap call will end up in drm_gem_mmap(), which will set things
1610 * up so we can get faults in the handler above.
1611 *
1612 * The fault handler will take care of binding the object into the GTT
1613 * (since it may have been evicted to make room for something), allocating
1614 * a fence register, and mapping the appropriate aperture address into
1615 * userspace.
1616 */
1617int
1618i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1619 struct drm_file *file)
1620{
1621 struct drm_i915_gem_mmap_gtt *args = data;
1622
ff72145b
DA
1623 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1624}
1625
225067ee
DV
1626/* Immediately discard the backing storage */
1627static void
1628i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1629{
e5281ccd 1630 struct inode *inode;
e5281ccd 1631
4d6294bf 1632 i915_gem_object_free_mmap_offset(obj);
1286ff73 1633
4d6294bf
CW
1634 if (obj->base.filp == NULL)
1635 return;
e5281ccd 1636
225067ee
DV
1637 /* Our goal here is to return as much of the memory as
1638 * is possible back to the system as we are called from OOM.
1639 * To do this we must instruct the shmfs to drop all of its
1640 * backing pages, *now*.
1641 */
05394f39 1642 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1643 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1644
225067ee
DV
1645 obj->madv = __I915_MADV_PURGED;
1646}
e5281ccd 1647
225067ee
DV
1648static inline int
1649i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1650{
1651 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1652}
1653
37e680a1 1654static void
05394f39 1655i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1656{
05394f39 1657 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1658 struct scatterlist *sg;
6c085a72 1659 int ret, i;
673a394b 1660
05394f39 1661 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1662
6c085a72
CW
1663 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1664 if (ret) {
1665 /* In the event of a disaster, abandon all caches and
1666 * hope for the best.
1667 */
1668 WARN_ON(ret != -EIO);
1669 i915_gem_clflush_object(obj);
1670 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1671 }
1672
6dacfd2f 1673 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1674 i915_gem_object_save_bit_17_swizzle(obj);
1675
05394f39
CW
1676 if (obj->madv == I915_MADV_DONTNEED)
1677 obj->dirty = 0;
3ef94daa 1678
9da3da66
CW
1679 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1680 struct page *page = sg_page(sg);
1681
05394f39 1682 if (obj->dirty)
9da3da66 1683 set_page_dirty(page);
3ef94daa 1684
05394f39 1685 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1686 mark_page_accessed(page);
3ef94daa 1687
9da3da66 1688 page_cache_release(page);
3ef94daa 1689 }
05394f39 1690 obj->dirty = 0;
673a394b 1691
9da3da66
CW
1692 sg_free_table(obj->pages);
1693 kfree(obj->pages);
37e680a1 1694}
6c085a72 1695
37e680a1
CW
1696static int
1697i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1698{
1699 const struct drm_i915_gem_object_ops *ops = obj->ops;
1700
2f745ad3 1701 if (obj->pages == NULL)
37e680a1
CW
1702 return 0;
1703
1704 BUG_ON(obj->gtt_space);
6c085a72 1705
a5570178
CW
1706 if (obj->pages_pin_count)
1707 return -EBUSY;
1708
37e680a1 1709 ops->put_pages(obj);
9da3da66 1710 obj->pages = NULL;
37e680a1
CW
1711
1712 list_del(&obj->gtt_list);
6c085a72
CW
1713 if (i915_gem_object_is_purgeable(obj))
1714 i915_gem_object_truncate(obj);
1715
1716 return 0;
1717}
1718
1719static long
1720i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1721{
1722 struct drm_i915_gem_object *obj, *next;
1723 long count = 0;
1724
1725 list_for_each_entry_safe(obj, next,
1726 &dev_priv->mm.unbound_list,
1727 gtt_list) {
1728 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1729 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1730 count += obj->base.size >> PAGE_SHIFT;
1731 if (count >= target)
1732 return count;
1733 }
1734 }
1735
1736 list_for_each_entry_safe(obj, next,
1737 &dev_priv->mm.inactive_list,
1738 mm_list) {
1739 if (i915_gem_object_is_purgeable(obj) &&
1740 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1741 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1742 count += obj->base.size >> PAGE_SHIFT;
1743 if (count >= target)
1744 return count;
1745 }
1746 }
1747
1748 return count;
1749}
1750
1751static void
1752i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1753{
1754 struct drm_i915_gem_object *obj, *next;
1755
1756 i915_gem_evict_everything(dev_priv->dev);
1757
1758 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1759 i915_gem_object_put_pages(obj);
225067ee
DV
1760}
1761
37e680a1 1762static int
6c085a72 1763i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1764{
6c085a72 1765 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1766 int page_count, i;
1767 struct address_space *mapping;
9da3da66
CW
1768 struct sg_table *st;
1769 struct scatterlist *sg;
e5281ccd 1770 struct page *page;
6c085a72 1771 gfp_t gfp;
e5281ccd 1772
6c085a72
CW
1773 /* Assert that the object is not currently in any GPU domain. As it
1774 * wasn't in the GTT, there shouldn't be any way it could have been in
1775 * a GPU cache
1776 */
1777 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1778 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1779
9da3da66
CW
1780 st = kmalloc(sizeof(*st), GFP_KERNEL);
1781 if (st == NULL)
1782 return -ENOMEM;
1783
05394f39 1784 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1785 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1786 sg_free_table(st);
1787 kfree(st);
e5281ccd 1788 return -ENOMEM;
9da3da66 1789 }
e5281ccd 1790
9da3da66
CW
1791 /* Get the list of pages out of our struct file. They'll be pinned
1792 * at this point until we release them.
1793 *
1794 * Fail silently without starting the shrinker
1795 */
6c085a72
CW
1796 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1797 gfp = mapping_gfp_mask(mapping);
d7c3b937 1798 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1799 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1800 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1801 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1802 if (IS_ERR(page)) {
1803 i915_gem_purge(dev_priv, page_count);
1804 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1805 }
1806 if (IS_ERR(page)) {
1807 /* We've tried hard to allocate the memory by reaping
1808 * our own buffer, now let the real VM do its job and
1809 * go down in flames if truly OOM.
1810 */
d7c3b937 1811 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1812 gfp |= __GFP_IO | __GFP_WAIT;
1813
1814 i915_gem_shrink_all(dev_priv);
1815 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1816 if (IS_ERR(page))
1817 goto err_pages;
1818
d7c3b937 1819 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1820 gfp &= ~(__GFP_IO | __GFP_WAIT);
1821 }
e5281ccd 1822
9da3da66 1823 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1824 }
1825
6dacfd2f 1826 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1827 i915_gem_object_do_bit_17_swizzle(obj);
1828
9da3da66 1829 obj->pages = st;
e5281ccd
CW
1830 return 0;
1831
1832err_pages:
9da3da66
CW
1833 for_each_sg(st->sgl, sg, i, page_count)
1834 page_cache_release(sg_page(sg));
1835 sg_free_table(st);
1836 kfree(st);
e5281ccd 1837 return PTR_ERR(page);
673a394b
EA
1838}
1839
37e680a1
CW
1840/* Ensure that the associated pages are gathered from the backing storage
1841 * and pinned into our object. i915_gem_object_get_pages() may be called
1842 * multiple times before they are released by a single call to
1843 * i915_gem_object_put_pages() - once the pages are no longer referenced
1844 * either as a result of memory pressure (reaping pages under the shrinker)
1845 * or as the object is itself released.
1846 */
1847int
1848i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1849{
1850 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1851 const struct drm_i915_gem_object_ops *ops = obj->ops;
1852 int ret;
1853
2f745ad3 1854 if (obj->pages)
37e680a1
CW
1855 return 0;
1856
a5570178
CW
1857 BUG_ON(obj->pages_pin_count);
1858
37e680a1
CW
1859 ret = ops->get_pages(obj);
1860 if (ret)
1861 return ret;
1862
1863 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1864 return 0;
1865}
1866
54cf91dc 1867void
05394f39 1868i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1869 struct intel_ring_buffer *ring,
1870 u32 seqno)
673a394b 1871{
05394f39 1872 struct drm_device *dev = obj->base.dev;
69dc4987 1873 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1874
852835f3 1875 BUG_ON(ring == NULL);
05394f39 1876 obj->ring = ring;
673a394b
EA
1877
1878 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1879 if (!obj->active) {
1880 drm_gem_object_reference(&obj->base);
1881 obj->active = 1;
673a394b 1882 }
e35a41de 1883
673a394b 1884 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1885 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1886 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1887
0201f1ec 1888 obj->last_read_seqno = seqno;
caea7476 1889
7dd49065 1890 if (obj->fenced_gpu_access) {
caea7476 1891 obj->last_fenced_seqno = seqno;
caea7476 1892
7dd49065
CW
1893 /* Bump MRU to take account of the delayed flush */
1894 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1895 struct drm_i915_fence_reg *reg;
1896
1897 reg = &dev_priv->fence_regs[obj->fence_reg];
1898 list_move_tail(&reg->lru_list,
1899 &dev_priv->mm.fence_list);
1900 }
caea7476
CW
1901 }
1902}
1903
caea7476
CW
1904static void
1905i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1906{
1907 struct drm_device *dev = obj->base.dev;
1908 struct drm_i915_private *dev_priv = dev->dev_private;
1909
65ce3027 1910 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1911 BUG_ON(!obj->active);
65ce3027 1912
f047e395
CW
1913 if (obj->pin_count) /* are we a framebuffer? */
1914 intel_mark_fb_idle(obj);
1915
1916 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1917
65ce3027 1918 list_del_init(&obj->ring_list);
caea7476
CW
1919 obj->ring = NULL;
1920
65ce3027
CW
1921 obj->last_read_seqno = 0;
1922 obj->last_write_seqno = 0;
1923 obj->base.write_domain = 0;
1924
1925 obj->last_fenced_seqno = 0;
caea7476 1926 obj->fenced_gpu_access = false;
caea7476
CW
1927
1928 obj->active = 0;
1929 drm_gem_object_unreference(&obj->base);
1930
1931 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1932}
673a394b 1933
53d227f2
DV
1934static u32
1935i915_gem_get_seqno(struct drm_device *dev)
1936{
1937 drm_i915_private_t *dev_priv = dev->dev_private;
1938 u32 seqno = dev_priv->next_seqno;
1939
1940 /* reserve 0 for non-seqno */
1941 if (++dev_priv->next_seqno == 0)
1942 dev_priv->next_seqno = 1;
1943
1944 return seqno;
1945}
1946
1947u32
1948i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1949{
1950 if (ring->outstanding_lazy_request == 0)
1951 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1952
1953 return ring->outstanding_lazy_request;
1954}
1955
3cce469c 1956int
db53a302 1957i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1958 struct drm_file *file,
db53a302 1959 struct drm_i915_gem_request *request)
673a394b 1960{
db53a302 1961 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1962 uint32_t seqno;
a71d8d94 1963 u32 request_ring_position;
673a394b 1964 int was_empty;
3cce469c
CW
1965 int ret;
1966
cc889e0f
DV
1967 /*
1968 * Emit any outstanding flushes - execbuf can fail to emit the flush
1969 * after having emitted the batchbuffer command. Hence we need to fix
1970 * things up similar to emitting the lazy request. The difference here
1971 * is that the flush _must_ happen before the next request, no matter
1972 * what.
1973 */
a7b9761d
CW
1974 ret = intel_ring_flush_all_caches(ring);
1975 if (ret)
1976 return ret;
cc889e0f 1977
3bb73aba
CW
1978 if (request == NULL) {
1979 request = kmalloc(sizeof(*request), GFP_KERNEL);
1980 if (request == NULL)
1981 return -ENOMEM;
1982 }
1983
53d227f2 1984 seqno = i915_gem_next_request_seqno(ring);
673a394b 1985
a71d8d94
CW
1986 /* Record the position of the start of the request so that
1987 * should we detect the updated seqno part-way through the
1988 * GPU processing the request, we never over-estimate the
1989 * position of the head.
1990 */
1991 request_ring_position = intel_ring_get_tail(ring);
1992
3cce469c 1993 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1994 if (ret) {
1995 kfree(request);
1996 return ret;
1997 }
673a394b 1998
db53a302 1999 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
2000
2001 request->seqno = seqno;
852835f3 2002 request->ring = ring;
a71d8d94 2003 request->tail = request_ring_position;
673a394b 2004 request->emitted_jiffies = jiffies;
852835f3
ZN
2005 was_empty = list_empty(&ring->request_list);
2006 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2007 request->file_priv = NULL;
852835f3 2008
db53a302
CW
2009 if (file) {
2010 struct drm_i915_file_private *file_priv = file->driver_priv;
2011
1c25595f 2012 spin_lock(&file_priv->mm.lock);
f787a5f5 2013 request->file_priv = file_priv;
b962442e 2014 list_add_tail(&request->client_list,
f787a5f5 2015 &file_priv->mm.request_list);
1c25595f 2016 spin_unlock(&file_priv->mm.lock);
b962442e 2017 }
673a394b 2018
5391d0cf 2019 ring->outstanding_lazy_request = 0;
db53a302 2020
f65d9421 2021 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2022 if (i915_enable_hangcheck) {
2023 mod_timer(&dev_priv->hangcheck_timer,
2024 jiffies +
2025 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2026 }
f047e395 2027 if (was_empty) {
b3b079db
CW
2028 queue_delayed_work(dev_priv->wq,
2029 &dev_priv->mm.retire_work, HZ);
f047e395
CW
2030 intel_mark_busy(dev_priv->dev);
2031 }
f65d9421 2032 }
cc889e0f 2033
3cce469c 2034 return 0;
673a394b
EA
2035}
2036
f787a5f5
CW
2037static inline void
2038i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2039{
1c25595f 2040 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2041
1c25595f
CW
2042 if (!file_priv)
2043 return;
1c5d22f7 2044
1c25595f 2045 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2046 if (request->file_priv) {
2047 list_del(&request->client_list);
2048 request->file_priv = NULL;
2049 }
1c25595f 2050 spin_unlock(&file_priv->mm.lock);
673a394b 2051}
673a394b 2052
dfaae392
CW
2053static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2054 struct intel_ring_buffer *ring)
9375e446 2055{
dfaae392
CW
2056 while (!list_empty(&ring->request_list)) {
2057 struct drm_i915_gem_request *request;
673a394b 2058
dfaae392
CW
2059 request = list_first_entry(&ring->request_list,
2060 struct drm_i915_gem_request,
2061 list);
de151cf6 2062
dfaae392 2063 list_del(&request->list);
f787a5f5 2064 i915_gem_request_remove_from_client(request);
dfaae392
CW
2065 kfree(request);
2066 }
673a394b 2067
dfaae392 2068 while (!list_empty(&ring->active_list)) {
05394f39 2069 struct drm_i915_gem_object *obj;
9375e446 2070
05394f39
CW
2071 obj = list_first_entry(&ring->active_list,
2072 struct drm_i915_gem_object,
2073 ring_list);
9375e446 2074
05394f39 2075 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2076 }
2077}
2078
312817a3
CW
2079static void i915_gem_reset_fences(struct drm_device *dev)
2080{
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 int i;
2083
4b9de737 2084 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2085 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2086
ada726c7 2087 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2088
ada726c7
CW
2089 if (reg->obj)
2090 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2091
ada726c7
CW
2092 reg->pin_count = 0;
2093 reg->obj = NULL;
2094 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2095 }
ada726c7
CW
2096
2097 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2098}
2099
069efc1d 2100void i915_gem_reset(struct drm_device *dev)
673a394b 2101{
77f01230 2102 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2103 struct drm_i915_gem_object *obj;
b4519513 2104 struct intel_ring_buffer *ring;
1ec14ad3 2105 int i;
673a394b 2106
b4519513
CW
2107 for_each_ring(ring, dev_priv, i)
2108 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2109
dfaae392
CW
2110 /* Move everything out of the GPU domains to ensure we do any
2111 * necessary invalidation upon reuse.
2112 */
05394f39 2113 list_for_each_entry(obj,
77f01230 2114 &dev_priv->mm.inactive_list,
69dc4987 2115 mm_list)
77f01230 2116 {
05394f39 2117 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2118 }
069efc1d
CW
2119
2120 /* The fence registers are invalidated so clear them out */
312817a3 2121 i915_gem_reset_fences(dev);
673a394b
EA
2122}
2123
2124/**
2125 * This function clears the request list as sequence numbers are passed.
2126 */
a71d8d94 2127void
db53a302 2128i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2129{
673a394b 2130 uint32_t seqno;
1ec14ad3 2131 int i;
673a394b 2132
db53a302 2133 if (list_empty(&ring->request_list))
6c0594a3
KW
2134 return;
2135
db53a302 2136 WARN_ON(i915_verify_lists(ring->dev));
5c81fe85 2137
b2eadbc8 2138 seqno = ring->get_seqno(ring, true);
604dd3ec 2139
076e2c0e 2140 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
2141 if (seqno >= ring->sync_seqno[i])
2142 ring->sync_seqno[i] = 0;
5c81fe85 2143
852835f3 2144 while (!list_empty(&ring->request_list)) {
673a394b 2145 struct drm_i915_gem_request *request;
604dd3ec 2146
852835f3 2147 request = list_first_entry(&ring->request_list,
673a394b
EA
2148 struct drm_i915_gem_request,
2149 list);
5c81fe85 2150
dfaae392 2151 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c 2152 break;
604dd3ec 2153
db53a302 2154 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2155 /* We know the GPU must have read the request to have
2156 * sent us the seqno + interrupt, so use the position
2157 * of tail of the request to update the last known position
2158 * of the GPU head.
2159 */
2160 ring->last_retired_head = request->tail;
604dd3ec 2161
b84d5f0c 2162 list_del(&request->list);
f787a5f5 2163 i915_gem_request_remove_from_client(request);
b84d5f0c 2164 kfree(request);
5c81fe85
BW
2165 }
2166
b84d5f0c
CW
2167 /* Move any buffers on the active list that are no longer referenced
2168 * by the ringbuffer to the flushing/inactive lists as appropriate.
2169 */
2170 while (!list_empty(&ring->active_list)) {
05394f39 2171 struct drm_i915_gem_object *obj;
604dd3ec 2172
0206e353 2173 obj = list_first_entry(&ring->active_list,
05394f39
CW
2174 struct drm_i915_gem_object,
2175 ring_list);
673a394b 2176
0201f1ec 2177 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2178 break;
673a394b 2179
65ce3027 2180 i915_gem_object_move_to_inactive(obj);
673a394b 2181 }
3cce469c 2182
db53a302
CW
2183 if (unlikely(ring->trace_irq_seqno &&
2184 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2185 ring->irq_put(ring);
db53a302 2186 ring->trace_irq_seqno = 0;
9d34e5db 2187 }
23bc5982 2188
db53a302 2189 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2190}
ffed1d09 2191
b09a1fec
CW
2192void
2193i915_gem_retire_requests(struct drm_device *dev)
2194{
2195 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2196 struct intel_ring_buffer *ring;
1ec14ad3 2197 int i;
673a394b 2198
b4519513
CW
2199 for_each_ring(ring, dev_priv, i)
2200 i915_gem_retire_requests_ring(ring);
673a394b
EA
2201}
2202
75ef9da2 2203static void
673a394b 2204i915_gem_retire_work_handler(struct work_struct *work)
673a394b 2205{
673a394b
EA
2206 drm_i915_private_t *dev_priv;
2207 struct drm_device *dev;
b4519513 2208 struct intel_ring_buffer *ring;
0a58705b
CW
2209 bool idle;
2210 int i;
673a394b 2211
673a394b
EA
2212 dev_priv = container_of(work, drm_i915_private_t,
2213 mm.retire_work.work);
2214 dev = dev_priv->dev;
0201f1ec 2215
891b48cf
CW
2216 /* Come back later if the device is busy... */
2217 if (!mutex_trylock(&dev->struct_mutex)) {
2218 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2219 return;
2220 }
2221
b09a1fec 2222 i915_gem_retire_requests(dev);
0201f1ec 2223
0a58705b
CW
2224 /* Send a periodic flush down the ring so we don't hold onto GEM
2225 * objects indefinitely.
0201f1ec 2226 */
0a58705b 2227 idle = true;
b4519513 2228 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2229 if (ring->gpu_caches_dirty)
2230 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2231
2232 idle &= list_empty(&ring->request_list);
673a394b
EA
2233 }
2234
0a58705b 2235 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2236 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
f047e395
CW
2237 if (idle)
2238 intel_mark_idle(dev);
0a58705b 2239
673a394b 2240 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2241}
2242
30dfebf3
DV
2243/**
2244 * Ensures that an object will eventually get non-busy by flushing any required
2245 * write domains, emitting any outstanding lazy request and retiring and
2246 * completed requests.
2247 */
2248static int
2249i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2250{
2251 int ret;
2252
2253 if (obj->active) {
0201f1ec 2254 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2255 if (ret)
2256 return ret;
0201f1ec 2257
30dfebf3
DV
2258 i915_gem_retire_requests_ring(obj->ring);
2259 }
2260
2261 return 0;
2262}
2263
23ba4fd0
BW
2264/**
2265 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2266 * @DRM_IOCTL_ARGS: standard ioctl arguments
2267 *
2268 * Returns 0 if successful, else an error is returned with the remaining time in
2269 * the timeout parameter.
2270 * -ETIME: object is still busy after timeout
2271 * -ERESTARTSYS: signal interrupted the wait
2272 * -ENONENT: object doesn't exist
2273 * Also possible, but rare:
2274 * -EAGAIN: GPU wedged
2275 * -ENOMEM: damn
2276 * -ENODEV: Internal IRQ fail
2277 * -E?: The add request failed
2278 *
2279 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2280 * non-zero timeout parameter the wait ioctl will wait for the given number of
2281 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2282 * without holding struct_mutex the object may become re-busied before this
2283 * function completes. A similar but shorter * race condition exists in the busy
2284 * ioctl
2285 */
2286int
2287i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2288{
2289 struct drm_i915_gem_wait *args = data;
2290 struct drm_i915_gem_object *obj;
2291 struct intel_ring_buffer *ring = NULL;
eac1f14f 2292 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2293 u32 seqno = 0;
2294 int ret = 0;
2295
eac1f14f
BW
2296 if (args->timeout_ns >= 0) {
2297 timeout_stack = ns_to_timespec(args->timeout_ns);
2298 timeout = &timeout_stack;
2299 }
23ba4fd0
BW
2300
2301 ret = i915_mutex_lock_interruptible(dev);
2302 if (ret)
2303 return ret;
2304
2305 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2306 if (&obj->base == NULL) {
2307 mutex_unlock(&dev->struct_mutex);
2308 return -ENOENT;
2309 }
2310
30dfebf3
DV
2311 /* Need to make sure the object gets inactive eventually. */
2312 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2313 if (ret)
2314 goto out;
2315
2316 if (obj->active) {
0201f1ec 2317 seqno = obj->last_read_seqno;
23ba4fd0
BW
2318 ring = obj->ring;
2319 }
2320
2321 if (seqno == 0)
2322 goto out;
2323
23ba4fd0
BW
2324 /* Do this after OLR check to make sure we make forward progress polling
2325 * on this IOCTL with a 0 timeout (like busy ioctl)
2326 */
2327 if (!args->timeout_ns) {
2328 ret = -ETIME;
2329 goto out;
2330 }
2331
2332 drm_gem_object_unreference(&obj->base);
2333 mutex_unlock(&dev->struct_mutex);
2334
eac1f14f
BW
2335 ret = __wait_seqno(ring, seqno, true, timeout);
2336 if (timeout) {
2337 WARN_ON(!timespec_valid(timeout));
2338 args->timeout_ns = timespec_to_ns(timeout);
2339 }
23ba4fd0
BW
2340 return ret;
2341
2342out:
2343 drm_gem_object_unreference(&obj->base);
2344 mutex_unlock(&dev->struct_mutex);
2345 return ret;
2346}
2347
5816d648
BW
2348/**
2349 * i915_gem_object_sync - sync an object to a ring.
2350 *
2351 * @obj: object which may be in use on another ring.
2352 * @to: ring we wish to use the object on. May be NULL.
2353 *
2354 * This code is meant to abstract object synchronization with the GPU.
2355 * Calling with NULL implies synchronizing the object with the CPU
2356 * rather than a particular GPU ring.
2357 *
2358 * Returns 0 if successful, else propagates up the lower layer error.
2359 */
2911a35b
BW
2360int
2361i915_gem_object_sync(struct drm_i915_gem_object *obj,
2362 struct intel_ring_buffer *to)
2363{
2364 struct intel_ring_buffer *from = obj->ring;
2365 u32 seqno;
2366 int ret, idx;
2367
2368 if (from == NULL || to == from)
2369 return 0;
2370
5816d648 2371 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2372 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2373
2374 idx = intel_ring_sync_index(from, to);
2375
0201f1ec 2376 seqno = obj->last_read_seqno;
2911a35b
BW
2377 if (seqno <= from->sync_seqno[idx])
2378 return 0;
2379
b4aca010
BW
2380 ret = i915_gem_check_olr(obj->ring, seqno);
2381 if (ret)
2382 return ret;
2911a35b 2383
1500f7ea 2384 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2385 if (!ret)
2386 from->sync_seqno[idx] = seqno;
2911a35b 2387
e3a5a225 2388 return ret;
2911a35b
BW
2389}
2390
b5ffc9bc
CW
2391static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2392{
2393 u32 old_write_domain, old_read_domains;
2394
b5ffc9bc
CW
2395 /* Act a barrier for all accesses through the GTT */
2396 mb();
2397
2398 /* Force a pagefault for domain tracking on next user access */
2399 i915_gem_release_mmap(obj);
2400
b97c3d9c
KP
2401 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2402 return;
2403
b5ffc9bc
CW
2404 old_read_domains = obj->base.read_domains;
2405 old_write_domain = obj->base.write_domain;
2406
2407 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2408 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2409
2410 trace_i915_gem_object_change_domain(obj,
2411 old_read_domains,
2412 old_write_domain);
2413}
2414
673a394b
EA
2415/**
2416 * Unbinds an object from the GTT aperture.
2417 */
0f973f27 2418int
05394f39 2419i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2420{
7bddb01f 2421 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2422 int ret = 0;
2423
05394f39 2424 if (obj->gtt_space == NULL)
673a394b
EA
2425 return 0;
2426
31d8d651
CW
2427 if (obj->pin_count)
2428 return -EBUSY;
673a394b 2429
c4670ad0
CW
2430 BUG_ON(obj->pages == NULL);
2431
a8198eea 2432 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2433 if (ret)
a8198eea
CW
2434 return ret;
2435 /* Continue on if we fail due to EIO, the GPU is hung so we
2436 * should be safe and we need to cleanup or else we might
2437 * cause memory corruption through use-after-free.
2438 */
2439
b5ffc9bc 2440 i915_gem_object_finish_gtt(obj);
5323fd04 2441
96b47b65 2442 /* release the fence reg _after_ flushing */
d9e86c0e 2443 ret = i915_gem_object_put_fence(obj);
1488fc08 2444 if (ret)
d9e86c0e 2445 return ret;
96b47b65 2446
db53a302
CW
2447 trace_i915_gem_object_unbind(obj);
2448
74898d7e
DV
2449 if (obj->has_global_gtt_mapping)
2450 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2451 if (obj->has_aliasing_ppgtt_mapping) {
2452 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2453 obj->has_aliasing_ppgtt_mapping = 0;
2454 }
74163907 2455 i915_gem_gtt_finish_object(obj);
7bddb01f 2456
6c085a72
CW
2457 list_del(&obj->mm_list);
2458 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2459 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2460 obj->map_and_fenceable = true;
673a394b 2461
05394f39
CW
2462 drm_mm_put_block(obj->gtt_space);
2463 obj->gtt_space = NULL;
2464 obj->gtt_offset = 0;
673a394b 2465
6c085a72 2466 return 0;
673a394b
EA
2467}
2468
b2da9fe5 2469static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2470{
69c2fc89 2471 if (list_empty(&ring->active_list))
64193406
CW
2472 return 0;
2473
199b2bc2 2474 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2475}
2476
b2da9fe5 2477int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2478{
2479 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2480 struct intel_ring_buffer *ring;
1ec14ad3 2481 int ret, i;
4df2faf4 2482
4df2faf4 2483 /* Flush everything onto the inactive list. */
b4519513 2484 for_each_ring(ring, dev_priv, i) {
b6c7488d 2485 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
1ec14ad3
CW
2486 if (ret)
2487 return ret;
b4519513 2488
b4519513 2489 ret = i915_ring_idle(ring);
f2ef6eb1
BW
2490 if (ret)
2491 return ret;
1ec14ad3 2492 }
4df2faf4 2493
8a1a49f9 2494 return 0;
4df2faf4
DV
2495}
2496
9ce079e4
CW
2497static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2498 struct drm_i915_gem_object *obj)
4e901fdc 2499{
4e901fdc 2500 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2501 uint64_t val;
2502
9ce079e4
CW
2503 if (obj) {
2504 u32 size = obj->gtt_space->size;
4e901fdc 2505
9ce079e4
CW
2506 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2507 0xfffff000) << 32;
2508 val |= obj->gtt_offset & 0xfffff000;
2509 val |= (uint64_t)((obj->stride / 128) - 1) <<
2510 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2511
9ce079e4
CW
2512 if (obj->tiling_mode == I915_TILING_Y)
2513 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2514 val |= I965_FENCE_REG_VALID;
2515 } else
2516 val = 0;
c6642782 2517
9ce079e4
CW
2518 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2519 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2520}
2521
9ce079e4
CW
2522static void i965_write_fence_reg(struct drm_device *dev, int reg,
2523 struct drm_i915_gem_object *obj)
de151cf6 2524{
de151cf6 2525 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2526 uint64_t val;
2527
9ce079e4
CW
2528 if (obj) {
2529 u32 size = obj->gtt_space->size;
de151cf6 2530
9ce079e4
CW
2531 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2532 0xfffff000) << 32;
2533 val |= obj->gtt_offset & 0xfffff000;
2534 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2535 if (obj->tiling_mode == I915_TILING_Y)
2536 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2537 val |= I965_FENCE_REG_VALID;
2538 } else
2539 val = 0;
c6642782 2540
9ce079e4
CW
2541 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2542 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2543}
2544
9ce079e4
CW
2545static void i915_write_fence_reg(struct drm_device *dev, int reg,
2546 struct drm_i915_gem_object *obj)
de151cf6 2547{
de151cf6 2548 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2549 u32 val;
de151cf6 2550
9ce079e4
CW
2551 if (obj) {
2552 u32 size = obj->gtt_space->size;
2553 int pitch_val;
2554 int tile_width;
c6642782 2555
9ce079e4
CW
2556 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2557 (size & -size) != size ||
2558 (obj->gtt_offset & (size - 1)),
2559 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2560 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2561
9ce079e4
CW
2562 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2563 tile_width = 128;
2564 else
2565 tile_width = 512;
2566
2567 /* Note: pitch better be a power of two tile widths */
2568 pitch_val = obj->stride / tile_width;
2569 pitch_val = ffs(pitch_val) - 1;
2570
2571 val = obj->gtt_offset;
2572 if (obj->tiling_mode == I915_TILING_Y)
2573 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2574 val |= I915_FENCE_SIZE_BITS(size);
2575 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2576 val |= I830_FENCE_REG_VALID;
2577 } else
2578 val = 0;
2579
2580 if (reg < 8)
2581 reg = FENCE_REG_830_0 + reg * 4;
2582 else
2583 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2584
2585 I915_WRITE(reg, val);
2586 POSTING_READ(reg);
de151cf6
JB
2587}
2588
9ce079e4
CW
2589static void i830_write_fence_reg(struct drm_device *dev, int reg,
2590 struct drm_i915_gem_object *obj)
de151cf6 2591{
de151cf6 2592 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2593 uint32_t val;
de151cf6 2594
9ce079e4
CW
2595 if (obj) {
2596 u32 size = obj->gtt_space->size;
2597 uint32_t pitch_val;
de151cf6 2598
9ce079e4
CW
2599 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2600 (size & -size) != size ||
2601 (obj->gtt_offset & (size - 1)),
2602 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2603 obj->gtt_offset, size);
e76a16de 2604
9ce079e4
CW
2605 pitch_val = obj->stride / 128;
2606 pitch_val = ffs(pitch_val) - 1;
de151cf6 2607
9ce079e4
CW
2608 val = obj->gtt_offset;
2609 if (obj->tiling_mode == I915_TILING_Y)
2610 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2611 val |= I830_FENCE_SIZE_BITS(size);
2612 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2613 val |= I830_FENCE_REG_VALID;
2614 } else
2615 val = 0;
c6642782 2616
9ce079e4
CW
2617 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2618 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2619}
2620
2621static void i915_gem_write_fence(struct drm_device *dev, int reg,
2622 struct drm_i915_gem_object *obj)
2623{
2624 switch (INTEL_INFO(dev)->gen) {
2625 case 7:
2626 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2627 case 5:
2628 case 4: i965_write_fence_reg(dev, reg, obj); break;
2629 case 3: i915_write_fence_reg(dev, reg, obj); break;
2630 case 2: i830_write_fence_reg(dev, reg, obj); break;
2631 default: break;
2632 }
de151cf6
JB
2633}
2634
61050808
CW
2635static inline int fence_number(struct drm_i915_private *dev_priv,
2636 struct drm_i915_fence_reg *fence)
2637{
2638 return fence - dev_priv->fence_regs;
2639}
2640
2641static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2642 struct drm_i915_fence_reg *fence,
2643 bool enable)
2644{
2645 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2646 int reg = fence_number(dev_priv, fence);
2647
2648 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2649
2650 if (enable) {
2651 obj->fence_reg = reg;
2652 fence->obj = obj;
2653 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2654 } else {
2655 obj->fence_reg = I915_FENCE_REG_NONE;
2656 fence->obj = NULL;
2657 list_del_init(&fence->lru_list);
2658 }
2659}
2660
d9e86c0e 2661static int
a360bb1a 2662i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2663{
1c293ea3 2664 if (obj->last_fenced_seqno) {
86d5bc37 2665 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2666 if (ret)
2667 return ret;
d9e86c0e
CW
2668
2669 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2670 }
2671
63256ec5
CW
2672 /* Ensure that all CPU reads are completed before installing a fence
2673 * and all writes before removing the fence.
2674 */
2675 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2676 mb();
2677
86d5bc37 2678 obj->fenced_gpu_access = false;
d9e86c0e
CW
2679 return 0;
2680}
2681
2682int
2683i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2684{
61050808 2685 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2686 int ret;
2687
a360bb1a 2688 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2689 if (ret)
2690 return ret;
2691
61050808
CW
2692 if (obj->fence_reg == I915_FENCE_REG_NONE)
2693 return 0;
d9e86c0e 2694
61050808
CW
2695 i915_gem_object_update_fence(obj,
2696 &dev_priv->fence_regs[obj->fence_reg],
2697 false);
2698 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2699
2700 return 0;
2701}
2702
2703static struct drm_i915_fence_reg *
a360bb1a 2704i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2705{
ae3db24a 2706 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2707 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2708 int i;
ae3db24a
DV
2709
2710 /* First try to find a free reg */
d9e86c0e 2711 avail = NULL;
ae3db24a
DV
2712 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2713 reg = &dev_priv->fence_regs[i];
2714 if (!reg->obj)
d9e86c0e 2715 return reg;
ae3db24a 2716
1690e1eb 2717 if (!reg->pin_count)
d9e86c0e 2718 avail = reg;
ae3db24a
DV
2719 }
2720
d9e86c0e
CW
2721 if (avail == NULL)
2722 return NULL;
ae3db24a
DV
2723
2724 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2725 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2726 if (reg->pin_count)
ae3db24a
DV
2727 continue;
2728
8fe301ad 2729 return reg;
ae3db24a
DV
2730 }
2731
8fe301ad 2732 return NULL;
ae3db24a
DV
2733}
2734
de151cf6 2735/**
9a5a53b3 2736 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2737 * @obj: object to map through a fence reg
2738 *
2739 * When mapping objects through the GTT, userspace wants to be able to write
2740 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2741 * This function walks the fence regs looking for a free one for @obj,
2742 * stealing one if it can't find any.
2743 *
2744 * It then sets up the reg based on the object's properties: address, pitch
2745 * and tiling format.
9a5a53b3
CW
2746 *
2747 * For an untiled surface, this removes any existing fence.
de151cf6 2748 */
8c4b8c3f 2749int
06d98131 2750i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2751{
05394f39 2752 struct drm_device *dev = obj->base.dev;
79e53945 2753 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2754 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2755 struct drm_i915_fence_reg *reg;
ae3db24a 2756 int ret;
de151cf6 2757
14415745
CW
2758 /* Have we updated the tiling parameters upon the object and so
2759 * will need to serialise the write to the associated fence register?
2760 */
5d82e3e6 2761 if (obj->fence_dirty) {
14415745
CW
2762 ret = i915_gem_object_flush_fence(obj);
2763 if (ret)
2764 return ret;
2765 }
9a5a53b3 2766
d9e86c0e 2767 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2768 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2769 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2770 if (!obj->fence_dirty) {
14415745
CW
2771 list_move_tail(&reg->lru_list,
2772 &dev_priv->mm.fence_list);
2773 return 0;
2774 }
2775 } else if (enable) {
2776 reg = i915_find_fence_reg(dev);
2777 if (reg == NULL)
2778 return -EDEADLK;
d9e86c0e 2779
14415745
CW
2780 if (reg->obj) {
2781 struct drm_i915_gem_object *old = reg->obj;
2782
2783 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2784 if (ret)
2785 return ret;
2786
14415745 2787 i915_gem_object_fence_lost(old);
29c5a587 2788 }
14415745 2789 } else
a09ba7fa 2790 return 0;
a09ba7fa 2791
14415745 2792 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2793 obj->fence_dirty = false;
14415745 2794
9ce079e4 2795 return 0;
de151cf6
JB
2796}
2797
42d6ab48
CW
2798static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2799 struct drm_mm_node *gtt_space,
2800 unsigned long cache_level)
2801{
2802 struct drm_mm_node *other;
2803
2804 /* On non-LLC machines we have to be careful when putting differing
2805 * types of snoopable memory together to avoid the prefetcher
2806 * crossing memory domains and dieing.
2807 */
2808 if (HAS_LLC(dev))
2809 return true;
2810
2811 if (gtt_space == NULL)
2812 return true;
2813
2814 if (list_empty(&gtt_space->node_list))
2815 return true;
2816
2817 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2818 if (other->allocated && !other->hole_follows && other->color != cache_level)
2819 return false;
2820
2821 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2822 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2823 return false;
2824
2825 return true;
2826}
2827
2828static void i915_gem_verify_gtt(struct drm_device *dev)
2829{
2830#if WATCH_GTT
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832 struct drm_i915_gem_object *obj;
2833 int err = 0;
2834
2835 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2836 if (obj->gtt_space == NULL) {
2837 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2838 err++;
2839 continue;
2840 }
2841
2842 if (obj->cache_level != obj->gtt_space->color) {
2843 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2844 obj->gtt_space->start,
2845 obj->gtt_space->start + obj->gtt_space->size,
2846 obj->cache_level,
2847 obj->gtt_space->color);
2848 err++;
2849 continue;
2850 }
2851
2852 if (!i915_gem_valid_gtt_space(dev,
2853 obj->gtt_space,
2854 obj->cache_level)) {
2855 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2856 obj->gtt_space->start,
2857 obj->gtt_space->start + obj->gtt_space->size,
2858 obj->cache_level);
2859 err++;
2860 continue;
2861 }
2862 }
2863
2864 WARN_ON(err);
2865#endif
2866}
2867
673a394b
EA
2868/**
2869 * Finds free space in the GTT aperture and binds the object there.
2870 */
2871static int
05394f39 2872i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2873 unsigned alignment,
86a1ee26
CW
2874 bool map_and_fenceable,
2875 bool nonblocking)
673a394b 2876{
05394f39 2877 struct drm_device *dev = obj->base.dev;
673a394b 2878 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2879 struct drm_mm_node *free_space;
5e783301 2880 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2881 bool mappable, fenceable;
07f73f69 2882 int ret;
673a394b 2883
05394f39 2884 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2885 DRM_ERROR("Attempting to bind a purgeable object\n");
2886 return -EINVAL;
2887 }
2888
e28f8711
CW
2889 fence_size = i915_gem_get_gtt_size(dev,
2890 obj->base.size,
2891 obj->tiling_mode);
2892 fence_alignment = i915_gem_get_gtt_alignment(dev,
2893 obj->base.size,
2894 obj->tiling_mode);
2895 unfenced_alignment =
2896 i915_gem_get_unfenced_gtt_alignment(dev,
2897 obj->base.size,
2898 obj->tiling_mode);
a00b10c3 2899
673a394b 2900 if (alignment == 0)
5e783301
DV
2901 alignment = map_and_fenceable ? fence_alignment :
2902 unfenced_alignment;
75e9e915 2903 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2904 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2905 return -EINVAL;
2906 }
2907
05394f39 2908 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2909
654fc607
CW
2910 /* If the object is bigger than the entire aperture, reject it early
2911 * before evicting everything in a vain attempt to find space.
2912 */
05394f39 2913 if (obj->base.size >
75e9e915 2914 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2915 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2916 return -E2BIG;
2917 }
2918
37e680a1 2919 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2920 if (ret)
2921 return ret;
2922
673a394b 2923 search_free:
75e9e915 2924 if (map_and_fenceable)
920afa77 2925 free_space =
42d6ab48
CW
2926 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2927 size, alignment, obj->cache_level,
2928 0, dev_priv->mm.gtt_mappable_end,
2929 false);
920afa77 2930 else
42d6ab48
CW
2931 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2932 size, alignment, obj->cache_level,
2933 false);
920afa77
DV
2934
2935 if (free_space != NULL) {
75e9e915 2936 if (map_and_fenceable)
05394f39 2937 obj->gtt_space =
920afa77 2938 drm_mm_get_block_range_generic(free_space,
42d6ab48 2939 size, alignment, obj->cache_level,
6b9d89b4 2940 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2941 false);
920afa77 2942 else
05394f39 2943 obj->gtt_space =
42d6ab48
CW
2944 drm_mm_get_block_generic(free_space,
2945 size, alignment, obj->cache_level,
2946 false);
920afa77 2947 }
05394f39 2948 if (obj->gtt_space == NULL) {
75e9e915 2949 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2950 obj->cache_level,
86a1ee26
CW
2951 map_and_fenceable,
2952 nonblocking);
9731129c 2953 if (ret)
673a394b 2954 return ret;
9731129c 2955
673a394b
EA
2956 goto search_free;
2957 }
42d6ab48
CW
2958 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2959 obj->gtt_space,
2960 obj->cache_level))) {
2961 drm_mm_put_block(obj->gtt_space);
2962 obj->gtt_space = NULL;
2963 return -EINVAL;
2964 }
673a394b 2965
673a394b 2966
74163907 2967 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2968 if (ret) {
05394f39
CW
2969 drm_mm_put_block(obj->gtt_space);
2970 obj->gtt_space = NULL;
6c085a72 2971 return ret;
673a394b 2972 }
673a394b 2973
0ebb9829
DV
2974 if (!dev_priv->mm.aliasing_ppgtt)
2975 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2976
6c085a72 2977 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2978 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2979
6299f992 2980 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2981
75e9e915 2982 fenceable =
05394f39 2983 obj->gtt_space->size == fence_size &&
0206e353 2984 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2985
75e9e915 2986 mappable =
05394f39 2987 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2988
05394f39 2989 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2990
db53a302 2991 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2992 i915_gem_verify_gtt(dev);
673a394b
EA
2993 return 0;
2994}
2995
2996void
05394f39 2997i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2998{
673a394b
EA
2999 /* If we don't have a page list set up, then we're not pinned
3000 * to GPU, and we can ignore the cache flush because it'll happen
3001 * again at bind time.
3002 */
05394f39 3003 if (obj->pages == NULL)
673a394b
EA
3004 return;
3005
9c23f7fc
CW
3006 /* If the GPU is snooping the contents of the CPU cache,
3007 * we do not need to manually clear the CPU cache lines. However,
3008 * the caches are only snooped when the render cache is
3009 * flushed/invalidated. As we always have to emit invalidations
3010 * and flushes when moving into and out of the RENDER domain, correct
3011 * snooping behaviour occurs naturally as the result of our domain
3012 * tracking.
3013 */
3014 if (obj->cache_level != I915_CACHE_NONE)
3015 return;
3016
1c5d22f7 3017 trace_i915_gem_object_clflush(obj);
cfa16a0d 3018
9da3da66 3019 drm_clflush_sg(obj->pages);
673a394b
EA
3020}
3021
e47c68e9
EA
3022/** Flushes the GTT write domain for the object if it's dirty. */
3023static void
05394f39 3024i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3025{
1c5d22f7
CW
3026 uint32_t old_write_domain;
3027
05394f39 3028 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3029 return;
3030
63256ec5 3031 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3032 * to it immediately go to main memory as far as we know, so there's
3033 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3034 *
3035 * However, we do have to enforce the order so that all writes through
3036 * the GTT land before any writes to the device, such as updates to
3037 * the GATT itself.
e47c68e9 3038 */
63256ec5
CW
3039 wmb();
3040
05394f39
CW
3041 old_write_domain = obj->base.write_domain;
3042 obj->base.write_domain = 0;
1c5d22f7
CW
3043
3044 trace_i915_gem_object_change_domain(obj,
05394f39 3045 obj->base.read_domains,
1c5d22f7 3046 old_write_domain);
e47c68e9
EA
3047}
3048
3049/** Flushes the CPU write domain for the object if it's dirty. */
3050static void
05394f39 3051i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3052{
1c5d22f7 3053 uint32_t old_write_domain;
e47c68e9 3054
05394f39 3055 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3056 return;
3057
3058 i915_gem_clflush_object(obj);
40ce6575 3059 intel_gtt_chipset_flush();
05394f39
CW
3060 old_write_domain = obj->base.write_domain;
3061 obj->base.write_domain = 0;
1c5d22f7
CW
3062
3063 trace_i915_gem_object_change_domain(obj,
05394f39 3064 obj->base.read_domains,
1c5d22f7 3065 old_write_domain);
e47c68e9
EA
3066}
3067
2ef7eeaa
EA
3068/**
3069 * Moves a single object to the GTT read, and possibly write domain.
3070 *
3071 * This function returns when the move is complete, including waiting on
3072 * flushes to occur.
3073 */
79e53945 3074int
2021746e 3075i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3076{
8325a09d 3077 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3078 uint32_t old_write_domain, old_read_domains;
e47c68e9 3079 int ret;
2ef7eeaa 3080
02354392 3081 /* Not valid to be called on unbound objects. */
05394f39 3082 if (obj->gtt_space == NULL)
02354392
EA
3083 return -EINVAL;
3084
8d7e3de1
CW
3085 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3086 return 0;
3087
0201f1ec
CW
3088 ret = i915_gem_object_wait_rendering(obj, !write);
3089 if (ret)
3090 return ret;
2dafb1e0 3091
7213342d 3092 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3093
05394f39
CW
3094 old_write_domain = obj->base.write_domain;
3095 old_read_domains = obj->base.read_domains;
1c5d22f7 3096
e47c68e9
EA
3097 /* It should now be out of any other write domains, and we can update
3098 * the domain values for our changes.
3099 */
05394f39
CW
3100 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3101 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3102 if (write) {
05394f39
CW
3103 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3104 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3105 obj->dirty = 1;
2ef7eeaa
EA
3106 }
3107
1c5d22f7
CW
3108 trace_i915_gem_object_change_domain(obj,
3109 old_read_domains,
3110 old_write_domain);
3111
8325a09d
CW
3112 /* And bump the LRU for this access */
3113 if (i915_gem_object_is_inactive(obj))
3114 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3115
e47c68e9
EA
3116 return 0;
3117}
3118
e4ffd173
CW
3119int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3120 enum i915_cache_level cache_level)
3121{
7bddb01f
DV
3122 struct drm_device *dev = obj->base.dev;
3123 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3124 int ret;
3125
3126 if (obj->cache_level == cache_level)
3127 return 0;
3128
3129 if (obj->pin_count) {
3130 DRM_DEBUG("can not change the cache level of pinned objects\n");
3131 return -EBUSY;
3132 }
3133
42d6ab48
CW
3134 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3135 ret = i915_gem_object_unbind(obj);
3136 if (ret)
3137 return ret;
3138 }
3139
e4ffd173
CW
3140 if (obj->gtt_space) {
3141 ret = i915_gem_object_finish_gpu(obj);
3142 if (ret)
3143 return ret;
3144
3145 i915_gem_object_finish_gtt(obj);
3146
3147 /* Before SandyBridge, you could not use tiling or fence
3148 * registers with snooped memory, so relinquish any fences
3149 * currently pointing to our region in the aperture.
3150 */
42d6ab48 3151 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3152 ret = i915_gem_object_put_fence(obj);
3153 if (ret)
3154 return ret;
3155 }
3156
74898d7e
DV
3157 if (obj->has_global_gtt_mapping)
3158 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3159 if (obj->has_aliasing_ppgtt_mapping)
3160 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3161 obj, cache_level);
42d6ab48
CW
3162
3163 obj->gtt_space->color = cache_level;
e4ffd173
CW
3164 }
3165
3166 if (cache_level == I915_CACHE_NONE) {
3167 u32 old_read_domains, old_write_domain;
3168
3169 /* If we're coming from LLC cached, then we haven't
3170 * actually been tracking whether the data is in the
3171 * CPU cache or not, since we only allow one bit set
3172 * in obj->write_domain and have been skipping the clflushes.
3173 * Just set it to the CPU cache for now.
3174 */
3175 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3176 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3177
3178 old_read_domains = obj->base.read_domains;
3179 old_write_domain = obj->base.write_domain;
3180
3181 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3182 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3183
3184 trace_i915_gem_object_change_domain(obj,
3185 old_read_domains,
3186 old_write_domain);
3187 }
3188
3189 obj->cache_level = cache_level;
42d6ab48 3190 i915_gem_verify_gtt(dev);
e4ffd173
CW
3191 return 0;
3192}
3193
199adf40
BW
3194int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3195 struct drm_file *file)
e6994aee 3196{
199adf40 3197 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3198 struct drm_i915_gem_object *obj;
3199 int ret;
3200
3201 ret = i915_mutex_lock_interruptible(dev);
3202 if (ret)
3203 return ret;
3204
3205 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3206 if (&obj->base == NULL) {
3207 ret = -ENOENT;
3208 goto unlock;
3209 }
3210
199adf40 3211 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3212
3213 drm_gem_object_unreference(&obj->base);
3214unlock:
3215 mutex_unlock(&dev->struct_mutex);
3216 return ret;
3217}
3218
199adf40
BW
3219int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3220 struct drm_file *file)
e6994aee 3221{
199adf40 3222 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3223 struct drm_i915_gem_object *obj;
3224 enum i915_cache_level level;
3225 int ret;
3226
199adf40
BW
3227 switch (args->caching) {
3228 case I915_CACHING_NONE:
e6994aee
CW
3229 level = I915_CACHE_NONE;
3230 break;
199adf40 3231 case I915_CACHING_CACHED:
e6994aee
CW
3232 level = I915_CACHE_LLC;
3233 break;
3234 default:
3235 return -EINVAL;
3236 }
3237
3bc2913e
BW
3238 ret = i915_mutex_lock_interruptible(dev);
3239 if (ret)
3240 return ret;
3241
e6994aee
CW
3242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243 if (&obj->base == NULL) {
3244 ret = -ENOENT;
3245 goto unlock;
3246 }
3247
3248 ret = i915_gem_object_set_cache_level(obj, level);
3249
3250 drm_gem_object_unreference(&obj->base);
3251unlock:
3252 mutex_unlock(&dev->struct_mutex);
3253 return ret;
3254}
3255
b9241ea3 3256/*
2da3b9b9
CW
3257 * Prepare buffer for display plane (scanout, cursors, etc).
3258 * Can be called from an uninterruptible phase (modesetting) and allows
3259 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3260 */
3261int
2da3b9b9
CW
3262i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3263 u32 alignment,
919926ae 3264 struct intel_ring_buffer *pipelined)
b9241ea3 3265{
2da3b9b9 3266 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3267 int ret;
3268
0be73284 3269 if (pipelined != obj->ring) {
2911a35b
BW
3270 ret = i915_gem_object_sync(obj, pipelined);
3271 if (ret)
b9241ea3
ZW
3272 return ret;
3273 }
3274
a7ef0640
EA
3275 /* The display engine is not coherent with the LLC cache on gen6. As
3276 * a result, we make sure that the pinning that is about to occur is
3277 * done with uncached PTEs. This is lowest common denominator for all
3278 * chipsets.
3279 *
3280 * However for gen6+, we could do better by using the GFDT bit instead
3281 * of uncaching, which would allow us to flush all the LLC-cached data
3282 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3283 */
3284 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3285 if (ret)
3286 return ret;
3287
2da3b9b9
CW
3288 /* As the user may map the buffer once pinned in the display plane
3289 * (e.g. libkms for the bootup splash), we have to ensure that we
3290 * always use map_and_fenceable for all scanout buffers.
3291 */
86a1ee26 3292 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3293 if (ret)
3294 return ret;
3295
b118c1e3
CW
3296 i915_gem_object_flush_cpu_write_domain(obj);
3297
2da3b9b9 3298 old_write_domain = obj->base.write_domain;
05394f39 3299 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3300
3301 /* It should now be out of any other write domains, and we can update
3302 * the domain values for our changes.
3303 */
e5f1d962 3304 obj->base.write_domain = 0;
05394f39 3305 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3306
3307 trace_i915_gem_object_change_domain(obj,
3308 old_read_domains,
2da3b9b9 3309 old_write_domain);
b9241ea3
ZW
3310
3311 return 0;
3312}
3313
85345517 3314int
a8198eea 3315i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3316{
88241785
CW
3317 int ret;
3318
a8198eea 3319 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3320 return 0;
3321
0201f1ec 3322 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3323 if (ret)
3324 return ret;
3325
a8198eea
CW
3326 /* Ensure that we invalidate the GPU's caches and TLBs. */
3327 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3328 return 0;
85345517
CW
3329}
3330
e47c68e9
EA
3331/**
3332 * Moves a single object to the CPU read, and possibly write domain.
3333 *
3334 * This function returns when the move is complete, including waiting on
3335 * flushes to occur.
3336 */
dabdfe02 3337int
919926ae 3338i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3339{
1c5d22f7 3340 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3341 int ret;
3342
8d7e3de1
CW
3343 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3344 return 0;
3345
0201f1ec
CW
3346 ret = i915_gem_object_wait_rendering(obj, !write);
3347 if (ret)
3348 return ret;
2ef7eeaa 3349
e47c68e9 3350 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3351
05394f39
CW
3352 old_write_domain = obj->base.write_domain;
3353 old_read_domains = obj->base.read_domains;
1c5d22f7 3354
e47c68e9 3355 /* Flush the CPU cache if it's still invalid. */
05394f39 3356 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3357 i915_gem_clflush_object(obj);
2ef7eeaa 3358
05394f39 3359 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3360 }
3361
3362 /* It should now be out of any other write domains, and we can update
3363 * the domain values for our changes.
3364 */
05394f39 3365 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3366
3367 /* If we're writing through the CPU, then the GPU read domains will
3368 * need to be invalidated at next use.
3369 */
3370 if (write) {
05394f39
CW
3371 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3373 }
2ef7eeaa 3374
1c5d22f7
CW
3375 trace_i915_gem_object_change_domain(obj,
3376 old_read_domains,
3377 old_write_domain);
3378
2ef7eeaa
EA
3379 return 0;
3380}
3381
673a394b
EA
3382/* Throttle our rendering by waiting until the ring has completed our requests
3383 * emitted over 20 msec ago.
3384 *
b962442e
EA
3385 * Note that if we were to use the current jiffies each time around the loop,
3386 * we wouldn't escape the function with any frames outstanding if the time to
3387 * render a frame was over 20ms.
3388 *
673a394b
EA
3389 * This should get us reasonable parallelism between CPU and GPU but also
3390 * relatively low latency when blocking on a particular request to finish.
3391 */
40a5f0de 3392static int
f787a5f5 3393i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3394{
f787a5f5
CW
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3397 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3398 struct drm_i915_gem_request *request;
3399 struct intel_ring_buffer *ring = NULL;
3400 u32 seqno = 0;
3401 int ret;
93533c29 3402
e110e8d6
CW
3403 if (atomic_read(&dev_priv->mm.wedged))
3404 return -EIO;
3405
1c25595f 3406 spin_lock(&file_priv->mm.lock);
f787a5f5 3407 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3408 if (time_after_eq(request->emitted_jiffies, recent_enough))
3409 break;
40a5f0de 3410
f787a5f5
CW
3411 ring = request->ring;
3412 seqno = request->seqno;
b962442e 3413 }
1c25595f 3414 spin_unlock(&file_priv->mm.lock);
40a5f0de 3415
f787a5f5
CW
3416 if (seqno == 0)
3417 return 0;
2bc43b5c 3418
5c81fe85 3419 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3420 if (ret == 0)
3421 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3422
3423 return ret;
3424}
3425
673a394b 3426int
05394f39
CW
3427i915_gem_object_pin(struct drm_i915_gem_object *obj,
3428 uint32_t alignment,
86a1ee26
CW
3429 bool map_and_fenceable,
3430 bool nonblocking)
673a394b 3431{
673a394b
EA
3432 int ret;
3433
7e81a42e
CW
3434 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3435 return -EBUSY;
ac0c6b5a 3436
05394f39
CW
3437 if (obj->gtt_space != NULL) {
3438 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3439 (map_and_fenceable && !obj->map_and_fenceable)) {
3440 WARN(obj->pin_count,
ae7d49d8 3441 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3442 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3443 " obj->map_and_fenceable=%d\n",
05394f39 3444 obj->gtt_offset, alignment,
75e9e915 3445 map_and_fenceable,
05394f39 3446 obj->map_and_fenceable);
ac0c6b5a
CW
3447 ret = i915_gem_object_unbind(obj);
3448 if (ret)
3449 return ret;
3450 }
3451 }
3452
05394f39 3453 if (obj->gtt_space == NULL) {
a00b10c3 3454 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3455 map_and_fenceable,
3456 nonblocking);
9731129c 3457 if (ret)
673a394b 3458 return ret;
22c344e9 3459 }
76446cac 3460
74898d7e
DV
3461 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3462 i915_gem_gtt_bind_object(obj, obj->cache_level);
3463
1b50247a 3464 obj->pin_count++;
6299f992 3465 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3466
3467 return 0;
3468}
3469
3470void
05394f39 3471i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3472{
05394f39
CW
3473 BUG_ON(obj->pin_count == 0);
3474 BUG_ON(obj->gtt_space == NULL);
673a394b 3475
1b50247a 3476 if (--obj->pin_count == 0)
6299f992 3477 obj->pin_mappable = false;
673a394b
EA
3478}
3479
3480int
3481i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3482 struct drm_file *file)
673a394b
EA
3483{
3484 struct drm_i915_gem_pin *args = data;
05394f39 3485 struct drm_i915_gem_object *obj;
673a394b
EA
3486 int ret;
3487
1d7cfea1
CW
3488 ret = i915_mutex_lock_interruptible(dev);
3489 if (ret)
3490 return ret;
673a394b 3491
05394f39 3492 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3493 if (&obj->base == NULL) {
1d7cfea1
CW
3494 ret = -ENOENT;
3495 goto unlock;
673a394b 3496 }
673a394b 3497
05394f39 3498 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3499 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3500 ret = -EINVAL;
3501 goto out;
3ef94daa
CW
3502 }
3503
05394f39 3504 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3505 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3506 args->handle);
1d7cfea1
CW
3507 ret = -EINVAL;
3508 goto out;
79e53945
JB
3509 }
3510
05394f39
CW
3511 obj->user_pin_count++;
3512 obj->pin_filp = file;
3513 if (obj->user_pin_count == 1) {
86a1ee26 3514 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3515 if (ret)
3516 goto out;
673a394b
EA
3517 }
3518
3519 /* XXX - flush the CPU caches for pinned objects
3520 * as the X server doesn't manage domains yet
3521 */
e47c68e9 3522 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3523 args->offset = obj->gtt_offset;
1d7cfea1 3524out:
05394f39 3525 drm_gem_object_unreference(&obj->base);
1d7cfea1 3526unlock:
673a394b 3527 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3528 return ret;
673a394b
EA
3529}
3530
3531int
3532i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3533 struct drm_file *file)
673a394b
EA
3534{
3535 struct drm_i915_gem_pin *args = data;
05394f39 3536 struct drm_i915_gem_object *obj;
76c1dec1 3537 int ret;
673a394b 3538
1d7cfea1
CW
3539 ret = i915_mutex_lock_interruptible(dev);
3540 if (ret)
3541 return ret;
673a394b 3542
05394f39 3543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3544 if (&obj->base == NULL) {
1d7cfea1
CW
3545 ret = -ENOENT;
3546 goto unlock;
673a394b 3547 }
76c1dec1 3548
05394f39 3549 if (obj->pin_filp != file) {
79e53945
JB
3550 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3551 args->handle);
1d7cfea1
CW
3552 ret = -EINVAL;
3553 goto out;
79e53945 3554 }
05394f39
CW
3555 obj->user_pin_count--;
3556 if (obj->user_pin_count == 0) {
3557 obj->pin_filp = NULL;
79e53945
JB
3558 i915_gem_object_unpin(obj);
3559 }
673a394b 3560
1d7cfea1 3561out:
05394f39 3562 drm_gem_object_unreference(&obj->base);
1d7cfea1 3563unlock:
673a394b 3564 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3565 return ret;
673a394b
EA
3566}
3567
3568int
3569i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3570 struct drm_file *file)
673a394b
EA
3571{
3572 struct drm_i915_gem_busy *args = data;
05394f39 3573 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3574 int ret;
3575
76c1dec1 3576 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3577 if (ret)
76c1dec1 3578 return ret;
673a394b 3579
05394f39 3580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3581 if (&obj->base == NULL) {
1d7cfea1
CW
3582 ret = -ENOENT;
3583 goto unlock;
673a394b 3584 }
d1b851fc 3585
0be555b6
CW
3586 /* Count all active objects as busy, even if they are currently not used
3587 * by the gpu. Users of this interface expect objects to eventually
3588 * become non-busy without any further actions, therefore emit any
3589 * necessary flushes here.
c4de0a5d 3590 */
30dfebf3 3591 ret = i915_gem_object_flush_active(obj);
0be555b6 3592
30dfebf3 3593 args->busy = obj->active;
e9808edd
CW
3594 if (obj->ring) {
3595 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3596 args->busy |= intel_ring_flag(obj->ring) << 16;
3597 }
673a394b 3598
05394f39 3599 drm_gem_object_unreference(&obj->base);
1d7cfea1 3600unlock:
673a394b 3601 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3602 return ret;
673a394b
EA
3603}
3604
3605int
3606i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3607 struct drm_file *file_priv)
3608{
0206e353 3609 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3610}
3611
3ef94daa
CW
3612int
3613i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3614 struct drm_file *file_priv)
3615{
3616 struct drm_i915_gem_madvise *args = data;
05394f39 3617 struct drm_i915_gem_object *obj;
76c1dec1 3618 int ret;
3ef94daa
CW
3619
3620 switch (args->madv) {
3621 case I915_MADV_DONTNEED:
3622 case I915_MADV_WILLNEED:
3623 break;
3624 default:
3625 return -EINVAL;
3626 }
3627
1d7cfea1
CW
3628 ret = i915_mutex_lock_interruptible(dev);
3629 if (ret)
3630 return ret;
3631
05394f39 3632 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3633 if (&obj->base == NULL) {
1d7cfea1
CW
3634 ret = -ENOENT;
3635 goto unlock;
3ef94daa 3636 }
3ef94daa 3637
05394f39 3638 if (obj->pin_count) {
1d7cfea1
CW
3639 ret = -EINVAL;
3640 goto out;
3ef94daa
CW
3641 }
3642
05394f39
CW
3643 if (obj->madv != __I915_MADV_PURGED)
3644 obj->madv = args->madv;
3ef94daa 3645
6c085a72
CW
3646 /* if the object is no longer attached, discard its backing storage */
3647 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3648 i915_gem_object_truncate(obj);
3649
05394f39 3650 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3651
1d7cfea1 3652out:
05394f39 3653 drm_gem_object_unreference(&obj->base);
1d7cfea1 3654unlock:
3ef94daa 3655 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3656 return ret;
3ef94daa
CW
3657}
3658
37e680a1
CW
3659void i915_gem_object_init(struct drm_i915_gem_object *obj,
3660 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3661{
0327d6ba
CW
3662 INIT_LIST_HEAD(&obj->mm_list);
3663 INIT_LIST_HEAD(&obj->gtt_list);
3664 INIT_LIST_HEAD(&obj->ring_list);
3665 INIT_LIST_HEAD(&obj->exec_list);
3666
37e680a1
CW
3667 obj->ops = ops;
3668
0327d6ba
CW
3669 obj->fence_reg = I915_FENCE_REG_NONE;
3670 obj->madv = I915_MADV_WILLNEED;
3671 /* Avoid an unnecessary call to unbind on the first bind. */
3672 obj->map_and_fenceable = true;
3673
3674 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3675}
3676
37e680a1
CW
3677static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3678 .get_pages = i915_gem_object_get_pages_gtt,
3679 .put_pages = i915_gem_object_put_pages_gtt,
3680};
3681
05394f39
CW
3682struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3683 size_t size)
ac52bc56 3684{
c397b908 3685 struct drm_i915_gem_object *obj;
5949eac4 3686 struct address_space *mapping;
bed1ea95 3687 u32 mask;
ac52bc56 3688
c397b908
DV
3689 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3690 if (obj == NULL)
3691 return NULL;
673a394b 3692
c397b908
DV
3693 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3694 kfree(obj);
3695 return NULL;
3696 }
673a394b 3697
bed1ea95
CW
3698 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3699 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3700 /* 965gm cannot relocate objects above 4GiB. */
3701 mask &= ~__GFP_HIGHMEM;
3702 mask |= __GFP_DMA32;
3703 }
3704
5949eac4 3705 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3706 mapping_set_gfp_mask(mapping, mask);
5949eac4 3707
37e680a1 3708 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3709
c397b908
DV
3710 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3711 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3712
3d29b842
ED
3713 if (HAS_LLC(dev)) {
3714 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3715 * cache) for about a 10% performance improvement
3716 * compared to uncached. Graphics requests other than
3717 * display scanout are coherent with the CPU in
3718 * accessing this cache. This means in this mode we
3719 * don't need to clflush on the CPU side, and on the
3720 * GPU side we only need to flush internal caches to
3721 * get data visible to the CPU.
3722 *
3723 * However, we maintain the display planes as UC, and so
3724 * need to rebind when first used as such.
3725 */
3726 obj->cache_level = I915_CACHE_LLC;
3727 } else
3728 obj->cache_level = I915_CACHE_NONE;
3729
05394f39 3730 return obj;
c397b908
DV
3731}
3732
3733int i915_gem_init_object(struct drm_gem_object *obj)
3734{
3735 BUG();
de151cf6 3736
673a394b
EA
3737 return 0;
3738}
3739
1488fc08 3740void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3741{
1488fc08 3742 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3743 struct drm_device *dev = obj->base.dev;
be72615b 3744 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3745
26e12f89
CW
3746 trace_i915_gem_object_destroy(obj);
3747
1488fc08
CW
3748 if (obj->phys_obj)
3749 i915_gem_detach_phys_object(dev, obj);
3750
3751 obj->pin_count = 0;
3752 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3753 bool was_interruptible;
3754
3755 was_interruptible = dev_priv->mm.interruptible;
3756 dev_priv->mm.interruptible = false;
3757
3758 WARN_ON(i915_gem_object_unbind(obj));
3759
3760 dev_priv->mm.interruptible = was_interruptible;
3761 }
3762
a5570178 3763 obj->pages_pin_count = 0;
37e680a1 3764 i915_gem_object_put_pages(obj);
d8cb5086 3765 i915_gem_object_free_mmap_offset(obj);
de151cf6 3766
9da3da66
CW
3767 BUG_ON(obj->pages);
3768
2f745ad3
CW
3769 if (obj->base.import_attach)
3770 drm_prime_gem_destroy(&obj->base, NULL);
3771
05394f39
CW
3772 drm_gem_object_release(&obj->base);
3773 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3774
05394f39
CW
3775 kfree(obj->bit_17);
3776 kfree(obj);
673a394b
EA
3777}
3778
29105ccc
CW
3779int
3780i915_gem_idle(struct drm_device *dev)
3781{
3782 drm_i915_private_t *dev_priv = dev->dev_private;
3783 int ret;
28dfe52a 3784
29105ccc 3785 mutex_lock(&dev->struct_mutex);
1c5d22f7 3786
87acb0a5 3787 if (dev_priv->mm.suspended) {
29105ccc
CW
3788 mutex_unlock(&dev->struct_mutex);
3789 return 0;
28dfe52a
EA
3790 }
3791
b2da9fe5 3792 ret = i915_gpu_idle(dev);
6dbe2772
KP
3793 if (ret) {
3794 mutex_unlock(&dev->struct_mutex);
673a394b 3795 return ret;
6dbe2772 3796 }
b2da9fe5 3797 i915_gem_retire_requests(dev);
673a394b 3798
29105ccc 3799 /* Under UMS, be paranoid and evict. */
a39d7efc 3800 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3801 i915_gem_evict_everything(dev);
29105ccc 3802
312817a3
CW
3803 i915_gem_reset_fences(dev);
3804
29105ccc
CW
3805 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3806 * We need to replace this with a semaphore, or something.
3807 * And not confound mm.suspended!
3808 */
3809 dev_priv->mm.suspended = 1;
bc0c7f14 3810 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3811
3812 i915_kernel_lost_context(dev);
6dbe2772 3813 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3814
6dbe2772
KP
3815 mutex_unlock(&dev->struct_mutex);
3816
29105ccc
CW
3817 /* Cancel the retire work handler, which should be idle now. */
3818 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3819
673a394b
EA
3820 return 0;
3821}
3822
b9524a1e
BW
3823void i915_gem_l3_remap(struct drm_device *dev)
3824{
3825 drm_i915_private_t *dev_priv = dev->dev_private;
3826 u32 misccpctl;
3827 int i;
3828
3829 if (!IS_IVYBRIDGE(dev))
3830 return;
3831
3832 if (!dev_priv->mm.l3_remap_info)
3833 return;
3834
3835 misccpctl = I915_READ(GEN7_MISCCPCTL);
3836 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3837 POSTING_READ(GEN7_MISCCPCTL);
3838
3839 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3840 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3841 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3842 DRM_DEBUG("0x%x was already programmed to %x\n",
3843 GEN7_L3LOG_BASE + i, remap);
3844 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3845 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3846 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3847 }
3848
3849 /* Make sure all the writes land before disabling dop clock gating */
3850 POSTING_READ(GEN7_L3LOG_BASE);
3851
3852 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3853}
3854
f691e2f4
DV
3855void i915_gem_init_swizzling(struct drm_device *dev)
3856{
3857 drm_i915_private_t *dev_priv = dev->dev_private;
3858
11782b02 3859 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3860 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3861 return;
3862
3863 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3864 DISP_TILE_SURFACE_SWIZZLING);
3865
11782b02
DV
3866 if (IS_GEN5(dev))
3867 return;
3868
f691e2f4
DV
3869 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3870 if (IS_GEN6(dev))
6b26c86d 3871 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3872 else
6b26c86d 3873 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3874}
e21af88d
DV
3875
3876void i915_gem_init_ppgtt(struct drm_device *dev)
3877{
3878 drm_i915_private_t *dev_priv = dev->dev_private;
3879 uint32_t pd_offset;
3880 struct intel_ring_buffer *ring;
55a254ac
DV
3881 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3882 uint32_t __iomem *pd_addr;
3883 uint32_t pd_entry;
e21af88d
DV
3884 int i;
3885
3886 if (!dev_priv->mm.aliasing_ppgtt)
3887 return;
3888
55a254ac
DV
3889
3890 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3891 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3892 dma_addr_t pt_addr;
3893
3894 if (dev_priv->mm.gtt->needs_dmar)
3895 pt_addr = ppgtt->pt_dma_addr[i];
3896 else
3897 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3898
3899 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3900 pd_entry |= GEN6_PDE_VALID;
3901
3902 writel(pd_entry, pd_addr + i);
3903 }
3904 readl(pd_addr);
3905
3906 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3907 pd_offset /= 64; /* in cachelines, */
3908 pd_offset <<= 16;
3909
3910 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3911 uint32_t ecochk, gab_ctl, ecobits;
3912
3913 ecobits = I915_READ(GAC_ECO_BITS);
3914 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3915
3916 gab_ctl = I915_READ(GAB_CTL);
3917 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3918
3919 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3920 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3921 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3922 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3923 } else if (INTEL_INFO(dev)->gen >= 7) {
3924 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3925 /* GFX_MODE is per-ring on gen7+ */
3926 }
3927
b4519513 3928 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3929 if (INTEL_INFO(dev)->gen >= 7)
3930 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3931 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3932
3933 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3934 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3935 }
3936}
3937
67b1b571
CW
3938static bool
3939intel_enable_blt(struct drm_device *dev)
3940{
3941 if (!HAS_BLT(dev))
3942 return false;
3943
3944 /* The blitter was dysfunctional on early prototypes */
3945 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3946 DRM_INFO("BLT not supported on this pre-production hardware;"
3947 " graphics performance will be degraded.\n");
3948 return false;
3949 }
3950
3951 return true;
3952}
3953
8187a2b7 3954int
f691e2f4 3955i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3956{
3957 drm_i915_private_t *dev_priv = dev->dev_private;
3958 int ret;
68f95ba9 3959
8ecd1a66
DV
3960 if (!intel_enable_gtt())
3961 return -EIO;
3962
b9524a1e
BW
3963 i915_gem_l3_remap(dev);
3964
f691e2f4
DV
3965 i915_gem_init_swizzling(dev);
3966
5c1143bb 3967 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3968 if (ret)
b6913e4b 3969 return ret;
68f95ba9
CW
3970
3971 if (HAS_BSD(dev)) {
5c1143bb 3972 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3973 if (ret)
3974 goto cleanup_render_ring;
d1b851fc 3975 }
68f95ba9 3976
67b1b571 3977 if (intel_enable_blt(dev)) {
549f7365
CW
3978 ret = intel_init_blt_ring_buffer(dev);
3979 if (ret)
3980 goto cleanup_bsd_ring;
3981 }
3982
6f392d54
CW
3983 dev_priv->next_seqno = 1;
3984
254f965c
BW
3985 /*
3986 * XXX: There was some w/a described somewhere suggesting loading
3987 * contexts before PPGTT.
3988 */
3989 i915_gem_context_init(dev);
e21af88d
DV
3990 i915_gem_init_ppgtt(dev);
3991
68f95ba9
CW
3992 return 0;
3993
549f7365 3994cleanup_bsd_ring:
1ec14ad3 3995 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3996cleanup_render_ring:
1ec14ad3 3997 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3998 return ret;
3999}
4000
1070a42b
CW
4001static bool
4002intel_enable_ppgtt(struct drm_device *dev)
4003{
4004 if (i915_enable_ppgtt >= 0)
4005 return i915_enable_ppgtt;
4006
4007#ifdef CONFIG_INTEL_IOMMU
4008 /* Disable ppgtt on SNB if VT-d is on. */
4009 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4010 return false;
4011#endif
4012
4013 return true;
4014}
4015
4016int i915_gem_init(struct drm_device *dev)
4017{
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019 unsigned long gtt_size, mappable_size;
4020 int ret;
4021
4022 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4023 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4024
4025 mutex_lock(&dev->struct_mutex);
4026 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4027 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4028 * aperture accordingly when using aliasing ppgtt. */
4029 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4030
4031 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4032
4033 ret = i915_gem_init_aliasing_ppgtt(dev);
4034 if (ret) {
4035 mutex_unlock(&dev->struct_mutex);
4036 return ret;
4037 }
4038 } else {
4039 /* Let GEM Manage all of the aperture.
4040 *
4041 * However, leave one page at the end still bound to the scratch
4042 * page. There are a number of places where the hardware
4043 * apparently prefetches past the end of the object, and we've
4044 * seen multiple hangs with the GPU head pointer stuck in a
4045 * batchbuffer bound at the last page of the aperture. One page
4046 * should be enough to keep any prefetching inside of the
4047 * aperture.
4048 */
4049 i915_gem_init_global_gtt(dev, 0, mappable_size,
4050 gtt_size);
4051 }
4052
4053 ret = i915_gem_init_hw(dev);
4054 mutex_unlock(&dev->struct_mutex);
4055 if (ret) {
4056 i915_gem_cleanup_aliasing_ppgtt(dev);
4057 return ret;
4058 }
4059
53ca26ca
DV
4060 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4061 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4062 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4063 return 0;
4064}
4065
8187a2b7
ZN
4066void
4067i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4068{
4069 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4070 struct intel_ring_buffer *ring;
1ec14ad3 4071 int i;
8187a2b7 4072
b4519513
CW
4073 for_each_ring(ring, dev_priv, i)
4074 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4075}
4076
673a394b
EA
4077int
4078i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4079 struct drm_file *file_priv)
4080{
4081 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4082 int ret;
673a394b 4083
79e53945
JB
4084 if (drm_core_check_feature(dev, DRIVER_MODESET))
4085 return 0;
4086
ba1234d1 4087 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4088 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4089 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4090 }
4091
673a394b 4092 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4093 dev_priv->mm.suspended = 0;
4094
f691e2f4 4095 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4096 if (ret != 0) {
4097 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4098 return ret;
d816f6ac 4099 }
9bb2d6f9 4100
69dc4987 4101 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4102 mutex_unlock(&dev->struct_mutex);
dbb19d30 4103
5f35308b
CW
4104 ret = drm_irq_install(dev);
4105 if (ret)
4106 goto cleanup_ringbuffer;
dbb19d30 4107
673a394b 4108 return 0;
5f35308b
CW
4109
4110cleanup_ringbuffer:
4111 mutex_lock(&dev->struct_mutex);
4112 i915_gem_cleanup_ringbuffer(dev);
4113 dev_priv->mm.suspended = 1;
4114 mutex_unlock(&dev->struct_mutex);
4115
4116 return ret;
673a394b
EA
4117}
4118
4119int
4120i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4121 struct drm_file *file_priv)
4122{
79e53945
JB
4123 if (drm_core_check_feature(dev, DRIVER_MODESET))
4124 return 0;
4125
dbb19d30 4126 drm_irq_uninstall(dev);
e6890f6f 4127 return i915_gem_idle(dev);
673a394b
EA
4128}
4129
4130void
4131i915_gem_lastclose(struct drm_device *dev)
4132{
4133 int ret;
673a394b 4134
e806b495
EA
4135 if (drm_core_check_feature(dev, DRIVER_MODESET))
4136 return;
4137
6dbe2772
KP
4138 ret = i915_gem_idle(dev);
4139 if (ret)
4140 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4141}
4142
64193406
CW
4143static void
4144init_ring_lists(struct intel_ring_buffer *ring)
4145{
4146 INIT_LIST_HEAD(&ring->active_list);
4147 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4148}
4149
673a394b
EA
4150void
4151i915_gem_load(struct drm_device *dev)
4152{
b5aa8a0f 4153 int i;
673a394b
EA
4154 drm_i915_private_t *dev_priv = dev->dev_private;
4155
69dc4987 4156 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4157 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4158 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4159 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4160 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4161 for (i = 0; i < I915_NUM_RINGS; i++)
4162 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4163 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4164 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4165 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4166 i915_gem_retire_work_handler);
30dbf0c0 4167 init_completion(&dev_priv->error_completion);
31169714 4168
94400120
DA
4169 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4170 if (IS_GEN3(dev)) {
50743298
DV
4171 I915_WRITE(MI_ARB_STATE,
4172 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4173 }
4174
72bfa19c
CW
4175 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4176
de151cf6 4177 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4178 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4179 dev_priv->fence_reg_start = 3;
de151cf6 4180
a6c45cf0 4181 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4182 dev_priv->num_fence_regs = 16;
4183 else
4184 dev_priv->num_fence_regs = 8;
4185
b5aa8a0f 4186 /* Initialize fence registers to zero */
ada726c7 4187 i915_gem_reset_fences(dev);
10ed13e4 4188
673a394b 4189 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4190 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4191
ce453d81
CW
4192 dev_priv->mm.interruptible = true;
4193
17250b71
CW
4194 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4195 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4196 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4197}
71acb5eb
DA
4198
4199/*
4200 * Create a physically contiguous memory object for this object
4201 * e.g. for cursor + overlay regs
4202 */
995b6762
CW
4203static int i915_gem_init_phys_object(struct drm_device *dev,
4204 int id, int size, int align)
71acb5eb
DA
4205{
4206 drm_i915_private_t *dev_priv = dev->dev_private;
4207 struct drm_i915_gem_phys_object *phys_obj;
4208 int ret;
4209
4210 if (dev_priv->mm.phys_objs[id - 1] || !size)
4211 return 0;
4212
9a298b2a 4213 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4214 if (!phys_obj)
4215 return -ENOMEM;
4216
4217 phys_obj->id = id;
4218
6eeefaf3 4219 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4220 if (!phys_obj->handle) {
4221 ret = -ENOMEM;
4222 goto kfree_obj;
4223 }
4224#ifdef CONFIG_X86
4225 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4226#endif
4227
4228 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4229
4230 return 0;
4231kfree_obj:
9a298b2a 4232 kfree(phys_obj);
71acb5eb
DA
4233 return ret;
4234}
4235
995b6762 4236static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4237{
4238 drm_i915_private_t *dev_priv = dev->dev_private;
4239 struct drm_i915_gem_phys_object *phys_obj;
4240
4241 if (!dev_priv->mm.phys_objs[id - 1])
4242 return;
4243
4244 phys_obj = dev_priv->mm.phys_objs[id - 1];
4245 if (phys_obj->cur_obj) {
4246 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4247 }
4248
4249#ifdef CONFIG_X86
4250 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4251#endif
4252 drm_pci_free(dev, phys_obj->handle);
4253 kfree(phys_obj);
4254 dev_priv->mm.phys_objs[id - 1] = NULL;
4255}
4256
4257void i915_gem_free_all_phys_object(struct drm_device *dev)
4258{
4259 int i;
4260
260883c8 4261 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4262 i915_gem_free_phys_object(dev, i);
4263}
4264
4265void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4266 struct drm_i915_gem_object *obj)
71acb5eb 4267{
05394f39 4268 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4269 char *vaddr;
71acb5eb 4270 int i;
71acb5eb
DA
4271 int page_count;
4272
05394f39 4273 if (!obj->phys_obj)
71acb5eb 4274 return;
05394f39 4275 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4276
05394f39 4277 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4278 for (i = 0; i < page_count; i++) {
5949eac4 4279 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4280 if (!IS_ERR(page)) {
4281 char *dst = kmap_atomic(page);
4282 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4283 kunmap_atomic(dst);
4284
4285 drm_clflush_pages(&page, 1);
4286
4287 set_page_dirty(page);
4288 mark_page_accessed(page);
4289 page_cache_release(page);
4290 }
71acb5eb 4291 }
40ce6575 4292 intel_gtt_chipset_flush();
d78b47b9 4293
05394f39
CW
4294 obj->phys_obj->cur_obj = NULL;
4295 obj->phys_obj = NULL;
71acb5eb
DA
4296}
4297
4298int
4299i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4300 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4301 int id,
4302 int align)
71acb5eb 4303{
05394f39 4304 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4305 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4306 int ret = 0;
4307 int page_count;
4308 int i;
4309
4310 if (id > I915_MAX_PHYS_OBJECT)
4311 return -EINVAL;
4312
05394f39
CW
4313 if (obj->phys_obj) {
4314 if (obj->phys_obj->id == id)
71acb5eb
DA
4315 return 0;
4316 i915_gem_detach_phys_object(dev, obj);
4317 }
4318
71acb5eb
DA
4319 /* create a new object */
4320 if (!dev_priv->mm.phys_objs[id - 1]) {
4321 ret = i915_gem_init_phys_object(dev, id,
05394f39 4322 obj->base.size, align);
71acb5eb 4323 if (ret) {
05394f39
CW
4324 DRM_ERROR("failed to init phys object %d size: %zu\n",
4325 id, obj->base.size);
e5281ccd 4326 return ret;
71acb5eb
DA
4327 }
4328 }
4329
4330 /* bind to the object */
05394f39
CW
4331 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4332 obj->phys_obj->cur_obj = obj;
71acb5eb 4333
05394f39 4334 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4335
4336 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4337 struct page *page;
4338 char *dst, *src;
4339
5949eac4 4340 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4341 if (IS_ERR(page))
4342 return PTR_ERR(page);
71acb5eb 4343
ff75b9bc 4344 src = kmap_atomic(page);
05394f39 4345 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4346 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4347 kunmap_atomic(src);
71acb5eb 4348
e5281ccd
CW
4349 mark_page_accessed(page);
4350 page_cache_release(page);
4351 }
d78b47b9 4352
71acb5eb 4353 return 0;
71acb5eb
DA
4354}
4355
4356static int
05394f39
CW
4357i915_gem_phys_pwrite(struct drm_device *dev,
4358 struct drm_i915_gem_object *obj,
71acb5eb
DA
4359 struct drm_i915_gem_pwrite *args,
4360 struct drm_file *file_priv)
4361{
05394f39 4362 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4363 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4364
b47b30cc
CW
4365 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4366 unsigned long unwritten;
4367
4368 /* The physical object once assigned is fixed for the lifetime
4369 * of the obj, so we can safely drop the lock and continue
4370 * to access vaddr.
4371 */
4372 mutex_unlock(&dev->struct_mutex);
4373 unwritten = copy_from_user(vaddr, user_data, args->size);
4374 mutex_lock(&dev->struct_mutex);
4375 if (unwritten)
4376 return -EFAULT;
4377 }
71acb5eb 4378
40ce6575 4379 intel_gtt_chipset_flush();
71acb5eb
DA
4380 return 0;
4381}
b962442e 4382
f787a5f5 4383void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4384{
f787a5f5 4385 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4386
4387 /* Clean up our request list when the client is going away, so that
4388 * later retire_requests won't dereference our soon-to-be-gone
4389 * file_priv.
4390 */
1c25595f 4391 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4392 while (!list_empty(&file_priv->mm.request_list)) {
4393 struct drm_i915_gem_request *request;
4394
4395 request = list_first_entry(&file_priv->mm.request_list,
4396 struct drm_i915_gem_request,
4397 client_list);
4398 list_del(&request->client_list);
4399 request->file_priv = NULL;
4400 }
1c25595f 4401 spin_unlock(&file_priv->mm.lock);
b962442e 4402}
31169714 4403
31169714 4404static int
1495f230 4405i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4406{
17250b71
CW
4407 struct drm_i915_private *dev_priv =
4408 container_of(shrinker,
4409 struct drm_i915_private,
4410 mm.inactive_shrinker);
4411 struct drm_device *dev = dev_priv->dev;
6c085a72 4412 struct drm_i915_gem_object *obj;
1495f230 4413 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4414 int cnt;
4415
4416 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4417 return 0;
31169714 4418
6c085a72
CW
4419 if (nr_to_scan) {
4420 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4421 if (nr_to_scan > 0)
4422 i915_gem_shrink_all(dev_priv);
31169714
CW
4423 }
4424
17250b71 4425 cnt = 0;
6c085a72 4426 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4427 if (obj->pages_pin_count == 0)
4428 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4429 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4430 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4431 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4432
17250b71 4433 mutex_unlock(&dev->struct_mutex);
6c085a72 4434 return cnt;
31169714 4435}