]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Record the default hw state after reset upon load
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
465c403c 38#include "i915_gemfs.h"
6b5e90f5 39#include <linux/dma-fence-array.h>
fe3288b5 40#include <linux/kthread.h>
c13d87ea 41#include <linux/reservation.h>
5949eac4 42#include <linux/shmem_fs.h>
5a0e3ad6 43#include <linux/slab.h>
20e4933c 44#include <linux/stop_machine.h>
673a394b 45#include <linux/swap.h>
79e53945 46#include <linux/pci.h>
1286ff73 47#include <linux/dma-buf.h>
673a394b 48
fbbd37b3 49static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 50
2c22569b
CW
51static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52{
e27ab73d 53 if (obj->cache_dirty)
b50a5371
AS
54 return false;
55
b8f55be6 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
57 return true;
58
bd3d2252 59 return obj->pin_global; /* currently in use by HW, keep flushed */
2c22569b
CW
60}
61
4f1959ee 62static int
bb6dc8d9 63insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
64 struct drm_mm_node *node, u32 size)
65{
66 memset(node, 0, sizeof(*node));
4e64e553
CW
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
4f1959ee
AS
71}
72
73static void
74remove_mappable_node(struct drm_mm_node *node)
75{
76 drm_mm_remove_node(node);
77}
78
73aa808f
CW
79/* some bookkeeping */
80static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 81 u64 size)
73aa808f 82{
c20e8355 83 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
c20e8355 86 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
87}
88
89static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 90 u64 size)
73aa808f 91{
c20e8355 92 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
c20e8355 95 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96}
97
21dd3734 98static int
33196ded 99i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 100{
30dbf0c0
CW
101 int ret;
102
4c7d62c6
CW
103 might_sleep();
104
0a6759c6
DV
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
1f83fee0 110 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 111 !i915_reset_backoff(error),
b52992c0 112 I915_RESET_TIMEOUT);
0a6759c6
DV
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
30dbf0c0 117 return ret;
d98c52cf
CW
118 } else {
119 return 0;
0a6759c6 120 }
30dbf0c0
CW
121}
122
54cf91dc 123int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 124{
fac5e23e 125 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
126 int ret;
127
33196ded 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
76c1dec1
CW
136 return 0;
137}
30dbf0c0 138
5a125c3c
EA
139int
140i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 141 struct drm_file *file)
5a125c3c 142{
72e96d64 143 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 145 struct drm_i915_gem_get_aperture *args = data;
ca1543be 146 struct i915_vma *vma;
ff8f7975 147 u64 pinned;
5a125c3c 148
ff8f7975 149 pinned = ggtt->base.reserved;
73aa808f 150 mutex_lock(&dev->struct_mutex);
1c7f4bca 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 152 if (i915_vma_is_pinned(vma))
ca1543be 153 pinned += vma->node.size;
1c7f4bca 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 155 if (i915_vma_is_pinned(vma))
ca1543be 156 pinned += vma->node.size;
73aa808f 157 mutex_unlock(&dev->struct_mutex);
5a125c3c 158
72e96d64 159 args->aper_size = ggtt->base.total;
0206e353 160 args->aper_available_size = args->aper_size - pinned;
6299f992 161
5a125c3c
EA
162 return 0;
163}
164
b91b09ee 165static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 166{
93c76a3d 167 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 168 drm_dma_handle_t *phys;
6a2c4232
CW
169 struct sg_table *st;
170 struct scatterlist *sg;
dbb4351b 171 char *vaddr;
6a2c4232 172 int i;
b91b09ee 173 int err;
00731155 174
6a2c4232 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
b91b09ee 176 return -EINVAL;
6a2c4232 177
dbb4351b
CW
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
181 */
182 phys = drm_pci_alloc(obj->base.dev,
750fae23 183 roundup_pow_of_two(obj->base.size),
dbb4351b
CW
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
b91b09ee 186 return -ENOMEM;
dbb4351b
CW
187
188 vaddr = phys->vaddr;
6a2c4232
CW
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
dbb4351b 194 if (IS_ERR(page)) {
b91b09ee 195 err = PTR_ERR(page);
dbb4351b
CW
196 goto err_phys;
197 }
6a2c4232
CW
198
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
203
09cbfeaf 204 put_page(page);
6a2c4232
CW
205 vaddr += PAGE_SIZE;
206 }
207
c033666a 208 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
209
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b 211 if (!st) {
b91b09ee 212 err = -ENOMEM;
dbb4351b
CW
213 goto err_phys;
214 }
6a2c4232
CW
215
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
b91b09ee 218 err = -ENOMEM;
dbb4351b 219 goto err_phys;
6a2c4232
CW
220 }
221
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
00731155 225
dbb4351b 226 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
227 sg_dma_len(sg) = obj->base.size;
228
dbb4351b 229 obj->phys_handle = phys;
b91b09ee 230
a5c08166 231 __i915_gem_object_set_pages(obj, st, sg->length);
b91b09ee
MA
232
233 return 0;
dbb4351b
CW
234
235err_phys:
236 drm_pci_free(obj->base.dev, phys);
b91b09ee
MA
237
238 return err;
6a2c4232
CW
239}
240
e27ab73d
CW
241static void __start_cpu_write(struct drm_i915_gem_object *obj)
242{
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
247}
248
6a2c4232 249static void
2b3c8317 250__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
251 struct sg_table *pages,
252 bool needs_clflush)
6a2c4232 253{
a4f5ea64 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 255
a4f5ea64
CW
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
6a2c4232 258
e5facdf9
CW
259 if (needs_clflush &&
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 262 drm_clflush_sg(pages);
03ac84f1 263
e27ab73d 264 __start_cpu_write(obj);
03ac84f1
CW
265}
266
267static void
268i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
270{
e5facdf9 271 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 272
a4f5ea64 273 if (obj->mm.dirty) {
93c76a3d 274 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 275 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
276 int i;
277
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
279 struct page *page;
280 char *dst;
281
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
285
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
290
291 set_page_dirty(page);
a4f5ea64 292 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 293 mark_page_accessed(page);
09cbfeaf 294 put_page(page);
00731155
CW
295 vaddr += PAGE_SIZE;
296 }
a4f5ea64 297 obj->mm.dirty = false;
00731155
CW
298 }
299
03ac84f1
CW
300 sg_free_table(pages);
301 kfree(pages);
dbb4351b
CW
302
303 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
304}
305
306static void
307i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308{
a4f5ea64 309 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
310}
311
312static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
316};
317
581ab1fe
CW
318static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
35a9611c 320int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
321{
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
02bef8f9
CW
324 int ret;
325
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 327
02bef8f9
CW
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
aa653a68 332 */
2797c4a1 333 ret = i915_gem_object_set_to_cpu_domain(obj, false);
02bef8f9
CW
334 if (ret)
335 return ret;
336
aa653a68
CW
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
338 struct i915_vma,
339 obj_link))) {
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
342 if (ret)
343 break;
344 }
345 list_splice(&still_in_list, &obj->vma_list);
346
347 return ret;
348}
349
e95433c7
CW
350static long
351i915_gem_object_wait_fence(struct dma_fence *fence,
352 unsigned int flags,
353 long timeout,
562d9bae 354 struct intel_rps_client *rps_client)
00e60f26 355{
e95433c7 356 struct drm_i915_gem_request *rq;
00e60f26 357
e95433c7 358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 359
e95433c7
CW
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 return timeout;
362
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
366 timeout);
367
368 rq = to_request(fence);
369 if (i915_gem_request_completed(rq))
370 goto out;
371
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
386 */
562d9bae 387 if (rps_client) {
e95433c7 388 if (INTEL_GEN(rq->i915) >= 6)
562d9bae 389 gen6_rps_boost(rq, rps_client);
e95433c7 390 else
562d9bae 391 rps_client = NULL;
00e60f26
CW
392 }
393
e95433c7
CW
394 timeout = i915_wait_request(rq, flags, timeout);
395
396out:
397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 i915_gem_request_retire_upto(rq);
399
e95433c7
CW
400 return timeout;
401}
402
403static long
404i915_gem_object_wait_reservation(struct reservation_object *resv,
405 unsigned int flags,
406 long timeout,
562d9bae 407 struct intel_rps_client *rps_client)
e95433c7 408{
e54ca977 409 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 410 struct dma_fence *excl;
e54ca977 411 bool prune_fences = false;
e95433c7
CW
412
413 if (flags & I915_WAIT_ALL) {
414 struct dma_fence **shared;
415 unsigned int count, i;
00e60f26
CW
416 int ret;
417
e95433c7
CW
418 ret = reservation_object_get_fences_rcu(resv,
419 &excl, &count, &shared);
00e60f26
CW
420 if (ret)
421 return ret;
00e60f26 422
e95433c7
CW
423 for (i = 0; i < count; i++) {
424 timeout = i915_gem_object_wait_fence(shared[i],
425 flags, timeout,
562d9bae 426 rps_client);
d892e939 427 if (timeout < 0)
e95433c7 428 break;
00e60f26 429
e95433c7
CW
430 dma_fence_put(shared[i]);
431 }
432
433 for (; i < count; i++)
434 dma_fence_put(shared[i]);
435 kfree(shared);
e54ca977
CW
436
437 prune_fences = count && timeout >= 0;
e95433c7
CW
438 } else {
439 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
440 }
441
e54ca977 442 if (excl && timeout >= 0) {
562d9bae
SAK
443 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
444 rps_client);
e54ca977
CW
445 prune_fences = timeout >= 0;
446 }
e95433c7
CW
447
448 dma_fence_put(excl);
449
03d1cac6
CW
450 /* Oportunistically prune the fences iff we know they have *all* been
451 * signaled and that the reservation object has not been changed (i.e.
452 * no new fences have been added).
453 */
e54ca977 454 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
455 if (reservation_object_trylock(resv)) {
456 if (!__read_seqcount_retry(&resv->seq, seq))
457 reservation_object_add_excl_fence(resv, NULL);
458 reservation_object_unlock(resv);
459 }
e54ca977
CW
460 }
461
e95433c7 462 return timeout;
00e60f26
CW
463}
464
6b5e90f5
CW
465static void __fence_set_priority(struct dma_fence *fence, int prio)
466{
467 struct drm_i915_gem_request *rq;
468 struct intel_engine_cs *engine;
469
5005c851 470 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
6b5e90f5
CW
471 return;
472
473 rq = to_request(fence);
474 engine = rq->engine;
475 if (!engine->schedule)
476 return;
477
478 engine->schedule(rq, prio);
479}
480
481static void fence_set_priority(struct dma_fence *fence, int prio)
482{
483 /* Recurse once into a fence-array */
484 if (dma_fence_is_array(fence)) {
485 struct dma_fence_array *array = to_dma_fence_array(fence);
486 int i;
487
488 for (i = 0; i < array->num_fences; i++)
489 __fence_set_priority(array->fences[i], prio);
490 } else {
491 __fence_set_priority(fence, prio);
492 }
493}
494
495int
496i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497 unsigned int flags,
498 int prio)
499{
500 struct dma_fence *excl;
501
502 if (flags & I915_WAIT_ALL) {
503 struct dma_fence **shared;
504 unsigned int count, i;
505 int ret;
506
507 ret = reservation_object_get_fences_rcu(obj->resv,
508 &excl, &count, &shared);
509 if (ret)
510 return ret;
511
512 for (i = 0; i < count; i++) {
513 fence_set_priority(shared[i], prio);
514 dma_fence_put(shared[i]);
515 }
516
517 kfree(shared);
518 } else {
519 excl = reservation_object_get_excl_rcu(obj->resv);
520 }
521
522 if (excl) {
523 fence_set_priority(excl, prio);
524 dma_fence_put(excl);
525 }
526 return 0;
527}
528
e95433c7
CW
529/**
530 * Waits for rendering to the object to be completed
531 * @obj: i915 gem object
532 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533 * @timeout: how long to wait
534 * @rps: client (user process) to charge for any waitboosting
00e60f26 535 */
e95433c7
CW
536int
537i915_gem_object_wait(struct drm_i915_gem_object *obj,
538 unsigned int flags,
539 long timeout,
562d9bae 540 struct intel_rps_client *rps_client)
00e60f26 541{
e95433c7
CW
542 might_sleep();
543#if IS_ENABLED(CONFIG_LOCKDEP)
544 GEM_BUG_ON(debug_locks &&
545 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 !!(flags & I915_WAIT_LOCKED));
547#endif
548 GEM_BUG_ON(timeout < 0);
00e60f26 549
d07f0e59
CW
550 timeout = i915_gem_object_wait_reservation(obj->resv,
551 flags, timeout,
562d9bae 552 rps_client);
e95433c7 553 return timeout < 0 ? timeout : 0;
00e60f26
CW
554}
555
556static struct intel_rps_client *to_rps_client(struct drm_file *file)
557{
558 struct drm_i915_file_private *fpriv = file->driver_priv;
559
562d9bae 560 return &fpriv->rps_client;
00e60f26
CW
561}
562
00731155
CW
563static int
564i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
565 struct drm_i915_gem_pwrite *args,
03ac84f1 566 struct drm_file *file)
00731155 567{
00731155 568 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 569 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
570
571 /* We manually control the domain here and pretend that it
572 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
573 */
77a0d1ca 574 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
575 if (copy_from_user(vaddr, user_data, args->size))
576 return -EFAULT;
00731155 577
6a2c4232 578 drm_clflush_virt_range(vaddr, args->size);
10466d2a 579 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 580
d59b21ec 581 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 582 return 0;
00731155
CW
583}
584
187685cb 585void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 586{
efab6d8d 587 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
588}
589
590void i915_gem_object_free(struct drm_i915_gem_object *obj)
591{
fac5e23e 592 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 593 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
594}
595
ff72145b
DA
596static int
597i915_gem_create(struct drm_file *file,
12d79d78 598 struct drm_i915_private *dev_priv,
ff72145b
DA
599 uint64_t size,
600 uint32_t *handle_p)
673a394b 601{
05394f39 602 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
603 int ret;
604 u32 handle;
673a394b 605
ff72145b 606 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
607 if (size == 0)
608 return -EINVAL;
673a394b
EA
609
610 /* Allocate the new object */
12d79d78 611 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
612 if (IS_ERR(obj))
613 return PTR_ERR(obj);
673a394b 614
05394f39 615 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 616 /* drop reference from allocate - handle holds it now */
f0cd5182 617 i915_gem_object_put(obj);
d861e338
DV
618 if (ret)
619 return ret;
202f2fef 620
ff72145b 621 *handle_p = handle;
673a394b
EA
622 return 0;
623}
624
ff72145b
DA
625int
626i915_gem_dumb_create(struct drm_file *file,
627 struct drm_device *dev,
628 struct drm_mode_create_dumb *args)
629{
630 /* have to work out size/pitch and return them */
de45eaf7 631 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 632 args->size = args->pitch * args->height;
12d79d78 633 return i915_gem_create(file, to_i915(dev),
da6b51d0 634 args->size, &args->handle);
ff72145b
DA
635}
636
e27ab73d
CW
637static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
638{
639 return !(obj->cache_level == I915_CACHE_NONE ||
640 obj->cache_level == I915_CACHE_WT);
641}
642
ff72145b
DA
643/**
644 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
645 * @dev: drm device pointer
646 * @data: ioctl data blob
647 * @file: drm file pointer
ff72145b
DA
648 */
649int
650i915_gem_create_ioctl(struct drm_device *dev, void *data,
651 struct drm_file *file)
652{
12d79d78 653 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 654 struct drm_i915_gem_create *args = data;
63ed2cb2 655
12d79d78 656 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 657
12d79d78 658 return i915_gem_create(file, dev_priv,
da6b51d0 659 args->size, &args->handle);
ff72145b
DA
660}
661
ef74921b
CW
662static inline enum fb_op_origin
663fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
664{
665 return (domain == I915_GEM_DOMAIN_GTT ?
666 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
667}
668
669static void
670flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
671{
672 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
673
674 if (!(obj->base.write_domain & flush_domains))
675 return;
676
677 /* No actual flushing is required for the GTT write domain. Writes
678 * to it "immediately" go to main memory as far as we know, so there's
679 * no chipset flush. It also doesn't land in render cache.
680 *
681 * However, we do have to enforce the order so that all writes through
682 * the GTT land before any writes to the device, such as updates to
683 * the GATT itself.
684 *
685 * We also have to wait a bit for the writes to land from the GTT.
686 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
687 * timing. This issue has only been observed when switching quickly
688 * between GTT writes and CPU reads from inside the kernel on recent hw,
689 * and it appears to only affect discrete GTT blocks (i.e. on LLC
690 * system agents we cannot reproduce this behaviour).
691 */
692 wmb();
693
694 switch (obj->base.write_domain) {
695 case I915_GEM_DOMAIN_GTT:
c5ba5b24 696 if (!HAS_LLC(dev_priv)) {
0168bdfc
CW
697 intel_runtime_pm_get(dev_priv);
698 spin_lock_irq(&dev_priv->uncore.lock);
c5ba5b24 699 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
0168bdfc
CW
700 spin_unlock_irq(&dev_priv->uncore.lock);
701 intel_runtime_pm_put(dev_priv);
ef74921b
CW
702 }
703
704 intel_fb_obj_flush(obj,
705 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
706 break;
707
708 case I915_GEM_DOMAIN_CPU:
709 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
710 break;
e27ab73d
CW
711
712 case I915_GEM_DOMAIN_RENDER:
713 if (gpu_write_needs_clflush(obj))
714 obj->cache_dirty = true;
715 break;
ef74921b
CW
716 }
717
718 obj->base.write_domain = 0;
719}
720
8461d226
DV
721static inline int
722__copy_to_user_swizzled(char __user *cpu_vaddr,
723 const char *gpu_vaddr, int gpu_offset,
724 int length)
725{
726 int ret, cpu_offset = 0;
727
728 while (length > 0) {
729 int cacheline_end = ALIGN(gpu_offset + 1, 64);
730 int this_length = min(cacheline_end - gpu_offset, length);
731 int swizzled_gpu_offset = gpu_offset ^ 64;
732
733 ret = __copy_to_user(cpu_vaddr + cpu_offset,
734 gpu_vaddr + swizzled_gpu_offset,
735 this_length);
736 if (ret)
737 return ret + length;
738
739 cpu_offset += this_length;
740 gpu_offset += this_length;
741 length -= this_length;
742 }
743
744 return 0;
745}
746
8c59967c 747static inline int
4f0c7cfb
BW
748__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
749 const char __user *cpu_vaddr,
8c59967c
DV
750 int length)
751{
752 int ret, cpu_offset = 0;
753
754 while (length > 0) {
755 int cacheline_end = ALIGN(gpu_offset + 1, 64);
756 int this_length = min(cacheline_end - gpu_offset, length);
757 int swizzled_gpu_offset = gpu_offset ^ 64;
758
759 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
760 cpu_vaddr + cpu_offset,
761 this_length);
762 if (ret)
763 return ret + length;
764
765 cpu_offset += this_length;
766 gpu_offset += this_length;
767 length -= this_length;
768 }
769
770 return 0;
771}
772
4c914c0c
BV
773/*
774 * Pins the specified object's pages and synchronizes the object with
775 * GPU accesses. Sets needs_clflush to non-zero if the caller should
776 * flush the object from the CPU cache.
777 */
778int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 779 unsigned int *needs_clflush)
4c914c0c
BV
780{
781 int ret;
782
e95433c7 783 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 784
e95433c7 785 *needs_clflush = 0;
43394c7d
CW
786 if (!i915_gem_object_has_struct_page(obj))
787 return -ENODEV;
4c914c0c 788
e95433c7
CW
789 ret = i915_gem_object_wait(obj,
790 I915_WAIT_INTERRUPTIBLE |
791 I915_WAIT_LOCKED,
792 MAX_SCHEDULE_TIMEOUT,
793 NULL);
c13d87ea
CW
794 if (ret)
795 return ret;
796
a4f5ea64 797 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
798 if (ret)
799 return ret;
800
b8f55be6
CW
801 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
802 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
803 ret = i915_gem_object_set_to_cpu_domain(obj, false);
804 if (ret)
805 goto err_unpin;
806 else
807 goto out;
808 }
809
ef74921b 810 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 811
43394c7d
CW
812 /* If we're not in the cpu read domain, set ourself into the gtt
813 * read domain and manually flush cachelines (if required). This
814 * optimizes for the case when the gpu will dirty the data
815 * anyway again before the next pread happens.
816 */
e27ab73d
CW
817 if (!obj->cache_dirty &&
818 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 819 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 820
7f5f95d8 821out:
9764951e 822 /* return with the pages pinned */
43394c7d 823 return 0;
9764951e
CW
824
825err_unpin:
826 i915_gem_object_unpin_pages(obj);
827 return ret;
43394c7d
CW
828}
829
830int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
831 unsigned int *needs_clflush)
832{
833 int ret;
834
e95433c7
CW
835 lockdep_assert_held(&obj->base.dev->struct_mutex);
836
43394c7d
CW
837 *needs_clflush = 0;
838 if (!i915_gem_object_has_struct_page(obj))
839 return -ENODEV;
840
e95433c7
CW
841 ret = i915_gem_object_wait(obj,
842 I915_WAIT_INTERRUPTIBLE |
843 I915_WAIT_LOCKED |
844 I915_WAIT_ALL,
845 MAX_SCHEDULE_TIMEOUT,
846 NULL);
43394c7d
CW
847 if (ret)
848 return ret;
849
a4f5ea64 850 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
851 if (ret)
852 return ret;
853
b8f55be6
CW
854 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
855 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
856 ret = i915_gem_object_set_to_cpu_domain(obj, true);
857 if (ret)
858 goto err_unpin;
859 else
860 goto out;
861 }
862
ef74921b 863 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 864
43394c7d
CW
865 /* If we're not in the cpu write domain, set ourself into the
866 * gtt write domain and manually flush cachelines (as required).
867 * This optimizes for the case when the gpu will use the data
868 * right away and we therefore have to clflush anyway.
869 */
e27ab73d 870 if (!obj->cache_dirty) {
7f5f95d8 871 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 872
e27ab73d
CW
873 /*
874 * Same trick applies to invalidate partially written
875 * cachelines read before writing.
876 */
877 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
878 *needs_clflush |= CLFLUSH_BEFORE;
879 }
43394c7d 880
7f5f95d8 881out:
43394c7d 882 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 883 obj->mm.dirty = true;
9764951e 884 /* return with the pages pinned */
43394c7d 885 return 0;
9764951e
CW
886
887err_unpin:
888 i915_gem_object_unpin_pages(obj);
889 return ret;
4c914c0c
BV
890}
891
23c18c71
DV
892static void
893shmem_clflush_swizzled_range(char *addr, unsigned long length,
894 bool swizzled)
895{
e7e58eb5 896 if (unlikely(swizzled)) {
23c18c71
DV
897 unsigned long start = (unsigned long) addr;
898 unsigned long end = (unsigned long) addr + length;
899
900 /* For swizzling simply ensure that we always flush both
901 * channels. Lame, but simple and it works. Swizzled
902 * pwrite/pread is far from a hotpath - current userspace
903 * doesn't use it at all. */
904 start = round_down(start, 128);
905 end = round_up(end, 128);
906
907 drm_clflush_virt_range((void *)start, end - start);
908 } else {
909 drm_clflush_virt_range(addr, length);
910 }
911
912}
913
d174bd64
DV
914/* Only difference to the fast-path function is that this can handle bit17
915 * and uses non-atomic copy and kmap functions. */
916static int
bb6dc8d9 917shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
918 char __user *user_data,
919 bool page_do_bit17_swizzling, bool needs_clflush)
920{
921 char *vaddr;
922 int ret;
923
924 vaddr = kmap(page);
925 if (needs_clflush)
bb6dc8d9 926 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 927 page_do_bit17_swizzling);
d174bd64
DV
928
929 if (page_do_bit17_swizzling)
bb6dc8d9 930 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 931 else
bb6dc8d9 932 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
933 kunmap(page);
934
f60d7f0c 935 return ret ? - EFAULT : 0;
d174bd64
DV
936}
937
bb6dc8d9
CW
938static int
939shmem_pread(struct page *page, int offset, int length, char __user *user_data,
940 bool page_do_bit17_swizzling, bool needs_clflush)
941{
942 int ret;
943
944 ret = -ENODEV;
945 if (!page_do_bit17_swizzling) {
946 char *vaddr = kmap_atomic(page);
947
948 if (needs_clflush)
949 drm_clflush_virt_range(vaddr + offset, length);
950 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
951 kunmap_atomic(vaddr);
952 }
953 if (ret == 0)
954 return 0;
955
956 return shmem_pread_slow(page, offset, length, user_data,
957 page_do_bit17_swizzling, needs_clflush);
958}
959
960static int
961i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
962 struct drm_i915_gem_pread *args)
963{
964 char __user *user_data;
965 u64 remain;
966 unsigned int obj_do_bit17_swizzling;
967 unsigned int needs_clflush;
968 unsigned int idx, offset;
969 int ret;
970
971 obj_do_bit17_swizzling = 0;
972 if (i915_gem_object_needs_bit17_swizzle(obj))
973 obj_do_bit17_swizzling = BIT(17);
974
975 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
976 if (ret)
977 return ret;
978
979 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
980 mutex_unlock(&obj->base.dev->struct_mutex);
981 if (ret)
982 return ret;
983
984 remain = args->size;
985 user_data = u64_to_user_ptr(args->data_ptr);
986 offset = offset_in_page(args->offset);
987 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
988 struct page *page = i915_gem_object_get_page(obj, idx);
3500d559 989 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
bb6dc8d9
CW
990
991 ret = shmem_pread(page, offset, length, user_data,
992 page_to_phys(page) & obj_do_bit17_swizzling,
993 needs_clflush);
994 if (ret)
995 break;
996
997 remain -= length;
998 user_data += length;
999 offset = 0;
1000 }
1001
1002 i915_gem_obj_finish_shmem_access(obj);
1003 return ret;
1004}
1005
1006static inline bool
1007gtt_user_read(struct io_mapping *mapping,
1008 loff_t base, int offset,
1009 char __user *user_data, int length)
b50a5371 1010{
afe722be 1011 void __iomem *vaddr;
bb6dc8d9 1012 unsigned long unwritten;
b50a5371 1013
b50a5371 1014 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1015 vaddr = io_mapping_map_atomic_wc(mapping, base);
1016 unwritten = __copy_to_user_inatomic(user_data,
1017 (void __force *)vaddr + offset,
1018 length);
bb6dc8d9
CW
1019 io_mapping_unmap_atomic(vaddr);
1020 if (unwritten) {
afe722be
VS
1021 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1022 unwritten = copy_to_user(user_data,
1023 (void __force *)vaddr + offset,
1024 length);
bb6dc8d9
CW
1025 io_mapping_unmap(vaddr);
1026 }
b50a5371
AS
1027 return unwritten;
1028}
1029
1030static int
bb6dc8d9
CW
1031i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1032 const struct drm_i915_gem_pread *args)
b50a5371 1033{
bb6dc8d9
CW
1034 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1035 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1036 struct drm_mm_node node;
bb6dc8d9
CW
1037 struct i915_vma *vma;
1038 void __user *user_data;
1039 u64 remain, offset;
b50a5371
AS
1040 int ret;
1041
bb6dc8d9
CW
1042 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1043 if (ret)
1044 return ret;
1045
1046 intel_runtime_pm_get(i915);
1047 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1048 PIN_MAPPABLE |
1049 PIN_NONFAULT |
1050 PIN_NONBLOCK);
18034584
CW
1051 if (!IS_ERR(vma)) {
1052 node.start = i915_ggtt_offset(vma);
1053 node.allocated = false;
49ef5294 1054 ret = i915_vma_put_fence(vma);
18034584
CW
1055 if (ret) {
1056 i915_vma_unpin(vma);
1057 vma = ERR_PTR(ret);
1058 }
1059 }
058d88c4 1060 if (IS_ERR(vma)) {
bb6dc8d9 1061 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1062 if (ret)
bb6dc8d9
CW
1063 goto out_unlock;
1064 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1065 }
1066
1067 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1068 if (ret)
1069 goto out_unpin;
1070
bb6dc8d9 1071 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1072
bb6dc8d9
CW
1073 user_data = u64_to_user_ptr(args->data_ptr);
1074 remain = args->size;
1075 offset = args->offset;
b50a5371
AS
1076
1077 while (remain > 0) {
1078 /* Operation in this page
1079 *
1080 * page_base = page offset within aperture
1081 * page_offset = offset within page
1082 * page_length = bytes to copy for this page
1083 */
1084 u32 page_base = node.start;
1085 unsigned page_offset = offset_in_page(offset);
1086 unsigned page_length = PAGE_SIZE - page_offset;
1087 page_length = remain < page_length ? remain : page_length;
1088 if (node.allocated) {
1089 wmb();
1090 ggtt->base.insert_page(&ggtt->base,
1091 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1092 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1093 wmb();
1094 } else {
1095 page_base += offset & PAGE_MASK;
1096 }
bb6dc8d9 1097
b06f4c80 1098 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
bb6dc8d9 1099 user_data, page_length)) {
b50a5371
AS
1100 ret = -EFAULT;
1101 break;
1102 }
1103
1104 remain -= page_length;
1105 user_data += page_length;
1106 offset += page_length;
1107 }
1108
bb6dc8d9 1109 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1110out_unpin:
1111 if (node.allocated) {
1112 wmb();
1113 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1114 node.start, node.size);
b50a5371
AS
1115 remove_mappable_node(&node);
1116 } else {
058d88c4 1117 i915_vma_unpin(vma);
b50a5371 1118 }
bb6dc8d9
CW
1119out_unlock:
1120 intel_runtime_pm_put(i915);
1121 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1122
eb01459f
EA
1123 return ret;
1124}
1125
673a394b
EA
1126/**
1127 * Reads data from the object referenced by handle.
14bb2c11
TU
1128 * @dev: drm device pointer
1129 * @data: ioctl data blob
1130 * @file: drm file pointer
673a394b
EA
1131 *
1132 * On error, the contents of *data are undefined.
1133 */
1134int
1135i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1136 struct drm_file *file)
673a394b
EA
1137{
1138 struct drm_i915_gem_pread *args = data;
05394f39 1139 struct drm_i915_gem_object *obj;
bb6dc8d9 1140 int ret;
673a394b 1141
51311d0a
CW
1142 if (args->size == 0)
1143 return 0;
1144
1145 if (!access_ok(VERIFY_WRITE,
3ed605bc 1146 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1147 args->size))
1148 return -EFAULT;
1149
03ac0642 1150 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1151 if (!obj)
1152 return -ENOENT;
673a394b 1153
7dcd2499 1154 /* Bounds check source. */
966d5bf5 1155 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1156 ret = -EINVAL;
bb6dc8d9 1157 goto out;
ce9d419d
CW
1158 }
1159
db53a302
CW
1160 trace_i915_gem_object_pread(obj, args->offset, args->size);
1161
e95433c7
CW
1162 ret = i915_gem_object_wait(obj,
1163 I915_WAIT_INTERRUPTIBLE,
1164 MAX_SCHEDULE_TIMEOUT,
1165 to_rps_client(file));
258a5ede 1166 if (ret)
bb6dc8d9 1167 goto out;
258a5ede 1168
bb6dc8d9 1169 ret = i915_gem_object_pin_pages(obj);
258a5ede 1170 if (ret)
bb6dc8d9 1171 goto out;
673a394b 1172
bb6dc8d9 1173 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1174 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1175 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1176
bb6dc8d9
CW
1177 i915_gem_object_unpin_pages(obj);
1178out:
f0cd5182 1179 i915_gem_object_put(obj);
eb01459f 1180 return ret;
673a394b
EA
1181}
1182
0839ccb8
KP
1183/* This is the fast write path which cannot handle
1184 * page faults in the source data
9b7530cc 1185 */
0839ccb8 1186
fe115628
CW
1187static inline bool
1188ggtt_write(struct io_mapping *mapping,
1189 loff_t base, int offset,
1190 char __user *user_data, int length)
9b7530cc 1191{
afe722be 1192 void __iomem *vaddr;
0839ccb8 1193 unsigned long unwritten;
9b7530cc 1194
4f0c7cfb 1195 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1196 vaddr = io_mapping_map_atomic_wc(mapping, base);
1197 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
0839ccb8 1198 user_data, length);
fe115628
CW
1199 io_mapping_unmap_atomic(vaddr);
1200 if (unwritten) {
afe722be
VS
1201 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1202 unwritten = copy_from_user((void __force *)vaddr + offset,
1203 user_data, length);
fe115628
CW
1204 io_mapping_unmap(vaddr);
1205 }
bb6dc8d9 1206
bb6dc8d9
CW
1207 return unwritten;
1208}
1209
3de09aa3
EA
1210/**
1211 * This is the fast pwrite path, where we copy the data directly from the
1212 * user into the GTT, uncached.
fe115628 1213 * @obj: i915 GEM object
14bb2c11 1214 * @args: pwrite arguments structure
3de09aa3 1215 */
673a394b 1216static int
fe115628
CW
1217i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218 const struct drm_i915_gem_pwrite *args)
673a394b 1219{
fe115628 1220 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1221 struct i915_ggtt *ggtt = &i915->ggtt;
1222 struct drm_mm_node node;
fe115628
CW
1223 struct i915_vma *vma;
1224 u64 remain, offset;
1225 void __user *user_data;
4f1959ee 1226 int ret;
b50a5371 1227
fe115628
CW
1228 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1229 if (ret)
1230 return ret;
935aaa69 1231
8bd81815
CW
1232 if (i915_gem_object_has_struct_page(obj)) {
1233 /*
1234 * Avoid waking the device up if we can fallback, as
1235 * waking/resuming is very slow (worst-case 10-100 ms
1236 * depending on PCI sleeps and our own resume time).
1237 * This easily dwarfs any performance advantage from
1238 * using the cache bypass of indirect GGTT access.
1239 */
1240 if (!intel_runtime_pm_get_if_in_use(i915)) {
1241 ret = -EFAULT;
1242 goto out_unlock;
1243 }
1244 } else {
1245 /* No backing pages, no fallback, we must force GGTT access */
1246 intel_runtime_pm_get(i915);
1247 }
1248
058d88c4 1249 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1250 PIN_MAPPABLE |
1251 PIN_NONFAULT |
1252 PIN_NONBLOCK);
18034584
CW
1253 if (!IS_ERR(vma)) {
1254 node.start = i915_ggtt_offset(vma);
1255 node.allocated = false;
49ef5294 1256 ret = i915_vma_put_fence(vma);
18034584
CW
1257 if (ret) {
1258 i915_vma_unpin(vma);
1259 vma = ERR_PTR(ret);
1260 }
1261 }
058d88c4 1262 if (IS_ERR(vma)) {
bb6dc8d9 1263 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1264 if (ret)
8bd81815 1265 goto out_rpm;
fe115628 1266 GEM_BUG_ON(!node.allocated);
4f1959ee 1267 }
935aaa69
DV
1268
1269 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1270 if (ret)
1271 goto out_unpin;
1272
fe115628
CW
1273 mutex_unlock(&i915->drm.struct_mutex);
1274
b19482d7 1275 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1276
4f1959ee
AS
1277 user_data = u64_to_user_ptr(args->data_ptr);
1278 offset = args->offset;
1279 remain = args->size;
1280 while (remain) {
673a394b
EA
1281 /* Operation in this page
1282 *
0839ccb8
KP
1283 * page_base = page offset within aperture
1284 * page_offset = offset within page
1285 * page_length = bytes to copy for this page
673a394b 1286 */
4f1959ee 1287 u32 page_base = node.start;
bb6dc8d9
CW
1288 unsigned int page_offset = offset_in_page(offset);
1289 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1290 page_length = remain < page_length ? remain : page_length;
1291 if (node.allocated) {
1292 wmb(); /* flush the write before we modify the GGTT */
1293 ggtt->base.insert_page(&ggtt->base,
1294 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1295 node.start, I915_CACHE_NONE, 0);
1296 wmb(); /* flush modifications to the GGTT (insert_page) */
1297 } else {
1298 page_base += offset & PAGE_MASK;
1299 }
0839ccb8 1300 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1301 * source page isn't available. Return the error and we'll
1302 * retry in the slow path.
b50a5371
AS
1303 * If the object is non-shmem backed, we retry again with the
1304 * path that handles page fault.
0839ccb8 1305 */
b06f4c80 1306 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
fe115628
CW
1307 user_data, page_length)) {
1308 ret = -EFAULT;
1309 break;
935aaa69 1310 }
673a394b 1311
0839ccb8
KP
1312 remain -= page_length;
1313 user_data += page_length;
1314 offset += page_length;
673a394b 1315 }
d59b21ec 1316 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1317
1318 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1319out_unpin:
4f1959ee
AS
1320 if (node.allocated) {
1321 wmb();
1322 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1323 node.start, node.size);
4f1959ee
AS
1324 remove_mappable_node(&node);
1325 } else {
058d88c4 1326 i915_vma_unpin(vma);
4f1959ee 1327 }
8bd81815 1328out_rpm:
9c870d03 1329 intel_runtime_pm_put(i915);
8bd81815 1330out_unlock:
fe115628 1331 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1332 return ret;
673a394b
EA
1333}
1334
3043c60c 1335static int
fe115628 1336shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1337 char __user *user_data,
1338 bool page_do_bit17_swizzling,
1339 bool needs_clflush_before,
1340 bool needs_clflush_after)
673a394b 1341{
d174bd64
DV
1342 char *vaddr;
1343 int ret;
e5281ccd 1344
d174bd64 1345 vaddr = kmap(page);
e7e58eb5 1346 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1347 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1348 page_do_bit17_swizzling);
d174bd64 1349 if (page_do_bit17_swizzling)
fe115628
CW
1350 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1351 length);
d174bd64 1352 else
fe115628 1353 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1354 if (needs_clflush_after)
fe115628 1355 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1356 page_do_bit17_swizzling);
d174bd64 1357 kunmap(page);
40123c1f 1358
755d2218 1359 return ret ? -EFAULT : 0;
40123c1f
EA
1360}
1361
fe115628
CW
1362/* Per-page copy function for the shmem pwrite fastpath.
1363 * Flushes invalid cachelines before writing to the target if
1364 * needs_clflush_before is set and flushes out any written cachelines after
1365 * writing if needs_clflush is set.
1366 */
40123c1f 1367static int
fe115628
CW
1368shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1369 bool page_do_bit17_swizzling,
1370 bool needs_clflush_before,
1371 bool needs_clflush_after)
40123c1f 1372{
fe115628
CW
1373 int ret;
1374
1375 ret = -ENODEV;
1376 if (!page_do_bit17_swizzling) {
1377 char *vaddr = kmap_atomic(page);
1378
1379 if (needs_clflush_before)
1380 drm_clflush_virt_range(vaddr + offset, len);
1381 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1382 if (needs_clflush_after)
1383 drm_clflush_virt_range(vaddr + offset, len);
1384
1385 kunmap_atomic(vaddr);
1386 }
1387 if (ret == 0)
1388 return ret;
1389
1390 return shmem_pwrite_slow(page, offset, len, user_data,
1391 page_do_bit17_swizzling,
1392 needs_clflush_before,
1393 needs_clflush_after);
1394}
1395
1396static int
1397i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1398 const struct drm_i915_gem_pwrite *args)
1399{
1400 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1401 void __user *user_data;
1402 u64 remain;
1403 unsigned int obj_do_bit17_swizzling;
1404 unsigned int partial_cacheline_write;
43394c7d 1405 unsigned int needs_clflush;
fe115628
CW
1406 unsigned int offset, idx;
1407 int ret;
40123c1f 1408
fe115628 1409 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1410 if (ret)
1411 return ret;
1412
fe115628
CW
1413 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1414 mutex_unlock(&i915->drm.struct_mutex);
1415 if (ret)
1416 return ret;
673a394b 1417
fe115628
CW
1418 obj_do_bit17_swizzling = 0;
1419 if (i915_gem_object_needs_bit17_swizzle(obj))
1420 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1421
fe115628
CW
1422 /* If we don't overwrite a cacheline completely we need to be
1423 * careful to have up-to-date data by first clflushing. Don't
1424 * overcomplicate things and flush the entire patch.
1425 */
1426 partial_cacheline_write = 0;
1427 if (needs_clflush & CLFLUSH_BEFORE)
1428 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1429
fe115628
CW
1430 user_data = u64_to_user_ptr(args->data_ptr);
1431 remain = args->size;
1432 offset = offset_in_page(args->offset);
1433 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1434 struct page *page = i915_gem_object_get_page(obj, idx);
3500d559 1435 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
755d2218 1436
fe115628
CW
1437 ret = shmem_pwrite(page, offset, length, user_data,
1438 page_to_phys(page) & obj_do_bit17_swizzling,
1439 (offset | length) & partial_cacheline_write,
1440 needs_clflush & CLFLUSH_AFTER);
755d2218 1441 if (ret)
fe115628 1442 break;
755d2218 1443
fe115628
CW
1444 remain -= length;
1445 user_data += length;
1446 offset = 0;
8c59967c 1447 }
673a394b 1448
d59b21ec 1449 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1450 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1451 return ret;
673a394b
EA
1452}
1453
1454/**
1455 * Writes data to the object referenced by handle.
14bb2c11
TU
1456 * @dev: drm device
1457 * @data: ioctl data blob
1458 * @file: drm file
673a394b
EA
1459 *
1460 * On error, the contents of the buffer that were to be modified are undefined.
1461 */
1462int
1463i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1464 struct drm_file *file)
673a394b
EA
1465{
1466 struct drm_i915_gem_pwrite *args = data;
05394f39 1467 struct drm_i915_gem_object *obj;
51311d0a
CW
1468 int ret;
1469
1470 if (args->size == 0)
1471 return 0;
1472
1473 if (!access_ok(VERIFY_READ,
3ed605bc 1474 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1475 args->size))
1476 return -EFAULT;
1477
03ac0642 1478 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1479 if (!obj)
1480 return -ENOENT;
673a394b 1481
7dcd2499 1482 /* Bounds check destination. */
966d5bf5 1483 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1484 ret = -EINVAL;
258a5ede 1485 goto err;
ce9d419d
CW
1486 }
1487
db53a302
CW
1488 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1489
7c55e2c5
CW
1490 ret = -ENODEV;
1491 if (obj->ops->pwrite)
1492 ret = obj->ops->pwrite(obj, args);
1493 if (ret != -ENODEV)
1494 goto err;
1495
e95433c7
CW
1496 ret = i915_gem_object_wait(obj,
1497 I915_WAIT_INTERRUPTIBLE |
1498 I915_WAIT_ALL,
1499 MAX_SCHEDULE_TIMEOUT,
1500 to_rps_client(file));
258a5ede
CW
1501 if (ret)
1502 goto err;
1503
fe115628 1504 ret = i915_gem_object_pin_pages(obj);
258a5ede 1505 if (ret)
fe115628 1506 goto err;
258a5ede 1507
935aaa69 1508 ret = -EFAULT;
673a394b
EA
1509 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1510 * it would end up going through the fenced access, and we'll get
1511 * different detiling behavior between reading and writing.
1512 * pread/pwrite currently are reading and writing from the CPU
1513 * perspective, requiring manual detiling by the client.
1514 */
6eae0059 1515 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1516 cpu_write_needs_clflush(obj))
935aaa69
DV
1517 /* Note that the gtt paths might fail with non-page-backed user
1518 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1519 * textures). Fallback to the shmem path in that case.
1520 */
fe115628 1521 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1522
d1054ee4 1523 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1524 if (obj->phys_handle)
1525 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1526 else
fe115628 1527 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1528 }
5c0480f2 1529
fe115628 1530 i915_gem_object_unpin_pages(obj);
258a5ede 1531err:
f0cd5182 1532 i915_gem_object_put(obj);
258a5ede 1533 return ret;
673a394b
EA
1534}
1535
40e62d5d
CW
1536static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1537{
1538 struct drm_i915_private *i915;
1539 struct list_head *list;
1540 struct i915_vma *vma;
1541
f2123818
CW
1542 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1543
40e62d5d
CW
1544 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1545 if (!i915_vma_is_ggtt(vma))
28f412e0 1546 break;
40e62d5d
CW
1547
1548 if (i915_vma_is_active(vma))
1549 continue;
1550
1551 if (!drm_mm_node_allocated(&vma->node))
1552 continue;
1553
1554 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1555 }
1556
1557 i915 = to_i915(obj->base.dev);
f2123818 1558 spin_lock(&i915->mm.obj_lock);
40e62d5d 1559 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
f2123818
CW
1560 list_move_tail(&obj->mm.link, list);
1561 spin_unlock(&i915->mm.obj_lock);
40e62d5d
CW
1562}
1563
673a394b 1564/**
2ef7eeaa
EA
1565 * Called when user space prepares to use an object with the CPU, either
1566 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1567 * @dev: drm device
1568 * @data: ioctl data blob
1569 * @file: drm file
673a394b
EA
1570 */
1571int
1572i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1573 struct drm_file *file)
673a394b
EA
1574{
1575 struct drm_i915_gem_set_domain *args = data;
05394f39 1576 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1577 uint32_t read_domains = args->read_domains;
1578 uint32_t write_domain = args->write_domain;
40e62d5d 1579 int err;
673a394b 1580
2ef7eeaa 1581 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1582 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1583 return -EINVAL;
1584
1585 /* Having something in the write domain implies it's in the read
1586 * domain, and only that read domain. Enforce that in the request.
1587 */
1588 if (write_domain != 0 && read_domains != write_domain)
1589 return -EINVAL;
1590
03ac0642 1591 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1592 if (!obj)
1593 return -ENOENT;
673a394b 1594
3236f57a
CW
1595 /* Try to flush the object off the GPU without holding the lock.
1596 * We will repeat the flush holding the lock in the normal manner
1597 * to catch cases where we are gazumped.
1598 */
40e62d5d 1599 err = i915_gem_object_wait(obj,
e95433c7
CW
1600 I915_WAIT_INTERRUPTIBLE |
1601 (write_domain ? I915_WAIT_ALL : 0),
1602 MAX_SCHEDULE_TIMEOUT,
1603 to_rps_client(file));
40e62d5d 1604 if (err)
f0cd5182 1605 goto out;
b8f9096d 1606
40e62d5d
CW
1607 /* Flush and acquire obj->pages so that we are coherent through
1608 * direct access in memory with previous cached writes through
1609 * shmemfs and that our cache domain tracking remains valid.
1610 * For example, if the obj->filp was moved to swap without us
1611 * being notified and releasing the pages, we would mistakenly
1612 * continue to assume that the obj remained out of the CPU cached
1613 * domain.
1614 */
1615 err = i915_gem_object_pin_pages(obj);
1616 if (err)
f0cd5182 1617 goto out;
40e62d5d
CW
1618
1619 err = i915_mutex_lock_interruptible(dev);
1620 if (err)
f0cd5182 1621 goto out_unpin;
3236f57a 1622
e22d8e3c
CW
1623 if (read_domains & I915_GEM_DOMAIN_WC)
1624 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1625 else if (read_domains & I915_GEM_DOMAIN_GTT)
1626 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1627 else
e22d8e3c 1628 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1629
40e62d5d
CW
1630 /* And bump the LRU for this access */
1631 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1632
673a394b 1633 mutex_unlock(&dev->struct_mutex);
b8f9096d 1634
40e62d5d 1635 if (write_domain != 0)
ef74921b
CW
1636 intel_fb_obj_invalidate(obj,
1637 fb_write_origin(obj, write_domain));
40e62d5d 1638
f0cd5182 1639out_unpin:
40e62d5d 1640 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1641out:
1642 i915_gem_object_put(obj);
40e62d5d 1643 return err;
673a394b
EA
1644}
1645
1646/**
1647 * Called when user space has done writes to this buffer
14bb2c11
TU
1648 * @dev: drm device
1649 * @data: ioctl data blob
1650 * @file: drm file
673a394b
EA
1651 */
1652int
1653i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1654 struct drm_file *file)
673a394b
EA
1655{
1656 struct drm_i915_gem_sw_finish *args = data;
05394f39 1657 struct drm_i915_gem_object *obj;
1d7cfea1 1658
03ac0642 1659 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1660 if (!obj)
1661 return -ENOENT;
673a394b 1662
673a394b 1663 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1664 i915_gem_object_flush_if_display(obj);
f0cd5182 1665 i915_gem_object_put(obj);
5a97bcc6
CW
1666
1667 return 0;
673a394b
EA
1668}
1669
a3e6af9a
JL
1670static inline bool
1671__vma_matches(struct vm_area_struct *vma, struct file *filp,
1672 unsigned long addr, unsigned long size)
1673{
1674 if (vma->vm_file != filp)
1675 return false;
1676
8f602c44
TU
1677 return vma->vm_start == addr &&
1678 (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
a3e6af9a
JL
1679}
1680
673a394b 1681/**
14bb2c11
TU
1682 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1683 * it is mapped to.
1684 * @dev: drm device
1685 * @data: ioctl data blob
1686 * @file: drm file
673a394b
EA
1687 *
1688 * While the mapping holds a reference on the contents of the object, it doesn't
1689 * imply a ref on the object itself.
34367381
DV
1690 *
1691 * IMPORTANT:
1692 *
1693 * DRM driver writers who look a this function as an example for how to do GEM
1694 * mmap support, please don't implement mmap support like here. The modern way
1695 * to implement DRM mmap support is with an mmap offset ioctl (like
1696 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1697 * That way debug tooling like valgrind will understand what's going on, hiding
1698 * the mmap call in a driver private ioctl will break that. The i915 driver only
1699 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1700 */
1701int
1702i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1703 struct drm_file *file)
673a394b
EA
1704{
1705 struct drm_i915_gem_mmap *args = data;
03ac0642 1706 struct drm_i915_gem_object *obj;
673a394b
EA
1707 unsigned long addr;
1708
1816f923
AG
1709 if (args->flags & ~(I915_MMAP_WC))
1710 return -EINVAL;
1711
568a58e5 1712 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1713 return -ENODEV;
1714
03ac0642
CW
1715 obj = i915_gem_object_lookup(file, args->handle);
1716 if (!obj)
bf79cb91 1717 return -ENOENT;
673a394b 1718
1286ff73
DV
1719 /* prime objects have no backing filp to GEM mmap
1720 * pages from.
1721 */
03ac0642 1722 if (!obj->base.filp) {
26f7213f
CW
1723 addr = -ENXIO;
1724 goto err;
1725 }
1726
1727 if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
1728 addr = -EINVAL;
1729 goto err;
1286ff73
DV
1730 }
1731
03ac0642 1732 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1733 PROT_READ | PROT_WRITE, MAP_SHARED,
1734 args->offset);
2b54ad24
JL
1735 if (IS_ERR_VALUE(addr))
1736 goto err;
1737
1816f923
AG
1738 if (args->flags & I915_MMAP_WC) {
1739 struct mm_struct *mm = current->mm;
1740 struct vm_area_struct *vma;
1741
80a89a5e 1742 if (down_write_killable(&mm->mmap_sem)) {
26f7213f
CW
1743 addr = -EINTR;
1744 goto err;
80a89a5e 1745 }
1816f923 1746 vma = find_vma(mm, addr);
a3e6af9a 1747 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1816f923
AG
1748 vma->vm_page_prot =
1749 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1750 else
1751 addr = -ENOMEM;
1752 up_write(&mm->mmap_sem);
2b54ad24
JL
1753 if (IS_ERR_VALUE(addr))
1754 goto err;
aeecc969
CW
1755
1756 /* This may race, but that's ok, it only gets set */
50349247 1757 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1758 }
f0cd5182 1759 i915_gem_object_put(obj);
673a394b
EA
1760
1761 args->addr_ptr = (uint64_t) addr;
673a394b 1762 return 0;
2b54ad24
JL
1763
1764err:
1765 i915_gem_object_put(obj);
2b54ad24 1766 return addr;
673a394b
EA
1767}
1768
03af84fe
CW
1769static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1770{
6649a0b6 1771 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1772}
1773
4cc69075
CW
1774/**
1775 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1776 *
1777 * A history of the GTT mmap interface:
1778 *
1779 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1780 * aligned and suitable for fencing, and still fit into the available
1781 * mappable space left by the pinned display objects. A classic problem
1782 * we called the page-fault-of-doom where we would ping-pong between
1783 * two objects that could not fit inside the GTT and so the memcpy
1784 * would page one object in at the expense of the other between every
1785 * single byte.
1786 *
1787 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1788 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1789 * object is too large for the available space (or simply too large
1790 * for the mappable aperture!), a view is created instead and faulted
1791 * into userspace. (This view is aligned and sized appropriately for
1792 * fenced access.)
1793 *
e22d8e3c
CW
1794 * 2 - Recognise WC as a separate cache domain so that we can flush the
1795 * delayed writes via GTT before performing direct access via WC.
1796 *
4cc69075
CW
1797 * Restrictions:
1798 *
1799 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1800 * hangs on some architectures, corruption on others. An attempt to service
1801 * a GTT page fault from a snoopable object will generate a SIGBUS.
1802 *
1803 * * the object must be able to fit into RAM (physical memory, though no
1804 * limited to the mappable aperture).
1805 *
1806 *
1807 * Caveats:
1808 *
1809 * * a new GTT page fault will synchronize rendering from the GPU and flush
1810 * all data to system memory. Subsequent access will not be synchronized.
1811 *
1812 * * all mappings are revoked on runtime device suspend.
1813 *
1814 * * there are only 8, 16 or 32 fence registers to share between all users
1815 * (older machines require fence register for display and blitter access
1816 * as well). Contention of the fence registers will cause the previous users
1817 * to be unmapped and any new access will generate new page faults.
1818 *
1819 * * running out of memory while servicing a fault may generate a SIGBUS,
1820 * rather than the expected SIGSEGV.
1821 */
1822int i915_gem_mmap_gtt_version(void)
1823{
e22d8e3c 1824 return 2;
4cc69075
CW
1825}
1826
2d4281bb
CW
1827static inline struct i915_ggtt_view
1828compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1829 pgoff_t page_offset,
1830 unsigned int chunk)
1831{
1832 struct i915_ggtt_view view;
1833
1834 if (i915_gem_object_is_tiled(obj))
1835 chunk = roundup(chunk, tile_row_pages(obj));
1836
2d4281bb 1837 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1838 view.partial.offset = rounddown(page_offset, chunk);
1839 view.partial.size =
2d4281bb 1840 min_t(unsigned int, chunk,
8bab1193 1841 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1842
1843 /* If the partial covers the entire object, just create a normal VMA. */
1844 if (chunk >= obj->base.size >> PAGE_SHIFT)
1845 view.type = I915_GGTT_VIEW_NORMAL;
1846
1847 return view;
1848}
1849
de151cf6
JB
1850/**
1851 * i915_gem_fault - fault a page into the GTT
d9072a3e 1852 * @vmf: fault info
de151cf6
JB
1853 *
1854 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1855 * from userspace. The fault handler takes care of binding the object to
1856 * the GTT (if needed), allocating and programming a fence register (again,
1857 * only if needed based on whether the old reg is still valid or the object
1858 * is tiled) and inserting a new PTE into the faulting process.
1859 *
1860 * Note that the faulting process may involve evicting existing objects
1861 * from the GTT and/or fence registers to make room. So performance may
1862 * suffer if the GTT working set is large or there are few fence registers
1863 * left.
4cc69075
CW
1864 *
1865 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1866 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1867 */
11bac800 1868int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1869{
03af84fe 1870#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1871 struct vm_area_struct *area = vmf->vma;
058d88c4 1872 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1873 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1874 struct drm_i915_private *dev_priv = to_i915(dev);
1875 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1876 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1877 struct i915_vma *vma;
de151cf6 1878 pgoff_t page_offset;
82118877 1879 unsigned int flags;
b8f9096d 1880 int ret;
f65c9168 1881
c89d570f
CW
1882 /* Sanity check that we allow writing into this object */
1883 if (i915_gem_object_is_readonly(obj) && write)
1884 return VM_FAULT_SIGBUS;
1885
de151cf6 1886 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1887 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1888
db53a302
CW
1889 trace_i915_gem_object_fault(obj, page_offset, true, write);
1890
6e4930f6 1891 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1892 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1893 * repeat the flush holding the lock in the normal manner to catch cases
1894 * where we are gazumped.
1895 */
e95433c7
CW
1896 ret = i915_gem_object_wait(obj,
1897 I915_WAIT_INTERRUPTIBLE,
1898 MAX_SCHEDULE_TIMEOUT,
1899 NULL);
6e4930f6 1900 if (ret)
b8f9096d
CW
1901 goto err;
1902
40e62d5d
CW
1903 ret = i915_gem_object_pin_pages(obj);
1904 if (ret)
1905 goto err;
1906
b8f9096d
CW
1907 intel_runtime_pm_get(dev_priv);
1908
1909 ret = i915_mutex_lock_interruptible(dev);
1910 if (ret)
1911 goto err_rpm;
6e4930f6 1912
eb119bd6 1913 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1914 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1915 ret = -EFAULT;
b8f9096d 1916 goto err_unlock;
eb119bd6
CW
1917 }
1918
82118877
CW
1919 /* If the object is smaller than a couple of partial vma, it is
1920 * not worth only creating a single partial vma - we may as well
1921 * clear enough space for the full object.
1922 */
1923 flags = PIN_MAPPABLE;
1924 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1925 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1926
a61007a8 1927 /* Now pin it into the GTT as needed */
82118877 1928 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1929 if (IS_ERR(vma)) {
a61007a8 1930 /* Use a partial view if it is bigger than available space */
2d4281bb 1931 struct i915_ggtt_view view =
8201c1fa 1932 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1933
50349247
CW
1934 /* Userspace is now writing through an untracked VMA, abandon
1935 * all hope that the hardware is able to track future writes.
1936 */
1937 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1938
a61007a8
CW
1939 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1940 }
058d88c4
CW
1941 if (IS_ERR(vma)) {
1942 ret = PTR_ERR(vma);
b8f9096d 1943 goto err_unlock;
058d88c4 1944 }
4a684a41 1945
c9839303
CW
1946 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1947 if (ret)
b8f9096d 1948 goto err_unpin;
74898d7e 1949
3bd40735 1950 ret = i915_vma_pin_fence(vma);
d9e86c0e 1951 if (ret)
b8f9096d 1952 goto err_unpin;
7d1c4804 1953
b90b91d8 1954 /* Finally, remap it using the new GTT offset */
c58305af 1955 ret = remap_io_mapping(area,
8bab1193 1956 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
b06f4c80 1957 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
c58305af 1958 min_t(u64, vma->size, area->vm_end - area->vm_start),
b06f4c80 1959 &ggtt->iomap);
a65adaf8
CW
1960 if (ret)
1961 goto err_fence;
a61007a8 1962
a65adaf8
CW
1963 /* Mark as being mmapped into userspace for later revocation */
1964 assert_rpm_wakelock_held(dev_priv);
1965 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1966 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1967 GEM_BUG_ON(!obj->userfault_count);
1968
1969err_fence:
3bd40735 1970 i915_vma_unpin_fence(vma);
b8f9096d 1971err_unpin:
058d88c4 1972 __i915_vma_unpin(vma);
b8f9096d 1973err_unlock:
de151cf6 1974 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1975err_rpm:
1976 intel_runtime_pm_put(dev_priv);
40e62d5d 1977 i915_gem_object_unpin_pages(obj);
b8f9096d 1978err:
de151cf6 1979 switch (ret) {
d9bc7e9f 1980 case -EIO:
2232f031
DV
1981 /*
1982 * We eat errors when the gpu is terminally wedged to avoid
1983 * userspace unduly crashing (gl has no provisions for mmaps to
1984 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1985 * and so needs to be reported.
1986 */
1987 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1988 ret = VM_FAULT_SIGBUS;
1989 break;
1990 }
045e769a 1991 case -EAGAIN:
571c608d
DV
1992 /*
1993 * EAGAIN means the gpu is hung and we'll wait for the error
1994 * handler to reset everything when re-faulting in
1995 * i915_mutex_lock_interruptible.
d9bc7e9f 1996 */
c715089f
CW
1997 case 0:
1998 case -ERESTARTSYS:
bed636ab 1999 case -EINTR:
e79e0fe3
DR
2000 case -EBUSY:
2001 /*
2002 * EBUSY is ok: this just means that another thread
2003 * already did the job.
2004 */
f65c9168
PZ
2005 ret = VM_FAULT_NOPAGE;
2006 break;
de151cf6 2007 case -ENOMEM:
f65c9168
PZ
2008 ret = VM_FAULT_OOM;
2009 break;
a7c2e1aa 2010 case -ENOSPC:
45d67817 2011 case -EFAULT:
f65c9168
PZ
2012 ret = VM_FAULT_SIGBUS;
2013 break;
de151cf6 2014 default:
a7c2e1aa 2015 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
2016 ret = VM_FAULT_SIGBUS;
2017 break;
de151cf6 2018 }
f65c9168 2019 return ret;
de151cf6
JB
2020}
2021
a65adaf8
CW
2022static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2023{
2024 struct i915_vma *vma;
2025
2026 GEM_BUG_ON(!obj->userfault_count);
2027
2028 obj->userfault_count = 0;
2029 list_del(&obj->userfault_link);
2030 drm_vma_node_unmap(&obj->base.vma_node,
2031 obj->base.dev->anon_inode->i_mapping);
2032
2033 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2034 if (!i915_vma_is_ggtt(vma))
2035 break;
2036
2037 i915_vma_unset_userfault(vma);
2038 }
2039}
2040
901782b2
CW
2041/**
2042 * i915_gem_release_mmap - remove physical page mappings
2043 * @obj: obj in question
2044 *
af901ca1 2045 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2046 * relinquish ownership of the pages back to the system.
2047 *
2048 * It is vital that we remove the page mapping if we have mapped a tiled
2049 * object through the GTT and then lose the fence register due to
2050 * resource pressure. Similarly if the object has been moved out of the
2051 * aperture, than pages mapped into userspace must be revoked. Removing the
2052 * mapping will then trigger a page fault on the next user access, allowing
2053 * fixup by i915_gem_fault().
2054 */
d05ca301 2055void
05394f39 2056i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2057{
275f039d 2058 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2059
349f2ccf
CW
2060 /* Serialisation between user GTT access and our code depends upon
2061 * revoking the CPU's PTE whilst the mutex is held. The next user
2062 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2063 *
2064 * Note that RPM complicates somewhat by adding an additional
2065 * requirement that operations to the GGTT be made holding the RPM
2066 * wakeref.
349f2ccf 2067 */
275f039d 2068 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2069 intel_runtime_pm_get(i915);
349f2ccf 2070
a65adaf8 2071 if (!obj->userfault_count)
9c870d03 2072 goto out;
901782b2 2073
a65adaf8 2074 __i915_gem_object_release_mmap(obj);
349f2ccf
CW
2075
2076 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2077 * memory transactions from userspace before we return. The TLB
2078 * flushing implied above by changing the PTE above *should* be
2079 * sufficient, an extra barrier here just provides us with a bit
2080 * of paranoid documentation about our requirement to serialise
2081 * memory writes before touching registers / GSM.
2082 */
2083 wmb();
9c870d03
CW
2084
2085out:
2086 intel_runtime_pm_put(i915);
901782b2
CW
2087}
2088
7c108fd8 2089void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2090{
3594a3e2 2091 struct drm_i915_gem_object *obj, *on;
7c108fd8 2092 int i;
eedd10f4 2093
3594a3e2
CW
2094 /*
2095 * Only called during RPM suspend. All users of the userfault_list
2096 * must be holding an RPM wakeref to ensure that this can not
2097 * run concurrently with themselves (and use the struct_mutex for
2098 * protection between themselves).
2099 */
275f039d 2100
3594a3e2 2101 list_for_each_entry_safe(obj, on,
a65adaf8
CW
2102 &dev_priv->mm.userfault_list, userfault_link)
2103 __i915_gem_object_release_mmap(obj);
7c108fd8
CW
2104
2105 /* The fence will be lost when the device powers down. If any were
2106 * in use by hardware (i.e. they are pinned), we should not be powering
2107 * down! All other fences will be reacquired by the user upon waking.
2108 */
2109 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2110 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2111
e0ec3ec6
CW
2112 /* Ideally we want to assert that the fence register is not
2113 * live at this point (i.e. that no piece of code will be
2114 * trying to write through fence + GTT, as that both violates
2115 * our tracking of activity and associated locking/barriers,
2116 * but also is illegal given that the hw is powered down).
2117 *
2118 * Previously we used reg->pin_count as a "liveness" indicator.
2119 * That is not sufficient, and we need a more fine-grained
2120 * tool if we want to have a sanity check here.
2121 */
7c108fd8
CW
2122
2123 if (!reg->vma)
2124 continue;
2125
a65adaf8 2126 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
7c108fd8
CW
2127 reg->dirty = true;
2128 }
eedd10f4
CW
2129}
2130
d8cb5086
CW
2131static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2132{
fac5e23e 2133 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2134 int err;
da494d7c 2135
f3f6184c 2136 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2137 if (likely(!err))
f3f6184c 2138 return 0;
d8cb5086 2139
b42a13d9
CW
2140 /* Attempt to reap some mmap space from dead objects */
2141 do {
2142 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2143 if (err)
2144 break;
f3f6184c 2145
b42a13d9 2146 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2147 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2148 if (!err)
2149 break;
2150
2151 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2152
f3f6184c 2153 return err;
d8cb5086
CW
2154}
2155
2156static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2157{
d8cb5086
CW
2158 drm_gem_free_mmap_offset(&obj->base);
2159}
2160
da6b51d0 2161int
ff72145b
DA
2162i915_gem_mmap_gtt(struct drm_file *file,
2163 struct drm_device *dev,
da6b51d0 2164 uint32_t handle,
ff72145b 2165 uint64_t *offset)
de151cf6 2166{
05394f39 2167 struct drm_i915_gem_object *obj;
de151cf6
JB
2168 int ret;
2169
03ac0642 2170 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2171 if (!obj)
2172 return -ENOENT;
ab18282d 2173
d8cb5086 2174 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2175 if (ret == 0)
2176 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2177
f0cd5182 2178 i915_gem_object_put(obj);
1d7cfea1 2179 return ret;
de151cf6
JB
2180}
2181
ff72145b
DA
2182/**
2183 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2184 * @dev: DRM device
2185 * @data: GTT mapping ioctl data
2186 * @file: GEM object info
2187 *
2188 * Simply returns the fake offset to userspace so it can mmap it.
2189 * The mmap call will end up in drm_gem_mmap(), which will set things
2190 * up so we can get faults in the handler above.
2191 *
2192 * The fault handler will take care of binding the object into the GTT
2193 * (since it may have been evicted to make room for something), allocating
2194 * a fence register, and mapping the appropriate aperture address into
2195 * userspace.
2196 */
2197int
2198i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2199 struct drm_file *file)
2200{
2201 struct drm_i915_gem_mmap_gtt *args = data;
2202
da6b51d0 2203 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2204}
2205
225067ee
DV
2206/* Immediately discard the backing storage */
2207static void
2208i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2209{
4d6294bf 2210 i915_gem_object_free_mmap_offset(obj);
1286ff73 2211
4d6294bf
CW
2212 if (obj->base.filp == NULL)
2213 return;
e5281ccd 2214
225067ee
DV
2215 /* Our goal here is to return as much of the memory as
2216 * is possible back to the system as we are called from OOM.
2217 * To do this we must instruct the shmfs to drop all of its
2218 * backing pages, *now*.
2219 */
5537252b 2220 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2221 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2222 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2223}
e5281ccd 2224
5537252b 2225/* Try to discard unwanted pages */
03ac84f1 2226void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2227{
5537252b
CW
2228 struct address_space *mapping;
2229
1233e2db 2230 lockdep_assert_held(&obj->mm.lock);
f1fa4f44 2231 GEM_BUG_ON(i915_gem_object_has_pages(obj));
1233e2db 2232
a4f5ea64 2233 switch (obj->mm.madv) {
5537252b
CW
2234 case I915_MADV_DONTNEED:
2235 i915_gem_object_truncate(obj);
2236 case __I915_MADV_PURGED:
2237 return;
2238 }
2239
2240 if (obj->base.filp == NULL)
2241 return;
2242
93c76a3d 2243 mapping = obj->base.filp->f_mapping,
5537252b 2244 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2245}
2246
5cdf5881 2247static void
03ac84f1
CW
2248i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2249 struct sg_table *pages)
673a394b 2250{
85d1225e
DG
2251 struct sgt_iter sgt_iter;
2252 struct page *page;
1286ff73 2253
e5facdf9 2254 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2255
03ac84f1 2256 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2257
6dacfd2f 2258 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2259 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2260
03ac84f1 2261 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2262 if (obj->mm.dirty)
9da3da66 2263 set_page_dirty(page);
3ef94daa 2264
a4f5ea64 2265 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2266 mark_page_accessed(page);
3ef94daa 2267
09cbfeaf 2268 put_page(page);
3ef94daa 2269 }
a4f5ea64 2270 obj->mm.dirty = false;
673a394b 2271
03ac84f1
CW
2272 sg_free_table(pages);
2273 kfree(pages);
37e680a1 2274}
6c085a72 2275
96d77634
CW
2276static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2277{
2278 struct radix_tree_iter iter;
6910d852 2279 void __rcu **slot;
96d77634 2280
23e87338 2281 rcu_read_lock();
a4f5ea64
CW
2282 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2283 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
23e87338 2284 rcu_read_unlock();
96d77634
CW
2285}
2286
548625ee
CW
2287void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2288 enum i915_mm_subclass subclass)
37e680a1 2289{
f2123818 2290 struct drm_i915_private *i915 = to_i915(obj->base.dev);
03ac84f1 2291 struct sg_table *pages;
37e680a1 2292
a4f5ea64 2293 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2294 return;
a5570178 2295
15717de2 2296 GEM_BUG_ON(obj->bind_count);
f1fa4f44 2297 if (!i915_gem_object_has_pages(obj))
1233e2db
CW
2298 return;
2299
2300 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2301 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2302 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2303 goto unlock;
3e123027 2304
a2165e31
CW
2305 /* ->put_pages might need to allocate memory for the bit17 swizzle
2306 * array, hence protect them from being reaped by removing them from gtt
2307 * lists early. */
03ac84f1
CW
2308 pages = fetch_and_zero(&obj->mm.pages);
2309 GEM_BUG_ON(!pages);
a2165e31 2310
f2123818
CW
2311 spin_lock(&i915->mm.obj_lock);
2312 list_del(&obj->mm.link);
2313 spin_unlock(&i915->mm.obj_lock);
2314
a4f5ea64 2315 if (obj->mm.mapping) {
4b30cb23
CW
2316 void *ptr;
2317
0ce81788 2318 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2319 if (is_vmalloc_addr(ptr))
2320 vunmap(ptr);
fb8621d3 2321 else
4b30cb23
CW
2322 kunmap(kmap_to_page(ptr));
2323
a4f5ea64 2324 obj->mm.mapping = NULL;
0a798eb9
CW
2325 }
2326
96d77634
CW
2327 __i915_gem_object_reset_page_iter(obj);
2328
4e5462ee
CW
2329 if (!IS_ERR(pages))
2330 obj->ops->put_pages(obj, pages);
2331
a5c08166
MA
2332 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2333
1233e2db
CW
2334unlock:
2335 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2336}
2337
935a2f77 2338static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2339{
2340 struct sg_table new_st;
2341 struct scatterlist *sg, *new_sg;
2342 unsigned int i;
2343
2344 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2345 return false;
0c40ce13 2346
8bfc478f 2347 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2348 return false;
0c40ce13
TU
2349
2350 new_sg = new_st.sgl;
2351 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2352 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2353 /* called before being DMA mapped, no need to copy sg->dma_* */
2354 new_sg = sg_next(new_sg);
2355 }
c2dc6cc9 2356 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2357
2358 sg_free_table(orig_st);
2359
2360 *orig_st = new_st;
935a2f77 2361 return true;
0c40ce13
TU
2362}
2363
b91b09ee 2364static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2365{
fac5e23e 2366 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2367 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2368 unsigned long i;
e5281ccd 2369 struct address_space *mapping;
9da3da66
CW
2370 struct sg_table *st;
2371 struct scatterlist *sg;
85d1225e 2372 struct sgt_iter sgt_iter;
e5281ccd 2373 struct page *page;
90797e6d 2374 unsigned long last_pfn = 0; /* suppress gcc warning */
5602452e 2375 unsigned int max_segment = i915_sg_segment_size();
84e8978e 2376 unsigned int sg_page_sizes;
4846bf0c 2377 gfp_t noreclaim;
e2273302 2378 int ret;
e5281ccd 2379
6c085a72
CW
2380 /* Assert that the object is not currently in any GPU domain. As it
2381 * wasn't in the GTT, there shouldn't be any way it could have been in
2382 * a GPU cache
2383 */
03ac84f1
CW
2384 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2385 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2386
9da3da66
CW
2387 st = kmalloc(sizeof(*st), GFP_KERNEL);
2388 if (st == NULL)
b91b09ee 2389 return -ENOMEM;
9da3da66 2390
d766ef53 2391rebuild_st:
9da3da66 2392 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2393 kfree(st);
b91b09ee 2394 return -ENOMEM;
9da3da66 2395 }
e5281ccd 2396
9da3da66
CW
2397 /* Get the list of pages out of our struct file. They'll be pinned
2398 * at this point until we release them.
2399 *
2400 * Fail silently without starting the shrinker
2401 */
93c76a3d 2402 mapping = obj->base.filp->f_mapping;
0f6ab55d 2403 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2404 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2405
90797e6d
ID
2406 sg = st->sgl;
2407 st->nents = 0;
84e8978e 2408 sg_page_sizes = 0;
90797e6d 2409 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2410 const unsigned int shrink[] = {
2411 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2412 0,
2413 }, *s = shrink;
2414 gfp_t gfp = noreclaim;
2415
2416 do {
6c085a72 2417 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2418 if (likely(!IS_ERR(page)))
2419 break;
2420
2421 if (!*s) {
2422 ret = PTR_ERR(page);
2423 goto err_sg;
2424 }
2425
912d572d 2426 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2427 cond_resched();
24f8e00a 2428
6c085a72
CW
2429 /* We've tried hard to allocate the memory by reaping
2430 * our own buffer, now let the real VM do its job and
2431 * go down in flames if truly OOM.
24f8e00a
CW
2432 *
2433 * However, since graphics tend to be disposable,
2434 * defer the oom here by reporting the ENOMEM back
2435 * to userspace.
6c085a72 2436 */
4846bf0c
CW
2437 if (!*s) {
2438 /* reclaim and warn, but no oom */
2439 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2440
2441 /* Our bo are always dirty and so we require
2442 * kswapd to reclaim our pages (direct reclaim
2443 * does not effectively begin pageout of our
2444 * buffers on its own). However, direct reclaim
2445 * only waits for kswapd when under allocation
2446 * congestion. So as a result __GFP_RECLAIM is
2447 * unreliable and fails to actually reclaim our
2448 * dirty pages -- unless you try over and over
2449 * again with !__GFP_NORETRY. However, we still
2450 * want to fail this allocation rather than
2451 * trigger the out-of-memory killer and for
dbb32956 2452 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2453 */
dbb32956 2454 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2455 }
4846bf0c
CW
2456 } while (1);
2457
871dfbd6
CW
2458 if (!i ||
2459 sg->length >= max_segment ||
2460 page_to_pfn(page) != last_pfn + 1) {
a5c08166 2461 if (i) {
84e8978e 2462 sg_page_sizes |= sg->length;
90797e6d 2463 sg = sg_next(sg);
a5c08166 2464 }
90797e6d
ID
2465 st->nents++;
2466 sg_set_page(sg, page, PAGE_SIZE, 0);
2467 } else {
2468 sg->length += PAGE_SIZE;
2469 }
2470 last_pfn = page_to_pfn(page);
3bbbe706
DV
2471
2472 /* Check that the i965g/gm workaround works. */
2473 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2474 }
a5c08166 2475 if (sg) { /* loop terminated early; short sg table */
84e8978e 2476 sg_page_sizes |= sg->length;
426729dc 2477 sg_mark_end(sg);
a5c08166 2478 }
74ce6b6c 2479
0c40ce13
TU
2480 /* Trim unused sg entries to avoid wasting memory. */
2481 i915_sg_trim(st);
2482
03ac84f1 2483 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2484 if (ret) {
2485 /* DMA remapping failed? One possible cause is that
2486 * it could not reserve enough large entries, asking
2487 * for PAGE_SIZE chunks instead may be helpful.
2488 */
2489 if (max_segment > PAGE_SIZE) {
2490 for_each_sgt_page(page, sgt_iter, st)
2491 put_page(page);
2492 sg_free_table(st);
2493
2494 max_segment = PAGE_SIZE;
2495 goto rebuild_st;
2496 } else {
2497 dev_warn(&dev_priv->drm.pdev->dev,
2498 "Failed to DMA remap %lu pages\n",
2499 page_count);
2500 goto err_pages;
2501 }
2502 }
e2273302 2503
6dacfd2f 2504 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2505 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2506
84e8978e 2507 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee
MA
2508
2509 return 0;
e5281ccd 2510
b17993b7 2511err_sg:
90797e6d 2512 sg_mark_end(sg);
b17993b7 2513err_pages:
85d1225e
DG
2514 for_each_sgt_page(page, sgt_iter, st)
2515 put_page(page);
9da3da66
CW
2516 sg_free_table(st);
2517 kfree(st);
0820baf3
CW
2518
2519 /* shmemfs first checks if there is enough memory to allocate the page
2520 * and reports ENOSPC should there be insufficient, along with the usual
2521 * ENOMEM for a genuine allocation failure.
2522 *
2523 * We use ENOSPC in our driver to mean that we have run out of aperture
2524 * space and so want to translate the error from shmemfs back to our
2525 * usual understanding of ENOMEM.
2526 */
e2273302
ID
2527 if (ret == -ENOSPC)
2528 ret = -ENOMEM;
2529
b91b09ee 2530 return ret;
03ac84f1
CW
2531}
2532
2533void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
a5c08166 2534 struct sg_table *pages,
84e8978e 2535 unsigned int sg_page_sizes)
03ac84f1 2536{
a5c08166
MA
2537 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2538 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2539 int i;
2540
1233e2db 2541 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2542
2543 obj->mm.get_page.sg_pos = pages->sgl;
2544 obj->mm.get_page.sg_idx = 0;
2545
2546 obj->mm.pages = pages;
2c3a3f44
CW
2547
2548 if (i915_gem_object_is_tiled(obj) &&
f2123818 2549 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2c3a3f44
CW
2550 GEM_BUG_ON(obj->mm.quirked);
2551 __i915_gem_object_pin_pages(obj);
2552 obj->mm.quirked = true;
2553 }
a5c08166 2554
84e8978e
MA
2555 GEM_BUG_ON(!sg_page_sizes);
2556 obj->mm.page_sizes.phys = sg_page_sizes;
a5c08166
MA
2557
2558 /*
84e8978e
MA
2559 * Calculate the supported page-sizes which fit into the given
2560 * sg_page_sizes. This will give us the page-sizes which we may be able
2561 * to use opportunistically when later inserting into the GTT. For
2562 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2563 * 64K or 4K pages, although in practice this will depend on a number of
2564 * other factors.
a5c08166
MA
2565 */
2566 obj->mm.page_sizes.sg = 0;
2567 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2568 if (obj->mm.page_sizes.phys & ~0u << i)
2569 obj->mm.page_sizes.sg |= BIT(i);
2570 }
a5c08166 2571 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
f2123818
CW
2572
2573 spin_lock(&i915->mm.obj_lock);
2574 list_add(&obj->mm.link, &i915->mm.unbound_list);
2575 spin_unlock(&i915->mm.obj_lock);
03ac84f1
CW
2576}
2577
2578static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2579{
b91b09ee 2580 int err;
2c3a3f44 2581
03ac84f1
CW
2582 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2583 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2584 return -EFAULT;
2585 }
2586
b91b09ee
MA
2587 err = obj->ops->get_pages(obj);
2588 GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
03ac84f1 2589
b91b09ee 2590 return err;
673a394b
EA
2591}
2592
37e680a1 2593/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2594 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2595 * multiple times before they are released by a single call to
1233e2db 2596 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2597 * either as a result of memory pressure (reaping pages under the shrinker)
2598 * or as the object is itself released.
2599 */
a4f5ea64 2600int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2601{
03ac84f1 2602 int err;
37e680a1 2603
1233e2db
CW
2604 err = mutex_lock_interruptible(&obj->mm.lock);
2605 if (err)
2606 return err;
4c7d62c6 2607
f1fa4f44 2608 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2609 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2610
2c3a3f44
CW
2611 err = ____i915_gem_object_get_pages(obj);
2612 if (err)
2613 goto unlock;
37e680a1 2614
2c3a3f44
CW
2615 smp_mb__before_atomic();
2616 }
2617 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2618
1233e2db
CW
2619unlock:
2620 mutex_unlock(&obj->mm.lock);
03ac84f1 2621 return err;
673a394b
EA
2622}
2623
dd6034c6 2624/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2625static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2626 enum i915_map_type type)
dd6034c6
DG
2627{
2628 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2629 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2630 struct sgt_iter sgt_iter;
2631 struct page *page;
b338fa47
DG
2632 struct page *stack_pages[32];
2633 struct page **pages = stack_pages;
dd6034c6 2634 unsigned long i = 0;
d31d7cb1 2635 pgprot_t pgprot;
dd6034c6
DG
2636 void *addr;
2637
2638 /* A single page can always be kmapped */
d31d7cb1 2639 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2640 return kmap(sg_page(sgt->sgl));
2641
b338fa47
DG
2642 if (n_pages > ARRAY_SIZE(stack_pages)) {
2643 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2644 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2645 if (!pages)
2646 return NULL;
2647 }
dd6034c6 2648
85d1225e
DG
2649 for_each_sgt_page(page, sgt_iter, sgt)
2650 pages[i++] = page;
dd6034c6
DG
2651
2652 /* Check that we have the expected number of pages */
2653 GEM_BUG_ON(i != n_pages);
2654
d31d7cb1 2655 switch (type) {
3b24e7e8
CW
2656 default:
2657 MISSING_CASE(type);
2658 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2659 case I915_MAP_WB:
2660 pgprot = PAGE_KERNEL;
2661 break;
2662 case I915_MAP_WC:
2663 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2664 break;
2665 }
2666 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2667
b338fa47 2668 if (pages != stack_pages)
2098105e 2669 kvfree(pages);
dd6034c6
DG
2670
2671 return addr;
2672}
2673
2674/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2675void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2676 enum i915_map_type type)
0a798eb9 2677{
d31d7cb1
CW
2678 enum i915_map_type has_type;
2679 bool pinned;
2680 void *ptr;
0a798eb9
CW
2681 int ret;
2682
d31d7cb1 2683 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2684
1233e2db 2685 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2686 if (ret)
2687 return ERR_PTR(ret);
2688
3b24e7e8
CW
2689 pinned = !(type & I915_MAP_OVERRIDE);
2690 type &= ~I915_MAP_OVERRIDE;
2691
1233e2db 2692 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
f1fa4f44 2693 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2694 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2695
2c3a3f44
CW
2696 ret = ____i915_gem_object_get_pages(obj);
2697 if (ret)
2698 goto err_unlock;
1233e2db 2699
2c3a3f44
CW
2700 smp_mb__before_atomic();
2701 }
2702 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2703 pinned = false;
2704 }
f1fa4f44 2705 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
0a798eb9 2706
0ce81788 2707 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2708 if (ptr && has_type != type) {
2709 if (pinned) {
2710 ret = -EBUSY;
1233e2db 2711 goto err_unpin;
0a798eb9 2712 }
d31d7cb1
CW
2713
2714 if (is_vmalloc_addr(ptr))
2715 vunmap(ptr);
2716 else
2717 kunmap(kmap_to_page(ptr));
2718
a4f5ea64 2719 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2720 }
2721
d31d7cb1
CW
2722 if (!ptr) {
2723 ptr = i915_gem_object_map(obj, type);
2724 if (!ptr) {
2725 ret = -ENOMEM;
1233e2db 2726 goto err_unpin;
d31d7cb1
CW
2727 }
2728
0ce81788 2729 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2730 }
2731
1233e2db
CW
2732out_unlock:
2733 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2734 return ptr;
2735
1233e2db
CW
2736err_unpin:
2737 atomic_dec(&obj->mm.pages_pin_count);
2738err_unlock:
2739 ptr = ERR_PTR(ret);
2740 goto out_unlock;
0a798eb9
CW
2741}
2742
7c55e2c5
CW
2743static int
2744i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2745 const struct drm_i915_gem_pwrite *arg)
2746{
2747 struct address_space *mapping = obj->base.filp->f_mapping;
2748 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2749 u64 remain, offset;
2750 unsigned int pg;
2751
2752 /* Before we instantiate/pin the backing store for our use, we
2753 * can prepopulate the shmemfs filp efficiently using a write into
2754 * the pagecache. We avoid the penalty of instantiating all the
2755 * pages, important if the user is just writing to a few and never
2756 * uses the object on the GPU, and using a direct write into shmemfs
2757 * allows it to avoid the cost of retrieving a page (either swapin
2758 * or clearing-before-use) before it is overwritten.
2759 */
f1fa4f44 2760 if (i915_gem_object_has_pages(obj))
7c55e2c5
CW
2761 return -ENODEV;
2762
ca8d7822
CW
2763 if (obj->mm.madv != I915_MADV_WILLNEED)
2764 return -EFAULT;
2765
7c55e2c5
CW
2766 /* Before the pages are instantiated the object is treated as being
2767 * in the CPU domain. The pages will be clflushed as required before
2768 * use, and we can freely write into the pages directly. If userspace
2769 * races pwrite with any other operation; corruption will ensue -
2770 * that is userspace's prerogative!
2771 */
2772
2773 remain = arg->size;
2774 offset = arg->offset;
2775 pg = offset_in_page(offset);
2776
2777 do {
2778 unsigned int len, unwritten;
2779 struct page *page;
2780 void *data, *vaddr;
2781 int err;
2782
2783 len = PAGE_SIZE - pg;
2784 if (len > remain)
2785 len = remain;
2786
2787 err = pagecache_write_begin(obj->base.filp, mapping,
2788 offset, len, 0,
2789 &page, &data);
2790 if (err < 0)
2791 return err;
2792
2793 vaddr = kmap(page);
2794 unwritten = copy_from_user(vaddr + pg, user_data, len);
2795 kunmap(page);
2796
2797 err = pagecache_write_end(obj->base.filp, mapping,
2798 offset, len, len - unwritten,
2799 page, data);
2800 if (err < 0)
2801 return err;
2802
2803 if (unwritten)
2804 return -EFAULT;
2805
2806 remain -= len;
2807 user_data += len;
2808 offset += len;
2809 pg = 0;
2810 } while (remain);
2811
2812 return 0;
2813}
2814
77b25a97
CW
2815static bool ban_context(const struct i915_gem_context *ctx,
2816 unsigned int score)
be62acb4 2817{
6095868a 2818 return (i915_gem_context_is_bannable(ctx) &&
77b25a97 2819 score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2820}
2821
e5e1fc47 2822static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2823{
77b25a97
CW
2824 unsigned int score;
2825 bool banned;
b083a087 2826
77b25a97 2827 atomic_inc(&ctx->guilty_count);
b083a087 2828
77b25a97
CW
2829 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2830 banned = ban_context(ctx, score);
2831 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2832 ctx->name, score, yesno(banned));
2833 if (!banned)
b083a087
MK
2834 return;
2835
77b25a97
CW
2836 i915_gem_context_set_banned(ctx);
2837 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2838 atomic_inc(&ctx->file_priv->context_bans);
2839 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2840 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2841 }
e5e1fc47
MK
2842}
2843
2844static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2845{
77b25a97 2846 atomic_inc(&ctx->active_count);
aa60c664
MK
2847}
2848
8d9fc7fd 2849struct drm_i915_gem_request *
0bc40be8 2850i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2851{
754c9fd5
CW
2852 struct drm_i915_gem_request *request, *active = NULL;
2853 unsigned long flags;
4db080f9 2854
f69a02c9
CW
2855 /* We are called by the error capture and reset at a random
2856 * point in time. In particular, note that neither is crucially
2857 * ordered with an interrupt. After a hang, the GPU is dead and we
2858 * assume that no more writes can happen (we waited long enough for
2859 * all writes that were in transaction to be flushed) - adding an
2860 * extra delay for a recent interrupt is pointless. Hence, we do
2861 * not need an engine->irq_seqno_barrier() before the seqno reads.
2862 */
754c9fd5 2863 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2864 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2865 if (__i915_gem_request_completed(request,
2866 request->global_seqno))
4db080f9 2867 continue;
aa60c664 2868
36193acd 2869 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2870 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2871 &request->fence.flags));
754c9fd5
CW
2872
2873 active = request;
2874 break;
4db080f9 2875 }
754c9fd5 2876 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2877
754c9fd5 2878 return active;
b6b0fac0
MK
2879}
2880
bf2f0436
MK
2881static bool engine_stalled(struct intel_engine_cs *engine)
2882{
2883 if (!engine->hangcheck.stalled)
2884 return false;
2885
2886 /* Check for possible seqno movement after hang declaration */
2887 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2888 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2889 return false;
2890 }
2891
2892 return true;
2893}
2894
a1ef70e1
MT
2895/*
2896 * Ensure irq handler finishes, and not run again.
2897 * Also return the active request so that we only search for it once.
2898 */
2899struct drm_i915_gem_request *
2900i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2901{
2902 struct drm_i915_gem_request *request = NULL;
2903
1749d90f
CW
2904 /*
2905 * During the reset sequence, we must prevent the engine from
2906 * entering RC6. As the context state is undefined until we restart
2907 * the engine, if it does enter RC6 during the reset, the state
2908 * written to the powercontext is undefined and so we may lose
2909 * GPU state upon resume, i.e. fail to restart after a reset.
2910 */
2911 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2912
2913 /*
2914 * Prevent the signaler thread from updating the request
a1ef70e1
MT
2915 * state (by calling dma_fence_signal) as we are processing
2916 * the reset. The write from the GPU of the seqno is
2917 * asynchronous and the signaler thread may see a different
2918 * value to us and declare the request complete, even though
2919 * the reset routine have picked that request as the active
2920 * (incomplete) request. This conflict is not handled
2921 * gracefully!
2922 */
2923 kthread_park(engine->breadcrumbs.signaler);
2924
1749d90f
CW
2925 /*
2926 * Prevent request submission to the hardware until we have
a1ef70e1
MT
2927 * completed the reset in i915_gem_reset_finish(). If a request
2928 * is completed by one engine, it may then queue a request
2929 * to a second via its engine->irq_tasklet *just* as we are
2930 * calling engine->init_hw() and also writing the ELSP.
2931 * Turning off the engine->irq_tasklet until the reset is over
2932 * prevents the race.
2933 */
b620e870
MK
2934 tasklet_kill(&engine->execlists.irq_tasklet);
2935 tasklet_disable(&engine->execlists.irq_tasklet);
a1ef70e1
MT
2936
2937 if (engine->irq_seqno_barrier)
2938 engine->irq_seqno_barrier(engine);
2939
d1d1ebf4
CW
2940 request = i915_gem_find_active_request(engine);
2941 if (request && request->fence.error == -EIO)
2942 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
2943
2944 return request;
2945}
2946
0e178aef 2947int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2948{
2949 struct intel_engine_cs *engine;
a1ef70e1 2950 struct drm_i915_gem_request *request;
4c965543 2951 enum intel_engine_id id;
0e178aef 2952 int err = 0;
4c965543 2953
0e178aef 2954 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
2955 request = i915_gem_reset_prepare_engine(engine);
2956 if (IS_ERR(request)) {
2957 err = PTR_ERR(request);
2958 continue;
0e178aef 2959 }
c64992e0
MT
2960
2961 engine->hangcheck.active_request = request;
0e178aef
CW
2962 }
2963
4c965543 2964 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2965
2966 return err;
4c965543
CW
2967}
2968
36193acd 2969static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2970{
2971 void *vaddr = request->ring->vaddr;
2972 u32 head;
2973
2974 /* As this request likely depends on state from the lost
2975 * context, clear out all the user operations leaving the
2976 * breadcrumb at the end (so we get the fence notifications).
2977 */
2978 head = request->head;
2979 if (request->postfix < head) {
2980 memset(vaddr + head, 0, request->ring->size - head);
2981 head = 0;
2982 }
2983 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2984
2985 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2986}
2987
36193acd
MK
2988static void engine_skip_context(struct drm_i915_gem_request *request)
2989{
2990 struct intel_engine_cs *engine = request->engine;
2991 struct i915_gem_context *hung_ctx = request->ctx;
2992 struct intel_timeline *timeline;
2993 unsigned long flags;
2994
2995 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2996
2997 spin_lock_irqsave(&engine->timeline->lock, flags);
2998 spin_lock(&timeline->lock);
2999
3000 list_for_each_entry_continue(request, &engine->timeline->requests, link)
3001 if (request->ctx == hung_ctx)
3002 skip_request(request);
3003
3004 list_for_each_entry(request, &timeline->requests, link)
3005 skip_request(request);
3006
3007 spin_unlock(&timeline->lock);
3008 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3009}
3010
d1d1ebf4
CW
3011/* Returns the request if it was guilty of the hang */
3012static struct drm_i915_gem_request *
3013i915_gem_reset_request(struct intel_engine_cs *engine,
3014 struct drm_i915_gem_request *request)
61da5362 3015{
71895a08
MK
3016 /* The guilty request will get skipped on a hung engine.
3017 *
3018 * Users of client default contexts do not rely on logical
3019 * state preserved between batches so it is safe to execute
3020 * queued requests following the hang. Non default contexts
3021 * rely on preserved state, so skipping a batch loses the
3022 * evolution of the state and it needs to be considered corrupted.
3023 * Executing more queued batches on top of corrupted state is
3024 * risky. But we take the risk by trying to advance through
3025 * the queued requests in order to make the client behaviour
3026 * more predictable around resets, by not throwing away random
3027 * amount of batches it has prepared for execution. Sophisticated
3028 * clients can use gem_reset_stats_ioctl and dma fence status
3029 * (exported via sync_file info ioctl on explicit fences) to observe
3030 * when it loses the context state and should rebuild accordingly.
3031 *
3032 * The context ban, and ultimately the client ban, mechanism are safety
3033 * valves if client submission ends up resulting in nothing more than
3034 * subsequent hangs.
3035 */
3036
d1d1ebf4 3037 if (engine_stalled(engine)) {
61da5362
MK
3038 i915_gem_context_mark_guilty(request->ctx);
3039 skip_request(request);
d1d1ebf4
CW
3040
3041 /* If this context is now banned, skip all pending requests. */
3042 if (i915_gem_context_is_banned(request->ctx))
3043 engine_skip_context(request);
61da5362 3044 } else {
d1d1ebf4
CW
3045 /*
3046 * Since this is not the hung engine, it may have advanced
3047 * since the hang declaration. Double check by refinding
3048 * the active request at the time of the reset.
3049 */
3050 request = i915_gem_find_active_request(engine);
3051 if (request) {
3052 i915_gem_context_mark_innocent(request->ctx);
3053 dma_fence_set_error(&request->fence, -EAGAIN);
3054
3055 /* Rewind the engine to replay the incomplete rq */
3056 spin_lock_irq(&engine->timeline->lock);
3057 request = list_prev_entry(request, link);
3058 if (&request->link == &engine->timeline->requests)
3059 request = NULL;
3060 spin_unlock_irq(&engine->timeline->lock);
3061 }
61da5362
MK
3062 }
3063
d1d1ebf4 3064 return request;
61da5362
MK
3065}
3066
a1ef70e1
MT
3067void i915_gem_reset_engine(struct intel_engine_cs *engine,
3068 struct drm_i915_gem_request *request)
b6b0fac0 3069{
ed454f2c
CW
3070 engine->irq_posted = 0;
3071
d1d1ebf4
CW
3072 if (request)
3073 request = i915_gem_reset_request(engine, request);
3074
3075 if (request) {
c0dcb203
CW
3076 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3077 engine->name, request->global_seqno);
c0dcb203 3078 }
821ed7df
CW
3079
3080 /* Setup the CS to resume from the breadcrumb of the hung request */
3081 engine->reset_hw(engine, request);
4db080f9 3082}
aa60c664 3083
d8027093 3084void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 3085{
821ed7df 3086 struct intel_engine_cs *engine;
3b3f1650 3087 enum intel_engine_id id;
608c1a52 3088
4c7d62c6
CW
3089 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3090
821ed7df
CW
3091 i915_gem_retire_requests(dev_priv);
3092
2ae55738
CW
3093 for_each_engine(engine, dev_priv, id) {
3094 struct i915_gem_context *ctx;
3095
c64992e0 3096 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2ae55738
CW
3097 ctx = fetch_and_zero(&engine->last_retired_context);
3098 if (ctx)
3099 engine->context_unpin(engine, ctx);
3100 }
821ed7df 3101
4362f4f6 3102 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
3103
3104 if (dev_priv->gt.awake) {
3105 intel_sanitize_gt_powersave(dev_priv);
3106 intel_enable_gt_powersave(dev_priv);
3107 if (INTEL_GEN(dev_priv) >= 6)
3108 gen6_rps_busy(dev_priv);
3109 }
821ed7df
CW
3110}
3111
a1ef70e1
MT
3112void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3113{
b620e870 3114 tasklet_enable(&engine->execlists.irq_tasklet);
a1ef70e1 3115 kthread_unpark(engine->breadcrumbs.signaler);
1749d90f
CW
3116
3117 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
a1ef70e1
MT
3118}
3119
d8027093
CW
3120void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3121{
1f7b847d
CW
3122 struct intel_engine_cs *engine;
3123 enum intel_engine_id id;
3124
d8027093 3125 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3126
fe3288b5 3127 for_each_engine(engine, dev_priv, id) {
c64992e0 3128 engine->hangcheck.active_request = NULL;
a1ef70e1 3129 i915_gem_reset_finish_engine(engine);
fe3288b5 3130 }
d8027093
CW
3131}
3132
821ed7df 3133static void nop_submit_request(struct drm_i915_gem_request *request)
af7a8ffa 3134{
af7a8ffa
DV
3135 dma_fence_set_error(&request->fence, -EIO);
3136
3137 i915_gem_request_submit(request);
3138}
3139
3140static void nop_complete_submit_request(struct drm_i915_gem_request *request)
821ed7df 3141{
b85577b7
CW
3142 unsigned long flags;
3143
3cd9442f 3144 dma_fence_set_error(&request->fence, -EIO);
b85577b7
CW
3145
3146 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3147 __i915_gem_request_submit(request);
3dcf93f7 3148 intel_engine_init_global_seqno(request->engine, request->global_seqno);
b85577b7 3149 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
821ed7df
CW
3150}
3151
af7a8ffa 3152void i915_gem_set_wedged(struct drm_i915_private *i915)
821ed7df 3153{
af7a8ffa
DV
3154 struct intel_engine_cs *engine;
3155 enum intel_engine_id id;
3cd9442f 3156
af7a8ffa
DV
3157 /*
3158 * First, stop submission to hw, but do not yet complete requests by
3159 * rolling the global seqno forward (since this would complete requests
3160 * for which we haven't set the fence error to EIO yet).
20e4933c 3161 */
af7a8ffa
DV
3162 for_each_engine(engine, i915, id)
3163 engine->submit_request = nop_submit_request;
3cd9442f 3164
dcb4c12a 3165 /*
af7a8ffa
DV
3166 * Make sure no one is running the old callback before we proceed with
3167 * cancelling requests and resetting the completion tracking. Otherwise
3168 * we might submit a request to the hardware which never completes.
dcb4c12a 3169 */
af7a8ffa 3170 synchronize_rcu();
dcb4c12a 3171
af7a8ffa
DV
3172 for_each_engine(engine, i915, id) {
3173 /* Mark all executing requests as skipped */
3174 engine->cancel_requests(engine);
4ee056f4 3175
af7a8ffa
DV
3176 /*
3177 * Only once we've force-cancelled all in-flight requests can we
3178 * start to complete all requests.
4ee056f4 3179 */
af7a8ffa 3180 engine->submit_request = nop_complete_submit_request;
dcb4c12a 3181 }
5e32d748 3182
af7a8ffa
DV
3183 /*
3184 * Make sure no request can slip through without getting completed by
3185 * either this call here to intel_engine_init_global_seqno, or the one
3186 * in nop_complete_submit_request.
5e32d748 3187 */
af7a8ffa 3188 synchronize_rcu();
673a394b 3189
af7a8ffa
DV
3190 for_each_engine(engine, i915, id) {
3191 unsigned long flags;
673a394b 3192
af7a8ffa
DV
3193 /* Mark all pending requests as complete so that any concurrent
3194 * (lockless) lookup doesn't try and wait upon the request as we
3195 * reset it.
3196 */
3197 spin_lock_irqsave(&engine->timeline->lock, flags);
3198 intel_engine_init_global_seqno(engine,
3199 intel_engine_last_submit(engine));
3200 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3201 }
20e4933c 3202
3d7adbbf
CW
3203 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3204 wake_up_all(&i915->gpu_error.reset_queue);
673a394b
EA
3205}
3206
2e8f9d32
CW
3207bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3208{
3209 struct i915_gem_timeline *tl;
3210 int i;
3211
3212 lockdep_assert_held(&i915->drm.struct_mutex);
3213 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3214 return true;
3215
3216 /* Before unwedging, make sure that all pending operations
3217 * are flushed and errored out - we may have requests waiting upon
3218 * third party fences. We marked all inflight requests as EIO, and
3219 * every execbuf since returned EIO, for consistency we want all
3220 * the currently pending requests to also be marked as EIO, which
3221 * is done inside our nop_submit_request - and so we must wait.
3222 *
3223 * No more can be submitted until we reset the wedged bit.
3224 */
3225 list_for_each_entry(tl, &i915->gt.timelines, link) {
3226 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3227 struct drm_i915_gem_request *rq;
3228
3229 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3230 &i915->drm.struct_mutex);
3231 if (!rq)
3232 continue;
3233
3234 /* We can't use our normal waiter as we want to
3235 * avoid recursively trying to handle the current
3236 * reset. The basic dma_fence_default_wait() installs
3237 * a callback for dma_fence_signal(), which is
3238 * triggered by our nop handler (indirectly, the
3239 * callback enables the signaler thread which is
3240 * woken by the nop_submit_request() advancing the seqno
3241 * and when the seqno passes the fence, the signaler
3242 * then signals the fence waking us up).
3243 */
3244 if (dma_fence_default_wait(&rq->fence, true,
3245 MAX_SCHEDULE_TIMEOUT) < 0)
3246 return false;
3247 }
3248 }
3249
3250 /* Undo nop_submit_request. We prevent all new i915 requests from
3251 * being queued (by disallowing execbuf whilst wedged) so having
3252 * waited for all active requests above, we know the system is idle
3253 * and do not have to worry about a thread being inside
3254 * engine->submit_request() as we swap over. So unlike installing
3255 * the nop_submit_request on reset, we can do this from normal
3256 * context and do not require stop_machine().
3257 */
3258 intel_engines_reset_default_submission(i915);
36703e79 3259 i915_gem_contexts_lost(i915);
2e8f9d32
CW
3260
3261 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3262 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3263
3264 return true;
3265}
3266
75ef9da2 3267static void
673a394b
EA
3268i915_gem_retire_work_handler(struct work_struct *work)
3269{
b29c19b6 3270 struct drm_i915_private *dev_priv =
67d97da3 3271 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3272 struct drm_device *dev = &dev_priv->drm;
673a394b 3273
891b48cf 3274 /* Come back later if the device is busy... */
b29c19b6 3275 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3276 i915_gem_retire_requests(dev_priv);
b29c19b6 3277 mutex_unlock(&dev->struct_mutex);
673a394b 3278 }
67d97da3
CW
3279
3280 /* Keep the retire handler running until we are finally idle.
3281 * We do not need to do this test under locking as in the worst-case
3282 * we queue the retire worker once too often.
3283 */
c9615613
CW
3284 if (READ_ONCE(dev_priv->gt.awake)) {
3285 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3286 queue_delayed_work(dev_priv->wq,
3287 &dev_priv->gt.retire_work,
bcb45086 3288 round_jiffies_up_relative(HZ));
c9615613 3289 }
b29c19b6 3290}
0a58705b 3291
b29c19b6
CW
3292static void
3293i915_gem_idle_work_handler(struct work_struct *work)
3294{
3295 struct drm_i915_private *dev_priv =
67d97da3 3296 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3297 struct drm_device *dev = &dev_priv->drm;
67d97da3
CW
3298 bool rearm_hangcheck;
3299
3300 if (!READ_ONCE(dev_priv->gt.awake))
3301 return;
3302
0cb5670b
ID
3303 /*
3304 * Wait for last execlists context complete, but bail out in case a
3305 * new request is submitted.
3306 */
8490ae20 3307 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3308 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3309 return;
3310
3311 rearm_hangcheck =
3312 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3313
3314 if (!mutex_trylock(&dev->struct_mutex)) {
3315 /* Currently busy, come back later */
3316 mod_delayed_work(dev_priv->wq,
3317 &dev_priv->gt.idle_work,
3318 msecs_to_jiffies(50));
3319 goto out_rearm;
3320 }
3321
93c97dc1
ID
3322 /*
3323 * New request retired after this work handler started, extend active
3324 * period until next instance of the work.
3325 */
3326 if (work_pending(work))
3327 goto out_unlock;
3328
28176ef4 3329 if (dev_priv->gt.active_requests)
67d97da3 3330 goto out_unlock;
b29c19b6 3331
05425249 3332 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3333 DRM_ERROR("Timeout waiting for engines to idle\n");
3334
6c067579 3335 intel_engines_mark_idle(dev_priv);
47979480 3336 i915_gem_timelines_mark_idle(dev_priv);
35c94185 3337
67d97da3
CW
3338 GEM_BUG_ON(!dev_priv->gt.awake);
3339 dev_priv->gt.awake = false;
3340 rearm_hangcheck = false;
30ecad77 3341
67d97da3
CW
3342 if (INTEL_GEN(dev_priv) >= 6)
3343 gen6_rps_idle(dev_priv);
3344 intel_runtime_pm_put(dev_priv);
3345out_unlock:
3346 mutex_unlock(&dev->struct_mutex);
b29c19b6 3347
67d97da3
CW
3348out_rearm:
3349 if (rearm_hangcheck) {
3350 GEM_BUG_ON(!dev_priv->gt.awake);
3351 i915_queue_hangcheck(dev_priv);
35c94185 3352 }
673a394b
EA
3353}
3354
b1f788c6
CW
3355void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3356{
d1b48c1e 3357 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3358 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3359 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3360 struct i915_lut_handle *lut, *ln;
b1f788c6 3361
d1b48c1e
CW
3362 mutex_lock(&i915->drm.struct_mutex);
3363
3364 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3365 struct i915_gem_context *ctx = lut->ctx;
3366 struct i915_vma *vma;
3367
432295d7 3368 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
d1b48c1e
CW
3369 if (ctx->file_priv != fpriv)
3370 continue;
3371
3372 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
fa3722f6
CW
3373 GEM_BUG_ON(vma->obj != obj);
3374
3375 /* We allow the process to have multiple handles to the same
3376 * vma, in the same fd namespace, by virtue of flink/open.
3377 */
3378 GEM_BUG_ON(!vma->open_count);
3379 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3380 i915_vma_close(vma);
f8a7fde4 3381
d1b48c1e
CW
3382 list_del(&lut->obj_link);
3383 list_del(&lut->ctx_link);
4ff4b44c 3384
d1b48c1e
CW
3385 kmem_cache_free(i915->luts, lut);
3386 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3387 }
d1b48c1e
CW
3388
3389 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3390}
3391
e95433c7
CW
3392static unsigned long to_wait_timeout(s64 timeout_ns)
3393{
3394 if (timeout_ns < 0)
3395 return MAX_SCHEDULE_TIMEOUT;
3396
3397 if (timeout_ns == 0)
3398 return 0;
3399
3400 return nsecs_to_jiffies_timeout(timeout_ns);
3401}
3402
23ba4fd0
BW
3403/**
3404 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3405 * @dev: drm device pointer
3406 * @data: ioctl data blob
3407 * @file: drm file pointer
23ba4fd0
BW
3408 *
3409 * Returns 0 if successful, else an error is returned with the remaining time in
3410 * the timeout parameter.
3411 * -ETIME: object is still busy after timeout
3412 * -ERESTARTSYS: signal interrupted the wait
3413 * -ENONENT: object doesn't exist
3414 * Also possible, but rare:
b8050148 3415 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3416 * -ENOMEM: damn
3417 * -ENODEV: Internal IRQ fail
3418 * -E?: The add request failed
3419 *
3420 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3421 * non-zero timeout parameter the wait ioctl will wait for the given number of
3422 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3423 * without holding struct_mutex the object may become re-busied before this
3424 * function completes. A similar but shorter * race condition exists in the busy
3425 * ioctl
3426 */
3427int
3428i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3429{
3430 struct drm_i915_gem_wait *args = data;
3431 struct drm_i915_gem_object *obj;
e95433c7
CW
3432 ktime_t start;
3433 long ret;
23ba4fd0 3434
11b5d511
DV
3435 if (args->flags != 0)
3436 return -EINVAL;
3437
03ac0642 3438 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3439 if (!obj)
23ba4fd0 3440 return -ENOENT;
23ba4fd0 3441
e95433c7
CW
3442 start = ktime_get();
3443
3444 ret = i915_gem_object_wait(obj,
3445 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3446 to_wait_timeout(args->timeout_ns),
3447 to_rps_client(file));
3448
3449 if (args->timeout_ns > 0) {
3450 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3451 if (args->timeout_ns < 0)
3452 args->timeout_ns = 0;
c1d2061b
CW
3453
3454 /*
3455 * Apparently ktime isn't accurate enough and occasionally has a
3456 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3457 * things up to make the test happy. We allow up to 1 jiffy.
3458 *
3459 * This is a regression from the timespec->ktime conversion.
3460 */
3461 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3462 args->timeout_ns = 0;
b8050148
CW
3463
3464 /* Asked to wait beyond the jiffie/scheduler precision? */
3465 if (ret == -ETIME && args->timeout_ns)
3466 ret = -EAGAIN;
b4716185
CW
3467 }
3468
f0cd5182 3469 i915_gem_object_put(obj);
ff865885 3470 return ret;
23ba4fd0
BW
3471}
3472
73cb9701 3473static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3474{
73cb9701 3475 int ret, i;
4df2faf4 3476
73cb9701
CW
3477 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3478 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3479 if (ret)
3480 return ret;
3481 }
62e63007 3482
73cb9701
CW
3483 return 0;
3484}
3485
25112b64
CW
3486static int wait_for_engines(struct drm_i915_private *i915)
3487{
cad9946c
CW
3488 if (wait_for(intel_engines_are_idle(i915), 50)) {
3489 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3490 i915_gem_set_wedged(i915);
3491 return -EIO;
25112b64
CW
3492 }
3493
3494 return 0;
3495}
3496
73cb9701
CW
3497int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3498{
73cb9701
CW
3499 int ret;
3500
863e9fde
CW
3501 /* If the device is asleep, we have no requests outstanding */
3502 if (!READ_ONCE(i915->gt.awake))
3503 return 0;
3504
9caa34aa
CW
3505 if (flags & I915_WAIT_LOCKED) {
3506 struct i915_gem_timeline *tl;
3507
3508 lockdep_assert_held(&i915->drm.struct_mutex);
3509
3510 list_for_each_entry(tl, &i915->gt.timelines, link) {
3511 ret = wait_for_timeline(tl, flags);
3512 if (ret)
3513 return ret;
3514 }
72022a70
CW
3515
3516 i915_gem_retire_requests(i915);
3517 GEM_BUG_ON(i915->gt.active_requests);
25112b64
CW
3518
3519 ret = wait_for_engines(i915);
9caa34aa
CW
3520 } else {
3521 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3 3522 }
4df2faf4 3523
25112b64 3524 return ret;
4df2faf4
DV
3525}
3526
5a97bcc6
CW
3527static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3528{
e27ab73d
CW
3529 /*
3530 * We manually flush the CPU domain so that we can override and
3531 * force the flush for the display, and perform it asyncrhonously.
3532 */
3533 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3534 if (obj->cache_dirty)
3535 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3536 obj->base.write_domain = 0;
3537}
3538
3539void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3540{
bd3d2252 3541 if (!READ_ONCE(obj->pin_global))
5a97bcc6
CW
3542 return;
3543
3544 mutex_lock(&obj->base.dev->struct_mutex);
3545 __i915_gem_object_flush_for_display(obj);
3546 mutex_unlock(&obj->base.dev->struct_mutex);
3547}
3548
e22d8e3c
CW
3549/**
3550 * Moves a single object to the WC read, and possibly write domain.
3551 * @obj: object to act on
3552 * @write: ask for write access or read only
3553 *
3554 * This function returns when the move is complete, including waiting on
3555 * flushes to occur.
3556 */
3557int
3558i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3559{
3560 int ret;
3561
3562 lockdep_assert_held(&obj->base.dev->struct_mutex);
3563
3564 ret = i915_gem_object_wait(obj,
3565 I915_WAIT_INTERRUPTIBLE |
3566 I915_WAIT_LOCKED |
3567 (write ? I915_WAIT_ALL : 0),
3568 MAX_SCHEDULE_TIMEOUT,
3569 NULL);
3570 if (ret)
3571 return ret;
3572
3573 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3574 return 0;
3575
3576 /* Flush and acquire obj->pages so that we are coherent through
3577 * direct access in memory with previous cached writes through
3578 * shmemfs and that our cache domain tracking remains valid.
3579 * For example, if the obj->filp was moved to swap without us
3580 * being notified and releasing the pages, we would mistakenly
3581 * continue to assume that the obj remained out of the CPU cached
3582 * domain.
3583 */
3584 ret = i915_gem_object_pin_pages(obj);
3585 if (ret)
3586 return ret;
3587
3588 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3589
3590 /* Serialise direct access to this object with the barriers for
3591 * coherent writes from the GPU, by effectively invalidating the
3592 * WC domain upon first access.
3593 */
3594 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3595 mb();
3596
3597 /* It should now be out of any other write domains, and we can update
3598 * the domain values for our changes.
3599 */
3600 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3601 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3602 if (write) {
3603 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3604 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3605 obj->mm.dirty = true;
3606 }
3607
3608 i915_gem_object_unpin_pages(obj);
3609 return 0;
3610}
3611
2ef7eeaa
EA
3612/**
3613 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3614 * @obj: object to act on
3615 * @write: ask for write access or read only
2ef7eeaa
EA
3616 *
3617 * This function returns when the move is complete, including waiting on
3618 * flushes to occur.
3619 */
79e53945 3620int
2021746e 3621i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3622{
e47c68e9 3623 int ret;
2ef7eeaa 3624
e95433c7 3625 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3626
e95433c7
CW
3627 ret = i915_gem_object_wait(obj,
3628 I915_WAIT_INTERRUPTIBLE |
3629 I915_WAIT_LOCKED |
3630 (write ? I915_WAIT_ALL : 0),
3631 MAX_SCHEDULE_TIMEOUT,
3632 NULL);
88241785
CW
3633 if (ret)
3634 return ret;
3635
c13d87ea
CW
3636 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3637 return 0;
3638
43566ded
CW
3639 /* Flush and acquire obj->pages so that we are coherent through
3640 * direct access in memory with previous cached writes through
3641 * shmemfs and that our cache domain tracking remains valid.
3642 * For example, if the obj->filp was moved to swap without us
3643 * being notified and releasing the pages, we would mistakenly
3644 * continue to assume that the obj remained out of the CPU cached
3645 * domain.
3646 */
a4f5ea64 3647 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3648 if (ret)
3649 return ret;
3650
ef74921b 3651 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3652
d0a57789
CW
3653 /* Serialise direct access to this object with the barriers for
3654 * coherent writes from the GPU, by effectively invalidating the
3655 * GTT domain upon first access.
3656 */
3657 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3658 mb();
3659
e47c68e9
EA
3660 /* It should now be out of any other write domains, and we can update
3661 * the domain values for our changes.
3662 */
40e62d5d 3663 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3664 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3665 if (write) {
05394f39
CW
3666 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3667 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3668 obj->mm.dirty = true;
2ef7eeaa
EA
3669 }
3670
a4f5ea64 3671 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3672 return 0;
3673}
3674
ef55f92a
CW
3675/**
3676 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3677 * @obj: object to act on
3678 * @cache_level: new cache level to set for the object
ef55f92a
CW
3679 *
3680 * After this function returns, the object will be in the new cache-level
3681 * across all GTT and the contents of the backing storage will be coherent,
3682 * with respect to the new cache-level. In order to keep the backing storage
3683 * coherent for all users, we only allow a single cache level to be set
3684 * globally on the object and prevent it from being changed whilst the
3685 * hardware is reading from the object. That is if the object is currently
3686 * on the scanout it will be set to uncached (or equivalent display
3687 * cache coherency) and all non-MOCS GPU access will also be uncached so
3688 * that all direct access to the scanout remains coherent.
3689 */
e4ffd173
CW
3690int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3691 enum i915_cache_level cache_level)
3692{
aa653a68 3693 struct i915_vma *vma;
a6a7cc4b 3694 int ret;
e4ffd173 3695
4c7d62c6
CW
3696 lockdep_assert_held(&obj->base.dev->struct_mutex);
3697
e4ffd173 3698 if (obj->cache_level == cache_level)
a6a7cc4b 3699 return 0;
e4ffd173 3700
ef55f92a
CW
3701 /* Inspect the list of currently bound VMA and unbind any that would
3702 * be invalid given the new cache-level. This is principally to
3703 * catch the issue of the CS prefetch crossing page boundaries and
3704 * reading an invalid PTE on older architectures.
3705 */
aa653a68
CW
3706restart:
3707 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3708 if (!drm_mm_node_allocated(&vma->node))
3709 continue;
3710
20dfbde4 3711 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3712 DRM_DEBUG("can not change the cache level of pinned objects\n");
3713 return -EBUSY;
3714 }
3715
da8f1274
CW
3716 if (!i915_vma_is_closed(vma) &&
3717 i915_gem_valid_gtt_space(vma, cache_level))
aa653a68
CW
3718 continue;
3719
3720 ret = i915_vma_unbind(vma);
3721 if (ret)
3722 return ret;
3723
3724 /* As unbinding may affect other elements in the
3725 * obj->vma_list (due to side-effects from retiring
3726 * an active vma), play safe and restart the iterator.
3727 */
3728 goto restart;
42d6ab48
CW
3729 }
3730
ef55f92a
CW
3731 /* We can reuse the existing drm_mm nodes but need to change the
3732 * cache-level on the PTE. We could simply unbind them all and
3733 * rebind with the correct cache-level on next use. However since
3734 * we already have a valid slot, dma mapping, pages etc, we may as
3735 * rewrite the PTE in the belief that doing so tramples upon less
3736 * state and so involves less work.
3737 */
15717de2 3738 if (obj->bind_count) {
ef55f92a
CW
3739 /* Before we change the PTE, the GPU must not be accessing it.
3740 * If we wait upon the object, we know that all the bound
3741 * VMA are no longer active.
3742 */
e95433c7
CW
3743 ret = i915_gem_object_wait(obj,
3744 I915_WAIT_INTERRUPTIBLE |
3745 I915_WAIT_LOCKED |
3746 I915_WAIT_ALL,
3747 MAX_SCHEDULE_TIMEOUT,
3748 NULL);
e4ffd173
CW
3749 if (ret)
3750 return ret;
3751
0031fb96
TU
3752 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3753 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3754 /* Access to snoopable pages through the GTT is
3755 * incoherent and on some machines causes a hard
3756 * lockup. Relinquish the CPU mmaping to force
3757 * userspace to refault in the pages and we can
3758 * then double check if the GTT mapping is still
3759 * valid for that pointer access.
3760 */
3761 i915_gem_release_mmap(obj);
3762
3763 /* As we no longer need a fence for GTT access,
3764 * we can relinquish it now (and so prevent having
3765 * to steal a fence from someone else on the next
3766 * fence request). Note GPU activity would have
3767 * dropped the fence as all snoopable access is
3768 * supposed to be linear.
3769 */
49ef5294
CW
3770 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3771 ret = i915_vma_put_fence(vma);
3772 if (ret)
3773 return ret;
3774 }
ef55f92a
CW
3775 } else {
3776 /* We either have incoherent backing store and
3777 * so no GTT access or the architecture is fully
3778 * coherent. In such cases, existing GTT mmaps
3779 * ignore the cache bit in the PTE and we can
3780 * rewrite it without confusing the GPU or having
3781 * to force userspace to fault back in its mmaps.
3782 */
e4ffd173
CW
3783 }
3784
1c7f4bca 3785 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3786 if (!drm_mm_node_allocated(&vma->node))
3787 continue;
3788
3789 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3790 if (ret)
3791 return ret;
3792 }
e4ffd173
CW
3793 }
3794
1c7f4bca 3795 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 3796 vma->node.color = cache_level;
b8f55be6 3797 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 3798 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 3799
e4ffd173
CW
3800 return 0;
3801}
3802
199adf40
BW
3803int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3804 struct drm_file *file)
e6994aee 3805{
199adf40 3806 struct drm_i915_gem_caching *args = data;
e6994aee 3807 struct drm_i915_gem_object *obj;
fbbd37b3 3808 int err = 0;
e6994aee 3809
fbbd37b3
CW
3810 rcu_read_lock();
3811 obj = i915_gem_object_lookup_rcu(file, args->handle);
3812 if (!obj) {
3813 err = -ENOENT;
3814 goto out;
3815 }
e6994aee 3816
651d794f
CW
3817 switch (obj->cache_level) {
3818 case I915_CACHE_LLC:
3819 case I915_CACHE_L3_LLC:
3820 args->caching = I915_CACHING_CACHED;
3821 break;
3822
4257d3ba
CW
3823 case I915_CACHE_WT:
3824 args->caching = I915_CACHING_DISPLAY;
3825 break;
3826
651d794f
CW
3827 default:
3828 args->caching = I915_CACHING_NONE;
3829 break;
3830 }
fbbd37b3
CW
3831out:
3832 rcu_read_unlock();
3833 return err;
e6994aee
CW
3834}
3835
199adf40
BW
3836int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3837 struct drm_file *file)
e6994aee 3838{
9c870d03 3839 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3840 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3841 struct drm_i915_gem_object *obj;
3842 enum i915_cache_level level;
d65415df 3843 int ret = 0;
e6994aee 3844
199adf40
BW
3845 switch (args->caching) {
3846 case I915_CACHING_NONE:
e6994aee
CW
3847 level = I915_CACHE_NONE;
3848 break;
199adf40 3849 case I915_CACHING_CACHED:
e5756c10
ID
3850 /*
3851 * Due to a HW issue on BXT A stepping, GPU stores via a
3852 * snooped mapping may leave stale data in a corresponding CPU
3853 * cacheline, whereas normally such cachelines would get
3854 * invalidated.
3855 */
9c870d03 3856 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3857 return -ENODEV;
3858
e6994aee
CW
3859 level = I915_CACHE_LLC;
3860 break;
4257d3ba 3861 case I915_CACHING_DISPLAY:
9c870d03 3862 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3863 break;
e6994aee
CW
3864 default:
3865 return -EINVAL;
3866 }
3867
d65415df
CW
3868 obj = i915_gem_object_lookup(file, args->handle);
3869 if (!obj)
3870 return -ENOENT;
3871
3872 if (obj->cache_level == level)
3873 goto out;
3874
3875 ret = i915_gem_object_wait(obj,
3876 I915_WAIT_INTERRUPTIBLE,
3877 MAX_SCHEDULE_TIMEOUT,
3878 to_rps_client(file));
3bc2913e 3879 if (ret)
d65415df 3880 goto out;
3bc2913e 3881
d65415df
CW
3882 ret = i915_mutex_lock_interruptible(dev);
3883 if (ret)
3884 goto out;
e6994aee
CW
3885
3886 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3887 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3888
3889out:
3890 i915_gem_object_put(obj);
e6994aee
CW
3891 return ret;
3892}
3893
b9241ea3 3894/*
2da3b9b9
CW
3895 * Prepare buffer for display plane (scanout, cursors, etc).
3896 * Can be called from an uninterruptible phase (modesetting) and allows
3897 * any flushes to be pipelined (for pageflips).
b9241ea3 3898 */
058d88c4 3899struct i915_vma *
2da3b9b9
CW
3900i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3901 u32 alignment,
e6617330 3902 const struct i915_ggtt_view *view)
b9241ea3 3903{
058d88c4 3904 struct i915_vma *vma;
b9241ea3
ZW
3905 int ret;
3906
4c7d62c6
CW
3907 lockdep_assert_held(&obj->base.dev->struct_mutex);
3908
bd3d2252 3909 /* Mark the global pin early so that we account for the
cc98b413
CW
3910 * display coherency whilst setting up the cache domains.
3911 */
bd3d2252 3912 obj->pin_global++;
cc98b413 3913
a7ef0640
EA
3914 /* The display engine is not coherent with the LLC cache on gen6. As
3915 * a result, we make sure that the pinning that is about to occur is
3916 * done with uncached PTEs. This is lowest common denominator for all
3917 * chipsets.
3918 *
3919 * However for gen6+, we could do better by using the GFDT bit instead
3920 * of uncaching, which would allow us to flush all the LLC-cached data
3921 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3922 */
651d794f 3923 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3924 HAS_WT(to_i915(obj->base.dev)) ?
3925 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3926 if (ret) {
3927 vma = ERR_PTR(ret);
bd3d2252 3928 goto err_unpin_global;
058d88c4 3929 }
a7ef0640 3930
2da3b9b9
CW
3931 /* As the user may map the buffer once pinned in the display plane
3932 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3933 * always use map_and_fenceable for all scanout buffers. However,
3934 * it may simply be too big to fit into mappable, in which case
3935 * put it anyway and hope that userspace can cope (but always first
3936 * try to preserve the existing ABI).
2da3b9b9 3937 */
2efb813d 3938 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3939 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3940 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3941 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3942 if (IS_ERR(vma)) {
3943 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3944 unsigned int flags;
3945
3946 /* Valleyview is definitely limited to scanning out the first
3947 * 512MiB. Lets presume this behaviour was inherited from the
3948 * g4x display engine and that all earlier gen are similarly
3949 * limited. Testing suggests that it is a little more
3950 * complicated than this. For example, Cherryview appears quite
3951 * happy to scanout from anywhere within its global aperture.
3952 */
3953 flags = 0;
3954 if (HAS_GMCH_DISPLAY(i915))
3955 flags = PIN_MAPPABLE;
3956 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3957 }
058d88c4 3958 if (IS_ERR(vma))
bd3d2252 3959 goto err_unpin_global;
2da3b9b9 3960
d8923dcf
CW
3961 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3962
a6a7cc4b 3963 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3964 __i915_gem_object_flush_for_display(obj);
d59b21ec 3965 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3966
2da3b9b9
CW
3967 /* It should now be out of any other write domains, and we can update
3968 * the domain values for our changes.
3969 */
05394f39 3970 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3971
058d88c4 3972 return vma;
cc98b413 3973
bd3d2252
CW
3974err_unpin_global:
3975 obj->pin_global--;
058d88c4 3976 return vma;
cc98b413
CW
3977}
3978
3979void
058d88c4 3980i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3981{
49d73912 3982 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3983
bd3d2252 3984 if (WARN_ON(vma->obj->pin_global == 0))
8a0c39b1
TU
3985 return;
3986
bd3d2252 3987 if (--vma->obj->pin_global == 0)
f51455d4 3988 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3989
383d5823 3990 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3991 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3992
058d88c4 3993 i915_vma_unpin(vma);
b9241ea3
ZW
3994}
3995
e47c68e9
EA
3996/**
3997 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3998 * @obj: object to act on
3999 * @write: requesting write or read-only access
e47c68e9
EA
4000 *
4001 * This function returns when the move is complete, including waiting on
4002 * flushes to occur.
4003 */
dabdfe02 4004int
919926ae 4005i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4006{
e47c68e9
EA
4007 int ret;
4008
e95433c7 4009 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 4010
e95433c7
CW
4011 ret = i915_gem_object_wait(obj,
4012 I915_WAIT_INTERRUPTIBLE |
4013 I915_WAIT_LOCKED |
4014 (write ? I915_WAIT_ALL : 0),
4015 MAX_SCHEDULE_TIMEOUT,
4016 NULL);
88241785
CW
4017 if (ret)
4018 return ret;
4019
ef74921b 4020 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 4021
e47c68e9 4022 /* Flush the CPU cache if it's still invalid. */
05394f39 4023 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 4024 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 4025 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4026 }
4027
4028 /* It should now be out of any other write domains, and we can update
4029 * the domain values for our changes.
4030 */
e27ab73d 4031 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
4032
4033 /* If we're writing through the CPU, then the GPU read domains will
4034 * need to be invalidated at next use.
4035 */
e27ab73d
CW
4036 if (write)
4037 __start_cpu_write(obj);
2ef7eeaa
EA
4038
4039 return 0;
4040}
4041
673a394b
EA
4042/* Throttle our rendering by waiting until the ring has completed our requests
4043 * emitted over 20 msec ago.
4044 *
b962442e
EA
4045 * Note that if we were to use the current jiffies each time around the loop,
4046 * we wouldn't escape the function with any frames outstanding if the time to
4047 * render a frame was over 20ms.
4048 *
673a394b
EA
4049 * This should get us reasonable parallelism between CPU and GPU but also
4050 * relatively low latency when blocking on a particular request to finish.
4051 */
40a5f0de 4052static int
f787a5f5 4053i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4054{
fac5e23e 4055 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4056 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4057 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4058 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 4059 long ret;
93533c29 4060
f4457ae7
CW
4061 /* ABI: return -EIO if already wedged */
4062 if (i915_terminally_wedged(&dev_priv->gpu_error))
4063 return -EIO;
e110e8d6 4064
1c25595f 4065 spin_lock(&file_priv->mm.lock);
c8659efa 4066 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
4067 if (time_after_eq(request->emitted_jiffies, recent_enough))
4068 break;
40a5f0de 4069
c8659efa
CW
4070 if (target) {
4071 list_del(&target->client_link);
4072 target->file_priv = NULL;
4073 }
fcfa423c 4074
54fb2411 4075 target = request;
b962442e 4076 }
ff865885 4077 if (target)
e8a261ea 4078 i915_gem_request_get(target);
1c25595f 4079 spin_unlock(&file_priv->mm.lock);
40a5f0de 4080
54fb2411 4081 if (target == NULL)
f787a5f5 4082 return 0;
2bc43b5c 4083
e95433c7
CW
4084 ret = i915_wait_request(target,
4085 I915_WAIT_INTERRUPTIBLE,
4086 MAX_SCHEDULE_TIMEOUT);
e8a261ea 4087 i915_gem_request_put(target);
ff865885 4088
e95433c7 4089 return ret < 0 ? ret : 0;
40a5f0de
EA
4090}
4091
058d88c4 4092struct i915_vma *
ec7adb6e
JL
4093i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4094 const struct i915_ggtt_view *view,
91b2db6f 4095 u64 size,
2ffffd0f
CW
4096 u64 alignment,
4097 u64 flags)
ec7adb6e 4098{
ad16d2ed
CW
4099 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4100 struct i915_address_space *vm = &dev_priv->ggtt.base;
1b06dff9
JB
4101
4102 return i915_gem_object_pin(obj, vm, view, size, alignment,
4103 flags | PIN_GLOBAL);
4104}
4105
4106struct i915_vma *
4107i915_gem_object_pin(struct drm_i915_gem_object *obj,
4108 struct i915_address_space *vm,
4109 const struct i915_ggtt_view *view,
4110 u64 size,
4111 u64 alignment,
4112 u64 flags)
4113{
4114 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
59bfa124
CW
4115 struct i915_vma *vma;
4116 int ret;
72e96d64 4117
4c7d62c6
CW
4118 lockdep_assert_held(&obj->base.dev->struct_mutex);
4119
43ae70d9
CW
4120 if (!view && flags & PIN_MAPPABLE) {
4121 /* If the required space is larger than the available
4122 * aperture, we will not able to find a slot for the
4123 * object and unbinding the object now will be in
4124 * vain. Worse, doing so may cause us to ping-pong
4125 * the object in and out of the Global GTT and
4126 * waste a lot of cycles under the mutex.
4127 */
4128 if (obj->base.size > dev_priv->ggtt.mappable_end)
4129 return ERR_PTR(-E2BIG);
4130
4131 /* If NONBLOCK is set the caller is optimistically
4132 * trying to cache the full object within the mappable
4133 * aperture, and *must* have a fallback in place for
4134 * situations where we cannot bind the object. We
4135 * can be a little more lax here and use the fallback
4136 * more often to avoid costly migrations of ourselves
4137 * and other objects within the aperture.
4138 *
4139 * Half-the-aperture is used as a simple heuristic.
4140 * More interesting would to do search for a free
4141 * block prior to making the commitment to unbind.
4142 * That caters for the self-harm case, and with a
4143 * little more heuristics (e.g. NOFAULT, NOEVICT)
4144 * we could try to minimise harm to others.
4145 */
4146 if (flags & PIN_NONBLOCK &&
4147 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4148 return ERR_PTR(-ENOSPC);
4149 }
4150
718659a6 4151 vma = i915_vma_instance(obj, vm, view);
e0216b76 4152 if (unlikely(IS_ERR(vma)))
058d88c4 4153 return vma;
59bfa124
CW
4154
4155 if (i915_vma_misplaced(vma, size, alignment, flags)) {
43ae70d9
CW
4156 if (flags & PIN_NONBLOCK) {
4157 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4158 return ERR_PTR(-ENOSPC);
59bfa124 4159
43ae70d9 4160 if (flags & PIN_MAPPABLE &&
944397f0 4161 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4162 return ERR_PTR(-ENOSPC);
4163 }
4164
59bfa124
CW
4165 WARN(i915_vma_is_pinned(vma),
4166 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4167 " offset=%08x, req.alignment=%llx,"
4168 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4169 i915_ggtt_offset(vma), alignment,
59bfa124 4170 !!(flags & PIN_MAPPABLE),
05a20d09 4171 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4172 ret = i915_vma_unbind(vma);
4173 if (ret)
058d88c4 4174 return ERR_PTR(ret);
59bfa124
CW
4175 }
4176
1b06dff9 4177 ret = i915_vma_pin(vma, size, alignment, flags);
058d88c4
CW
4178 if (ret)
4179 return ERR_PTR(ret);
ec7adb6e 4180
058d88c4 4181 return vma;
673a394b
EA
4182}
4183
edf6b76f 4184static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4185{
4186 /* Note that we could alias engines in the execbuf API, but
4187 * that would be very unwise as it prevents userspace from
4188 * fine control over engine selection. Ahem.
4189 *
4190 * This should be something like EXEC_MAX_ENGINE instead of
4191 * I915_NUM_ENGINES.
4192 */
4193 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4194 return 0x10000 << id;
4195}
4196
4197static __always_inline unsigned int __busy_write_id(unsigned int id)
4198{
70cb472c
CW
4199 /* The uABI guarantees an active writer is also amongst the read
4200 * engines. This would be true if we accessed the activity tracking
4201 * under the lock, but as we perform the lookup of the object and
4202 * its activity locklessly we can not guarantee that the last_write
4203 * being active implies that we have set the same engine flag from
4204 * last_read - hence we always set both read and write busy for
4205 * last_write.
4206 */
4207 return id | __busy_read_flag(id);
3fdc13c7
CW
4208}
4209
edf6b76f 4210static __always_inline unsigned int
d07f0e59 4211__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4212 unsigned int (*flag)(unsigned int id))
4213{
d07f0e59 4214 struct drm_i915_gem_request *rq;
3fdc13c7 4215
d07f0e59
CW
4216 /* We have to check the current hw status of the fence as the uABI
4217 * guarantees forward progress. We could rely on the idle worker
4218 * to eventually flush us, but to minimise latency just ask the
4219 * hardware.
1255501d 4220 *
d07f0e59 4221 * Note we only report on the status of native fences.
1255501d 4222 */
d07f0e59
CW
4223 if (!dma_fence_is_i915(fence))
4224 return 0;
4225
4226 /* opencode to_request() in order to avoid const warnings */
4227 rq = container_of(fence, struct drm_i915_gem_request, fence);
4228 if (i915_gem_request_completed(rq))
4229 return 0;
4230
1d39f281 4231 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4232}
4233
edf6b76f 4234static __always_inline unsigned int
d07f0e59 4235busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4236{
d07f0e59 4237 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4238}
4239
edf6b76f 4240static __always_inline unsigned int
d07f0e59 4241busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4242{
d07f0e59
CW
4243 if (!fence)
4244 return 0;
4245
4246 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4247}
4248
673a394b
EA
4249int
4250i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4251 struct drm_file *file)
673a394b
EA
4252{
4253 struct drm_i915_gem_busy *args = data;
05394f39 4254 struct drm_i915_gem_object *obj;
d07f0e59
CW
4255 struct reservation_object_list *list;
4256 unsigned int seq;
fbbd37b3 4257 int err;
673a394b 4258
d07f0e59 4259 err = -ENOENT;
fbbd37b3
CW
4260 rcu_read_lock();
4261 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4262 if (!obj)
fbbd37b3 4263 goto out;
d1b851fc 4264
d07f0e59
CW
4265 /* A discrepancy here is that we do not report the status of
4266 * non-i915 fences, i.e. even though we may report the object as idle,
4267 * a call to set-domain may still stall waiting for foreign rendering.
4268 * This also means that wait-ioctl may report an object as busy,
4269 * where busy-ioctl considers it idle.
4270 *
4271 * We trade the ability to warn of foreign fences to report on which
4272 * i915 engines are active for the object.
4273 *
4274 * Alternatively, we can trade that extra information on read/write
4275 * activity with
4276 * args->busy =
4277 * !reservation_object_test_signaled_rcu(obj->resv, true);
4278 * to report the overall busyness. This is what the wait-ioctl does.
4279 *
4280 */
4281retry:
4282 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4283
d07f0e59
CW
4284 /* Translate the exclusive fence to the READ *and* WRITE engine */
4285 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4286
d07f0e59
CW
4287 /* Translate shared fences to READ set of engines */
4288 list = rcu_dereference(obj->resv->fence);
4289 if (list) {
4290 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4291
d07f0e59
CW
4292 for (i = 0; i < shared_count; ++i) {
4293 struct dma_fence *fence =
4294 rcu_dereference(list->shared[i]);
4295
4296 args->busy |= busy_check_reader(fence);
4297 }
426960be 4298 }
673a394b 4299
d07f0e59
CW
4300 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4301 goto retry;
4302
4303 err = 0;
fbbd37b3
CW
4304out:
4305 rcu_read_unlock();
4306 return err;
673a394b
EA
4307}
4308
4309int
4310i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4311 struct drm_file *file_priv)
4312{
0206e353 4313 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4314}
4315
3ef94daa
CW
4316int
4317i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4318 struct drm_file *file_priv)
4319{
fac5e23e 4320 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4321 struct drm_i915_gem_madvise *args = data;
05394f39 4322 struct drm_i915_gem_object *obj;
1233e2db 4323 int err;
3ef94daa
CW
4324
4325 switch (args->madv) {
4326 case I915_MADV_DONTNEED:
4327 case I915_MADV_WILLNEED:
4328 break;
4329 default:
4330 return -EINVAL;
4331 }
4332
03ac0642 4333 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4334 if (!obj)
4335 return -ENOENT;
4336
4337 err = mutex_lock_interruptible(&obj->mm.lock);
4338 if (err)
4339 goto out;
3ef94daa 4340
f1fa4f44 4341 if (i915_gem_object_has_pages(obj) &&
3e510a8e 4342 i915_gem_object_is_tiled(obj) &&
656bfa3a 4343 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4344 if (obj->mm.madv == I915_MADV_WILLNEED) {
4345 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4346 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4347 obj->mm.quirked = false;
4348 }
4349 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4350 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4351 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4352 obj->mm.quirked = true;
4353 }
656bfa3a
DV
4354 }
4355
a4f5ea64
CW
4356 if (obj->mm.madv != __I915_MADV_PURGED)
4357 obj->mm.madv = args->madv;
3ef94daa 4358
6c085a72 4359 /* if the object is no longer attached, discard its backing storage */
f1fa4f44
CW
4360 if (obj->mm.madv == I915_MADV_DONTNEED &&
4361 !i915_gem_object_has_pages(obj))
2d7ef395
CW
4362 i915_gem_object_truncate(obj);
4363
a4f5ea64 4364 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4365 mutex_unlock(&obj->mm.lock);
bb6baf76 4366
1233e2db 4367out:
f8c417cd 4368 i915_gem_object_put(obj);
1233e2db 4369 return err;
3ef94daa
CW
4370}
4371
5b8c8aec
CW
4372static void
4373frontbuffer_retire(struct i915_gem_active *active,
4374 struct drm_i915_gem_request *request)
4375{
4376 struct drm_i915_gem_object *obj =
4377 container_of(active, typeof(*obj), frontbuffer_write);
4378
d59b21ec 4379 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4380}
4381
37e680a1
CW
4382void i915_gem_object_init(struct drm_i915_gem_object *obj,
4383 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4384{
1233e2db
CW
4385 mutex_init(&obj->mm.lock);
4386
2f633156 4387 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4388 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4389 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4390
37e680a1
CW
4391 obj->ops = ops;
4392
d07f0e59
CW
4393 reservation_object_init(&obj->__builtin_resv);
4394 obj->resv = &obj->__builtin_resv;
4395
50349247 4396 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4397 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4398
4399 obj->mm.madv = I915_MADV_WILLNEED;
4400 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4401 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4402
f19ec8cb 4403 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4404}
4405
37e680a1 4406static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4407 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4408 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4409
37e680a1
CW
4410 .get_pages = i915_gem_object_get_pages_gtt,
4411 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4412
4413 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4414};
4415
465c403c
MA
4416static int i915_gem_object_create_shmem(struct drm_device *dev,
4417 struct drm_gem_object *obj,
4418 size_t size)
4419{
4420 struct drm_i915_private *i915 = to_i915(dev);
4421 unsigned long flags = VM_NORESERVE;
4422 struct file *filp;
4423
4424 drm_gem_private_object_init(dev, obj, size);
4425
4426 if (i915->mm.gemfs)
4427 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4428 flags);
4429 else
4430 filp = shmem_file_setup("i915", size, flags);
4431
4432 if (IS_ERR(filp))
4433 return PTR_ERR(filp);
4434
4435 obj->filp = filp;
4436
4437 return 0;
4438}
4439
b4bcbe2a 4440struct drm_i915_gem_object *
12d79d78 4441i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4442{
c397b908 4443 struct drm_i915_gem_object *obj;
5949eac4 4444 struct address_space *mapping;
b8f55be6 4445 unsigned int cache_level;
1a240d4d 4446 gfp_t mask;
fe3db79b 4447 int ret;
ac52bc56 4448
b4bcbe2a
CW
4449 /* There is a prevalence of the assumption that we fit the object's
4450 * page count inside a 32bit _signed_ variable. Let's document this and
4451 * catch if we ever need to fix it. In the meantime, if you do spot
4452 * such a local variable, please consider fixing!
4453 */
7a3ee5de 4454 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4455 return ERR_PTR(-E2BIG);
4456
4457 if (overflows_type(size, obj->base.size))
4458 return ERR_PTR(-E2BIG);
4459
187685cb 4460 obj = i915_gem_object_alloc(dev_priv);
c397b908 4461 if (obj == NULL)
fe3db79b 4462 return ERR_PTR(-ENOMEM);
673a394b 4463
465c403c 4464 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4465 if (ret)
4466 goto fail;
673a394b 4467
bed1ea95 4468 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4469 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4470 /* 965gm cannot relocate objects above 4GiB. */
4471 mask &= ~__GFP_HIGHMEM;
4472 mask |= __GFP_DMA32;
4473 }
4474
93c76a3d 4475 mapping = obj->base.filp->f_mapping;
bed1ea95 4476 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4477 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4478
37e680a1 4479 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4480
c397b908
DV
4481 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4482 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4483
b8f55be6 4484 if (HAS_LLC(dev_priv))
3d29b842 4485 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4486 * cache) for about a 10% performance improvement
4487 * compared to uncached. Graphics requests other than
4488 * display scanout are coherent with the CPU in
4489 * accessing this cache. This means in this mode we
4490 * don't need to clflush on the CPU side, and on the
4491 * GPU side we only need to flush internal caches to
4492 * get data visible to the CPU.
4493 *
4494 * However, we maintain the display planes as UC, and so
4495 * need to rebind when first used as such.
4496 */
b8f55be6
CW
4497 cache_level = I915_CACHE_LLC;
4498 else
4499 cache_level = I915_CACHE_NONE;
a1871112 4500
b8f55be6 4501 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4502
d861e338
DV
4503 trace_i915_gem_object_create(obj);
4504
05394f39 4505 return obj;
fe3db79b
CW
4506
4507fail:
4508 i915_gem_object_free(obj);
fe3db79b 4509 return ERR_PTR(ret);
c397b908
DV
4510}
4511
340fbd8c
CW
4512static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4513{
4514 /* If we are the last user of the backing storage (be it shmemfs
4515 * pages or stolen etc), we know that the pages are going to be
4516 * immediately released. In this case, we can then skip copying
4517 * back the contents from the GPU.
4518 */
4519
a4f5ea64 4520 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4521 return false;
4522
4523 if (obj->base.filp == NULL)
4524 return true;
4525
4526 /* At first glance, this looks racy, but then again so would be
4527 * userspace racing mmap against close. However, the first external
4528 * reference to the filp can only be obtained through the
4529 * i915_gem_mmap_ioctl() which safeguards us against the user
4530 * acquiring such a reference whilst we are in the middle of
4531 * freeing the object.
4532 */
4533 return atomic_long_read(&obj->base.filp->f_count) == 1;
4534}
4535
fbbd37b3
CW
4536static void __i915_gem_free_objects(struct drm_i915_private *i915,
4537 struct llist_node *freed)
673a394b 4538{
fbbd37b3 4539 struct drm_i915_gem_object *obj, *on;
673a394b 4540
fbbd37b3 4541 intel_runtime_pm_get(i915);
cc731f5a 4542 llist_for_each_entry_safe(obj, on, freed, freed) {
fbbd37b3
CW
4543 struct i915_vma *vma, *vn;
4544
4545 trace_i915_gem_object_destroy(obj);
4546
cc731f5a
CW
4547 mutex_lock(&i915->drm.struct_mutex);
4548
fbbd37b3
CW
4549 GEM_BUG_ON(i915_gem_object_is_active(obj));
4550 list_for_each_entry_safe(vma, vn,
4551 &obj->vma_list, obj_link) {
fbbd37b3
CW
4552 GEM_BUG_ON(i915_vma_is_active(vma));
4553 vma->flags &= ~I915_VMA_PIN_MASK;
4554 i915_vma_close(vma);
4555 }
db6c2b41
CW
4556 GEM_BUG_ON(!list_empty(&obj->vma_list));
4557 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4558
f2123818
CW
4559 /* This serializes freeing with the shrinker. Since the free
4560 * is delayed, first by RCU then by the workqueue, we want the
4561 * shrinker to be able to free pages of unreferenced objects,
4562 * or else we may oom whilst there are plenty of deferred
4563 * freed objects.
4564 */
4565 if (i915_gem_object_has_pages(obj)) {
4566 spin_lock(&i915->mm.obj_lock);
4567 list_del_init(&obj->mm.link);
4568 spin_unlock(&i915->mm.obj_lock);
4569 }
fbbd37b3 4570
cc731f5a 4571 mutex_unlock(&i915->drm.struct_mutex);
f2be9d68 4572
fbbd37b3 4573 GEM_BUG_ON(obj->bind_count);
a65adaf8 4574 GEM_BUG_ON(obj->userfault_count);
fbbd37b3 4575 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
67b48040 4576 GEM_BUG_ON(!list_empty(&obj->lut_list));
fbbd37b3
CW
4577
4578 if (obj->ops->release)
4579 obj->ops->release(obj);
f65c9168 4580
fbbd37b3
CW
4581 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4582 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4583 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
f1fa4f44 4584 GEM_BUG_ON(i915_gem_object_has_pages(obj));
fbbd37b3
CW
4585
4586 if (obj->base.import_attach)
4587 drm_prime_gem_destroy(&obj->base, NULL);
4588
d07f0e59 4589 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4590 drm_gem_object_release(&obj->base);
4591 i915_gem_info_remove_obj(i915, obj->base.size);
4592
4593 kfree(obj->bit_17);
4594 i915_gem_object_free(obj);
cc731f5a
CW
4595
4596 if (on)
4597 cond_resched();
fbbd37b3 4598 }
cc731f5a 4599 intel_runtime_pm_put(i915);
fbbd37b3
CW
4600}
4601
4602static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4603{
4604 struct llist_node *freed;
4605
87701b4b
CW
4606 /* Free the oldest, most stale object to keep the free_list short */
4607 freed = NULL;
4608 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4609 /* Only one consumer of llist_del_first() allowed */
4610 spin_lock(&i915->mm.free_lock);
4611 freed = llist_del_first(&i915->mm.free_list);
4612 spin_unlock(&i915->mm.free_lock);
4613 }
4614 if (unlikely(freed)) {
4615 freed->next = NULL;
fbbd37b3 4616 __i915_gem_free_objects(i915, freed);
87701b4b 4617 }
fbbd37b3
CW
4618}
4619
4620static void __i915_gem_free_work(struct work_struct *work)
4621{
4622 struct drm_i915_private *i915 =
4623 container_of(work, struct drm_i915_private, mm.free_work);
4624 struct llist_node *freed;
26e12f89 4625
b1f788c6
CW
4626 /* All file-owned VMA should have been released by this point through
4627 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4628 * However, the object may also be bound into the global GTT (e.g.
4629 * older GPUs without per-process support, or for direct access through
4630 * the GTT either for the user or for scanout). Those VMA still need to
4631 * unbound now.
4632 */
1488fc08 4633
0f763ff3 4634 spin_lock(&i915->mm.free_lock);
5ad08be7 4635 while ((freed = llist_del_all(&i915->mm.free_list))) {
0f763ff3
CW
4636 spin_unlock(&i915->mm.free_lock);
4637
fbbd37b3 4638 __i915_gem_free_objects(i915, freed);
5ad08be7 4639 if (need_resched())
0f763ff3
CW
4640 return;
4641
4642 spin_lock(&i915->mm.free_lock);
5ad08be7 4643 }
0f763ff3 4644 spin_unlock(&i915->mm.free_lock);
fbbd37b3 4645}
a071fa00 4646
fbbd37b3
CW
4647static void __i915_gem_free_object_rcu(struct rcu_head *head)
4648{
4649 struct drm_i915_gem_object *obj =
4650 container_of(head, typeof(*obj), rcu);
4651 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4652
4653 /* We can't simply use call_rcu() from i915_gem_free_object()
4654 * as we need to block whilst unbinding, and the call_rcu
4655 * task may be called from softirq context. So we take a
4656 * detour through a worker.
4657 */
4658 if (llist_add(&obj->freed, &i915->mm.free_list))
4659 schedule_work(&i915->mm.free_work);
4660}
656bfa3a 4661
fbbd37b3
CW
4662void i915_gem_free_object(struct drm_gem_object *gem_obj)
4663{
4664 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4665
bc0629a7
CW
4666 if (obj->mm.quirked)
4667 __i915_gem_object_unpin_pages(obj);
4668
340fbd8c 4669 if (discard_backing_storage(obj))
a4f5ea64 4670 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4671
fbbd37b3
CW
4672 /* Before we free the object, make sure any pure RCU-only
4673 * read-side critical sections are complete, e.g.
4674 * i915_gem_busy_ioctl(). For the corresponding synchronized
4675 * lookup see i915_gem_object_lookup_rcu().
4676 */
4677 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4678}
4679
f8a7fde4
CW
4680void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4681{
4682 lockdep_assert_held(&obj->base.dev->struct_mutex);
4683
d1b48c1e
CW
4684 if (!i915_gem_object_has_active_reference(obj) &&
4685 i915_gem_object_is_active(obj))
f8a7fde4
CW
4686 i915_gem_object_set_active_reference(obj);
4687 else
4688 i915_gem_object_put(obj);
4689}
4690
0fe7ad04 4691static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3033acab 4692{
0fe7ad04 4693 struct i915_gem_context *kernel_context = i915->kernel_context;
3033acab
CW
4694 struct intel_engine_cs *engine;
4695 enum intel_engine_id id;
4696
0fe7ad04
CW
4697 for_each_engine(engine, i915, id) {
4698 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4699 GEM_BUG_ON(engine->last_retired_context != kernel_context);
4700 }
3033acab
CW
4701}
4702
24145517
CW
4703void i915_gem_sanitize(struct drm_i915_private *i915)
4704{
f36325f3
CW
4705 if (i915_terminally_wedged(&i915->gpu_error)) {
4706 mutex_lock(&i915->drm.struct_mutex);
4707 i915_gem_unset_wedged(i915);
4708 mutex_unlock(&i915->drm.struct_mutex);
4709 }
4710
24145517
CW
4711 /*
4712 * If we inherit context state from the BIOS or earlier occupants
4713 * of the GPU, the GPU may be in an inconsistent state when we
4714 * try to take over. The only way to remove the earlier state
4715 * is by resetting. However, resetting on earlier gen is tricky as
4716 * it may impact the display and we are uncertain about the stability
ea117b8d 4717 * of the reset, so this could be applied to even earlier gen.
24145517 4718 */
ea117b8d 4719 if (INTEL_GEN(i915) >= 5) {
24145517
CW
4720 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4721 WARN_ON(reset && reset != -ENODEV);
4722 }
4723}
4724
bf9e8429 4725int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4726{
bf9e8429 4727 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4728 int ret;
28dfe52a 4729
c998e8a0 4730 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4731 intel_suspend_gt_powersave(dev_priv);
4732
45c5f202 4733 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4734
4735 /* We have to flush all the executing contexts to main memory so
4736 * that they can saved in the hibernation image. To ensure the last
4737 * context image is coherent, we have to switch away from it. That
4738 * leaves the dev_priv->kernel_context still active when
4739 * we actually suspend, and its image in memory may not match the GPU
4740 * state. Fortunately, the kernel_context is disposable and we do
4741 * not rely on its state.
4742 */
dda4b8f7
CW
4743 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4744 ret = i915_gem_switch_to_kernel_context(dev_priv);
4745 if (ret)
4746 goto err_unlock;
5ab57c70 4747
dda4b8f7
CW
4748 ret = i915_gem_wait_for_idle(dev_priv,
4749 I915_WAIT_INTERRUPTIBLE |
4750 I915_WAIT_LOCKED);
4751 if (ret && ret != -EIO)
4752 goto err_unlock;
f7403347 4753
dda4b8f7
CW
4754 assert_kernel_context_is_current(dev_priv);
4755 }
829a0af2 4756 i915_gem_contexts_lost(dev_priv);
45c5f202
CW
4757 mutex_unlock(&dev->struct_mutex);
4758
63987bfe
SAK
4759 intel_guc_suspend(dev_priv);
4760
737b1506 4761 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4762 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4763
4764 /* As the idle_work is rearming if it detects a race, play safe and
4765 * repeat the flush until it is definitely idle.
4766 */
7c26240e 4767 drain_delayed_work(&dev_priv->gt.idle_work);
bdeb9785 4768
bdcf120b
CW
4769 /* Assert that we sucessfully flushed all the work and
4770 * reset the GPU back to its idle, low power state.
4771 */
67d97da3 4772 WARN_ON(dev_priv->gt.awake);
fc692bd3
CW
4773 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4774 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
bdcf120b 4775
1c777c5d
ID
4776 /*
4777 * Neither the BIOS, ourselves or any other kernel
4778 * expects the system to be in execlists mode on startup,
4779 * so we need to reset the GPU back to legacy mode. And the only
4780 * known way to disable logical contexts is through a GPU reset.
4781 *
4782 * So in order to leave the system in a known default configuration,
4783 * always reset the GPU upon unload and suspend. Afterwards we then
4784 * clean up the GEM state tracking, flushing off the requests and
4785 * leaving the system in a known idle state.
4786 *
4787 * Note that is of the upmost importance that the GPU is idle and
4788 * all stray writes are flushed *before* we dismantle the backing
4789 * storage for the pinned objects.
4790 *
4791 * However, since we are uncertain that resetting the GPU on older
4792 * machines is a good idea, we don't - just in case it leaves the
4793 * machine in an unusable condition.
4794 */
24145517 4795 i915_gem_sanitize(dev_priv);
cad9946c
CW
4796
4797 intel_runtime_pm_put(dev_priv);
4798 return 0;
1c777c5d 4799
c998e8a0 4800err_unlock:
45c5f202 4801 mutex_unlock(&dev->struct_mutex);
c998e8a0 4802 intel_runtime_pm_put(dev_priv);
45c5f202 4803 return ret;
673a394b
EA
4804}
4805
bf9e8429 4806void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4807{
bf9e8429 4808 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4809
31ab49ab
ID
4810 WARN_ON(dev_priv->gt.awake);
4811
5ab57c70 4812 mutex_lock(&dev->struct_mutex);
275a991c 4813 i915_gem_restore_gtt_mappings(dev_priv);
269e6ea9 4814 i915_gem_restore_fences(dev_priv);
5ab57c70
CW
4815
4816 /* As we didn't flush the kernel context before suspend, we cannot
4817 * guarantee that the context image is complete. So let's just reset
4818 * it and start again.
4819 */
821ed7df 4820 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4821
4822 mutex_unlock(&dev->struct_mutex);
4823}
4824
c6be607a 4825void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4826{
c6be607a 4827 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4828 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4829 return;
4830
4831 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4832 DISP_TILE_SURFACE_SWIZZLING);
4833
5db94019 4834 if (IS_GEN5(dev_priv))
11782b02
DV
4835 return;
4836
f691e2f4 4837 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4838 if (IS_GEN6(dev_priv))
6b26c86d 4839 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4840 else if (IS_GEN7(dev_priv))
6b26c86d 4841 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4842 else if (IS_GEN8(dev_priv))
31a5336e 4843 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4844 else
4845 BUG();
f691e2f4 4846}
e21af88d 4847
50a0bc90 4848static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4849{
81e7f200
VS
4850 I915_WRITE(RING_CTL(base), 0);
4851 I915_WRITE(RING_HEAD(base), 0);
4852 I915_WRITE(RING_TAIL(base), 0);
4853 I915_WRITE(RING_START(base), 0);
4854}
4855
50a0bc90 4856static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4857{
50a0bc90
TU
4858 if (IS_I830(dev_priv)) {
4859 init_unused_ring(dev_priv, PRB1_BASE);
4860 init_unused_ring(dev_priv, SRB0_BASE);
4861 init_unused_ring(dev_priv, SRB1_BASE);
4862 init_unused_ring(dev_priv, SRB2_BASE);
4863 init_unused_ring(dev_priv, SRB3_BASE);
4864 } else if (IS_GEN2(dev_priv)) {
4865 init_unused_ring(dev_priv, SRB0_BASE);
4866 init_unused_ring(dev_priv, SRB1_BASE);
4867 } else if (IS_GEN3(dev_priv)) {
4868 init_unused_ring(dev_priv, PRB1_BASE);
4869 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4870 }
4871}
4872
20a8a74a 4873static int __i915_gem_restart_engines(void *data)
4fc7c971 4874{
20a8a74a 4875 struct drm_i915_private *i915 = data;
e2f80391 4876 struct intel_engine_cs *engine;
3b3f1650 4877 enum intel_engine_id id;
20a8a74a
CW
4878 int err;
4879
4880 for_each_engine(engine, i915, id) {
4881 err = engine->init_hw(engine);
4882 if (err)
4883 return err;
4884 }
4885
4886 return 0;
4887}
4888
4889int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4890{
d200cda6 4891 int ret;
4fc7c971 4892
de867c20
CW
4893 dev_priv->gt.last_init_time = ktime_get();
4894
5e4f5189
CW
4895 /* Double layer security blanket, see i915_gem_init() */
4896 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4897
0031fb96 4898 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4899 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4900
772c2a51 4901 if (IS_HASWELL(dev_priv))
50a0bc90 4902 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4903 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4904
6e266956 4905 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4906 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4907 u32 temp = I915_READ(GEN7_MSG_CTL);
4908 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4909 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4910 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4911 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4912 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4913 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4914 }
88a2b2a3
BW
4915 }
4916
c6be607a 4917 i915_gem_init_swizzling(dev_priv);
4fc7c971 4918
d5abdfda
DV
4919 /*
4920 * At least 830 can leave some of the unused rings
4921 * "active" (ie. head != tail) after resume which
4922 * will prevent c3 entry. Makes sure all unused rings
4923 * are totally idle.
4924 */
50a0bc90 4925 init_unused_rings(dev_priv);
d5abdfda 4926
ed54c1a1 4927 BUG_ON(!dev_priv->kernel_context);
6f74b36b
CW
4928 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
4929 ret = -EIO;
4930 goto out;
4931 }
90638cc1 4932
c6be607a 4933 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4934 if (ret) {
4935 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4936 goto out;
4937 }
4938
4939 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4940 ret = __i915_gem_restart_engines(dev_priv);
4941 if (ret)
4942 goto out;
99433931 4943
bf9e8429 4944 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4945
b8991403
OM
4946 /* We can't enable contexts until all firmware is loaded */
4947 ret = intel_uc_init_hw(dev_priv);
4948 if (ret)
4949 goto out;
33a732f4 4950
5e4f5189
CW
4951out:
4952 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4953 return ret;
8187a2b7
ZN
4954}
4955
39df9190
CW
4956bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4957{
4958 if (INTEL_INFO(dev_priv)->gen < 6)
4959 return false;
4960
4961 /* TODO: make semaphores and Execlists play nicely together */
4f044a88 4962 if (i915_modparams.enable_execlists)
39df9190
CW
4963 return false;
4964
4965 if (value >= 0)
4966 return value;
4967
39df9190 4968 /* Enable semaphores on SNB when IO remapping is off */
80debff8 4969 if (IS_GEN6(dev_priv) && intel_vtd_active())
39df9190 4970 return false;
39df9190
CW
4971
4972 return true;
4973}
4974
2ab0a3c2
CW
4975static int __intel_engines_record_defaults(struct drm_i915_private *i915)
4976{
4977 struct i915_gem_context *ctx;
4978 struct intel_engine_cs *engine;
4979 enum intel_engine_id id;
4980 int err;
4981
4982 /*
4983 * As we reset the gpu during very early sanitisation, the current
4984 * register state on the GPU should reflect its defaults values.
4985 * We load a context onto the hw (with restore-inhibit), then switch
4986 * over to a second context to save that default register state. We
4987 * can then prime every new context with that state so they all start
4988 * from the same default HW values.
4989 */
4990
4991 ctx = i915_gem_context_create_kernel(i915, 0);
4992 if (IS_ERR(ctx))
4993 return PTR_ERR(ctx);
4994
4995 for_each_engine(engine, i915, id) {
4996 struct drm_i915_gem_request *rq;
4997
4998 rq = i915_gem_request_alloc(engine, ctx);
4999 if (IS_ERR(rq)) {
5000 err = PTR_ERR(rq);
5001 goto out_ctx;
5002 }
5003
5004 err = i915_switch_context(rq);
5005 if (engine->init_context)
5006 err = engine->init_context(rq);
5007
5008 __i915_add_request(rq, true);
5009 if (err)
5010 goto err_active;
5011 }
5012
5013 err = i915_gem_switch_to_kernel_context(i915);
5014 if (err)
5015 goto err_active;
5016
5017 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5018 if (err)
5019 goto err_active;
5020
5021 assert_kernel_context_is_current(i915);
5022
5023 for_each_engine(engine, i915, id) {
5024 struct i915_vma *state;
5025
5026 state = ctx->engine[id].state;
5027 if (!state)
5028 continue;
5029
5030 /*
5031 * As we will hold a reference to the logical state, it will
5032 * not be torn down with the context, and importantly the
5033 * object will hold onto its vma (making it possible for a
5034 * stray GTT write to corrupt our defaults). Unmap the vma
5035 * from the GTT to prevent such accidents and reclaim the
5036 * space.
5037 */
5038 err = i915_vma_unbind(state);
5039 if (err)
5040 goto err_active;
5041
5042 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5043 if (err)
5044 goto err_active;
5045
5046 engine->default_state = i915_gem_object_get(state->obj);
5047 }
5048
5049 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5050 unsigned int found = intel_engines_has_context_isolation(i915);
5051
5052 /*
5053 * Make sure that classes with multiple engine instances all
5054 * share the same basic configuration.
5055 */
5056 for_each_engine(engine, i915, id) {
5057 unsigned int bit = BIT(engine->uabi_class);
5058 unsigned int expected = engine->default_state ? bit : 0;
5059
5060 if ((found & bit) != expected) {
5061 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5062 engine->uabi_class, engine->name);
5063 }
5064 }
5065 }
5066
5067out_ctx:
5068 i915_gem_context_set_closed(ctx);
5069 i915_gem_context_put(ctx);
5070 return err;
5071
5072err_active:
5073 /*
5074 * If we have to abandon now, we expect the engines to be idle
5075 * and ready to be torn-down. First try to flush any remaining
5076 * request, ensure we are pointing at the kernel context and
5077 * then remove it.
5078 */
5079 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5080 goto out_ctx;
5081
5082 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5083 goto out_ctx;
5084
5085 i915_gem_contexts_lost(i915);
5086 goto out_ctx;
5087}
5088
bf9e8429 5089int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 5090{
1070a42b
CW
5091 int ret;
5092
da9fe3f3
MA
5093 /*
5094 * We need to fallback to 4K pages since gvt gtt handling doesn't
5095 * support huge page entries - we will need to check either hypervisor
5096 * mm can support huge guest page or just do emulation in gvt.
5097 */
5098 if (intel_vgpu_active(dev_priv))
5099 mkwrite_device_info(dev_priv)->page_sizes =
5100 I915_GTT_PAGE_SIZE_4K;
5101
94312828 5102 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 5103
4f044a88 5104 if (!i915_modparams.enable_execlists) {
821ed7df 5105 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 5106 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 5107 } else {
821ed7df 5108 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 5109 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
5110 }
5111
ef78970a
CW
5112 ret = i915_gem_init_userptr(dev_priv);
5113 if (ret)
5114 return ret;
5115
5e4f5189
CW
5116 /* This is just a security blanket to placate dragons.
5117 * On some systems, we very sporadically observe that the first TLBs
5118 * used by the CS may be stale, despite us poking the TLB reset. If
5119 * we hold the forcewake during initialisation these problems
5120 * just magically go away.
5121 */
ef78970a 5122 mutex_lock(&dev_priv->drm.struct_mutex);
5e4f5189
CW
5123 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5124
f6b9d5ca
CW
5125 ret = i915_gem_init_ggtt(dev_priv);
5126 if (ret)
5127 goto out_unlock;
d62b4892 5128
829a0af2 5129 ret = i915_gem_contexts_init(dev_priv);
7bcc3777
JN
5130 if (ret)
5131 goto out_unlock;
2fa48d8d 5132
bf9e8429 5133 ret = intel_engines_init(dev_priv);
35a57ffb 5134 if (ret)
7bcc3777 5135 goto out_unlock;
2fa48d8d 5136
0ca7bb89
CW
5137 intel_init_gt_powersave(dev_priv);
5138
bf9e8429 5139 ret = i915_gem_init_hw(dev_priv);
87b7ddc7
CW
5140 if (ret)
5141 goto out_unlock;
5142
5143 /*
5144 * Despite its name intel_init_clock_gating applies both display
5145 * clock gating workarounds; GT mmio workarounds and the occasional
5146 * GT power context workaround. Worse, sometimes it includes a context
5147 * register workaround which we need to apply before we record the
5148 * default HW state for all contexts.
5149 *
5150 * FIXME: break up the workarounds and apply them at the right time!
5151 */
5152 intel_init_clock_gating(dev_priv);
5153
2ab0a3c2 5154 ret = __intel_engines_record_defaults(dev_priv);
87b7ddc7 5155out_unlock:
60990320 5156 if (ret == -EIO) {
d9729391
CW
5157 mutex_lock(&dev_priv->drm.struct_mutex);
5158
7e21d648 5159 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
5160 * wedged. But we only want to do this where the GPU is angry,
5161 * for all other failure, such as an allocation failure, bail.
5162 */
6f74b36b
CW
5163 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5164 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5165 i915_gem_set_wedged(dev_priv);
5166 }
d9729391
CW
5167
5168 /* Minimal basic recovery for KMS */
5169 ret = i915_ggtt_enable_hw(dev_priv);
5170 i915_gem_restore_gtt_mappings(dev_priv);
5171 i915_gem_restore_fences(dev_priv);
5172 intel_init_clock_gating(dev_priv);
5173
5174 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 5175 }
5e4f5189 5176 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 5177 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 5178
60990320 5179 return ret;
1070a42b
CW
5180}
5181
24145517
CW
5182void i915_gem_init_mmio(struct drm_i915_private *i915)
5183{
5184 i915_gem_sanitize(i915);
5185}
5186
8187a2b7 5187void
cb15d9f8 5188i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 5189{
e2f80391 5190 struct intel_engine_cs *engine;
3b3f1650 5191 enum intel_engine_id id;
8187a2b7 5192
3b3f1650 5193 for_each_engine(engine, dev_priv, id)
117897f4 5194 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
5195}
5196
40ae4e16
ID
5197void
5198i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5199{
49ef5294 5200 int i;
40ae4e16
ID
5201
5202 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5203 !IS_CHERRYVIEW(dev_priv))
5204 dev_priv->num_fence_regs = 32;
73f67aa8
JN
5205 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5206 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5207 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
5208 dev_priv->num_fence_regs = 16;
5209 else
5210 dev_priv->num_fence_regs = 8;
5211
c033666a 5212 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5213 dev_priv->num_fence_regs =
5214 I915_READ(vgtif_reg(avail_rs.fence_num));
5215
5216 /* Initialize fence registers to zero */
49ef5294
CW
5217 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5218 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5219
5220 fence->i915 = dev_priv;
5221 fence->id = i;
5222 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5223 }
4362f4f6 5224 i915_gem_restore_fences(dev_priv);
40ae4e16 5225
4362f4f6 5226 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
5227}
5228
73cb9701 5229int
cb15d9f8 5230i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 5231{
a933568e 5232 int err = -ENOMEM;
42dcedd4 5233
a933568e
TU
5234 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5235 if (!dev_priv->objects)
73cb9701 5236 goto err_out;
73cb9701 5237
a933568e
TU
5238 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5239 if (!dev_priv->vmas)
73cb9701 5240 goto err_objects;
73cb9701 5241
d1b48c1e
CW
5242 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5243 if (!dev_priv->luts)
5244 goto err_vmas;
5245
a933568e
TU
5246 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5247 SLAB_HWCACHE_ALIGN |
5248 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 5249 SLAB_TYPESAFE_BY_RCU);
a933568e 5250 if (!dev_priv->requests)
d1b48c1e 5251 goto err_luts;
73cb9701 5252
52e54209
CW
5253 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5254 SLAB_HWCACHE_ALIGN |
5255 SLAB_RECLAIM_ACCOUNT);
5256 if (!dev_priv->dependencies)
5257 goto err_requests;
5258
c5cf9a91
CW
5259 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5260 if (!dev_priv->priorities)
5261 goto err_dependencies;
5262
73cb9701
CW
5263 mutex_lock(&dev_priv->drm.struct_mutex);
5264 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 5265 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
5266 mutex_unlock(&dev_priv->drm.struct_mutex);
5267 if (err)
c5cf9a91 5268 goto err_priorities;
673a394b 5269
fbbd37b3 5270 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
f2123818
CW
5271
5272 spin_lock_init(&dev_priv->mm.obj_lock);
87701b4b 5273 spin_lock_init(&dev_priv->mm.free_lock);
fbbd37b3 5274 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
5275 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5276 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5277 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 5278 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
f2123818 5279
67d97da3 5280 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5281 i915_gem_retire_work_handler);
67d97da3 5282 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5283 i915_gem_idle_work_handler);
1f15b76f 5284 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5285 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5286
6f633402
JL
5287 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5288
b5add959 5289 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701 5290
465c403c
MA
5291 err = i915_gemfs_init(dev_priv);
5292 if (err)
5293 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5294
73cb9701
CW
5295 return 0;
5296
c5cf9a91
CW
5297err_priorities:
5298 kmem_cache_destroy(dev_priv->priorities);
52e54209
CW
5299err_dependencies:
5300 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
5301err_requests:
5302 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
5303err_luts:
5304 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
5305err_vmas:
5306 kmem_cache_destroy(dev_priv->vmas);
5307err_objects:
5308 kmem_cache_destroy(dev_priv->objects);
5309err_out:
5310 return err;
673a394b 5311}
71acb5eb 5312
cb15d9f8 5313void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 5314{
c4d4c1c6 5315 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 5316 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 5317 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 5318
ea84aa77
MA
5319 mutex_lock(&dev_priv->drm.struct_mutex);
5320 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5321 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5322 mutex_unlock(&dev_priv->drm.struct_mutex);
5323
c5cf9a91 5324 kmem_cache_destroy(dev_priv->priorities);
52e54209 5325 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 5326 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 5327 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
5328 kmem_cache_destroy(dev_priv->vmas);
5329 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
5330
5331 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5332 rcu_barrier();
465c403c
MA
5333
5334 i915_gemfs_fini(dev_priv);
d64aa096
ID
5335}
5336
6a800eab
CW
5337int i915_gem_freeze(struct drm_i915_private *dev_priv)
5338{
d0aa301a
CW
5339 /* Discard all purgeable objects, let userspace recover those as
5340 * required after resuming.
5341 */
6a800eab 5342 i915_gem_shrink_all(dev_priv);
6a800eab 5343
6a800eab
CW
5344 return 0;
5345}
5346
461fb99c
CW
5347int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5348{
5349 struct drm_i915_gem_object *obj;
7aab2d53
CW
5350 struct list_head *phases[] = {
5351 &dev_priv->mm.unbound_list,
5352 &dev_priv->mm.bound_list,
5353 NULL
5354 }, **p;
461fb99c
CW
5355
5356 /* Called just before we write the hibernation image.
5357 *
5358 * We need to update the domain tracking to reflect that the CPU
5359 * will be accessing all the pages to create and restore from the
5360 * hibernation, and so upon restoration those pages will be in the
5361 * CPU domain.
5362 *
5363 * To make sure the hibernation image contains the latest state,
5364 * we update that state just before writing out the image.
7aab2d53
CW
5365 *
5366 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5367 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5368 */
5369
912d572d 5370 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
17b93c40 5371 i915_gem_drain_freed_objects(dev_priv);
461fb99c 5372
f2123818 5373 spin_lock(&dev_priv->mm.obj_lock);
7aab2d53 5374 for (p = phases; *p; p++) {
f2123818 5375 list_for_each_entry(obj, *p, mm.link)
e27ab73d 5376 __start_cpu_write(obj);
461fb99c 5377 }
f2123818 5378 spin_unlock(&dev_priv->mm.obj_lock);
461fb99c
CW
5379
5380 return 0;
5381}
5382
f787a5f5 5383void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5384{
f787a5f5 5385 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 5386 struct drm_i915_gem_request *request;
b962442e
EA
5387
5388 /* Clean up our request list when the client is going away, so that
5389 * later retire_requests won't dereference our soon-to-be-gone
5390 * file_priv.
5391 */
1c25595f 5392 spin_lock(&file_priv->mm.lock);
c8659efa 5393 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5394 request->file_priv = NULL;
1c25595f 5395 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5396}
5397
829a0af2 5398int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5399{
5400 struct drm_i915_file_private *file_priv;
e422b888 5401 int ret;
b29c19b6 5402
c4c29d7b 5403 DRM_DEBUG("\n");
b29c19b6
CW
5404
5405 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5406 if (!file_priv)
5407 return -ENOMEM;
5408
5409 file->driver_priv = file_priv;
829a0af2 5410 file_priv->dev_priv = i915;
ab0e7ff9 5411 file_priv->file = file;
b29c19b6
CW
5412
5413 spin_lock_init(&file_priv->mm.lock);
5414 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5415
c80ff16e 5416 file_priv->bsd_engine = -1;
de1add36 5417
829a0af2 5418 ret = i915_gem_context_open(i915, file);
e422b888
BW
5419 if (ret)
5420 kfree(file_priv);
b29c19b6 5421
e422b888 5422 return ret;
b29c19b6
CW
5423}
5424
b680c37a
DV
5425/**
5426 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5427 * @old: current GEM buffer for the frontbuffer slots
5428 * @new: new GEM buffer for the frontbuffer slots
5429 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5430 *
5431 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5432 * from @old and setting them in @new. Both @old and @new can be NULL.
5433 */
a071fa00
DV
5434void i915_gem_track_fb(struct drm_i915_gem_object *old,
5435 struct drm_i915_gem_object *new,
5436 unsigned frontbuffer_bits)
5437{
faf5bf0a
CW
5438 /* Control of individual bits within the mask are guarded by
5439 * the owning plane->mutex, i.e. we can never see concurrent
5440 * manipulation of individual bits. But since the bitfield as a whole
5441 * is updated using RMW, we need to use atomics in order to update
5442 * the bits.
5443 */
5444 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5445 sizeof(atomic_t) * BITS_PER_BYTE);
5446
a071fa00 5447 if (old) {
faf5bf0a
CW
5448 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5449 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5450 }
5451
5452 if (new) {
faf5bf0a
CW
5453 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5454 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5455 }
5456}
5457
ea70299d
DG
5458/* Allocate a new GEM object and fill it with the supplied data */
5459struct drm_i915_gem_object *
12d79d78 5460i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5461 const void *data, size_t size)
5462{
5463 struct drm_i915_gem_object *obj;
be062fa4
CW
5464 struct file *file;
5465 size_t offset;
5466 int err;
ea70299d 5467
12d79d78 5468 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5469 if (IS_ERR(obj))
ea70299d
DG
5470 return obj;
5471
ce8ff099 5472 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5473
be062fa4
CW
5474 file = obj->base.filp;
5475 offset = 0;
5476 do {
5477 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5478 struct page *page;
5479 void *pgdata, *vaddr;
ea70299d 5480
be062fa4
CW
5481 err = pagecache_write_begin(file, file->f_mapping,
5482 offset, len, 0,
5483 &page, &pgdata);
5484 if (err < 0)
5485 goto fail;
ea70299d 5486
be062fa4
CW
5487 vaddr = kmap(page);
5488 memcpy(vaddr, data, len);
5489 kunmap(page);
5490
5491 err = pagecache_write_end(file, file->f_mapping,
5492 offset, len, len,
5493 page, pgdata);
5494 if (err < 0)
5495 goto fail;
5496
5497 size -= len;
5498 data += len;
5499 offset += len;
5500 } while (size);
ea70299d
DG
5501
5502 return obj;
5503
5504fail:
f8c417cd 5505 i915_gem_object_put(obj);
be062fa4 5506 return ERR_PTR(err);
ea70299d 5507}
96d77634
CW
5508
5509struct scatterlist *
5510i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5511 unsigned int n,
5512 unsigned int *offset)
5513{
a4f5ea64 5514 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5515 struct scatterlist *sg;
5516 unsigned int idx, count;
5517
5518 might_sleep();
5519 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5520 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5521
5522 /* As we iterate forward through the sg, we record each entry in a
5523 * radixtree for quick repeated (backwards) lookups. If we have seen
5524 * this index previously, we will have an entry for it.
5525 *
5526 * Initial lookup is O(N), but this is amortized to O(1) for
5527 * sequential page access (where each new request is consecutive
5528 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5529 * i.e. O(1) with a large constant!
5530 */
5531 if (n < READ_ONCE(iter->sg_idx))
5532 goto lookup;
5533
5534 mutex_lock(&iter->lock);
5535
5536 /* We prefer to reuse the last sg so that repeated lookup of this
5537 * (or the subsequent) sg are fast - comparing against the last
5538 * sg is faster than going through the radixtree.
5539 */
5540
5541 sg = iter->sg_pos;
5542 idx = iter->sg_idx;
5543 count = __sg_page_count(sg);
5544
5545 while (idx + count <= n) {
5546 unsigned long exception, i;
5547 int ret;
5548
5549 /* If we cannot allocate and insert this entry, or the
5550 * individual pages from this range, cancel updating the
5551 * sg_idx so that on this lookup we are forced to linearly
5552 * scan onwards, but on future lookups we will try the
5553 * insertion again (in which case we need to be careful of
5554 * the error return reporting that we have already inserted
5555 * this index).
5556 */
5557 ret = radix_tree_insert(&iter->radix, idx, sg);
5558 if (ret && ret != -EEXIST)
5559 goto scan;
5560
5561 exception =
5562 RADIX_TREE_EXCEPTIONAL_ENTRY |
5563 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5564 for (i = 1; i < count; i++) {
5565 ret = radix_tree_insert(&iter->radix, idx + i,
5566 (void *)exception);
5567 if (ret && ret != -EEXIST)
5568 goto scan;
5569 }
5570
5571 idx += count;
5572 sg = ____sg_next(sg);
5573 count = __sg_page_count(sg);
5574 }
5575
5576scan:
5577 iter->sg_pos = sg;
5578 iter->sg_idx = idx;
5579
5580 mutex_unlock(&iter->lock);
5581
5582 if (unlikely(n < idx)) /* insertion completed by another thread */
5583 goto lookup;
5584
5585 /* In case we failed to insert the entry into the radixtree, we need
5586 * to look beyond the current sg.
5587 */
5588 while (idx + count <= n) {
5589 idx += count;
5590 sg = ____sg_next(sg);
5591 count = __sg_page_count(sg);
5592 }
5593
5594 *offset = n - idx;
5595 return sg;
5596
5597lookup:
5598 rcu_read_lock();
5599
5600 sg = radix_tree_lookup(&iter->radix, n);
5601 GEM_BUG_ON(!sg);
5602
5603 /* If this index is in the middle of multi-page sg entry,
5604 * the radixtree will contain an exceptional entry that points
5605 * to the start of that range. We will return the pointer to
5606 * the base page and the offset of this page within the
5607 * sg entry's range.
5608 */
5609 *offset = 0;
5610 if (unlikely(radix_tree_exception(sg))) {
5611 unsigned long base =
5612 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5613
5614 sg = radix_tree_lookup(&iter->radix, base);
5615 GEM_BUG_ON(!sg);
5616
5617 *offset = n - base;
5618 }
5619
5620 rcu_read_unlock();
5621
5622 return sg;
5623}
5624
5625struct page *
5626i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5627{
5628 struct scatterlist *sg;
5629 unsigned int offset;
5630
5631 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5632
5633 sg = i915_gem_object_get_sg(obj, n, &offset);
5634 return nth_page(sg_page(sg), offset);
5635}
5636
5637/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5638struct page *
5639i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5640 unsigned int n)
5641{
5642 struct page *page;
5643
5644 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5645 if (!obj->mm.dirty)
96d77634
CW
5646 set_page_dirty(page);
5647
5648 return page;
5649}
5650
5651dma_addr_t
5652i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5653 unsigned long n)
5654{
5655 struct scatterlist *sg;
5656 unsigned int offset;
5657
5658 sg = i915_gem_object_get_sg(obj, n, &offset);
5659 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5660}
935a2f77 5661
8eeb7906
CW
5662int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5663{
5664 struct sg_table *pages;
5665 int err;
5666
5667 if (align > obj->base.size)
5668 return -EINVAL;
5669
5670 if (obj->ops == &i915_gem_phys_ops)
5671 return 0;
5672
5673 if (obj->ops != &i915_gem_object_ops)
5674 return -EINVAL;
5675
5676 err = i915_gem_object_unbind(obj);
5677 if (err)
5678 return err;
5679
5680 mutex_lock(&obj->mm.lock);
5681
5682 if (obj->mm.madv != I915_MADV_WILLNEED) {
5683 err = -EFAULT;
5684 goto err_unlock;
5685 }
5686
5687 if (obj->mm.quirked) {
5688 err = -EFAULT;
5689 goto err_unlock;
5690 }
5691
5692 if (obj->mm.mapping) {
5693 err = -EBUSY;
5694 goto err_unlock;
5695 }
5696
f2123818
CW
5697 pages = fetch_and_zero(&obj->mm.pages);
5698 if (pages) {
5699 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5700
5701 __i915_gem_object_reset_page_iter(obj);
5702
5703 spin_lock(&i915->mm.obj_lock);
5704 list_del(&obj->mm.link);
5705 spin_unlock(&i915->mm.obj_lock);
5706 }
5707
8eeb7906
CW
5708 obj->ops = &i915_gem_phys_ops;
5709
8fb6a5df 5710 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
5711 if (err)
5712 goto err_xfer;
5713
5714 /* Perma-pin (until release) the physical set of pages */
5715 __i915_gem_object_pin_pages(obj);
5716
5717 if (!IS_ERR_OR_NULL(pages))
5718 i915_gem_object_ops.put_pages(obj, pages);
5719 mutex_unlock(&obj->mm.lock);
5720 return 0;
5721
5722err_xfer:
5723 obj->ops = &i915_gem_object_ops;
5724 obj->mm.pages = pages;
5725err_unlock:
5726 mutex_unlock(&obj->mm.lock);
5727 return err;
5728}
5729
935a2f77
CW
5730#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5731#include "selftests/scatterlist.c"
66d9cb5d 5732#include "selftests/mock_gem_device.c"
44653988 5733#include "selftests/huge_gem_object.c"
4049866f 5734#include "selftests/huge_pages.c"
8335fd65 5735#include "selftests/i915_gem_object.c"
17059450 5736#include "selftests/i915_gem_coherency.c"
935a2f77 5737#endif