]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm: add pseudo filesystem for shared inodes
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
7dc19d5a
DC
57static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58 struct shrink_control *sc);
59static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60 struct shrink_control *sc);
d9973b43
CW
61static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 63static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
79e53945
JB
162int
163i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
79e53945 165{
93d18799 166 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 167 struct drm_i915_gem_init *args = data;
2021746e 168
7bb6fb8d
DV
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
2021746e
CW
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
79e53945 175
f534bc0b
DV
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
79e53945 180 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
93d18799 183 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
184 mutex_unlock(&dev->struct_mutex);
185
2021746e 186 return 0;
673a394b
EA
187}
188
5a125c3c
EA
189int
190i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 191 struct drm_file *file)
5a125c3c 192{
73aa808f 193 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 194 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
5a125c3c 197
6299f992 198 pinned = 0;
73aa808f 199 mutex_lock(&dev->struct_mutex);
35c20a60 200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 201 if (i915_gem_obj_is_pinned(obj))
f343c5f6 202 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 203 mutex_unlock(&dev->struct_mutex);
5a125c3c 204
853ba5d2 205 args->aper_size = dev_priv->gtt.base.total;
0206e353 206 args->aper_available_size = args->aper_size - pinned;
6299f992 207
5a125c3c
EA
208 return 0;
209}
210
42dcedd4
CW
211void *i915_gem_object_alloc(struct drm_device *dev)
212{
213 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 214 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
215}
216
217void i915_gem_object_free(struct drm_i915_gem_object *obj)
218{
219 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
220 kmem_cache_free(dev_priv->slab, obj);
221}
222
ff72145b
DA
223static int
224i915_gem_create(struct drm_file *file,
225 struct drm_device *dev,
226 uint64_t size,
227 uint32_t *handle_p)
673a394b 228{
05394f39 229 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
230 int ret;
231 u32 handle;
673a394b 232
ff72145b 233 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
234 if (size == 0)
235 return -EINVAL;
673a394b
EA
236
237 /* Allocate the new object */
ff72145b 238 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
239 if (obj == NULL)
240 return -ENOMEM;
241
05394f39 242 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 243 /* drop reference from allocate - handle holds it now */
d861e338
DV
244 drm_gem_object_unreference_unlocked(&obj->base);
245 if (ret)
246 return ret;
202f2fef 247
ff72145b 248 *handle_p = handle;
673a394b
EA
249 return 0;
250}
251
ff72145b
DA
252int
253i915_gem_dumb_create(struct drm_file *file,
254 struct drm_device *dev,
255 struct drm_mode_create_dumb *args)
256{
257 /* have to work out size/pitch and return them */
de45eaf7 258 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
259 args->size = args->pitch * args->height;
260 return i915_gem_create(file, dev,
261 args->size, &args->handle);
262}
263
ff72145b
DA
264/**
265 * Creates a new mm object and returns a handle to it.
266 */
267int
268i915_gem_create_ioctl(struct drm_device *dev, void *data,
269 struct drm_file *file)
270{
271 struct drm_i915_gem_create *args = data;
63ed2cb2 272
ff72145b
DA
273 return i915_gem_create(file, dev,
274 args->size, &args->handle);
275}
276
8461d226
DV
277static inline int
278__copy_to_user_swizzled(char __user *cpu_vaddr,
279 const char *gpu_vaddr, int gpu_offset,
280 int length)
281{
282 int ret, cpu_offset = 0;
283
284 while (length > 0) {
285 int cacheline_end = ALIGN(gpu_offset + 1, 64);
286 int this_length = min(cacheline_end - gpu_offset, length);
287 int swizzled_gpu_offset = gpu_offset ^ 64;
288
289 ret = __copy_to_user(cpu_vaddr + cpu_offset,
290 gpu_vaddr + swizzled_gpu_offset,
291 this_length);
292 if (ret)
293 return ret + length;
294
295 cpu_offset += this_length;
296 gpu_offset += this_length;
297 length -= this_length;
298 }
299
300 return 0;
301}
302
8c59967c 303static inline int
4f0c7cfb
BW
304__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
305 const char __user *cpu_vaddr,
8c59967c
DV
306 int length)
307{
308 int ret, cpu_offset = 0;
309
310 while (length > 0) {
311 int cacheline_end = ALIGN(gpu_offset + 1, 64);
312 int this_length = min(cacheline_end - gpu_offset, length);
313 int swizzled_gpu_offset = gpu_offset ^ 64;
314
315 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
316 cpu_vaddr + cpu_offset,
317 this_length);
318 if (ret)
319 return ret + length;
320
321 cpu_offset += this_length;
322 gpu_offset += this_length;
323 length -= this_length;
324 }
325
326 return 0;
327}
328
d174bd64
DV
329/* Per-page copy function for the shmem pread fastpath.
330 * Flushes invalid cachelines before reading the target if
331 * needs_clflush is set. */
eb01459f 332static int
d174bd64
DV
333shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
334 char __user *user_data,
335 bool page_do_bit17_swizzling, bool needs_clflush)
336{
337 char *vaddr;
338 int ret;
339
e7e58eb5 340 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
341 return -EINVAL;
342
343 vaddr = kmap_atomic(page);
344 if (needs_clflush)
345 drm_clflush_virt_range(vaddr + shmem_page_offset,
346 page_length);
347 ret = __copy_to_user_inatomic(user_data,
348 vaddr + shmem_page_offset,
349 page_length);
350 kunmap_atomic(vaddr);
351
f60d7f0c 352 return ret ? -EFAULT : 0;
d174bd64
DV
353}
354
23c18c71
DV
355static void
356shmem_clflush_swizzled_range(char *addr, unsigned long length,
357 bool swizzled)
358{
e7e58eb5 359 if (unlikely(swizzled)) {
23c18c71
DV
360 unsigned long start = (unsigned long) addr;
361 unsigned long end = (unsigned long) addr + length;
362
363 /* For swizzling simply ensure that we always flush both
364 * channels. Lame, but simple and it works. Swizzled
365 * pwrite/pread is far from a hotpath - current userspace
366 * doesn't use it at all. */
367 start = round_down(start, 128);
368 end = round_up(end, 128);
369
370 drm_clflush_virt_range((void *)start, end - start);
371 } else {
372 drm_clflush_virt_range(addr, length);
373 }
374
375}
376
d174bd64
DV
377/* Only difference to the fast-path function is that this can handle bit17
378 * and uses non-atomic copy and kmap functions. */
379static int
380shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
381 char __user *user_data,
382 bool page_do_bit17_swizzling, bool needs_clflush)
383{
384 char *vaddr;
385 int ret;
386
387 vaddr = kmap(page);
388 if (needs_clflush)
23c18c71
DV
389 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
390 page_length,
391 page_do_bit17_swizzling);
d174bd64
DV
392
393 if (page_do_bit17_swizzling)
394 ret = __copy_to_user_swizzled(user_data,
395 vaddr, shmem_page_offset,
396 page_length);
397 else
398 ret = __copy_to_user(user_data,
399 vaddr + shmem_page_offset,
400 page_length);
401 kunmap(page);
402
f60d7f0c 403 return ret ? - EFAULT : 0;
d174bd64
DV
404}
405
eb01459f 406static int
dbf7bff0
DV
407i915_gem_shmem_pread(struct drm_device *dev,
408 struct drm_i915_gem_object *obj,
409 struct drm_i915_gem_pread *args,
410 struct drm_file *file)
eb01459f 411{
8461d226 412 char __user *user_data;
eb01459f 413 ssize_t remain;
8461d226 414 loff_t offset;
eb2c0c81 415 int shmem_page_offset, page_length, ret = 0;
8461d226 416 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 417 int prefaulted = 0;
8489731c 418 int needs_clflush = 0;
67d5a50c 419 struct sg_page_iter sg_iter;
eb01459f 420
2bb4629a 421 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
422 remain = args->size;
423
8461d226 424 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 425
8489731c
DV
426 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
427 /* If we're not in the cpu read domain, set ourself into the gtt
428 * read domain and manually flush cachelines (if required). This
429 * optimizes for the case when the gpu will dirty the data
430 * anyway again before the next pread happens. */
c76ce038 431 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
432 ret = i915_gem_object_wait_rendering(obj, true);
433 if (ret)
434 return ret;
8489731c 435 }
eb01459f 436
f60d7f0c
CW
437 ret = i915_gem_object_get_pages(obj);
438 if (ret)
439 return ret;
440
441 i915_gem_object_pin_pages(obj);
442
8461d226 443 offset = args->offset;
eb01459f 444
67d5a50c
ID
445 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
446 offset >> PAGE_SHIFT) {
2db76d7c 447 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
448
449 if (remain <= 0)
450 break;
451
eb01459f
EA
452 /* Operation in this page
453 *
eb01459f 454 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
455 * page_length = bytes to copy for this page
456 */
c8cbbb8b 457 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 461
8461d226
DV
462 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
463 (page_to_phys(page) & (1 << 17)) != 0;
464
d174bd64
DV
465 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
466 user_data, page_do_bit17_swizzling,
467 needs_clflush);
468 if (ret == 0)
469 goto next_page;
dbf7bff0 470
dbf7bff0
DV
471 mutex_unlock(&dev->struct_mutex);
472
d330a953 473 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 474 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
475 /* Userspace is tricking us, but we've already clobbered
476 * its pages with the prefault and promised to write the
477 * data up to the first fault. Hence ignore any errors
478 * and just continue. */
479 (void)ret;
480 prefaulted = 1;
481 }
eb01459f 482
d174bd64
DV
483 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
484 user_data, page_do_bit17_swizzling,
485 needs_clflush);
eb01459f 486
dbf7bff0 487 mutex_lock(&dev->struct_mutex);
f60d7f0c 488
dbf7bff0 489next_page:
e5281ccd 490 mark_page_accessed(page);
e5281ccd 491
f60d7f0c 492 if (ret)
8461d226 493 goto out;
8461d226 494
eb01459f 495 remain -= page_length;
8461d226 496 user_data += page_length;
eb01459f
EA
497 offset += page_length;
498 }
499
4f27b75d 500out:
f60d7f0c
CW
501 i915_gem_object_unpin_pages(obj);
502
eb01459f
EA
503 return ret;
504}
505
673a394b
EA
506/**
507 * Reads data from the object referenced by handle.
508 *
509 * On error, the contents of *data are undefined.
510 */
511int
512i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 513 struct drm_file *file)
673a394b
EA
514{
515 struct drm_i915_gem_pread *args = data;
05394f39 516 struct drm_i915_gem_object *obj;
35b62a89 517 int ret = 0;
673a394b 518
51311d0a
CW
519 if (args->size == 0)
520 return 0;
521
522 if (!access_ok(VERIFY_WRITE,
2bb4629a 523 to_user_ptr(args->data_ptr),
51311d0a
CW
524 args->size))
525 return -EFAULT;
526
4f27b75d 527 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 528 if (ret)
4f27b75d 529 return ret;
673a394b 530
05394f39 531 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 532 if (&obj->base == NULL) {
1d7cfea1
CW
533 ret = -ENOENT;
534 goto unlock;
4f27b75d 535 }
673a394b 536
7dcd2499 537 /* Bounds check source. */
05394f39
CW
538 if (args->offset > obj->base.size ||
539 args->size > obj->base.size - args->offset) {
ce9d419d 540 ret = -EINVAL;
35b62a89 541 goto out;
ce9d419d
CW
542 }
543
1286ff73
DV
544 /* prime objects have no backing filp to GEM pread/pwrite
545 * pages from.
546 */
547 if (!obj->base.filp) {
548 ret = -EINVAL;
549 goto out;
550 }
551
db53a302
CW
552 trace_i915_gem_object_pread(obj, args->offset, args->size);
553
dbf7bff0 554 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 555
35b62a89 556out:
05394f39 557 drm_gem_object_unreference(&obj->base);
1d7cfea1 558unlock:
4f27b75d 559 mutex_unlock(&dev->struct_mutex);
eb01459f 560 return ret;
673a394b
EA
561}
562
0839ccb8
KP
563/* This is the fast write path which cannot handle
564 * page faults in the source data
9b7530cc 565 */
0839ccb8
KP
566
567static inline int
568fast_user_write(struct io_mapping *mapping,
569 loff_t page_base, int page_offset,
570 char __user *user_data,
571 int length)
9b7530cc 572{
4f0c7cfb
BW
573 void __iomem *vaddr_atomic;
574 void *vaddr;
0839ccb8 575 unsigned long unwritten;
9b7530cc 576
3e4d3af5 577 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
578 /* We can use the cpu mem copy function because this is X86. */
579 vaddr = (void __force*)vaddr_atomic + page_offset;
580 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 581 user_data, length);
3e4d3af5 582 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 583 return unwritten;
0839ccb8
KP
584}
585
3de09aa3
EA
586/**
587 * This is the fast pwrite path, where we copy the data directly from the
588 * user into the GTT, uncached.
589 */
673a394b 590static int
05394f39
CW
591i915_gem_gtt_pwrite_fast(struct drm_device *dev,
592 struct drm_i915_gem_object *obj,
3de09aa3 593 struct drm_i915_gem_pwrite *args,
05394f39 594 struct drm_file *file)
673a394b 595{
0839ccb8 596 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 597 ssize_t remain;
0839ccb8 598 loff_t offset, page_base;
673a394b 599 char __user *user_data;
935aaa69
DV
600 int page_offset, page_length, ret;
601
1ec9e26d 602 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
603 if (ret)
604 goto out;
605
606 ret = i915_gem_object_set_to_gtt_domain(obj, true);
607 if (ret)
608 goto out_unpin;
609
610 ret = i915_gem_object_put_fence(obj);
611 if (ret)
612 goto out_unpin;
673a394b 613
2bb4629a 614 user_data = to_user_ptr(args->data_ptr);
673a394b 615 remain = args->size;
673a394b 616
f343c5f6 617 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
618
619 while (remain > 0) {
620 /* Operation in this page
621 *
0839ccb8
KP
622 * page_base = page offset within aperture
623 * page_offset = offset within page
624 * page_length = bytes to copy for this page
673a394b 625 */
c8cbbb8b
CW
626 page_base = offset & PAGE_MASK;
627 page_offset = offset_in_page(offset);
0839ccb8
KP
628 page_length = remain;
629 if ((page_offset + remain) > PAGE_SIZE)
630 page_length = PAGE_SIZE - page_offset;
631
0839ccb8 632 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
633 * source page isn't available. Return the error and we'll
634 * retry in the slow path.
0839ccb8 635 */
5d4545ae 636 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
637 page_offset, user_data, page_length)) {
638 ret = -EFAULT;
639 goto out_unpin;
640 }
673a394b 641
0839ccb8
KP
642 remain -= page_length;
643 user_data += page_length;
644 offset += page_length;
673a394b 645 }
673a394b 646
935aaa69 647out_unpin:
d7f46fc4 648 i915_gem_object_ggtt_unpin(obj);
935aaa69 649out:
3de09aa3 650 return ret;
673a394b
EA
651}
652
d174bd64
DV
653/* Per-page copy function for the shmem pwrite fastpath.
654 * Flushes invalid cachelines before writing to the target if
655 * needs_clflush_before is set and flushes out any written cachelines after
656 * writing if needs_clflush is set. */
3043c60c 657static int
d174bd64
DV
658shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
659 char __user *user_data,
660 bool page_do_bit17_swizzling,
661 bool needs_clflush_before,
662 bool needs_clflush_after)
673a394b 663{
d174bd64 664 char *vaddr;
673a394b 665 int ret;
3de09aa3 666
e7e58eb5 667 if (unlikely(page_do_bit17_swizzling))
d174bd64 668 return -EINVAL;
3de09aa3 669
d174bd64
DV
670 vaddr = kmap_atomic(page);
671 if (needs_clflush_before)
672 drm_clflush_virt_range(vaddr + shmem_page_offset,
673 page_length);
674 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
675 user_data,
676 page_length);
677 if (needs_clflush_after)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 kunmap_atomic(vaddr);
3de09aa3 681
755d2218 682 return ret ? -EFAULT : 0;
3de09aa3
EA
683}
684
d174bd64
DV
685/* Only difference to the fast-path function is that this can handle bit17
686 * and uses non-atomic copy and kmap functions. */
3043c60c 687static int
d174bd64
DV
688shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
689 char __user *user_data,
690 bool page_do_bit17_swizzling,
691 bool needs_clflush_before,
692 bool needs_clflush_after)
673a394b 693{
d174bd64
DV
694 char *vaddr;
695 int ret;
e5281ccd 696
d174bd64 697 vaddr = kmap(page);
e7e58eb5 698 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
699 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
700 page_length,
701 page_do_bit17_swizzling);
d174bd64
DV
702 if (page_do_bit17_swizzling)
703 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
704 user_data,
705 page_length);
d174bd64
DV
706 else
707 ret = __copy_from_user(vaddr + shmem_page_offset,
708 user_data,
709 page_length);
710 if (needs_clflush_after)
23c18c71
DV
711 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
712 page_length,
713 page_do_bit17_swizzling);
d174bd64 714 kunmap(page);
40123c1f 715
755d2218 716 return ret ? -EFAULT : 0;
40123c1f
EA
717}
718
40123c1f 719static int
e244a443
DV
720i915_gem_shmem_pwrite(struct drm_device *dev,
721 struct drm_i915_gem_object *obj,
722 struct drm_i915_gem_pwrite *args,
723 struct drm_file *file)
40123c1f 724{
40123c1f 725 ssize_t remain;
8c59967c
DV
726 loff_t offset;
727 char __user *user_data;
eb2c0c81 728 int shmem_page_offset, page_length, ret = 0;
8c59967c 729 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 730 int hit_slowpath = 0;
58642885
DV
731 int needs_clflush_after = 0;
732 int needs_clflush_before = 0;
67d5a50c 733 struct sg_page_iter sg_iter;
40123c1f 734
2bb4629a 735 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
736 remain = args->size;
737
8c59967c 738 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 739
58642885
DV
740 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
741 /* If we're not in the cpu write domain, set ourself into the gtt
742 * write domain and manually flush cachelines (if required). This
743 * optimizes for the case when the gpu will use the data
744 * right away and we therefore have to clflush anyway. */
2c22569b 745 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
746 ret = i915_gem_object_wait_rendering(obj, false);
747 if (ret)
748 return ret;
58642885 749 }
c76ce038
CW
750 /* Same trick applies to invalidate partially written cachelines read
751 * before writing. */
752 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
753 needs_clflush_before =
754 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 755
755d2218
CW
756 ret = i915_gem_object_get_pages(obj);
757 if (ret)
758 return ret;
759
760 i915_gem_object_pin_pages(obj);
761
673a394b 762 offset = args->offset;
05394f39 763 obj->dirty = 1;
673a394b 764
67d5a50c
ID
765 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
766 offset >> PAGE_SHIFT) {
2db76d7c 767 struct page *page = sg_page_iter_page(&sg_iter);
58642885 768 int partial_cacheline_write;
e5281ccd 769
9da3da66
CW
770 if (remain <= 0)
771 break;
772
40123c1f
EA
773 /* Operation in this page
774 *
40123c1f 775 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
776 * page_length = bytes to copy for this page
777 */
c8cbbb8b 778 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
779
780 page_length = remain;
781 if ((shmem_page_offset + page_length) > PAGE_SIZE)
782 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 783
58642885
DV
784 /* If we don't overwrite a cacheline completely we need to be
785 * careful to have up-to-date data by first clflushing. Don't
786 * overcomplicate things and flush the entire patch. */
787 partial_cacheline_write = needs_clflush_before &&
788 ((shmem_page_offset | page_length)
789 & (boot_cpu_data.x86_clflush_size - 1));
790
8c59967c
DV
791 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
792 (page_to_phys(page) & (1 << 17)) != 0;
793
d174bd64
DV
794 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
795 user_data, page_do_bit17_swizzling,
796 partial_cacheline_write,
797 needs_clflush_after);
798 if (ret == 0)
799 goto next_page;
e244a443
DV
800
801 hit_slowpath = 1;
e244a443 802 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
803 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
804 user_data, page_do_bit17_swizzling,
805 partial_cacheline_write,
806 needs_clflush_after);
40123c1f 807
e244a443 808 mutex_lock(&dev->struct_mutex);
755d2218 809
e244a443 810next_page:
e5281ccd
CW
811 set_page_dirty(page);
812 mark_page_accessed(page);
e5281ccd 813
755d2218 814 if (ret)
8c59967c 815 goto out;
8c59967c 816
40123c1f 817 remain -= page_length;
8c59967c 818 user_data += page_length;
40123c1f 819 offset += page_length;
673a394b
EA
820 }
821
fbd5a26d 822out:
755d2218
CW
823 i915_gem_object_unpin_pages(obj);
824
e244a443 825 if (hit_slowpath) {
8dcf015e
DV
826 /*
827 * Fixup: Flush cpu caches in case we didn't flush the dirty
828 * cachelines in-line while writing and the object moved
829 * out of the cpu write domain while we've dropped the lock.
830 */
831 if (!needs_clflush_after &&
832 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
833 if (i915_gem_clflush_object(obj, obj->pin_display))
834 i915_gem_chipset_flush(dev);
e244a443 835 }
8c59967c 836 }
673a394b 837
58642885 838 if (needs_clflush_after)
e76e9aeb 839 i915_gem_chipset_flush(dev);
58642885 840
40123c1f 841 return ret;
673a394b
EA
842}
843
844/**
845 * Writes data to the object referenced by handle.
846 *
847 * On error, the contents of the buffer that were to be modified are undefined.
848 */
849int
850i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 851 struct drm_file *file)
673a394b
EA
852{
853 struct drm_i915_gem_pwrite *args = data;
05394f39 854 struct drm_i915_gem_object *obj;
51311d0a
CW
855 int ret;
856
857 if (args->size == 0)
858 return 0;
859
860 if (!access_ok(VERIFY_READ,
2bb4629a 861 to_user_ptr(args->data_ptr),
51311d0a
CW
862 args->size))
863 return -EFAULT;
864
d330a953 865 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
866 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
867 args->size);
868 if (ret)
869 return -EFAULT;
870 }
673a394b 871
fbd5a26d 872 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 873 if (ret)
fbd5a26d 874 return ret;
1d7cfea1 875
05394f39 876 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 877 if (&obj->base == NULL) {
1d7cfea1
CW
878 ret = -ENOENT;
879 goto unlock;
fbd5a26d 880 }
673a394b 881
7dcd2499 882 /* Bounds check destination. */
05394f39
CW
883 if (args->offset > obj->base.size ||
884 args->size > obj->base.size - args->offset) {
ce9d419d 885 ret = -EINVAL;
35b62a89 886 goto out;
ce9d419d
CW
887 }
888
1286ff73
DV
889 /* prime objects have no backing filp to GEM pread/pwrite
890 * pages from.
891 */
892 if (!obj->base.filp) {
893 ret = -EINVAL;
894 goto out;
895 }
896
db53a302
CW
897 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
898
935aaa69 899 ret = -EFAULT;
673a394b
EA
900 /* We can only do the GTT pwrite on untiled buffers, as otherwise
901 * it would end up going through the fenced access, and we'll get
902 * different detiling behavior between reading and writing.
903 * pread/pwrite currently are reading and writing from the CPU
904 * perspective, requiring manual detiling by the client.
905 */
5c0480f2 906 if (obj->phys_obj) {
fbd5a26d 907 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
908 goto out;
909 }
910
2c22569b
CW
911 if (obj->tiling_mode == I915_TILING_NONE &&
912 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
913 cpu_write_needs_clflush(obj)) {
fbd5a26d 914 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
915 /* Note that the gtt paths might fail with non-page-backed user
916 * pointers (e.g. gtt mappings when moving data between
917 * textures). Fallback to the shmem path in that case. */
fbd5a26d 918 }
673a394b 919
86a1ee26 920 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 921 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 922
35b62a89 923out:
05394f39 924 drm_gem_object_unreference(&obj->base);
1d7cfea1 925unlock:
fbd5a26d 926 mutex_unlock(&dev->struct_mutex);
673a394b
EA
927 return ret;
928}
929
b361237b 930int
33196ded 931i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
932 bool interruptible)
933{
1f83fee0 934 if (i915_reset_in_progress(error)) {
b361237b
CW
935 /* Non-interruptible callers can't handle -EAGAIN, hence return
936 * -EIO unconditionally for these. */
937 if (!interruptible)
938 return -EIO;
939
1f83fee0
DV
940 /* Recovery complete, but the reset failed ... */
941 if (i915_terminally_wedged(error))
b361237b
CW
942 return -EIO;
943
944 return -EAGAIN;
945 }
946
947 return 0;
948}
949
950/*
951 * Compare seqno against outstanding lazy request. Emit a request if they are
952 * equal.
953 */
954static int
955i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
956{
957 int ret;
958
959 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
960
961 ret = 0;
1823521d 962 if (seqno == ring->outstanding_lazy_seqno)
0025c077 963 ret = i915_add_request(ring, NULL);
b361237b
CW
964
965 return ret;
966}
967
094f9a54
CW
968static void fake_irq(unsigned long data)
969{
970 wake_up_process((struct task_struct *)data);
971}
972
973static bool missed_irq(struct drm_i915_private *dev_priv,
974 struct intel_ring_buffer *ring)
975{
976 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
977}
978
b29c19b6
CW
979static bool can_wait_boost(struct drm_i915_file_private *file_priv)
980{
981 if (file_priv == NULL)
982 return true;
983
984 return !atomic_xchg(&file_priv->rps_wait_boost, true);
985}
986
b361237b
CW
987/**
988 * __wait_seqno - wait until execution of seqno has finished
989 * @ring: the ring expected to report seqno
990 * @seqno: duh!
f69061be 991 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
992 * @interruptible: do an interruptible wait (normally yes)
993 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
994 *
f69061be
DV
995 * Note: It is of utmost importance that the passed in seqno and reset_counter
996 * values have been read by the caller in an smp safe manner. Where read-side
997 * locks are involved, it is sufficient to read the reset_counter before
998 * unlocking the lock that protects the seqno. For lockless tricks, the
999 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1000 * inserted.
1001 *
b361237b
CW
1002 * Returns 0 if the seqno was found within the alloted time. Else returns the
1003 * errno with remaining time filled in timeout argument.
1004 */
1005static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1006 unsigned reset_counter,
b29c19b6
CW
1007 bool interruptible,
1008 struct timespec *timeout,
1009 struct drm_i915_file_private *file_priv)
b361237b 1010{
3d13ef2e
DL
1011 struct drm_device *dev = ring->dev;
1012 drm_i915_private_t *dev_priv = dev->dev_private;
168c3f21
MK
1013 const bool irq_test_in_progress =
1014 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1015 struct timespec before, now;
1016 DEFINE_WAIT(wait);
47e9766d 1017 unsigned long timeout_expire;
b361237b
CW
1018 int ret;
1019
c67a470b
PZ
1020 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1021
b361237b
CW
1022 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1023 return 0;
1024
47e9766d 1025 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1026
3d13ef2e 1027 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1028 gen6_rps_boost(dev_priv);
1029 if (file_priv)
1030 mod_delayed_work(dev_priv->wq,
1031 &file_priv->mm.idle_work,
1032 msecs_to_jiffies(100));
1033 }
1034
168c3f21 1035 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1036 return -ENODEV;
1037
094f9a54
CW
1038 /* Record current time in case interrupted by signal, or wedged */
1039 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1040 getrawmonotonic(&before);
094f9a54
CW
1041 for (;;) {
1042 struct timer_list timer;
b361237b 1043
094f9a54
CW
1044 prepare_to_wait(&ring->irq_queue, &wait,
1045 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1046
f69061be
DV
1047 /* We need to check whether any gpu reset happened in between
1048 * the caller grabbing the seqno and now ... */
094f9a54
CW
1049 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1050 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1051 * is truely gone. */
1052 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1053 if (ret == 0)
1054 ret = -EAGAIN;
1055 break;
1056 }
f69061be 1057
094f9a54
CW
1058 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1059 ret = 0;
1060 break;
1061 }
b361237b 1062
094f9a54
CW
1063 if (interruptible && signal_pending(current)) {
1064 ret = -ERESTARTSYS;
1065 break;
1066 }
1067
47e9766d 1068 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1069 ret = -ETIME;
1070 break;
1071 }
1072
1073 timer.function = NULL;
1074 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1075 unsigned long expire;
1076
094f9a54 1077 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1078 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1079 mod_timer(&timer, expire);
1080 }
1081
5035c275 1082 io_schedule();
094f9a54 1083
094f9a54
CW
1084 if (timer.function) {
1085 del_singleshot_timer_sync(&timer);
1086 destroy_timer_on_stack(&timer);
1087 }
1088 }
b361237b 1089 getrawmonotonic(&now);
094f9a54 1090 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1091
168c3f21
MK
1092 if (!irq_test_in_progress)
1093 ring->irq_put(ring);
094f9a54
CW
1094
1095 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1096
1097 if (timeout) {
1098 struct timespec sleep_time = timespec_sub(now, before);
1099 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1100 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1101 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1102 }
1103
094f9a54 1104 return ret;
b361237b
CW
1105}
1106
1107/**
1108 * Waits for a sequence number to be signaled, and cleans up the
1109 * request and object lists appropriately for that event.
1110 */
1111int
1112i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1113{
1114 struct drm_device *dev = ring->dev;
1115 struct drm_i915_private *dev_priv = dev->dev_private;
1116 bool interruptible = dev_priv->mm.interruptible;
1117 int ret;
1118
1119 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1120 BUG_ON(seqno == 0);
1121
33196ded 1122 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1123 if (ret)
1124 return ret;
1125
1126 ret = i915_gem_check_olr(ring, seqno);
1127 if (ret)
1128 return ret;
1129
f69061be
DV
1130 return __wait_seqno(ring, seqno,
1131 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1132 interruptible, NULL, NULL);
b361237b
CW
1133}
1134
d26e3af8
CW
1135static int
1136i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1137 struct intel_ring_buffer *ring)
1138{
1139 i915_gem_retire_requests_ring(ring);
1140
1141 /* Manually manage the write flush as we may have not yet
1142 * retired the buffer.
1143 *
1144 * Note that the last_write_seqno is always the earlier of
1145 * the two (read/write) seqno, so if we haved successfully waited,
1146 * we know we have passed the last write.
1147 */
1148 obj->last_write_seqno = 0;
1149 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1150
1151 return 0;
1152}
1153
b361237b
CW
1154/**
1155 * Ensures that all rendering to the object has completed and the object is
1156 * safe to unbind from the GTT or access from the CPU.
1157 */
1158static __must_check int
1159i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1160 bool readonly)
1161{
1162 struct intel_ring_buffer *ring = obj->ring;
1163 u32 seqno;
1164 int ret;
1165
1166 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1167 if (seqno == 0)
1168 return 0;
1169
1170 ret = i915_wait_seqno(ring, seqno);
1171 if (ret)
1172 return ret;
1173
d26e3af8 1174 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1175}
1176
3236f57a
CW
1177/* A nonblocking variant of the above wait. This is a highly dangerous routine
1178 * as the object state may change during this call.
1179 */
1180static __must_check int
1181i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1182 struct drm_i915_file_private *file_priv,
3236f57a
CW
1183 bool readonly)
1184{
1185 struct drm_device *dev = obj->base.dev;
1186 struct drm_i915_private *dev_priv = dev->dev_private;
1187 struct intel_ring_buffer *ring = obj->ring;
f69061be 1188 unsigned reset_counter;
3236f57a
CW
1189 u32 seqno;
1190 int ret;
1191
1192 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1193 BUG_ON(!dev_priv->mm.interruptible);
1194
1195 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1196 if (seqno == 0)
1197 return 0;
1198
33196ded 1199 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1200 if (ret)
1201 return ret;
1202
1203 ret = i915_gem_check_olr(ring, seqno);
1204 if (ret)
1205 return ret;
1206
f69061be 1207 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1208 mutex_unlock(&dev->struct_mutex);
6e4930f6 1209 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1210 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1211 if (ret)
1212 return ret;
3236f57a 1213
d26e3af8 1214 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1215}
1216
673a394b 1217/**
2ef7eeaa
EA
1218 * Called when user space prepares to use an object with the CPU, either
1219 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1220 */
1221int
1222i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1223 struct drm_file *file)
673a394b
EA
1224{
1225 struct drm_i915_gem_set_domain *args = data;
05394f39 1226 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1227 uint32_t read_domains = args->read_domains;
1228 uint32_t write_domain = args->write_domain;
673a394b
EA
1229 int ret;
1230
2ef7eeaa 1231 /* Only handle setting domains to types used by the CPU. */
21d509e3 1232 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1233 return -EINVAL;
1234
21d509e3 1235 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1236 return -EINVAL;
1237
1238 /* Having something in the write domain implies it's in the read
1239 * domain, and only that read domain. Enforce that in the request.
1240 */
1241 if (write_domain != 0 && read_domains != write_domain)
1242 return -EINVAL;
1243
76c1dec1 1244 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1245 if (ret)
76c1dec1 1246 return ret;
1d7cfea1 1247
05394f39 1248 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1249 if (&obj->base == NULL) {
1d7cfea1
CW
1250 ret = -ENOENT;
1251 goto unlock;
76c1dec1 1252 }
673a394b 1253
3236f57a
CW
1254 /* Try to flush the object off the GPU without holding the lock.
1255 * We will repeat the flush holding the lock in the normal manner
1256 * to catch cases where we are gazumped.
1257 */
6e4930f6
CW
1258 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1259 file->driver_priv,
1260 !write_domain);
3236f57a
CW
1261 if (ret)
1262 goto unref;
1263
2ef7eeaa
EA
1264 if (read_domains & I915_GEM_DOMAIN_GTT) {
1265 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1266
1267 /* Silently promote "you're not bound, there was nothing to do"
1268 * to success, since the client was just asking us to
1269 * make sure everything was done.
1270 */
1271 if (ret == -EINVAL)
1272 ret = 0;
2ef7eeaa 1273 } else {
e47c68e9 1274 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1275 }
1276
3236f57a 1277unref:
05394f39 1278 drm_gem_object_unreference(&obj->base);
1d7cfea1 1279unlock:
673a394b
EA
1280 mutex_unlock(&dev->struct_mutex);
1281 return ret;
1282}
1283
1284/**
1285 * Called when user space has done writes to this buffer
1286 */
1287int
1288i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1289 struct drm_file *file)
673a394b
EA
1290{
1291 struct drm_i915_gem_sw_finish *args = data;
05394f39 1292 struct drm_i915_gem_object *obj;
673a394b
EA
1293 int ret = 0;
1294
76c1dec1 1295 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1296 if (ret)
76c1dec1 1297 return ret;
1d7cfea1 1298
05394f39 1299 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1300 if (&obj->base == NULL) {
1d7cfea1
CW
1301 ret = -ENOENT;
1302 goto unlock;
673a394b
EA
1303 }
1304
673a394b 1305 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1306 if (obj->pin_display)
1307 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1308
05394f39 1309 drm_gem_object_unreference(&obj->base);
1d7cfea1 1310unlock:
673a394b
EA
1311 mutex_unlock(&dev->struct_mutex);
1312 return ret;
1313}
1314
1315/**
1316 * Maps the contents of an object, returning the address it is mapped
1317 * into.
1318 *
1319 * While the mapping holds a reference on the contents of the object, it doesn't
1320 * imply a ref on the object itself.
1321 */
1322int
1323i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1324 struct drm_file *file)
673a394b
EA
1325{
1326 struct drm_i915_gem_mmap *args = data;
1327 struct drm_gem_object *obj;
673a394b
EA
1328 unsigned long addr;
1329
05394f39 1330 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1331 if (obj == NULL)
bf79cb91 1332 return -ENOENT;
673a394b 1333
1286ff73
DV
1334 /* prime objects have no backing filp to GEM mmap
1335 * pages from.
1336 */
1337 if (!obj->filp) {
1338 drm_gem_object_unreference_unlocked(obj);
1339 return -EINVAL;
1340 }
1341
6be5ceb0 1342 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1343 PROT_READ | PROT_WRITE, MAP_SHARED,
1344 args->offset);
bc9025bd 1345 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1346 if (IS_ERR((void *)addr))
1347 return addr;
1348
1349 args->addr_ptr = (uint64_t) addr;
1350
1351 return 0;
1352}
1353
de151cf6
JB
1354/**
1355 * i915_gem_fault - fault a page into the GTT
1356 * vma: VMA in question
1357 * vmf: fault info
1358 *
1359 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1360 * from userspace. The fault handler takes care of binding the object to
1361 * the GTT (if needed), allocating and programming a fence register (again,
1362 * only if needed based on whether the old reg is still valid or the object
1363 * is tiled) and inserting a new PTE into the faulting process.
1364 *
1365 * Note that the faulting process may involve evicting existing objects
1366 * from the GTT and/or fence registers to make room. So performance may
1367 * suffer if the GTT working set is large or there are few fence registers
1368 * left.
1369 */
1370int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1371{
05394f39
CW
1372 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1373 struct drm_device *dev = obj->base.dev;
7d1c4804 1374 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1375 pgoff_t page_offset;
1376 unsigned long pfn;
1377 int ret = 0;
0f973f27 1378 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1379
f65c9168
PZ
1380 intel_runtime_pm_get(dev_priv);
1381
de151cf6
JB
1382 /* We don't use vmf->pgoff since that has the fake offset */
1383 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1384 PAGE_SHIFT;
1385
d9bc7e9f
CW
1386 ret = i915_mutex_lock_interruptible(dev);
1387 if (ret)
1388 goto out;
a00b10c3 1389
db53a302
CW
1390 trace_i915_gem_object_fault(obj, page_offset, true, write);
1391
6e4930f6
CW
1392 /* Try to flush the object off the GPU first without holding the lock.
1393 * Upon reacquiring the lock, we will perform our sanity checks and then
1394 * repeat the flush holding the lock in the normal manner to catch cases
1395 * where we are gazumped.
1396 */
1397 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1398 if (ret)
1399 goto unlock;
1400
eb119bd6
CW
1401 /* Access to snoopable pages through the GTT is incoherent. */
1402 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1403 ret = -EINVAL;
1404 goto unlock;
1405 }
1406
d9bc7e9f 1407 /* Now bind it into the GTT if needed */
1ec9e26d 1408 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1409 if (ret)
1410 goto unlock;
4a684a41 1411
c9839303
CW
1412 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1413 if (ret)
1414 goto unpin;
74898d7e 1415
06d98131 1416 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1417 if (ret)
c9839303 1418 goto unpin;
7d1c4804 1419
6299f992
CW
1420 obj->fault_mappable = true;
1421
f343c5f6
BW
1422 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1423 pfn >>= PAGE_SHIFT;
1424 pfn += page_offset;
de151cf6
JB
1425
1426 /* Finally, remap it using the new GTT offset */
1427 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1428unpin:
d7f46fc4 1429 i915_gem_object_ggtt_unpin(obj);
c715089f 1430unlock:
de151cf6 1431 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1432out:
de151cf6 1433 switch (ret) {
d9bc7e9f 1434 case -EIO:
a9340cca
DV
1435 /* If this -EIO is due to a gpu hang, give the reset code a
1436 * chance to clean up the mess. Otherwise return the proper
1437 * SIGBUS. */
f65c9168
PZ
1438 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1439 ret = VM_FAULT_SIGBUS;
1440 break;
1441 }
045e769a 1442 case -EAGAIN:
571c608d
DV
1443 /*
1444 * EAGAIN means the gpu is hung and we'll wait for the error
1445 * handler to reset everything when re-faulting in
1446 * i915_mutex_lock_interruptible.
d9bc7e9f 1447 */
c715089f
CW
1448 case 0:
1449 case -ERESTARTSYS:
bed636ab 1450 case -EINTR:
e79e0fe3
DR
1451 case -EBUSY:
1452 /*
1453 * EBUSY is ok: this just means that another thread
1454 * already did the job.
1455 */
f65c9168
PZ
1456 ret = VM_FAULT_NOPAGE;
1457 break;
de151cf6 1458 case -ENOMEM:
f65c9168
PZ
1459 ret = VM_FAULT_OOM;
1460 break;
a7c2e1aa 1461 case -ENOSPC:
45d67817 1462 case -EFAULT:
f65c9168
PZ
1463 ret = VM_FAULT_SIGBUS;
1464 break;
de151cf6 1465 default:
a7c2e1aa 1466 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1467 ret = VM_FAULT_SIGBUS;
1468 break;
de151cf6 1469 }
f65c9168
PZ
1470
1471 intel_runtime_pm_put(dev_priv);
1472 return ret;
de151cf6
JB
1473}
1474
48018a57
PZ
1475void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1476{
1477 struct i915_vma *vma;
1478
1479 /*
1480 * Only the global gtt is relevant for gtt memory mappings, so restrict
1481 * list traversal to objects bound into the global address space. Note
1482 * that the active list should be empty, but better safe than sorry.
1483 */
1484 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1485 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1486 i915_gem_release_mmap(vma->obj);
1487 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1488 i915_gem_release_mmap(vma->obj);
1489}
1490
901782b2
CW
1491/**
1492 * i915_gem_release_mmap - remove physical page mappings
1493 * @obj: obj in question
1494 *
af901ca1 1495 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1496 * relinquish ownership of the pages back to the system.
1497 *
1498 * It is vital that we remove the page mapping if we have mapped a tiled
1499 * object through the GTT and then lose the fence register due to
1500 * resource pressure. Similarly if the object has been moved out of the
1501 * aperture, than pages mapped into userspace must be revoked. Removing the
1502 * mapping will then trigger a page fault on the next user access, allowing
1503 * fixup by i915_gem_fault().
1504 */
d05ca301 1505void
05394f39 1506i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1507{
6299f992
CW
1508 if (!obj->fault_mappable)
1509 return;
901782b2 1510
51335df9 1511 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1512 obj->fault_mappable = false;
901782b2
CW
1513}
1514
0fa87796 1515uint32_t
e28f8711 1516i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1517{
e28f8711 1518 uint32_t gtt_size;
92b88aeb
CW
1519
1520 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1521 tiling_mode == I915_TILING_NONE)
1522 return size;
92b88aeb
CW
1523
1524 /* Previous chips need a power-of-two fence region when tiling */
1525 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1526 gtt_size = 1024*1024;
92b88aeb 1527 else
e28f8711 1528 gtt_size = 512*1024;
92b88aeb 1529
e28f8711
CW
1530 while (gtt_size < size)
1531 gtt_size <<= 1;
92b88aeb 1532
e28f8711 1533 return gtt_size;
92b88aeb
CW
1534}
1535
de151cf6
JB
1536/**
1537 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1538 * @obj: object to check
1539 *
1540 * Return the required GTT alignment for an object, taking into account
5e783301 1541 * potential fence register mapping.
de151cf6 1542 */
d865110c
ID
1543uint32_t
1544i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1545 int tiling_mode, bool fenced)
de151cf6 1546{
de151cf6
JB
1547 /*
1548 * Minimum alignment is 4k (GTT page size), but might be greater
1549 * if a fence register is needed for the object.
1550 */
d865110c 1551 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1552 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1553 return 4096;
1554
a00b10c3
CW
1555 /*
1556 * Previous chips need to be aligned to the size of the smallest
1557 * fence register that can contain the object.
1558 */
e28f8711 1559 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1560}
1561
d8cb5086
CW
1562static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1563{
1564 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1565 int ret;
1566
0de23977 1567 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1568 return 0;
1569
da494d7c
DV
1570 dev_priv->mm.shrinker_no_lock_stealing = true;
1571
d8cb5086
CW
1572 ret = drm_gem_create_mmap_offset(&obj->base);
1573 if (ret != -ENOSPC)
da494d7c 1574 goto out;
d8cb5086
CW
1575
1576 /* Badly fragmented mmap space? The only way we can recover
1577 * space is by destroying unwanted objects. We can't randomly release
1578 * mmap_offsets as userspace expects them to be persistent for the
1579 * lifetime of the objects. The closest we can is to release the
1580 * offsets on purgeable objects by truncating it and marking it purged,
1581 * which prevents userspace from ever using that object again.
1582 */
1583 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1584 ret = drm_gem_create_mmap_offset(&obj->base);
1585 if (ret != -ENOSPC)
da494d7c 1586 goto out;
d8cb5086
CW
1587
1588 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1589 ret = drm_gem_create_mmap_offset(&obj->base);
1590out:
1591 dev_priv->mm.shrinker_no_lock_stealing = false;
1592
1593 return ret;
d8cb5086
CW
1594}
1595
1596static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1597{
d8cb5086
CW
1598 drm_gem_free_mmap_offset(&obj->base);
1599}
1600
de151cf6 1601int
ff72145b
DA
1602i915_gem_mmap_gtt(struct drm_file *file,
1603 struct drm_device *dev,
1604 uint32_t handle,
1605 uint64_t *offset)
de151cf6 1606{
da761a6e 1607 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1608 struct drm_i915_gem_object *obj;
de151cf6
JB
1609 int ret;
1610
76c1dec1 1611 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1612 if (ret)
76c1dec1 1613 return ret;
de151cf6 1614
ff72145b 1615 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1616 if (&obj->base == NULL) {
1d7cfea1
CW
1617 ret = -ENOENT;
1618 goto unlock;
1619 }
de151cf6 1620
5d4545ae 1621 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1622 ret = -E2BIG;
ff56b0bc 1623 goto out;
da761a6e
CW
1624 }
1625
05394f39 1626 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1627 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1628 ret = -EFAULT;
1d7cfea1 1629 goto out;
ab18282d
CW
1630 }
1631
d8cb5086
CW
1632 ret = i915_gem_object_create_mmap_offset(obj);
1633 if (ret)
1634 goto out;
de151cf6 1635
0de23977 1636 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1637
1d7cfea1 1638out:
05394f39 1639 drm_gem_object_unreference(&obj->base);
1d7cfea1 1640unlock:
de151cf6 1641 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1642 return ret;
de151cf6
JB
1643}
1644
ff72145b
DA
1645/**
1646 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1647 * @dev: DRM device
1648 * @data: GTT mapping ioctl data
1649 * @file: GEM object info
1650 *
1651 * Simply returns the fake offset to userspace so it can mmap it.
1652 * The mmap call will end up in drm_gem_mmap(), which will set things
1653 * up so we can get faults in the handler above.
1654 *
1655 * The fault handler will take care of binding the object into the GTT
1656 * (since it may have been evicted to make room for something), allocating
1657 * a fence register, and mapping the appropriate aperture address into
1658 * userspace.
1659 */
1660int
1661i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1662 struct drm_file *file)
1663{
1664 struct drm_i915_gem_mmap_gtt *args = data;
1665
ff72145b
DA
1666 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1667}
1668
225067ee
DV
1669/* Immediately discard the backing storage */
1670static void
1671i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1672{
e5281ccd 1673 struct inode *inode;
e5281ccd 1674
4d6294bf 1675 i915_gem_object_free_mmap_offset(obj);
1286ff73 1676
4d6294bf
CW
1677 if (obj->base.filp == NULL)
1678 return;
e5281ccd 1679
225067ee
DV
1680 /* Our goal here is to return as much of the memory as
1681 * is possible back to the system as we are called from OOM.
1682 * To do this we must instruct the shmfs to drop all of its
1683 * backing pages, *now*.
1684 */
496ad9aa 1685 inode = file_inode(obj->base.filp);
225067ee 1686 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1687
225067ee
DV
1688 obj->madv = __I915_MADV_PURGED;
1689}
e5281ccd 1690
225067ee
DV
1691static inline int
1692i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1693{
1694 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1695}
1696
5cdf5881 1697static void
05394f39 1698i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1699{
90797e6d
ID
1700 struct sg_page_iter sg_iter;
1701 int ret;
1286ff73 1702
05394f39 1703 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1704
6c085a72
CW
1705 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1706 if (ret) {
1707 /* In the event of a disaster, abandon all caches and
1708 * hope for the best.
1709 */
1710 WARN_ON(ret != -EIO);
2c22569b 1711 i915_gem_clflush_object(obj, true);
6c085a72
CW
1712 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1713 }
1714
6dacfd2f 1715 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1716 i915_gem_object_save_bit_17_swizzle(obj);
1717
05394f39
CW
1718 if (obj->madv == I915_MADV_DONTNEED)
1719 obj->dirty = 0;
3ef94daa 1720
90797e6d 1721 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1722 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1723
05394f39 1724 if (obj->dirty)
9da3da66 1725 set_page_dirty(page);
3ef94daa 1726
05394f39 1727 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1728 mark_page_accessed(page);
3ef94daa 1729
9da3da66 1730 page_cache_release(page);
3ef94daa 1731 }
05394f39 1732 obj->dirty = 0;
673a394b 1733
9da3da66
CW
1734 sg_free_table(obj->pages);
1735 kfree(obj->pages);
37e680a1 1736}
6c085a72 1737
dd624afd 1738int
37e680a1
CW
1739i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1740{
1741 const struct drm_i915_gem_object_ops *ops = obj->ops;
1742
2f745ad3 1743 if (obj->pages == NULL)
37e680a1
CW
1744 return 0;
1745
a5570178
CW
1746 if (obj->pages_pin_count)
1747 return -EBUSY;
1748
9843877d 1749 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1750
a2165e31
CW
1751 /* ->put_pages might need to allocate memory for the bit17 swizzle
1752 * array, hence protect them from being reaped by removing them from gtt
1753 * lists early. */
35c20a60 1754 list_del(&obj->global_list);
a2165e31 1755
37e680a1 1756 ops->put_pages(obj);
05394f39 1757 obj->pages = NULL;
37e680a1 1758
6c085a72
CW
1759 if (i915_gem_object_is_purgeable(obj))
1760 i915_gem_object_truncate(obj);
1761
1762 return 0;
1763}
1764
d9973b43 1765static unsigned long
93927ca5
DV
1766__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1767 bool purgeable_only)
6c085a72 1768{
57094f82 1769 struct list_head still_bound_list;
6c085a72 1770 struct drm_i915_gem_object *obj, *next;
d9973b43 1771 unsigned long count = 0;
6c085a72
CW
1772
1773 list_for_each_entry_safe(obj, next,
1774 &dev_priv->mm.unbound_list,
35c20a60 1775 global_list) {
93927ca5 1776 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1777 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1778 count += obj->base.size >> PAGE_SHIFT;
1779 if (count >= target)
1780 return count;
1781 }
1782 }
1783
57094f82
CW
1784 /*
1785 * As we may completely rewrite the bound list whilst unbinding
1786 * (due to retiring requests) we have to strictly process only
1787 * one element of the list at the time, and recheck the list
1788 * on every iteration.
1789 */
1790 INIT_LIST_HEAD(&still_bound_list);
1791 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1792 struct i915_vma *vma, *v;
80dcfdbd 1793
57094f82
CW
1794 obj = list_first_entry(&dev_priv->mm.bound_list,
1795 typeof(*obj), global_list);
1796 list_move_tail(&obj->global_list, &still_bound_list);
1797
80dcfdbd
BW
1798 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1799 continue;
1800
57094f82
CW
1801 /*
1802 * Hold a reference whilst we unbind this object, as we may
1803 * end up waiting for and retiring requests. This might
1804 * release the final reference (held by the active list)
1805 * and result in the object being freed from under us.
1806 * in this object being freed.
1807 *
1808 * Note 1: Shrinking the bound list is special since only active
1809 * (and hence bound objects) can contain such limbo objects, so
1810 * we don't need special tricks for shrinking the unbound list.
1811 * The only other place where we have to be careful with active
1812 * objects suddenly disappearing due to retiring requests is the
1813 * eviction code.
1814 *
1815 * Note 2: Even though the bound list doesn't hold a reference
1816 * to the object we can safely grab one here: The final object
1817 * unreferencing and the bound_list are both protected by the
1818 * dev->struct_mutex and so we won't ever be able to observe an
1819 * object on the bound_list with a reference count equals 0.
1820 */
1821 drm_gem_object_reference(&obj->base);
1822
07fe0b12
BW
1823 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1824 if (i915_vma_unbind(vma))
1825 break;
80dcfdbd 1826
57094f82 1827 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1828 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1829
1830 drm_gem_object_unreference(&obj->base);
6c085a72 1831 }
57094f82 1832 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1833
1834 return count;
1835}
1836
d9973b43 1837static unsigned long
93927ca5
DV
1838i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1839{
1840 return __i915_gem_shrink(dev_priv, target, true);
1841}
1842
d9973b43 1843static unsigned long
6c085a72
CW
1844i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1845{
1846 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1847 long freed = 0;
6c085a72
CW
1848
1849 i915_gem_evict_everything(dev_priv->dev);
1850
35c20a60 1851 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1852 global_list) {
d9973b43 1853 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1854 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1855 }
1856 return freed;
225067ee
DV
1857}
1858
37e680a1 1859static int
6c085a72 1860i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1861{
6c085a72 1862 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1863 int page_count, i;
1864 struct address_space *mapping;
9da3da66
CW
1865 struct sg_table *st;
1866 struct scatterlist *sg;
90797e6d 1867 struct sg_page_iter sg_iter;
e5281ccd 1868 struct page *page;
90797e6d 1869 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1870 gfp_t gfp;
e5281ccd 1871
6c085a72
CW
1872 /* Assert that the object is not currently in any GPU domain. As it
1873 * wasn't in the GTT, there shouldn't be any way it could have been in
1874 * a GPU cache
1875 */
1876 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1877 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1878
9da3da66
CW
1879 st = kmalloc(sizeof(*st), GFP_KERNEL);
1880 if (st == NULL)
1881 return -ENOMEM;
1882
05394f39 1883 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1884 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1885 kfree(st);
e5281ccd 1886 return -ENOMEM;
9da3da66 1887 }
e5281ccd 1888
9da3da66
CW
1889 /* Get the list of pages out of our struct file. They'll be pinned
1890 * at this point until we release them.
1891 *
1892 * Fail silently without starting the shrinker
1893 */
496ad9aa 1894 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1895 gfp = mapping_gfp_mask(mapping);
caf49191 1896 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1897 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1898 sg = st->sgl;
1899 st->nents = 0;
1900 for (i = 0; i < page_count; i++) {
6c085a72
CW
1901 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1902 if (IS_ERR(page)) {
1903 i915_gem_purge(dev_priv, page_count);
1904 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1905 }
1906 if (IS_ERR(page)) {
1907 /* We've tried hard to allocate the memory by reaping
1908 * our own buffer, now let the real VM do its job and
1909 * go down in flames if truly OOM.
1910 */
caf49191 1911 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1912 gfp |= __GFP_IO | __GFP_WAIT;
1913
1914 i915_gem_shrink_all(dev_priv);
1915 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1916 if (IS_ERR(page))
1917 goto err_pages;
1918
caf49191 1919 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1920 gfp &= ~(__GFP_IO | __GFP_WAIT);
1921 }
426729dc
KRW
1922#ifdef CONFIG_SWIOTLB
1923 if (swiotlb_nr_tbl()) {
1924 st->nents++;
1925 sg_set_page(sg, page, PAGE_SIZE, 0);
1926 sg = sg_next(sg);
1927 continue;
1928 }
1929#endif
90797e6d
ID
1930 if (!i || page_to_pfn(page) != last_pfn + 1) {
1931 if (i)
1932 sg = sg_next(sg);
1933 st->nents++;
1934 sg_set_page(sg, page, PAGE_SIZE, 0);
1935 } else {
1936 sg->length += PAGE_SIZE;
1937 }
1938 last_pfn = page_to_pfn(page);
3bbbe706
DV
1939
1940 /* Check that the i965g/gm workaround works. */
1941 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1942 }
426729dc
KRW
1943#ifdef CONFIG_SWIOTLB
1944 if (!swiotlb_nr_tbl())
1945#endif
1946 sg_mark_end(sg);
74ce6b6c
CW
1947 obj->pages = st;
1948
6dacfd2f 1949 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1950 i915_gem_object_do_bit_17_swizzle(obj);
1951
1952 return 0;
1953
1954err_pages:
90797e6d
ID
1955 sg_mark_end(sg);
1956 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1957 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1958 sg_free_table(st);
1959 kfree(st);
e5281ccd 1960 return PTR_ERR(page);
673a394b
EA
1961}
1962
37e680a1
CW
1963/* Ensure that the associated pages are gathered from the backing storage
1964 * and pinned into our object. i915_gem_object_get_pages() may be called
1965 * multiple times before they are released by a single call to
1966 * i915_gem_object_put_pages() - once the pages are no longer referenced
1967 * either as a result of memory pressure (reaping pages under the shrinker)
1968 * or as the object is itself released.
1969 */
1970int
1971i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1972{
1973 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1974 const struct drm_i915_gem_object_ops *ops = obj->ops;
1975 int ret;
1976
2f745ad3 1977 if (obj->pages)
37e680a1
CW
1978 return 0;
1979
43e28f09 1980 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1981 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 1982 return -EFAULT;
43e28f09
CW
1983 }
1984
a5570178
CW
1985 BUG_ON(obj->pages_pin_count);
1986
37e680a1
CW
1987 ret = ops->get_pages(obj);
1988 if (ret)
1989 return ret;
1990
35c20a60 1991 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1992 return 0;
673a394b
EA
1993}
1994
e2d05a8b 1995static void
05394f39 1996i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1997 struct intel_ring_buffer *ring)
673a394b 1998{
05394f39 1999 struct drm_device *dev = obj->base.dev;
69dc4987 2000 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2001 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2002
852835f3 2003 BUG_ON(ring == NULL);
02978ff5
CW
2004 if (obj->ring != ring && obj->last_write_seqno) {
2005 /* Keep the seqno relative to the current ring */
2006 obj->last_write_seqno = seqno;
2007 }
05394f39 2008 obj->ring = ring;
673a394b
EA
2009
2010 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2011 if (!obj->active) {
2012 drm_gem_object_reference(&obj->base);
2013 obj->active = 1;
673a394b 2014 }
e35a41de 2015
05394f39 2016 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2017
0201f1ec 2018 obj->last_read_seqno = seqno;
caea7476 2019
7dd49065 2020 if (obj->fenced_gpu_access) {
caea7476 2021 obj->last_fenced_seqno = seqno;
caea7476 2022
7dd49065
CW
2023 /* Bump MRU to take account of the delayed flush */
2024 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2025 struct drm_i915_fence_reg *reg;
2026
2027 reg = &dev_priv->fence_regs[obj->fence_reg];
2028 list_move_tail(&reg->lru_list,
2029 &dev_priv->mm.fence_list);
2030 }
caea7476
CW
2031 }
2032}
2033
e2d05a8b
BW
2034void i915_vma_move_to_active(struct i915_vma *vma,
2035 struct intel_ring_buffer *ring)
2036{
2037 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2038 return i915_gem_object_move_to_active(vma->obj, ring);
2039}
2040
caea7476 2041static void
caea7476 2042i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2043{
ca191b13 2044 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2045 struct i915_address_space *vm;
2046 struct i915_vma *vma;
ce44b0ea 2047
65ce3027 2048 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2049 BUG_ON(!obj->active);
caea7476 2050
feb822cf
BW
2051 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2052 vma = i915_gem_obj_to_vma(obj, vm);
2053 if (vma && !list_empty(&vma->mm_list))
2054 list_move_tail(&vma->mm_list, &vm->inactive_list);
2055 }
caea7476 2056
65ce3027 2057 list_del_init(&obj->ring_list);
caea7476
CW
2058 obj->ring = NULL;
2059
65ce3027
CW
2060 obj->last_read_seqno = 0;
2061 obj->last_write_seqno = 0;
2062 obj->base.write_domain = 0;
2063
2064 obj->last_fenced_seqno = 0;
caea7476 2065 obj->fenced_gpu_access = false;
caea7476
CW
2066
2067 obj->active = 0;
2068 drm_gem_object_unreference(&obj->base);
2069
2070 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2071}
673a394b 2072
9d773091 2073static int
fca26bb4 2074i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2075{
9d773091
CW
2076 struct drm_i915_private *dev_priv = dev->dev_private;
2077 struct intel_ring_buffer *ring;
2078 int ret, i, j;
53d227f2 2079
107f27a5 2080 /* Carefully retire all requests without writing to the rings */
9d773091 2081 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2082 ret = intel_ring_idle(ring);
2083 if (ret)
2084 return ret;
9d773091 2085 }
9d773091 2086 i915_gem_retire_requests(dev);
107f27a5
CW
2087
2088 /* Finally reset hw state */
9d773091 2089 for_each_ring(ring, dev_priv, i) {
fca26bb4 2090 intel_ring_init_seqno(ring, seqno);
498d2ac1 2091
9d773091
CW
2092 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2093 ring->sync_seqno[j] = 0;
2094 }
53d227f2 2095
9d773091 2096 return 0;
53d227f2
DV
2097}
2098
fca26bb4
MK
2099int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2100{
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 int ret;
2103
2104 if (seqno == 0)
2105 return -EINVAL;
2106
2107 /* HWS page needs to be set less than what we
2108 * will inject to ring
2109 */
2110 ret = i915_gem_init_seqno(dev, seqno - 1);
2111 if (ret)
2112 return ret;
2113
2114 /* Carefully set the last_seqno value so that wrap
2115 * detection still works
2116 */
2117 dev_priv->next_seqno = seqno;
2118 dev_priv->last_seqno = seqno - 1;
2119 if (dev_priv->last_seqno == 0)
2120 dev_priv->last_seqno--;
2121
2122 return 0;
2123}
2124
9d773091
CW
2125int
2126i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2127{
9d773091
CW
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129
2130 /* reserve 0 for non-seqno */
2131 if (dev_priv->next_seqno == 0) {
fca26bb4 2132 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2133 if (ret)
2134 return ret;
53d227f2 2135
9d773091
CW
2136 dev_priv->next_seqno = 1;
2137 }
53d227f2 2138
f72b3435 2139 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2140 return 0;
53d227f2
DV
2141}
2142
0025c077
MK
2143int __i915_add_request(struct intel_ring_buffer *ring,
2144 struct drm_file *file,
7d736f4f 2145 struct drm_i915_gem_object *obj,
0025c077 2146 u32 *out_seqno)
673a394b 2147{
db53a302 2148 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2149 struct drm_i915_gem_request *request;
7d736f4f 2150 u32 request_ring_position, request_start;
673a394b 2151 int was_empty;
3cce469c
CW
2152 int ret;
2153
7d736f4f 2154 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2155 /*
2156 * Emit any outstanding flushes - execbuf can fail to emit the flush
2157 * after having emitted the batchbuffer command. Hence we need to fix
2158 * things up similar to emitting the lazy request. The difference here
2159 * is that the flush _must_ happen before the next request, no matter
2160 * what.
2161 */
a7b9761d
CW
2162 ret = intel_ring_flush_all_caches(ring);
2163 if (ret)
2164 return ret;
cc889e0f 2165
3c0e234c
CW
2166 request = ring->preallocated_lazy_request;
2167 if (WARN_ON(request == NULL))
acb868d3 2168 return -ENOMEM;
cc889e0f 2169
a71d8d94
CW
2170 /* Record the position of the start of the request so that
2171 * should we detect the updated seqno part-way through the
2172 * GPU processing the request, we never over-estimate the
2173 * position of the head.
2174 */
2175 request_ring_position = intel_ring_get_tail(ring);
2176
9d773091 2177 ret = ring->add_request(ring);
3c0e234c 2178 if (ret)
3bb73aba 2179 return ret;
673a394b 2180
9d773091 2181 request->seqno = intel_ring_get_seqno(ring);
852835f3 2182 request->ring = ring;
7d736f4f 2183 request->head = request_start;
a71d8d94 2184 request->tail = request_ring_position;
7d736f4f
MK
2185
2186 /* Whilst this request exists, batch_obj will be on the
2187 * active_list, and so will hold the active reference. Only when this
2188 * request is retired will the the batch_obj be moved onto the
2189 * inactive_list and lose its active reference. Hence we do not need
2190 * to explicitly hold another reference here.
2191 */
9a7e0c2a 2192 request->batch_obj = obj;
0e50e96b 2193
9a7e0c2a
CW
2194 /* Hold a reference to the current context so that we can inspect
2195 * it later in case a hangcheck error event fires.
2196 */
2197 request->ctx = ring->last_context;
0e50e96b
MK
2198 if (request->ctx)
2199 i915_gem_context_reference(request->ctx);
2200
673a394b 2201 request->emitted_jiffies = jiffies;
852835f3
ZN
2202 was_empty = list_empty(&ring->request_list);
2203 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2204 request->file_priv = NULL;
852835f3 2205
db53a302
CW
2206 if (file) {
2207 struct drm_i915_file_private *file_priv = file->driver_priv;
2208
1c25595f 2209 spin_lock(&file_priv->mm.lock);
f787a5f5 2210 request->file_priv = file_priv;
b962442e 2211 list_add_tail(&request->client_list,
f787a5f5 2212 &file_priv->mm.request_list);
1c25595f 2213 spin_unlock(&file_priv->mm.lock);
b962442e 2214 }
673a394b 2215
9d773091 2216 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2217 ring->outstanding_lazy_seqno = 0;
3c0e234c 2218 ring->preallocated_lazy_request = NULL;
db53a302 2219
db1b76ca 2220 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2221 i915_queue_hangcheck(ring->dev);
2222
f047e395 2223 if (was_empty) {
b29c19b6 2224 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2225 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2226 &dev_priv->mm.retire_work,
2227 round_jiffies_up_relative(HZ));
f047e395
CW
2228 intel_mark_busy(dev_priv->dev);
2229 }
f65d9421 2230 }
cc889e0f 2231
acb868d3 2232 if (out_seqno)
9d773091 2233 *out_seqno = request->seqno;
3cce469c 2234 return 0;
673a394b
EA
2235}
2236
f787a5f5
CW
2237static inline void
2238i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2239{
1c25595f 2240 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2241
1c25595f
CW
2242 if (!file_priv)
2243 return;
1c5d22f7 2244
1c25595f 2245 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2246 list_del(&request->client_list);
2247 request->file_priv = NULL;
1c25595f 2248 spin_unlock(&file_priv->mm.lock);
673a394b 2249}
673a394b 2250
939fd762 2251static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2252 const struct i915_hw_context *ctx)
be62acb4 2253{
44e2c070 2254 unsigned long elapsed;
be62acb4 2255
44e2c070
MK
2256 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2257
2258 if (ctx->hang_stats.banned)
be62acb4
MK
2259 return true;
2260
2261 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3fac8978
MK
2262 if (dev_priv->gpu_error.stop_rings == 0 &&
2263 i915_gem_context_is_default(ctx)) {
2264 DRM_ERROR("gpu hanging too fast, banning!\n");
2265 } else {
2266 DRM_DEBUG("context hanging too fast, banning!\n");
2267 }
2268
be62acb4
MK
2269 return true;
2270 }
2271
2272 return false;
2273}
2274
939fd762
MK
2275static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2276 struct i915_hw_context *ctx,
b6b0fac0 2277 const bool guilty)
aa60c664 2278{
44e2c070
MK
2279 struct i915_ctx_hang_stats *hs;
2280
2281 if (WARN_ON(!ctx))
2282 return;
aa60c664 2283
44e2c070
MK
2284 hs = &ctx->hang_stats;
2285
2286 if (guilty) {
939fd762 2287 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2288 hs->batch_active++;
2289 hs->guilty_ts = get_seconds();
2290 } else {
2291 hs->batch_pending++;
aa60c664
MK
2292 }
2293}
2294
0e50e96b
MK
2295static void i915_gem_free_request(struct drm_i915_gem_request *request)
2296{
2297 list_del(&request->list);
2298 i915_gem_request_remove_from_client(request);
2299
2300 if (request->ctx)
2301 i915_gem_context_unreference(request->ctx);
2302
2303 kfree(request);
2304}
2305
b6b0fac0
MK
2306static struct drm_i915_gem_request *
2307i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
9375e446 2308{
4db080f9 2309 struct drm_i915_gem_request *request;
b6b0fac0 2310 const u32 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2311
2312 list_for_each_entry(request, &ring->request_list, list) {
2313 if (i915_seqno_passed(completed_seqno, request->seqno))
2314 continue;
aa60c664 2315
b6b0fac0 2316 return request;
4db080f9 2317 }
b6b0fac0
MK
2318
2319 return NULL;
2320}
2321
2322static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2323 struct intel_ring_buffer *ring)
2324{
2325 struct drm_i915_gem_request *request;
2326 bool ring_hung;
2327
2328 request = i915_gem_find_first_non_complete(ring);
2329
2330 if (request == NULL)
2331 return;
2332
2333 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2334
939fd762 2335 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2336
2337 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2338 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2339}
aa60c664 2340
4db080f9
CW
2341static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2342 struct intel_ring_buffer *ring)
2343{
dfaae392 2344 while (!list_empty(&ring->active_list)) {
05394f39 2345 struct drm_i915_gem_object *obj;
9375e446 2346
05394f39
CW
2347 obj = list_first_entry(&ring->active_list,
2348 struct drm_i915_gem_object,
2349 ring_list);
9375e446 2350
05394f39 2351 i915_gem_object_move_to_inactive(obj);
673a394b 2352 }
1d62beea
BW
2353
2354 /*
2355 * We must free the requests after all the corresponding objects have
2356 * been moved off active lists. Which is the same order as the normal
2357 * retire_requests function does. This is important if object hold
2358 * implicit references on things like e.g. ppgtt address spaces through
2359 * the request.
2360 */
2361 while (!list_empty(&ring->request_list)) {
2362 struct drm_i915_gem_request *request;
2363
2364 request = list_first_entry(&ring->request_list,
2365 struct drm_i915_gem_request,
2366 list);
2367
2368 i915_gem_free_request(request);
2369 }
673a394b
EA
2370}
2371
19b2dbde 2372void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2373{
2374 struct drm_i915_private *dev_priv = dev->dev_private;
2375 int i;
2376
4b9de737 2377 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2378 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2379
94a335db
DV
2380 /*
2381 * Commit delayed tiling changes if we have an object still
2382 * attached to the fence, otherwise just clear the fence.
2383 */
2384 if (reg->obj) {
2385 i915_gem_object_update_fence(reg->obj, reg,
2386 reg->obj->tiling_mode);
2387 } else {
2388 i915_gem_write_fence(dev, i, NULL);
2389 }
312817a3
CW
2390 }
2391}
2392
069efc1d 2393void i915_gem_reset(struct drm_device *dev)
673a394b 2394{
77f01230 2395 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2396 struct intel_ring_buffer *ring;
1ec14ad3 2397 int i;
673a394b 2398
4db080f9
CW
2399 /*
2400 * Before we free the objects from the requests, we need to inspect
2401 * them for finding the guilty party. As the requests only borrow
2402 * their reference to the objects, the inspection must be done first.
2403 */
2404 for_each_ring(ring, dev_priv, i)
2405 i915_gem_reset_ring_status(dev_priv, ring);
2406
b4519513 2407 for_each_ring(ring, dev_priv, i)
4db080f9 2408 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2409
3d57e5bd
BW
2410 i915_gem_cleanup_ringbuffer(dev);
2411
acce9ffa
BW
2412 i915_gem_context_reset(dev);
2413
19b2dbde 2414 i915_gem_restore_fences(dev);
673a394b
EA
2415}
2416
2417/**
2418 * This function clears the request list as sequence numbers are passed.
2419 */
a71d8d94 2420void
db53a302 2421i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2422{
673a394b
EA
2423 uint32_t seqno;
2424
db53a302 2425 if (list_empty(&ring->request_list))
6c0594a3
KW
2426 return;
2427
db53a302 2428 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2429
b2eadbc8 2430 seqno = ring->get_seqno(ring, true);
1ec14ad3 2431
e9103038
CW
2432 /* Move any buffers on the active list that are no longer referenced
2433 * by the ringbuffer to the flushing/inactive lists as appropriate,
2434 * before we free the context associated with the requests.
2435 */
2436 while (!list_empty(&ring->active_list)) {
2437 struct drm_i915_gem_object *obj;
2438
2439 obj = list_first_entry(&ring->active_list,
2440 struct drm_i915_gem_object,
2441 ring_list);
2442
2443 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2444 break;
2445
2446 i915_gem_object_move_to_inactive(obj);
2447 }
2448
2449
852835f3 2450 while (!list_empty(&ring->request_list)) {
673a394b 2451 struct drm_i915_gem_request *request;
673a394b 2452
852835f3 2453 request = list_first_entry(&ring->request_list,
673a394b
EA
2454 struct drm_i915_gem_request,
2455 list);
673a394b 2456
dfaae392 2457 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2458 break;
2459
db53a302 2460 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2461 /* We know the GPU must have read the request to have
2462 * sent us the seqno + interrupt, so use the position
2463 * of tail of the request to update the last known position
2464 * of the GPU head.
2465 */
2466 ring->last_retired_head = request->tail;
b84d5f0c 2467
0e50e96b 2468 i915_gem_free_request(request);
b84d5f0c 2469 }
673a394b 2470
db53a302
CW
2471 if (unlikely(ring->trace_irq_seqno &&
2472 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2473 ring->irq_put(ring);
db53a302 2474 ring->trace_irq_seqno = 0;
9d34e5db 2475 }
23bc5982 2476
db53a302 2477 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2478}
2479
b29c19b6 2480bool
b09a1fec
CW
2481i915_gem_retire_requests(struct drm_device *dev)
2482{
2483 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2484 struct intel_ring_buffer *ring;
b29c19b6 2485 bool idle = true;
1ec14ad3 2486 int i;
b09a1fec 2487
b29c19b6 2488 for_each_ring(ring, dev_priv, i) {
b4519513 2489 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2490 idle &= list_empty(&ring->request_list);
2491 }
2492
2493 if (idle)
2494 mod_delayed_work(dev_priv->wq,
2495 &dev_priv->mm.idle_work,
2496 msecs_to_jiffies(100));
2497
2498 return idle;
b09a1fec
CW
2499}
2500
75ef9da2 2501static void
673a394b
EA
2502i915_gem_retire_work_handler(struct work_struct *work)
2503{
b29c19b6
CW
2504 struct drm_i915_private *dev_priv =
2505 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2506 struct drm_device *dev = dev_priv->dev;
0a58705b 2507 bool idle;
673a394b 2508
891b48cf 2509 /* Come back later if the device is busy... */
b29c19b6
CW
2510 idle = false;
2511 if (mutex_trylock(&dev->struct_mutex)) {
2512 idle = i915_gem_retire_requests(dev);
2513 mutex_unlock(&dev->struct_mutex);
673a394b 2514 }
b29c19b6 2515 if (!idle)
bcb45086
CW
2516 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2517 round_jiffies_up_relative(HZ));
b29c19b6 2518}
0a58705b 2519
b29c19b6
CW
2520static void
2521i915_gem_idle_work_handler(struct work_struct *work)
2522{
2523 struct drm_i915_private *dev_priv =
2524 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2525
2526 intel_mark_idle(dev_priv->dev);
673a394b
EA
2527}
2528
30dfebf3
DV
2529/**
2530 * Ensures that an object will eventually get non-busy by flushing any required
2531 * write domains, emitting any outstanding lazy request and retiring and
2532 * completed requests.
2533 */
2534static int
2535i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2536{
2537 int ret;
2538
2539 if (obj->active) {
0201f1ec 2540 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2541 if (ret)
2542 return ret;
2543
30dfebf3
DV
2544 i915_gem_retire_requests_ring(obj->ring);
2545 }
2546
2547 return 0;
2548}
2549
23ba4fd0
BW
2550/**
2551 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2552 * @DRM_IOCTL_ARGS: standard ioctl arguments
2553 *
2554 * Returns 0 if successful, else an error is returned with the remaining time in
2555 * the timeout parameter.
2556 * -ETIME: object is still busy after timeout
2557 * -ERESTARTSYS: signal interrupted the wait
2558 * -ENONENT: object doesn't exist
2559 * Also possible, but rare:
2560 * -EAGAIN: GPU wedged
2561 * -ENOMEM: damn
2562 * -ENODEV: Internal IRQ fail
2563 * -E?: The add request failed
2564 *
2565 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2566 * non-zero timeout parameter the wait ioctl will wait for the given number of
2567 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2568 * without holding struct_mutex the object may become re-busied before this
2569 * function completes. A similar but shorter * race condition exists in the busy
2570 * ioctl
2571 */
2572int
2573i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2574{
f69061be 2575 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2576 struct drm_i915_gem_wait *args = data;
2577 struct drm_i915_gem_object *obj;
2578 struct intel_ring_buffer *ring = NULL;
eac1f14f 2579 struct timespec timeout_stack, *timeout = NULL;
f69061be 2580 unsigned reset_counter;
23ba4fd0
BW
2581 u32 seqno = 0;
2582 int ret = 0;
2583
eac1f14f
BW
2584 if (args->timeout_ns >= 0) {
2585 timeout_stack = ns_to_timespec(args->timeout_ns);
2586 timeout = &timeout_stack;
2587 }
23ba4fd0
BW
2588
2589 ret = i915_mutex_lock_interruptible(dev);
2590 if (ret)
2591 return ret;
2592
2593 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2594 if (&obj->base == NULL) {
2595 mutex_unlock(&dev->struct_mutex);
2596 return -ENOENT;
2597 }
2598
30dfebf3
DV
2599 /* Need to make sure the object gets inactive eventually. */
2600 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2601 if (ret)
2602 goto out;
2603
2604 if (obj->active) {
0201f1ec 2605 seqno = obj->last_read_seqno;
23ba4fd0
BW
2606 ring = obj->ring;
2607 }
2608
2609 if (seqno == 0)
2610 goto out;
2611
23ba4fd0
BW
2612 /* Do this after OLR check to make sure we make forward progress polling
2613 * on this IOCTL with a 0 timeout (like busy ioctl)
2614 */
2615 if (!args->timeout_ns) {
2616 ret = -ETIME;
2617 goto out;
2618 }
2619
2620 drm_gem_object_unreference(&obj->base);
f69061be 2621 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2622 mutex_unlock(&dev->struct_mutex);
2623
b29c19b6 2624 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2625 if (timeout)
eac1f14f 2626 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2627 return ret;
2628
2629out:
2630 drm_gem_object_unreference(&obj->base);
2631 mutex_unlock(&dev->struct_mutex);
2632 return ret;
2633}
2634
5816d648
BW
2635/**
2636 * i915_gem_object_sync - sync an object to a ring.
2637 *
2638 * @obj: object which may be in use on another ring.
2639 * @to: ring we wish to use the object on. May be NULL.
2640 *
2641 * This code is meant to abstract object synchronization with the GPU.
2642 * Calling with NULL implies synchronizing the object with the CPU
2643 * rather than a particular GPU ring.
2644 *
2645 * Returns 0 if successful, else propagates up the lower layer error.
2646 */
2911a35b
BW
2647int
2648i915_gem_object_sync(struct drm_i915_gem_object *obj,
2649 struct intel_ring_buffer *to)
2650{
2651 struct intel_ring_buffer *from = obj->ring;
2652 u32 seqno;
2653 int ret, idx;
2654
2655 if (from == NULL || to == from)
2656 return 0;
2657
5816d648 2658 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2659 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2660
2661 idx = intel_ring_sync_index(from, to);
2662
0201f1ec 2663 seqno = obj->last_read_seqno;
2911a35b
BW
2664 if (seqno <= from->sync_seqno[idx])
2665 return 0;
2666
b4aca010
BW
2667 ret = i915_gem_check_olr(obj->ring, seqno);
2668 if (ret)
2669 return ret;
2911a35b 2670
b52b89da 2671 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2672 ret = to->sync_to(to, from, seqno);
e3a5a225 2673 if (!ret)
7b01e260
MK
2674 /* We use last_read_seqno because sync_to()
2675 * might have just caused seqno wrap under
2676 * the radar.
2677 */
2678 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2679
e3a5a225 2680 return ret;
2911a35b
BW
2681}
2682
b5ffc9bc
CW
2683static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2684{
2685 u32 old_write_domain, old_read_domains;
2686
b5ffc9bc
CW
2687 /* Force a pagefault for domain tracking on next user access */
2688 i915_gem_release_mmap(obj);
2689
b97c3d9c
KP
2690 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2691 return;
2692
97c809fd
CW
2693 /* Wait for any direct GTT access to complete */
2694 mb();
2695
b5ffc9bc
CW
2696 old_read_domains = obj->base.read_domains;
2697 old_write_domain = obj->base.write_domain;
2698
2699 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2700 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2701
2702 trace_i915_gem_object_change_domain(obj,
2703 old_read_domains,
2704 old_write_domain);
2705}
2706
07fe0b12 2707int i915_vma_unbind(struct i915_vma *vma)
673a394b 2708{
07fe0b12 2709 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2710 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2711 int ret;
673a394b 2712
07fe0b12 2713 if (list_empty(&vma->vma_link))
673a394b
EA
2714 return 0;
2715
0ff501cb
DV
2716 if (!drm_mm_node_allocated(&vma->node)) {
2717 i915_gem_vma_destroy(vma);
0ff501cb
DV
2718 return 0;
2719 }
433544bd 2720
d7f46fc4 2721 if (vma->pin_count)
31d8d651 2722 return -EBUSY;
673a394b 2723
c4670ad0
CW
2724 BUG_ON(obj->pages == NULL);
2725
a8198eea 2726 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2727 if (ret)
a8198eea
CW
2728 return ret;
2729 /* Continue on if we fail due to EIO, the GPU is hung so we
2730 * should be safe and we need to cleanup or else we might
2731 * cause memory corruption through use-after-free.
2732 */
2733
b5ffc9bc 2734 i915_gem_object_finish_gtt(obj);
5323fd04 2735
96b47b65 2736 /* release the fence reg _after_ flushing */
d9e86c0e 2737 ret = i915_gem_object_put_fence(obj);
1488fc08 2738 if (ret)
d9e86c0e 2739 return ret;
96b47b65 2740
07fe0b12 2741 trace_i915_vma_unbind(vma);
db53a302 2742
6f65e29a
BW
2743 vma->unbind_vma(vma);
2744
74163907 2745 i915_gem_gtt_finish_object(obj);
7bddb01f 2746
ca191b13 2747 list_del(&vma->mm_list);
75e9e915 2748 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2749 if (i915_is_ggtt(vma->vm))
2750 obj->map_and_fenceable = true;
673a394b 2751
2f633156
BW
2752 drm_mm_remove_node(&vma->node);
2753 i915_gem_vma_destroy(vma);
2754
2755 /* Since the unbound list is global, only move to that list if
b93dab6e 2756 * no more VMAs exist. */
2f633156
BW
2757 if (list_empty(&obj->vma_list))
2758 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2759
70903c3b
CW
2760 /* And finally now the object is completely decoupled from this vma,
2761 * we can drop its hold on the backing storage and allow it to be
2762 * reaped by the shrinker.
2763 */
2764 i915_gem_object_unpin_pages(obj);
2765
88241785 2766 return 0;
54cf91dc
CW
2767}
2768
b2da9fe5 2769int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2770{
2771 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2772 struct intel_ring_buffer *ring;
1ec14ad3 2773 int ret, i;
4df2faf4 2774
4df2faf4 2775 /* Flush everything onto the inactive list. */
b4519513 2776 for_each_ring(ring, dev_priv, i) {
41bde553 2777 ret = i915_switch_context(ring, NULL, ring->default_context);
b6c7488d
BW
2778 if (ret)
2779 return ret;
2780
3e960501 2781 ret = intel_ring_idle(ring);
1ec14ad3
CW
2782 if (ret)
2783 return ret;
2784 }
4df2faf4 2785
8a1a49f9 2786 return 0;
4df2faf4
DV
2787}
2788
9ce079e4
CW
2789static void i965_write_fence_reg(struct drm_device *dev, int reg,
2790 struct drm_i915_gem_object *obj)
de151cf6 2791{
de151cf6 2792 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2793 int fence_reg;
2794 int fence_pitch_shift;
de151cf6 2795
56c844e5
ID
2796 if (INTEL_INFO(dev)->gen >= 6) {
2797 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2798 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2799 } else {
2800 fence_reg = FENCE_REG_965_0;
2801 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2802 }
2803
d18b9619
CW
2804 fence_reg += reg * 8;
2805
2806 /* To w/a incoherency with non-atomic 64-bit register updates,
2807 * we split the 64-bit update into two 32-bit writes. In order
2808 * for a partial fence not to be evaluated between writes, we
2809 * precede the update with write to turn off the fence register,
2810 * and only enable the fence as the last step.
2811 *
2812 * For extra levels of paranoia, we make sure each step lands
2813 * before applying the next step.
2814 */
2815 I915_WRITE(fence_reg, 0);
2816 POSTING_READ(fence_reg);
2817
9ce079e4 2818 if (obj) {
f343c5f6 2819 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2820 uint64_t val;
de151cf6 2821
f343c5f6 2822 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2823 0xfffff000) << 32;
f343c5f6 2824 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2825 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2826 if (obj->tiling_mode == I915_TILING_Y)
2827 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2828 val |= I965_FENCE_REG_VALID;
c6642782 2829
d18b9619
CW
2830 I915_WRITE(fence_reg + 4, val >> 32);
2831 POSTING_READ(fence_reg + 4);
2832
2833 I915_WRITE(fence_reg + 0, val);
2834 POSTING_READ(fence_reg);
2835 } else {
2836 I915_WRITE(fence_reg + 4, 0);
2837 POSTING_READ(fence_reg + 4);
2838 }
de151cf6
JB
2839}
2840
9ce079e4
CW
2841static void i915_write_fence_reg(struct drm_device *dev, int reg,
2842 struct drm_i915_gem_object *obj)
de151cf6 2843{
de151cf6 2844 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2845 u32 val;
de151cf6 2846
9ce079e4 2847 if (obj) {
f343c5f6 2848 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2849 int pitch_val;
2850 int tile_width;
c6642782 2851
f343c5f6 2852 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2853 (size & -size) != size ||
f343c5f6
BW
2854 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2855 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2856 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2857
9ce079e4
CW
2858 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2859 tile_width = 128;
2860 else
2861 tile_width = 512;
2862
2863 /* Note: pitch better be a power of two tile widths */
2864 pitch_val = obj->stride / tile_width;
2865 pitch_val = ffs(pitch_val) - 1;
2866
f343c5f6 2867 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2868 if (obj->tiling_mode == I915_TILING_Y)
2869 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2870 val |= I915_FENCE_SIZE_BITS(size);
2871 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2872 val |= I830_FENCE_REG_VALID;
2873 } else
2874 val = 0;
2875
2876 if (reg < 8)
2877 reg = FENCE_REG_830_0 + reg * 4;
2878 else
2879 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2880
2881 I915_WRITE(reg, val);
2882 POSTING_READ(reg);
de151cf6
JB
2883}
2884
9ce079e4
CW
2885static void i830_write_fence_reg(struct drm_device *dev, int reg,
2886 struct drm_i915_gem_object *obj)
de151cf6 2887{
de151cf6 2888 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2889 uint32_t val;
de151cf6 2890
9ce079e4 2891 if (obj) {
f343c5f6 2892 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2893 uint32_t pitch_val;
de151cf6 2894
f343c5f6 2895 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2896 (size & -size) != size ||
f343c5f6
BW
2897 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2898 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2899 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2900
9ce079e4
CW
2901 pitch_val = obj->stride / 128;
2902 pitch_val = ffs(pitch_val) - 1;
de151cf6 2903
f343c5f6 2904 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2905 if (obj->tiling_mode == I915_TILING_Y)
2906 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2907 val |= I830_FENCE_SIZE_BITS(size);
2908 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2909 val |= I830_FENCE_REG_VALID;
2910 } else
2911 val = 0;
c6642782 2912
9ce079e4
CW
2913 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2914 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2915}
2916
d0a57789
CW
2917inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2918{
2919 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2920}
2921
9ce079e4
CW
2922static void i915_gem_write_fence(struct drm_device *dev, int reg,
2923 struct drm_i915_gem_object *obj)
2924{
d0a57789
CW
2925 struct drm_i915_private *dev_priv = dev->dev_private;
2926
2927 /* Ensure that all CPU reads are completed before installing a fence
2928 * and all writes before removing the fence.
2929 */
2930 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2931 mb();
2932
94a335db
DV
2933 WARN(obj && (!obj->stride || !obj->tiling_mode),
2934 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2935 obj->stride, obj->tiling_mode);
2936
9ce079e4 2937 switch (INTEL_INFO(dev)->gen) {
5ab31333 2938 case 8:
9ce079e4 2939 case 7:
56c844e5 2940 case 6:
9ce079e4
CW
2941 case 5:
2942 case 4: i965_write_fence_reg(dev, reg, obj); break;
2943 case 3: i915_write_fence_reg(dev, reg, obj); break;
2944 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2945 default: BUG();
9ce079e4 2946 }
d0a57789
CW
2947
2948 /* And similarly be paranoid that no direct access to this region
2949 * is reordered to before the fence is installed.
2950 */
2951 if (i915_gem_object_needs_mb(obj))
2952 mb();
de151cf6
JB
2953}
2954
61050808
CW
2955static inline int fence_number(struct drm_i915_private *dev_priv,
2956 struct drm_i915_fence_reg *fence)
2957{
2958 return fence - dev_priv->fence_regs;
2959}
2960
2961static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2962 struct drm_i915_fence_reg *fence,
2963 bool enable)
2964{
2dc8aae0 2965 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2966 int reg = fence_number(dev_priv, fence);
2967
2968 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2969
2970 if (enable) {
46a0b638 2971 obj->fence_reg = reg;
61050808
CW
2972 fence->obj = obj;
2973 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2974 } else {
2975 obj->fence_reg = I915_FENCE_REG_NONE;
2976 fence->obj = NULL;
2977 list_del_init(&fence->lru_list);
2978 }
94a335db 2979 obj->fence_dirty = false;
61050808
CW
2980}
2981
d9e86c0e 2982static int
d0a57789 2983i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2984{
1c293ea3 2985 if (obj->last_fenced_seqno) {
86d5bc37 2986 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2987 if (ret)
2988 return ret;
d9e86c0e
CW
2989
2990 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2991 }
2992
86d5bc37 2993 obj->fenced_gpu_access = false;
d9e86c0e
CW
2994 return 0;
2995}
2996
2997int
2998i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2999{
61050808 3000 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3001 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3002 int ret;
3003
d0a57789 3004 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3005 if (ret)
3006 return ret;
3007
61050808
CW
3008 if (obj->fence_reg == I915_FENCE_REG_NONE)
3009 return 0;
d9e86c0e 3010
f9c513e9
CW
3011 fence = &dev_priv->fence_regs[obj->fence_reg];
3012
61050808 3013 i915_gem_object_fence_lost(obj);
f9c513e9 3014 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3015
3016 return 0;
3017}
3018
3019static struct drm_i915_fence_reg *
a360bb1a 3020i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3021{
ae3db24a 3022 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3023 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3024 int i;
ae3db24a
DV
3025
3026 /* First try to find a free reg */
d9e86c0e 3027 avail = NULL;
ae3db24a
DV
3028 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3029 reg = &dev_priv->fence_regs[i];
3030 if (!reg->obj)
d9e86c0e 3031 return reg;
ae3db24a 3032
1690e1eb 3033 if (!reg->pin_count)
d9e86c0e 3034 avail = reg;
ae3db24a
DV
3035 }
3036
d9e86c0e 3037 if (avail == NULL)
5dce5b93 3038 goto deadlock;
ae3db24a
DV
3039
3040 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3041 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3042 if (reg->pin_count)
ae3db24a
DV
3043 continue;
3044
8fe301ad 3045 return reg;
ae3db24a
DV
3046 }
3047
5dce5b93
CW
3048deadlock:
3049 /* Wait for completion of pending flips which consume fences */
3050 if (intel_has_pending_fb_unpin(dev))
3051 return ERR_PTR(-EAGAIN);
3052
3053 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3054}
3055
de151cf6 3056/**
9a5a53b3 3057 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3058 * @obj: object to map through a fence reg
3059 *
3060 * When mapping objects through the GTT, userspace wants to be able to write
3061 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3062 * This function walks the fence regs looking for a free one for @obj,
3063 * stealing one if it can't find any.
3064 *
3065 * It then sets up the reg based on the object's properties: address, pitch
3066 * and tiling format.
9a5a53b3
CW
3067 *
3068 * For an untiled surface, this removes any existing fence.
de151cf6 3069 */
8c4b8c3f 3070int
06d98131 3071i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3072{
05394f39 3073 struct drm_device *dev = obj->base.dev;
79e53945 3074 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3075 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3076 struct drm_i915_fence_reg *reg;
ae3db24a 3077 int ret;
de151cf6 3078
14415745
CW
3079 /* Have we updated the tiling parameters upon the object and so
3080 * will need to serialise the write to the associated fence register?
3081 */
5d82e3e6 3082 if (obj->fence_dirty) {
d0a57789 3083 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3084 if (ret)
3085 return ret;
3086 }
9a5a53b3 3087
d9e86c0e 3088 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3089 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3090 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3091 if (!obj->fence_dirty) {
14415745
CW
3092 list_move_tail(&reg->lru_list,
3093 &dev_priv->mm.fence_list);
3094 return 0;
3095 }
3096 } else if (enable) {
3097 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3098 if (IS_ERR(reg))
3099 return PTR_ERR(reg);
d9e86c0e 3100
14415745
CW
3101 if (reg->obj) {
3102 struct drm_i915_gem_object *old = reg->obj;
3103
d0a57789 3104 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3105 if (ret)
3106 return ret;
3107
14415745 3108 i915_gem_object_fence_lost(old);
29c5a587 3109 }
14415745 3110 } else
a09ba7fa 3111 return 0;
a09ba7fa 3112
14415745 3113 i915_gem_object_update_fence(obj, reg, enable);
14415745 3114
9ce079e4 3115 return 0;
de151cf6
JB
3116}
3117
42d6ab48
CW
3118static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3119 struct drm_mm_node *gtt_space,
3120 unsigned long cache_level)
3121{
3122 struct drm_mm_node *other;
3123
3124 /* On non-LLC machines we have to be careful when putting differing
3125 * types of snoopable memory together to avoid the prefetcher
4239ca77 3126 * crossing memory domains and dying.
42d6ab48
CW
3127 */
3128 if (HAS_LLC(dev))
3129 return true;
3130
c6cfb325 3131 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3132 return true;
3133
3134 if (list_empty(&gtt_space->node_list))
3135 return true;
3136
3137 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3138 if (other->allocated && !other->hole_follows && other->color != cache_level)
3139 return false;
3140
3141 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3142 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3143 return false;
3144
3145 return true;
3146}
3147
3148static void i915_gem_verify_gtt(struct drm_device *dev)
3149{
3150#if WATCH_GTT
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152 struct drm_i915_gem_object *obj;
3153 int err = 0;
3154
35c20a60 3155 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3156 if (obj->gtt_space == NULL) {
3157 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3158 err++;
3159 continue;
3160 }
3161
3162 if (obj->cache_level != obj->gtt_space->color) {
3163 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3164 i915_gem_obj_ggtt_offset(obj),
3165 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3166 obj->cache_level,
3167 obj->gtt_space->color);
3168 err++;
3169 continue;
3170 }
3171
3172 if (!i915_gem_valid_gtt_space(dev,
3173 obj->gtt_space,
3174 obj->cache_level)) {
3175 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3176 i915_gem_obj_ggtt_offset(obj),
3177 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3178 obj->cache_level);
3179 err++;
3180 continue;
3181 }
3182 }
3183
3184 WARN_ON(err);
3185#endif
3186}
3187
673a394b
EA
3188/**
3189 * Finds free space in the GTT aperture and binds the object there.
3190 */
262de145 3191static struct i915_vma *
07fe0b12
BW
3192i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3193 struct i915_address_space *vm,
3194 unsigned alignment,
1ec9e26d 3195 unsigned flags)
673a394b 3196{
05394f39 3197 struct drm_device *dev = obj->base.dev;
673a394b 3198 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3199 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3200 size_t gtt_max =
1ec9e26d 3201 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3202 struct i915_vma *vma;
07f73f69 3203 int ret;
673a394b 3204
e28f8711
CW
3205 fence_size = i915_gem_get_gtt_size(dev,
3206 obj->base.size,
3207 obj->tiling_mode);
3208 fence_alignment = i915_gem_get_gtt_alignment(dev,
3209 obj->base.size,
d865110c 3210 obj->tiling_mode, true);
e28f8711 3211 unfenced_alignment =
d865110c 3212 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3213 obj->base.size,
3214 obj->tiling_mode, false);
a00b10c3 3215
673a394b 3216 if (alignment == 0)
1ec9e26d 3217 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3218 unfenced_alignment;
1ec9e26d 3219 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3220 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3221 return ERR_PTR(-EINVAL);
673a394b
EA
3222 }
3223
1ec9e26d 3224 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3225
654fc607
CW
3226 /* If the object is bigger than the entire aperture, reject it early
3227 * before evicting everything in a vain attempt to find space.
3228 */
0a9ae0d7 3229 if (obj->base.size > gtt_max) {
bd9b6a4e 3230 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3231 obj->base.size,
1ec9e26d 3232 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3233 gtt_max);
262de145 3234 return ERR_PTR(-E2BIG);
654fc607
CW
3235 }
3236
37e680a1 3237 ret = i915_gem_object_get_pages(obj);
6c085a72 3238 if (ret)
262de145 3239 return ERR_PTR(ret);
6c085a72 3240
fbdda6fb
CW
3241 i915_gem_object_pin_pages(obj);
3242
accfef2e 3243 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3244 if (IS_ERR(vma))
bc6bc15b 3245 goto err_unpin;
2f633156 3246
0a9ae0d7 3247search_free:
07fe0b12 3248 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3249 size, alignment,
31e5d7c6
DH
3250 obj->cache_level, 0, gtt_max,
3251 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3252 if (ret) {
f6cd1f15 3253 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3254 obj->cache_level, flags);
dc9dd7a2
CW
3255 if (ret == 0)
3256 goto search_free;
9731129c 3257
bc6bc15b 3258 goto err_free_vma;
673a394b 3259 }
2f633156 3260 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3261 obj->cache_level))) {
2f633156 3262 ret = -EINVAL;
bc6bc15b 3263 goto err_remove_node;
673a394b
EA
3264 }
3265
74163907 3266 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3267 if (ret)
bc6bc15b 3268 goto err_remove_node;
673a394b 3269
35c20a60 3270 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3271 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3272
4bd561b3
BW
3273 if (i915_is_ggtt(vm)) {
3274 bool mappable, fenceable;
a00b10c3 3275
49987099
DV
3276 fenceable = (vma->node.size == fence_size &&
3277 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3278
49987099
DV
3279 mappable = (vma->node.start + obj->base.size <=
3280 dev_priv->gtt.mappable_end);
a00b10c3 3281
5cacaac7 3282 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3283 }
75e9e915 3284
1ec9e26d 3285 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3286
1ec9e26d 3287 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3288 vma->bind_vma(vma, obj->cache_level,
3289 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3290
42d6ab48 3291 i915_gem_verify_gtt(dev);
262de145 3292 return vma;
2f633156 3293
bc6bc15b 3294err_remove_node:
6286ef9b 3295 drm_mm_remove_node(&vma->node);
bc6bc15b 3296err_free_vma:
2f633156 3297 i915_gem_vma_destroy(vma);
262de145 3298 vma = ERR_PTR(ret);
bc6bc15b 3299err_unpin:
2f633156 3300 i915_gem_object_unpin_pages(obj);
262de145 3301 return vma;
673a394b
EA
3302}
3303
000433b6 3304bool
2c22569b
CW
3305i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3306 bool force)
673a394b 3307{
673a394b
EA
3308 /* If we don't have a page list set up, then we're not pinned
3309 * to GPU, and we can ignore the cache flush because it'll happen
3310 * again at bind time.
3311 */
05394f39 3312 if (obj->pages == NULL)
000433b6 3313 return false;
673a394b 3314
769ce464
ID
3315 /*
3316 * Stolen memory is always coherent with the GPU as it is explicitly
3317 * marked as wc by the system, or the system is cache-coherent.
3318 */
3319 if (obj->stolen)
000433b6 3320 return false;
769ce464 3321
9c23f7fc
CW
3322 /* If the GPU is snooping the contents of the CPU cache,
3323 * we do not need to manually clear the CPU cache lines. However,
3324 * the caches are only snooped when the render cache is
3325 * flushed/invalidated. As we always have to emit invalidations
3326 * and flushes when moving into and out of the RENDER domain, correct
3327 * snooping behaviour occurs naturally as the result of our domain
3328 * tracking.
3329 */
2c22569b 3330 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3331 return false;
9c23f7fc 3332
1c5d22f7 3333 trace_i915_gem_object_clflush(obj);
9da3da66 3334 drm_clflush_sg(obj->pages);
000433b6
CW
3335
3336 return true;
e47c68e9
EA
3337}
3338
3339/** Flushes the GTT write domain for the object if it's dirty. */
3340static void
05394f39 3341i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3342{
1c5d22f7
CW
3343 uint32_t old_write_domain;
3344
05394f39 3345 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3346 return;
3347
63256ec5 3348 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3349 * to it immediately go to main memory as far as we know, so there's
3350 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3351 *
3352 * However, we do have to enforce the order so that all writes through
3353 * the GTT land before any writes to the device, such as updates to
3354 * the GATT itself.
e47c68e9 3355 */
63256ec5
CW
3356 wmb();
3357
05394f39
CW
3358 old_write_domain = obj->base.write_domain;
3359 obj->base.write_domain = 0;
1c5d22f7
CW
3360
3361 trace_i915_gem_object_change_domain(obj,
05394f39 3362 obj->base.read_domains,
1c5d22f7 3363 old_write_domain);
e47c68e9
EA
3364}
3365
3366/** Flushes the CPU write domain for the object if it's dirty. */
3367static void
2c22569b
CW
3368i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3369 bool force)
e47c68e9 3370{
1c5d22f7 3371 uint32_t old_write_domain;
e47c68e9 3372
05394f39 3373 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3374 return;
3375
000433b6
CW
3376 if (i915_gem_clflush_object(obj, force))
3377 i915_gem_chipset_flush(obj->base.dev);
3378
05394f39
CW
3379 old_write_domain = obj->base.write_domain;
3380 obj->base.write_domain = 0;
1c5d22f7
CW
3381
3382 trace_i915_gem_object_change_domain(obj,
05394f39 3383 obj->base.read_domains,
1c5d22f7 3384 old_write_domain);
e47c68e9
EA
3385}
3386
2ef7eeaa
EA
3387/**
3388 * Moves a single object to the GTT read, and possibly write domain.
3389 *
3390 * This function returns when the move is complete, including waiting on
3391 * flushes to occur.
3392 */
79e53945 3393int
2021746e 3394i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3395{
8325a09d 3396 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3397 uint32_t old_write_domain, old_read_domains;
e47c68e9 3398 int ret;
2ef7eeaa 3399
02354392 3400 /* Not valid to be called on unbound objects. */
9843877d 3401 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3402 return -EINVAL;
3403
8d7e3de1
CW
3404 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3405 return 0;
3406
0201f1ec 3407 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3408 if (ret)
3409 return ret;
3410
2c22569b 3411 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3412
d0a57789
CW
3413 /* Serialise direct access to this object with the barriers for
3414 * coherent writes from the GPU, by effectively invalidating the
3415 * GTT domain upon first access.
3416 */
3417 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3418 mb();
3419
05394f39
CW
3420 old_write_domain = obj->base.write_domain;
3421 old_read_domains = obj->base.read_domains;
1c5d22f7 3422
e47c68e9
EA
3423 /* It should now be out of any other write domains, and we can update
3424 * the domain values for our changes.
3425 */
05394f39
CW
3426 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3427 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3428 if (write) {
05394f39
CW
3429 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3430 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3431 obj->dirty = 1;
2ef7eeaa
EA
3432 }
3433
1c5d22f7
CW
3434 trace_i915_gem_object_change_domain(obj,
3435 old_read_domains,
3436 old_write_domain);
3437
8325a09d 3438 /* And bump the LRU for this access */
ca191b13 3439 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3440 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3441 if (vma)
3442 list_move_tail(&vma->mm_list,
3443 &dev_priv->gtt.base.inactive_list);
3444
3445 }
8325a09d 3446
e47c68e9
EA
3447 return 0;
3448}
3449
e4ffd173
CW
3450int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3451 enum i915_cache_level cache_level)
3452{
7bddb01f 3453 struct drm_device *dev = obj->base.dev;
3089c6f2 3454 struct i915_vma *vma;
e4ffd173
CW
3455 int ret;
3456
3457 if (obj->cache_level == cache_level)
3458 return 0;
3459
d7f46fc4 3460 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3461 DRM_DEBUG("can not change the cache level of pinned objects\n");
3462 return -EBUSY;
3463 }
3464
3089c6f2
BW
3465 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3466 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3467 ret = i915_vma_unbind(vma);
3089c6f2
BW
3468 if (ret)
3469 return ret;
3470
3471 break;
3472 }
42d6ab48
CW
3473 }
3474
3089c6f2 3475 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3476 ret = i915_gem_object_finish_gpu(obj);
3477 if (ret)
3478 return ret;
3479
3480 i915_gem_object_finish_gtt(obj);
3481
3482 /* Before SandyBridge, you could not use tiling or fence
3483 * registers with snooped memory, so relinquish any fences
3484 * currently pointing to our region in the aperture.
3485 */
42d6ab48 3486 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3487 ret = i915_gem_object_put_fence(obj);
3488 if (ret)
3489 return ret;
3490 }
3491
6f65e29a 3492 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3493 if (drm_mm_node_allocated(&vma->node))
3494 vma->bind_vma(vma, cache_level,
3495 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3496 }
3497
2c22569b
CW
3498 list_for_each_entry(vma, &obj->vma_list, vma_link)
3499 vma->node.color = cache_level;
3500 obj->cache_level = cache_level;
3501
3502 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3503 u32 old_read_domains, old_write_domain;
3504
3505 /* If we're coming from LLC cached, then we haven't
3506 * actually been tracking whether the data is in the
3507 * CPU cache or not, since we only allow one bit set
3508 * in obj->write_domain and have been skipping the clflushes.
3509 * Just set it to the CPU cache for now.
3510 */
3511 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3512
3513 old_read_domains = obj->base.read_domains;
3514 old_write_domain = obj->base.write_domain;
3515
3516 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3517 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3518
3519 trace_i915_gem_object_change_domain(obj,
3520 old_read_domains,
3521 old_write_domain);
3522 }
3523
42d6ab48 3524 i915_gem_verify_gtt(dev);
e4ffd173
CW
3525 return 0;
3526}
3527
199adf40
BW
3528int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3529 struct drm_file *file)
e6994aee 3530{
199adf40 3531 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3532 struct drm_i915_gem_object *obj;
3533 int ret;
3534
3535 ret = i915_mutex_lock_interruptible(dev);
3536 if (ret)
3537 return ret;
3538
3539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3540 if (&obj->base == NULL) {
3541 ret = -ENOENT;
3542 goto unlock;
3543 }
3544
651d794f
CW
3545 switch (obj->cache_level) {
3546 case I915_CACHE_LLC:
3547 case I915_CACHE_L3_LLC:
3548 args->caching = I915_CACHING_CACHED;
3549 break;
3550
4257d3ba
CW
3551 case I915_CACHE_WT:
3552 args->caching = I915_CACHING_DISPLAY;
3553 break;
3554
651d794f
CW
3555 default:
3556 args->caching = I915_CACHING_NONE;
3557 break;
3558 }
e6994aee
CW
3559
3560 drm_gem_object_unreference(&obj->base);
3561unlock:
3562 mutex_unlock(&dev->struct_mutex);
3563 return ret;
3564}
3565
199adf40
BW
3566int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3567 struct drm_file *file)
e6994aee 3568{
199adf40 3569 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3570 struct drm_i915_gem_object *obj;
3571 enum i915_cache_level level;
3572 int ret;
3573
199adf40
BW
3574 switch (args->caching) {
3575 case I915_CACHING_NONE:
e6994aee
CW
3576 level = I915_CACHE_NONE;
3577 break;
199adf40 3578 case I915_CACHING_CACHED:
e6994aee
CW
3579 level = I915_CACHE_LLC;
3580 break;
4257d3ba
CW
3581 case I915_CACHING_DISPLAY:
3582 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3583 break;
e6994aee
CW
3584 default:
3585 return -EINVAL;
3586 }
3587
3bc2913e
BW
3588 ret = i915_mutex_lock_interruptible(dev);
3589 if (ret)
3590 return ret;
3591
e6994aee
CW
3592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3593 if (&obj->base == NULL) {
3594 ret = -ENOENT;
3595 goto unlock;
3596 }
3597
3598 ret = i915_gem_object_set_cache_level(obj, level);
3599
3600 drm_gem_object_unreference(&obj->base);
3601unlock:
3602 mutex_unlock(&dev->struct_mutex);
3603 return ret;
3604}
3605
cc98b413
CW
3606static bool is_pin_display(struct drm_i915_gem_object *obj)
3607{
3608 /* There are 3 sources that pin objects:
3609 * 1. The display engine (scanouts, sprites, cursors);
3610 * 2. Reservations for execbuffer;
3611 * 3. The user.
3612 *
3613 * We can ignore reservations as we hold the struct_mutex and
3614 * are only called outside of the reservation path. The user
3615 * can only increment pin_count once, and so if after
3616 * subtracting the potential reference by the user, any pin_count
3617 * remains, it must be due to another use by the display engine.
3618 */
d7f46fc4 3619 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3620}
3621
b9241ea3 3622/*
2da3b9b9
CW
3623 * Prepare buffer for display plane (scanout, cursors, etc).
3624 * Can be called from an uninterruptible phase (modesetting) and allows
3625 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3626 */
3627int
2da3b9b9
CW
3628i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3629 u32 alignment,
919926ae 3630 struct intel_ring_buffer *pipelined)
b9241ea3 3631{
2da3b9b9 3632 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3633 int ret;
3634
0be73284 3635 if (pipelined != obj->ring) {
2911a35b
BW
3636 ret = i915_gem_object_sync(obj, pipelined);
3637 if (ret)
b9241ea3
ZW
3638 return ret;
3639 }
3640
cc98b413
CW
3641 /* Mark the pin_display early so that we account for the
3642 * display coherency whilst setting up the cache domains.
3643 */
3644 obj->pin_display = true;
3645
a7ef0640
EA
3646 /* The display engine is not coherent with the LLC cache on gen6. As
3647 * a result, we make sure that the pinning that is about to occur is
3648 * done with uncached PTEs. This is lowest common denominator for all
3649 * chipsets.
3650 *
3651 * However for gen6+, we could do better by using the GFDT bit instead
3652 * of uncaching, which would allow us to flush all the LLC-cached data
3653 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3654 */
651d794f
CW
3655 ret = i915_gem_object_set_cache_level(obj,
3656 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3657 if (ret)
cc98b413 3658 goto err_unpin_display;
a7ef0640 3659
2da3b9b9
CW
3660 /* As the user may map the buffer once pinned in the display plane
3661 * (e.g. libkms for the bootup splash), we have to ensure that we
3662 * always use map_and_fenceable for all scanout buffers.
3663 */
1ec9e26d 3664 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3665 if (ret)
cc98b413 3666 goto err_unpin_display;
2da3b9b9 3667
2c22569b 3668 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3669
2da3b9b9 3670 old_write_domain = obj->base.write_domain;
05394f39 3671 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3672
3673 /* It should now be out of any other write domains, and we can update
3674 * the domain values for our changes.
3675 */
e5f1d962 3676 obj->base.write_domain = 0;
05394f39 3677 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3678
3679 trace_i915_gem_object_change_domain(obj,
3680 old_read_domains,
2da3b9b9 3681 old_write_domain);
b9241ea3
ZW
3682
3683 return 0;
cc98b413
CW
3684
3685err_unpin_display:
3686 obj->pin_display = is_pin_display(obj);
3687 return ret;
3688}
3689
3690void
3691i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3692{
d7f46fc4 3693 i915_gem_object_ggtt_unpin(obj);
cc98b413 3694 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3695}
3696
85345517 3697int
a8198eea 3698i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3699{
88241785
CW
3700 int ret;
3701
a8198eea 3702 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3703 return 0;
3704
0201f1ec 3705 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3706 if (ret)
3707 return ret;
3708
a8198eea
CW
3709 /* Ensure that we invalidate the GPU's caches and TLBs. */
3710 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3711 return 0;
85345517
CW
3712}
3713
e47c68e9
EA
3714/**
3715 * Moves a single object to the CPU read, and possibly write domain.
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
dabdfe02 3720int
919926ae 3721i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3722{
1c5d22f7 3723 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3724 int ret;
3725
8d7e3de1
CW
3726 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3727 return 0;
3728
0201f1ec 3729 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3730 if (ret)
3731 return ret;
3732
e47c68e9 3733 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3734
05394f39
CW
3735 old_write_domain = obj->base.write_domain;
3736 old_read_domains = obj->base.read_domains;
1c5d22f7 3737
e47c68e9 3738 /* Flush the CPU cache if it's still invalid. */
05394f39 3739 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3740 i915_gem_clflush_object(obj, false);
2ef7eeaa 3741
05394f39 3742 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3743 }
3744
3745 /* It should now be out of any other write domains, and we can update
3746 * the domain values for our changes.
3747 */
05394f39 3748 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3749
3750 /* If we're writing through the CPU, then the GPU read domains will
3751 * need to be invalidated at next use.
3752 */
3753 if (write) {
05394f39
CW
3754 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3755 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3756 }
2ef7eeaa 3757
1c5d22f7
CW
3758 trace_i915_gem_object_change_domain(obj,
3759 old_read_domains,
3760 old_write_domain);
3761
2ef7eeaa
EA
3762 return 0;
3763}
3764
673a394b
EA
3765/* Throttle our rendering by waiting until the ring has completed our requests
3766 * emitted over 20 msec ago.
3767 *
b962442e
EA
3768 * Note that if we were to use the current jiffies each time around the loop,
3769 * we wouldn't escape the function with any frames outstanding if the time to
3770 * render a frame was over 20ms.
3771 *
673a394b
EA
3772 * This should get us reasonable parallelism between CPU and GPU but also
3773 * relatively low latency when blocking on a particular request to finish.
3774 */
40a5f0de 3775static int
f787a5f5 3776i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3777{
f787a5f5
CW
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3780 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3781 struct drm_i915_gem_request *request;
3782 struct intel_ring_buffer *ring = NULL;
f69061be 3783 unsigned reset_counter;
f787a5f5
CW
3784 u32 seqno = 0;
3785 int ret;
93533c29 3786
308887aa
DV
3787 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3788 if (ret)
3789 return ret;
3790
3791 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3792 if (ret)
3793 return ret;
e110e8d6 3794
1c25595f 3795 spin_lock(&file_priv->mm.lock);
f787a5f5 3796 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3797 if (time_after_eq(request->emitted_jiffies, recent_enough))
3798 break;
40a5f0de 3799
f787a5f5
CW
3800 ring = request->ring;
3801 seqno = request->seqno;
b962442e 3802 }
f69061be 3803 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3804 spin_unlock(&file_priv->mm.lock);
40a5f0de 3805
f787a5f5
CW
3806 if (seqno == 0)
3807 return 0;
2bc43b5c 3808
b29c19b6 3809 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3810 if (ret == 0)
3811 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3812
3813 return ret;
3814}
3815
673a394b 3816int
05394f39 3817i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3818 struct i915_address_space *vm,
05394f39 3819 uint32_t alignment,
1ec9e26d 3820 unsigned flags)
673a394b 3821{
07fe0b12 3822 struct i915_vma *vma;
673a394b
EA
3823 int ret;
3824
bf3d149b 3825 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3826 return -EINVAL;
07fe0b12
BW
3827
3828 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3829 if (vma) {
d7f46fc4
BW
3830 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3831 return -EBUSY;
3832
07fe0b12
BW
3833 if ((alignment &&
3834 vma->node.start & (alignment - 1)) ||
1ec9e26d 3835 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3836 WARN(vma->pin_count,
ae7d49d8 3837 "bo is already pinned with incorrect alignment:"
f343c5f6 3838 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3839 " obj->map_and_fenceable=%d\n",
07fe0b12 3840 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3841 flags & PIN_MAPPABLE,
05394f39 3842 obj->map_and_fenceable);
07fe0b12 3843 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3844 if (ret)
3845 return ret;
8ea99c92
DV
3846
3847 vma = NULL;
ac0c6b5a
CW
3848 }
3849 }
3850
8ea99c92 3851 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3852 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3853 if (IS_ERR(vma))
3854 return PTR_ERR(vma);
22c344e9 3855 }
76446cac 3856
8ea99c92
DV
3857 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3858 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3859
8ea99c92 3860 vma->pin_count++;
1ec9e26d
DV
3861 if (flags & PIN_MAPPABLE)
3862 obj->pin_mappable |= true;
673a394b
EA
3863
3864 return 0;
3865}
3866
3867void
d7f46fc4 3868i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3869{
d7f46fc4 3870 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3871
d7f46fc4
BW
3872 BUG_ON(!vma);
3873 BUG_ON(vma->pin_count == 0);
3874 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3875
3876 if (--vma->pin_count == 0)
6299f992 3877 obj->pin_mappable = false;
673a394b
EA
3878}
3879
3880int
3881i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3882 struct drm_file *file)
673a394b
EA
3883{
3884 struct drm_i915_gem_pin *args = data;
05394f39 3885 struct drm_i915_gem_object *obj;
673a394b
EA
3886 int ret;
3887
02f6bccc
DV
3888 if (INTEL_INFO(dev)->gen >= 6)
3889 return -ENODEV;
3890
1d7cfea1
CW
3891 ret = i915_mutex_lock_interruptible(dev);
3892 if (ret)
3893 return ret;
673a394b 3894
05394f39 3895 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3896 if (&obj->base == NULL) {
1d7cfea1
CW
3897 ret = -ENOENT;
3898 goto unlock;
673a394b 3899 }
673a394b 3900
05394f39 3901 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 3902 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 3903 ret = -EFAULT;
1d7cfea1 3904 goto out;
3ef94daa
CW
3905 }
3906
05394f39 3907 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 3908 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 3909 args->handle);
1d7cfea1
CW
3910 ret = -EINVAL;
3911 goto out;
79e53945
JB
3912 }
3913
aa5f8021
DV
3914 if (obj->user_pin_count == ULONG_MAX) {
3915 ret = -EBUSY;
3916 goto out;
3917 }
3918
93be8788 3919 if (obj->user_pin_count == 0) {
1ec9e26d 3920 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
3921 if (ret)
3922 goto out;
673a394b
EA
3923 }
3924
93be8788
CW
3925 obj->user_pin_count++;
3926 obj->pin_filp = file;
3927
f343c5f6 3928 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3929out:
05394f39 3930 drm_gem_object_unreference(&obj->base);
1d7cfea1 3931unlock:
673a394b 3932 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3933 return ret;
673a394b
EA
3934}
3935
3936int
3937i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3938 struct drm_file *file)
673a394b
EA
3939{
3940 struct drm_i915_gem_pin *args = data;
05394f39 3941 struct drm_i915_gem_object *obj;
76c1dec1 3942 int ret;
673a394b 3943
1d7cfea1
CW
3944 ret = i915_mutex_lock_interruptible(dev);
3945 if (ret)
3946 return ret;
673a394b 3947
05394f39 3948 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3949 if (&obj->base == NULL) {
1d7cfea1
CW
3950 ret = -ENOENT;
3951 goto unlock;
673a394b 3952 }
76c1dec1 3953
05394f39 3954 if (obj->pin_filp != file) {
bd9b6a4e 3955 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 3956 args->handle);
1d7cfea1
CW
3957 ret = -EINVAL;
3958 goto out;
79e53945 3959 }
05394f39
CW
3960 obj->user_pin_count--;
3961 if (obj->user_pin_count == 0) {
3962 obj->pin_filp = NULL;
d7f46fc4 3963 i915_gem_object_ggtt_unpin(obj);
79e53945 3964 }
673a394b 3965
1d7cfea1 3966out:
05394f39 3967 drm_gem_object_unreference(&obj->base);
1d7cfea1 3968unlock:
673a394b 3969 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3970 return ret;
673a394b
EA
3971}
3972
3973int
3974i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3975 struct drm_file *file)
673a394b
EA
3976{
3977 struct drm_i915_gem_busy *args = data;
05394f39 3978 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3979 int ret;
3980
76c1dec1 3981 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3982 if (ret)
76c1dec1 3983 return ret;
673a394b 3984
05394f39 3985 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3986 if (&obj->base == NULL) {
1d7cfea1
CW
3987 ret = -ENOENT;
3988 goto unlock;
673a394b 3989 }
d1b851fc 3990
0be555b6
CW
3991 /* Count all active objects as busy, even if they are currently not used
3992 * by the gpu. Users of this interface expect objects to eventually
3993 * become non-busy without any further actions, therefore emit any
3994 * necessary flushes here.
c4de0a5d 3995 */
30dfebf3 3996 ret = i915_gem_object_flush_active(obj);
0be555b6 3997
30dfebf3 3998 args->busy = obj->active;
e9808edd
CW
3999 if (obj->ring) {
4000 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4001 args->busy |= intel_ring_flag(obj->ring) << 16;
4002 }
673a394b 4003
05394f39 4004 drm_gem_object_unreference(&obj->base);
1d7cfea1 4005unlock:
673a394b 4006 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4007 return ret;
673a394b
EA
4008}
4009
4010int
4011i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4012 struct drm_file *file_priv)
4013{
0206e353 4014 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4015}
4016
3ef94daa
CW
4017int
4018i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4019 struct drm_file *file_priv)
4020{
4021 struct drm_i915_gem_madvise *args = data;
05394f39 4022 struct drm_i915_gem_object *obj;
76c1dec1 4023 int ret;
3ef94daa
CW
4024
4025 switch (args->madv) {
4026 case I915_MADV_DONTNEED:
4027 case I915_MADV_WILLNEED:
4028 break;
4029 default:
4030 return -EINVAL;
4031 }
4032
1d7cfea1
CW
4033 ret = i915_mutex_lock_interruptible(dev);
4034 if (ret)
4035 return ret;
4036
05394f39 4037 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4038 if (&obj->base == NULL) {
1d7cfea1
CW
4039 ret = -ENOENT;
4040 goto unlock;
3ef94daa 4041 }
3ef94daa 4042
d7f46fc4 4043 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4044 ret = -EINVAL;
4045 goto out;
3ef94daa
CW
4046 }
4047
05394f39
CW
4048 if (obj->madv != __I915_MADV_PURGED)
4049 obj->madv = args->madv;
3ef94daa 4050
6c085a72
CW
4051 /* if the object is no longer attached, discard its backing storage */
4052 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4053 i915_gem_object_truncate(obj);
4054
05394f39 4055 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4056
1d7cfea1 4057out:
05394f39 4058 drm_gem_object_unreference(&obj->base);
1d7cfea1 4059unlock:
3ef94daa 4060 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4061 return ret;
3ef94daa
CW
4062}
4063
37e680a1
CW
4064void i915_gem_object_init(struct drm_i915_gem_object *obj,
4065 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4066{
35c20a60 4067 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4068 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4069 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4070 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4071
37e680a1
CW
4072 obj->ops = ops;
4073
0327d6ba
CW
4074 obj->fence_reg = I915_FENCE_REG_NONE;
4075 obj->madv = I915_MADV_WILLNEED;
4076 /* Avoid an unnecessary call to unbind on the first bind. */
4077 obj->map_and_fenceable = true;
4078
4079 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4080}
4081
37e680a1
CW
4082static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4083 .get_pages = i915_gem_object_get_pages_gtt,
4084 .put_pages = i915_gem_object_put_pages_gtt,
4085};
4086
05394f39
CW
4087struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4088 size_t size)
ac52bc56 4089{
c397b908 4090 struct drm_i915_gem_object *obj;
5949eac4 4091 struct address_space *mapping;
1a240d4d 4092 gfp_t mask;
ac52bc56 4093
42dcedd4 4094 obj = i915_gem_object_alloc(dev);
c397b908
DV
4095 if (obj == NULL)
4096 return NULL;
673a394b 4097
c397b908 4098 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4099 i915_gem_object_free(obj);
c397b908
DV
4100 return NULL;
4101 }
673a394b 4102
bed1ea95
CW
4103 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4104 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4105 /* 965gm cannot relocate objects above 4GiB. */
4106 mask &= ~__GFP_HIGHMEM;
4107 mask |= __GFP_DMA32;
4108 }
4109
496ad9aa 4110 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4111 mapping_set_gfp_mask(mapping, mask);
5949eac4 4112
37e680a1 4113 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4114
c397b908
DV
4115 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4116 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4117
3d29b842
ED
4118 if (HAS_LLC(dev)) {
4119 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4120 * cache) for about a 10% performance improvement
4121 * compared to uncached. Graphics requests other than
4122 * display scanout are coherent with the CPU in
4123 * accessing this cache. This means in this mode we
4124 * don't need to clflush on the CPU side, and on the
4125 * GPU side we only need to flush internal caches to
4126 * get data visible to the CPU.
4127 *
4128 * However, we maintain the display planes as UC, and so
4129 * need to rebind when first used as such.
4130 */
4131 obj->cache_level = I915_CACHE_LLC;
4132 } else
4133 obj->cache_level = I915_CACHE_NONE;
4134
d861e338
DV
4135 trace_i915_gem_object_create(obj);
4136
05394f39 4137 return obj;
c397b908
DV
4138}
4139
1488fc08 4140void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4141{
1488fc08 4142 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4143 struct drm_device *dev = obj->base.dev;
be72615b 4144 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4145 struct i915_vma *vma, *next;
673a394b 4146
f65c9168
PZ
4147 intel_runtime_pm_get(dev_priv);
4148
26e12f89
CW
4149 trace_i915_gem_object_destroy(obj);
4150
1488fc08
CW
4151 if (obj->phys_obj)
4152 i915_gem_detach_phys_object(dev, obj);
4153
07fe0b12 4154 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4155 int ret;
4156
4157 vma->pin_count = 0;
4158 ret = i915_vma_unbind(vma);
07fe0b12
BW
4159 if (WARN_ON(ret == -ERESTARTSYS)) {
4160 bool was_interruptible;
1488fc08 4161
07fe0b12
BW
4162 was_interruptible = dev_priv->mm.interruptible;
4163 dev_priv->mm.interruptible = false;
1488fc08 4164
07fe0b12 4165 WARN_ON(i915_vma_unbind(vma));
1488fc08 4166
07fe0b12
BW
4167 dev_priv->mm.interruptible = was_interruptible;
4168 }
1488fc08
CW
4169 }
4170
1d64ae71
BW
4171 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4172 * before progressing. */
4173 if (obj->stolen)
4174 i915_gem_object_unpin_pages(obj);
4175
401c29f6
BW
4176 if (WARN_ON(obj->pages_pin_count))
4177 obj->pages_pin_count = 0;
37e680a1 4178 i915_gem_object_put_pages(obj);
d8cb5086 4179 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4180 i915_gem_object_release_stolen(obj);
de151cf6 4181
9da3da66
CW
4182 BUG_ON(obj->pages);
4183
2f745ad3
CW
4184 if (obj->base.import_attach)
4185 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4186
05394f39
CW
4187 drm_gem_object_release(&obj->base);
4188 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4189
05394f39 4190 kfree(obj->bit_17);
42dcedd4 4191 i915_gem_object_free(obj);
f65c9168
PZ
4192
4193 intel_runtime_pm_put(dev_priv);
673a394b
EA
4194}
4195
e656a6cb 4196struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4197 struct i915_address_space *vm)
e656a6cb
DV
4198{
4199 struct i915_vma *vma;
4200 list_for_each_entry(vma, &obj->vma_list, vma_link)
4201 if (vma->vm == vm)
4202 return vma;
4203
4204 return NULL;
4205}
4206
2f633156
BW
4207void i915_gem_vma_destroy(struct i915_vma *vma)
4208{
4209 WARN_ON(vma->node.allocated);
aaa05667
CW
4210
4211 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4212 if (!list_empty(&vma->exec_list))
4213 return;
4214
8b9c2b94 4215 list_del(&vma->vma_link);
b93dab6e 4216
2f633156
BW
4217 kfree(vma);
4218}
4219
29105ccc 4220int
45c5f202 4221i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4222{
4223 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4224 int ret = 0;
28dfe52a 4225
45c5f202 4226 mutex_lock(&dev->struct_mutex);
f7403347 4227 if (dev_priv->ums.mm_suspended)
45c5f202 4228 goto err;
28dfe52a 4229
b2da9fe5 4230 ret = i915_gpu_idle(dev);
f7403347 4231 if (ret)
45c5f202 4232 goto err;
f7403347 4233
b2da9fe5 4234 i915_gem_retire_requests(dev);
673a394b 4235
29105ccc 4236 /* Under UMS, be paranoid and evict. */
a39d7efc 4237 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4238 i915_gem_evict_everything(dev);
29105ccc 4239
29105ccc 4240 i915_kernel_lost_context(dev);
6dbe2772 4241 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4242
45c5f202
CW
4243 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4244 * We need to replace this with a semaphore, or something.
4245 * And not confound ums.mm_suspended!
4246 */
4247 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4248 DRIVER_MODESET);
4249 mutex_unlock(&dev->struct_mutex);
4250
4251 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4252 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4253 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4254
673a394b 4255 return 0;
45c5f202
CW
4256
4257err:
4258 mutex_unlock(&dev->struct_mutex);
4259 return ret;
673a394b
EA
4260}
4261
c3787e2e 4262int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4263{
c3787e2e 4264 struct drm_device *dev = ring->dev;
b9524a1e 4265 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4266 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4267 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4268 int i, ret;
b9524a1e 4269
040d2baa 4270 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4271 return 0;
b9524a1e 4272
c3787e2e
BW
4273 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4274 if (ret)
4275 return ret;
b9524a1e 4276
c3787e2e
BW
4277 /*
4278 * Note: We do not worry about the concurrent register cacheline hang
4279 * here because no other code should access these registers other than
4280 * at initialization time.
4281 */
b9524a1e 4282 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4283 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4284 intel_ring_emit(ring, reg_base + i);
4285 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4286 }
4287
c3787e2e 4288 intel_ring_advance(ring);
b9524a1e 4289
c3787e2e 4290 return ret;
b9524a1e
BW
4291}
4292
f691e2f4
DV
4293void i915_gem_init_swizzling(struct drm_device *dev)
4294{
4295 drm_i915_private_t *dev_priv = dev->dev_private;
4296
11782b02 4297 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4298 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4299 return;
4300
4301 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4302 DISP_TILE_SURFACE_SWIZZLING);
4303
11782b02
DV
4304 if (IS_GEN5(dev))
4305 return;
4306
f691e2f4
DV
4307 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4308 if (IS_GEN6(dev))
6b26c86d 4309 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4310 else if (IS_GEN7(dev))
6b26c86d 4311 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4312 else if (IS_GEN8(dev))
4313 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4314 else
4315 BUG();
f691e2f4 4316}
e21af88d 4317
67b1b571
CW
4318static bool
4319intel_enable_blt(struct drm_device *dev)
4320{
4321 if (!HAS_BLT(dev))
4322 return false;
4323
4324 /* The blitter was dysfunctional on early prototypes */
4325 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4326 DRM_INFO("BLT not supported on this pre-production hardware;"
4327 " graphics performance will be degraded.\n");
4328 return false;
4329 }
4330
4331 return true;
4332}
4333
4fc7c971 4334static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4335{
4fc7c971 4336 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4337 int ret;
68f95ba9 4338
5c1143bb 4339 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4340 if (ret)
b6913e4b 4341 return ret;
68f95ba9
CW
4342
4343 if (HAS_BSD(dev)) {
5c1143bb 4344 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4345 if (ret)
4346 goto cleanup_render_ring;
d1b851fc 4347 }
68f95ba9 4348
67b1b571 4349 if (intel_enable_blt(dev)) {
549f7365
CW
4350 ret = intel_init_blt_ring_buffer(dev);
4351 if (ret)
4352 goto cleanup_bsd_ring;
4353 }
4354
9a8a2213
BW
4355 if (HAS_VEBOX(dev)) {
4356 ret = intel_init_vebox_ring_buffer(dev);
4357 if (ret)
4358 goto cleanup_blt_ring;
4359 }
4360
4361
99433931 4362 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4363 if (ret)
9a8a2213 4364 goto cleanup_vebox_ring;
4fc7c971
BW
4365
4366 return 0;
4367
9a8a2213
BW
4368cleanup_vebox_ring:
4369 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4370cleanup_blt_ring:
4371 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4372cleanup_bsd_ring:
4373 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4374cleanup_render_ring:
4375 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4376
4377 return ret;
4378}
4379
4380int
4381i915_gem_init_hw(struct drm_device *dev)
4382{
4383 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4384 int ret, i;
4fc7c971
BW
4385
4386 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4387 return -EIO;
4388
59124506 4389 if (dev_priv->ellc_size)
05e21cc4 4390 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4391
0bf21347
VS
4392 if (IS_HASWELL(dev))
4393 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4394 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4395
88a2b2a3 4396 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4397 if (IS_IVYBRIDGE(dev)) {
4398 u32 temp = I915_READ(GEN7_MSG_CTL);
4399 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4400 I915_WRITE(GEN7_MSG_CTL, temp);
4401 } else if (INTEL_INFO(dev)->gen >= 7) {
4402 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4403 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4404 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4405 }
88a2b2a3
BW
4406 }
4407
4fc7c971
BW
4408 i915_gem_init_swizzling(dev);
4409
4410 ret = i915_gem_init_rings(dev);
99433931
MK
4411 if (ret)
4412 return ret;
4413
c3787e2e
BW
4414 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4415 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4416
254f965c 4417 /*
2fa48d8d
BW
4418 * XXX: Contexts should only be initialized once. Doing a switch to the
4419 * default context switch however is something we'd like to do after
4420 * reset or thaw (the latter may not actually be necessary for HW, but
4421 * goes with our code better). Context switching requires rings (for
4422 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4423 */
2fa48d8d 4424 ret = i915_gem_context_enable(dev_priv);
8245be31 4425 if (ret) {
2fa48d8d
BW
4426 DRM_ERROR("Context enable failed %d\n", ret);
4427 goto err_out;
b7c36d25 4428 }
e21af88d 4429
68f95ba9 4430 return 0;
2fa48d8d
BW
4431
4432err_out:
4433 i915_gem_cleanup_ringbuffer(dev);
4434 return ret;
8187a2b7
ZN
4435}
4436
1070a42b
CW
4437int i915_gem_init(struct drm_device *dev)
4438{
4439 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4440 int ret;
4441
1070a42b 4442 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4443
4444 if (IS_VALLEYVIEW(dev)) {
4445 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4446 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4447 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4448 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4449 }
4450
d7e5008f 4451 i915_gem_init_global_gtt(dev);
d62b4892 4452
2fa48d8d 4453 ret = i915_gem_context_init(dev);
e3848694
MK
4454 if (ret) {
4455 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4456 return ret;
e3848694 4457 }
2fa48d8d 4458
1070a42b
CW
4459 ret = i915_gem_init_hw(dev);
4460 mutex_unlock(&dev->struct_mutex);
4461 if (ret) {
bdf4fd7e 4462 WARN_ON(dev_priv->mm.aliasing_ppgtt);
2fa48d8d 4463 i915_gem_context_fini(dev);
c39538a8 4464 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4465 return ret;
4466 }
4467
53ca26ca
DV
4468 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4469 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4470 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4471 return 0;
4472}
4473
8187a2b7
ZN
4474void
4475i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4476{
4477 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4478 struct intel_ring_buffer *ring;
1ec14ad3 4479 int i;
8187a2b7 4480
b4519513
CW
4481 for_each_ring(ring, dev_priv, i)
4482 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4483}
4484
673a394b
EA
4485int
4486i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4487 struct drm_file *file_priv)
4488{
db1b76ca 4489 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4490 int ret;
673a394b 4491
79e53945
JB
4492 if (drm_core_check_feature(dev, DRIVER_MODESET))
4493 return 0;
4494
1f83fee0 4495 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4496 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4497 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4498 }
4499
673a394b 4500 mutex_lock(&dev->struct_mutex);
db1b76ca 4501 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4502
f691e2f4 4503 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4504 if (ret != 0) {
4505 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4506 return ret;
d816f6ac 4507 }
9bb2d6f9 4508
5cef07e1 4509 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4510 mutex_unlock(&dev->struct_mutex);
dbb19d30 4511
5f35308b
CW
4512 ret = drm_irq_install(dev);
4513 if (ret)
4514 goto cleanup_ringbuffer;
dbb19d30 4515
673a394b 4516 return 0;
5f35308b
CW
4517
4518cleanup_ringbuffer:
4519 mutex_lock(&dev->struct_mutex);
4520 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4521 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4522 mutex_unlock(&dev->struct_mutex);
4523
4524 return ret;
673a394b
EA
4525}
4526
4527int
4528i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4529 struct drm_file *file_priv)
4530{
79e53945
JB
4531 if (drm_core_check_feature(dev, DRIVER_MODESET))
4532 return 0;
4533
dbb19d30 4534 drm_irq_uninstall(dev);
db1b76ca 4535
45c5f202 4536 return i915_gem_suspend(dev);
673a394b
EA
4537}
4538
4539void
4540i915_gem_lastclose(struct drm_device *dev)
4541{
4542 int ret;
673a394b 4543
e806b495
EA
4544 if (drm_core_check_feature(dev, DRIVER_MODESET))
4545 return;
4546
45c5f202 4547 ret = i915_gem_suspend(dev);
6dbe2772
KP
4548 if (ret)
4549 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4550}
4551
64193406
CW
4552static void
4553init_ring_lists(struct intel_ring_buffer *ring)
4554{
4555 INIT_LIST_HEAD(&ring->active_list);
4556 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4557}
4558
7e0d96bc
BW
4559void i915_init_vm(struct drm_i915_private *dev_priv,
4560 struct i915_address_space *vm)
fc8c067e 4561{
7e0d96bc
BW
4562 if (!i915_is_ggtt(vm))
4563 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4564 vm->dev = dev_priv->dev;
4565 INIT_LIST_HEAD(&vm->active_list);
4566 INIT_LIST_HEAD(&vm->inactive_list);
4567 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4568 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4569}
4570
673a394b
EA
4571void
4572i915_gem_load(struct drm_device *dev)
4573{
4574 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4575 int i;
4576
4577 dev_priv->slab =
4578 kmem_cache_create("i915_gem_object",
4579 sizeof(struct drm_i915_gem_object), 0,
4580 SLAB_HWCACHE_ALIGN,
4581 NULL);
673a394b 4582
fc8c067e
BW
4583 INIT_LIST_HEAD(&dev_priv->vm_list);
4584 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4585
a33afea5 4586 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4587 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4588 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4589 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4590 for (i = 0; i < I915_NUM_RINGS; i++)
4591 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4592 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4593 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4594 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4595 i915_gem_retire_work_handler);
b29c19b6
CW
4596 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4597 i915_gem_idle_work_handler);
1f83fee0 4598 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4599
94400120
DA
4600 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4601 if (IS_GEN3(dev)) {
50743298
DV
4602 I915_WRITE(MI_ARB_STATE,
4603 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4604 }
4605
72bfa19c
CW
4606 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4607
de151cf6 4608 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4609 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4610 dev_priv->fence_reg_start = 3;
de151cf6 4611
42b5aeab
VS
4612 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4613 dev_priv->num_fence_regs = 32;
4614 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4615 dev_priv->num_fence_regs = 16;
4616 else
4617 dev_priv->num_fence_regs = 8;
4618
b5aa8a0f 4619 /* Initialize fence registers to zero */
19b2dbde
CW
4620 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4621 i915_gem_restore_fences(dev);
10ed13e4 4622
673a394b 4623 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4624 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4625
ce453d81
CW
4626 dev_priv->mm.interruptible = true;
4627
7dc19d5a
DC
4628 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4629 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4630 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4631 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4632}
71acb5eb
DA
4633
4634/*
4635 * Create a physically contiguous memory object for this object
4636 * e.g. for cursor + overlay regs
4637 */
995b6762
CW
4638static int i915_gem_init_phys_object(struct drm_device *dev,
4639 int id, int size, int align)
71acb5eb
DA
4640{
4641 drm_i915_private_t *dev_priv = dev->dev_private;
4642 struct drm_i915_gem_phys_object *phys_obj;
4643 int ret;
4644
4645 if (dev_priv->mm.phys_objs[id - 1] || !size)
4646 return 0;
4647
b14c5679 4648 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4649 if (!phys_obj)
4650 return -ENOMEM;
4651
4652 phys_obj->id = id;
4653
6eeefaf3 4654 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4655 if (!phys_obj->handle) {
4656 ret = -ENOMEM;
4657 goto kfree_obj;
4658 }
4659#ifdef CONFIG_X86
4660 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4661#endif
4662
4663 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4664
4665 return 0;
4666kfree_obj:
9a298b2a 4667 kfree(phys_obj);
71acb5eb
DA
4668 return ret;
4669}
4670
995b6762 4671static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4672{
4673 drm_i915_private_t *dev_priv = dev->dev_private;
4674 struct drm_i915_gem_phys_object *phys_obj;
4675
4676 if (!dev_priv->mm.phys_objs[id - 1])
4677 return;
4678
4679 phys_obj = dev_priv->mm.phys_objs[id - 1];
4680 if (phys_obj->cur_obj) {
4681 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4682 }
4683
4684#ifdef CONFIG_X86
4685 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4686#endif
4687 drm_pci_free(dev, phys_obj->handle);
4688 kfree(phys_obj);
4689 dev_priv->mm.phys_objs[id - 1] = NULL;
4690}
4691
4692void i915_gem_free_all_phys_object(struct drm_device *dev)
4693{
4694 int i;
4695
260883c8 4696 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4697 i915_gem_free_phys_object(dev, i);
4698}
4699
4700void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4701 struct drm_i915_gem_object *obj)
71acb5eb 4702{
496ad9aa 4703 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4704 char *vaddr;
71acb5eb 4705 int i;
71acb5eb
DA
4706 int page_count;
4707
05394f39 4708 if (!obj->phys_obj)
71acb5eb 4709 return;
05394f39 4710 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4711
05394f39 4712 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4713 for (i = 0; i < page_count; i++) {
5949eac4 4714 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4715 if (!IS_ERR(page)) {
4716 char *dst = kmap_atomic(page);
4717 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4718 kunmap_atomic(dst);
4719
4720 drm_clflush_pages(&page, 1);
4721
4722 set_page_dirty(page);
4723 mark_page_accessed(page);
4724 page_cache_release(page);
4725 }
71acb5eb 4726 }
e76e9aeb 4727 i915_gem_chipset_flush(dev);
d78b47b9 4728
05394f39
CW
4729 obj->phys_obj->cur_obj = NULL;
4730 obj->phys_obj = NULL;
71acb5eb
DA
4731}
4732
4733int
4734i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4735 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4736 int id,
4737 int align)
71acb5eb 4738{
496ad9aa 4739 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4740 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4741 int ret = 0;
4742 int page_count;
4743 int i;
4744
4745 if (id > I915_MAX_PHYS_OBJECT)
4746 return -EINVAL;
4747
05394f39
CW
4748 if (obj->phys_obj) {
4749 if (obj->phys_obj->id == id)
71acb5eb
DA
4750 return 0;
4751 i915_gem_detach_phys_object(dev, obj);
4752 }
4753
71acb5eb
DA
4754 /* create a new object */
4755 if (!dev_priv->mm.phys_objs[id - 1]) {
4756 ret = i915_gem_init_phys_object(dev, id,
05394f39 4757 obj->base.size, align);
71acb5eb 4758 if (ret) {
05394f39
CW
4759 DRM_ERROR("failed to init phys object %d size: %zu\n",
4760 id, obj->base.size);
e5281ccd 4761 return ret;
71acb5eb
DA
4762 }
4763 }
4764
4765 /* bind to the object */
05394f39
CW
4766 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4767 obj->phys_obj->cur_obj = obj;
71acb5eb 4768
05394f39 4769 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4770
4771 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4772 struct page *page;
4773 char *dst, *src;
4774
5949eac4 4775 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4776 if (IS_ERR(page))
4777 return PTR_ERR(page);
71acb5eb 4778
ff75b9bc 4779 src = kmap_atomic(page);
05394f39 4780 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4781 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4782 kunmap_atomic(src);
71acb5eb 4783
e5281ccd
CW
4784 mark_page_accessed(page);
4785 page_cache_release(page);
4786 }
d78b47b9 4787
71acb5eb 4788 return 0;
71acb5eb
DA
4789}
4790
4791static int
05394f39
CW
4792i915_gem_phys_pwrite(struct drm_device *dev,
4793 struct drm_i915_gem_object *obj,
71acb5eb
DA
4794 struct drm_i915_gem_pwrite *args,
4795 struct drm_file *file_priv)
4796{
05394f39 4797 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4798 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4799
b47b30cc
CW
4800 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4801 unsigned long unwritten;
4802
4803 /* The physical object once assigned is fixed for the lifetime
4804 * of the obj, so we can safely drop the lock and continue
4805 * to access vaddr.
4806 */
4807 mutex_unlock(&dev->struct_mutex);
4808 unwritten = copy_from_user(vaddr, user_data, args->size);
4809 mutex_lock(&dev->struct_mutex);
4810 if (unwritten)
4811 return -EFAULT;
4812 }
71acb5eb 4813
e76e9aeb 4814 i915_gem_chipset_flush(dev);
71acb5eb
DA
4815 return 0;
4816}
b962442e 4817
f787a5f5 4818void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4819{
f787a5f5 4820 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4821
b29c19b6
CW
4822 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4823
b962442e
EA
4824 /* Clean up our request list when the client is going away, so that
4825 * later retire_requests won't dereference our soon-to-be-gone
4826 * file_priv.
4827 */
1c25595f 4828 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4829 while (!list_empty(&file_priv->mm.request_list)) {
4830 struct drm_i915_gem_request *request;
4831
4832 request = list_first_entry(&file_priv->mm.request_list,
4833 struct drm_i915_gem_request,
4834 client_list);
4835 list_del(&request->client_list);
4836 request->file_priv = NULL;
4837 }
1c25595f 4838 spin_unlock(&file_priv->mm.lock);
b962442e 4839}
31169714 4840
b29c19b6
CW
4841static void
4842i915_gem_file_idle_work_handler(struct work_struct *work)
4843{
4844 struct drm_i915_file_private *file_priv =
4845 container_of(work, typeof(*file_priv), mm.idle_work.work);
4846
4847 atomic_set(&file_priv->rps_wait_boost, false);
4848}
4849
4850int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4851{
4852 struct drm_i915_file_private *file_priv;
e422b888 4853 int ret;
b29c19b6
CW
4854
4855 DRM_DEBUG_DRIVER("\n");
4856
4857 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4858 if (!file_priv)
4859 return -ENOMEM;
4860
4861 file->driver_priv = file_priv;
4862 file_priv->dev_priv = dev->dev_private;
4863
4864 spin_lock_init(&file_priv->mm.lock);
4865 INIT_LIST_HEAD(&file_priv->mm.request_list);
4866 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4867 i915_gem_file_idle_work_handler);
4868
e422b888
BW
4869 ret = i915_gem_context_open(dev, file);
4870 if (ret)
4871 kfree(file_priv);
b29c19b6 4872
e422b888 4873 return ret;
b29c19b6
CW
4874}
4875
5774506f
CW
4876static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4877{
4878 if (!mutex_is_locked(mutex))
4879 return false;
4880
4881#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4882 return mutex->owner == task;
4883#else
4884 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4885 return false;
4886#endif
4887}
4888
7dc19d5a
DC
4889static unsigned long
4890i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4891{
17250b71
CW
4892 struct drm_i915_private *dev_priv =
4893 container_of(shrinker,
4894 struct drm_i915_private,
4895 mm.inactive_shrinker);
4896 struct drm_device *dev = dev_priv->dev;
6c085a72 4897 struct drm_i915_gem_object *obj;
5774506f 4898 bool unlock = true;
7dc19d5a 4899 unsigned long count;
17250b71 4900
5774506f
CW
4901 if (!mutex_trylock(&dev->struct_mutex)) {
4902 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4903 return 0;
5774506f 4904
677feac2 4905 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4906 return 0;
677feac2 4907
5774506f
CW
4908 unlock = false;
4909 }
31169714 4910
7dc19d5a 4911 count = 0;
35c20a60 4912 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4913 if (obj->pages_pin_count == 0)
7dc19d5a 4914 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4915
4916 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4917 if (obj->active)
4918 continue;
4919
d7f46fc4 4920 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4921 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4922 }
17250b71 4923
5774506f
CW
4924 if (unlock)
4925 mutex_unlock(&dev->struct_mutex);
d9973b43 4926
7dc19d5a 4927 return count;
31169714 4928}
a70a3148
BW
4929
4930/* All the new VM stuff */
4931unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4932 struct i915_address_space *vm)
4933{
4934 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4935 struct i915_vma *vma;
4936
6f425321
BW
4937 if (!dev_priv->mm.aliasing_ppgtt ||
4938 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4939 vm = &dev_priv->gtt.base;
4940
4941 BUG_ON(list_empty(&o->vma_list));
4942 list_for_each_entry(vma, &o->vma_list, vma_link) {
4943 if (vma->vm == vm)
4944 return vma->node.start;
4945
4946 }
4947 return -1;
4948}
4949
4950bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4951 struct i915_address_space *vm)
4952{
4953 struct i915_vma *vma;
4954
4955 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4956 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4957 return true;
4958
4959 return false;
4960}
4961
4962bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4963{
5a1d5eb0 4964 struct i915_vma *vma;
a70a3148 4965
5a1d5eb0
CW
4966 list_for_each_entry(vma, &o->vma_list, vma_link)
4967 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4968 return true;
4969
4970 return false;
4971}
4972
4973unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4974 struct i915_address_space *vm)
4975{
4976 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4977 struct i915_vma *vma;
4978
6f425321
BW
4979 if (!dev_priv->mm.aliasing_ppgtt ||
4980 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4981 vm = &dev_priv->gtt.base;
4982
4983 BUG_ON(list_empty(&o->vma_list));
4984
4985 list_for_each_entry(vma, &o->vma_list, vma_link)
4986 if (vma->vm == vm)
4987 return vma->node.size;
4988
4989 return 0;
4990}
4991
7dc19d5a
DC
4992static unsigned long
4993i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4994{
4995 struct drm_i915_private *dev_priv =
4996 container_of(shrinker,
4997 struct drm_i915_private,
4998 mm.inactive_shrinker);
4999 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5000 unsigned long freed;
5001 bool unlock = true;
5002
5003 if (!mutex_trylock(&dev->struct_mutex)) {
5004 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5005 return SHRINK_STOP;
7dc19d5a
DC
5006
5007 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5008 return SHRINK_STOP;
7dc19d5a
DC
5009
5010 unlock = false;
5011 }
5012
d9973b43
CW
5013 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5014 if (freed < sc->nr_to_scan)
5015 freed += __i915_gem_shrink(dev_priv,
5016 sc->nr_to_scan - freed,
5017 false);
5018 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5019 freed += i915_gem_shrink_all(dev_priv);
5020
5021 if (unlock)
5022 mutex_unlock(&dev->struct_mutex);
d9973b43 5023
7dc19d5a
DC
5024 return freed;
5025}
5c2abbea
BW
5026
5027struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5028{
5029 struct i915_vma *vma;
5030
5031 if (WARN_ON(list_empty(&obj->vma_list)))
5032 return NULL;
5033
5034 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5035 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5036 return NULL;
5037
5038 return vma;
5039}