]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm: Change create block to reserve node
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734 89static int
33196ded 90i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 91{
30dbf0c0
CW
92 int ret;
93
7abb690a
DV
94#define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
1f83fee0 96 if (EXIT_COND)
30dbf0c0
CW
97 return 0;
98
0a6759c6
DV
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
1f83fee0
DV
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
0a6759c6
DV
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
1f83fee0 113#undef EXIT_COND
30dbf0c0 114
21dd3734 115 return 0;
30dbf0c0
CW
116}
117
54cf91dc 118int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 119{
33196ded 120 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
121 int ret;
122
33196ded 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
23bc5982 131 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
132 return 0;
133}
30dbf0c0 134
7d1c4804 135static inline bool
05394f39 136i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 137{
6c085a72 138 return obj->gtt_space && !obj->active;
7d1c4804
CW
139}
140
79e53945
JB
141int
142i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 143 struct drm_file *file)
79e53945 144{
93d18799 145 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 146 struct drm_i915_gem_init *args = data;
2021746e 147
7bb6fb8d
DV
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
2021746e
CW
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
79e53945 154
f534bc0b
DV
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
79e53945 159 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
93d18799 162 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
163 mutex_unlock(&dev->struct_mutex);
164
2021746e 165 return 0;
673a394b
EA
166}
167
5a125c3c
EA
168int
169i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
5a125c3c 171{
73aa808f 172 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 173 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
5a125c3c 176
6299f992 177 pinned = 0;
73aa808f 178 mutex_lock(&dev->struct_mutex);
35c20a60 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a
CW
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
73aa808f 182 mutex_unlock(&dev->struct_mutex);
5a125c3c 183
5d4545ae 184 args->aper_size = dev_priv->gtt.total;
0206e353 185 args->aper_available_size = args->aper_size - pinned;
6299f992 186
5a125c3c
EA
187 return 0;
188}
189
42dcedd4
CW
190void *i915_gem_object_alloc(struct drm_device *dev)
191{
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194}
195
196void i915_gem_object_free(struct drm_i915_gem_object *obj)
197{
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200}
201
ff72145b
DA
202static int
203i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
673a394b 207{
05394f39 208 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
209 int ret;
210 u32 handle;
673a394b 211
ff72145b 212 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
213 if (size == 0)
214 return -EINVAL;
673a394b
EA
215
216 /* Allocate the new object */
ff72145b 217 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
218 if (obj == NULL)
219 return -ENOMEM;
220
05394f39 221 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 222 if (ret) {
05394f39
CW
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 225 i915_gem_object_free(obj);
673a394b 226 return ret;
1dfd9754 227 }
673a394b 228
202f2fef 229 /* drop reference from allocate - handle holds it now */
05394f39 230 drm_gem_object_unreference(&obj->base);
202f2fef
CW
231 trace_i915_gem_object_create(obj);
232
ff72145b 233 *handle_p = handle;
673a394b
EA
234 return 0;
235}
236
ff72145b
DA
237int
238i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241{
242 /* have to work out size/pitch and return them */
ed0291fd 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247}
248
249int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252{
253 return drm_gem_handle_delete(file, handle);
254}
255
256/**
257 * Creates a new mm object and returns a handle to it.
258 */
259int
260i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262{
263 struct drm_i915_gem_create *args = data;
63ed2cb2 264
ff72145b
DA
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267}
268
8461d226
DV
269static inline int
270__copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273{
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293}
294
8c59967c 295static inline int
4f0c7cfb
BW
296__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
8c59967c
DV
298 int length)
299{
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319}
320
d174bd64
DV
321/* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
eb01459f 324static int
d174bd64
DV
325shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328{
329 char *vaddr;
330 int ret;
331
e7e58eb5 332 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
f60d7f0c 344 return ret ? -EFAULT : 0;
d174bd64
DV
345}
346
23c18c71
DV
347static void
348shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350{
e7e58eb5 351 if (unlikely(swizzled)) {
23c18c71
DV
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367}
368
d174bd64
DV
369/* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371static int
372shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375{
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
23c18c71
DV
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
d174bd64
DV
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
f60d7f0c 395 return ret ? - EFAULT : 0;
d174bd64
DV
396}
397
eb01459f 398static int
dbf7bff0
DV
399i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
eb01459f 403{
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 409 int prefaulted = 0;
8489731c 410 int needs_clflush = 0;
67d5a50c 411 struct sg_page_iter sg_iter;
eb01459f 412
2bb4629a 413 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
414 remain = args->size;
415
8461d226 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 417
8489731c
DV
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
6c085a72
CW
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
8489731c 430 }
eb01459f 431
f60d7f0c
CW
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
8461d226 438 offset = args->offset;
eb01459f 439
67d5a50c
ID
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
2db76d7c 442 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
443
444 if (remain <= 0)
445 break;
446
eb01459f
EA
447 /* Operation in this page
448 *
eb01459f 449 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
450 * page_length = bytes to copy for this page
451 */
c8cbbb8b 452 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 456
8461d226
DV
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
d174bd64
DV
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
dbf7bff0 465
dbf7bff0
DV
466 mutex_unlock(&dev->struct_mutex);
467
96d79b52 468 if (!prefaulted) {
f56f821f 469 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
eb01459f 477
d174bd64
DV
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
eb01459f 481
dbf7bff0 482 mutex_lock(&dev->struct_mutex);
f60d7f0c 483
dbf7bff0 484next_page:
e5281ccd 485 mark_page_accessed(page);
e5281ccd 486
f60d7f0c 487 if (ret)
8461d226 488 goto out;
8461d226 489
eb01459f 490 remain -= page_length;
8461d226 491 user_data += page_length;
eb01459f
EA
492 offset += page_length;
493 }
494
4f27b75d 495out:
f60d7f0c
CW
496 i915_gem_object_unpin_pages(obj);
497
eb01459f
EA
498 return ret;
499}
500
673a394b
EA
501/**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506int
507i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 508 struct drm_file *file)
673a394b
EA
509{
510 struct drm_i915_gem_pread *args = data;
05394f39 511 struct drm_i915_gem_object *obj;
35b62a89 512 int ret = 0;
673a394b 513
51311d0a
CW
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
2bb4629a 518 to_user_ptr(args->data_ptr),
51311d0a
CW
519 args->size))
520 return -EFAULT;
521
4f27b75d 522 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 523 if (ret)
4f27b75d 524 return ret;
673a394b 525
05394f39 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 527 if (&obj->base == NULL) {
1d7cfea1
CW
528 ret = -ENOENT;
529 goto unlock;
4f27b75d 530 }
673a394b 531
7dcd2499 532 /* Bounds check source. */
05394f39
CW
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
ce9d419d 535 ret = -EINVAL;
35b62a89 536 goto out;
ce9d419d
CW
537 }
538
1286ff73
DV
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
db53a302
CW
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
dbf7bff0 549 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 550
35b62a89 551out:
05394f39 552 drm_gem_object_unreference(&obj->base);
1d7cfea1 553unlock:
4f27b75d 554 mutex_unlock(&dev->struct_mutex);
eb01459f 555 return ret;
673a394b
EA
556}
557
0839ccb8
KP
558/* This is the fast write path which cannot handle
559 * page faults in the source data
9b7530cc 560 */
0839ccb8
KP
561
562static inline int
563fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
9b7530cc 567{
4f0c7cfb
BW
568 void __iomem *vaddr_atomic;
569 void *vaddr;
0839ccb8 570 unsigned long unwritten;
9b7530cc 571
3e4d3af5 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 576 user_data, length);
3e4d3af5 577 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 578 return unwritten;
0839ccb8
KP
579}
580
3de09aa3
EA
581/**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
673a394b 585static int
05394f39
CW
586i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
3de09aa3 588 struct drm_i915_gem_pwrite *args,
05394f39 589 struct drm_file *file)
673a394b 590{
0839ccb8 591 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 592 ssize_t remain;
0839ccb8 593 loff_t offset, page_base;
673a394b 594 char __user *user_data;
935aaa69
DV
595 int page_offset, page_length, ret;
596
86a1ee26 597 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
673a394b 608
2bb4629a 609 user_data = to_user_ptr(args->data_ptr);
673a394b 610 remain = args->size;
673a394b 611
05394f39 612 offset = obj->gtt_offset + args->offset;
673a394b
EA
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
0839ccb8
KP
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
673a394b 620 */
c8cbbb8b
CW
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
0839ccb8
KP
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
0839ccb8 627 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
0839ccb8 630 */
5d4545ae 631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
673a394b 636
0839ccb8
KP
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
673a394b 640 }
673a394b 641
935aaa69
DV
642out_unpin:
643 i915_gem_object_unpin(obj);
644out:
3de09aa3 645 return ret;
673a394b
EA
646}
647
d174bd64
DV
648/* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
3043c60c 652static int
d174bd64
DV
653shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
673a394b 658{
d174bd64 659 char *vaddr;
673a394b 660 int ret;
3de09aa3 661
e7e58eb5 662 if (unlikely(page_do_bit17_swizzling))
d174bd64 663 return -EINVAL;
3de09aa3 664
d174bd64
DV
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
3de09aa3 676
755d2218 677 return ret ? -EFAULT : 0;
3de09aa3
EA
678}
679
d174bd64
DV
680/* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
3043c60c 682static int
d174bd64
DV
683shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
673a394b 688{
d174bd64
DV
689 char *vaddr;
690 int ret;
e5281ccd 691
d174bd64 692 vaddr = kmap(page);
e7e58eb5 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
d174bd64
DV
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
699 user_data,
700 page_length);
d174bd64
DV
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
23c18c71
DV
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
d174bd64 709 kunmap(page);
40123c1f 710
755d2218 711 return ret ? -EFAULT : 0;
40123c1f
EA
712}
713
40123c1f 714static int
e244a443
DV
715i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
40123c1f 719{
40123c1f 720 ssize_t remain;
8c59967c
DV
721 loff_t offset;
722 char __user *user_data;
eb2c0c81 723 int shmem_page_offset, page_length, ret = 0;
8c59967c 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 725 int hit_slowpath = 0;
58642885
DV
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
67d5a50c 728 struct sg_page_iter sg_iter;
40123c1f 729
2bb4629a 730 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
731 remain = args->size;
732
8c59967c 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 734
58642885
DV
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
6c085a72
CW
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
58642885
DV
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
755d2218
CW
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
673a394b 760 offset = args->offset;
05394f39 761 obj->dirty = 1;
673a394b 762
67d5a50c
ID
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
2db76d7c 765 struct page *page = sg_page_iter_page(&sg_iter);
58642885 766 int partial_cacheline_write;
e5281ccd 767
9da3da66
CW
768 if (remain <= 0)
769 break;
770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
8c59967c
DV
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
d174bd64
DV
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
e244a443
DV
798
799 hit_slowpath = 1;
e244a443 800 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
40123c1f 805
e244a443 806 mutex_lock(&dev->struct_mutex);
755d2218 807
e244a443 808next_page:
e5281ccd
CW
809 set_page_dirty(page);
810 mark_page_accessed(page);
e5281ccd 811
755d2218 812 if (ret)
8c59967c 813 goto out;
8c59967c 814
40123c1f 815 remain -= page_length;
8c59967c 816 user_data += page_length;
40123c1f 817 offset += page_length;
673a394b
EA
818 }
819
fbd5a26d 820out:
755d2218
CW
821 i915_gem_object_unpin_pages(obj);
822
e244a443 823 if (hit_slowpath) {
8dcf015e
DV
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 831 i915_gem_clflush_object(obj);
e76e9aeb 832 i915_gem_chipset_flush(dev);
e244a443 833 }
8c59967c 834 }
673a394b 835
58642885 836 if (needs_clflush_after)
e76e9aeb 837 i915_gem_chipset_flush(dev);
58642885 838
40123c1f 839 return ret;
673a394b
EA
840}
841
842/**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847int
848i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 849 struct drm_file *file)
673a394b
EA
850{
851 struct drm_i915_gem_pwrite *args = data;
05394f39 852 struct drm_i915_gem_object *obj;
51311d0a
CW
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
2bb4629a 859 to_user_ptr(args->data_ptr),
51311d0a
CW
860 args->size))
861 return -EFAULT;
862
2bb4629a 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
f56f821f 864 args->size);
51311d0a
CW
865 if (ret)
866 return -EFAULT;
673a394b 867
fbd5a26d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
fbd5a26d 870 return ret;
1d7cfea1 871
05394f39 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 873 if (&obj->base == NULL) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
fbd5a26d 876 }
673a394b 877
7dcd2499 878 /* Bounds check destination. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
1286ff73
DV
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
db53a302
CW
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
935aaa69 895 ret = -EFAULT;
673a394b
EA
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
5c0480f2 902 if (obj->phys_obj) {
fbd5a26d 903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
904 goto out;
905 }
906
86a1ee26 907 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 908 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
fbd5a26d 914 }
673a394b 915
86a1ee26 916 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 918
35b62a89 919out:
05394f39 920 drm_gem_object_unreference(&obj->base);
1d7cfea1 921unlock:
fbd5a26d 922 mutex_unlock(&dev->struct_mutex);
673a394b
EA
923 return ret;
924}
925
b361237b 926int
33196ded 927i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
928 bool interruptible)
929{
1f83fee0 930 if (i915_reset_in_progress(error)) {
b361237b
CW
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
1f83fee0
DV
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
b361237b
CW
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944}
945
946/*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950static int
951i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952{
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
0025c077 959 ret = i915_add_request(ring, NULL);
b361237b
CW
960
961 return ret;
962}
963
964/**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
f69061be 968 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
f69061be
DV
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
b361237b
CW
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 983 unsigned reset_counter,
b361237b
CW
984 bool interruptible, struct timespec *timeout)
985{
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
e054cc39 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011#define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
f69061be
DV
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
33196ded 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040#undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
b361237b
CW
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060}
1061
1062/**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066int
1067i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068{
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
33196ded 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
f69061be
DV
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
b361237b
CW
1088}
1089
d26e3af8
CW
1090static int
1091i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093{
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107}
1108
b361237b
CW
1109/**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113static __must_check int
1114i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116{
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
d26e3af8 1129 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1130}
1131
3236f57a
CW
1132/* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135static __must_check int
1136i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138{
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
f69061be 1142 unsigned reset_counter;
3236f57a
CW
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
33196ded 1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
f69061be 1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1162 mutex_unlock(&dev->struct_mutex);
f69061be 1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1164 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1165 if (ret)
1166 return ret;
3236f57a 1167
d26e3af8 1168 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1169}
1170
673a394b 1171/**
2ef7eeaa
EA
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1174 */
1175int
1176i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1177 struct drm_file *file)
673a394b
EA
1178{
1179 struct drm_i915_gem_set_domain *args = data;
05394f39 1180 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
673a394b
EA
1183 int ret;
1184
2ef7eeaa 1185 /* Only handle setting domains to types used by the CPU. */
21d509e3 1186 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1187 return -EINVAL;
1188
21d509e3 1189 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
76c1dec1 1198 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1199 if (ret)
76c1dec1 1200 return ret;
1d7cfea1 1201
05394f39 1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1203 if (&obj->base == NULL) {
1d7cfea1
CW
1204 ret = -ENOENT;
1205 goto unlock;
76c1dec1 1206 }
673a394b 1207
3236f57a
CW
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
2ef7eeaa
EA
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
2ef7eeaa 1225 } else {
e47c68e9 1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1227 }
1228
3236f57a 1229unref:
05394f39 1230 drm_gem_object_unreference(&obj->base);
1d7cfea1 1231unlock:
673a394b
EA
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234}
1235
1236/**
1237 * Called when user space has done writes to this buffer
1238 */
1239int
1240i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1241 struct drm_file *file)
673a394b
EA
1242{
1243 struct drm_i915_gem_sw_finish *args = data;
05394f39 1244 struct drm_i915_gem_object *obj;
673a394b
EA
1245 int ret = 0;
1246
76c1dec1 1247 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1248 if (ret)
76c1dec1 1249 return ret;
1d7cfea1 1250
05394f39 1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1252 if (&obj->base == NULL) {
1d7cfea1
CW
1253 ret = -ENOENT;
1254 goto unlock;
673a394b
EA
1255 }
1256
673a394b 1257 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1258 if (obj->pin_count)
e47c68e9
EA
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
05394f39 1261 drm_gem_object_unreference(&obj->base);
1d7cfea1 1262unlock:
673a394b
EA
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265}
1266
1267/**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274int
1275i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1276 struct drm_file *file)
673a394b
EA
1277{
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
673a394b
EA
1280 unsigned long addr;
1281
05394f39 1282 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1283 if (obj == NULL)
bf79cb91 1284 return -ENOENT;
673a394b 1285
1286ff73
DV
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
6be5ceb0 1294 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
bc9025bd 1297 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304}
1305
de151cf6
JB
1306/**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323{
05394f39
CW
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
7d1c4804 1326 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
0f973f27 1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
d9bc7e9f
CW
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
a00b10c3 1339
db53a302
CW
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
eb119bd6
CW
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
d9bc7e9f 1348 /* Now bind it into the GTT if needed */
c9839303
CW
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
4a684a41 1352
c9839303
CW
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
74898d7e 1356
06d98131 1357 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1358 if (ret)
c9839303 1359 goto unpin;
7d1c4804 1360
6299f992
CW
1361 obj->fault_mappable = true;
1362
5d4545ae 1363 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1364 page_offset;
1365
1366 /* Finally, remap it using the new GTT offset */
1367 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1368unpin:
1369 i915_gem_object_unpin(obj);
c715089f 1370unlock:
de151cf6 1371 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1372out:
de151cf6 1373 switch (ret) {
d9bc7e9f 1374 case -EIO:
a9340cca
DV
1375 /* If this -EIO is due to a gpu hang, give the reset code a
1376 * chance to clean up the mess. Otherwise return the proper
1377 * SIGBUS. */
1f83fee0 1378 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1379 return VM_FAULT_SIGBUS;
045e769a 1380 case -EAGAIN:
d9bc7e9f
CW
1381 /* Give the error handler a chance to run and move the
1382 * objects off the GPU active list. Next time we service the
1383 * fault, we should be able to transition the page into the
1384 * GTT without touching the GPU (and so avoid further
1385 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1386 * with coherency, just lost writes.
1387 */
045e769a 1388 set_need_resched();
c715089f
CW
1389 case 0:
1390 case -ERESTARTSYS:
bed636ab 1391 case -EINTR:
e79e0fe3
DR
1392 case -EBUSY:
1393 /*
1394 * EBUSY is ok: this just means that another thread
1395 * already did the job.
1396 */
c715089f 1397 return VM_FAULT_NOPAGE;
de151cf6 1398 case -ENOMEM:
de151cf6 1399 return VM_FAULT_OOM;
a7c2e1aa
DV
1400 case -ENOSPC:
1401 return VM_FAULT_SIGBUS;
de151cf6 1402 default:
a7c2e1aa 1403 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1404 return VM_FAULT_SIGBUS;
de151cf6
JB
1405 }
1406}
1407
901782b2
CW
1408/**
1409 * i915_gem_release_mmap - remove physical page mappings
1410 * @obj: obj in question
1411 *
af901ca1 1412 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1413 * relinquish ownership of the pages back to the system.
1414 *
1415 * It is vital that we remove the page mapping if we have mapped a tiled
1416 * object through the GTT and then lose the fence register due to
1417 * resource pressure. Similarly if the object has been moved out of the
1418 * aperture, than pages mapped into userspace must be revoked. Removing the
1419 * mapping will then trigger a page fault on the next user access, allowing
1420 * fixup by i915_gem_fault().
1421 */
d05ca301 1422void
05394f39 1423i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1424{
6299f992
CW
1425 if (!obj->fault_mappable)
1426 return;
901782b2 1427
f6e47884
CW
1428 if (obj->base.dev->dev_mapping)
1429 unmap_mapping_range(obj->base.dev->dev_mapping,
1430 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1431 obj->base.size, 1);
fb7d516a 1432
6299f992 1433 obj->fault_mappable = false;
901782b2
CW
1434}
1435
0fa87796 1436uint32_t
e28f8711 1437i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1438{
e28f8711 1439 uint32_t gtt_size;
92b88aeb
CW
1440
1441 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1442 tiling_mode == I915_TILING_NONE)
1443 return size;
92b88aeb
CW
1444
1445 /* Previous chips need a power-of-two fence region when tiling */
1446 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1447 gtt_size = 1024*1024;
92b88aeb 1448 else
e28f8711 1449 gtt_size = 512*1024;
92b88aeb 1450
e28f8711
CW
1451 while (gtt_size < size)
1452 gtt_size <<= 1;
92b88aeb 1453
e28f8711 1454 return gtt_size;
92b88aeb
CW
1455}
1456
de151cf6
JB
1457/**
1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459 * @obj: object to check
1460 *
1461 * Return the required GTT alignment for an object, taking into account
5e783301 1462 * potential fence register mapping.
de151cf6 1463 */
d865110c
ID
1464uint32_t
1465i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1466 int tiling_mode, bool fenced)
de151cf6 1467{
de151cf6
JB
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
d865110c 1472 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1473 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1474 return 4096;
1475
a00b10c3
CW
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
e28f8711 1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1481}
1482
d8cb5086
CW
1483static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1484{
1485 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1486 int ret;
1487
1488 if (obj->base.map_list.map)
1489 return 0;
1490
da494d7c
DV
1491 dev_priv->mm.shrinker_no_lock_stealing = true;
1492
d8cb5086
CW
1493 ret = drm_gem_create_mmap_offset(&obj->base);
1494 if (ret != -ENOSPC)
da494d7c 1495 goto out;
d8cb5086
CW
1496
1497 /* Badly fragmented mmap space? The only way we can recover
1498 * space is by destroying unwanted objects. We can't randomly release
1499 * mmap_offsets as userspace expects them to be persistent for the
1500 * lifetime of the objects. The closest we can is to release the
1501 * offsets on purgeable objects by truncating it and marking it purged,
1502 * which prevents userspace from ever using that object again.
1503 */
1504 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1505 ret = drm_gem_create_mmap_offset(&obj->base);
1506 if (ret != -ENOSPC)
da494d7c 1507 goto out;
d8cb5086
CW
1508
1509 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1510 ret = drm_gem_create_mmap_offset(&obj->base);
1511out:
1512 dev_priv->mm.shrinker_no_lock_stealing = false;
1513
1514 return ret;
d8cb5086
CW
1515}
1516
1517static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1518{
1519 if (!obj->base.map_list.map)
1520 return;
1521
1522 drm_gem_free_mmap_offset(&obj->base);
1523}
1524
de151cf6 1525int
ff72145b
DA
1526i915_gem_mmap_gtt(struct drm_file *file,
1527 struct drm_device *dev,
1528 uint32_t handle,
1529 uint64_t *offset)
de151cf6 1530{
da761a6e 1531 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1532 struct drm_i915_gem_object *obj;
de151cf6
JB
1533 int ret;
1534
76c1dec1 1535 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1536 if (ret)
76c1dec1 1537 return ret;
de151cf6 1538
ff72145b 1539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1540 if (&obj->base == NULL) {
1d7cfea1
CW
1541 ret = -ENOENT;
1542 goto unlock;
1543 }
de151cf6 1544
5d4545ae 1545 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1546 ret = -E2BIG;
ff56b0bc 1547 goto out;
da761a6e
CW
1548 }
1549
05394f39 1550 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1551 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1552 ret = -EINVAL;
1553 goto out;
ab18282d
CW
1554 }
1555
d8cb5086
CW
1556 ret = i915_gem_object_create_mmap_offset(obj);
1557 if (ret)
1558 goto out;
de151cf6 1559
ff72145b 1560 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1561
1d7cfea1 1562out:
05394f39 1563 drm_gem_object_unreference(&obj->base);
1d7cfea1 1564unlock:
de151cf6 1565 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1566 return ret;
de151cf6
JB
1567}
1568
ff72145b
DA
1569/**
1570 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1571 * @dev: DRM device
1572 * @data: GTT mapping ioctl data
1573 * @file: GEM object info
1574 *
1575 * Simply returns the fake offset to userspace so it can mmap it.
1576 * The mmap call will end up in drm_gem_mmap(), which will set things
1577 * up so we can get faults in the handler above.
1578 *
1579 * The fault handler will take care of binding the object into the GTT
1580 * (since it may have been evicted to make room for something), allocating
1581 * a fence register, and mapping the appropriate aperture address into
1582 * userspace.
1583 */
1584int
1585i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1586 struct drm_file *file)
1587{
1588 struct drm_i915_gem_mmap_gtt *args = data;
1589
ff72145b
DA
1590 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1591}
1592
225067ee
DV
1593/* Immediately discard the backing storage */
1594static void
1595i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1596{
e5281ccd 1597 struct inode *inode;
e5281ccd 1598
4d6294bf 1599 i915_gem_object_free_mmap_offset(obj);
1286ff73 1600
4d6294bf
CW
1601 if (obj->base.filp == NULL)
1602 return;
e5281ccd 1603
225067ee
DV
1604 /* Our goal here is to return as much of the memory as
1605 * is possible back to the system as we are called from OOM.
1606 * To do this we must instruct the shmfs to drop all of its
1607 * backing pages, *now*.
1608 */
496ad9aa 1609 inode = file_inode(obj->base.filp);
225067ee 1610 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1611
225067ee
DV
1612 obj->madv = __I915_MADV_PURGED;
1613}
e5281ccd 1614
225067ee
DV
1615static inline int
1616i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1617{
1618 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1619}
1620
5cdf5881 1621static void
05394f39 1622i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1623{
90797e6d
ID
1624 struct sg_page_iter sg_iter;
1625 int ret;
1286ff73 1626
05394f39 1627 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1628
6c085a72
CW
1629 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1630 if (ret) {
1631 /* In the event of a disaster, abandon all caches and
1632 * hope for the best.
1633 */
1634 WARN_ON(ret != -EIO);
1635 i915_gem_clflush_object(obj);
1636 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1637 }
1638
6dacfd2f 1639 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1640 i915_gem_object_save_bit_17_swizzle(obj);
1641
05394f39
CW
1642 if (obj->madv == I915_MADV_DONTNEED)
1643 obj->dirty = 0;
3ef94daa 1644
90797e6d 1645 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1646 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1647
05394f39 1648 if (obj->dirty)
9da3da66 1649 set_page_dirty(page);
3ef94daa 1650
05394f39 1651 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1652 mark_page_accessed(page);
3ef94daa 1653
9da3da66 1654 page_cache_release(page);
3ef94daa 1655 }
05394f39 1656 obj->dirty = 0;
673a394b 1657
9da3da66
CW
1658 sg_free_table(obj->pages);
1659 kfree(obj->pages);
37e680a1 1660}
6c085a72 1661
dd624afd 1662int
37e680a1
CW
1663i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1664{
1665 const struct drm_i915_gem_object_ops *ops = obj->ops;
1666
2f745ad3 1667 if (obj->pages == NULL)
37e680a1
CW
1668 return 0;
1669
1670 BUG_ON(obj->gtt_space);
6c085a72 1671
a5570178
CW
1672 if (obj->pages_pin_count)
1673 return -EBUSY;
1674
a2165e31
CW
1675 /* ->put_pages might need to allocate memory for the bit17 swizzle
1676 * array, hence protect them from being reaped by removing them from gtt
1677 * lists early. */
35c20a60 1678 list_del(&obj->global_list);
a2165e31 1679
37e680a1 1680 ops->put_pages(obj);
05394f39 1681 obj->pages = NULL;
37e680a1 1682
6c085a72
CW
1683 if (i915_gem_object_is_purgeable(obj))
1684 i915_gem_object_truncate(obj);
1685
1686 return 0;
1687}
1688
1689static long
93927ca5
DV
1690__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1691 bool purgeable_only)
6c085a72
CW
1692{
1693 struct drm_i915_gem_object *obj, *next;
1694 long count = 0;
1695
1696 list_for_each_entry_safe(obj, next,
1697 &dev_priv->mm.unbound_list,
35c20a60 1698 global_list) {
93927ca5 1699 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1700 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1701 count += obj->base.size >> PAGE_SHIFT;
1702 if (count >= target)
1703 return count;
1704 }
1705 }
1706
1707 list_for_each_entry_safe(obj, next,
1708 &dev_priv->mm.inactive_list,
1709 mm_list) {
93927ca5 1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
6c085a72 1711 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1712 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 return count;
1720}
1721
93927ca5
DV
1722static long
1723i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724{
1725 return __i915_gem_shrink(dev_priv, target, true);
1726}
1727
6c085a72
CW
1728static void
1729i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730{
1731 struct drm_i915_gem_object *obj, *next;
1732
1733 i915_gem_evict_everything(dev_priv->dev);
1734
35c20a60
BW
1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 global_list)
37e680a1 1737 i915_gem_object_put_pages(obj);
225067ee
DV
1738}
1739
37e680a1 1740static int
6c085a72 1741i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1742{
6c085a72 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1744 int page_count, i;
1745 struct address_space *mapping;
9da3da66
CW
1746 struct sg_table *st;
1747 struct scatterlist *sg;
90797e6d 1748 struct sg_page_iter sg_iter;
e5281ccd 1749 struct page *page;
90797e6d 1750 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1751 gfp_t gfp;
e5281ccd 1752
6c085a72
CW
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
9da3da66
CW
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
05394f39 1764 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
e5281ccd 1768 return -ENOMEM;
9da3da66 1769 }
e5281ccd 1770
9da3da66
CW
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
496ad9aa 1776 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1777 gfp = mapping_gfp_mask(mapping);
caf49191 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
6c085a72
CW
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
caf49191 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
caf49191 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1625e7e5
KRW
1804#ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811#endif
90797e6d
ID
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
e5281ccd 1821 }
1625e7e5
KRW
1822#ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824#endif
1825 sg_mark_end(sg);
74ce6b6c
CW
1826 obj->pages = st;
1827
6dacfd2f 1828 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833err_pages:
90797e6d
ID
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1836 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1837 sg_free_table(st);
1838 kfree(st);
e5281ccd 1839 return PTR_ERR(page);
673a394b
EA
1840}
1841
37e680a1
CW
1842/* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849int
1850i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851{
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
2f745ad3 1856 if (obj->pages)
37e680a1
CW
1857 return 0;
1858
43e28f09
CW
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
a5570178
CW
1864 BUG_ON(obj->pages_pin_count);
1865
37e680a1
CW
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
35c20a60 1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1871 return 0;
673a394b
EA
1872}
1873
54cf91dc 1874void
05394f39 1875i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1876 struct intel_ring_buffer *ring)
673a394b 1877{
05394f39 1878 struct drm_device *dev = obj->base.dev;
69dc4987 1879 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1880 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1881
852835f3 1882 BUG_ON(ring == NULL);
05394f39 1883 obj->ring = ring;
673a394b
EA
1884
1885 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1886 if (!obj->active) {
1887 drm_gem_object_reference(&obj->base);
1888 obj->active = 1;
673a394b 1889 }
e35a41de 1890
673a394b 1891 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1892 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1893 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1894
0201f1ec 1895 obj->last_read_seqno = seqno;
caea7476 1896
7dd49065 1897 if (obj->fenced_gpu_access) {
caea7476 1898 obj->last_fenced_seqno = seqno;
caea7476 1899
7dd49065
CW
1900 /* Bump MRU to take account of the delayed flush */
1901 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1902 struct drm_i915_fence_reg *reg;
1903
1904 reg = &dev_priv->fence_regs[obj->fence_reg];
1905 list_move_tail(&reg->lru_list,
1906 &dev_priv->mm.fence_list);
1907 }
caea7476
CW
1908 }
1909}
1910
1911static void
caea7476 1912i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1913{
05394f39 1914 struct drm_device *dev = obj->base.dev;
caea7476 1915 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1916
65ce3027 1917 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1918 BUG_ON(!obj->active);
caea7476 1919
1b50247a 1920 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1921
65ce3027 1922 list_del_init(&obj->ring_list);
caea7476
CW
1923 obj->ring = NULL;
1924
65ce3027
CW
1925 obj->last_read_seqno = 0;
1926 obj->last_write_seqno = 0;
1927 obj->base.write_domain = 0;
1928
1929 obj->last_fenced_seqno = 0;
caea7476 1930 obj->fenced_gpu_access = false;
caea7476
CW
1931
1932 obj->active = 0;
1933 drm_gem_object_unreference(&obj->base);
1934
1935 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1936}
673a394b 1937
9d773091 1938static int
fca26bb4 1939i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1940{
9d773091
CW
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942 struct intel_ring_buffer *ring;
1943 int ret, i, j;
53d227f2 1944
107f27a5 1945 /* Carefully retire all requests without writing to the rings */
9d773091 1946 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1947 ret = intel_ring_idle(ring);
1948 if (ret)
1949 return ret;
9d773091 1950 }
9d773091 1951 i915_gem_retire_requests(dev);
107f27a5
CW
1952
1953 /* Finally reset hw state */
9d773091 1954 for_each_ring(ring, dev_priv, i) {
fca26bb4 1955 intel_ring_init_seqno(ring, seqno);
498d2ac1 1956
9d773091
CW
1957 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958 ring->sync_seqno[j] = 0;
1959 }
53d227f2 1960
9d773091 1961 return 0;
53d227f2
DV
1962}
1963
fca26bb4
MK
1964int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965{
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 int ret;
1968
1969 if (seqno == 0)
1970 return -EINVAL;
1971
1972 /* HWS page needs to be set less than what we
1973 * will inject to ring
1974 */
1975 ret = i915_gem_init_seqno(dev, seqno - 1);
1976 if (ret)
1977 return ret;
1978
1979 /* Carefully set the last_seqno value so that wrap
1980 * detection still works
1981 */
1982 dev_priv->next_seqno = seqno;
1983 dev_priv->last_seqno = seqno - 1;
1984 if (dev_priv->last_seqno == 0)
1985 dev_priv->last_seqno--;
1986
1987 return 0;
1988}
1989
9d773091
CW
1990int
1991i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1992{
9d773091
CW
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995 /* reserve 0 for non-seqno */
1996 if (dev_priv->next_seqno == 0) {
fca26bb4 1997 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1998 if (ret)
1999 return ret;
53d227f2 2000
9d773091
CW
2001 dev_priv->next_seqno = 1;
2002 }
53d227f2 2003
f72b3435 2004 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2005 return 0;
53d227f2
DV
2006}
2007
0025c077
MK
2008int __i915_add_request(struct intel_ring_buffer *ring,
2009 struct drm_file *file,
7d736f4f 2010 struct drm_i915_gem_object *obj,
0025c077 2011 u32 *out_seqno)
673a394b 2012{
db53a302 2013 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2014 struct drm_i915_gem_request *request;
7d736f4f 2015 u32 request_ring_position, request_start;
673a394b 2016 int was_empty;
3cce469c
CW
2017 int ret;
2018
7d736f4f 2019 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2020 /*
2021 * Emit any outstanding flushes - execbuf can fail to emit the flush
2022 * after having emitted the batchbuffer command. Hence we need to fix
2023 * things up similar to emitting the lazy request. The difference here
2024 * is that the flush _must_ happen before the next request, no matter
2025 * what.
2026 */
a7b9761d
CW
2027 ret = intel_ring_flush_all_caches(ring);
2028 if (ret)
2029 return ret;
cc889e0f 2030
acb868d3
CW
2031 request = kmalloc(sizeof(*request), GFP_KERNEL);
2032 if (request == NULL)
2033 return -ENOMEM;
cc889e0f 2034
673a394b 2035
a71d8d94
CW
2036 /* Record the position of the start of the request so that
2037 * should we detect the updated seqno part-way through the
2038 * GPU processing the request, we never over-estimate the
2039 * position of the head.
2040 */
2041 request_ring_position = intel_ring_get_tail(ring);
2042
9d773091 2043 ret = ring->add_request(ring);
3bb73aba
CW
2044 if (ret) {
2045 kfree(request);
2046 return ret;
2047 }
673a394b 2048
9d773091 2049 request->seqno = intel_ring_get_seqno(ring);
852835f3 2050 request->ring = ring;
7d736f4f 2051 request->head = request_start;
a71d8d94 2052 request->tail = request_ring_position;
0e50e96b 2053 request->ctx = ring->last_context;
7d736f4f
MK
2054 request->batch_obj = obj;
2055
2056 /* Whilst this request exists, batch_obj will be on the
2057 * active_list, and so will hold the active reference. Only when this
2058 * request is retired will the the batch_obj be moved onto the
2059 * inactive_list and lose its active reference. Hence we do not need
2060 * to explicitly hold another reference here.
2061 */
0e50e96b
MK
2062
2063 if (request->ctx)
2064 i915_gem_context_reference(request->ctx);
2065
673a394b 2066 request->emitted_jiffies = jiffies;
852835f3
ZN
2067 was_empty = list_empty(&ring->request_list);
2068 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2069 request->file_priv = NULL;
852835f3 2070
db53a302
CW
2071 if (file) {
2072 struct drm_i915_file_private *file_priv = file->driver_priv;
2073
1c25595f 2074 spin_lock(&file_priv->mm.lock);
f787a5f5 2075 request->file_priv = file_priv;
b962442e 2076 list_add_tail(&request->client_list,
f787a5f5 2077 &file_priv->mm.request_list);
1c25595f 2078 spin_unlock(&file_priv->mm.lock);
b962442e 2079 }
673a394b 2080
9d773091 2081 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2082 ring->outstanding_lazy_request = 0;
db53a302 2083
f65d9421 2084 if (!dev_priv->mm.suspended) {
3e0dc6b0 2085 if (i915_enable_hangcheck) {
99584db3 2086 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
cecc21fe 2087 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2088 }
f047e395 2089 if (was_empty) {
b3b079db 2090 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2091 &dev_priv->mm.retire_work,
2092 round_jiffies_up_relative(HZ));
f047e395
CW
2093 intel_mark_busy(dev_priv->dev);
2094 }
f65d9421 2095 }
cc889e0f 2096
acb868d3 2097 if (out_seqno)
9d773091 2098 *out_seqno = request->seqno;
3cce469c 2099 return 0;
673a394b
EA
2100}
2101
f787a5f5
CW
2102static inline void
2103i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2104{
1c25595f 2105 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2106
1c25595f
CW
2107 if (!file_priv)
2108 return;
1c5d22f7 2109
1c25595f 2110 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2111 if (request->file_priv) {
2112 list_del(&request->client_list);
2113 request->file_priv = NULL;
2114 }
1c25595f 2115 spin_unlock(&file_priv->mm.lock);
673a394b 2116}
673a394b 2117
aa60c664
MK
2118static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2119{
2120 if (acthd >= obj->gtt_offset &&
2121 acthd < obj->gtt_offset + obj->base.size)
2122 return true;
2123
2124 return false;
2125}
2126
2127static bool i915_head_inside_request(const u32 acthd_unmasked,
2128 const u32 request_start,
2129 const u32 request_end)
2130{
2131 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2132
2133 if (request_start < request_end) {
2134 if (acthd >= request_start && acthd < request_end)
2135 return true;
2136 } else if (request_start > request_end) {
2137 if (acthd >= request_start || acthd < request_end)
2138 return true;
2139 }
2140
2141 return false;
2142}
2143
2144static bool i915_request_guilty(struct drm_i915_gem_request *request,
2145 const u32 acthd, bool *inside)
2146{
2147 /* There is a possibility that unmasked head address
2148 * pointing inside the ring, matches the batch_obj address range.
2149 * However this is extremely unlikely.
2150 */
2151
2152 if (request->batch_obj) {
2153 if (i915_head_inside_object(acthd, request->batch_obj)) {
2154 *inside = true;
2155 return true;
2156 }
2157 }
2158
2159 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2160 *inside = false;
2161 return true;
2162 }
2163
2164 return false;
2165}
2166
2167static void i915_set_reset_status(struct intel_ring_buffer *ring,
2168 struct drm_i915_gem_request *request,
2169 u32 acthd)
2170{
2171 struct i915_ctx_hang_stats *hs = NULL;
2172 bool inside, guilty;
2173
2174 /* Innocent until proven guilty */
2175 guilty = false;
2176
2177 if (ring->hangcheck.action != wait &&
2178 i915_request_guilty(request, acthd, &inside)) {
2179 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2180 ring->name,
2181 inside ? "inside" : "flushing",
2182 request->batch_obj ?
2183 request->batch_obj->gtt_offset : 0,
2184 request->ctx ? request->ctx->id : 0,
2185 acthd);
2186
2187 guilty = true;
2188 }
2189
2190 /* If contexts are disabled or this is the default context, use
2191 * file_priv->reset_state
2192 */
2193 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2194 hs = &request->ctx->hang_stats;
2195 else if (request->file_priv)
2196 hs = &request->file_priv->hang_stats;
2197
2198 if (hs) {
2199 if (guilty)
2200 hs->batch_active++;
2201 else
2202 hs->batch_pending++;
2203 }
2204}
2205
0e50e96b
MK
2206static void i915_gem_free_request(struct drm_i915_gem_request *request)
2207{
2208 list_del(&request->list);
2209 i915_gem_request_remove_from_client(request);
2210
2211 if (request->ctx)
2212 i915_gem_context_unreference(request->ctx);
2213
2214 kfree(request);
2215}
2216
dfaae392
CW
2217static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2218 struct intel_ring_buffer *ring)
9375e446 2219{
aa60c664
MK
2220 u32 completed_seqno;
2221 u32 acthd;
2222
2223 acthd = intel_ring_get_active_head(ring);
2224 completed_seqno = ring->get_seqno(ring, false);
2225
dfaae392
CW
2226 while (!list_empty(&ring->request_list)) {
2227 struct drm_i915_gem_request *request;
673a394b 2228
dfaae392
CW
2229 request = list_first_entry(&ring->request_list,
2230 struct drm_i915_gem_request,
2231 list);
de151cf6 2232
aa60c664
MK
2233 if (request->seqno > completed_seqno)
2234 i915_set_reset_status(ring, request, acthd);
2235
0e50e96b 2236 i915_gem_free_request(request);
dfaae392 2237 }
673a394b 2238
dfaae392 2239 while (!list_empty(&ring->active_list)) {
05394f39 2240 struct drm_i915_gem_object *obj;
9375e446 2241
05394f39
CW
2242 obj = list_first_entry(&ring->active_list,
2243 struct drm_i915_gem_object,
2244 ring_list);
9375e446 2245
05394f39 2246 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2247 }
2248}
2249
312817a3
CW
2250static void i915_gem_reset_fences(struct drm_device *dev)
2251{
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 int i;
2254
4b9de737 2255 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2256 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2257
ada726c7
CW
2258 if (reg->obj)
2259 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2260
f9c513e9
CW
2261 i915_gem_write_fence(dev, i, NULL);
2262
ada726c7
CW
2263 reg->pin_count = 0;
2264 reg->obj = NULL;
2265 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2266 }
ada726c7
CW
2267
2268 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2269}
2270
069efc1d 2271void i915_gem_reset(struct drm_device *dev)
673a394b 2272{
77f01230 2273 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2274 struct drm_i915_gem_object *obj;
b4519513 2275 struct intel_ring_buffer *ring;
1ec14ad3 2276 int i;
673a394b 2277
b4519513
CW
2278 for_each_ring(ring, dev_priv, i)
2279 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2280
dfaae392
CW
2281 /* Move everything out of the GPU domains to ensure we do any
2282 * necessary invalidation upon reuse.
2283 */
05394f39 2284 list_for_each_entry(obj,
77f01230 2285 &dev_priv->mm.inactive_list,
69dc4987 2286 mm_list)
77f01230 2287 {
05394f39 2288 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2289 }
069efc1d
CW
2290
2291 /* The fence registers are invalidated so clear them out */
312817a3 2292 i915_gem_reset_fences(dev);
673a394b
EA
2293}
2294
2295/**
2296 * This function clears the request list as sequence numbers are passed.
2297 */
a71d8d94 2298void
db53a302 2299i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2300{
673a394b
EA
2301 uint32_t seqno;
2302
db53a302 2303 if (list_empty(&ring->request_list))
6c0594a3
KW
2304 return;
2305
db53a302 2306 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2307
b2eadbc8 2308 seqno = ring->get_seqno(ring, true);
1ec14ad3 2309
852835f3 2310 while (!list_empty(&ring->request_list)) {
673a394b 2311 struct drm_i915_gem_request *request;
673a394b 2312
852835f3 2313 request = list_first_entry(&ring->request_list,
673a394b
EA
2314 struct drm_i915_gem_request,
2315 list);
673a394b 2316
dfaae392 2317 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2318 break;
2319
db53a302 2320 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2321 /* We know the GPU must have read the request to have
2322 * sent us the seqno + interrupt, so use the position
2323 * of tail of the request to update the last known position
2324 * of the GPU head.
2325 */
2326 ring->last_retired_head = request->tail;
b84d5f0c 2327
0e50e96b 2328 i915_gem_free_request(request);
b84d5f0c 2329 }
673a394b 2330
b84d5f0c
CW
2331 /* Move any buffers on the active list that are no longer referenced
2332 * by the ringbuffer to the flushing/inactive lists as appropriate.
2333 */
2334 while (!list_empty(&ring->active_list)) {
05394f39 2335 struct drm_i915_gem_object *obj;
b84d5f0c 2336
0206e353 2337 obj = list_first_entry(&ring->active_list,
05394f39
CW
2338 struct drm_i915_gem_object,
2339 ring_list);
673a394b 2340
0201f1ec 2341 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2342 break;
b84d5f0c 2343
65ce3027 2344 i915_gem_object_move_to_inactive(obj);
673a394b 2345 }
9d34e5db 2346
db53a302
CW
2347 if (unlikely(ring->trace_irq_seqno &&
2348 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2349 ring->irq_put(ring);
db53a302 2350 ring->trace_irq_seqno = 0;
9d34e5db 2351 }
23bc5982 2352
db53a302 2353 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2354}
2355
b09a1fec
CW
2356void
2357i915_gem_retire_requests(struct drm_device *dev)
2358{
2359 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2360 struct intel_ring_buffer *ring;
1ec14ad3 2361 int i;
b09a1fec 2362
b4519513
CW
2363 for_each_ring(ring, dev_priv, i)
2364 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2365}
2366
75ef9da2 2367static void
673a394b
EA
2368i915_gem_retire_work_handler(struct work_struct *work)
2369{
2370 drm_i915_private_t *dev_priv;
2371 struct drm_device *dev;
b4519513 2372 struct intel_ring_buffer *ring;
0a58705b
CW
2373 bool idle;
2374 int i;
673a394b
EA
2375
2376 dev_priv = container_of(work, drm_i915_private_t,
2377 mm.retire_work.work);
2378 dev = dev_priv->dev;
2379
891b48cf
CW
2380 /* Come back later if the device is busy... */
2381 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2382 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2383 round_jiffies_up_relative(HZ));
891b48cf
CW
2384 return;
2385 }
673a394b 2386
b09a1fec 2387 i915_gem_retire_requests(dev);
673a394b 2388
0a58705b
CW
2389 /* Send a periodic flush down the ring so we don't hold onto GEM
2390 * objects indefinitely.
673a394b 2391 */
0a58705b 2392 idle = true;
b4519513 2393 for_each_ring(ring, dev_priv, i) {
3bb73aba 2394 if (ring->gpu_caches_dirty)
0025c077 2395 i915_add_request(ring, NULL);
0a58705b
CW
2396
2397 idle &= list_empty(&ring->request_list);
673a394b
EA
2398 }
2399
0a58705b 2400 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2401 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2402 round_jiffies_up_relative(HZ));
f047e395
CW
2403 if (idle)
2404 intel_mark_idle(dev);
0a58705b 2405
673a394b 2406 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2407}
2408
30dfebf3
DV
2409/**
2410 * Ensures that an object will eventually get non-busy by flushing any required
2411 * write domains, emitting any outstanding lazy request and retiring and
2412 * completed requests.
2413 */
2414static int
2415i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2416{
2417 int ret;
2418
2419 if (obj->active) {
0201f1ec 2420 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2421 if (ret)
2422 return ret;
2423
30dfebf3
DV
2424 i915_gem_retire_requests_ring(obj->ring);
2425 }
2426
2427 return 0;
2428}
2429
23ba4fd0
BW
2430/**
2431 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2432 * @DRM_IOCTL_ARGS: standard ioctl arguments
2433 *
2434 * Returns 0 if successful, else an error is returned with the remaining time in
2435 * the timeout parameter.
2436 * -ETIME: object is still busy after timeout
2437 * -ERESTARTSYS: signal interrupted the wait
2438 * -ENONENT: object doesn't exist
2439 * Also possible, but rare:
2440 * -EAGAIN: GPU wedged
2441 * -ENOMEM: damn
2442 * -ENODEV: Internal IRQ fail
2443 * -E?: The add request failed
2444 *
2445 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2446 * non-zero timeout parameter the wait ioctl will wait for the given number of
2447 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2448 * without holding struct_mutex the object may become re-busied before this
2449 * function completes. A similar but shorter * race condition exists in the busy
2450 * ioctl
2451 */
2452int
2453i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2454{
f69061be 2455 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2456 struct drm_i915_gem_wait *args = data;
2457 struct drm_i915_gem_object *obj;
2458 struct intel_ring_buffer *ring = NULL;
eac1f14f 2459 struct timespec timeout_stack, *timeout = NULL;
f69061be 2460 unsigned reset_counter;
23ba4fd0
BW
2461 u32 seqno = 0;
2462 int ret = 0;
2463
eac1f14f
BW
2464 if (args->timeout_ns >= 0) {
2465 timeout_stack = ns_to_timespec(args->timeout_ns);
2466 timeout = &timeout_stack;
2467 }
23ba4fd0
BW
2468
2469 ret = i915_mutex_lock_interruptible(dev);
2470 if (ret)
2471 return ret;
2472
2473 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2474 if (&obj->base == NULL) {
2475 mutex_unlock(&dev->struct_mutex);
2476 return -ENOENT;
2477 }
2478
30dfebf3
DV
2479 /* Need to make sure the object gets inactive eventually. */
2480 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2481 if (ret)
2482 goto out;
2483
2484 if (obj->active) {
0201f1ec 2485 seqno = obj->last_read_seqno;
23ba4fd0
BW
2486 ring = obj->ring;
2487 }
2488
2489 if (seqno == 0)
2490 goto out;
2491
23ba4fd0
BW
2492 /* Do this after OLR check to make sure we make forward progress polling
2493 * on this IOCTL with a 0 timeout (like busy ioctl)
2494 */
2495 if (!args->timeout_ns) {
2496 ret = -ETIME;
2497 goto out;
2498 }
2499
2500 drm_gem_object_unreference(&obj->base);
f69061be 2501 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2502 mutex_unlock(&dev->struct_mutex);
2503
f69061be 2504 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2505 if (timeout)
eac1f14f 2506 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2507 return ret;
2508
2509out:
2510 drm_gem_object_unreference(&obj->base);
2511 mutex_unlock(&dev->struct_mutex);
2512 return ret;
2513}
2514
5816d648
BW
2515/**
2516 * i915_gem_object_sync - sync an object to a ring.
2517 *
2518 * @obj: object which may be in use on another ring.
2519 * @to: ring we wish to use the object on. May be NULL.
2520 *
2521 * This code is meant to abstract object synchronization with the GPU.
2522 * Calling with NULL implies synchronizing the object with the CPU
2523 * rather than a particular GPU ring.
2524 *
2525 * Returns 0 if successful, else propagates up the lower layer error.
2526 */
2911a35b
BW
2527int
2528i915_gem_object_sync(struct drm_i915_gem_object *obj,
2529 struct intel_ring_buffer *to)
2530{
2531 struct intel_ring_buffer *from = obj->ring;
2532 u32 seqno;
2533 int ret, idx;
2534
2535 if (from == NULL || to == from)
2536 return 0;
2537
5816d648 2538 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2539 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2540
2541 idx = intel_ring_sync_index(from, to);
2542
0201f1ec 2543 seqno = obj->last_read_seqno;
2911a35b
BW
2544 if (seqno <= from->sync_seqno[idx])
2545 return 0;
2546
b4aca010
BW
2547 ret = i915_gem_check_olr(obj->ring, seqno);
2548 if (ret)
2549 return ret;
2911a35b 2550
1500f7ea 2551 ret = to->sync_to(to, from, seqno);
e3a5a225 2552 if (!ret)
7b01e260
MK
2553 /* We use last_read_seqno because sync_to()
2554 * might have just caused seqno wrap under
2555 * the radar.
2556 */
2557 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2558
e3a5a225 2559 return ret;
2911a35b
BW
2560}
2561
b5ffc9bc
CW
2562static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2563{
2564 u32 old_write_domain, old_read_domains;
2565
b5ffc9bc
CW
2566 /* Force a pagefault for domain tracking on next user access */
2567 i915_gem_release_mmap(obj);
2568
b97c3d9c
KP
2569 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2570 return;
2571
97c809fd
CW
2572 /* Wait for any direct GTT access to complete */
2573 mb();
2574
b5ffc9bc
CW
2575 old_read_domains = obj->base.read_domains;
2576 old_write_domain = obj->base.write_domain;
2577
2578 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2579 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2580
2581 trace_i915_gem_object_change_domain(obj,
2582 old_read_domains,
2583 old_write_domain);
2584}
2585
673a394b
EA
2586/**
2587 * Unbinds an object from the GTT aperture.
2588 */
0f973f27 2589int
05394f39 2590i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2591{
7bddb01f 2592 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2593 int ret;
673a394b 2594
05394f39 2595 if (obj->gtt_space == NULL)
673a394b
EA
2596 return 0;
2597
31d8d651
CW
2598 if (obj->pin_count)
2599 return -EBUSY;
673a394b 2600
c4670ad0
CW
2601 BUG_ON(obj->pages == NULL);
2602
a8198eea 2603 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2604 if (ret)
a8198eea
CW
2605 return ret;
2606 /* Continue on if we fail due to EIO, the GPU is hung so we
2607 * should be safe and we need to cleanup or else we might
2608 * cause memory corruption through use-after-free.
2609 */
2610
b5ffc9bc 2611 i915_gem_object_finish_gtt(obj);
5323fd04 2612
96b47b65 2613 /* release the fence reg _after_ flushing */
d9e86c0e 2614 ret = i915_gem_object_put_fence(obj);
1488fc08 2615 if (ret)
d9e86c0e 2616 return ret;
96b47b65 2617
db53a302
CW
2618 trace_i915_gem_object_unbind(obj);
2619
74898d7e
DV
2620 if (obj->has_global_gtt_mapping)
2621 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2622 if (obj->has_aliasing_ppgtt_mapping) {
2623 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2624 obj->has_aliasing_ppgtt_mapping = 0;
2625 }
74163907 2626 i915_gem_gtt_finish_object(obj);
401c29f6 2627 i915_gem_object_unpin_pages(obj);
7bddb01f 2628
6c085a72 2629 list_del(&obj->mm_list);
35c20a60 2630 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
75e9e915 2631 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2632 obj->map_and_fenceable = true;
673a394b 2633
05394f39
CW
2634 drm_mm_put_block(obj->gtt_space);
2635 obj->gtt_space = NULL;
2636 obj->gtt_offset = 0;
673a394b 2637
88241785 2638 return 0;
54cf91dc
CW
2639}
2640
b2da9fe5 2641int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2642{
2643 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2644 struct intel_ring_buffer *ring;
1ec14ad3 2645 int ret, i;
4df2faf4 2646
4df2faf4 2647 /* Flush everything onto the inactive list. */
b4519513 2648 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2649 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2650 if (ret)
2651 return ret;
2652
3e960501 2653 ret = intel_ring_idle(ring);
1ec14ad3
CW
2654 if (ret)
2655 return ret;
2656 }
4df2faf4 2657
8a1a49f9 2658 return 0;
4df2faf4
DV
2659}
2660
9ce079e4
CW
2661static void i965_write_fence_reg(struct drm_device *dev, int reg,
2662 struct drm_i915_gem_object *obj)
de151cf6 2663{
de151cf6 2664 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2665 int fence_reg;
2666 int fence_pitch_shift;
de151cf6
JB
2667 uint64_t val;
2668
56c844e5
ID
2669 if (INTEL_INFO(dev)->gen >= 6) {
2670 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2671 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2672 } else {
2673 fence_reg = FENCE_REG_965_0;
2674 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2675 }
2676
9ce079e4
CW
2677 if (obj) {
2678 u32 size = obj->gtt_space->size;
de151cf6 2679
9ce079e4
CW
2680 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2681 0xfffff000) << 32;
2682 val |= obj->gtt_offset & 0xfffff000;
56c844e5 2683 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2684 if (obj->tiling_mode == I915_TILING_Y)
2685 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2686 val |= I965_FENCE_REG_VALID;
2687 } else
2688 val = 0;
c6642782 2689
56c844e5
ID
2690 fence_reg += reg * 8;
2691 I915_WRITE64(fence_reg, val);
2692 POSTING_READ(fence_reg);
de151cf6
JB
2693}
2694
9ce079e4
CW
2695static void i915_write_fence_reg(struct drm_device *dev, int reg,
2696 struct drm_i915_gem_object *obj)
de151cf6 2697{
de151cf6 2698 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2699 u32 val;
de151cf6 2700
9ce079e4
CW
2701 if (obj) {
2702 u32 size = obj->gtt_space->size;
2703 int pitch_val;
2704 int tile_width;
c6642782 2705
9ce079e4
CW
2706 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2707 (size & -size) != size ||
2708 (obj->gtt_offset & (size - 1)),
2709 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2710 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2711
9ce079e4
CW
2712 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2713 tile_width = 128;
2714 else
2715 tile_width = 512;
2716
2717 /* Note: pitch better be a power of two tile widths */
2718 pitch_val = obj->stride / tile_width;
2719 pitch_val = ffs(pitch_val) - 1;
2720
2721 val = obj->gtt_offset;
2722 if (obj->tiling_mode == I915_TILING_Y)
2723 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2724 val |= I915_FENCE_SIZE_BITS(size);
2725 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2726 val |= I830_FENCE_REG_VALID;
2727 } else
2728 val = 0;
2729
2730 if (reg < 8)
2731 reg = FENCE_REG_830_0 + reg * 4;
2732 else
2733 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2734
2735 I915_WRITE(reg, val);
2736 POSTING_READ(reg);
de151cf6
JB
2737}
2738
9ce079e4
CW
2739static void i830_write_fence_reg(struct drm_device *dev, int reg,
2740 struct drm_i915_gem_object *obj)
de151cf6 2741{
de151cf6 2742 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2743 uint32_t val;
de151cf6 2744
9ce079e4
CW
2745 if (obj) {
2746 u32 size = obj->gtt_space->size;
2747 uint32_t pitch_val;
de151cf6 2748
9ce079e4
CW
2749 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2750 (size & -size) != size ||
2751 (obj->gtt_offset & (size - 1)),
2752 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2753 obj->gtt_offset, size);
e76a16de 2754
9ce079e4
CW
2755 pitch_val = obj->stride / 128;
2756 pitch_val = ffs(pitch_val) - 1;
de151cf6 2757
9ce079e4
CW
2758 val = obj->gtt_offset;
2759 if (obj->tiling_mode == I915_TILING_Y)
2760 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2761 val |= I830_FENCE_SIZE_BITS(size);
2762 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2763 val |= I830_FENCE_REG_VALID;
2764 } else
2765 val = 0;
c6642782 2766
9ce079e4
CW
2767 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2768 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2769}
2770
d0a57789
CW
2771inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2772{
2773 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2774}
2775
9ce079e4
CW
2776static void i915_gem_write_fence(struct drm_device *dev, int reg,
2777 struct drm_i915_gem_object *obj)
2778{
d0a57789
CW
2779 struct drm_i915_private *dev_priv = dev->dev_private;
2780
2781 /* Ensure that all CPU reads are completed before installing a fence
2782 * and all writes before removing the fence.
2783 */
2784 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2785 mb();
2786
9ce079e4
CW
2787 switch (INTEL_INFO(dev)->gen) {
2788 case 7:
56c844e5 2789 case 6:
9ce079e4
CW
2790 case 5:
2791 case 4: i965_write_fence_reg(dev, reg, obj); break;
2792 case 3: i915_write_fence_reg(dev, reg, obj); break;
2793 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2794 default: BUG();
9ce079e4 2795 }
d0a57789
CW
2796
2797 /* And similarly be paranoid that no direct access to this region
2798 * is reordered to before the fence is installed.
2799 */
2800 if (i915_gem_object_needs_mb(obj))
2801 mb();
de151cf6
JB
2802}
2803
61050808
CW
2804static inline int fence_number(struct drm_i915_private *dev_priv,
2805 struct drm_i915_fence_reg *fence)
2806{
2807 return fence - dev_priv->fence_regs;
2808}
2809
2dc8aae0
CW
2810struct write_fence {
2811 struct drm_device *dev;
2812 struct drm_i915_gem_object *obj;
2813 int fence;
2814};
2815
25ff1195
CW
2816static void i915_gem_write_fence__ipi(void *data)
2817{
2dc8aae0
CW
2818 struct write_fence *args = data;
2819
2820 /* Required for SNB+ with LLC */
25ff1195 2821 wbinvd();
2dc8aae0
CW
2822
2823 /* Required for VLV */
2824 i915_gem_write_fence(args->dev, args->fence, args->obj);
25ff1195
CW
2825}
2826
61050808
CW
2827static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2828 struct drm_i915_fence_reg *fence,
2829 bool enable)
2830{
2dc8aae0
CW
2831 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2832 struct write_fence args = {
2833 .dev = obj->base.dev,
2834 .fence = fence_number(dev_priv, fence),
2835 .obj = enable ? obj : NULL,
2836 };
25ff1195
CW
2837
2838 /* In order to fully serialize access to the fenced region and
2839 * the update to the fence register we need to take extreme
2840 * measures on SNB+. In theory, the write to the fence register
2841 * flushes all memory transactions before, and coupled with the
2842 * mb() placed around the register write we serialise all memory
2843 * operations with respect to the changes in the tiler. Yet, on
2844 * SNB+ we need to take a step further and emit an explicit wbinvd()
2845 * on each processor in order to manually flush all memory
2846 * transactions before updating the fence register.
2dc8aae0
CW
2847 *
2848 * However, Valleyview complicates matter. There the wbinvd is
2849 * insufficient and unlike SNB/IVB requires the serialising
2850 * register write. (Note that that register write by itself is
2851 * conversely not sufficient for SNB+.) To compromise, we do both.
25ff1195 2852 */
2dc8aae0
CW
2853 if (INTEL_INFO(args.dev)->gen >= 6)
2854 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2855 else
2856 i915_gem_write_fence(args.dev, args.fence, args.obj);
61050808
CW
2857
2858 if (enable) {
2dc8aae0 2859 obj->fence_reg = args.fence;
61050808
CW
2860 fence->obj = obj;
2861 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2862 } else {
2863 obj->fence_reg = I915_FENCE_REG_NONE;
2864 fence->obj = NULL;
2865 list_del_init(&fence->lru_list);
2866 }
2867}
2868
d9e86c0e 2869static int
d0a57789 2870i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2871{
1c293ea3 2872 if (obj->last_fenced_seqno) {
86d5bc37 2873 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2874 if (ret)
2875 return ret;
d9e86c0e
CW
2876
2877 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2878 }
2879
86d5bc37 2880 obj->fenced_gpu_access = false;
d9e86c0e
CW
2881 return 0;
2882}
2883
2884int
2885i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2886{
61050808 2887 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2888 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2889 int ret;
2890
d0a57789 2891 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2892 if (ret)
2893 return ret;
2894
61050808
CW
2895 if (obj->fence_reg == I915_FENCE_REG_NONE)
2896 return 0;
d9e86c0e 2897
f9c513e9
CW
2898 fence = &dev_priv->fence_regs[obj->fence_reg];
2899
61050808 2900 i915_gem_object_fence_lost(obj);
f9c513e9 2901 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2902
2903 return 0;
2904}
2905
2906static struct drm_i915_fence_reg *
a360bb1a 2907i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2908{
ae3db24a 2909 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2910 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2911 int i;
ae3db24a
DV
2912
2913 /* First try to find a free reg */
d9e86c0e 2914 avail = NULL;
ae3db24a
DV
2915 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2916 reg = &dev_priv->fence_regs[i];
2917 if (!reg->obj)
d9e86c0e 2918 return reg;
ae3db24a 2919
1690e1eb 2920 if (!reg->pin_count)
d9e86c0e 2921 avail = reg;
ae3db24a
DV
2922 }
2923
d9e86c0e
CW
2924 if (avail == NULL)
2925 return NULL;
ae3db24a
DV
2926
2927 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2928 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2929 if (reg->pin_count)
ae3db24a
DV
2930 continue;
2931
8fe301ad 2932 return reg;
ae3db24a
DV
2933 }
2934
8fe301ad 2935 return NULL;
ae3db24a
DV
2936}
2937
de151cf6 2938/**
9a5a53b3 2939 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2940 * @obj: object to map through a fence reg
2941 *
2942 * When mapping objects through the GTT, userspace wants to be able to write
2943 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2944 * This function walks the fence regs looking for a free one for @obj,
2945 * stealing one if it can't find any.
2946 *
2947 * It then sets up the reg based on the object's properties: address, pitch
2948 * and tiling format.
9a5a53b3
CW
2949 *
2950 * For an untiled surface, this removes any existing fence.
de151cf6 2951 */
8c4b8c3f 2952int
06d98131 2953i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2954{
05394f39 2955 struct drm_device *dev = obj->base.dev;
79e53945 2956 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2957 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2958 struct drm_i915_fence_reg *reg;
ae3db24a 2959 int ret;
de151cf6 2960
14415745
CW
2961 /* Have we updated the tiling parameters upon the object and so
2962 * will need to serialise the write to the associated fence register?
2963 */
5d82e3e6 2964 if (obj->fence_dirty) {
d0a57789 2965 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2966 if (ret)
2967 return ret;
2968 }
9a5a53b3 2969
d9e86c0e 2970 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2971 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2972 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2973 if (!obj->fence_dirty) {
14415745
CW
2974 list_move_tail(&reg->lru_list,
2975 &dev_priv->mm.fence_list);
2976 return 0;
2977 }
2978 } else if (enable) {
2979 reg = i915_find_fence_reg(dev);
2980 if (reg == NULL)
2981 return -EDEADLK;
d9e86c0e 2982
14415745
CW
2983 if (reg->obj) {
2984 struct drm_i915_gem_object *old = reg->obj;
2985
d0a57789 2986 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2987 if (ret)
2988 return ret;
2989
14415745 2990 i915_gem_object_fence_lost(old);
29c5a587 2991 }
14415745 2992 } else
a09ba7fa 2993 return 0;
a09ba7fa 2994
14415745 2995 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2996 obj->fence_dirty = false;
14415745 2997
9ce079e4 2998 return 0;
de151cf6
JB
2999}
3000
42d6ab48
CW
3001static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3002 struct drm_mm_node *gtt_space,
3003 unsigned long cache_level)
3004{
3005 struct drm_mm_node *other;
3006
3007 /* On non-LLC machines we have to be careful when putting differing
3008 * types of snoopable memory together to avoid the prefetcher
4239ca77 3009 * crossing memory domains and dying.
42d6ab48
CW
3010 */
3011 if (HAS_LLC(dev))
3012 return true;
3013
3014 if (gtt_space == NULL)
3015 return true;
3016
3017 if (list_empty(&gtt_space->node_list))
3018 return true;
3019
3020 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3021 if (other->allocated && !other->hole_follows && other->color != cache_level)
3022 return false;
3023
3024 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3025 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3026 return false;
3027
3028 return true;
3029}
3030
3031static void i915_gem_verify_gtt(struct drm_device *dev)
3032{
3033#if WATCH_GTT
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 struct drm_i915_gem_object *obj;
3036 int err = 0;
3037
35c20a60 3038 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3039 if (obj->gtt_space == NULL) {
3040 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3041 err++;
3042 continue;
3043 }
3044
3045 if (obj->cache_level != obj->gtt_space->color) {
3046 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3047 obj->gtt_space->start,
3048 obj->gtt_space->start + obj->gtt_space->size,
3049 obj->cache_level,
3050 obj->gtt_space->color);
3051 err++;
3052 continue;
3053 }
3054
3055 if (!i915_gem_valid_gtt_space(dev,
3056 obj->gtt_space,
3057 obj->cache_level)) {
3058 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3059 obj->gtt_space->start,
3060 obj->gtt_space->start + obj->gtt_space->size,
3061 obj->cache_level);
3062 err++;
3063 continue;
3064 }
3065 }
3066
3067 WARN_ON(err);
3068#endif
3069}
3070
673a394b
EA
3071/**
3072 * Finds free space in the GTT aperture and binds the object there.
3073 */
3074static int
05394f39 3075i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 3076 unsigned alignment,
86a1ee26
CW
3077 bool map_and_fenceable,
3078 bool nonblocking)
673a394b 3079{
05394f39 3080 struct drm_device *dev = obj->base.dev;
673a394b 3081 drm_i915_private_t *dev_priv = dev->dev_private;
dc9dd7a2 3082 struct drm_mm_node *node;
5e783301 3083 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 3084 bool mappable, fenceable;
0a9ae0d7
BW
3085 size_t gtt_max = map_and_fenceable ?
3086 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
07f73f69 3087 int ret;
673a394b 3088
e28f8711
CW
3089 fence_size = i915_gem_get_gtt_size(dev,
3090 obj->base.size,
3091 obj->tiling_mode);
3092 fence_alignment = i915_gem_get_gtt_alignment(dev,
3093 obj->base.size,
d865110c 3094 obj->tiling_mode, true);
e28f8711 3095 unfenced_alignment =
d865110c 3096 i915_gem_get_gtt_alignment(dev,
e28f8711 3097 obj->base.size,
d865110c 3098 obj->tiling_mode, false);
a00b10c3 3099
673a394b 3100 if (alignment == 0)
5e783301
DV
3101 alignment = map_and_fenceable ? fence_alignment :
3102 unfenced_alignment;
75e9e915 3103 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3104 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3105 return -EINVAL;
3106 }
3107
05394f39 3108 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3109
654fc607
CW
3110 /* If the object is bigger than the entire aperture, reject it early
3111 * before evicting everything in a vain attempt to find space.
3112 */
0a9ae0d7 3113 if (obj->base.size > gtt_max) {
3765f304 3114 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3115 obj->base.size,
3116 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3117 gtt_max);
654fc607
CW
3118 return -E2BIG;
3119 }
3120
37e680a1 3121 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3122 if (ret)
3123 return ret;
3124
fbdda6fb
CW
3125 i915_gem_object_pin_pages(obj);
3126
dc9dd7a2
CW
3127 node = kzalloc(sizeof(*node), GFP_KERNEL);
3128 if (node == NULL) {
3129 i915_gem_object_unpin_pages(obj);
3130 return -ENOMEM;
3131 }
3132
0a9ae0d7
BW
3133search_free:
3134 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3135 size, alignment,
3136 obj->cache_level, 0, gtt_max);
dc9dd7a2 3137 if (ret) {
75e9e915 3138 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 3139 obj->cache_level,
86a1ee26
CW
3140 map_and_fenceable,
3141 nonblocking);
dc9dd7a2
CW
3142 if (ret == 0)
3143 goto search_free;
9731129c 3144
dc9dd7a2
CW
3145 i915_gem_object_unpin_pages(obj);
3146 kfree(node);
3147 return ret;
673a394b 3148 }
dc9dd7a2 3149 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
fbdda6fb 3150 i915_gem_object_unpin_pages(obj);
dc9dd7a2 3151 drm_mm_put_block(node);
42d6ab48 3152 return -EINVAL;
673a394b
EA
3153 }
3154
74163907 3155 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 3156 if (ret) {
fbdda6fb 3157 i915_gem_object_unpin_pages(obj);
dc9dd7a2 3158 drm_mm_put_block(node);
6c085a72 3159 return ret;
673a394b 3160 }
673a394b 3161
35c20a60 3162 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
05394f39 3163 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 3164
dc9dd7a2
CW
3165 obj->gtt_space = node;
3166 obj->gtt_offset = node->start;
1c5d22f7 3167
75e9e915 3168 fenceable =
dc9dd7a2
CW
3169 node->size == fence_size &&
3170 (node->start & (fence_alignment - 1)) == 0;
a00b10c3 3171
75e9e915 3172 mappable =
5d4545ae 3173 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
a00b10c3 3174
05394f39 3175 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3176
db53a302 3177 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3178 i915_gem_verify_gtt(dev);
673a394b
EA
3179 return 0;
3180}
3181
3182void
05394f39 3183i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3184{
673a394b
EA
3185 /* If we don't have a page list set up, then we're not pinned
3186 * to GPU, and we can ignore the cache flush because it'll happen
3187 * again at bind time.
3188 */
05394f39 3189 if (obj->pages == NULL)
673a394b
EA
3190 return;
3191
769ce464
ID
3192 /*
3193 * Stolen memory is always coherent with the GPU as it is explicitly
3194 * marked as wc by the system, or the system is cache-coherent.
3195 */
3196 if (obj->stolen)
3197 return;
3198
9c23f7fc
CW
3199 /* If the GPU is snooping the contents of the CPU cache,
3200 * we do not need to manually clear the CPU cache lines. However,
3201 * the caches are only snooped when the render cache is
3202 * flushed/invalidated. As we always have to emit invalidations
3203 * and flushes when moving into and out of the RENDER domain, correct
3204 * snooping behaviour occurs naturally as the result of our domain
3205 * tracking.
3206 */
3207 if (obj->cache_level != I915_CACHE_NONE)
3208 return;
3209
1c5d22f7 3210 trace_i915_gem_object_clflush(obj);
cfa16a0d 3211
9da3da66 3212 drm_clflush_sg(obj->pages);
e47c68e9
EA
3213}
3214
3215/** Flushes the GTT write domain for the object if it's dirty. */
3216static void
05394f39 3217i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3218{
1c5d22f7
CW
3219 uint32_t old_write_domain;
3220
05394f39 3221 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3222 return;
3223
63256ec5 3224 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3225 * to it immediately go to main memory as far as we know, so there's
3226 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3227 *
3228 * However, we do have to enforce the order so that all writes through
3229 * the GTT land before any writes to the device, such as updates to
3230 * the GATT itself.
e47c68e9 3231 */
63256ec5
CW
3232 wmb();
3233
05394f39
CW
3234 old_write_domain = obj->base.write_domain;
3235 obj->base.write_domain = 0;
1c5d22f7
CW
3236
3237 trace_i915_gem_object_change_domain(obj,
05394f39 3238 obj->base.read_domains,
1c5d22f7 3239 old_write_domain);
e47c68e9
EA
3240}
3241
3242/** Flushes the CPU write domain for the object if it's dirty. */
3243static void
05394f39 3244i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3245{
1c5d22f7 3246 uint32_t old_write_domain;
e47c68e9 3247
05394f39 3248 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3249 return;
3250
3251 i915_gem_clflush_object(obj);
e76e9aeb 3252 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3253 old_write_domain = obj->base.write_domain;
3254 obj->base.write_domain = 0;
1c5d22f7
CW
3255
3256 trace_i915_gem_object_change_domain(obj,
05394f39 3257 obj->base.read_domains,
1c5d22f7 3258 old_write_domain);
e47c68e9
EA
3259}
3260
2ef7eeaa
EA
3261/**
3262 * Moves a single object to the GTT read, and possibly write domain.
3263 *
3264 * This function returns when the move is complete, including waiting on
3265 * flushes to occur.
3266 */
79e53945 3267int
2021746e 3268i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3269{
8325a09d 3270 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3271 uint32_t old_write_domain, old_read_domains;
e47c68e9 3272 int ret;
2ef7eeaa 3273
02354392 3274 /* Not valid to be called on unbound objects. */
05394f39 3275 if (obj->gtt_space == NULL)
02354392
EA
3276 return -EINVAL;
3277
8d7e3de1
CW
3278 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3279 return 0;
3280
0201f1ec 3281 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3282 if (ret)
3283 return ret;
3284
7213342d 3285 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3286
d0a57789
CW
3287 /* Serialise direct access to this object with the barriers for
3288 * coherent writes from the GPU, by effectively invalidating the
3289 * GTT domain upon first access.
3290 */
3291 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3292 mb();
3293
05394f39
CW
3294 old_write_domain = obj->base.write_domain;
3295 old_read_domains = obj->base.read_domains;
1c5d22f7 3296
e47c68e9
EA
3297 /* It should now be out of any other write domains, and we can update
3298 * the domain values for our changes.
3299 */
05394f39
CW
3300 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3301 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3302 if (write) {
05394f39
CW
3303 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3304 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3305 obj->dirty = 1;
2ef7eeaa
EA
3306 }
3307
1c5d22f7
CW
3308 trace_i915_gem_object_change_domain(obj,
3309 old_read_domains,
3310 old_write_domain);
3311
8325a09d
CW
3312 /* And bump the LRU for this access */
3313 if (i915_gem_object_is_inactive(obj))
3314 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3315
e47c68e9
EA
3316 return 0;
3317}
3318
e4ffd173
CW
3319int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3320 enum i915_cache_level cache_level)
3321{
7bddb01f
DV
3322 struct drm_device *dev = obj->base.dev;
3323 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3324 int ret;
3325
3326 if (obj->cache_level == cache_level)
3327 return 0;
3328
3329 if (obj->pin_count) {
3330 DRM_DEBUG("can not change the cache level of pinned objects\n");
3331 return -EBUSY;
3332 }
3333
42d6ab48
CW
3334 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3335 ret = i915_gem_object_unbind(obj);
3336 if (ret)
3337 return ret;
3338 }
3339
e4ffd173
CW
3340 if (obj->gtt_space) {
3341 ret = i915_gem_object_finish_gpu(obj);
3342 if (ret)
3343 return ret;
3344
3345 i915_gem_object_finish_gtt(obj);
3346
3347 /* Before SandyBridge, you could not use tiling or fence
3348 * registers with snooped memory, so relinquish any fences
3349 * currently pointing to our region in the aperture.
3350 */
42d6ab48 3351 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3352 ret = i915_gem_object_put_fence(obj);
3353 if (ret)
3354 return ret;
3355 }
3356
74898d7e
DV
3357 if (obj->has_global_gtt_mapping)
3358 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3359 if (obj->has_aliasing_ppgtt_mapping)
3360 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3361 obj, cache_level);
42d6ab48
CW
3362
3363 obj->gtt_space->color = cache_level;
e4ffd173
CW
3364 }
3365
3366 if (cache_level == I915_CACHE_NONE) {
3367 u32 old_read_domains, old_write_domain;
3368
3369 /* If we're coming from LLC cached, then we haven't
3370 * actually been tracking whether the data is in the
3371 * CPU cache or not, since we only allow one bit set
3372 * in obj->write_domain and have been skipping the clflushes.
3373 * Just set it to the CPU cache for now.
3374 */
3375 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3376 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3377
3378 old_read_domains = obj->base.read_domains;
3379 old_write_domain = obj->base.write_domain;
3380
3381 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3382 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3383
3384 trace_i915_gem_object_change_domain(obj,
3385 old_read_domains,
3386 old_write_domain);
3387 }
3388
3389 obj->cache_level = cache_level;
42d6ab48 3390 i915_gem_verify_gtt(dev);
e4ffd173
CW
3391 return 0;
3392}
3393
199adf40
BW
3394int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3395 struct drm_file *file)
e6994aee 3396{
199adf40 3397 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3398 struct drm_i915_gem_object *obj;
3399 int ret;
3400
3401 ret = i915_mutex_lock_interruptible(dev);
3402 if (ret)
3403 return ret;
3404
3405 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3406 if (&obj->base == NULL) {
3407 ret = -ENOENT;
3408 goto unlock;
3409 }
3410
199adf40 3411 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3412
3413 drm_gem_object_unreference(&obj->base);
3414unlock:
3415 mutex_unlock(&dev->struct_mutex);
3416 return ret;
3417}
3418
199adf40
BW
3419int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3420 struct drm_file *file)
e6994aee 3421{
199adf40 3422 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3423 struct drm_i915_gem_object *obj;
3424 enum i915_cache_level level;
3425 int ret;
3426
199adf40
BW
3427 switch (args->caching) {
3428 case I915_CACHING_NONE:
e6994aee
CW
3429 level = I915_CACHE_NONE;
3430 break;
199adf40 3431 case I915_CACHING_CACHED:
e6994aee
CW
3432 level = I915_CACHE_LLC;
3433 break;
3434 default:
3435 return -EINVAL;
3436 }
3437
3bc2913e
BW
3438 ret = i915_mutex_lock_interruptible(dev);
3439 if (ret)
3440 return ret;
3441
e6994aee
CW
3442 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3443 if (&obj->base == NULL) {
3444 ret = -ENOENT;
3445 goto unlock;
3446 }
3447
3448 ret = i915_gem_object_set_cache_level(obj, level);
3449
3450 drm_gem_object_unreference(&obj->base);
3451unlock:
3452 mutex_unlock(&dev->struct_mutex);
3453 return ret;
3454}
3455
b9241ea3 3456/*
2da3b9b9
CW
3457 * Prepare buffer for display plane (scanout, cursors, etc).
3458 * Can be called from an uninterruptible phase (modesetting) and allows
3459 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3460 */
3461int
2da3b9b9
CW
3462i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3463 u32 alignment,
919926ae 3464 struct intel_ring_buffer *pipelined)
b9241ea3 3465{
2da3b9b9 3466 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3467 int ret;
3468
0be73284 3469 if (pipelined != obj->ring) {
2911a35b
BW
3470 ret = i915_gem_object_sync(obj, pipelined);
3471 if (ret)
b9241ea3
ZW
3472 return ret;
3473 }
3474
a7ef0640
EA
3475 /* The display engine is not coherent with the LLC cache on gen6. As
3476 * a result, we make sure that the pinning that is about to occur is
3477 * done with uncached PTEs. This is lowest common denominator for all
3478 * chipsets.
3479 *
3480 * However for gen6+, we could do better by using the GFDT bit instead
3481 * of uncaching, which would allow us to flush all the LLC-cached data
3482 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3483 */
3484 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3485 if (ret)
3486 return ret;
3487
2da3b9b9
CW
3488 /* As the user may map the buffer once pinned in the display plane
3489 * (e.g. libkms for the bootup splash), we have to ensure that we
3490 * always use map_and_fenceable for all scanout buffers.
3491 */
86a1ee26 3492 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3493 if (ret)
3494 return ret;
3495
b118c1e3
CW
3496 i915_gem_object_flush_cpu_write_domain(obj);
3497
2da3b9b9 3498 old_write_domain = obj->base.write_domain;
05394f39 3499 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3500
3501 /* It should now be out of any other write domains, and we can update
3502 * the domain values for our changes.
3503 */
e5f1d962 3504 obj->base.write_domain = 0;
05394f39 3505 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3506
3507 trace_i915_gem_object_change_domain(obj,
3508 old_read_domains,
2da3b9b9 3509 old_write_domain);
b9241ea3
ZW
3510
3511 return 0;
3512}
3513
85345517 3514int
a8198eea 3515i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3516{
88241785
CW
3517 int ret;
3518
a8198eea 3519 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3520 return 0;
3521
0201f1ec 3522 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3523 if (ret)
3524 return ret;
3525
a8198eea
CW
3526 /* Ensure that we invalidate the GPU's caches and TLBs. */
3527 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3528 return 0;
85345517
CW
3529}
3530
e47c68e9
EA
3531/**
3532 * Moves a single object to the CPU read, and possibly write domain.
3533 *
3534 * This function returns when the move is complete, including waiting on
3535 * flushes to occur.
3536 */
dabdfe02 3537int
919926ae 3538i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3539{
1c5d22f7 3540 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3541 int ret;
3542
8d7e3de1
CW
3543 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3544 return 0;
3545
0201f1ec 3546 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3547 if (ret)
3548 return ret;
3549
e47c68e9 3550 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3551
05394f39
CW
3552 old_write_domain = obj->base.write_domain;
3553 old_read_domains = obj->base.read_domains;
1c5d22f7 3554
e47c68e9 3555 /* Flush the CPU cache if it's still invalid. */
05394f39 3556 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3557 i915_gem_clflush_object(obj);
2ef7eeaa 3558
05394f39 3559 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3560 }
3561
3562 /* It should now be out of any other write domains, and we can update
3563 * the domain values for our changes.
3564 */
05394f39 3565 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3566
3567 /* If we're writing through the CPU, then the GPU read domains will
3568 * need to be invalidated at next use.
3569 */
3570 if (write) {
05394f39
CW
3571 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3572 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3573 }
2ef7eeaa 3574
1c5d22f7
CW
3575 trace_i915_gem_object_change_domain(obj,
3576 old_read_domains,
3577 old_write_domain);
3578
2ef7eeaa
EA
3579 return 0;
3580}
3581
673a394b
EA
3582/* Throttle our rendering by waiting until the ring has completed our requests
3583 * emitted over 20 msec ago.
3584 *
b962442e
EA
3585 * Note that if we were to use the current jiffies each time around the loop,
3586 * we wouldn't escape the function with any frames outstanding if the time to
3587 * render a frame was over 20ms.
3588 *
673a394b
EA
3589 * This should get us reasonable parallelism between CPU and GPU but also
3590 * relatively low latency when blocking on a particular request to finish.
3591 */
40a5f0de 3592static int
f787a5f5 3593i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3594{
f787a5f5
CW
3595 struct drm_i915_private *dev_priv = dev->dev_private;
3596 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3597 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3598 struct drm_i915_gem_request *request;
3599 struct intel_ring_buffer *ring = NULL;
f69061be 3600 unsigned reset_counter;
f787a5f5
CW
3601 u32 seqno = 0;
3602 int ret;
93533c29 3603
308887aa
DV
3604 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3605 if (ret)
3606 return ret;
3607
3608 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3609 if (ret)
3610 return ret;
e110e8d6 3611
1c25595f 3612 spin_lock(&file_priv->mm.lock);
f787a5f5 3613 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3614 if (time_after_eq(request->emitted_jiffies, recent_enough))
3615 break;
40a5f0de 3616
f787a5f5
CW
3617 ring = request->ring;
3618 seqno = request->seqno;
b962442e 3619 }
f69061be 3620 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3621 spin_unlock(&file_priv->mm.lock);
40a5f0de 3622
f787a5f5
CW
3623 if (seqno == 0)
3624 return 0;
2bc43b5c 3625
f69061be 3626 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3627 if (ret == 0)
3628 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3629
3630 return ret;
3631}
3632
673a394b 3633int
05394f39
CW
3634i915_gem_object_pin(struct drm_i915_gem_object *obj,
3635 uint32_t alignment,
86a1ee26
CW
3636 bool map_and_fenceable,
3637 bool nonblocking)
673a394b 3638{
673a394b
EA
3639 int ret;
3640
7e81a42e
CW
3641 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3642 return -EBUSY;
ac0c6b5a 3643
05394f39
CW
3644 if (obj->gtt_space != NULL) {
3645 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3646 (map_and_fenceable && !obj->map_and_fenceable)) {
3647 WARN(obj->pin_count,
ae7d49d8 3648 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3649 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3650 " obj->map_and_fenceable=%d\n",
05394f39 3651 obj->gtt_offset, alignment,
75e9e915 3652 map_and_fenceable,
05394f39 3653 obj->map_and_fenceable);
ac0c6b5a
CW
3654 ret = i915_gem_object_unbind(obj);
3655 if (ret)
3656 return ret;
3657 }
3658 }
3659
05394f39 3660 if (obj->gtt_space == NULL) {
8742267a
CW
3661 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3662
a00b10c3 3663 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3664 map_and_fenceable,
3665 nonblocking);
9731129c 3666 if (ret)
673a394b 3667 return ret;
8742267a
CW
3668
3669 if (!dev_priv->mm.aliasing_ppgtt)
3670 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3671 }
76446cac 3672
74898d7e
DV
3673 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3674 i915_gem_gtt_bind_object(obj, obj->cache_level);
3675
1b50247a 3676 obj->pin_count++;
6299f992 3677 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3678
3679 return 0;
3680}
3681
3682void
05394f39 3683i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3684{
05394f39
CW
3685 BUG_ON(obj->pin_count == 0);
3686 BUG_ON(obj->gtt_space == NULL);
673a394b 3687
1b50247a 3688 if (--obj->pin_count == 0)
6299f992 3689 obj->pin_mappable = false;
673a394b
EA
3690}
3691
3692int
3693i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3694 struct drm_file *file)
673a394b
EA
3695{
3696 struct drm_i915_gem_pin *args = data;
05394f39 3697 struct drm_i915_gem_object *obj;
673a394b
EA
3698 int ret;
3699
1d7cfea1
CW
3700 ret = i915_mutex_lock_interruptible(dev);
3701 if (ret)
3702 return ret;
673a394b 3703
05394f39 3704 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3705 if (&obj->base == NULL) {
1d7cfea1
CW
3706 ret = -ENOENT;
3707 goto unlock;
673a394b 3708 }
673a394b 3709
05394f39 3710 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3711 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3712 ret = -EINVAL;
3713 goto out;
3ef94daa
CW
3714 }
3715
05394f39 3716 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3717 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3718 args->handle);
1d7cfea1
CW
3719 ret = -EINVAL;
3720 goto out;
79e53945
JB
3721 }
3722
93be8788 3723 if (obj->user_pin_count == 0) {
86a1ee26 3724 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3725 if (ret)
3726 goto out;
673a394b
EA
3727 }
3728
93be8788
CW
3729 obj->user_pin_count++;
3730 obj->pin_filp = file;
3731
673a394b
EA
3732 /* XXX - flush the CPU caches for pinned objects
3733 * as the X server doesn't manage domains yet
3734 */
e47c68e9 3735 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3736 args->offset = obj->gtt_offset;
1d7cfea1 3737out:
05394f39 3738 drm_gem_object_unreference(&obj->base);
1d7cfea1 3739unlock:
673a394b 3740 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3741 return ret;
673a394b
EA
3742}
3743
3744int
3745i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3746 struct drm_file *file)
673a394b
EA
3747{
3748 struct drm_i915_gem_pin *args = data;
05394f39 3749 struct drm_i915_gem_object *obj;
76c1dec1 3750 int ret;
673a394b 3751
1d7cfea1
CW
3752 ret = i915_mutex_lock_interruptible(dev);
3753 if (ret)
3754 return ret;
673a394b 3755
05394f39 3756 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3757 if (&obj->base == NULL) {
1d7cfea1
CW
3758 ret = -ENOENT;
3759 goto unlock;
673a394b 3760 }
76c1dec1 3761
05394f39 3762 if (obj->pin_filp != file) {
79e53945
JB
3763 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3764 args->handle);
1d7cfea1
CW
3765 ret = -EINVAL;
3766 goto out;
79e53945 3767 }
05394f39
CW
3768 obj->user_pin_count--;
3769 if (obj->user_pin_count == 0) {
3770 obj->pin_filp = NULL;
79e53945
JB
3771 i915_gem_object_unpin(obj);
3772 }
673a394b 3773
1d7cfea1 3774out:
05394f39 3775 drm_gem_object_unreference(&obj->base);
1d7cfea1 3776unlock:
673a394b 3777 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3778 return ret;
673a394b
EA
3779}
3780
3781int
3782i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3783 struct drm_file *file)
673a394b
EA
3784{
3785 struct drm_i915_gem_busy *args = data;
05394f39 3786 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3787 int ret;
3788
76c1dec1 3789 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3790 if (ret)
76c1dec1 3791 return ret;
673a394b 3792
05394f39 3793 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3794 if (&obj->base == NULL) {
1d7cfea1
CW
3795 ret = -ENOENT;
3796 goto unlock;
673a394b 3797 }
d1b851fc 3798
0be555b6
CW
3799 /* Count all active objects as busy, even if they are currently not used
3800 * by the gpu. Users of this interface expect objects to eventually
3801 * become non-busy without any further actions, therefore emit any
3802 * necessary flushes here.
c4de0a5d 3803 */
30dfebf3 3804 ret = i915_gem_object_flush_active(obj);
0be555b6 3805
30dfebf3 3806 args->busy = obj->active;
e9808edd
CW
3807 if (obj->ring) {
3808 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3809 args->busy |= intel_ring_flag(obj->ring) << 16;
3810 }
673a394b 3811
05394f39 3812 drm_gem_object_unreference(&obj->base);
1d7cfea1 3813unlock:
673a394b 3814 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3815 return ret;
673a394b
EA
3816}
3817
3818int
3819i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3820 struct drm_file *file_priv)
3821{
0206e353 3822 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3823}
3824
3ef94daa
CW
3825int
3826i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3827 struct drm_file *file_priv)
3828{
3829 struct drm_i915_gem_madvise *args = data;
05394f39 3830 struct drm_i915_gem_object *obj;
76c1dec1 3831 int ret;
3ef94daa
CW
3832
3833 switch (args->madv) {
3834 case I915_MADV_DONTNEED:
3835 case I915_MADV_WILLNEED:
3836 break;
3837 default:
3838 return -EINVAL;
3839 }
3840
1d7cfea1
CW
3841 ret = i915_mutex_lock_interruptible(dev);
3842 if (ret)
3843 return ret;
3844
05394f39 3845 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3846 if (&obj->base == NULL) {
1d7cfea1
CW
3847 ret = -ENOENT;
3848 goto unlock;
3ef94daa 3849 }
3ef94daa 3850
05394f39 3851 if (obj->pin_count) {
1d7cfea1
CW
3852 ret = -EINVAL;
3853 goto out;
3ef94daa
CW
3854 }
3855
05394f39
CW
3856 if (obj->madv != __I915_MADV_PURGED)
3857 obj->madv = args->madv;
3ef94daa 3858
6c085a72
CW
3859 /* if the object is no longer attached, discard its backing storage */
3860 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3861 i915_gem_object_truncate(obj);
3862
05394f39 3863 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3864
1d7cfea1 3865out:
05394f39 3866 drm_gem_object_unreference(&obj->base);
1d7cfea1 3867unlock:
3ef94daa 3868 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3869 return ret;
3ef94daa
CW
3870}
3871
37e680a1
CW
3872void i915_gem_object_init(struct drm_i915_gem_object *obj,
3873 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3874{
0327d6ba 3875 INIT_LIST_HEAD(&obj->mm_list);
35c20a60 3876 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3877 INIT_LIST_HEAD(&obj->ring_list);
3878 INIT_LIST_HEAD(&obj->exec_list);
3879
37e680a1
CW
3880 obj->ops = ops;
3881
0327d6ba
CW
3882 obj->fence_reg = I915_FENCE_REG_NONE;
3883 obj->madv = I915_MADV_WILLNEED;
3884 /* Avoid an unnecessary call to unbind on the first bind. */
3885 obj->map_and_fenceable = true;
3886
3887 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3888}
3889
37e680a1
CW
3890static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3891 .get_pages = i915_gem_object_get_pages_gtt,
3892 .put_pages = i915_gem_object_put_pages_gtt,
3893};
3894
05394f39
CW
3895struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3896 size_t size)
ac52bc56 3897{
c397b908 3898 struct drm_i915_gem_object *obj;
5949eac4 3899 struct address_space *mapping;
1a240d4d 3900 gfp_t mask;
ac52bc56 3901
42dcedd4 3902 obj = i915_gem_object_alloc(dev);
c397b908
DV
3903 if (obj == NULL)
3904 return NULL;
673a394b 3905
c397b908 3906 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3907 i915_gem_object_free(obj);
c397b908
DV
3908 return NULL;
3909 }
673a394b 3910
bed1ea95
CW
3911 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3912 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3913 /* 965gm cannot relocate objects above 4GiB. */
3914 mask &= ~__GFP_HIGHMEM;
3915 mask |= __GFP_DMA32;
3916 }
3917
496ad9aa 3918 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3919 mapping_set_gfp_mask(mapping, mask);
5949eac4 3920
37e680a1 3921 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3922
c397b908
DV
3923 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3924 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3925
3d29b842
ED
3926 if (HAS_LLC(dev)) {
3927 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3928 * cache) for about a 10% performance improvement
3929 * compared to uncached. Graphics requests other than
3930 * display scanout are coherent with the CPU in
3931 * accessing this cache. This means in this mode we
3932 * don't need to clflush on the CPU side, and on the
3933 * GPU side we only need to flush internal caches to
3934 * get data visible to the CPU.
3935 *
3936 * However, we maintain the display planes as UC, and so
3937 * need to rebind when first used as such.
3938 */
3939 obj->cache_level = I915_CACHE_LLC;
3940 } else
3941 obj->cache_level = I915_CACHE_NONE;
3942
05394f39 3943 return obj;
c397b908
DV
3944}
3945
3946int i915_gem_init_object(struct drm_gem_object *obj)
3947{
3948 BUG();
de151cf6 3949
673a394b
EA
3950 return 0;
3951}
3952
1488fc08 3953void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3954{
1488fc08 3955 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3956 struct drm_device *dev = obj->base.dev;
be72615b 3957 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3958
26e12f89
CW
3959 trace_i915_gem_object_destroy(obj);
3960
1488fc08
CW
3961 if (obj->phys_obj)
3962 i915_gem_detach_phys_object(dev, obj);
3963
3964 obj->pin_count = 0;
3965 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3966 bool was_interruptible;
3967
3968 was_interruptible = dev_priv->mm.interruptible;
3969 dev_priv->mm.interruptible = false;
3970
3971 WARN_ON(i915_gem_object_unbind(obj));
3972
3973 dev_priv->mm.interruptible = was_interruptible;
3974 }
3975
1d64ae71
BW
3976 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3977 * before progressing. */
3978 if (obj->stolen)
3979 i915_gem_object_unpin_pages(obj);
3980
401c29f6
BW
3981 if (WARN_ON(obj->pages_pin_count))
3982 obj->pages_pin_count = 0;
37e680a1 3983 i915_gem_object_put_pages(obj);
d8cb5086 3984 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3985 i915_gem_object_release_stolen(obj);
de151cf6 3986
9da3da66
CW
3987 BUG_ON(obj->pages);
3988
2f745ad3
CW
3989 if (obj->base.import_attach)
3990 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3991
05394f39
CW
3992 drm_gem_object_release(&obj->base);
3993 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3994
05394f39 3995 kfree(obj->bit_17);
42dcedd4 3996 i915_gem_object_free(obj);
673a394b
EA
3997}
3998
29105ccc
CW
3999int
4000i915_gem_idle(struct drm_device *dev)
4001{
4002 drm_i915_private_t *dev_priv = dev->dev_private;
4003 int ret;
28dfe52a 4004
29105ccc 4005 mutex_lock(&dev->struct_mutex);
1c5d22f7 4006
87acb0a5 4007 if (dev_priv->mm.suspended) {
29105ccc
CW
4008 mutex_unlock(&dev->struct_mutex);
4009 return 0;
28dfe52a
EA
4010 }
4011
b2da9fe5 4012 ret = i915_gpu_idle(dev);
6dbe2772
KP
4013 if (ret) {
4014 mutex_unlock(&dev->struct_mutex);
673a394b 4015 return ret;
6dbe2772 4016 }
b2da9fe5 4017 i915_gem_retire_requests(dev);
673a394b 4018
29105ccc 4019 /* Under UMS, be paranoid and evict. */
a39d7efc 4020 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4021 i915_gem_evict_everything(dev);
29105ccc 4022
312817a3
CW
4023 i915_gem_reset_fences(dev);
4024
29105ccc
CW
4025 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4026 * We need to replace this with a semaphore, or something.
4027 * And not confound mm.suspended!
4028 */
4029 dev_priv->mm.suspended = 1;
99584db3 4030 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4031
4032 i915_kernel_lost_context(dev);
6dbe2772 4033 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4034
6dbe2772
KP
4035 mutex_unlock(&dev->struct_mutex);
4036
29105ccc
CW
4037 /* Cancel the retire work handler, which should be idle now. */
4038 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4039
673a394b
EA
4040 return 0;
4041}
4042
b9524a1e
BW
4043void i915_gem_l3_remap(struct drm_device *dev)
4044{
4045 drm_i915_private_t *dev_priv = dev->dev_private;
4046 u32 misccpctl;
4047 int i;
4048
eb32e458 4049 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4050 return;
4051
a4da4fa4 4052 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4053 return;
4054
4055 misccpctl = I915_READ(GEN7_MISCCPCTL);
4056 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4057 POSTING_READ(GEN7_MISCCPCTL);
4058
4059 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4060 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4061 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4062 DRM_DEBUG("0x%x was already programmed to %x\n",
4063 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4064 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4065 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4066 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4067 }
4068
4069 /* Make sure all the writes land before disabling dop clock gating */
4070 POSTING_READ(GEN7_L3LOG_BASE);
4071
4072 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4073}
4074
f691e2f4
DV
4075void i915_gem_init_swizzling(struct drm_device *dev)
4076{
4077 drm_i915_private_t *dev_priv = dev->dev_private;
4078
11782b02 4079 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4080 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4081 return;
4082
4083 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4084 DISP_TILE_SURFACE_SWIZZLING);
4085
11782b02
DV
4086 if (IS_GEN5(dev))
4087 return;
4088
f691e2f4
DV
4089 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4090 if (IS_GEN6(dev))
6b26c86d 4091 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4092 else if (IS_GEN7(dev))
6b26c86d 4093 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4094 else
4095 BUG();
f691e2f4 4096}
e21af88d 4097
67b1b571
CW
4098static bool
4099intel_enable_blt(struct drm_device *dev)
4100{
4101 if (!HAS_BLT(dev))
4102 return false;
4103
4104 /* The blitter was dysfunctional on early prototypes */
4105 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4106 DRM_INFO("BLT not supported on this pre-production hardware;"
4107 " graphics performance will be degraded.\n");
4108 return false;
4109 }
4110
4111 return true;
4112}
4113
4fc7c971 4114static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4115{
4fc7c971 4116 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4117 int ret;
68f95ba9 4118
5c1143bb 4119 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4120 if (ret)
b6913e4b 4121 return ret;
68f95ba9
CW
4122
4123 if (HAS_BSD(dev)) {
5c1143bb 4124 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4125 if (ret)
4126 goto cleanup_render_ring;
d1b851fc 4127 }
68f95ba9 4128
67b1b571 4129 if (intel_enable_blt(dev)) {
549f7365
CW
4130 ret = intel_init_blt_ring_buffer(dev);
4131 if (ret)
4132 goto cleanup_bsd_ring;
4133 }
4134
9a8a2213
BW
4135 if (HAS_VEBOX(dev)) {
4136 ret = intel_init_vebox_ring_buffer(dev);
4137 if (ret)
4138 goto cleanup_blt_ring;
4139 }
4140
4141
99433931 4142 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4143 if (ret)
9a8a2213 4144 goto cleanup_vebox_ring;
4fc7c971
BW
4145
4146 return 0;
4147
9a8a2213
BW
4148cleanup_vebox_ring:
4149 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4150cleanup_blt_ring:
4151 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4152cleanup_bsd_ring:
4153 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4154cleanup_render_ring:
4155 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4156
4157 return ret;
4158}
4159
4160int
4161i915_gem_init_hw(struct drm_device *dev)
4162{
4163 drm_i915_private_t *dev_priv = dev->dev_private;
4164 int ret;
4165
4166 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4167 return -EIO;
4168
4169 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4170 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4171
88a2b2a3
BW
4172 if (HAS_PCH_NOP(dev)) {
4173 u32 temp = I915_READ(GEN7_MSG_CTL);
4174 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4175 I915_WRITE(GEN7_MSG_CTL, temp);
4176 }
4177
4fc7c971
BW
4178 i915_gem_l3_remap(dev);
4179
4180 i915_gem_init_swizzling(dev);
4181
4182 ret = i915_gem_init_rings(dev);
99433931
MK
4183 if (ret)
4184 return ret;
4185
254f965c
BW
4186 /*
4187 * XXX: There was some w/a described somewhere suggesting loading
4188 * contexts before PPGTT.
4189 */
4190 i915_gem_context_init(dev);
b7c36d25
BW
4191 if (dev_priv->mm.aliasing_ppgtt) {
4192 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4193 if (ret) {
4194 i915_gem_cleanup_aliasing_ppgtt(dev);
4195 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4196 }
4197 }
e21af88d 4198
68f95ba9 4199 return 0;
8187a2b7
ZN
4200}
4201
1070a42b
CW
4202int i915_gem_init(struct drm_device *dev)
4203{
4204 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4205 int ret;
4206
1070a42b 4207 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4208
4209 if (IS_VALLEYVIEW(dev)) {
4210 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4211 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4212 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4213 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4214 }
4215
d7e5008f 4216 i915_gem_init_global_gtt(dev);
d62b4892 4217
1070a42b
CW
4218 ret = i915_gem_init_hw(dev);
4219 mutex_unlock(&dev->struct_mutex);
4220 if (ret) {
4221 i915_gem_cleanup_aliasing_ppgtt(dev);
4222 return ret;
4223 }
4224
53ca26ca
DV
4225 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4226 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4227 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4228 return 0;
4229}
4230
8187a2b7
ZN
4231void
4232i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4233{
4234 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4235 struct intel_ring_buffer *ring;
1ec14ad3 4236 int i;
8187a2b7 4237
b4519513
CW
4238 for_each_ring(ring, dev_priv, i)
4239 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4240}
4241
673a394b
EA
4242int
4243i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4244 struct drm_file *file_priv)
4245{
4246 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4247 int ret;
673a394b 4248
79e53945
JB
4249 if (drm_core_check_feature(dev, DRIVER_MODESET))
4250 return 0;
4251
1f83fee0 4252 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4253 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4254 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4255 }
4256
673a394b 4257 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4258 dev_priv->mm.suspended = 0;
4259
f691e2f4 4260 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4261 if (ret != 0) {
4262 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4263 return ret;
d816f6ac 4264 }
9bb2d6f9 4265
69dc4987 4266 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4267 mutex_unlock(&dev->struct_mutex);
dbb19d30 4268
5f35308b
CW
4269 ret = drm_irq_install(dev);
4270 if (ret)
4271 goto cleanup_ringbuffer;
dbb19d30 4272
673a394b 4273 return 0;
5f35308b
CW
4274
4275cleanup_ringbuffer:
4276 mutex_lock(&dev->struct_mutex);
4277 i915_gem_cleanup_ringbuffer(dev);
4278 dev_priv->mm.suspended = 1;
4279 mutex_unlock(&dev->struct_mutex);
4280
4281 return ret;
673a394b
EA
4282}
4283
4284int
4285i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4286 struct drm_file *file_priv)
4287{
79e53945
JB
4288 if (drm_core_check_feature(dev, DRIVER_MODESET))
4289 return 0;
4290
dbb19d30 4291 drm_irq_uninstall(dev);
e6890f6f 4292 return i915_gem_idle(dev);
673a394b
EA
4293}
4294
4295void
4296i915_gem_lastclose(struct drm_device *dev)
4297{
4298 int ret;
673a394b 4299
e806b495
EA
4300 if (drm_core_check_feature(dev, DRIVER_MODESET))
4301 return;
4302
6dbe2772
KP
4303 ret = i915_gem_idle(dev);
4304 if (ret)
4305 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4306}
4307
64193406
CW
4308static void
4309init_ring_lists(struct intel_ring_buffer *ring)
4310{
4311 INIT_LIST_HEAD(&ring->active_list);
4312 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4313}
4314
673a394b
EA
4315void
4316i915_gem_load(struct drm_device *dev)
4317{
4318 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4319 int i;
4320
4321 dev_priv->slab =
4322 kmem_cache_create("i915_gem_object",
4323 sizeof(struct drm_i915_gem_object), 0,
4324 SLAB_HWCACHE_ALIGN,
4325 NULL);
673a394b 4326
69dc4987 4327 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4328 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4329 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4330 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4331 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4332 for (i = 0; i < I915_NUM_RINGS; i++)
4333 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4334 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4335 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4336 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4337 i915_gem_retire_work_handler);
1f83fee0 4338 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4339
94400120
DA
4340 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4341 if (IS_GEN3(dev)) {
50743298
DV
4342 I915_WRITE(MI_ARB_STATE,
4343 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4344 }
4345
72bfa19c
CW
4346 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4347
de151cf6 4348 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4349 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4350 dev_priv->fence_reg_start = 3;
de151cf6 4351
42b5aeab
VS
4352 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4353 dev_priv->num_fence_regs = 32;
4354 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4355 dev_priv->num_fence_regs = 16;
4356 else
4357 dev_priv->num_fence_regs = 8;
4358
b5aa8a0f 4359 /* Initialize fence registers to zero */
ada726c7 4360 i915_gem_reset_fences(dev);
10ed13e4 4361
673a394b 4362 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4363 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4364
ce453d81
CW
4365 dev_priv->mm.interruptible = true;
4366
17250b71
CW
4367 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4368 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4369 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4370}
71acb5eb
DA
4371
4372/*
4373 * Create a physically contiguous memory object for this object
4374 * e.g. for cursor + overlay regs
4375 */
995b6762
CW
4376static int i915_gem_init_phys_object(struct drm_device *dev,
4377 int id, int size, int align)
71acb5eb
DA
4378{
4379 drm_i915_private_t *dev_priv = dev->dev_private;
4380 struct drm_i915_gem_phys_object *phys_obj;
4381 int ret;
4382
4383 if (dev_priv->mm.phys_objs[id - 1] || !size)
4384 return 0;
4385
9a298b2a 4386 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4387 if (!phys_obj)
4388 return -ENOMEM;
4389
4390 phys_obj->id = id;
4391
6eeefaf3 4392 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4393 if (!phys_obj->handle) {
4394 ret = -ENOMEM;
4395 goto kfree_obj;
4396 }
4397#ifdef CONFIG_X86
4398 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4399#endif
4400
4401 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4402
4403 return 0;
4404kfree_obj:
9a298b2a 4405 kfree(phys_obj);
71acb5eb
DA
4406 return ret;
4407}
4408
995b6762 4409static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4410{
4411 drm_i915_private_t *dev_priv = dev->dev_private;
4412 struct drm_i915_gem_phys_object *phys_obj;
4413
4414 if (!dev_priv->mm.phys_objs[id - 1])
4415 return;
4416
4417 phys_obj = dev_priv->mm.phys_objs[id - 1];
4418 if (phys_obj->cur_obj) {
4419 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4420 }
4421
4422#ifdef CONFIG_X86
4423 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4424#endif
4425 drm_pci_free(dev, phys_obj->handle);
4426 kfree(phys_obj);
4427 dev_priv->mm.phys_objs[id - 1] = NULL;
4428}
4429
4430void i915_gem_free_all_phys_object(struct drm_device *dev)
4431{
4432 int i;
4433
260883c8 4434 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4435 i915_gem_free_phys_object(dev, i);
4436}
4437
4438void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4439 struct drm_i915_gem_object *obj)
71acb5eb 4440{
496ad9aa 4441 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4442 char *vaddr;
71acb5eb 4443 int i;
71acb5eb
DA
4444 int page_count;
4445
05394f39 4446 if (!obj->phys_obj)
71acb5eb 4447 return;
05394f39 4448 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4449
05394f39 4450 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4451 for (i = 0; i < page_count; i++) {
5949eac4 4452 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4453 if (!IS_ERR(page)) {
4454 char *dst = kmap_atomic(page);
4455 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4456 kunmap_atomic(dst);
4457
4458 drm_clflush_pages(&page, 1);
4459
4460 set_page_dirty(page);
4461 mark_page_accessed(page);
4462 page_cache_release(page);
4463 }
71acb5eb 4464 }
e76e9aeb 4465 i915_gem_chipset_flush(dev);
d78b47b9 4466
05394f39
CW
4467 obj->phys_obj->cur_obj = NULL;
4468 obj->phys_obj = NULL;
71acb5eb
DA
4469}
4470
4471int
4472i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4473 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4474 int id,
4475 int align)
71acb5eb 4476{
496ad9aa 4477 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4478 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4479 int ret = 0;
4480 int page_count;
4481 int i;
4482
4483 if (id > I915_MAX_PHYS_OBJECT)
4484 return -EINVAL;
4485
05394f39
CW
4486 if (obj->phys_obj) {
4487 if (obj->phys_obj->id == id)
71acb5eb
DA
4488 return 0;
4489 i915_gem_detach_phys_object(dev, obj);
4490 }
4491
71acb5eb
DA
4492 /* create a new object */
4493 if (!dev_priv->mm.phys_objs[id - 1]) {
4494 ret = i915_gem_init_phys_object(dev, id,
05394f39 4495 obj->base.size, align);
71acb5eb 4496 if (ret) {
05394f39
CW
4497 DRM_ERROR("failed to init phys object %d size: %zu\n",
4498 id, obj->base.size);
e5281ccd 4499 return ret;
71acb5eb
DA
4500 }
4501 }
4502
4503 /* bind to the object */
05394f39
CW
4504 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4505 obj->phys_obj->cur_obj = obj;
71acb5eb 4506
05394f39 4507 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4508
4509 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4510 struct page *page;
4511 char *dst, *src;
4512
5949eac4 4513 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4514 if (IS_ERR(page))
4515 return PTR_ERR(page);
71acb5eb 4516
ff75b9bc 4517 src = kmap_atomic(page);
05394f39 4518 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4519 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4520 kunmap_atomic(src);
71acb5eb 4521
e5281ccd
CW
4522 mark_page_accessed(page);
4523 page_cache_release(page);
4524 }
d78b47b9 4525
71acb5eb 4526 return 0;
71acb5eb
DA
4527}
4528
4529static int
05394f39
CW
4530i915_gem_phys_pwrite(struct drm_device *dev,
4531 struct drm_i915_gem_object *obj,
71acb5eb
DA
4532 struct drm_i915_gem_pwrite *args,
4533 struct drm_file *file_priv)
4534{
05394f39 4535 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4536 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4537
b47b30cc
CW
4538 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4539 unsigned long unwritten;
4540
4541 /* The physical object once assigned is fixed for the lifetime
4542 * of the obj, so we can safely drop the lock and continue
4543 * to access vaddr.
4544 */
4545 mutex_unlock(&dev->struct_mutex);
4546 unwritten = copy_from_user(vaddr, user_data, args->size);
4547 mutex_lock(&dev->struct_mutex);
4548 if (unwritten)
4549 return -EFAULT;
4550 }
71acb5eb 4551
e76e9aeb 4552 i915_gem_chipset_flush(dev);
71acb5eb
DA
4553 return 0;
4554}
b962442e 4555
f787a5f5 4556void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4557{
f787a5f5 4558 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4559
4560 /* Clean up our request list when the client is going away, so that
4561 * later retire_requests won't dereference our soon-to-be-gone
4562 * file_priv.
4563 */
1c25595f 4564 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4565 while (!list_empty(&file_priv->mm.request_list)) {
4566 struct drm_i915_gem_request *request;
4567
4568 request = list_first_entry(&file_priv->mm.request_list,
4569 struct drm_i915_gem_request,
4570 client_list);
4571 list_del(&request->client_list);
4572 request->file_priv = NULL;
4573 }
1c25595f 4574 spin_unlock(&file_priv->mm.lock);
b962442e 4575}
31169714 4576
5774506f
CW
4577static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4578{
4579 if (!mutex_is_locked(mutex))
4580 return false;
4581
4582#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4583 return mutex->owner == task;
4584#else
4585 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4586 return false;
4587#endif
4588}
4589
31169714 4590static int
1495f230 4591i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4592{
17250b71
CW
4593 struct drm_i915_private *dev_priv =
4594 container_of(shrinker,
4595 struct drm_i915_private,
4596 mm.inactive_shrinker);
4597 struct drm_device *dev = dev_priv->dev;
6c085a72 4598 struct drm_i915_gem_object *obj;
1495f230 4599 int nr_to_scan = sc->nr_to_scan;
5774506f 4600 bool unlock = true;
17250b71
CW
4601 int cnt;
4602
5774506f
CW
4603 if (!mutex_trylock(&dev->struct_mutex)) {
4604 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4605 return 0;
4606
677feac2
DV
4607 if (dev_priv->mm.shrinker_no_lock_stealing)
4608 return 0;
4609
5774506f
CW
4610 unlock = false;
4611 }
31169714 4612
6c085a72
CW
4613 if (nr_to_scan) {
4614 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4615 if (nr_to_scan > 0)
4616 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4617 false);
6c085a72
CW
4618 if (nr_to_scan > 0)
4619 i915_gem_shrink_all(dev_priv);
31169714
CW
4620 }
4621
17250b71 4622 cnt = 0;
35c20a60 4623 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4624 if (obj->pages_pin_count == 0)
4625 cnt += obj->base.size >> PAGE_SHIFT;
35c20a60 4626 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
a5570178 4627 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4628 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4629
5774506f
CW
4630 if (unlock)
4631 mutex_unlock(&dev->struct_mutex);
6c085a72 4632 return cnt;
31169714 4633}