]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: BUG_ON put_pages later
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
c20e8355 78 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
c20e8355 81 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
82}
83
84static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count--;
89 dev_priv->mm.object_memory -= size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
21dd3734 93static int
33196ded 94i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 95{
30dbf0c0
CW
96 int ret;
97
7abb690a
DV
98#define EXIT_COND (!i915_reset_in_progress(error) || \
99 i915_terminally_wedged(error))
1f83fee0 100 if (EXIT_COND)
30dbf0c0
CW
101 return 0;
102
0a6759c6
DV
103 /*
104 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
105 * userspace. If it takes that long something really bad is going on and
106 * we should simply try to bail out and fail as gracefully as possible.
107 */
1f83fee0
DV
108 ret = wait_event_interruptible_timeout(error->reset_queue,
109 EXIT_COND,
110 10*HZ);
0a6759c6
DV
111 if (ret == 0) {
112 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
113 return -EIO;
114 } else if (ret < 0) {
30dbf0c0 115 return ret;
0a6759c6 116 }
1f83fee0 117#undef EXIT_COND
30dbf0c0 118
21dd3734 119 return 0;
30dbf0c0
CW
120}
121
54cf91dc 122int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 123{
33196ded 124 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
125 int ret;
126
33196ded 127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
23bc5982 135 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
136 return 0;
137}
30dbf0c0 138
7d1c4804 139static inline bool
05394f39 140i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 141{
f343c5f6 142 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
7d1c4804
CW
143}
144
79e53945
JB
145int
146i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 147 struct drm_file *file)
79e53945 148{
93d18799 149 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 150 struct drm_i915_gem_init *args = data;
2021746e 151
7bb6fb8d
DV
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
2021746e
CW
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
79e53945 158
f534bc0b
DV
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
79e53945 163 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
164 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
165 args->gtt_end);
93d18799 166 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
167 mutex_unlock(&dev->struct_mutex);
168
2021746e 169 return 0;
673a394b
EA
170}
171
5a125c3c
EA
172int
173i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 174 struct drm_file *file)
5a125c3c 175{
73aa808f 176 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 177 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
5a125c3c 180
6299f992 181 pinned = 0;
73aa808f 182 mutex_lock(&dev->struct_mutex);
35c20a60 183 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 184 if (obj->pin_count)
f343c5f6 185 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 186 mutex_unlock(&dev->struct_mutex);
5a125c3c 187
853ba5d2 188 args->aper_size = dev_priv->gtt.base.total;
0206e353 189 args->aper_available_size = args->aper_size - pinned;
6299f992 190
5a125c3c
EA
191 return 0;
192}
193
42dcedd4
CW
194void *i915_gem_object_alloc(struct drm_device *dev)
195{
196 struct drm_i915_private *dev_priv = dev->dev_private;
197 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
198}
199
200void i915_gem_object_free(struct drm_i915_gem_object *obj)
201{
202 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
203 kmem_cache_free(dev_priv->slab, obj);
204}
205
ff72145b
DA
206static int
207i915_gem_create(struct drm_file *file,
208 struct drm_device *dev,
209 uint64_t size,
210 uint32_t *handle_p)
673a394b 211{
05394f39 212 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
213 int ret;
214 u32 handle;
673a394b 215
ff72145b 216 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
217 if (size == 0)
218 return -EINVAL;
673a394b
EA
219
220 /* Allocate the new object */
ff72145b 221 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
222 if (obj == NULL)
223 return -ENOMEM;
224
05394f39 225 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 226 /* drop reference from allocate - handle holds it now */
d861e338
DV
227 drm_gem_object_unreference_unlocked(&obj->base);
228 if (ret)
229 return ret;
202f2fef 230
ff72145b 231 *handle_p = handle;
673a394b
EA
232 return 0;
233}
234
ff72145b
DA
235int
236i915_gem_dumb_create(struct drm_file *file,
237 struct drm_device *dev,
238 struct drm_mode_create_dumb *args)
239{
240 /* have to work out size/pitch and return them */
ed0291fd 241 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
242 args->size = args->pitch * args->height;
243 return i915_gem_create(file, dev,
244 args->size, &args->handle);
245}
246
247int i915_gem_dumb_destroy(struct drm_file *file,
248 struct drm_device *dev,
249 uint32_t handle)
250{
251 return drm_gem_handle_delete(file, handle);
252}
253
254/**
255 * Creates a new mm object and returns a handle to it.
256 */
257int
258i915_gem_create_ioctl(struct drm_device *dev, void *data,
259 struct drm_file *file)
260{
261 struct drm_i915_gem_create *args = data;
63ed2cb2 262
ff72145b
DA
263 return i915_gem_create(file, dev,
264 args->size, &args->handle);
265}
266
8461d226
DV
267static inline int
268__copy_to_user_swizzled(char __user *cpu_vaddr,
269 const char *gpu_vaddr, int gpu_offset,
270 int length)
271{
272 int ret, cpu_offset = 0;
273
274 while (length > 0) {
275 int cacheline_end = ALIGN(gpu_offset + 1, 64);
276 int this_length = min(cacheline_end - gpu_offset, length);
277 int swizzled_gpu_offset = gpu_offset ^ 64;
278
279 ret = __copy_to_user(cpu_vaddr + cpu_offset,
280 gpu_vaddr + swizzled_gpu_offset,
281 this_length);
282 if (ret)
283 return ret + length;
284
285 cpu_offset += this_length;
286 gpu_offset += this_length;
287 length -= this_length;
288 }
289
290 return 0;
291}
292
8c59967c 293static inline int
4f0c7cfb
BW
294__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
295 const char __user *cpu_vaddr,
8c59967c
DV
296 int length)
297{
298 int ret, cpu_offset = 0;
299
300 while (length > 0) {
301 int cacheline_end = ALIGN(gpu_offset + 1, 64);
302 int this_length = min(cacheline_end - gpu_offset, length);
303 int swizzled_gpu_offset = gpu_offset ^ 64;
304
305 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
306 cpu_vaddr + cpu_offset,
307 this_length);
308 if (ret)
309 return ret + length;
310
311 cpu_offset += this_length;
312 gpu_offset += this_length;
313 length -= this_length;
314 }
315
316 return 0;
317}
318
d174bd64
DV
319/* Per-page copy function for the shmem pread fastpath.
320 * Flushes invalid cachelines before reading the target if
321 * needs_clflush is set. */
eb01459f 322static int
d174bd64
DV
323shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
324 char __user *user_data,
325 bool page_do_bit17_swizzling, bool needs_clflush)
326{
327 char *vaddr;
328 int ret;
329
e7e58eb5 330 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
331 return -EINVAL;
332
333 vaddr = kmap_atomic(page);
334 if (needs_clflush)
335 drm_clflush_virt_range(vaddr + shmem_page_offset,
336 page_length);
337 ret = __copy_to_user_inatomic(user_data,
338 vaddr + shmem_page_offset,
339 page_length);
340 kunmap_atomic(vaddr);
341
f60d7f0c 342 return ret ? -EFAULT : 0;
d174bd64
DV
343}
344
23c18c71
DV
345static void
346shmem_clflush_swizzled_range(char *addr, unsigned long length,
347 bool swizzled)
348{
e7e58eb5 349 if (unlikely(swizzled)) {
23c18c71
DV
350 unsigned long start = (unsigned long) addr;
351 unsigned long end = (unsigned long) addr + length;
352
353 /* For swizzling simply ensure that we always flush both
354 * channels. Lame, but simple and it works. Swizzled
355 * pwrite/pread is far from a hotpath - current userspace
356 * doesn't use it at all. */
357 start = round_down(start, 128);
358 end = round_up(end, 128);
359
360 drm_clflush_virt_range((void *)start, end - start);
361 } else {
362 drm_clflush_virt_range(addr, length);
363 }
364
365}
366
d174bd64
DV
367/* Only difference to the fast-path function is that this can handle bit17
368 * and uses non-atomic copy and kmap functions. */
369static int
370shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
371 char __user *user_data,
372 bool page_do_bit17_swizzling, bool needs_clflush)
373{
374 char *vaddr;
375 int ret;
376
377 vaddr = kmap(page);
378 if (needs_clflush)
23c18c71
DV
379 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
380 page_length,
381 page_do_bit17_swizzling);
d174bd64
DV
382
383 if (page_do_bit17_swizzling)
384 ret = __copy_to_user_swizzled(user_data,
385 vaddr, shmem_page_offset,
386 page_length);
387 else
388 ret = __copy_to_user(user_data,
389 vaddr + shmem_page_offset,
390 page_length);
391 kunmap(page);
392
f60d7f0c 393 return ret ? - EFAULT : 0;
d174bd64
DV
394}
395
eb01459f 396static int
dbf7bff0
DV
397i915_gem_shmem_pread(struct drm_device *dev,
398 struct drm_i915_gem_object *obj,
399 struct drm_i915_gem_pread *args,
400 struct drm_file *file)
eb01459f 401{
8461d226 402 char __user *user_data;
eb01459f 403 ssize_t remain;
8461d226 404 loff_t offset;
eb2c0c81 405 int shmem_page_offset, page_length, ret = 0;
8461d226 406 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 407 int prefaulted = 0;
8489731c 408 int needs_clflush = 0;
67d5a50c 409 struct sg_page_iter sg_iter;
eb01459f 410
2bb4629a 411 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
412 remain = args->size;
413
8461d226 414 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 415
8489731c
DV
416 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
417 /* If we're not in the cpu read domain, set ourself into the gtt
418 * read domain and manually flush cachelines (if required). This
419 * optimizes for the case when the gpu will dirty the data
420 * anyway again before the next pread happens. */
421 if (obj->cache_level == I915_CACHE_NONE)
422 needs_clflush = 1;
f343c5f6 423 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
424 ret = i915_gem_object_set_to_gtt_domain(obj, false);
425 if (ret)
426 return ret;
427 }
8489731c 428 }
eb01459f 429
f60d7f0c
CW
430 ret = i915_gem_object_get_pages(obj);
431 if (ret)
432 return ret;
433
434 i915_gem_object_pin_pages(obj);
435
8461d226 436 offset = args->offset;
eb01459f 437
67d5a50c
ID
438 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
439 offset >> PAGE_SHIFT) {
2db76d7c 440 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
441
442 if (remain <= 0)
443 break;
444
eb01459f
EA
445 /* Operation in this page
446 *
eb01459f 447 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
448 * page_length = bytes to copy for this page
449 */
c8cbbb8b 450 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
451 page_length = remain;
452 if ((shmem_page_offset + page_length) > PAGE_SIZE)
453 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 454
8461d226
DV
455 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
456 (page_to_phys(page) & (1 << 17)) != 0;
457
d174bd64
DV
458 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
459 user_data, page_do_bit17_swizzling,
460 needs_clflush);
461 if (ret == 0)
462 goto next_page;
dbf7bff0 463
dbf7bff0
DV
464 mutex_unlock(&dev->struct_mutex);
465
0b74b508 466 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 467 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
468 /* Userspace is tricking us, but we've already clobbered
469 * its pages with the prefault and promised to write the
470 * data up to the first fault. Hence ignore any errors
471 * and just continue. */
472 (void)ret;
473 prefaulted = 1;
474 }
eb01459f 475
d174bd64
DV
476 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
477 user_data, page_do_bit17_swizzling,
478 needs_clflush);
eb01459f 479
dbf7bff0 480 mutex_lock(&dev->struct_mutex);
f60d7f0c 481
dbf7bff0 482next_page:
e5281ccd 483 mark_page_accessed(page);
e5281ccd 484
f60d7f0c 485 if (ret)
8461d226 486 goto out;
8461d226 487
eb01459f 488 remain -= page_length;
8461d226 489 user_data += page_length;
eb01459f
EA
490 offset += page_length;
491 }
492
4f27b75d 493out:
f60d7f0c
CW
494 i915_gem_object_unpin_pages(obj);
495
eb01459f
EA
496 return ret;
497}
498
673a394b
EA
499/**
500 * Reads data from the object referenced by handle.
501 *
502 * On error, the contents of *data are undefined.
503 */
504int
505i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 506 struct drm_file *file)
673a394b
EA
507{
508 struct drm_i915_gem_pread *args = data;
05394f39 509 struct drm_i915_gem_object *obj;
35b62a89 510 int ret = 0;
673a394b 511
51311d0a
CW
512 if (args->size == 0)
513 return 0;
514
515 if (!access_ok(VERIFY_WRITE,
2bb4629a 516 to_user_ptr(args->data_ptr),
51311d0a
CW
517 args->size))
518 return -EFAULT;
519
4f27b75d 520 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 521 if (ret)
4f27b75d 522 return ret;
673a394b 523
05394f39 524 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 525 if (&obj->base == NULL) {
1d7cfea1
CW
526 ret = -ENOENT;
527 goto unlock;
4f27b75d 528 }
673a394b 529
7dcd2499 530 /* Bounds check source. */
05394f39
CW
531 if (args->offset > obj->base.size ||
532 args->size > obj->base.size - args->offset) {
ce9d419d 533 ret = -EINVAL;
35b62a89 534 goto out;
ce9d419d
CW
535 }
536
1286ff73
DV
537 /* prime objects have no backing filp to GEM pread/pwrite
538 * pages from.
539 */
540 if (!obj->base.filp) {
541 ret = -EINVAL;
542 goto out;
543 }
544
db53a302
CW
545 trace_i915_gem_object_pread(obj, args->offset, args->size);
546
dbf7bff0 547 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 548
35b62a89 549out:
05394f39 550 drm_gem_object_unreference(&obj->base);
1d7cfea1 551unlock:
4f27b75d 552 mutex_unlock(&dev->struct_mutex);
eb01459f 553 return ret;
673a394b
EA
554}
555
0839ccb8
KP
556/* This is the fast write path which cannot handle
557 * page faults in the source data
9b7530cc 558 */
0839ccb8
KP
559
560static inline int
561fast_user_write(struct io_mapping *mapping,
562 loff_t page_base, int page_offset,
563 char __user *user_data,
564 int length)
9b7530cc 565{
4f0c7cfb
BW
566 void __iomem *vaddr_atomic;
567 void *vaddr;
0839ccb8 568 unsigned long unwritten;
9b7530cc 569
3e4d3af5 570 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
571 /* We can use the cpu mem copy function because this is X86. */
572 vaddr = (void __force*)vaddr_atomic + page_offset;
573 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 574 user_data, length);
3e4d3af5 575 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 576 return unwritten;
0839ccb8
KP
577}
578
3de09aa3
EA
579/**
580 * This is the fast pwrite path, where we copy the data directly from the
581 * user into the GTT, uncached.
582 */
673a394b 583static int
05394f39
CW
584i915_gem_gtt_pwrite_fast(struct drm_device *dev,
585 struct drm_i915_gem_object *obj,
3de09aa3 586 struct drm_i915_gem_pwrite *args,
05394f39 587 struct drm_file *file)
673a394b 588{
0839ccb8 589 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 590 ssize_t remain;
0839ccb8 591 loff_t offset, page_base;
673a394b 592 char __user *user_data;
935aaa69
DV
593 int page_offset, page_length, ret;
594
c37e2204 595 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
596 if (ret)
597 goto out;
598
599 ret = i915_gem_object_set_to_gtt_domain(obj, true);
600 if (ret)
601 goto out_unpin;
602
603 ret = i915_gem_object_put_fence(obj);
604 if (ret)
605 goto out_unpin;
673a394b 606
2bb4629a 607 user_data = to_user_ptr(args->data_ptr);
673a394b 608 remain = args->size;
673a394b 609
f343c5f6 610 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
611
612 while (remain > 0) {
613 /* Operation in this page
614 *
0839ccb8
KP
615 * page_base = page offset within aperture
616 * page_offset = offset within page
617 * page_length = bytes to copy for this page
673a394b 618 */
c8cbbb8b
CW
619 page_base = offset & PAGE_MASK;
620 page_offset = offset_in_page(offset);
0839ccb8
KP
621 page_length = remain;
622 if ((page_offset + remain) > PAGE_SIZE)
623 page_length = PAGE_SIZE - page_offset;
624
0839ccb8 625 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
626 * source page isn't available. Return the error and we'll
627 * retry in the slow path.
0839ccb8 628 */
5d4545ae 629 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
630 page_offset, user_data, page_length)) {
631 ret = -EFAULT;
632 goto out_unpin;
633 }
673a394b 634
0839ccb8
KP
635 remain -= page_length;
636 user_data += page_length;
637 offset += page_length;
673a394b 638 }
673a394b 639
935aaa69
DV
640out_unpin:
641 i915_gem_object_unpin(obj);
642out:
3de09aa3 643 return ret;
673a394b
EA
644}
645
d174bd64
DV
646/* Per-page copy function for the shmem pwrite fastpath.
647 * Flushes invalid cachelines before writing to the target if
648 * needs_clflush_before is set and flushes out any written cachelines after
649 * writing if needs_clflush is set. */
3043c60c 650static int
d174bd64
DV
651shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
652 char __user *user_data,
653 bool page_do_bit17_swizzling,
654 bool needs_clflush_before,
655 bool needs_clflush_after)
673a394b 656{
d174bd64 657 char *vaddr;
673a394b 658 int ret;
3de09aa3 659
e7e58eb5 660 if (unlikely(page_do_bit17_swizzling))
d174bd64 661 return -EINVAL;
3de09aa3 662
d174bd64
DV
663 vaddr = kmap_atomic(page);
664 if (needs_clflush_before)
665 drm_clflush_virt_range(vaddr + shmem_page_offset,
666 page_length);
667 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
668 user_data,
669 page_length);
670 if (needs_clflush_after)
671 drm_clflush_virt_range(vaddr + shmem_page_offset,
672 page_length);
673 kunmap_atomic(vaddr);
3de09aa3 674
755d2218 675 return ret ? -EFAULT : 0;
3de09aa3
EA
676}
677
d174bd64
DV
678/* Only difference to the fast-path function is that this can handle bit17
679 * and uses non-atomic copy and kmap functions. */
3043c60c 680static int
d174bd64
DV
681shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
682 char __user *user_data,
683 bool page_do_bit17_swizzling,
684 bool needs_clflush_before,
685 bool needs_clflush_after)
673a394b 686{
d174bd64
DV
687 char *vaddr;
688 int ret;
e5281ccd 689
d174bd64 690 vaddr = kmap(page);
e7e58eb5 691 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
692 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
693 page_length,
694 page_do_bit17_swizzling);
d174bd64
DV
695 if (page_do_bit17_swizzling)
696 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
697 user_data,
698 page_length);
d174bd64
DV
699 else
700 ret = __copy_from_user(vaddr + shmem_page_offset,
701 user_data,
702 page_length);
703 if (needs_clflush_after)
23c18c71
DV
704 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
705 page_length,
706 page_do_bit17_swizzling);
d174bd64 707 kunmap(page);
40123c1f 708
755d2218 709 return ret ? -EFAULT : 0;
40123c1f
EA
710}
711
40123c1f 712static int
e244a443
DV
713i915_gem_shmem_pwrite(struct drm_device *dev,
714 struct drm_i915_gem_object *obj,
715 struct drm_i915_gem_pwrite *args,
716 struct drm_file *file)
40123c1f 717{
40123c1f 718 ssize_t remain;
8c59967c
DV
719 loff_t offset;
720 char __user *user_data;
eb2c0c81 721 int shmem_page_offset, page_length, ret = 0;
8c59967c 722 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 723 int hit_slowpath = 0;
58642885
DV
724 int needs_clflush_after = 0;
725 int needs_clflush_before = 0;
67d5a50c 726 struct sg_page_iter sg_iter;
40123c1f 727
2bb4629a 728 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
729 remain = args->size;
730
8c59967c 731 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 732
58642885
DV
733 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
734 /* If we're not in the cpu write domain, set ourself into the gtt
735 * write domain and manually flush cachelines (if required). This
736 * optimizes for the case when the gpu will use the data
737 * right away and we therefore have to clflush anyway. */
738 if (obj->cache_level == I915_CACHE_NONE)
739 needs_clflush_after = 1;
f343c5f6 740 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
741 ret = i915_gem_object_set_to_gtt_domain(obj, true);
742 if (ret)
743 return ret;
744 }
58642885
DV
745 }
746 /* Same trick applies for invalidate partially written cachelines before
747 * writing. */
748 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
749 && obj->cache_level == I915_CACHE_NONE)
750 needs_clflush_before = 1;
751
755d2218
CW
752 ret = i915_gem_object_get_pages(obj);
753 if (ret)
754 return ret;
755
756 i915_gem_object_pin_pages(obj);
757
673a394b 758 offset = args->offset;
05394f39 759 obj->dirty = 1;
673a394b 760
67d5a50c
ID
761 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
762 offset >> PAGE_SHIFT) {
2db76d7c 763 struct page *page = sg_page_iter_page(&sg_iter);
58642885 764 int partial_cacheline_write;
e5281ccd 765
9da3da66
CW
766 if (remain <= 0)
767 break;
768
40123c1f
EA
769 /* Operation in this page
770 *
40123c1f 771 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
772 * page_length = bytes to copy for this page
773 */
c8cbbb8b 774 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
775
776 page_length = remain;
777 if ((shmem_page_offset + page_length) > PAGE_SIZE)
778 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 779
58642885
DV
780 /* If we don't overwrite a cacheline completely we need to be
781 * careful to have up-to-date data by first clflushing. Don't
782 * overcomplicate things and flush the entire patch. */
783 partial_cacheline_write = needs_clflush_before &&
784 ((shmem_page_offset | page_length)
785 & (boot_cpu_data.x86_clflush_size - 1));
786
8c59967c
DV
787 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
788 (page_to_phys(page) & (1 << 17)) != 0;
789
d174bd64
DV
790 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
791 user_data, page_do_bit17_swizzling,
792 partial_cacheline_write,
793 needs_clflush_after);
794 if (ret == 0)
795 goto next_page;
e244a443
DV
796
797 hit_slowpath = 1;
e244a443 798 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
799 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
800 user_data, page_do_bit17_swizzling,
801 partial_cacheline_write,
802 needs_clflush_after);
40123c1f 803
e244a443 804 mutex_lock(&dev->struct_mutex);
755d2218 805
e244a443 806next_page:
e5281ccd
CW
807 set_page_dirty(page);
808 mark_page_accessed(page);
e5281ccd 809
755d2218 810 if (ret)
8c59967c 811 goto out;
8c59967c 812
40123c1f 813 remain -= page_length;
8c59967c 814 user_data += page_length;
40123c1f 815 offset += page_length;
673a394b
EA
816 }
817
fbd5a26d 818out:
755d2218
CW
819 i915_gem_object_unpin_pages(obj);
820
e244a443 821 if (hit_slowpath) {
8dcf015e
DV
822 /*
823 * Fixup: Flush cpu caches in case we didn't flush the dirty
824 * cachelines in-line while writing and the object moved
825 * out of the cpu write domain while we've dropped the lock.
826 */
827 if (!needs_clflush_after &&
828 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 829 i915_gem_clflush_object(obj);
e76e9aeb 830 i915_gem_chipset_flush(dev);
e244a443 831 }
8c59967c 832 }
673a394b 833
58642885 834 if (needs_clflush_after)
e76e9aeb 835 i915_gem_chipset_flush(dev);
58642885 836
40123c1f 837 return ret;
673a394b
EA
838}
839
840/**
841 * Writes data to the object referenced by handle.
842 *
843 * On error, the contents of the buffer that were to be modified are undefined.
844 */
845int
846i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 847 struct drm_file *file)
673a394b
EA
848{
849 struct drm_i915_gem_pwrite *args = data;
05394f39 850 struct drm_i915_gem_object *obj;
51311d0a
CW
851 int ret;
852
853 if (args->size == 0)
854 return 0;
855
856 if (!access_ok(VERIFY_READ,
2bb4629a 857 to_user_ptr(args->data_ptr),
51311d0a
CW
858 args->size))
859 return -EFAULT;
860
0b74b508
XZ
861 if (likely(!i915_prefault_disable)) {
862 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
863 args->size);
864 if (ret)
865 return -EFAULT;
866 }
673a394b 867
fbd5a26d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
fbd5a26d 870 return ret;
1d7cfea1 871
05394f39 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 873 if (&obj->base == NULL) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
fbd5a26d 876 }
673a394b 877
7dcd2499 878 /* Bounds check destination. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
1286ff73
DV
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
db53a302
CW
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
935aaa69 895 ret = -EFAULT;
673a394b
EA
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
5c0480f2 902 if (obj->phys_obj) {
fbd5a26d 903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
904 goto out;
905 }
906
86a1ee26 907 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 908 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
fbd5a26d 914 }
673a394b 915
86a1ee26 916 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 918
35b62a89 919out:
05394f39 920 drm_gem_object_unreference(&obj->base);
1d7cfea1 921unlock:
fbd5a26d 922 mutex_unlock(&dev->struct_mutex);
673a394b
EA
923 return ret;
924}
925
b361237b 926int
33196ded 927i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
928 bool interruptible)
929{
1f83fee0 930 if (i915_reset_in_progress(error)) {
b361237b
CW
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
1f83fee0
DV
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
b361237b
CW
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944}
945
946/*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950static int
951i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952{
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
0025c077 959 ret = i915_add_request(ring, NULL);
b361237b
CW
960
961 return ret;
962}
963
964/**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
f69061be 968 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
f69061be
DV
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
b361237b
CW
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 983 unsigned reset_counter,
b361237b
CW
984 bool interruptible, struct timespec *timeout)
985{
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
e054cc39 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011#define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
f69061be
DV
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
33196ded 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040#undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
b361237b
CW
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060}
1061
1062/**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066int
1067i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068{
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
33196ded 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
f69061be
DV
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
b361237b
CW
1088}
1089
d26e3af8
CW
1090static int
1091i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093{
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107}
1108
b361237b
CW
1109/**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113static __must_check int
1114i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116{
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
d26e3af8 1129 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1130}
1131
3236f57a
CW
1132/* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135static __must_check int
1136i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138{
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
f69061be 1142 unsigned reset_counter;
3236f57a
CW
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
33196ded 1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
f69061be 1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1162 mutex_unlock(&dev->struct_mutex);
f69061be 1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1164 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1165 if (ret)
1166 return ret;
3236f57a 1167
d26e3af8 1168 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1169}
1170
673a394b 1171/**
2ef7eeaa
EA
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1174 */
1175int
1176i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1177 struct drm_file *file)
673a394b
EA
1178{
1179 struct drm_i915_gem_set_domain *args = data;
05394f39 1180 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
673a394b
EA
1183 int ret;
1184
2ef7eeaa 1185 /* Only handle setting domains to types used by the CPU. */
21d509e3 1186 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1187 return -EINVAL;
1188
21d509e3 1189 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
76c1dec1 1198 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1199 if (ret)
76c1dec1 1200 return ret;
1d7cfea1 1201
05394f39 1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1203 if (&obj->base == NULL) {
1d7cfea1
CW
1204 ret = -ENOENT;
1205 goto unlock;
76c1dec1 1206 }
673a394b 1207
3236f57a
CW
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
2ef7eeaa
EA
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
2ef7eeaa 1225 } else {
e47c68e9 1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1227 }
1228
3236f57a 1229unref:
05394f39 1230 drm_gem_object_unreference(&obj->base);
1d7cfea1 1231unlock:
673a394b
EA
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234}
1235
1236/**
1237 * Called when user space has done writes to this buffer
1238 */
1239int
1240i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1241 struct drm_file *file)
673a394b
EA
1242{
1243 struct drm_i915_gem_sw_finish *args = data;
05394f39 1244 struct drm_i915_gem_object *obj;
673a394b
EA
1245 int ret = 0;
1246
76c1dec1 1247 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1248 if (ret)
76c1dec1 1249 return ret;
1d7cfea1 1250
05394f39 1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1252 if (&obj->base == NULL) {
1d7cfea1
CW
1253 ret = -ENOENT;
1254 goto unlock;
673a394b
EA
1255 }
1256
673a394b 1257 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1258 if (obj->pin_count)
e47c68e9
EA
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
05394f39 1261 drm_gem_object_unreference(&obj->base);
1d7cfea1 1262unlock:
673a394b
EA
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265}
1266
1267/**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274int
1275i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1276 struct drm_file *file)
673a394b
EA
1277{
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
673a394b
EA
1280 unsigned long addr;
1281
05394f39 1282 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1283 if (obj == NULL)
bf79cb91 1284 return -ENOENT;
673a394b 1285
1286ff73
DV
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
6be5ceb0 1294 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
bc9025bd 1297 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304}
1305
de151cf6
JB
1306/**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323{
05394f39
CW
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
7d1c4804 1326 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
0f973f27 1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
d9bc7e9f
CW
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
a00b10c3 1339
db53a302
CW
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
eb119bd6
CW
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
d9bc7e9f 1348 /* Now bind it into the GTT if needed */
c37e2204 1349 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1350 if (ret)
1351 goto unlock;
4a684a41 1352
c9839303
CW
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
74898d7e 1356
06d98131 1357 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1358 if (ret)
c9839303 1359 goto unpin;
7d1c4804 1360
6299f992
CW
1361 obj->fault_mappable = true;
1362
f343c5f6
BW
1363 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364 pfn >>= PAGE_SHIFT;
1365 pfn += page_offset;
de151cf6
JB
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1369unpin:
1370 i915_gem_object_unpin(obj);
c715089f 1371unlock:
de151cf6 1372 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1373out:
de151cf6 1374 switch (ret) {
d9bc7e9f 1375 case -EIO:
a9340cca
DV
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1f83fee0 1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1380 return VM_FAULT_SIGBUS;
045e769a 1381 case -EAGAIN:
d9bc7e9f
CW
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
045e769a 1389 set_need_resched();
c715089f
CW
1390 case 0:
1391 case -ERESTARTSYS:
bed636ab 1392 case -EINTR:
e79e0fe3
DR
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
c715089f 1398 return VM_FAULT_NOPAGE;
de151cf6 1399 case -ENOMEM:
de151cf6 1400 return VM_FAULT_OOM;
a7c2e1aa
DV
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
de151cf6 1403 default:
a7c2e1aa 1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1405 return VM_FAULT_SIGBUS;
de151cf6
JB
1406 }
1407}
1408
901782b2
CW
1409/**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
af901ca1 1413 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
d05ca301 1423void
05394f39 1424i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1425{
6299f992
CW
1426 if (!obj->fault_mappable)
1427 return;
901782b2 1428
f6e47884
CW
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
fb7d516a 1433
6299f992 1434 obj->fault_mappable = false;
901782b2
CW
1435}
1436
0fa87796 1437uint32_t
e28f8711 1438i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1439{
e28f8711 1440 uint32_t gtt_size;
92b88aeb
CW
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
92b88aeb
CW
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1448 gtt_size = 1024*1024;
92b88aeb 1449 else
e28f8711 1450 gtt_size = 512*1024;
92b88aeb 1451
e28f8711
CW
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
92b88aeb 1454
e28f8711 1455 return gtt_size;
92b88aeb
CW
1456}
1457
de151cf6
JB
1458/**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
5e783301 1463 * potential fence register mapping.
de151cf6 1464 */
d865110c
ID
1465uint32_t
1466i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
de151cf6 1468{
de151cf6
JB
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
d865110c 1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1474 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1475 return 4096;
1476
a00b10c3
CW
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
e28f8711 1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1482}
1483
d8cb5086
CW
1484static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485{
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
da494d7c
DV
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
d8cb5086
CW
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
da494d7c 1496 goto out;
d8cb5086
CW
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
da494d7c 1508 goto out;
d8cb5086
CW
1509
1510 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
d8cb5086
CW
1516}
1517
1518static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519{
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524}
1525
de151cf6 1526int
ff72145b
DA
1527i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
de151cf6 1531{
da761a6e 1532 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1533 struct drm_i915_gem_object *obj;
de151cf6
JB
1534 int ret;
1535
76c1dec1 1536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1537 if (ret)
76c1dec1 1538 return ret;
de151cf6 1539
ff72145b 1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1541 if (&obj->base == NULL) {
1d7cfea1
CW
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
de151cf6 1545
5d4545ae 1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1547 ret = -E2BIG;
ff56b0bc 1548 goto out;
da761a6e
CW
1549 }
1550
05394f39 1551 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1553 ret = -EINVAL;
1554 goto out;
ab18282d
CW
1555 }
1556
d8cb5086
CW
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
de151cf6 1560
ff72145b 1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1562
1d7cfea1 1563out:
05394f39 1564 drm_gem_object_unreference(&obj->base);
1d7cfea1 1565unlock:
de151cf6 1566 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1567 return ret;
de151cf6
JB
1568}
1569
ff72145b
DA
1570/**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585int
1586i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588{
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
ff72145b
DA
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592}
1593
225067ee
DV
1594/* Immediately discard the backing storage */
1595static void
1596i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1597{
e5281ccd 1598 struct inode *inode;
e5281ccd 1599
4d6294bf 1600 i915_gem_object_free_mmap_offset(obj);
1286ff73 1601
4d6294bf
CW
1602 if (obj->base.filp == NULL)
1603 return;
e5281ccd 1604
225067ee
DV
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
496ad9aa 1610 inode = file_inode(obj->base.filp);
225067ee 1611 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1612
225067ee
DV
1613 obj->madv = __I915_MADV_PURGED;
1614}
e5281ccd 1615
225067ee
DV
1616static inline int
1617i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618{
1619 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1620}
1621
5cdf5881 1622static void
05394f39 1623i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1624{
90797e6d
ID
1625 struct sg_page_iter sg_iter;
1626 int ret;
1286ff73 1627
05394f39 1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1629
6c085a72
CW
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
6dacfd2f 1640 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
05394f39
CW
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
3ef94daa 1645
90797e6d 1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1647 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1648
05394f39 1649 if (obj->dirty)
9da3da66 1650 set_page_dirty(page);
3ef94daa 1651
05394f39 1652 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1653 mark_page_accessed(page);
3ef94daa 1654
9da3da66 1655 page_cache_release(page);
3ef94daa 1656 }
05394f39 1657 obj->dirty = 0;
673a394b 1658
9da3da66
CW
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
37e680a1 1661}
6c085a72 1662
dd624afd 1663int
37e680a1
CW
1664i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665{
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
2f745ad3 1668 if (obj->pages == NULL)
37e680a1
CW
1669 return 0;
1670
a5570178
CW
1671 if (obj->pages_pin_count)
1672 return -EBUSY;
1673
3e123027
BW
1674 BUG_ON(i915_gem_obj_ggtt_bound(obj));
1675
a2165e31
CW
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
35c20a60 1679 list_del(&obj->global_list);
a2165e31 1680
37e680a1 1681 ops->put_pages(obj);
05394f39 1682 obj->pages = NULL;
37e680a1 1683
6c085a72
CW
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688}
1689
1690static long
93927ca5
DV
1691__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
6c085a72
CW
1693{
1694 struct drm_i915_gem_object *obj, *next;
5cef07e1 1695 struct i915_address_space *vm = &dev_priv->gtt.base;
6c085a72
CW
1696 long count = 0;
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.unbound_list,
35c20a60 1700 global_list) {
93927ca5 1701 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1702 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1703 count += obj->base.size >> PAGE_SHIFT;
1704 if (count >= target)
1705 return count;
1706 }
1707 }
1708
5cef07e1 1709 list_for_each_entry_safe(obj, next, &vm->inactive_list, mm_list) {
93927ca5 1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
6c085a72 1711 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1712 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 return count;
1720}
1721
93927ca5
DV
1722static long
1723i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724{
1725 return __i915_gem_shrink(dev_priv, target, true);
1726}
1727
6c085a72
CW
1728static void
1729i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730{
1731 struct drm_i915_gem_object *obj, *next;
1732
1733 i915_gem_evict_everything(dev_priv->dev);
1734
35c20a60
BW
1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 global_list)
37e680a1 1737 i915_gem_object_put_pages(obj);
225067ee
DV
1738}
1739
37e680a1 1740static int
6c085a72 1741i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1742{
6c085a72 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1744 int page_count, i;
1745 struct address_space *mapping;
9da3da66
CW
1746 struct sg_table *st;
1747 struct scatterlist *sg;
90797e6d 1748 struct sg_page_iter sg_iter;
e5281ccd 1749 struct page *page;
90797e6d 1750 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1751 gfp_t gfp;
e5281ccd 1752
6c085a72
CW
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
9da3da66
CW
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
05394f39 1764 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
e5281ccd 1768 return -ENOMEM;
9da3da66 1769 }
e5281ccd 1770
9da3da66
CW
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
496ad9aa 1776 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1777 gfp = mapping_gfp_mask(mapping);
caf49191 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
6c085a72
CW
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
caf49191 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
caf49191 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1625e7e5
KRW
1804#ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811#endif
90797e6d
ID
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
e5281ccd 1821 }
1625e7e5
KRW
1822#ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824#endif
1825 sg_mark_end(sg);
74ce6b6c
CW
1826 obj->pages = st;
1827
6dacfd2f 1828 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833err_pages:
90797e6d
ID
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1836 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1837 sg_free_table(st);
1838 kfree(st);
e5281ccd 1839 return PTR_ERR(page);
673a394b
EA
1840}
1841
37e680a1
CW
1842/* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849int
1850i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851{
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
2f745ad3 1856 if (obj->pages)
37e680a1
CW
1857 return 0;
1858
43e28f09
CW
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
a5570178
CW
1864 BUG_ON(obj->pages_pin_count);
1865
37e680a1
CW
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
35c20a60 1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1871 return 0;
673a394b
EA
1872}
1873
54cf91dc 1874void
05394f39 1875i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1876 struct intel_ring_buffer *ring)
673a394b 1877{
05394f39 1878 struct drm_device *dev = obj->base.dev;
69dc4987 1879 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 1880 struct i915_address_space *vm = &dev_priv->gtt.base;
9d773091 1881 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1882
852835f3 1883 BUG_ON(ring == NULL);
02978ff5
CW
1884 if (obj->ring != ring && obj->last_write_seqno) {
1885 /* Keep the seqno relative to the current ring */
1886 obj->last_write_seqno = seqno;
1887 }
05394f39 1888 obj->ring = ring;
673a394b
EA
1889
1890 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1891 if (!obj->active) {
1892 drm_gem_object_reference(&obj->base);
1893 obj->active = 1;
673a394b 1894 }
e35a41de 1895
673a394b 1896 /* Move from whatever list we were on to the tail of execution. */
5cef07e1 1897 list_move_tail(&obj->mm_list, &vm->active_list);
05394f39 1898 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1899
0201f1ec 1900 obj->last_read_seqno = seqno;
caea7476 1901
7dd49065 1902 if (obj->fenced_gpu_access) {
caea7476 1903 obj->last_fenced_seqno = seqno;
caea7476 1904
7dd49065
CW
1905 /* Bump MRU to take account of the delayed flush */
1906 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1907 struct drm_i915_fence_reg *reg;
1908
1909 reg = &dev_priv->fence_regs[obj->fence_reg];
1910 list_move_tail(&reg->lru_list,
1911 &dev_priv->mm.fence_list);
1912 }
caea7476
CW
1913 }
1914}
1915
1916static void
caea7476 1917i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1918{
05394f39 1919 struct drm_device *dev = obj->base.dev;
caea7476 1920 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 1921 struct i915_address_space *vm = &dev_priv->gtt.base;
ce44b0ea 1922
65ce3027 1923 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1924 BUG_ON(!obj->active);
caea7476 1925
5cef07e1 1926 list_move_tail(&obj->mm_list, &vm->inactive_list);
caea7476 1927
65ce3027 1928 list_del_init(&obj->ring_list);
caea7476
CW
1929 obj->ring = NULL;
1930
65ce3027
CW
1931 obj->last_read_seqno = 0;
1932 obj->last_write_seqno = 0;
1933 obj->base.write_domain = 0;
1934
1935 obj->last_fenced_seqno = 0;
caea7476 1936 obj->fenced_gpu_access = false;
caea7476
CW
1937
1938 obj->active = 0;
1939 drm_gem_object_unreference(&obj->base);
1940
1941 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1942}
673a394b 1943
9d773091 1944static int
fca26bb4 1945i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1946{
9d773091
CW
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_ring_buffer *ring;
1949 int ret, i, j;
53d227f2 1950
107f27a5 1951 /* Carefully retire all requests without writing to the rings */
9d773091 1952 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1953 ret = intel_ring_idle(ring);
1954 if (ret)
1955 return ret;
9d773091 1956 }
9d773091 1957 i915_gem_retire_requests(dev);
107f27a5
CW
1958
1959 /* Finally reset hw state */
9d773091 1960 for_each_ring(ring, dev_priv, i) {
fca26bb4 1961 intel_ring_init_seqno(ring, seqno);
498d2ac1 1962
9d773091
CW
1963 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1964 ring->sync_seqno[j] = 0;
1965 }
53d227f2 1966
9d773091 1967 return 0;
53d227f2
DV
1968}
1969
fca26bb4
MK
1970int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1971{
1972 struct drm_i915_private *dev_priv = dev->dev_private;
1973 int ret;
1974
1975 if (seqno == 0)
1976 return -EINVAL;
1977
1978 /* HWS page needs to be set less than what we
1979 * will inject to ring
1980 */
1981 ret = i915_gem_init_seqno(dev, seqno - 1);
1982 if (ret)
1983 return ret;
1984
1985 /* Carefully set the last_seqno value so that wrap
1986 * detection still works
1987 */
1988 dev_priv->next_seqno = seqno;
1989 dev_priv->last_seqno = seqno - 1;
1990 if (dev_priv->last_seqno == 0)
1991 dev_priv->last_seqno--;
1992
1993 return 0;
1994}
1995
9d773091
CW
1996int
1997i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1998{
9d773091
CW
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000
2001 /* reserve 0 for non-seqno */
2002 if (dev_priv->next_seqno == 0) {
fca26bb4 2003 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2004 if (ret)
2005 return ret;
53d227f2 2006
9d773091
CW
2007 dev_priv->next_seqno = 1;
2008 }
53d227f2 2009
f72b3435 2010 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2011 return 0;
53d227f2
DV
2012}
2013
0025c077
MK
2014int __i915_add_request(struct intel_ring_buffer *ring,
2015 struct drm_file *file,
7d736f4f 2016 struct drm_i915_gem_object *obj,
0025c077 2017 u32 *out_seqno)
673a394b 2018{
db53a302 2019 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2020 struct drm_i915_gem_request *request;
7d736f4f 2021 u32 request_ring_position, request_start;
673a394b 2022 int was_empty;
3cce469c
CW
2023 int ret;
2024
7d736f4f 2025 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2026 /*
2027 * Emit any outstanding flushes - execbuf can fail to emit the flush
2028 * after having emitted the batchbuffer command. Hence we need to fix
2029 * things up similar to emitting the lazy request. The difference here
2030 * is that the flush _must_ happen before the next request, no matter
2031 * what.
2032 */
a7b9761d
CW
2033 ret = intel_ring_flush_all_caches(ring);
2034 if (ret)
2035 return ret;
cc889e0f 2036
acb868d3
CW
2037 request = kmalloc(sizeof(*request), GFP_KERNEL);
2038 if (request == NULL)
2039 return -ENOMEM;
cc889e0f 2040
673a394b 2041
a71d8d94
CW
2042 /* Record the position of the start of the request so that
2043 * should we detect the updated seqno part-way through the
2044 * GPU processing the request, we never over-estimate the
2045 * position of the head.
2046 */
2047 request_ring_position = intel_ring_get_tail(ring);
2048
9d773091 2049 ret = ring->add_request(ring);
3bb73aba
CW
2050 if (ret) {
2051 kfree(request);
2052 return ret;
2053 }
673a394b 2054
9d773091 2055 request->seqno = intel_ring_get_seqno(ring);
852835f3 2056 request->ring = ring;
7d736f4f 2057 request->head = request_start;
a71d8d94 2058 request->tail = request_ring_position;
0e50e96b 2059 request->ctx = ring->last_context;
7d736f4f
MK
2060 request->batch_obj = obj;
2061
2062 /* Whilst this request exists, batch_obj will be on the
2063 * active_list, and so will hold the active reference. Only when this
2064 * request is retired will the the batch_obj be moved onto the
2065 * inactive_list and lose its active reference. Hence we do not need
2066 * to explicitly hold another reference here.
2067 */
0e50e96b
MK
2068
2069 if (request->ctx)
2070 i915_gem_context_reference(request->ctx);
2071
673a394b 2072 request->emitted_jiffies = jiffies;
852835f3
ZN
2073 was_empty = list_empty(&ring->request_list);
2074 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2075 request->file_priv = NULL;
852835f3 2076
db53a302
CW
2077 if (file) {
2078 struct drm_i915_file_private *file_priv = file->driver_priv;
2079
1c25595f 2080 spin_lock(&file_priv->mm.lock);
f787a5f5 2081 request->file_priv = file_priv;
b962442e 2082 list_add_tail(&request->client_list,
f787a5f5 2083 &file_priv->mm.request_list);
1c25595f 2084 spin_unlock(&file_priv->mm.lock);
b962442e 2085 }
673a394b 2086
9d773091 2087 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2088 ring->outstanding_lazy_request = 0;
db53a302 2089
db1b76ca 2090 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2091 i915_queue_hangcheck(ring->dev);
2092
f047e395 2093 if (was_empty) {
b3b079db 2094 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2095 &dev_priv->mm.retire_work,
2096 round_jiffies_up_relative(HZ));
f047e395
CW
2097 intel_mark_busy(dev_priv->dev);
2098 }
f65d9421 2099 }
cc889e0f 2100
acb868d3 2101 if (out_seqno)
9d773091 2102 *out_seqno = request->seqno;
3cce469c 2103 return 0;
673a394b
EA
2104}
2105
f787a5f5
CW
2106static inline void
2107i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2108{
1c25595f 2109 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2110
1c25595f
CW
2111 if (!file_priv)
2112 return;
1c5d22f7 2113
1c25595f 2114 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2115 if (request->file_priv) {
2116 list_del(&request->client_list);
2117 request->file_priv = NULL;
2118 }
1c25595f 2119 spin_unlock(&file_priv->mm.lock);
673a394b 2120}
673a394b 2121
aa60c664
MK
2122static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2123{
f343c5f6
BW
2124 if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2125 acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
aa60c664
MK
2126 return true;
2127
2128 return false;
2129}
2130
2131static bool i915_head_inside_request(const u32 acthd_unmasked,
2132 const u32 request_start,
2133 const u32 request_end)
2134{
2135 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2136
2137 if (request_start < request_end) {
2138 if (acthd >= request_start && acthd < request_end)
2139 return true;
2140 } else if (request_start > request_end) {
2141 if (acthd >= request_start || acthd < request_end)
2142 return true;
2143 }
2144
2145 return false;
2146}
2147
2148static bool i915_request_guilty(struct drm_i915_gem_request *request,
2149 const u32 acthd, bool *inside)
2150{
2151 /* There is a possibility that unmasked head address
2152 * pointing inside the ring, matches the batch_obj address range.
2153 * However this is extremely unlikely.
2154 */
2155
2156 if (request->batch_obj) {
2157 if (i915_head_inside_object(acthd, request->batch_obj)) {
2158 *inside = true;
2159 return true;
2160 }
2161 }
2162
2163 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2164 *inside = false;
2165 return true;
2166 }
2167
2168 return false;
2169}
2170
2171static void i915_set_reset_status(struct intel_ring_buffer *ring,
2172 struct drm_i915_gem_request *request,
2173 u32 acthd)
2174{
2175 struct i915_ctx_hang_stats *hs = NULL;
2176 bool inside, guilty;
2177
2178 /* Innocent until proven guilty */
2179 guilty = false;
2180
2181 if (ring->hangcheck.action != wait &&
2182 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2183 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2184 ring->name,
2185 inside ? "inside" : "flushing",
2186 request->batch_obj ?
f343c5f6 2187 i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
aa60c664
MK
2188 request->ctx ? request->ctx->id : 0,
2189 acthd);
2190
2191 guilty = true;
2192 }
2193
2194 /* If contexts are disabled or this is the default context, use
2195 * file_priv->reset_state
2196 */
2197 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2198 hs = &request->ctx->hang_stats;
2199 else if (request->file_priv)
2200 hs = &request->file_priv->hang_stats;
2201
2202 if (hs) {
2203 if (guilty)
2204 hs->batch_active++;
2205 else
2206 hs->batch_pending++;
2207 }
2208}
2209
0e50e96b
MK
2210static void i915_gem_free_request(struct drm_i915_gem_request *request)
2211{
2212 list_del(&request->list);
2213 i915_gem_request_remove_from_client(request);
2214
2215 if (request->ctx)
2216 i915_gem_context_unreference(request->ctx);
2217
2218 kfree(request);
2219}
2220
dfaae392
CW
2221static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2222 struct intel_ring_buffer *ring)
9375e446 2223{
aa60c664
MK
2224 u32 completed_seqno;
2225 u32 acthd;
2226
2227 acthd = intel_ring_get_active_head(ring);
2228 completed_seqno = ring->get_seqno(ring, false);
2229
dfaae392
CW
2230 while (!list_empty(&ring->request_list)) {
2231 struct drm_i915_gem_request *request;
673a394b 2232
dfaae392
CW
2233 request = list_first_entry(&ring->request_list,
2234 struct drm_i915_gem_request,
2235 list);
de151cf6 2236
aa60c664
MK
2237 if (request->seqno > completed_seqno)
2238 i915_set_reset_status(ring, request, acthd);
2239
0e50e96b 2240 i915_gem_free_request(request);
dfaae392 2241 }
673a394b 2242
dfaae392 2243 while (!list_empty(&ring->active_list)) {
05394f39 2244 struct drm_i915_gem_object *obj;
9375e446 2245
05394f39
CW
2246 obj = list_first_entry(&ring->active_list,
2247 struct drm_i915_gem_object,
2248 ring_list);
9375e446 2249
05394f39 2250 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2251 }
2252}
2253
19b2dbde 2254void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2255{
2256 struct drm_i915_private *dev_priv = dev->dev_private;
2257 int i;
2258
4b9de737 2259 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2260 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2261
94a335db
DV
2262 /*
2263 * Commit delayed tiling changes if we have an object still
2264 * attached to the fence, otherwise just clear the fence.
2265 */
2266 if (reg->obj) {
2267 i915_gem_object_update_fence(reg->obj, reg,
2268 reg->obj->tiling_mode);
2269 } else {
2270 i915_gem_write_fence(dev, i, NULL);
2271 }
312817a3
CW
2272 }
2273}
2274
069efc1d 2275void i915_gem_reset(struct drm_device *dev)
673a394b 2276{
77f01230 2277 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 2278 struct i915_address_space *vm = &dev_priv->gtt.base;
05394f39 2279 struct drm_i915_gem_object *obj;
b4519513 2280 struct intel_ring_buffer *ring;
1ec14ad3 2281 int i;
673a394b 2282
b4519513
CW
2283 for_each_ring(ring, dev_priv, i)
2284 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2285
dfaae392
CW
2286 /* Move everything out of the GPU domains to ensure we do any
2287 * necessary invalidation upon reuse.
2288 */
5cef07e1 2289 list_for_each_entry(obj, &vm->inactive_list, mm_list)
05394f39 2290 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
069efc1d 2291
19b2dbde 2292 i915_gem_restore_fences(dev);
673a394b
EA
2293}
2294
2295/**
2296 * This function clears the request list as sequence numbers are passed.
2297 */
a71d8d94 2298void
db53a302 2299i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2300{
673a394b
EA
2301 uint32_t seqno;
2302
db53a302 2303 if (list_empty(&ring->request_list))
6c0594a3
KW
2304 return;
2305
db53a302 2306 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2307
b2eadbc8 2308 seqno = ring->get_seqno(ring, true);
1ec14ad3 2309
852835f3 2310 while (!list_empty(&ring->request_list)) {
673a394b 2311 struct drm_i915_gem_request *request;
673a394b 2312
852835f3 2313 request = list_first_entry(&ring->request_list,
673a394b
EA
2314 struct drm_i915_gem_request,
2315 list);
673a394b 2316
dfaae392 2317 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2318 break;
2319
db53a302 2320 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2321 /* We know the GPU must have read the request to have
2322 * sent us the seqno + interrupt, so use the position
2323 * of tail of the request to update the last known position
2324 * of the GPU head.
2325 */
2326 ring->last_retired_head = request->tail;
b84d5f0c 2327
0e50e96b 2328 i915_gem_free_request(request);
b84d5f0c 2329 }
673a394b 2330
b84d5f0c
CW
2331 /* Move any buffers on the active list that are no longer referenced
2332 * by the ringbuffer to the flushing/inactive lists as appropriate.
2333 */
2334 while (!list_empty(&ring->active_list)) {
05394f39 2335 struct drm_i915_gem_object *obj;
b84d5f0c 2336
0206e353 2337 obj = list_first_entry(&ring->active_list,
05394f39
CW
2338 struct drm_i915_gem_object,
2339 ring_list);
673a394b 2340
0201f1ec 2341 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2342 break;
b84d5f0c 2343
65ce3027 2344 i915_gem_object_move_to_inactive(obj);
673a394b 2345 }
9d34e5db 2346
db53a302
CW
2347 if (unlikely(ring->trace_irq_seqno &&
2348 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2349 ring->irq_put(ring);
db53a302 2350 ring->trace_irq_seqno = 0;
9d34e5db 2351 }
23bc5982 2352
db53a302 2353 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2354}
2355
b09a1fec
CW
2356void
2357i915_gem_retire_requests(struct drm_device *dev)
2358{
2359 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2360 struct intel_ring_buffer *ring;
1ec14ad3 2361 int i;
b09a1fec 2362
b4519513
CW
2363 for_each_ring(ring, dev_priv, i)
2364 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2365}
2366
75ef9da2 2367static void
673a394b
EA
2368i915_gem_retire_work_handler(struct work_struct *work)
2369{
2370 drm_i915_private_t *dev_priv;
2371 struct drm_device *dev;
b4519513 2372 struct intel_ring_buffer *ring;
0a58705b
CW
2373 bool idle;
2374 int i;
673a394b
EA
2375
2376 dev_priv = container_of(work, drm_i915_private_t,
2377 mm.retire_work.work);
2378 dev = dev_priv->dev;
2379
891b48cf
CW
2380 /* Come back later if the device is busy... */
2381 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2382 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2383 round_jiffies_up_relative(HZ));
891b48cf
CW
2384 return;
2385 }
673a394b 2386
b09a1fec 2387 i915_gem_retire_requests(dev);
673a394b 2388
0a58705b
CW
2389 /* Send a periodic flush down the ring so we don't hold onto GEM
2390 * objects indefinitely.
673a394b 2391 */
0a58705b 2392 idle = true;
b4519513 2393 for_each_ring(ring, dev_priv, i) {
3bb73aba 2394 if (ring->gpu_caches_dirty)
0025c077 2395 i915_add_request(ring, NULL);
0a58705b
CW
2396
2397 idle &= list_empty(&ring->request_list);
673a394b
EA
2398 }
2399
db1b76ca 2400 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2401 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2402 round_jiffies_up_relative(HZ));
f047e395
CW
2403 if (idle)
2404 intel_mark_idle(dev);
0a58705b 2405
673a394b 2406 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2407}
2408
30dfebf3
DV
2409/**
2410 * Ensures that an object will eventually get non-busy by flushing any required
2411 * write domains, emitting any outstanding lazy request and retiring and
2412 * completed requests.
2413 */
2414static int
2415i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2416{
2417 int ret;
2418
2419 if (obj->active) {
0201f1ec 2420 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2421 if (ret)
2422 return ret;
2423
30dfebf3
DV
2424 i915_gem_retire_requests_ring(obj->ring);
2425 }
2426
2427 return 0;
2428}
2429
23ba4fd0
BW
2430/**
2431 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2432 * @DRM_IOCTL_ARGS: standard ioctl arguments
2433 *
2434 * Returns 0 if successful, else an error is returned with the remaining time in
2435 * the timeout parameter.
2436 * -ETIME: object is still busy after timeout
2437 * -ERESTARTSYS: signal interrupted the wait
2438 * -ENONENT: object doesn't exist
2439 * Also possible, but rare:
2440 * -EAGAIN: GPU wedged
2441 * -ENOMEM: damn
2442 * -ENODEV: Internal IRQ fail
2443 * -E?: The add request failed
2444 *
2445 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2446 * non-zero timeout parameter the wait ioctl will wait for the given number of
2447 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2448 * without holding struct_mutex the object may become re-busied before this
2449 * function completes. A similar but shorter * race condition exists in the busy
2450 * ioctl
2451 */
2452int
2453i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2454{
f69061be 2455 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2456 struct drm_i915_gem_wait *args = data;
2457 struct drm_i915_gem_object *obj;
2458 struct intel_ring_buffer *ring = NULL;
eac1f14f 2459 struct timespec timeout_stack, *timeout = NULL;
f69061be 2460 unsigned reset_counter;
23ba4fd0
BW
2461 u32 seqno = 0;
2462 int ret = 0;
2463
eac1f14f
BW
2464 if (args->timeout_ns >= 0) {
2465 timeout_stack = ns_to_timespec(args->timeout_ns);
2466 timeout = &timeout_stack;
2467 }
23ba4fd0
BW
2468
2469 ret = i915_mutex_lock_interruptible(dev);
2470 if (ret)
2471 return ret;
2472
2473 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2474 if (&obj->base == NULL) {
2475 mutex_unlock(&dev->struct_mutex);
2476 return -ENOENT;
2477 }
2478
30dfebf3
DV
2479 /* Need to make sure the object gets inactive eventually. */
2480 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2481 if (ret)
2482 goto out;
2483
2484 if (obj->active) {
0201f1ec 2485 seqno = obj->last_read_seqno;
23ba4fd0
BW
2486 ring = obj->ring;
2487 }
2488
2489 if (seqno == 0)
2490 goto out;
2491
23ba4fd0
BW
2492 /* Do this after OLR check to make sure we make forward progress polling
2493 * on this IOCTL with a 0 timeout (like busy ioctl)
2494 */
2495 if (!args->timeout_ns) {
2496 ret = -ETIME;
2497 goto out;
2498 }
2499
2500 drm_gem_object_unreference(&obj->base);
f69061be 2501 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2502 mutex_unlock(&dev->struct_mutex);
2503
f69061be 2504 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2505 if (timeout)
eac1f14f 2506 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2507 return ret;
2508
2509out:
2510 drm_gem_object_unreference(&obj->base);
2511 mutex_unlock(&dev->struct_mutex);
2512 return ret;
2513}
2514
5816d648
BW
2515/**
2516 * i915_gem_object_sync - sync an object to a ring.
2517 *
2518 * @obj: object which may be in use on another ring.
2519 * @to: ring we wish to use the object on. May be NULL.
2520 *
2521 * This code is meant to abstract object synchronization with the GPU.
2522 * Calling with NULL implies synchronizing the object with the CPU
2523 * rather than a particular GPU ring.
2524 *
2525 * Returns 0 if successful, else propagates up the lower layer error.
2526 */
2911a35b
BW
2527int
2528i915_gem_object_sync(struct drm_i915_gem_object *obj,
2529 struct intel_ring_buffer *to)
2530{
2531 struct intel_ring_buffer *from = obj->ring;
2532 u32 seqno;
2533 int ret, idx;
2534
2535 if (from == NULL || to == from)
2536 return 0;
2537
5816d648 2538 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2539 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2540
2541 idx = intel_ring_sync_index(from, to);
2542
0201f1ec 2543 seqno = obj->last_read_seqno;
2911a35b
BW
2544 if (seqno <= from->sync_seqno[idx])
2545 return 0;
2546
b4aca010
BW
2547 ret = i915_gem_check_olr(obj->ring, seqno);
2548 if (ret)
2549 return ret;
2911a35b 2550
1500f7ea 2551 ret = to->sync_to(to, from, seqno);
e3a5a225 2552 if (!ret)
7b01e260
MK
2553 /* We use last_read_seqno because sync_to()
2554 * might have just caused seqno wrap under
2555 * the radar.
2556 */
2557 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2558
e3a5a225 2559 return ret;
2911a35b
BW
2560}
2561
b5ffc9bc
CW
2562static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2563{
2564 u32 old_write_domain, old_read_domains;
2565
b5ffc9bc
CW
2566 /* Force a pagefault for domain tracking on next user access */
2567 i915_gem_release_mmap(obj);
2568
b97c3d9c
KP
2569 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2570 return;
2571
97c809fd
CW
2572 /* Wait for any direct GTT access to complete */
2573 mb();
2574
b5ffc9bc
CW
2575 old_read_domains = obj->base.read_domains;
2576 old_write_domain = obj->base.write_domain;
2577
2578 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2579 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2580
2581 trace_i915_gem_object_change_domain(obj,
2582 old_read_domains,
2583 old_write_domain);
2584}
2585
673a394b
EA
2586/**
2587 * Unbinds an object from the GTT aperture.
2588 */
0f973f27 2589int
05394f39 2590i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2591{
7bddb01f 2592 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2f633156 2593 struct i915_vma *vma;
43e28f09 2594 int ret;
673a394b 2595
f343c5f6 2596 if (!i915_gem_obj_ggtt_bound(obj))
673a394b
EA
2597 return 0;
2598
31d8d651
CW
2599 if (obj->pin_count)
2600 return -EBUSY;
673a394b 2601
c4670ad0
CW
2602 BUG_ON(obj->pages == NULL);
2603
a8198eea 2604 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2605 if (ret)
a8198eea
CW
2606 return ret;
2607 /* Continue on if we fail due to EIO, the GPU is hung so we
2608 * should be safe and we need to cleanup or else we might
2609 * cause memory corruption through use-after-free.
2610 */
2611
b5ffc9bc 2612 i915_gem_object_finish_gtt(obj);
5323fd04 2613
96b47b65 2614 /* release the fence reg _after_ flushing */
d9e86c0e 2615 ret = i915_gem_object_put_fence(obj);
1488fc08 2616 if (ret)
d9e86c0e 2617 return ret;
96b47b65 2618
db53a302
CW
2619 trace_i915_gem_object_unbind(obj);
2620
74898d7e
DV
2621 if (obj->has_global_gtt_mapping)
2622 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2623 if (obj->has_aliasing_ppgtt_mapping) {
2624 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2625 obj->has_aliasing_ppgtt_mapping = 0;
2626 }
74163907 2627 i915_gem_gtt_finish_object(obj);
401c29f6 2628 i915_gem_object_unpin_pages(obj);
7bddb01f 2629
6c085a72 2630 list_del(&obj->mm_list);
75e9e915 2631 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2632 obj->map_and_fenceable = true;
673a394b 2633
a70a3148 2634 vma = i915_gem_obj_to_vma(obj, &dev_priv->gtt.base);
2f633156
BW
2635 list_del(&vma->vma_link);
2636 drm_mm_remove_node(&vma->node);
2637 i915_gem_vma_destroy(vma);
2638
2639 /* Since the unbound list is global, only move to that list if
2640 * no more VMAs exist.
2641 * NB: Until we have real VMAs there will only ever be one */
2642 WARN_ON(!list_empty(&obj->vma_list));
2643 if (list_empty(&obj->vma_list))
2644 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2645
88241785 2646 return 0;
54cf91dc
CW
2647}
2648
b2da9fe5 2649int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2650{
2651 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2652 struct intel_ring_buffer *ring;
1ec14ad3 2653 int ret, i;
4df2faf4 2654
4df2faf4 2655 /* Flush everything onto the inactive list. */
b4519513 2656 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2657 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2658 if (ret)
2659 return ret;
2660
3e960501 2661 ret = intel_ring_idle(ring);
1ec14ad3
CW
2662 if (ret)
2663 return ret;
2664 }
4df2faf4 2665
8a1a49f9 2666 return 0;
4df2faf4
DV
2667}
2668
9ce079e4
CW
2669static void i965_write_fence_reg(struct drm_device *dev, int reg,
2670 struct drm_i915_gem_object *obj)
de151cf6 2671{
de151cf6 2672 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2673 int fence_reg;
2674 int fence_pitch_shift;
de151cf6 2675
56c844e5
ID
2676 if (INTEL_INFO(dev)->gen >= 6) {
2677 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2678 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2679 } else {
2680 fence_reg = FENCE_REG_965_0;
2681 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2682 }
2683
d18b9619
CW
2684 fence_reg += reg * 8;
2685
2686 /* To w/a incoherency with non-atomic 64-bit register updates,
2687 * we split the 64-bit update into two 32-bit writes. In order
2688 * for a partial fence not to be evaluated between writes, we
2689 * precede the update with write to turn off the fence register,
2690 * and only enable the fence as the last step.
2691 *
2692 * For extra levels of paranoia, we make sure each step lands
2693 * before applying the next step.
2694 */
2695 I915_WRITE(fence_reg, 0);
2696 POSTING_READ(fence_reg);
2697
9ce079e4 2698 if (obj) {
f343c5f6 2699 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2700 uint64_t val;
de151cf6 2701
f343c5f6 2702 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2703 0xfffff000) << 32;
f343c5f6 2704 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2705 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2706 if (obj->tiling_mode == I915_TILING_Y)
2707 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2708 val |= I965_FENCE_REG_VALID;
c6642782 2709
d18b9619
CW
2710 I915_WRITE(fence_reg + 4, val >> 32);
2711 POSTING_READ(fence_reg + 4);
2712
2713 I915_WRITE(fence_reg + 0, val);
2714 POSTING_READ(fence_reg);
2715 } else {
2716 I915_WRITE(fence_reg + 4, 0);
2717 POSTING_READ(fence_reg + 4);
2718 }
de151cf6
JB
2719}
2720
9ce079e4
CW
2721static void i915_write_fence_reg(struct drm_device *dev, int reg,
2722 struct drm_i915_gem_object *obj)
de151cf6 2723{
de151cf6 2724 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2725 u32 val;
de151cf6 2726
9ce079e4 2727 if (obj) {
f343c5f6 2728 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2729 int pitch_val;
2730 int tile_width;
c6642782 2731
f343c5f6 2732 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2733 (size & -size) != size ||
f343c5f6
BW
2734 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2735 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2736 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2737
9ce079e4
CW
2738 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2739 tile_width = 128;
2740 else
2741 tile_width = 512;
2742
2743 /* Note: pitch better be a power of two tile widths */
2744 pitch_val = obj->stride / tile_width;
2745 pitch_val = ffs(pitch_val) - 1;
2746
f343c5f6 2747 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2748 if (obj->tiling_mode == I915_TILING_Y)
2749 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2750 val |= I915_FENCE_SIZE_BITS(size);
2751 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2752 val |= I830_FENCE_REG_VALID;
2753 } else
2754 val = 0;
2755
2756 if (reg < 8)
2757 reg = FENCE_REG_830_0 + reg * 4;
2758 else
2759 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2760
2761 I915_WRITE(reg, val);
2762 POSTING_READ(reg);
de151cf6
JB
2763}
2764
9ce079e4
CW
2765static void i830_write_fence_reg(struct drm_device *dev, int reg,
2766 struct drm_i915_gem_object *obj)
de151cf6 2767{
de151cf6 2768 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2769 uint32_t val;
de151cf6 2770
9ce079e4 2771 if (obj) {
f343c5f6 2772 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2773 uint32_t pitch_val;
de151cf6 2774
f343c5f6 2775 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2776 (size & -size) != size ||
f343c5f6
BW
2777 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2778 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2779 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2780
9ce079e4
CW
2781 pitch_val = obj->stride / 128;
2782 pitch_val = ffs(pitch_val) - 1;
de151cf6 2783
f343c5f6 2784 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2785 if (obj->tiling_mode == I915_TILING_Y)
2786 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2787 val |= I830_FENCE_SIZE_BITS(size);
2788 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2789 val |= I830_FENCE_REG_VALID;
2790 } else
2791 val = 0;
c6642782 2792
9ce079e4
CW
2793 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2794 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2795}
2796
d0a57789
CW
2797inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2798{
2799 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2800}
2801
9ce079e4
CW
2802static void i915_gem_write_fence(struct drm_device *dev, int reg,
2803 struct drm_i915_gem_object *obj)
2804{
d0a57789
CW
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806
2807 /* Ensure that all CPU reads are completed before installing a fence
2808 * and all writes before removing the fence.
2809 */
2810 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2811 mb();
2812
94a335db
DV
2813 WARN(obj && (!obj->stride || !obj->tiling_mode),
2814 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2815 obj->stride, obj->tiling_mode);
2816
9ce079e4
CW
2817 switch (INTEL_INFO(dev)->gen) {
2818 case 7:
56c844e5 2819 case 6:
9ce079e4
CW
2820 case 5:
2821 case 4: i965_write_fence_reg(dev, reg, obj); break;
2822 case 3: i915_write_fence_reg(dev, reg, obj); break;
2823 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2824 default: BUG();
9ce079e4 2825 }
d0a57789
CW
2826
2827 /* And similarly be paranoid that no direct access to this region
2828 * is reordered to before the fence is installed.
2829 */
2830 if (i915_gem_object_needs_mb(obj))
2831 mb();
de151cf6
JB
2832}
2833
61050808
CW
2834static inline int fence_number(struct drm_i915_private *dev_priv,
2835 struct drm_i915_fence_reg *fence)
2836{
2837 return fence - dev_priv->fence_regs;
2838}
2839
2840static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2841 struct drm_i915_fence_reg *fence,
2842 bool enable)
2843{
2dc8aae0 2844 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2845 int reg = fence_number(dev_priv, fence);
2846
2847 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2848
2849 if (enable) {
46a0b638 2850 obj->fence_reg = reg;
61050808
CW
2851 fence->obj = obj;
2852 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2853 } else {
2854 obj->fence_reg = I915_FENCE_REG_NONE;
2855 fence->obj = NULL;
2856 list_del_init(&fence->lru_list);
2857 }
94a335db 2858 obj->fence_dirty = false;
61050808
CW
2859}
2860
d9e86c0e 2861static int
d0a57789 2862i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2863{
1c293ea3 2864 if (obj->last_fenced_seqno) {
86d5bc37 2865 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2866 if (ret)
2867 return ret;
d9e86c0e
CW
2868
2869 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2870 }
2871
86d5bc37 2872 obj->fenced_gpu_access = false;
d9e86c0e
CW
2873 return 0;
2874}
2875
2876int
2877i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2878{
61050808 2879 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2880 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2881 int ret;
2882
d0a57789 2883 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2884 if (ret)
2885 return ret;
2886
61050808
CW
2887 if (obj->fence_reg == I915_FENCE_REG_NONE)
2888 return 0;
d9e86c0e 2889
f9c513e9
CW
2890 fence = &dev_priv->fence_regs[obj->fence_reg];
2891
61050808 2892 i915_gem_object_fence_lost(obj);
f9c513e9 2893 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2894
2895 return 0;
2896}
2897
2898static struct drm_i915_fence_reg *
a360bb1a 2899i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2900{
ae3db24a 2901 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2902 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2903 int i;
ae3db24a
DV
2904
2905 /* First try to find a free reg */
d9e86c0e 2906 avail = NULL;
ae3db24a
DV
2907 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2908 reg = &dev_priv->fence_regs[i];
2909 if (!reg->obj)
d9e86c0e 2910 return reg;
ae3db24a 2911
1690e1eb 2912 if (!reg->pin_count)
d9e86c0e 2913 avail = reg;
ae3db24a
DV
2914 }
2915
d9e86c0e
CW
2916 if (avail == NULL)
2917 return NULL;
ae3db24a
DV
2918
2919 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2920 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2921 if (reg->pin_count)
ae3db24a
DV
2922 continue;
2923
8fe301ad 2924 return reg;
ae3db24a
DV
2925 }
2926
8fe301ad 2927 return NULL;
ae3db24a
DV
2928}
2929
de151cf6 2930/**
9a5a53b3 2931 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2932 * @obj: object to map through a fence reg
2933 *
2934 * When mapping objects through the GTT, userspace wants to be able to write
2935 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2936 * This function walks the fence regs looking for a free one for @obj,
2937 * stealing one if it can't find any.
2938 *
2939 * It then sets up the reg based on the object's properties: address, pitch
2940 * and tiling format.
9a5a53b3
CW
2941 *
2942 * For an untiled surface, this removes any existing fence.
de151cf6 2943 */
8c4b8c3f 2944int
06d98131 2945i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2946{
05394f39 2947 struct drm_device *dev = obj->base.dev;
79e53945 2948 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2949 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2950 struct drm_i915_fence_reg *reg;
ae3db24a 2951 int ret;
de151cf6 2952
14415745
CW
2953 /* Have we updated the tiling parameters upon the object and so
2954 * will need to serialise the write to the associated fence register?
2955 */
5d82e3e6 2956 if (obj->fence_dirty) {
d0a57789 2957 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2958 if (ret)
2959 return ret;
2960 }
9a5a53b3 2961
d9e86c0e 2962 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2963 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2964 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2965 if (!obj->fence_dirty) {
14415745
CW
2966 list_move_tail(&reg->lru_list,
2967 &dev_priv->mm.fence_list);
2968 return 0;
2969 }
2970 } else if (enable) {
2971 reg = i915_find_fence_reg(dev);
2972 if (reg == NULL)
2973 return -EDEADLK;
d9e86c0e 2974
14415745
CW
2975 if (reg->obj) {
2976 struct drm_i915_gem_object *old = reg->obj;
2977
d0a57789 2978 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2979 if (ret)
2980 return ret;
2981
14415745 2982 i915_gem_object_fence_lost(old);
29c5a587 2983 }
14415745 2984 } else
a09ba7fa 2985 return 0;
a09ba7fa 2986
14415745 2987 i915_gem_object_update_fence(obj, reg, enable);
14415745 2988
9ce079e4 2989 return 0;
de151cf6
JB
2990}
2991
42d6ab48
CW
2992static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2993 struct drm_mm_node *gtt_space,
2994 unsigned long cache_level)
2995{
2996 struct drm_mm_node *other;
2997
2998 /* On non-LLC machines we have to be careful when putting differing
2999 * types of snoopable memory together to avoid the prefetcher
4239ca77 3000 * crossing memory domains and dying.
42d6ab48
CW
3001 */
3002 if (HAS_LLC(dev))
3003 return true;
3004
c6cfb325 3005 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3006 return true;
3007
3008 if (list_empty(&gtt_space->node_list))
3009 return true;
3010
3011 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3012 if (other->allocated && !other->hole_follows && other->color != cache_level)
3013 return false;
3014
3015 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3016 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3017 return false;
3018
3019 return true;
3020}
3021
3022static void i915_gem_verify_gtt(struct drm_device *dev)
3023{
3024#if WATCH_GTT
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 struct drm_i915_gem_object *obj;
3027 int err = 0;
3028
35c20a60 3029 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3030 if (obj->gtt_space == NULL) {
3031 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3032 err++;
3033 continue;
3034 }
3035
3036 if (obj->cache_level != obj->gtt_space->color) {
3037 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3038 i915_gem_obj_ggtt_offset(obj),
3039 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3040 obj->cache_level,
3041 obj->gtt_space->color);
3042 err++;
3043 continue;
3044 }
3045
3046 if (!i915_gem_valid_gtt_space(dev,
3047 obj->gtt_space,
3048 obj->cache_level)) {
3049 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3050 i915_gem_obj_ggtt_offset(obj),
3051 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3052 obj->cache_level);
3053 err++;
3054 continue;
3055 }
3056 }
3057
3058 WARN_ON(err);
3059#endif
3060}
3061
673a394b
EA
3062/**
3063 * Finds free space in the GTT aperture and binds the object there.
3064 */
3065static int
05394f39 3066i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 3067 unsigned alignment,
86a1ee26
CW
3068 bool map_and_fenceable,
3069 bool nonblocking)
673a394b 3070{
05394f39 3071 struct drm_device *dev = obj->base.dev;
673a394b 3072 drm_i915_private_t *dev_priv = dev->dev_private;
5cef07e1 3073 struct i915_address_space *vm = &dev_priv->gtt.base;
5e783301 3074 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 3075 bool mappable, fenceable;
0a9ae0d7 3076 size_t gtt_max = map_and_fenceable ?
853ba5d2 3077 dev_priv->gtt.mappable_end : dev_priv->gtt.base.total;
2f633156 3078 struct i915_vma *vma;
07f73f69 3079 int ret;
673a394b 3080
2f633156
BW
3081 if (WARN_ON(!list_empty(&obj->vma_list)))
3082 return -EBUSY;
3083
e28f8711
CW
3084 fence_size = i915_gem_get_gtt_size(dev,
3085 obj->base.size,
3086 obj->tiling_mode);
3087 fence_alignment = i915_gem_get_gtt_alignment(dev,
3088 obj->base.size,
d865110c 3089 obj->tiling_mode, true);
e28f8711 3090 unfenced_alignment =
d865110c 3091 i915_gem_get_gtt_alignment(dev,
e28f8711 3092 obj->base.size,
d865110c 3093 obj->tiling_mode, false);
a00b10c3 3094
673a394b 3095 if (alignment == 0)
5e783301
DV
3096 alignment = map_and_fenceable ? fence_alignment :
3097 unfenced_alignment;
75e9e915 3098 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3099 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3100 return -EINVAL;
3101 }
3102
05394f39 3103 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3104
654fc607
CW
3105 /* If the object is bigger than the entire aperture, reject it early
3106 * before evicting everything in a vain attempt to find space.
3107 */
0a9ae0d7 3108 if (obj->base.size > gtt_max) {
3765f304 3109 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3110 obj->base.size,
3111 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3112 gtt_max);
654fc607
CW
3113 return -E2BIG;
3114 }
3115
37e680a1 3116 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3117 if (ret)
3118 return ret;
3119
fbdda6fb
CW
3120 i915_gem_object_pin_pages(obj);
3121
2f633156 3122 vma = i915_gem_vma_create(obj, &dev_priv->gtt.base);
db473b36 3123 if (IS_ERR(vma)) {
bc6bc15b
DV
3124 ret = PTR_ERR(vma);
3125 goto err_unpin;
2f633156
BW
3126 }
3127
0a9ae0d7 3128search_free:
93bd8649 3129 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2f633156 3130 &vma->node,
0a9ae0d7
BW
3131 size, alignment,
3132 obj->cache_level, 0, gtt_max);
dc9dd7a2 3133 if (ret) {
75e9e915 3134 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 3135 obj->cache_level,
86a1ee26
CW
3136 map_and_fenceable,
3137 nonblocking);
dc9dd7a2
CW
3138 if (ret == 0)
3139 goto search_free;
9731129c 3140
bc6bc15b 3141 goto err_free_vma;
673a394b 3142 }
2f633156 3143 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3144 obj->cache_level))) {
2f633156 3145 ret = -EINVAL;
bc6bc15b 3146 goto err_remove_node;
673a394b
EA
3147 }
3148
74163907 3149 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3150 if (ret)
bc6bc15b 3151 goto err_remove_node;
673a394b 3152
35c20a60 3153 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
5cef07e1 3154 list_add_tail(&obj->mm_list, &vm->inactive_list);
2f633156 3155 list_add(&vma->vma_link, &obj->vma_list);
bf1a1092 3156
75e9e915 3157 fenceable =
c6cfb325
BW
3158 i915_gem_obj_ggtt_size(obj) == fence_size &&
3159 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
a00b10c3 3160
f343c5f6
BW
3161 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3162 dev_priv->gtt.mappable_end;
a00b10c3 3163
05394f39 3164 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3165
db53a302 3166 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3167 i915_gem_verify_gtt(dev);
673a394b 3168 return 0;
2f633156 3169
bc6bc15b 3170err_remove_node:
6286ef9b 3171 drm_mm_remove_node(&vma->node);
bc6bc15b 3172err_free_vma:
2f633156 3173 i915_gem_vma_destroy(vma);
bc6bc15b 3174err_unpin:
2f633156 3175 i915_gem_object_unpin_pages(obj);
2f633156 3176 return ret;
673a394b
EA
3177}
3178
3179void
05394f39 3180i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3181{
673a394b
EA
3182 /* If we don't have a page list set up, then we're not pinned
3183 * to GPU, and we can ignore the cache flush because it'll happen
3184 * again at bind time.
3185 */
05394f39 3186 if (obj->pages == NULL)
673a394b
EA
3187 return;
3188
769ce464
ID
3189 /*
3190 * Stolen memory is always coherent with the GPU as it is explicitly
3191 * marked as wc by the system, or the system is cache-coherent.
3192 */
3193 if (obj->stolen)
3194 return;
3195
9c23f7fc
CW
3196 /* If the GPU is snooping the contents of the CPU cache,
3197 * we do not need to manually clear the CPU cache lines. However,
3198 * the caches are only snooped when the render cache is
3199 * flushed/invalidated. As we always have to emit invalidations
3200 * and flushes when moving into and out of the RENDER domain, correct
3201 * snooping behaviour occurs naturally as the result of our domain
3202 * tracking.
3203 */
3204 if (obj->cache_level != I915_CACHE_NONE)
3205 return;
3206
1c5d22f7 3207 trace_i915_gem_object_clflush(obj);
cfa16a0d 3208
9da3da66 3209 drm_clflush_sg(obj->pages);
e47c68e9
EA
3210}
3211
3212/** Flushes the GTT write domain for the object if it's dirty. */
3213static void
05394f39 3214i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3215{
1c5d22f7
CW
3216 uint32_t old_write_domain;
3217
05394f39 3218 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3219 return;
3220
63256ec5 3221 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3222 * to it immediately go to main memory as far as we know, so there's
3223 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3224 *
3225 * However, we do have to enforce the order so that all writes through
3226 * the GTT land before any writes to the device, such as updates to
3227 * the GATT itself.
e47c68e9 3228 */
63256ec5
CW
3229 wmb();
3230
05394f39
CW
3231 old_write_domain = obj->base.write_domain;
3232 obj->base.write_domain = 0;
1c5d22f7
CW
3233
3234 trace_i915_gem_object_change_domain(obj,
05394f39 3235 obj->base.read_domains,
1c5d22f7 3236 old_write_domain);
e47c68e9
EA
3237}
3238
3239/** Flushes the CPU write domain for the object if it's dirty. */
3240static void
05394f39 3241i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3242{
1c5d22f7 3243 uint32_t old_write_domain;
e47c68e9 3244
05394f39 3245 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3246 return;
3247
3248 i915_gem_clflush_object(obj);
e76e9aeb 3249 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3250 old_write_domain = obj->base.write_domain;
3251 obj->base.write_domain = 0;
1c5d22f7
CW
3252
3253 trace_i915_gem_object_change_domain(obj,
05394f39 3254 obj->base.read_domains,
1c5d22f7 3255 old_write_domain);
e47c68e9
EA
3256}
3257
2ef7eeaa
EA
3258/**
3259 * Moves a single object to the GTT read, and possibly write domain.
3260 *
3261 * This function returns when the move is complete, including waiting on
3262 * flushes to occur.
3263 */
79e53945 3264int
2021746e 3265i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3266{
8325a09d 3267 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3268 uint32_t old_write_domain, old_read_domains;
e47c68e9 3269 int ret;
2ef7eeaa 3270
02354392 3271 /* Not valid to be called on unbound objects. */
f343c5f6 3272 if (!i915_gem_obj_ggtt_bound(obj))
02354392
EA
3273 return -EINVAL;
3274
8d7e3de1
CW
3275 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3276 return 0;
3277
0201f1ec 3278 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3279 if (ret)
3280 return ret;
3281
7213342d 3282 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3283
d0a57789
CW
3284 /* Serialise direct access to this object with the barriers for
3285 * coherent writes from the GPU, by effectively invalidating the
3286 * GTT domain upon first access.
3287 */
3288 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3289 mb();
3290
05394f39
CW
3291 old_write_domain = obj->base.write_domain;
3292 old_read_domains = obj->base.read_domains;
1c5d22f7 3293
e47c68e9
EA
3294 /* It should now be out of any other write domains, and we can update
3295 * the domain values for our changes.
3296 */
05394f39
CW
3297 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3298 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3299 if (write) {
05394f39
CW
3300 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3301 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3302 obj->dirty = 1;
2ef7eeaa
EA
3303 }
3304
1c5d22f7
CW
3305 trace_i915_gem_object_change_domain(obj,
3306 old_read_domains,
3307 old_write_domain);
3308
8325a09d
CW
3309 /* And bump the LRU for this access */
3310 if (i915_gem_object_is_inactive(obj))
5cef07e1
BW
3311 list_move_tail(&obj->mm_list,
3312 &dev_priv->gtt.base.inactive_list);
8325a09d 3313
e47c68e9
EA
3314 return 0;
3315}
3316
e4ffd173
CW
3317int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3318 enum i915_cache_level cache_level)
3319{
7bddb01f
DV
3320 struct drm_device *dev = obj->base.dev;
3321 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3322 struct i915_vma *vma;
e4ffd173
CW
3323 int ret;
3324
3325 if (obj->cache_level == cache_level)
3326 return 0;
3327
3328 if (obj->pin_count) {
3329 DRM_DEBUG("can not change the cache level of pinned objects\n");
3330 return -EBUSY;
3331 }
3332
3089c6f2
BW
3333 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3334 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3335 ret = i915_gem_object_unbind(obj);
3336 if (ret)
3337 return ret;
3338
3339 break;
3340 }
42d6ab48
CW
3341 }
3342
3089c6f2 3343 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3344 ret = i915_gem_object_finish_gpu(obj);
3345 if (ret)
3346 return ret;
3347
3348 i915_gem_object_finish_gtt(obj);
3349
3350 /* Before SandyBridge, you could not use tiling or fence
3351 * registers with snooped memory, so relinquish any fences
3352 * currently pointing to our region in the aperture.
3353 */
42d6ab48 3354 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3355 ret = i915_gem_object_put_fence(obj);
3356 if (ret)
3357 return ret;
3358 }
3359
74898d7e
DV
3360 if (obj->has_global_gtt_mapping)
3361 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3362 if (obj->has_aliasing_ppgtt_mapping)
3363 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3364 obj, cache_level);
e4ffd173
CW
3365 }
3366
3367 if (cache_level == I915_CACHE_NONE) {
3368 u32 old_read_domains, old_write_domain;
3369
3370 /* If we're coming from LLC cached, then we haven't
3371 * actually been tracking whether the data is in the
3372 * CPU cache or not, since we only allow one bit set
3373 * in obj->write_domain and have been skipping the clflushes.
3374 * Just set it to the CPU cache for now.
3375 */
3376 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3377 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3378
3379 old_read_domains = obj->base.read_domains;
3380 old_write_domain = obj->base.write_domain;
3381
3382 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3383 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3384
3385 trace_i915_gem_object_change_domain(obj,
3386 old_read_domains,
3387 old_write_domain);
3388 }
3389
3089c6f2
BW
3390 list_for_each_entry(vma, &obj->vma_list, vma_link)
3391 vma->node.color = cache_level;
e4ffd173 3392 obj->cache_level = cache_level;
42d6ab48 3393 i915_gem_verify_gtt(dev);
e4ffd173
CW
3394 return 0;
3395}
3396
199adf40
BW
3397int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3398 struct drm_file *file)
e6994aee 3399{
199adf40 3400 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3401 struct drm_i915_gem_object *obj;
3402 int ret;
3403
3404 ret = i915_mutex_lock_interruptible(dev);
3405 if (ret)
3406 return ret;
3407
3408 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3409 if (&obj->base == NULL) {
3410 ret = -ENOENT;
3411 goto unlock;
3412 }
3413
199adf40 3414 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3415
3416 drm_gem_object_unreference(&obj->base);
3417unlock:
3418 mutex_unlock(&dev->struct_mutex);
3419 return ret;
3420}
3421
199adf40
BW
3422int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3423 struct drm_file *file)
e6994aee 3424{
199adf40 3425 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3426 struct drm_i915_gem_object *obj;
3427 enum i915_cache_level level;
3428 int ret;
3429
199adf40
BW
3430 switch (args->caching) {
3431 case I915_CACHING_NONE:
e6994aee
CW
3432 level = I915_CACHE_NONE;
3433 break;
199adf40 3434 case I915_CACHING_CACHED:
e6994aee
CW
3435 level = I915_CACHE_LLC;
3436 break;
3437 default:
3438 return -EINVAL;
3439 }
3440
3bc2913e
BW
3441 ret = i915_mutex_lock_interruptible(dev);
3442 if (ret)
3443 return ret;
3444
e6994aee
CW
3445 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3446 if (&obj->base == NULL) {
3447 ret = -ENOENT;
3448 goto unlock;
3449 }
3450
3451 ret = i915_gem_object_set_cache_level(obj, level);
3452
3453 drm_gem_object_unreference(&obj->base);
3454unlock:
3455 mutex_unlock(&dev->struct_mutex);
3456 return ret;
3457}
3458
b9241ea3 3459/*
2da3b9b9
CW
3460 * Prepare buffer for display plane (scanout, cursors, etc).
3461 * Can be called from an uninterruptible phase (modesetting) and allows
3462 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3463 */
3464int
2da3b9b9
CW
3465i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3466 u32 alignment,
919926ae 3467 struct intel_ring_buffer *pipelined)
b9241ea3 3468{
2da3b9b9 3469 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3470 int ret;
3471
0be73284 3472 if (pipelined != obj->ring) {
2911a35b
BW
3473 ret = i915_gem_object_sync(obj, pipelined);
3474 if (ret)
b9241ea3
ZW
3475 return ret;
3476 }
3477
a7ef0640
EA
3478 /* The display engine is not coherent with the LLC cache on gen6. As
3479 * a result, we make sure that the pinning that is about to occur is
3480 * done with uncached PTEs. This is lowest common denominator for all
3481 * chipsets.
3482 *
3483 * However for gen6+, we could do better by using the GFDT bit instead
3484 * of uncaching, which would allow us to flush all the LLC-cached data
3485 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3486 */
3487 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3488 if (ret)
3489 return ret;
3490
2da3b9b9
CW
3491 /* As the user may map the buffer once pinned in the display plane
3492 * (e.g. libkms for the bootup splash), we have to ensure that we
3493 * always use map_and_fenceable for all scanout buffers.
3494 */
c37e2204 3495 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9
CW
3496 if (ret)
3497 return ret;
3498
b118c1e3
CW
3499 i915_gem_object_flush_cpu_write_domain(obj);
3500
2da3b9b9 3501 old_write_domain = obj->base.write_domain;
05394f39 3502 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3503
3504 /* It should now be out of any other write domains, and we can update
3505 * the domain values for our changes.
3506 */
e5f1d962 3507 obj->base.write_domain = 0;
05394f39 3508 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3509
3510 trace_i915_gem_object_change_domain(obj,
3511 old_read_domains,
2da3b9b9 3512 old_write_domain);
b9241ea3
ZW
3513
3514 return 0;
3515}
3516
85345517 3517int
a8198eea 3518i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3519{
88241785
CW
3520 int ret;
3521
a8198eea 3522 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3523 return 0;
3524
0201f1ec 3525 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3526 if (ret)
3527 return ret;
3528
a8198eea
CW
3529 /* Ensure that we invalidate the GPU's caches and TLBs. */
3530 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3531 return 0;
85345517
CW
3532}
3533
e47c68e9
EA
3534/**
3535 * Moves a single object to the CPU read, and possibly write domain.
3536 *
3537 * This function returns when the move is complete, including waiting on
3538 * flushes to occur.
3539 */
dabdfe02 3540int
919926ae 3541i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3542{
1c5d22f7 3543 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3544 int ret;
3545
8d7e3de1
CW
3546 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3547 return 0;
3548
0201f1ec 3549 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3550 if (ret)
3551 return ret;
3552
e47c68e9 3553 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3554
05394f39
CW
3555 old_write_domain = obj->base.write_domain;
3556 old_read_domains = obj->base.read_domains;
1c5d22f7 3557
e47c68e9 3558 /* Flush the CPU cache if it's still invalid. */
05394f39 3559 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3560 i915_gem_clflush_object(obj);
2ef7eeaa 3561
05394f39 3562 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3563 }
3564
3565 /* It should now be out of any other write domains, and we can update
3566 * the domain values for our changes.
3567 */
05394f39 3568 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3569
3570 /* If we're writing through the CPU, then the GPU read domains will
3571 * need to be invalidated at next use.
3572 */
3573 if (write) {
05394f39
CW
3574 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3575 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3576 }
2ef7eeaa 3577
1c5d22f7
CW
3578 trace_i915_gem_object_change_domain(obj,
3579 old_read_domains,
3580 old_write_domain);
3581
2ef7eeaa
EA
3582 return 0;
3583}
3584
673a394b
EA
3585/* Throttle our rendering by waiting until the ring has completed our requests
3586 * emitted over 20 msec ago.
3587 *
b962442e
EA
3588 * Note that if we were to use the current jiffies each time around the loop,
3589 * we wouldn't escape the function with any frames outstanding if the time to
3590 * render a frame was over 20ms.
3591 *
673a394b
EA
3592 * This should get us reasonable parallelism between CPU and GPU but also
3593 * relatively low latency when blocking on a particular request to finish.
3594 */
40a5f0de 3595static int
f787a5f5 3596i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3597{
f787a5f5
CW
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3600 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3601 struct drm_i915_gem_request *request;
3602 struct intel_ring_buffer *ring = NULL;
f69061be 3603 unsigned reset_counter;
f787a5f5
CW
3604 u32 seqno = 0;
3605 int ret;
93533c29 3606
308887aa
DV
3607 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3608 if (ret)
3609 return ret;
3610
3611 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3612 if (ret)
3613 return ret;
e110e8d6 3614
1c25595f 3615 spin_lock(&file_priv->mm.lock);
f787a5f5 3616 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3617 if (time_after_eq(request->emitted_jiffies, recent_enough))
3618 break;
40a5f0de 3619
f787a5f5
CW
3620 ring = request->ring;
3621 seqno = request->seqno;
b962442e 3622 }
f69061be 3623 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3624 spin_unlock(&file_priv->mm.lock);
40a5f0de 3625
f787a5f5
CW
3626 if (seqno == 0)
3627 return 0;
2bc43b5c 3628
f69061be 3629 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3630 if (ret == 0)
3631 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3632
3633 return ret;
3634}
3635
673a394b 3636int
05394f39 3637i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3638 struct i915_address_space *vm,
05394f39 3639 uint32_t alignment,
86a1ee26
CW
3640 bool map_and_fenceable,
3641 bool nonblocking)
673a394b 3642{
673a394b
EA
3643 int ret;
3644
7e81a42e
CW
3645 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3646 return -EBUSY;
ac0c6b5a 3647
f343c5f6
BW
3648 if (i915_gem_obj_ggtt_bound(obj)) {
3649 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
05394f39
CW
3650 (map_and_fenceable && !obj->map_and_fenceable)) {
3651 WARN(obj->pin_count,
ae7d49d8 3652 "bo is already pinned with incorrect alignment:"
f343c5f6 3653 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3654 " obj->map_and_fenceable=%d\n",
f343c5f6 3655 i915_gem_obj_ggtt_offset(obj), alignment,
75e9e915 3656 map_and_fenceable,
05394f39 3657 obj->map_and_fenceable);
ac0c6b5a
CW
3658 ret = i915_gem_object_unbind(obj);
3659 if (ret)
3660 return ret;
3661 }
3662 }
3663
f343c5f6 3664 if (!i915_gem_obj_ggtt_bound(obj)) {
8742267a
CW
3665 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3666
a00b10c3 3667 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3668 map_and_fenceable,
3669 nonblocking);
9731129c 3670 if (ret)
673a394b 3671 return ret;
8742267a
CW
3672
3673 if (!dev_priv->mm.aliasing_ppgtt)
3674 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3675 }
76446cac 3676
74898d7e
DV
3677 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3678 i915_gem_gtt_bind_object(obj, obj->cache_level);
3679
1b50247a 3680 obj->pin_count++;
6299f992 3681 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3682
3683 return 0;
3684}
3685
3686void
05394f39 3687i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3688{
05394f39 3689 BUG_ON(obj->pin_count == 0);
f343c5f6 3690 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
673a394b 3691
1b50247a 3692 if (--obj->pin_count == 0)
6299f992 3693 obj->pin_mappable = false;
673a394b
EA
3694}
3695
3696int
3697i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3698 struct drm_file *file)
673a394b
EA
3699{
3700 struct drm_i915_gem_pin *args = data;
05394f39 3701 struct drm_i915_gem_object *obj;
673a394b
EA
3702 int ret;
3703
1d7cfea1
CW
3704 ret = i915_mutex_lock_interruptible(dev);
3705 if (ret)
3706 return ret;
673a394b 3707
05394f39 3708 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3709 if (&obj->base == NULL) {
1d7cfea1
CW
3710 ret = -ENOENT;
3711 goto unlock;
673a394b 3712 }
673a394b 3713
05394f39 3714 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3715 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3716 ret = -EINVAL;
3717 goto out;
3ef94daa
CW
3718 }
3719
05394f39 3720 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3721 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3722 args->handle);
1d7cfea1
CW
3723 ret = -EINVAL;
3724 goto out;
79e53945
JB
3725 }
3726
93be8788 3727 if (obj->user_pin_count == 0) {
c37e2204 3728 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3729 if (ret)
3730 goto out;
673a394b
EA
3731 }
3732
93be8788
CW
3733 obj->user_pin_count++;
3734 obj->pin_filp = file;
3735
673a394b
EA
3736 /* XXX - flush the CPU caches for pinned objects
3737 * as the X server doesn't manage domains yet
3738 */
e47c68e9 3739 i915_gem_object_flush_cpu_write_domain(obj);
f343c5f6 3740 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3741out:
05394f39 3742 drm_gem_object_unreference(&obj->base);
1d7cfea1 3743unlock:
673a394b 3744 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3745 return ret;
673a394b
EA
3746}
3747
3748int
3749i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3750 struct drm_file *file)
673a394b
EA
3751{
3752 struct drm_i915_gem_pin *args = data;
05394f39 3753 struct drm_i915_gem_object *obj;
76c1dec1 3754 int ret;
673a394b 3755
1d7cfea1
CW
3756 ret = i915_mutex_lock_interruptible(dev);
3757 if (ret)
3758 return ret;
673a394b 3759
05394f39 3760 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3761 if (&obj->base == NULL) {
1d7cfea1
CW
3762 ret = -ENOENT;
3763 goto unlock;
673a394b 3764 }
76c1dec1 3765
05394f39 3766 if (obj->pin_filp != file) {
79e53945
JB
3767 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3768 args->handle);
1d7cfea1
CW
3769 ret = -EINVAL;
3770 goto out;
79e53945 3771 }
05394f39
CW
3772 obj->user_pin_count--;
3773 if (obj->user_pin_count == 0) {
3774 obj->pin_filp = NULL;
79e53945
JB
3775 i915_gem_object_unpin(obj);
3776 }
673a394b 3777
1d7cfea1 3778out:
05394f39 3779 drm_gem_object_unreference(&obj->base);
1d7cfea1 3780unlock:
673a394b 3781 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3782 return ret;
673a394b
EA
3783}
3784
3785int
3786i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3787 struct drm_file *file)
673a394b
EA
3788{
3789 struct drm_i915_gem_busy *args = data;
05394f39 3790 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3791 int ret;
3792
76c1dec1 3793 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3794 if (ret)
76c1dec1 3795 return ret;
673a394b 3796
05394f39 3797 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3798 if (&obj->base == NULL) {
1d7cfea1
CW
3799 ret = -ENOENT;
3800 goto unlock;
673a394b 3801 }
d1b851fc 3802
0be555b6
CW
3803 /* Count all active objects as busy, even if they are currently not used
3804 * by the gpu. Users of this interface expect objects to eventually
3805 * become non-busy without any further actions, therefore emit any
3806 * necessary flushes here.
c4de0a5d 3807 */
30dfebf3 3808 ret = i915_gem_object_flush_active(obj);
0be555b6 3809
30dfebf3 3810 args->busy = obj->active;
e9808edd
CW
3811 if (obj->ring) {
3812 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3813 args->busy |= intel_ring_flag(obj->ring) << 16;
3814 }
673a394b 3815
05394f39 3816 drm_gem_object_unreference(&obj->base);
1d7cfea1 3817unlock:
673a394b 3818 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3819 return ret;
673a394b
EA
3820}
3821
3822int
3823i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3824 struct drm_file *file_priv)
3825{
0206e353 3826 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3827}
3828
3ef94daa
CW
3829int
3830i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3831 struct drm_file *file_priv)
3832{
3833 struct drm_i915_gem_madvise *args = data;
05394f39 3834 struct drm_i915_gem_object *obj;
76c1dec1 3835 int ret;
3ef94daa
CW
3836
3837 switch (args->madv) {
3838 case I915_MADV_DONTNEED:
3839 case I915_MADV_WILLNEED:
3840 break;
3841 default:
3842 return -EINVAL;
3843 }
3844
1d7cfea1
CW
3845 ret = i915_mutex_lock_interruptible(dev);
3846 if (ret)
3847 return ret;
3848
05394f39 3849 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3850 if (&obj->base == NULL) {
1d7cfea1
CW
3851 ret = -ENOENT;
3852 goto unlock;
3ef94daa 3853 }
3ef94daa 3854
05394f39 3855 if (obj->pin_count) {
1d7cfea1
CW
3856 ret = -EINVAL;
3857 goto out;
3ef94daa
CW
3858 }
3859
05394f39
CW
3860 if (obj->madv != __I915_MADV_PURGED)
3861 obj->madv = args->madv;
3ef94daa 3862
6c085a72
CW
3863 /* if the object is no longer attached, discard its backing storage */
3864 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3865 i915_gem_object_truncate(obj);
3866
05394f39 3867 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3868
1d7cfea1 3869out:
05394f39 3870 drm_gem_object_unreference(&obj->base);
1d7cfea1 3871unlock:
3ef94daa 3872 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3873 return ret;
3ef94daa
CW
3874}
3875
37e680a1
CW
3876void i915_gem_object_init(struct drm_i915_gem_object *obj,
3877 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3878{
0327d6ba 3879 INIT_LIST_HEAD(&obj->mm_list);
35c20a60 3880 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3881 INIT_LIST_HEAD(&obj->ring_list);
3882 INIT_LIST_HEAD(&obj->exec_list);
2f633156 3883 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 3884
37e680a1
CW
3885 obj->ops = ops;
3886
0327d6ba
CW
3887 obj->fence_reg = I915_FENCE_REG_NONE;
3888 obj->madv = I915_MADV_WILLNEED;
3889 /* Avoid an unnecessary call to unbind on the first bind. */
3890 obj->map_and_fenceable = true;
3891
3892 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3893}
3894
37e680a1
CW
3895static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3896 .get_pages = i915_gem_object_get_pages_gtt,
3897 .put_pages = i915_gem_object_put_pages_gtt,
3898};
3899
05394f39
CW
3900struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3901 size_t size)
ac52bc56 3902{
c397b908 3903 struct drm_i915_gem_object *obj;
5949eac4 3904 struct address_space *mapping;
1a240d4d 3905 gfp_t mask;
ac52bc56 3906
42dcedd4 3907 obj = i915_gem_object_alloc(dev);
c397b908
DV
3908 if (obj == NULL)
3909 return NULL;
673a394b 3910
c397b908 3911 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3912 i915_gem_object_free(obj);
c397b908
DV
3913 return NULL;
3914 }
673a394b 3915
bed1ea95
CW
3916 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3917 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3918 /* 965gm cannot relocate objects above 4GiB. */
3919 mask &= ~__GFP_HIGHMEM;
3920 mask |= __GFP_DMA32;
3921 }
3922
496ad9aa 3923 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3924 mapping_set_gfp_mask(mapping, mask);
5949eac4 3925
37e680a1 3926 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3927
c397b908
DV
3928 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3929 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3930
3d29b842
ED
3931 if (HAS_LLC(dev)) {
3932 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3933 * cache) for about a 10% performance improvement
3934 * compared to uncached. Graphics requests other than
3935 * display scanout are coherent with the CPU in
3936 * accessing this cache. This means in this mode we
3937 * don't need to clflush on the CPU side, and on the
3938 * GPU side we only need to flush internal caches to
3939 * get data visible to the CPU.
3940 *
3941 * However, we maintain the display planes as UC, and so
3942 * need to rebind when first used as such.
3943 */
3944 obj->cache_level = I915_CACHE_LLC;
3945 } else
3946 obj->cache_level = I915_CACHE_NONE;
3947
d861e338
DV
3948 trace_i915_gem_object_create(obj);
3949
05394f39 3950 return obj;
c397b908
DV
3951}
3952
3953int i915_gem_init_object(struct drm_gem_object *obj)
3954{
3955 BUG();
de151cf6 3956
673a394b
EA
3957 return 0;
3958}
3959
1488fc08 3960void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3961{
1488fc08 3962 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3963 struct drm_device *dev = obj->base.dev;
be72615b 3964 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3965
26e12f89
CW
3966 trace_i915_gem_object_destroy(obj);
3967
1488fc08
CW
3968 if (obj->phys_obj)
3969 i915_gem_detach_phys_object(dev, obj);
3970
3971 obj->pin_count = 0;
3972 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3973 bool was_interruptible;
3974
3975 was_interruptible = dev_priv->mm.interruptible;
3976 dev_priv->mm.interruptible = false;
3977
3978 WARN_ON(i915_gem_object_unbind(obj));
3979
3980 dev_priv->mm.interruptible = was_interruptible;
3981 }
3982
1d64ae71
BW
3983 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3984 * before progressing. */
3985 if (obj->stolen)
3986 i915_gem_object_unpin_pages(obj);
3987
401c29f6
BW
3988 if (WARN_ON(obj->pages_pin_count))
3989 obj->pages_pin_count = 0;
37e680a1 3990 i915_gem_object_put_pages(obj);
d8cb5086 3991 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3992 i915_gem_object_release_stolen(obj);
de151cf6 3993
9da3da66
CW
3994 BUG_ON(obj->pages);
3995
2f745ad3
CW
3996 if (obj->base.import_attach)
3997 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3998
05394f39
CW
3999 drm_gem_object_release(&obj->base);
4000 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4001
05394f39 4002 kfree(obj->bit_17);
42dcedd4 4003 i915_gem_object_free(obj);
673a394b
EA
4004}
4005
2f633156
BW
4006struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4007 struct i915_address_space *vm)
4008{
4009 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4010 if (vma == NULL)
4011 return ERR_PTR(-ENOMEM);
4012
4013 INIT_LIST_HEAD(&vma->vma_link);
4014 vma->vm = vm;
4015 vma->obj = obj;
4016
4017 return vma;
4018}
4019
4020void i915_gem_vma_destroy(struct i915_vma *vma)
4021{
4022 WARN_ON(vma->node.allocated);
4023 kfree(vma);
4024}
4025
29105ccc
CW
4026int
4027i915_gem_idle(struct drm_device *dev)
4028{
4029 drm_i915_private_t *dev_priv = dev->dev_private;
4030 int ret;
28dfe52a 4031
db1b76ca 4032 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4033 mutex_unlock(&dev->struct_mutex);
4034 return 0;
28dfe52a
EA
4035 }
4036
b2da9fe5 4037 ret = i915_gpu_idle(dev);
6dbe2772
KP
4038 if (ret) {
4039 mutex_unlock(&dev->struct_mutex);
673a394b 4040 return ret;
6dbe2772 4041 }
b2da9fe5 4042 i915_gem_retire_requests(dev);
673a394b 4043
29105ccc 4044 /* Under UMS, be paranoid and evict. */
a39d7efc 4045 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4046 i915_gem_evict_everything(dev);
29105ccc 4047
99584db3 4048 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4049
4050 i915_kernel_lost_context(dev);
6dbe2772 4051 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4052
29105ccc
CW
4053 /* Cancel the retire work handler, which should be idle now. */
4054 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4055
673a394b
EA
4056 return 0;
4057}
4058
b9524a1e
BW
4059void i915_gem_l3_remap(struct drm_device *dev)
4060{
4061 drm_i915_private_t *dev_priv = dev->dev_private;
4062 u32 misccpctl;
4063 int i;
4064
eb32e458 4065 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4066 return;
4067
a4da4fa4 4068 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4069 return;
4070
4071 misccpctl = I915_READ(GEN7_MISCCPCTL);
4072 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4073 POSTING_READ(GEN7_MISCCPCTL);
4074
4075 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4076 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4077 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4078 DRM_DEBUG("0x%x was already programmed to %x\n",
4079 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4080 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4081 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4082 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4083 }
4084
4085 /* Make sure all the writes land before disabling dop clock gating */
4086 POSTING_READ(GEN7_L3LOG_BASE);
4087
4088 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4089}
4090
f691e2f4
DV
4091void i915_gem_init_swizzling(struct drm_device *dev)
4092{
4093 drm_i915_private_t *dev_priv = dev->dev_private;
4094
11782b02 4095 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4096 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4097 return;
4098
4099 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4100 DISP_TILE_SURFACE_SWIZZLING);
4101
11782b02
DV
4102 if (IS_GEN5(dev))
4103 return;
4104
f691e2f4
DV
4105 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4106 if (IS_GEN6(dev))
6b26c86d 4107 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4108 else if (IS_GEN7(dev))
6b26c86d 4109 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4110 else
4111 BUG();
f691e2f4 4112}
e21af88d 4113
67b1b571
CW
4114static bool
4115intel_enable_blt(struct drm_device *dev)
4116{
4117 if (!HAS_BLT(dev))
4118 return false;
4119
4120 /* The blitter was dysfunctional on early prototypes */
4121 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4122 DRM_INFO("BLT not supported on this pre-production hardware;"
4123 " graphics performance will be degraded.\n");
4124 return false;
4125 }
4126
4127 return true;
4128}
4129
4fc7c971 4130static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4131{
4fc7c971 4132 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4133 int ret;
68f95ba9 4134
5c1143bb 4135 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4136 if (ret)
b6913e4b 4137 return ret;
68f95ba9
CW
4138
4139 if (HAS_BSD(dev)) {
5c1143bb 4140 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4141 if (ret)
4142 goto cleanup_render_ring;
d1b851fc 4143 }
68f95ba9 4144
67b1b571 4145 if (intel_enable_blt(dev)) {
549f7365
CW
4146 ret = intel_init_blt_ring_buffer(dev);
4147 if (ret)
4148 goto cleanup_bsd_ring;
4149 }
4150
9a8a2213
BW
4151 if (HAS_VEBOX(dev)) {
4152 ret = intel_init_vebox_ring_buffer(dev);
4153 if (ret)
4154 goto cleanup_blt_ring;
4155 }
4156
4157
99433931 4158 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4159 if (ret)
9a8a2213 4160 goto cleanup_vebox_ring;
4fc7c971
BW
4161
4162 return 0;
4163
9a8a2213
BW
4164cleanup_vebox_ring:
4165 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4166cleanup_blt_ring:
4167 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4168cleanup_bsd_ring:
4169 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4170cleanup_render_ring:
4171 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4172
4173 return ret;
4174}
4175
4176int
4177i915_gem_init_hw(struct drm_device *dev)
4178{
4179 drm_i915_private_t *dev_priv = dev->dev_private;
4180 int ret;
4181
4182 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4183 return -EIO;
4184
59124506 4185 if (dev_priv->ellc_size)
05e21cc4 4186 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4187
88a2b2a3
BW
4188 if (HAS_PCH_NOP(dev)) {
4189 u32 temp = I915_READ(GEN7_MSG_CTL);
4190 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4191 I915_WRITE(GEN7_MSG_CTL, temp);
4192 }
4193
4fc7c971
BW
4194 i915_gem_l3_remap(dev);
4195
4196 i915_gem_init_swizzling(dev);
4197
4198 ret = i915_gem_init_rings(dev);
99433931
MK
4199 if (ret)
4200 return ret;
4201
254f965c
BW
4202 /*
4203 * XXX: There was some w/a described somewhere suggesting loading
4204 * contexts before PPGTT.
4205 */
4206 i915_gem_context_init(dev);
b7c36d25
BW
4207 if (dev_priv->mm.aliasing_ppgtt) {
4208 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4209 if (ret) {
4210 i915_gem_cleanup_aliasing_ppgtt(dev);
4211 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4212 }
4213 }
e21af88d 4214
68f95ba9 4215 return 0;
8187a2b7
ZN
4216}
4217
1070a42b
CW
4218int i915_gem_init(struct drm_device *dev)
4219{
4220 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4221 int ret;
4222
1070a42b 4223 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4224
4225 if (IS_VALLEYVIEW(dev)) {
4226 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4227 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4228 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4229 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4230 }
4231
d7e5008f 4232 i915_gem_init_global_gtt(dev);
d62b4892 4233
1070a42b
CW
4234 ret = i915_gem_init_hw(dev);
4235 mutex_unlock(&dev->struct_mutex);
4236 if (ret) {
4237 i915_gem_cleanup_aliasing_ppgtt(dev);
4238 return ret;
4239 }
4240
53ca26ca
DV
4241 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4242 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4243 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4244 return 0;
4245}
4246
8187a2b7
ZN
4247void
4248i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4249{
4250 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4251 struct intel_ring_buffer *ring;
1ec14ad3 4252 int i;
8187a2b7 4253
b4519513
CW
4254 for_each_ring(ring, dev_priv, i)
4255 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4256}
4257
673a394b
EA
4258int
4259i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4260 struct drm_file *file_priv)
4261{
db1b76ca 4262 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4263 int ret;
673a394b 4264
79e53945
JB
4265 if (drm_core_check_feature(dev, DRIVER_MODESET))
4266 return 0;
4267
1f83fee0 4268 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4269 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4270 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4271 }
4272
673a394b 4273 mutex_lock(&dev->struct_mutex);
db1b76ca 4274 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4275
f691e2f4 4276 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4277 if (ret != 0) {
4278 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4279 return ret;
d816f6ac 4280 }
9bb2d6f9 4281
5cef07e1 4282 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4283 mutex_unlock(&dev->struct_mutex);
dbb19d30 4284
5f35308b
CW
4285 ret = drm_irq_install(dev);
4286 if (ret)
4287 goto cleanup_ringbuffer;
dbb19d30 4288
673a394b 4289 return 0;
5f35308b
CW
4290
4291cleanup_ringbuffer:
4292 mutex_lock(&dev->struct_mutex);
4293 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4294 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4295 mutex_unlock(&dev->struct_mutex);
4296
4297 return ret;
673a394b
EA
4298}
4299
4300int
4301i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4302 struct drm_file *file_priv)
4303{
db1b76ca
DV
4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305 int ret;
4306
79e53945
JB
4307 if (drm_core_check_feature(dev, DRIVER_MODESET))
4308 return 0;
4309
dbb19d30 4310 drm_irq_uninstall(dev);
db1b76ca
DV
4311
4312 mutex_lock(&dev->struct_mutex);
4313 ret = i915_gem_idle(dev);
4314
4315 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4316 * We need to replace this with a semaphore, or something.
4317 * And not confound ums.mm_suspended!
4318 */
4319 if (ret != 0)
4320 dev_priv->ums.mm_suspended = 1;
4321 mutex_unlock(&dev->struct_mutex);
4322
4323 return ret;
673a394b
EA
4324}
4325
4326void
4327i915_gem_lastclose(struct drm_device *dev)
4328{
4329 int ret;
673a394b 4330
e806b495
EA
4331 if (drm_core_check_feature(dev, DRIVER_MODESET))
4332 return;
4333
db1b76ca 4334 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4335 ret = i915_gem_idle(dev);
4336 if (ret)
4337 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4338 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4339}
4340
64193406
CW
4341static void
4342init_ring_lists(struct intel_ring_buffer *ring)
4343{
4344 INIT_LIST_HEAD(&ring->active_list);
4345 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4346}
4347
fc8c067e
BW
4348static void i915_init_vm(struct drm_i915_private *dev_priv,
4349 struct i915_address_space *vm)
4350{
4351 vm->dev = dev_priv->dev;
4352 INIT_LIST_HEAD(&vm->active_list);
4353 INIT_LIST_HEAD(&vm->inactive_list);
4354 INIT_LIST_HEAD(&vm->global_link);
4355 list_add(&vm->global_link, &dev_priv->vm_list);
4356}
4357
673a394b
EA
4358void
4359i915_gem_load(struct drm_device *dev)
4360{
4361 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4362 int i;
4363
4364 dev_priv->slab =
4365 kmem_cache_create("i915_gem_object",
4366 sizeof(struct drm_i915_gem_object), 0,
4367 SLAB_HWCACHE_ALIGN,
4368 NULL);
673a394b 4369
fc8c067e
BW
4370 INIT_LIST_HEAD(&dev_priv->vm_list);
4371 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4372
6c085a72
CW
4373 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4374 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4375 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4376 for (i = 0; i < I915_NUM_RINGS; i++)
4377 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4378 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4379 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4380 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4381 i915_gem_retire_work_handler);
1f83fee0 4382 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4383
94400120
DA
4384 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4385 if (IS_GEN3(dev)) {
50743298
DV
4386 I915_WRITE(MI_ARB_STATE,
4387 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4388 }
4389
72bfa19c
CW
4390 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4391
de151cf6 4392 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4393 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4394 dev_priv->fence_reg_start = 3;
de151cf6 4395
42b5aeab
VS
4396 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4397 dev_priv->num_fence_regs = 32;
4398 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4399 dev_priv->num_fence_regs = 16;
4400 else
4401 dev_priv->num_fence_regs = 8;
4402
b5aa8a0f 4403 /* Initialize fence registers to zero */
19b2dbde
CW
4404 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4405 i915_gem_restore_fences(dev);
10ed13e4 4406
673a394b 4407 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4408 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4409
ce453d81
CW
4410 dev_priv->mm.interruptible = true;
4411
17250b71
CW
4412 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4413 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4414 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4415}
71acb5eb
DA
4416
4417/*
4418 * Create a physically contiguous memory object for this object
4419 * e.g. for cursor + overlay regs
4420 */
995b6762
CW
4421static int i915_gem_init_phys_object(struct drm_device *dev,
4422 int id, int size, int align)
71acb5eb
DA
4423{
4424 drm_i915_private_t *dev_priv = dev->dev_private;
4425 struct drm_i915_gem_phys_object *phys_obj;
4426 int ret;
4427
4428 if (dev_priv->mm.phys_objs[id - 1] || !size)
4429 return 0;
4430
9a298b2a 4431 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4432 if (!phys_obj)
4433 return -ENOMEM;
4434
4435 phys_obj->id = id;
4436
6eeefaf3 4437 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4438 if (!phys_obj->handle) {
4439 ret = -ENOMEM;
4440 goto kfree_obj;
4441 }
4442#ifdef CONFIG_X86
4443 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4444#endif
4445
4446 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4447
4448 return 0;
4449kfree_obj:
9a298b2a 4450 kfree(phys_obj);
71acb5eb
DA
4451 return ret;
4452}
4453
995b6762 4454static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4455{
4456 drm_i915_private_t *dev_priv = dev->dev_private;
4457 struct drm_i915_gem_phys_object *phys_obj;
4458
4459 if (!dev_priv->mm.phys_objs[id - 1])
4460 return;
4461
4462 phys_obj = dev_priv->mm.phys_objs[id - 1];
4463 if (phys_obj->cur_obj) {
4464 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4465 }
4466
4467#ifdef CONFIG_X86
4468 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4469#endif
4470 drm_pci_free(dev, phys_obj->handle);
4471 kfree(phys_obj);
4472 dev_priv->mm.phys_objs[id - 1] = NULL;
4473}
4474
4475void i915_gem_free_all_phys_object(struct drm_device *dev)
4476{
4477 int i;
4478
260883c8 4479 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4480 i915_gem_free_phys_object(dev, i);
4481}
4482
4483void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4484 struct drm_i915_gem_object *obj)
71acb5eb 4485{
496ad9aa 4486 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4487 char *vaddr;
71acb5eb 4488 int i;
71acb5eb
DA
4489 int page_count;
4490
05394f39 4491 if (!obj->phys_obj)
71acb5eb 4492 return;
05394f39 4493 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4494
05394f39 4495 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4496 for (i = 0; i < page_count; i++) {
5949eac4 4497 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4498 if (!IS_ERR(page)) {
4499 char *dst = kmap_atomic(page);
4500 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4501 kunmap_atomic(dst);
4502
4503 drm_clflush_pages(&page, 1);
4504
4505 set_page_dirty(page);
4506 mark_page_accessed(page);
4507 page_cache_release(page);
4508 }
71acb5eb 4509 }
e76e9aeb 4510 i915_gem_chipset_flush(dev);
d78b47b9 4511
05394f39
CW
4512 obj->phys_obj->cur_obj = NULL;
4513 obj->phys_obj = NULL;
71acb5eb
DA
4514}
4515
4516int
4517i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4518 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4519 int id,
4520 int align)
71acb5eb 4521{
496ad9aa 4522 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4523 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4524 int ret = 0;
4525 int page_count;
4526 int i;
4527
4528 if (id > I915_MAX_PHYS_OBJECT)
4529 return -EINVAL;
4530
05394f39
CW
4531 if (obj->phys_obj) {
4532 if (obj->phys_obj->id == id)
71acb5eb
DA
4533 return 0;
4534 i915_gem_detach_phys_object(dev, obj);
4535 }
4536
71acb5eb
DA
4537 /* create a new object */
4538 if (!dev_priv->mm.phys_objs[id - 1]) {
4539 ret = i915_gem_init_phys_object(dev, id,
05394f39 4540 obj->base.size, align);
71acb5eb 4541 if (ret) {
05394f39
CW
4542 DRM_ERROR("failed to init phys object %d size: %zu\n",
4543 id, obj->base.size);
e5281ccd 4544 return ret;
71acb5eb
DA
4545 }
4546 }
4547
4548 /* bind to the object */
05394f39
CW
4549 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4550 obj->phys_obj->cur_obj = obj;
71acb5eb 4551
05394f39 4552 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4553
4554 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4555 struct page *page;
4556 char *dst, *src;
4557
5949eac4 4558 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4559 if (IS_ERR(page))
4560 return PTR_ERR(page);
71acb5eb 4561
ff75b9bc 4562 src = kmap_atomic(page);
05394f39 4563 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4564 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4565 kunmap_atomic(src);
71acb5eb 4566
e5281ccd
CW
4567 mark_page_accessed(page);
4568 page_cache_release(page);
4569 }
d78b47b9 4570
71acb5eb 4571 return 0;
71acb5eb
DA
4572}
4573
4574static int
05394f39
CW
4575i915_gem_phys_pwrite(struct drm_device *dev,
4576 struct drm_i915_gem_object *obj,
71acb5eb
DA
4577 struct drm_i915_gem_pwrite *args,
4578 struct drm_file *file_priv)
4579{
05394f39 4580 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4581 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4582
b47b30cc
CW
4583 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4584 unsigned long unwritten;
4585
4586 /* The physical object once assigned is fixed for the lifetime
4587 * of the obj, so we can safely drop the lock and continue
4588 * to access vaddr.
4589 */
4590 mutex_unlock(&dev->struct_mutex);
4591 unwritten = copy_from_user(vaddr, user_data, args->size);
4592 mutex_lock(&dev->struct_mutex);
4593 if (unwritten)
4594 return -EFAULT;
4595 }
71acb5eb 4596
e76e9aeb 4597 i915_gem_chipset_flush(dev);
71acb5eb
DA
4598 return 0;
4599}
b962442e 4600
f787a5f5 4601void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4602{
f787a5f5 4603 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4604
4605 /* Clean up our request list when the client is going away, so that
4606 * later retire_requests won't dereference our soon-to-be-gone
4607 * file_priv.
4608 */
1c25595f 4609 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4610 while (!list_empty(&file_priv->mm.request_list)) {
4611 struct drm_i915_gem_request *request;
4612
4613 request = list_first_entry(&file_priv->mm.request_list,
4614 struct drm_i915_gem_request,
4615 client_list);
4616 list_del(&request->client_list);
4617 request->file_priv = NULL;
4618 }
1c25595f 4619 spin_unlock(&file_priv->mm.lock);
b962442e 4620}
31169714 4621
5774506f
CW
4622static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4623{
4624 if (!mutex_is_locked(mutex))
4625 return false;
4626
4627#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4628 return mutex->owner == task;
4629#else
4630 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4631 return false;
4632#endif
4633}
4634
31169714 4635static int
1495f230 4636i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4637{
17250b71
CW
4638 struct drm_i915_private *dev_priv =
4639 container_of(shrinker,
4640 struct drm_i915_private,
4641 mm.inactive_shrinker);
4642 struct drm_device *dev = dev_priv->dev;
6c085a72 4643 struct drm_i915_gem_object *obj;
1495f230 4644 int nr_to_scan = sc->nr_to_scan;
5774506f 4645 bool unlock = true;
17250b71
CW
4646 int cnt;
4647
5774506f
CW
4648 if (!mutex_trylock(&dev->struct_mutex)) {
4649 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4650 return 0;
4651
677feac2
DV
4652 if (dev_priv->mm.shrinker_no_lock_stealing)
4653 return 0;
4654
5774506f
CW
4655 unlock = false;
4656 }
31169714 4657
6c085a72
CW
4658 if (nr_to_scan) {
4659 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4660 if (nr_to_scan > 0)
4661 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4662 false);
6c085a72
CW
4663 if (nr_to_scan > 0)
4664 i915_gem_shrink_all(dev_priv);
31169714
CW
4665 }
4666
17250b71 4667 cnt = 0;
35c20a60 4668 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4669 if (obj->pages_pin_count == 0)
4670 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4671
4672 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4673 if (obj->active)
4674 continue;
4675
a5570178 4676 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4677 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578 4678 }
17250b71 4679
5774506f
CW
4680 if (unlock)
4681 mutex_unlock(&dev->struct_mutex);
6c085a72 4682 return cnt;
31169714 4683}
a70a3148
BW
4684
4685/* All the new VM stuff */
4686unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4687 struct i915_address_space *vm)
4688{
4689 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4690 struct i915_vma *vma;
4691
4692 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4693 vm = &dev_priv->gtt.base;
4694
4695 BUG_ON(list_empty(&o->vma_list));
4696 list_for_each_entry(vma, &o->vma_list, vma_link) {
4697 if (vma->vm == vm)
4698 return vma->node.start;
4699
4700 }
4701 return -1;
4702}
4703
4704bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4705 struct i915_address_space *vm)
4706{
4707 struct i915_vma *vma;
4708
4709 list_for_each_entry(vma, &o->vma_list, vma_link)
4710 if (vma->vm == vm)
4711 return true;
4712
4713 return false;
4714}
4715
4716bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4717{
4718 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4719 struct i915_address_space *vm;
4720
4721 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4722 if (i915_gem_obj_bound(o, vm))
4723 return true;
4724
4725 return false;
4726}
4727
4728unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4729 struct i915_address_space *vm)
4730{
4731 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4732 struct i915_vma *vma;
4733
4734 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4735 vm = &dev_priv->gtt.base;
4736
4737 BUG_ON(list_empty(&o->vma_list));
4738
4739 list_for_each_entry(vma, &o->vma_list, vma_link)
4740 if (vma->vm == vm)
4741 return vma->node.size;
4742
4743 return 0;
4744}
4745
4746struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4747 struct i915_address_space *vm)
4748{
4749 struct i915_vma *vma;
4750 list_for_each_entry(vma, &obj->vma_list, vma_link)
4751 if (vma->vm == vm)
4752 return vma;
4753
4754 return NULL;
4755}