]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use dev_priv in INTEL_INFO in i915_gem_fence_reg.c
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
6b5e90f5 37#include <linux/dma-fence-array.h>
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
fbbd37b3 45static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
0031fb96 52 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
c76ce038
CW
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
b50a5371
AS
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
2c22569b
CW
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64}
65
4f1959ee 66static int
bb6dc8d9 67insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
68 struct drm_mm_node *node, u32 size)
69{
70 memset(node, 0, sizeof(*node));
bb6dc8d9
CW
71 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 size, 0, -1,
73 0, ggtt->mappable_end,
4f1959ee
AS
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76}
77
78static void
79remove_mappable_node(struct drm_mm_node *node)
80{
81 drm_mm_remove_node(node);
82}
83
73aa808f
CW
84/* some bookkeeping */
85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 86 u64 size)
73aa808f 87{
c20e8355 88 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
c20e8355 91 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92}
93
94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 95 u64 size)
73aa808f 96{
c20e8355 97 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
c20e8355 100 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
101}
102
21dd3734 103static int
33196ded 104i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 105{
30dbf0c0
CW
106 int ret;
107
4c7d62c6
CW
108 might_sleep();
109
d98c52cf 110 if (!i915_reset_in_progress(error))
30dbf0c0
CW
111 return 0;
112
0a6759c6
DV
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
1f83fee0 118 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 119 !i915_reset_in_progress(error),
b52992c0 120 I915_RESET_TIMEOUT);
0a6759c6
DV
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
30dbf0c0 125 return ret;
d98c52cf
CW
126 } else {
127 return 0;
0a6759c6 128 }
30dbf0c0
CW
129}
130
54cf91dc 131int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 132{
fac5e23e 133 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
134 int ret;
135
33196ded 136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
76c1dec1
CW
144 return 0;
145}
30dbf0c0 146
5a125c3c
EA
147int
148i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
5a125c3c 150{
72e96d64 151 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 152 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 153 struct drm_i915_gem_get_aperture *args = data;
ca1543be 154 struct i915_vma *vma;
6299f992 155 size_t pinned;
5a125c3c 156
6299f992 157 pinned = 0;
73aa808f 158 mutex_lock(&dev->struct_mutex);
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
1c7f4bca 162 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 163 if (i915_vma_is_pinned(vma))
ca1543be 164 pinned += vma->node.size;
73aa808f 165 mutex_unlock(&dev->struct_mutex);
5a125c3c 166
72e96d64 167 args->aper_size = ggtt->base.total;
0206e353 168 args->aper_available_size = args->aper_size - pinned;
6299f992 169
5a125c3c
EA
170 return 0;
171}
172
03ac84f1 173static struct sg_table *
6a2c4232 174i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 175{
93c76a3d 176 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
177 char *vaddr = obj->phys_handle->vaddr;
178 struct sg_table *st;
179 struct scatterlist *sg;
180 int i;
00731155 181
6a2c4232 182 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 183 return ERR_PTR(-EINVAL);
6a2c4232
CW
184
185 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
186 struct page *page;
187 char *src;
188
189 page = shmem_read_mapping_page(mapping, i);
190 if (IS_ERR(page))
03ac84f1 191 return ERR_CAST(page);
6a2c4232
CW
192
193 src = kmap_atomic(page);
194 memcpy(vaddr, src, PAGE_SIZE);
195 drm_clflush_virt_range(vaddr, PAGE_SIZE);
196 kunmap_atomic(src);
197
09cbfeaf 198 put_page(page);
6a2c4232
CW
199 vaddr += PAGE_SIZE;
200 }
201
c033666a 202 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
203
204 st = kmalloc(sizeof(*st), GFP_KERNEL);
205 if (st == NULL)
03ac84f1 206 return ERR_PTR(-ENOMEM);
6a2c4232
CW
207
208 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
209 kfree(st);
03ac84f1 210 return ERR_PTR(-ENOMEM);
6a2c4232
CW
211 }
212
213 sg = st->sgl;
214 sg->offset = 0;
215 sg->length = obj->base.size;
00731155 216
6a2c4232
CW
217 sg_dma_address(sg) = obj->phys_handle->busaddr;
218 sg_dma_len(sg) = obj->base.size;
219
03ac84f1 220 return st;
6a2c4232
CW
221}
222
223static void
2b3c8317
CW
224__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
225 struct sg_table *pages)
6a2c4232 226{
a4f5ea64 227 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 228
a4f5ea64
CW
229 if (obj->mm.madv == I915_MADV_DONTNEED)
230 obj->mm.dirty = false;
6a2c4232 231
03ac84f1 232 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
2b3c8317 233 drm_clflush_sg(pages);
03ac84f1
CW
234
235 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
236 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
237}
238
239static void
240i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
241 struct sg_table *pages)
242{
2b3c8317 243 __i915_gem_object_release_shmem(obj, pages);
03ac84f1 244
a4f5ea64 245 if (obj->mm.dirty) {
93c76a3d 246 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 247 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
248 int i;
249
250 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
251 struct page *page;
252 char *dst;
253
254 page = shmem_read_mapping_page(mapping, i);
255 if (IS_ERR(page))
256 continue;
257
258 dst = kmap_atomic(page);
259 drm_clflush_virt_range(vaddr, PAGE_SIZE);
260 memcpy(dst, vaddr, PAGE_SIZE);
261 kunmap_atomic(dst);
262
263 set_page_dirty(page);
a4f5ea64 264 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 265 mark_page_accessed(page);
09cbfeaf 266 put_page(page);
00731155
CW
267 vaddr += PAGE_SIZE;
268 }
a4f5ea64 269 obj->mm.dirty = false;
00731155
CW
270 }
271
03ac84f1
CW
272 sg_free_table(pages);
273 kfree(pages);
6a2c4232
CW
274}
275
276static void
277i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
278{
279 drm_pci_free(obj->base.dev, obj->phys_handle);
a4f5ea64 280 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
281}
282
283static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
284 .get_pages = i915_gem_object_get_pages_phys,
285 .put_pages = i915_gem_object_put_pages_phys,
286 .release = i915_gem_object_release_phys,
287};
288
35a9611c 289int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
290{
291 struct i915_vma *vma;
292 LIST_HEAD(still_in_list);
02bef8f9
CW
293 int ret;
294
295 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 296
02bef8f9
CW
297 /* Closed vma are removed from the obj->vma_list - but they may
298 * still have an active binding on the object. To remove those we
299 * must wait for all rendering to complete to the object (as unbinding
300 * must anyway), and retire the requests.
aa653a68 301 */
e95433c7
CW
302 ret = i915_gem_object_wait(obj,
303 I915_WAIT_INTERRUPTIBLE |
304 I915_WAIT_LOCKED |
305 I915_WAIT_ALL,
306 MAX_SCHEDULE_TIMEOUT,
307 NULL);
02bef8f9
CW
308 if (ret)
309 return ret;
310
311 i915_gem_retire_requests(to_i915(obj->base.dev));
312
aa653a68
CW
313 while ((vma = list_first_entry_or_null(&obj->vma_list,
314 struct i915_vma,
315 obj_link))) {
316 list_move_tail(&vma->obj_link, &still_in_list);
317 ret = i915_vma_unbind(vma);
318 if (ret)
319 break;
320 }
321 list_splice(&still_in_list, &obj->vma_list);
322
323 return ret;
324}
325
e95433c7
CW
326static long
327i915_gem_object_wait_fence(struct dma_fence *fence,
328 unsigned int flags,
329 long timeout,
330 struct intel_rps_client *rps)
00e60f26 331{
e95433c7 332 struct drm_i915_gem_request *rq;
00e60f26 333
e95433c7 334 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 335
e95433c7
CW
336 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
337 return timeout;
338
339 if (!dma_fence_is_i915(fence))
340 return dma_fence_wait_timeout(fence,
341 flags & I915_WAIT_INTERRUPTIBLE,
342 timeout);
343
344 rq = to_request(fence);
345 if (i915_gem_request_completed(rq))
346 goto out;
347
348 /* This client is about to stall waiting for the GPU. In many cases
349 * this is undesirable and limits the throughput of the system, as
350 * many clients cannot continue processing user input/output whilst
351 * blocked. RPS autotuning may take tens of milliseconds to respond
352 * to the GPU load and thus incurs additional latency for the client.
353 * We can circumvent that by promoting the GPU frequency to maximum
354 * before we wait. This makes the GPU throttle up much more quickly
355 * (good for benchmarks and user experience, e.g. window animations),
356 * but at a cost of spending more power processing the workload
357 * (bad for battery). Not all clients even want their results
358 * immediately and for them we should just let the GPU select its own
359 * frequency to maximise efficiency. To prevent a single client from
360 * forcing the clocks too high for the whole system, we only allow
361 * each client to waitboost once in a busy period.
362 */
363 if (rps) {
364 if (INTEL_GEN(rq->i915) >= 6)
365 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
366 else
367 rps = NULL;
00e60f26
CW
368 }
369
e95433c7
CW
370 timeout = i915_wait_request(rq, flags, timeout);
371
372out:
373 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
374 i915_gem_request_retire_upto(rq);
375
cb399eab 376 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
377 /* The GPU is now idle and this client has stalled.
378 * Since no other client has submitted a request in the
379 * meantime, assume that this client is the only one
380 * supplying work to the GPU but is unable to keep that
381 * work supplied because it is waiting. Since the GPU is
382 * then never kept fully busy, RPS autoclocking will
383 * keep the clocks relatively low, causing further delays.
384 * Compensate by giving the synchronous client credit for
385 * a waitboost next time.
386 */
387 spin_lock(&rq->i915->rps.client_lock);
388 list_del_init(&rps->link);
389 spin_unlock(&rq->i915->rps.client_lock);
390 }
391
392 return timeout;
393}
394
395static long
396i915_gem_object_wait_reservation(struct reservation_object *resv,
397 unsigned int flags,
398 long timeout,
399 struct intel_rps_client *rps)
400{
401 struct dma_fence *excl;
402
403 if (flags & I915_WAIT_ALL) {
404 struct dma_fence **shared;
405 unsigned int count, i;
00e60f26
CW
406 int ret;
407
e95433c7
CW
408 ret = reservation_object_get_fences_rcu(resv,
409 &excl, &count, &shared);
00e60f26
CW
410 if (ret)
411 return ret;
00e60f26 412
e95433c7
CW
413 for (i = 0; i < count; i++) {
414 timeout = i915_gem_object_wait_fence(shared[i],
415 flags, timeout,
416 rps);
417 if (timeout <= 0)
418 break;
00e60f26 419
e95433c7
CW
420 dma_fence_put(shared[i]);
421 }
422
423 for (; i < count; i++)
424 dma_fence_put(shared[i]);
425 kfree(shared);
426 } else {
427 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
428 }
429
e95433c7
CW
430 if (excl && timeout > 0)
431 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
432
433 dma_fence_put(excl);
434
435 return timeout;
00e60f26
CW
436}
437
6b5e90f5
CW
438static void __fence_set_priority(struct dma_fence *fence, int prio)
439{
440 struct drm_i915_gem_request *rq;
441 struct intel_engine_cs *engine;
442
443 if (!dma_fence_is_i915(fence))
444 return;
445
446 rq = to_request(fence);
447 engine = rq->engine;
448 if (!engine->schedule)
449 return;
450
451 engine->schedule(rq, prio);
452}
453
454static void fence_set_priority(struct dma_fence *fence, int prio)
455{
456 /* Recurse once into a fence-array */
457 if (dma_fence_is_array(fence)) {
458 struct dma_fence_array *array = to_dma_fence_array(fence);
459 int i;
460
461 for (i = 0; i < array->num_fences; i++)
462 __fence_set_priority(array->fences[i], prio);
463 } else {
464 __fence_set_priority(fence, prio);
465 }
466}
467
468int
469i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
470 unsigned int flags,
471 int prio)
472{
473 struct dma_fence *excl;
474
475 if (flags & I915_WAIT_ALL) {
476 struct dma_fence **shared;
477 unsigned int count, i;
478 int ret;
479
480 ret = reservation_object_get_fences_rcu(obj->resv,
481 &excl, &count, &shared);
482 if (ret)
483 return ret;
484
485 for (i = 0; i < count; i++) {
486 fence_set_priority(shared[i], prio);
487 dma_fence_put(shared[i]);
488 }
489
490 kfree(shared);
491 } else {
492 excl = reservation_object_get_excl_rcu(obj->resv);
493 }
494
495 if (excl) {
496 fence_set_priority(excl, prio);
497 dma_fence_put(excl);
498 }
499 return 0;
500}
501
e95433c7
CW
502/**
503 * Waits for rendering to the object to be completed
504 * @obj: i915 gem object
505 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
506 * @timeout: how long to wait
507 * @rps: client (user process) to charge for any waitboosting
00e60f26 508 */
e95433c7
CW
509int
510i915_gem_object_wait(struct drm_i915_gem_object *obj,
511 unsigned int flags,
512 long timeout,
513 struct intel_rps_client *rps)
00e60f26 514{
e95433c7
CW
515 might_sleep();
516#if IS_ENABLED(CONFIG_LOCKDEP)
517 GEM_BUG_ON(debug_locks &&
518 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
519 !!(flags & I915_WAIT_LOCKED));
520#endif
521 GEM_BUG_ON(timeout < 0);
00e60f26 522
d07f0e59
CW
523 timeout = i915_gem_object_wait_reservation(obj->resv,
524 flags, timeout,
525 rps);
e95433c7 526 return timeout < 0 ? timeout : 0;
00e60f26
CW
527}
528
529static struct intel_rps_client *to_rps_client(struct drm_file *file)
530{
531 struct drm_i915_file_private *fpriv = file->driver_priv;
532
533 return &fpriv->rps;
534}
535
00731155
CW
536int
537i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
538 int align)
539{
540 drm_dma_handle_t *phys;
6a2c4232 541 int ret;
00731155
CW
542
543 if (obj->phys_handle) {
544 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
545 return -EBUSY;
546
547 return 0;
548 }
549
a4f5ea64 550 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
551 return -EFAULT;
552
553 if (obj->base.filp == NULL)
554 return -EINVAL;
555
4717ca9e
CW
556 ret = i915_gem_object_unbind(obj);
557 if (ret)
558 return ret;
559
548625ee 560 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
561 if (obj->mm.pages)
562 return -EBUSY;
6a2c4232 563
00731155
CW
564 /* create a new object */
565 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
566 if (!phys)
567 return -ENOMEM;
568
00731155 569 obj->phys_handle = phys;
6a2c4232
CW
570 obj->ops = &i915_gem_phys_ops;
571
a4f5ea64 572 return i915_gem_object_pin_pages(obj);
00731155
CW
573}
574
575static int
576i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
577 struct drm_i915_gem_pwrite *args,
03ac84f1 578 struct drm_file *file)
00731155
CW
579{
580 struct drm_device *dev = obj->base.dev;
581 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 582 char __user *user_data = u64_to_user_ptr(args->data_ptr);
e95433c7 583 int ret;
6a2c4232
CW
584
585 /* We manually control the domain here and pretend that it
586 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
587 */
e95433c7
CW
588 lockdep_assert_held(&obj->base.dev->struct_mutex);
589 ret = i915_gem_object_wait(obj,
590 I915_WAIT_INTERRUPTIBLE |
591 I915_WAIT_LOCKED |
592 I915_WAIT_ALL,
593 MAX_SCHEDULE_TIMEOUT,
03ac84f1 594 to_rps_client(file));
6a2c4232
CW
595 if (ret)
596 return ret;
00731155 597
77a0d1ca 598 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
599 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
600 unsigned long unwritten;
601
602 /* The physical object once assigned is fixed for the lifetime
603 * of the obj, so we can safely drop the lock and continue
604 * to access vaddr.
605 */
606 mutex_unlock(&dev->struct_mutex);
607 unwritten = copy_from_user(vaddr, user_data, args->size);
608 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
609 if (unwritten) {
610 ret = -EFAULT;
611 goto out;
612 }
00731155
CW
613 }
614
6a2c4232 615 drm_clflush_virt_range(vaddr, args->size);
c033666a 616 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
617
618out:
de152b62 619 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 620 return ret;
00731155
CW
621}
622
42dcedd4
CW
623void *i915_gem_object_alloc(struct drm_device *dev)
624{
fac5e23e 625 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 626 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
627}
628
629void i915_gem_object_free(struct drm_i915_gem_object *obj)
630{
fac5e23e 631 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 632 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
633}
634
ff72145b
DA
635static int
636i915_gem_create(struct drm_file *file,
637 struct drm_device *dev,
638 uint64_t size,
639 uint32_t *handle_p)
673a394b 640{
05394f39 641 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
642 int ret;
643 u32 handle;
673a394b 644
ff72145b 645 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
646 if (size == 0)
647 return -EINVAL;
673a394b
EA
648
649 /* Allocate the new object */
d37cd8a8 650 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
651 if (IS_ERR(obj))
652 return PTR_ERR(obj);
673a394b 653
05394f39 654 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 655 /* drop reference from allocate - handle holds it now */
f0cd5182 656 i915_gem_object_put(obj);
d861e338
DV
657 if (ret)
658 return ret;
202f2fef 659
ff72145b 660 *handle_p = handle;
673a394b
EA
661 return 0;
662}
663
ff72145b
DA
664int
665i915_gem_dumb_create(struct drm_file *file,
666 struct drm_device *dev,
667 struct drm_mode_create_dumb *args)
668{
669 /* have to work out size/pitch and return them */
de45eaf7 670 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
671 args->size = args->pitch * args->height;
672 return i915_gem_create(file, dev,
da6b51d0 673 args->size, &args->handle);
ff72145b
DA
674}
675
ff72145b
DA
676/**
677 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
678 * @dev: drm device pointer
679 * @data: ioctl data blob
680 * @file: drm file pointer
ff72145b
DA
681 */
682int
683i915_gem_create_ioctl(struct drm_device *dev, void *data,
684 struct drm_file *file)
685{
686 struct drm_i915_gem_create *args = data;
63ed2cb2 687
fbbd37b3
CW
688 i915_gem_flush_free_objects(to_i915(dev));
689
ff72145b 690 return i915_gem_create(file, dev,
da6b51d0 691 args->size, &args->handle);
ff72145b
DA
692}
693
8461d226
DV
694static inline int
695__copy_to_user_swizzled(char __user *cpu_vaddr,
696 const char *gpu_vaddr, int gpu_offset,
697 int length)
698{
699 int ret, cpu_offset = 0;
700
701 while (length > 0) {
702 int cacheline_end = ALIGN(gpu_offset + 1, 64);
703 int this_length = min(cacheline_end - gpu_offset, length);
704 int swizzled_gpu_offset = gpu_offset ^ 64;
705
706 ret = __copy_to_user(cpu_vaddr + cpu_offset,
707 gpu_vaddr + swizzled_gpu_offset,
708 this_length);
709 if (ret)
710 return ret + length;
711
712 cpu_offset += this_length;
713 gpu_offset += this_length;
714 length -= this_length;
715 }
716
717 return 0;
718}
719
8c59967c 720static inline int
4f0c7cfb
BW
721__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
722 const char __user *cpu_vaddr,
8c59967c
DV
723 int length)
724{
725 int ret, cpu_offset = 0;
726
727 while (length > 0) {
728 int cacheline_end = ALIGN(gpu_offset + 1, 64);
729 int this_length = min(cacheline_end - gpu_offset, length);
730 int swizzled_gpu_offset = gpu_offset ^ 64;
731
732 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
733 cpu_vaddr + cpu_offset,
734 this_length);
735 if (ret)
736 return ret + length;
737
738 cpu_offset += this_length;
739 gpu_offset += this_length;
740 length -= this_length;
741 }
742
743 return 0;
744}
745
4c914c0c
BV
746/*
747 * Pins the specified object's pages and synchronizes the object with
748 * GPU accesses. Sets needs_clflush to non-zero if the caller should
749 * flush the object from the CPU cache.
750 */
751int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 752 unsigned int *needs_clflush)
4c914c0c
BV
753{
754 int ret;
755
e95433c7 756 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 757
e95433c7 758 *needs_clflush = 0;
43394c7d
CW
759 if (!i915_gem_object_has_struct_page(obj))
760 return -ENODEV;
4c914c0c 761
e95433c7
CW
762 ret = i915_gem_object_wait(obj,
763 I915_WAIT_INTERRUPTIBLE |
764 I915_WAIT_LOCKED,
765 MAX_SCHEDULE_TIMEOUT,
766 NULL);
c13d87ea
CW
767 if (ret)
768 return ret;
769
a4f5ea64 770 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
771 if (ret)
772 return ret;
773
a314d5cb
CW
774 i915_gem_object_flush_gtt_write_domain(obj);
775
43394c7d
CW
776 /* If we're not in the cpu read domain, set ourself into the gtt
777 * read domain and manually flush cachelines (if required). This
778 * optimizes for the case when the gpu will dirty the data
779 * anyway again before the next pread happens.
780 */
781 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
782 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
783 obj->cache_level);
43394c7d 784
43394c7d
CW
785 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
786 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
787 if (ret)
788 goto err_unpin;
789
43394c7d 790 *needs_clflush = 0;
4c914c0c
BV
791 }
792
9764951e 793 /* return with the pages pinned */
43394c7d 794 return 0;
9764951e
CW
795
796err_unpin:
797 i915_gem_object_unpin_pages(obj);
798 return ret;
43394c7d
CW
799}
800
801int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
802 unsigned int *needs_clflush)
803{
804 int ret;
805
e95433c7
CW
806 lockdep_assert_held(&obj->base.dev->struct_mutex);
807
43394c7d
CW
808 *needs_clflush = 0;
809 if (!i915_gem_object_has_struct_page(obj))
810 return -ENODEV;
811
e95433c7
CW
812 ret = i915_gem_object_wait(obj,
813 I915_WAIT_INTERRUPTIBLE |
814 I915_WAIT_LOCKED |
815 I915_WAIT_ALL,
816 MAX_SCHEDULE_TIMEOUT,
817 NULL);
43394c7d
CW
818 if (ret)
819 return ret;
820
a4f5ea64 821 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
822 if (ret)
823 return ret;
824
a314d5cb
CW
825 i915_gem_object_flush_gtt_write_domain(obj);
826
43394c7d
CW
827 /* If we're not in the cpu write domain, set ourself into the
828 * gtt write domain and manually flush cachelines (as required).
829 * This optimizes for the case when the gpu will use the data
830 * right away and we therefore have to clflush anyway.
831 */
832 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
833 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
834
835 /* Same trick applies to invalidate partially written cachelines read
836 * before writing.
837 */
838 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
839 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
840 obj->cache_level);
841
43394c7d
CW
842 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
843 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
844 if (ret)
845 goto err_unpin;
846
43394c7d
CW
847 *needs_clflush = 0;
848 }
849
850 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
851 obj->cache_dirty = true;
852
853 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 854 obj->mm.dirty = true;
9764951e 855 /* return with the pages pinned */
43394c7d 856 return 0;
9764951e
CW
857
858err_unpin:
859 i915_gem_object_unpin_pages(obj);
860 return ret;
4c914c0c
BV
861}
862
23c18c71
DV
863static void
864shmem_clflush_swizzled_range(char *addr, unsigned long length,
865 bool swizzled)
866{
e7e58eb5 867 if (unlikely(swizzled)) {
23c18c71
DV
868 unsigned long start = (unsigned long) addr;
869 unsigned long end = (unsigned long) addr + length;
870
871 /* For swizzling simply ensure that we always flush both
872 * channels. Lame, but simple and it works. Swizzled
873 * pwrite/pread is far from a hotpath - current userspace
874 * doesn't use it at all. */
875 start = round_down(start, 128);
876 end = round_up(end, 128);
877
878 drm_clflush_virt_range((void *)start, end - start);
879 } else {
880 drm_clflush_virt_range(addr, length);
881 }
882
883}
884
d174bd64
DV
885/* Only difference to the fast-path function is that this can handle bit17
886 * and uses non-atomic copy and kmap functions. */
887static int
bb6dc8d9 888shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
889 char __user *user_data,
890 bool page_do_bit17_swizzling, bool needs_clflush)
891{
892 char *vaddr;
893 int ret;
894
895 vaddr = kmap(page);
896 if (needs_clflush)
bb6dc8d9 897 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 898 page_do_bit17_swizzling);
d174bd64
DV
899
900 if (page_do_bit17_swizzling)
bb6dc8d9 901 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 902 else
bb6dc8d9 903 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
904 kunmap(page);
905
f60d7f0c 906 return ret ? - EFAULT : 0;
d174bd64
DV
907}
908
bb6dc8d9
CW
909static int
910shmem_pread(struct page *page, int offset, int length, char __user *user_data,
911 bool page_do_bit17_swizzling, bool needs_clflush)
912{
913 int ret;
914
915 ret = -ENODEV;
916 if (!page_do_bit17_swizzling) {
917 char *vaddr = kmap_atomic(page);
918
919 if (needs_clflush)
920 drm_clflush_virt_range(vaddr + offset, length);
921 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
922 kunmap_atomic(vaddr);
923 }
924 if (ret == 0)
925 return 0;
926
927 return shmem_pread_slow(page, offset, length, user_data,
928 page_do_bit17_swizzling, needs_clflush);
929}
930
931static int
932i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
933 struct drm_i915_gem_pread *args)
934{
935 char __user *user_data;
936 u64 remain;
937 unsigned int obj_do_bit17_swizzling;
938 unsigned int needs_clflush;
939 unsigned int idx, offset;
940 int ret;
941
942 obj_do_bit17_swizzling = 0;
943 if (i915_gem_object_needs_bit17_swizzle(obj))
944 obj_do_bit17_swizzling = BIT(17);
945
946 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
947 if (ret)
948 return ret;
949
950 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
951 mutex_unlock(&obj->base.dev->struct_mutex);
952 if (ret)
953 return ret;
954
955 remain = args->size;
956 user_data = u64_to_user_ptr(args->data_ptr);
957 offset = offset_in_page(args->offset);
958 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
959 struct page *page = i915_gem_object_get_page(obj, idx);
960 int length;
961
962 length = remain;
963 if (offset + length > PAGE_SIZE)
964 length = PAGE_SIZE - offset;
965
966 ret = shmem_pread(page, offset, length, user_data,
967 page_to_phys(page) & obj_do_bit17_swizzling,
968 needs_clflush);
969 if (ret)
970 break;
971
972 remain -= length;
973 user_data += length;
974 offset = 0;
975 }
976
977 i915_gem_obj_finish_shmem_access(obj);
978 return ret;
979}
980
981static inline bool
982gtt_user_read(struct io_mapping *mapping,
983 loff_t base, int offset,
984 char __user *user_data, int length)
b50a5371 985{
b50a5371 986 void *vaddr;
bb6dc8d9 987 unsigned long unwritten;
b50a5371 988
b50a5371 989 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
990 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
991 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
992 io_mapping_unmap_atomic(vaddr);
993 if (unwritten) {
994 vaddr = (void __force *)
995 io_mapping_map_wc(mapping, base, PAGE_SIZE);
996 unwritten = copy_to_user(user_data, vaddr + offset, length);
997 io_mapping_unmap(vaddr);
998 }
b50a5371
AS
999 return unwritten;
1000}
1001
1002static int
bb6dc8d9
CW
1003i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1004 const struct drm_i915_gem_pread *args)
b50a5371 1005{
bb6dc8d9
CW
1006 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1007 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1008 struct drm_mm_node node;
bb6dc8d9
CW
1009 struct i915_vma *vma;
1010 void __user *user_data;
1011 u64 remain, offset;
b50a5371
AS
1012 int ret;
1013
bb6dc8d9
CW
1014 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1015 if (ret)
1016 return ret;
1017
1018 intel_runtime_pm_get(i915);
1019 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1020 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1021 if (!IS_ERR(vma)) {
1022 node.start = i915_ggtt_offset(vma);
1023 node.allocated = false;
49ef5294 1024 ret = i915_vma_put_fence(vma);
18034584
CW
1025 if (ret) {
1026 i915_vma_unpin(vma);
1027 vma = ERR_PTR(ret);
1028 }
1029 }
058d88c4 1030 if (IS_ERR(vma)) {
bb6dc8d9 1031 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1032 if (ret)
bb6dc8d9
CW
1033 goto out_unlock;
1034 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1035 }
1036
1037 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1038 if (ret)
1039 goto out_unpin;
1040
bb6dc8d9 1041 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1042
bb6dc8d9
CW
1043 user_data = u64_to_user_ptr(args->data_ptr);
1044 remain = args->size;
1045 offset = args->offset;
b50a5371
AS
1046
1047 while (remain > 0) {
1048 /* Operation in this page
1049 *
1050 * page_base = page offset within aperture
1051 * page_offset = offset within page
1052 * page_length = bytes to copy for this page
1053 */
1054 u32 page_base = node.start;
1055 unsigned page_offset = offset_in_page(offset);
1056 unsigned page_length = PAGE_SIZE - page_offset;
1057 page_length = remain < page_length ? remain : page_length;
1058 if (node.allocated) {
1059 wmb();
1060 ggtt->base.insert_page(&ggtt->base,
1061 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1062 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1063 wmb();
1064 } else {
1065 page_base += offset & PAGE_MASK;
1066 }
bb6dc8d9
CW
1067
1068 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1069 user_data, page_length)) {
b50a5371
AS
1070 ret = -EFAULT;
1071 break;
1072 }
1073
1074 remain -= page_length;
1075 user_data += page_length;
1076 offset += page_length;
1077 }
1078
bb6dc8d9 1079 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1080out_unpin:
1081 if (node.allocated) {
1082 wmb();
1083 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1084 node.start, node.size);
b50a5371
AS
1085 remove_mappable_node(&node);
1086 } else {
058d88c4 1087 i915_vma_unpin(vma);
b50a5371 1088 }
bb6dc8d9
CW
1089out_unlock:
1090 intel_runtime_pm_put(i915);
1091 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1092
eb01459f
EA
1093 return ret;
1094}
1095
673a394b
EA
1096/**
1097 * Reads data from the object referenced by handle.
14bb2c11
TU
1098 * @dev: drm device pointer
1099 * @data: ioctl data blob
1100 * @file: drm file pointer
673a394b
EA
1101 *
1102 * On error, the contents of *data are undefined.
1103 */
1104int
1105i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1106 struct drm_file *file)
673a394b
EA
1107{
1108 struct drm_i915_gem_pread *args = data;
05394f39 1109 struct drm_i915_gem_object *obj;
bb6dc8d9 1110 int ret;
673a394b 1111
51311d0a
CW
1112 if (args->size == 0)
1113 return 0;
1114
1115 if (!access_ok(VERIFY_WRITE,
3ed605bc 1116 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1117 args->size))
1118 return -EFAULT;
1119
03ac0642 1120 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1121 if (!obj)
1122 return -ENOENT;
673a394b 1123
7dcd2499 1124 /* Bounds check source. */
05394f39
CW
1125 if (args->offset > obj->base.size ||
1126 args->size > obj->base.size - args->offset) {
ce9d419d 1127 ret = -EINVAL;
bb6dc8d9 1128 goto out;
ce9d419d
CW
1129 }
1130
db53a302
CW
1131 trace_i915_gem_object_pread(obj, args->offset, args->size);
1132
e95433c7
CW
1133 ret = i915_gem_object_wait(obj,
1134 I915_WAIT_INTERRUPTIBLE,
1135 MAX_SCHEDULE_TIMEOUT,
1136 to_rps_client(file));
258a5ede 1137 if (ret)
bb6dc8d9 1138 goto out;
258a5ede 1139
bb6dc8d9 1140 ret = i915_gem_object_pin_pages(obj);
258a5ede 1141 if (ret)
bb6dc8d9 1142 goto out;
673a394b 1143
bb6dc8d9 1144 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1145 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1146 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1147
bb6dc8d9
CW
1148 i915_gem_object_unpin_pages(obj);
1149out:
f0cd5182 1150 i915_gem_object_put(obj);
eb01459f 1151 return ret;
673a394b
EA
1152}
1153
0839ccb8
KP
1154/* This is the fast write path which cannot handle
1155 * page faults in the source data
9b7530cc 1156 */
0839ccb8 1157
fe115628
CW
1158static inline bool
1159ggtt_write(struct io_mapping *mapping,
1160 loff_t base, int offset,
1161 char __user *user_data, int length)
9b7530cc 1162{
4f0c7cfb 1163 void *vaddr;
0839ccb8 1164 unsigned long unwritten;
9b7530cc 1165
4f0c7cfb 1166 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1167 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1168 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1169 user_data, length);
fe115628
CW
1170 io_mapping_unmap_atomic(vaddr);
1171 if (unwritten) {
1172 vaddr = (void __force *)
1173 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1174 unwritten = copy_from_user(vaddr + offset, user_data, length);
1175 io_mapping_unmap(vaddr);
1176 }
bb6dc8d9 1177
bb6dc8d9
CW
1178 return unwritten;
1179}
1180
3de09aa3
EA
1181/**
1182 * This is the fast pwrite path, where we copy the data directly from the
1183 * user into the GTT, uncached.
fe115628 1184 * @obj: i915 GEM object
14bb2c11 1185 * @args: pwrite arguments structure
3de09aa3 1186 */
673a394b 1187static int
fe115628
CW
1188i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1189 const struct drm_i915_gem_pwrite *args)
673a394b 1190{
fe115628 1191 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1192 struct i915_ggtt *ggtt = &i915->ggtt;
1193 struct drm_mm_node node;
fe115628
CW
1194 struct i915_vma *vma;
1195 u64 remain, offset;
1196 void __user *user_data;
4f1959ee 1197 int ret;
b50a5371 1198
fe115628
CW
1199 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1200 if (ret)
1201 return ret;
935aaa69 1202
9c870d03 1203 intel_runtime_pm_get(i915);
058d88c4 1204 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1205 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1206 if (!IS_ERR(vma)) {
1207 node.start = i915_ggtt_offset(vma);
1208 node.allocated = false;
49ef5294 1209 ret = i915_vma_put_fence(vma);
18034584
CW
1210 if (ret) {
1211 i915_vma_unpin(vma);
1212 vma = ERR_PTR(ret);
1213 }
1214 }
058d88c4 1215 if (IS_ERR(vma)) {
bb6dc8d9 1216 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1217 if (ret)
fe115628
CW
1218 goto out_unlock;
1219 GEM_BUG_ON(!node.allocated);
4f1959ee 1220 }
935aaa69
DV
1221
1222 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1223 if (ret)
1224 goto out_unpin;
1225
fe115628
CW
1226 mutex_unlock(&i915->drm.struct_mutex);
1227
b19482d7 1228 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1229
4f1959ee
AS
1230 user_data = u64_to_user_ptr(args->data_ptr);
1231 offset = args->offset;
1232 remain = args->size;
1233 while (remain) {
673a394b
EA
1234 /* Operation in this page
1235 *
0839ccb8
KP
1236 * page_base = page offset within aperture
1237 * page_offset = offset within page
1238 * page_length = bytes to copy for this page
673a394b 1239 */
4f1959ee 1240 u32 page_base = node.start;
bb6dc8d9
CW
1241 unsigned int page_offset = offset_in_page(offset);
1242 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1243 page_length = remain < page_length ? remain : page_length;
1244 if (node.allocated) {
1245 wmb(); /* flush the write before we modify the GGTT */
1246 ggtt->base.insert_page(&ggtt->base,
1247 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1248 node.start, I915_CACHE_NONE, 0);
1249 wmb(); /* flush modifications to the GGTT (insert_page) */
1250 } else {
1251 page_base += offset & PAGE_MASK;
1252 }
0839ccb8 1253 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1254 * source page isn't available. Return the error and we'll
1255 * retry in the slow path.
b50a5371
AS
1256 * If the object is non-shmem backed, we retry again with the
1257 * path that handles page fault.
0839ccb8 1258 */
fe115628
CW
1259 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1260 user_data, page_length)) {
1261 ret = -EFAULT;
1262 break;
935aaa69 1263 }
673a394b 1264
0839ccb8
KP
1265 remain -= page_length;
1266 user_data += page_length;
1267 offset += page_length;
673a394b 1268 }
b19482d7 1269 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1270
1271 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1272out_unpin:
4f1959ee
AS
1273 if (node.allocated) {
1274 wmb();
1275 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1276 node.start, node.size);
4f1959ee
AS
1277 remove_mappable_node(&node);
1278 } else {
058d88c4 1279 i915_vma_unpin(vma);
4f1959ee 1280 }
fe115628 1281out_unlock:
9c870d03 1282 intel_runtime_pm_put(i915);
fe115628 1283 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1284 return ret;
673a394b
EA
1285}
1286
3043c60c 1287static int
fe115628 1288shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1289 char __user *user_data,
1290 bool page_do_bit17_swizzling,
1291 bool needs_clflush_before,
1292 bool needs_clflush_after)
673a394b 1293{
d174bd64
DV
1294 char *vaddr;
1295 int ret;
e5281ccd 1296
d174bd64 1297 vaddr = kmap(page);
e7e58eb5 1298 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1299 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1300 page_do_bit17_swizzling);
d174bd64 1301 if (page_do_bit17_swizzling)
fe115628
CW
1302 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1303 length);
d174bd64 1304 else
fe115628 1305 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1306 if (needs_clflush_after)
fe115628 1307 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1308 page_do_bit17_swizzling);
d174bd64 1309 kunmap(page);
40123c1f 1310
755d2218 1311 return ret ? -EFAULT : 0;
40123c1f
EA
1312}
1313
fe115628
CW
1314/* Per-page copy function for the shmem pwrite fastpath.
1315 * Flushes invalid cachelines before writing to the target if
1316 * needs_clflush_before is set and flushes out any written cachelines after
1317 * writing if needs_clflush is set.
1318 */
40123c1f 1319static int
fe115628
CW
1320shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1321 bool page_do_bit17_swizzling,
1322 bool needs_clflush_before,
1323 bool needs_clflush_after)
40123c1f 1324{
fe115628
CW
1325 int ret;
1326
1327 ret = -ENODEV;
1328 if (!page_do_bit17_swizzling) {
1329 char *vaddr = kmap_atomic(page);
1330
1331 if (needs_clflush_before)
1332 drm_clflush_virt_range(vaddr + offset, len);
1333 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1334 if (needs_clflush_after)
1335 drm_clflush_virt_range(vaddr + offset, len);
1336
1337 kunmap_atomic(vaddr);
1338 }
1339 if (ret == 0)
1340 return ret;
1341
1342 return shmem_pwrite_slow(page, offset, len, user_data,
1343 page_do_bit17_swizzling,
1344 needs_clflush_before,
1345 needs_clflush_after);
1346}
1347
1348static int
1349i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1350 const struct drm_i915_gem_pwrite *args)
1351{
1352 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1353 void __user *user_data;
1354 u64 remain;
1355 unsigned int obj_do_bit17_swizzling;
1356 unsigned int partial_cacheline_write;
43394c7d 1357 unsigned int needs_clflush;
fe115628
CW
1358 unsigned int offset, idx;
1359 int ret;
40123c1f 1360
fe115628 1361 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1362 if (ret)
1363 return ret;
1364
fe115628
CW
1365 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1366 mutex_unlock(&i915->drm.struct_mutex);
1367 if (ret)
1368 return ret;
673a394b 1369
fe115628
CW
1370 obj_do_bit17_swizzling = 0;
1371 if (i915_gem_object_needs_bit17_swizzle(obj))
1372 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1373
fe115628
CW
1374 /* If we don't overwrite a cacheline completely we need to be
1375 * careful to have up-to-date data by first clflushing. Don't
1376 * overcomplicate things and flush the entire patch.
1377 */
1378 partial_cacheline_write = 0;
1379 if (needs_clflush & CLFLUSH_BEFORE)
1380 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1381
fe115628
CW
1382 user_data = u64_to_user_ptr(args->data_ptr);
1383 remain = args->size;
1384 offset = offset_in_page(args->offset);
1385 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1386 struct page *page = i915_gem_object_get_page(obj, idx);
1387 int length;
40123c1f 1388
fe115628
CW
1389 length = remain;
1390 if (offset + length > PAGE_SIZE)
1391 length = PAGE_SIZE - offset;
755d2218 1392
fe115628
CW
1393 ret = shmem_pwrite(page, offset, length, user_data,
1394 page_to_phys(page) & obj_do_bit17_swizzling,
1395 (offset | length) & partial_cacheline_write,
1396 needs_clflush & CLFLUSH_AFTER);
755d2218 1397 if (ret)
fe115628 1398 break;
755d2218 1399
fe115628
CW
1400 remain -= length;
1401 user_data += length;
1402 offset = 0;
8c59967c 1403 }
673a394b 1404
de152b62 1405 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1406 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1407 return ret;
673a394b
EA
1408}
1409
1410/**
1411 * Writes data to the object referenced by handle.
14bb2c11
TU
1412 * @dev: drm device
1413 * @data: ioctl data blob
1414 * @file: drm file
673a394b
EA
1415 *
1416 * On error, the contents of the buffer that were to be modified are undefined.
1417 */
1418int
1419i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1420 struct drm_file *file)
673a394b
EA
1421{
1422 struct drm_i915_gem_pwrite *args = data;
05394f39 1423 struct drm_i915_gem_object *obj;
51311d0a
CW
1424 int ret;
1425
1426 if (args->size == 0)
1427 return 0;
1428
1429 if (!access_ok(VERIFY_READ,
3ed605bc 1430 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1431 args->size))
1432 return -EFAULT;
1433
03ac0642 1434 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1435 if (!obj)
1436 return -ENOENT;
673a394b 1437
7dcd2499 1438 /* Bounds check destination. */
05394f39
CW
1439 if (args->offset > obj->base.size ||
1440 args->size > obj->base.size - args->offset) {
ce9d419d 1441 ret = -EINVAL;
258a5ede 1442 goto err;
ce9d419d
CW
1443 }
1444
db53a302
CW
1445 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1446
e95433c7
CW
1447 ret = i915_gem_object_wait(obj,
1448 I915_WAIT_INTERRUPTIBLE |
1449 I915_WAIT_ALL,
1450 MAX_SCHEDULE_TIMEOUT,
1451 to_rps_client(file));
258a5ede
CW
1452 if (ret)
1453 goto err;
1454
fe115628 1455 ret = i915_gem_object_pin_pages(obj);
258a5ede 1456 if (ret)
fe115628 1457 goto err;
258a5ede 1458
935aaa69 1459 ret = -EFAULT;
673a394b
EA
1460 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1461 * it would end up going through the fenced access, and we'll get
1462 * different detiling behavior between reading and writing.
1463 * pread/pwrite currently are reading and writing from the CPU
1464 * perspective, requiring manual detiling by the client.
1465 */
6eae0059 1466 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1467 cpu_write_needs_clflush(obj))
935aaa69
DV
1468 /* Note that the gtt paths might fail with non-page-backed user
1469 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1470 * textures). Fallback to the shmem path in that case.
1471 */
fe115628 1472 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1473
d1054ee4 1474 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1475 if (obj->phys_handle)
1476 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1477 else
fe115628 1478 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1479 }
5c0480f2 1480
fe115628 1481 i915_gem_object_unpin_pages(obj);
258a5ede 1482err:
f0cd5182 1483 i915_gem_object_put(obj);
258a5ede 1484 return ret;
673a394b
EA
1485}
1486
d243ad82 1487static inline enum fb_op_origin
aeecc969
CW
1488write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1489{
50349247
CW
1490 return (domain == I915_GEM_DOMAIN_GTT ?
1491 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1492}
1493
40e62d5d
CW
1494static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1495{
1496 struct drm_i915_private *i915;
1497 struct list_head *list;
1498 struct i915_vma *vma;
1499
1500 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1501 if (!i915_vma_is_ggtt(vma))
1502 continue;
1503
1504 if (i915_vma_is_active(vma))
1505 continue;
1506
1507 if (!drm_mm_node_allocated(&vma->node))
1508 continue;
1509
1510 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1511 }
1512
1513 i915 = to_i915(obj->base.dev);
1514 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1515 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1516}
1517
673a394b 1518/**
2ef7eeaa
EA
1519 * Called when user space prepares to use an object with the CPU, either
1520 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1521 * @dev: drm device
1522 * @data: ioctl data blob
1523 * @file: drm file
673a394b
EA
1524 */
1525int
1526i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1527 struct drm_file *file)
673a394b
EA
1528{
1529 struct drm_i915_gem_set_domain *args = data;
05394f39 1530 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1531 uint32_t read_domains = args->read_domains;
1532 uint32_t write_domain = args->write_domain;
40e62d5d 1533 int err;
673a394b 1534
2ef7eeaa 1535 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1536 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1537 return -EINVAL;
1538
1539 /* Having something in the write domain implies it's in the read
1540 * domain, and only that read domain. Enforce that in the request.
1541 */
1542 if (write_domain != 0 && read_domains != write_domain)
1543 return -EINVAL;
1544
03ac0642 1545 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1546 if (!obj)
1547 return -ENOENT;
673a394b 1548
3236f57a
CW
1549 /* Try to flush the object off the GPU without holding the lock.
1550 * We will repeat the flush holding the lock in the normal manner
1551 * to catch cases where we are gazumped.
1552 */
40e62d5d 1553 err = i915_gem_object_wait(obj,
e95433c7
CW
1554 I915_WAIT_INTERRUPTIBLE |
1555 (write_domain ? I915_WAIT_ALL : 0),
1556 MAX_SCHEDULE_TIMEOUT,
1557 to_rps_client(file));
40e62d5d 1558 if (err)
f0cd5182 1559 goto out;
b8f9096d 1560
40e62d5d
CW
1561 /* Flush and acquire obj->pages so that we are coherent through
1562 * direct access in memory with previous cached writes through
1563 * shmemfs and that our cache domain tracking remains valid.
1564 * For example, if the obj->filp was moved to swap without us
1565 * being notified and releasing the pages, we would mistakenly
1566 * continue to assume that the obj remained out of the CPU cached
1567 * domain.
1568 */
1569 err = i915_gem_object_pin_pages(obj);
1570 if (err)
f0cd5182 1571 goto out;
40e62d5d
CW
1572
1573 err = i915_mutex_lock_interruptible(dev);
1574 if (err)
f0cd5182 1575 goto out_unpin;
3236f57a 1576
43566ded 1577 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1578 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1579 else
40e62d5d 1580 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1581
40e62d5d
CW
1582 /* And bump the LRU for this access */
1583 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1584
673a394b 1585 mutex_unlock(&dev->struct_mutex);
b8f9096d 1586
40e62d5d
CW
1587 if (write_domain != 0)
1588 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1589
f0cd5182 1590out_unpin:
40e62d5d 1591 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1592out:
1593 i915_gem_object_put(obj);
40e62d5d 1594 return err;
673a394b
EA
1595}
1596
1597/**
1598 * Called when user space has done writes to this buffer
14bb2c11
TU
1599 * @dev: drm device
1600 * @data: ioctl data blob
1601 * @file: drm file
673a394b
EA
1602 */
1603int
1604i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1605 struct drm_file *file)
673a394b
EA
1606{
1607 struct drm_i915_gem_sw_finish *args = data;
05394f39 1608 struct drm_i915_gem_object *obj;
c21724cc 1609 int err = 0;
1d7cfea1 1610
03ac0642 1611 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1612 if (!obj)
1613 return -ENOENT;
673a394b 1614
673a394b 1615 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1616 if (READ_ONCE(obj->pin_display)) {
1617 err = i915_mutex_lock_interruptible(dev);
1618 if (!err) {
1619 i915_gem_object_flush_cpu_write_domain(obj);
1620 mutex_unlock(&dev->struct_mutex);
1621 }
1622 }
e47c68e9 1623
f0cd5182 1624 i915_gem_object_put(obj);
c21724cc 1625 return err;
673a394b
EA
1626}
1627
1628/**
14bb2c11
TU
1629 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1630 * it is mapped to.
1631 * @dev: drm device
1632 * @data: ioctl data blob
1633 * @file: drm file
673a394b
EA
1634 *
1635 * While the mapping holds a reference on the contents of the object, it doesn't
1636 * imply a ref on the object itself.
34367381
DV
1637 *
1638 * IMPORTANT:
1639 *
1640 * DRM driver writers who look a this function as an example for how to do GEM
1641 * mmap support, please don't implement mmap support like here. The modern way
1642 * to implement DRM mmap support is with an mmap offset ioctl (like
1643 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1644 * That way debug tooling like valgrind will understand what's going on, hiding
1645 * the mmap call in a driver private ioctl will break that. The i915 driver only
1646 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1647 */
1648int
1649i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1650 struct drm_file *file)
673a394b
EA
1651{
1652 struct drm_i915_gem_mmap *args = data;
03ac0642 1653 struct drm_i915_gem_object *obj;
673a394b
EA
1654 unsigned long addr;
1655
1816f923
AG
1656 if (args->flags & ~(I915_MMAP_WC))
1657 return -EINVAL;
1658
568a58e5 1659 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1660 return -ENODEV;
1661
03ac0642
CW
1662 obj = i915_gem_object_lookup(file, args->handle);
1663 if (!obj)
bf79cb91 1664 return -ENOENT;
673a394b 1665
1286ff73
DV
1666 /* prime objects have no backing filp to GEM mmap
1667 * pages from.
1668 */
03ac0642 1669 if (!obj->base.filp) {
f0cd5182 1670 i915_gem_object_put(obj);
1286ff73
DV
1671 return -EINVAL;
1672 }
1673
03ac0642 1674 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1675 PROT_READ | PROT_WRITE, MAP_SHARED,
1676 args->offset);
1816f923
AG
1677 if (args->flags & I915_MMAP_WC) {
1678 struct mm_struct *mm = current->mm;
1679 struct vm_area_struct *vma;
1680
80a89a5e 1681 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1682 i915_gem_object_put(obj);
80a89a5e
MH
1683 return -EINTR;
1684 }
1816f923
AG
1685 vma = find_vma(mm, addr);
1686 if (vma)
1687 vma->vm_page_prot =
1688 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1689 else
1690 addr = -ENOMEM;
1691 up_write(&mm->mmap_sem);
aeecc969
CW
1692
1693 /* This may race, but that's ok, it only gets set */
50349247 1694 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1695 }
f0cd5182 1696 i915_gem_object_put(obj);
673a394b
EA
1697 if (IS_ERR((void *)addr))
1698 return addr;
1699
1700 args->addr_ptr = (uint64_t) addr;
1701
1702 return 0;
1703}
1704
03af84fe
CW
1705static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1706{
1707 u64 size;
1708
1709 size = i915_gem_object_get_stride(obj);
1710 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1711
1712 return size >> PAGE_SHIFT;
1713}
1714
4cc69075
CW
1715/**
1716 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1717 *
1718 * A history of the GTT mmap interface:
1719 *
1720 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1721 * aligned and suitable for fencing, and still fit into the available
1722 * mappable space left by the pinned display objects. A classic problem
1723 * we called the page-fault-of-doom where we would ping-pong between
1724 * two objects that could not fit inside the GTT and so the memcpy
1725 * would page one object in at the expense of the other between every
1726 * single byte.
1727 *
1728 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1729 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1730 * object is too large for the available space (or simply too large
1731 * for the mappable aperture!), a view is created instead and faulted
1732 * into userspace. (This view is aligned and sized appropriately for
1733 * fenced access.)
1734 *
1735 * Restrictions:
1736 *
1737 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1738 * hangs on some architectures, corruption on others. An attempt to service
1739 * a GTT page fault from a snoopable object will generate a SIGBUS.
1740 *
1741 * * the object must be able to fit into RAM (physical memory, though no
1742 * limited to the mappable aperture).
1743 *
1744 *
1745 * Caveats:
1746 *
1747 * * a new GTT page fault will synchronize rendering from the GPU and flush
1748 * all data to system memory. Subsequent access will not be synchronized.
1749 *
1750 * * all mappings are revoked on runtime device suspend.
1751 *
1752 * * there are only 8, 16 or 32 fence registers to share between all users
1753 * (older machines require fence register for display and blitter access
1754 * as well). Contention of the fence registers will cause the previous users
1755 * to be unmapped and any new access will generate new page faults.
1756 *
1757 * * running out of memory while servicing a fault may generate a SIGBUS,
1758 * rather than the expected SIGSEGV.
1759 */
1760int i915_gem_mmap_gtt_version(void)
1761{
1762 return 1;
1763}
1764
de151cf6
JB
1765/**
1766 * i915_gem_fault - fault a page into the GTT
058d88c4 1767 * @area: CPU VMA in question
d9072a3e 1768 * @vmf: fault info
de151cf6
JB
1769 *
1770 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1771 * from userspace. The fault handler takes care of binding the object to
1772 * the GTT (if needed), allocating and programming a fence register (again,
1773 * only if needed based on whether the old reg is still valid or the object
1774 * is tiled) and inserting a new PTE into the faulting process.
1775 *
1776 * Note that the faulting process may involve evicting existing objects
1777 * from the GTT and/or fence registers to make room. So performance may
1778 * suffer if the GTT working set is large or there are few fence registers
1779 * left.
4cc69075
CW
1780 *
1781 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1782 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1783 */
058d88c4 1784int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1785{
03af84fe 1786#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1787 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1788 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1789 struct drm_i915_private *dev_priv = to_i915(dev);
1790 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1791 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1792 struct i915_vma *vma;
de151cf6 1793 pgoff_t page_offset;
82118877 1794 unsigned int flags;
b8f9096d 1795 int ret;
f65c9168 1796
de151cf6 1797 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1798 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1799 PAGE_SHIFT;
1800
db53a302
CW
1801 trace_i915_gem_object_fault(obj, page_offset, true, write);
1802
6e4930f6 1803 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1804 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1805 * repeat the flush holding the lock in the normal manner to catch cases
1806 * where we are gazumped.
1807 */
e95433c7
CW
1808 ret = i915_gem_object_wait(obj,
1809 I915_WAIT_INTERRUPTIBLE,
1810 MAX_SCHEDULE_TIMEOUT,
1811 NULL);
6e4930f6 1812 if (ret)
b8f9096d
CW
1813 goto err;
1814
40e62d5d
CW
1815 ret = i915_gem_object_pin_pages(obj);
1816 if (ret)
1817 goto err;
1818
b8f9096d
CW
1819 intel_runtime_pm_get(dev_priv);
1820
1821 ret = i915_mutex_lock_interruptible(dev);
1822 if (ret)
1823 goto err_rpm;
6e4930f6 1824
eb119bd6 1825 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1826 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1827 ret = -EFAULT;
b8f9096d 1828 goto err_unlock;
eb119bd6
CW
1829 }
1830
82118877
CW
1831 /* If the object is smaller than a couple of partial vma, it is
1832 * not worth only creating a single partial vma - we may as well
1833 * clear enough space for the full object.
1834 */
1835 flags = PIN_MAPPABLE;
1836 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1837 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1838
a61007a8 1839 /* Now pin it into the GTT as needed */
82118877 1840 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1841 if (IS_ERR(vma)) {
1842 struct i915_ggtt_view view;
03af84fe
CW
1843 unsigned int chunk_size;
1844
a61007a8 1845 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1846 chunk_size = MIN_CHUNK_PAGES;
1847 if (i915_gem_object_is_tiled(obj))
0ef723cb 1848 chunk_size = roundup(chunk_size, tile_row_pages(obj));
e7ded2d7 1849
c5ad54cf
JL
1850 memset(&view, 0, sizeof(view));
1851 view.type = I915_GGTT_VIEW_PARTIAL;
1852 view.params.partial.offset = rounddown(page_offset, chunk_size);
1853 view.params.partial.size =
a61007a8 1854 min_t(unsigned int, chunk_size,
908b1232 1855 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1856
aa136d9d
CW
1857 /* If the partial covers the entire object, just create a
1858 * normal VMA.
1859 */
1860 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1861 view.type = I915_GGTT_VIEW_NORMAL;
1862
50349247
CW
1863 /* Userspace is now writing through an untracked VMA, abandon
1864 * all hope that the hardware is able to track future writes.
1865 */
1866 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1867
a61007a8
CW
1868 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1869 }
058d88c4
CW
1870 if (IS_ERR(vma)) {
1871 ret = PTR_ERR(vma);
b8f9096d 1872 goto err_unlock;
058d88c4 1873 }
4a684a41 1874
c9839303
CW
1875 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1876 if (ret)
b8f9096d 1877 goto err_unpin;
74898d7e 1878
49ef5294 1879 ret = i915_vma_get_fence(vma);
d9e86c0e 1880 if (ret)
b8f9096d 1881 goto err_unpin;
7d1c4804 1882
275f039d 1883 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1884 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1885 if (list_empty(&obj->userfault_link))
1886 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1887
b90b91d8 1888 /* Finally, remap it using the new GTT offset */
c58305af
CW
1889 ret = remap_io_mapping(area,
1890 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1891 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1892 min_t(u64, vma->size, area->vm_end - area->vm_start),
1893 &ggtt->mappable);
a61007a8 1894
b8f9096d 1895err_unpin:
058d88c4 1896 __i915_vma_unpin(vma);
b8f9096d 1897err_unlock:
de151cf6 1898 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1899err_rpm:
1900 intel_runtime_pm_put(dev_priv);
40e62d5d 1901 i915_gem_object_unpin_pages(obj);
b8f9096d 1902err:
de151cf6 1903 switch (ret) {
d9bc7e9f 1904 case -EIO:
2232f031
DV
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
045e769a 1915 case -EAGAIN:
571c608d
DV
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
d9bc7e9f 1920 */
c715089f
CW
1921 case 0:
1922 case -ERESTARTSYS:
bed636ab 1923 case -EINTR:
e79e0fe3
DR
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
f65c9168
PZ
1929 ret = VM_FAULT_NOPAGE;
1930 break;
de151cf6 1931 case -ENOMEM:
f65c9168
PZ
1932 ret = VM_FAULT_OOM;
1933 break;
a7c2e1aa 1934 case -ENOSPC:
45d67817 1935 case -EFAULT:
f65c9168
PZ
1936 ret = VM_FAULT_SIGBUS;
1937 break;
de151cf6 1938 default:
a7c2e1aa 1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1940 ret = VM_FAULT_SIGBUS;
1941 break;
de151cf6 1942 }
f65c9168 1943 return ret;
de151cf6
JB
1944}
1945
901782b2
CW
1946/**
1947 * i915_gem_release_mmap - remove physical page mappings
1948 * @obj: obj in question
1949 *
af901ca1 1950 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1951 * relinquish ownership of the pages back to the system.
1952 *
1953 * It is vital that we remove the page mapping if we have mapped a tiled
1954 * object through the GTT and then lose the fence register due to
1955 * resource pressure. Similarly if the object has been moved out of the
1956 * aperture, than pages mapped into userspace must be revoked. Removing the
1957 * mapping will then trigger a page fault on the next user access, allowing
1958 * fixup by i915_gem_fault().
1959 */
d05ca301 1960void
05394f39 1961i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1962{
275f039d 1963 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1964
349f2ccf
CW
1965 /* Serialisation between user GTT access and our code depends upon
1966 * revoking the CPU's PTE whilst the mutex is held. The next user
1967 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1968 *
1969 * Note that RPM complicates somewhat by adding an additional
1970 * requirement that operations to the GGTT be made holding the RPM
1971 * wakeref.
349f2ccf 1972 */
275f039d 1973 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1974 intel_runtime_pm_get(i915);
349f2ccf 1975
3594a3e2 1976 if (list_empty(&obj->userfault_link))
9c870d03 1977 goto out;
901782b2 1978
3594a3e2 1979 list_del_init(&obj->userfault_link);
6796cb16
DH
1980 drm_vma_node_unmap(&obj->base.vma_node,
1981 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1982
1983 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1984 * memory transactions from userspace before we return. The TLB
1985 * flushing implied above by changing the PTE above *should* be
1986 * sufficient, an extra barrier here just provides us with a bit
1987 * of paranoid documentation about our requirement to serialise
1988 * memory writes before touching registers / GSM.
1989 */
1990 wmb();
9c870d03
CW
1991
1992out:
1993 intel_runtime_pm_put(i915);
901782b2
CW
1994}
1995
7c108fd8 1996void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1997{
3594a3e2 1998 struct drm_i915_gem_object *obj, *on;
7c108fd8 1999 int i;
eedd10f4 2000
3594a3e2
CW
2001 /*
2002 * Only called during RPM suspend. All users of the userfault_list
2003 * must be holding an RPM wakeref to ensure that this can not
2004 * run concurrently with themselves (and use the struct_mutex for
2005 * protection between themselves).
2006 */
275f039d 2007
3594a3e2
CW
2008 list_for_each_entry_safe(obj, on,
2009 &dev_priv->mm.userfault_list, userfault_link) {
2010 list_del_init(&obj->userfault_link);
275f039d
CW
2011 drm_vma_node_unmap(&obj->base.vma_node,
2012 obj->base.dev->anon_inode->i_mapping);
275f039d 2013 }
7c108fd8
CW
2014
2015 /* The fence will be lost when the device powers down. If any were
2016 * in use by hardware (i.e. they are pinned), we should not be powering
2017 * down! All other fences will be reacquired by the user upon waking.
2018 */
2019 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2020 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2021
2022 if (WARN_ON(reg->pin_count))
2023 continue;
2024
2025 if (!reg->vma)
2026 continue;
2027
2028 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2029 reg->dirty = true;
2030 }
eedd10f4
CW
2031}
2032
ad1a7d20
CW
2033/**
2034 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 2035 * @dev_priv: i915 device
ad1a7d20
CW
2036 * @size: object size
2037 * @tiling_mode: tiling mode
2038 *
2039 * Return the required global GTT size for an object, taking into account
2040 * potential fence register mapping.
2041 */
a9f1481f
CW
2042u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2043 u64 size, int tiling_mode)
92b88aeb 2044{
ad1a7d20 2045 u64 ggtt_size;
92b88aeb 2046
ad1a7d20
CW
2047 GEM_BUG_ON(size == 0);
2048
a9f1481f 2049 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
2050 tiling_mode == I915_TILING_NONE)
2051 return size;
92b88aeb
CW
2052
2053 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 2054 if (IS_GEN3(dev_priv))
ad1a7d20 2055 ggtt_size = 1024*1024;
92b88aeb 2056 else
ad1a7d20 2057 ggtt_size = 512*1024;
92b88aeb 2058
ad1a7d20
CW
2059 while (ggtt_size < size)
2060 ggtt_size <<= 1;
92b88aeb 2061
ad1a7d20 2062 return ggtt_size;
92b88aeb
CW
2063}
2064
de151cf6 2065/**
ad1a7d20 2066 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 2067 * @dev_priv: i915 device
14bb2c11
TU
2068 * @size: object size
2069 * @tiling_mode: tiling mode
ad1a7d20 2070 * @fenced: is fenced alignment required or not
de151cf6 2071 *
ad1a7d20 2072 * Return the required global GTT alignment for an object, taking into account
5e783301 2073 * potential fence register mapping.
de151cf6 2074 */
a9f1481f 2075u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 2076 int tiling_mode, bool fenced)
de151cf6 2077{
ad1a7d20
CW
2078 GEM_BUG_ON(size == 0);
2079
de151cf6
JB
2080 /*
2081 * Minimum alignment is 4k (GTT page size), but might be greater
2082 * if a fence register is needed for the object.
2083 */
a9f1481f 2084 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2085 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2086 return 4096;
2087
a00b10c3
CW
2088 /*
2089 * Previous chips need to be aligned to the size of the smallest
2090 * fence register that can contain the object.
2091 */
a9f1481f 2092 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2093}
2094
d8cb5086
CW
2095static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2096{
fac5e23e 2097 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2098 int err;
da494d7c 2099
f3f6184c
CW
2100 err = drm_gem_create_mmap_offset(&obj->base);
2101 if (!err)
2102 return 0;
d8cb5086 2103
f3f6184c
CW
2104 /* We can idle the GPU locklessly to flush stale objects, but in order
2105 * to claim that space for ourselves, we need to take the big
2106 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2107 */
ea746f36 2108 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2109 if (err)
2110 return err;
2111
2112 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2113 if (!err) {
2114 i915_gem_retire_requests(dev_priv);
2115 err = drm_gem_create_mmap_offset(&obj->base);
2116 mutex_unlock(&dev_priv->drm.struct_mutex);
2117 }
da494d7c 2118
f3f6184c 2119 return err;
d8cb5086
CW
2120}
2121
2122static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2123{
d8cb5086
CW
2124 drm_gem_free_mmap_offset(&obj->base);
2125}
2126
da6b51d0 2127int
ff72145b
DA
2128i915_gem_mmap_gtt(struct drm_file *file,
2129 struct drm_device *dev,
da6b51d0 2130 uint32_t handle,
ff72145b 2131 uint64_t *offset)
de151cf6 2132{
05394f39 2133 struct drm_i915_gem_object *obj;
de151cf6
JB
2134 int ret;
2135
03ac0642 2136 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2137 if (!obj)
2138 return -ENOENT;
ab18282d 2139
d8cb5086 2140 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2141 if (ret == 0)
2142 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2143
f0cd5182 2144 i915_gem_object_put(obj);
1d7cfea1 2145 return ret;
de151cf6
JB
2146}
2147
ff72145b
DA
2148/**
2149 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2150 * @dev: DRM device
2151 * @data: GTT mapping ioctl data
2152 * @file: GEM object info
2153 *
2154 * Simply returns the fake offset to userspace so it can mmap it.
2155 * The mmap call will end up in drm_gem_mmap(), which will set things
2156 * up so we can get faults in the handler above.
2157 *
2158 * The fault handler will take care of binding the object into the GTT
2159 * (since it may have been evicted to make room for something), allocating
2160 * a fence register, and mapping the appropriate aperture address into
2161 * userspace.
2162 */
2163int
2164i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2165 struct drm_file *file)
2166{
2167 struct drm_i915_gem_mmap_gtt *args = data;
2168
da6b51d0 2169 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2170}
2171
225067ee
DV
2172/* Immediately discard the backing storage */
2173static void
2174i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2175{
4d6294bf 2176 i915_gem_object_free_mmap_offset(obj);
1286ff73 2177
4d6294bf
CW
2178 if (obj->base.filp == NULL)
2179 return;
e5281ccd 2180
225067ee
DV
2181 /* Our goal here is to return as much of the memory as
2182 * is possible back to the system as we are called from OOM.
2183 * To do this we must instruct the shmfs to drop all of its
2184 * backing pages, *now*.
2185 */
5537252b 2186 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2187 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2188}
e5281ccd 2189
5537252b 2190/* Try to discard unwanted pages */
03ac84f1 2191void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2192{
5537252b
CW
2193 struct address_space *mapping;
2194
1233e2db
CW
2195 lockdep_assert_held(&obj->mm.lock);
2196 GEM_BUG_ON(obj->mm.pages);
2197
a4f5ea64 2198 switch (obj->mm.madv) {
5537252b
CW
2199 case I915_MADV_DONTNEED:
2200 i915_gem_object_truncate(obj);
2201 case __I915_MADV_PURGED:
2202 return;
2203 }
2204
2205 if (obj->base.filp == NULL)
2206 return;
2207
93c76a3d 2208 mapping = obj->base.filp->f_mapping,
5537252b 2209 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2210}
2211
5cdf5881 2212static void
03ac84f1
CW
2213i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2214 struct sg_table *pages)
673a394b 2215{
85d1225e
DG
2216 struct sgt_iter sgt_iter;
2217 struct page *page;
1286ff73 2218
2b3c8317 2219 __i915_gem_object_release_shmem(obj, pages);
673a394b 2220
03ac84f1 2221 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2222
6dacfd2f 2223 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2224 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2225
03ac84f1 2226 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2227 if (obj->mm.dirty)
9da3da66 2228 set_page_dirty(page);
3ef94daa 2229
a4f5ea64 2230 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2231 mark_page_accessed(page);
3ef94daa 2232
09cbfeaf 2233 put_page(page);
3ef94daa 2234 }
a4f5ea64 2235 obj->mm.dirty = false;
673a394b 2236
03ac84f1
CW
2237 sg_free_table(pages);
2238 kfree(pages);
37e680a1 2239}
6c085a72 2240
96d77634
CW
2241static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2242{
2243 struct radix_tree_iter iter;
2244 void **slot;
2245
a4f5ea64
CW
2246 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2247 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2248}
2249
548625ee
CW
2250void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2251 enum i915_mm_subclass subclass)
37e680a1 2252{
03ac84f1 2253 struct sg_table *pages;
37e680a1 2254
a4f5ea64 2255 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2256 return;
a5570178 2257
15717de2 2258 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2259 if (!READ_ONCE(obj->mm.pages))
2260 return;
2261
2262 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2263 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2264 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2265 goto unlock;
3e123027 2266
a2165e31
CW
2267 /* ->put_pages might need to allocate memory for the bit17 swizzle
2268 * array, hence protect them from being reaped by removing them from gtt
2269 * lists early. */
03ac84f1
CW
2270 pages = fetch_and_zero(&obj->mm.pages);
2271 GEM_BUG_ON(!pages);
a2165e31 2272
a4f5ea64 2273 if (obj->mm.mapping) {
4b30cb23
CW
2274 void *ptr;
2275
a4f5ea64 2276 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2277 if (is_vmalloc_addr(ptr))
2278 vunmap(ptr);
fb8621d3 2279 else
4b30cb23
CW
2280 kunmap(kmap_to_page(ptr));
2281
a4f5ea64 2282 obj->mm.mapping = NULL;
0a798eb9
CW
2283 }
2284
96d77634
CW
2285 __i915_gem_object_reset_page_iter(obj);
2286
03ac84f1 2287 obj->ops->put_pages(obj, pages);
1233e2db
CW
2288unlock:
2289 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2290}
2291
4ff340f0 2292static unsigned int swiotlb_max_size(void)
871dfbd6
CW
2293{
2294#if IS_ENABLED(CONFIG_SWIOTLB)
2295 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2296#else
2297 return 0;
2298#endif
2299}
2300
0c40ce13
TU
2301static void i915_sg_trim(struct sg_table *orig_st)
2302{
2303 struct sg_table new_st;
2304 struct scatterlist *sg, *new_sg;
2305 unsigned int i;
2306
2307 if (orig_st->nents == orig_st->orig_nents)
2308 return;
2309
2310 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2311 return;
2312
2313 new_sg = new_st.sgl;
2314 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2315 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2316 /* called before being DMA mapped, no need to copy sg->dma_* */
2317 new_sg = sg_next(new_sg);
2318 }
2319
2320 sg_free_table(orig_st);
2321
2322 *orig_st = new_st;
2323}
2324
03ac84f1 2325static struct sg_table *
6c085a72 2326i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2327{
fac5e23e 2328 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2329 int page_count, i;
2330 struct address_space *mapping;
9da3da66
CW
2331 struct sg_table *st;
2332 struct scatterlist *sg;
85d1225e 2333 struct sgt_iter sgt_iter;
e5281ccd 2334 struct page *page;
90797e6d 2335 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2336 unsigned int max_segment;
e2273302 2337 int ret;
6c085a72 2338 gfp_t gfp;
e5281ccd 2339
6c085a72
CW
2340 /* Assert that the object is not currently in any GPU domain. As it
2341 * wasn't in the GTT, there shouldn't be any way it could have been in
2342 * a GPU cache
2343 */
03ac84f1
CW
2344 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2345 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2346
871dfbd6
CW
2347 max_segment = swiotlb_max_size();
2348 if (!max_segment)
4ff340f0 2349 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2350
9da3da66
CW
2351 st = kmalloc(sizeof(*st), GFP_KERNEL);
2352 if (st == NULL)
03ac84f1 2353 return ERR_PTR(-ENOMEM);
9da3da66 2354
05394f39 2355 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2356 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2357 kfree(st);
03ac84f1 2358 return ERR_PTR(-ENOMEM);
9da3da66 2359 }
e5281ccd 2360
9da3da66
CW
2361 /* Get the list of pages out of our struct file. They'll be pinned
2362 * at this point until we release them.
2363 *
2364 * Fail silently without starting the shrinker
2365 */
93c76a3d 2366 mapping = obj->base.filp->f_mapping;
c62d2555 2367 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2368 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2369 sg = st->sgl;
2370 st->nents = 0;
2371 for (i = 0; i < page_count; i++) {
6c085a72
CW
2372 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2373 if (IS_ERR(page)) {
21ab4e74
CW
2374 i915_gem_shrink(dev_priv,
2375 page_count,
2376 I915_SHRINK_BOUND |
2377 I915_SHRINK_UNBOUND |
2378 I915_SHRINK_PURGEABLE);
6c085a72
CW
2379 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2380 }
2381 if (IS_ERR(page)) {
2382 /* We've tried hard to allocate the memory by reaping
2383 * our own buffer, now let the real VM do its job and
2384 * go down in flames if truly OOM.
2385 */
f461d1be 2386 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2387 if (IS_ERR(page)) {
2388 ret = PTR_ERR(page);
6c085a72 2389 goto err_pages;
e2273302 2390 }
6c085a72 2391 }
871dfbd6
CW
2392 if (!i ||
2393 sg->length >= max_segment ||
2394 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2395 if (i)
2396 sg = sg_next(sg);
2397 st->nents++;
2398 sg_set_page(sg, page, PAGE_SIZE, 0);
2399 } else {
2400 sg->length += PAGE_SIZE;
2401 }
2402 last_pfn = page_to_pfn(page);
3bbbe706
DV
2403
2404 /* Check that the i965g/gm workaround works. */
2405 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2406 }
871dfbd6 2407 if (sg) /* loop terminated early; short sg table */
426729dc 2408 sg_mark_end(sg);
74ce6b6c 2409
0c40ce13
TU
2410 /* Trim unused sg entries to avoid wasting memory. */
2411 i915_sg_trim(st);
2412
03ac84f1 2413 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302
ID
2414 if (ret)
2415 goto err_pages;
2416
6dacfd2f 2417 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2418 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2419
03ac84f1 2420 return st;
e5281ccd
CW
2421
2422err_pages:
90797e6d 2423 sg_mark_end(sg);
85d1225e
DG
2424 for_each_sgt_page(page, sgt_iter, st)
2425 put_page(page);
9da3da66
CW
2426 sg_free_table(st);
2427 kfree(st);
0820baf3
CW
2428
2429 /* shmemfs first checks if there is enough memory to allocate the page
2430 * and reports ENOSPC should there be insufficient, along with the usual
2431 * ENOMEM for a genuine allocation failure.
2432 *
2433 * We use ENOSPC in our driver to mean that we have run out of aperture
2434 * space and so want to translate the error from shmemfs back to our
2435 * usual understanding of ENOMEM.
2436 */
e2273302
ID
2437 if (ret == -ENOSPC)
2438 ret = -ENOMEM;
2439
03ac84f1
CW
2440 return ERR_PTR(ret);
2441}
2442
2443void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2444 struct sg_table *pages)
2445{
1233e2db 2446 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2447
2448 obj->mm.get_page.sg_pos = pages->sgl;
2449 obj->mm.get_page.sg_idx = 0;
2450
2451 obj->mm.pages = pages;
2c3a3f44
CW
2452
2453 if (i915_gem_object_is_tiled(obj) &&
2454 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2455 GEM_BUG_ON(obj->mm.quirked);
2456 __i915_gem_object_pin_pages(obj);
2457 obj->mm.quirked = true;
2458 }
03ac84f1
CW
2459}
2460
2461static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2462{
2463 struct sg_table *pages;
2464
2c3a3f44
CW
2465 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2466
03ac84f1
CW
2467 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2468 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2469 return -EFAULT;
2470 }
2471
2472 pages = obj->ops->get_pages(obj);
2473 if (unlikely(IS_ERR(pages)))
2474 return PTR_ERR(pages);
2475
2476 __i915_gem_object_set_pages(obj, pages);
2477 return 0;
673a394b
EA
2478}
2479
37e680a1 2480/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2481 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2482 * multiple times before they are released by a single call to
1233e2db 2483 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2484 * either as a result of memory pressure (reaping pages under the shrinker)
2485 * or as the object is itself released.
2486 */
a4f5ea64 2487int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2488{
03ac84f1 2489 int err;
37e680a1 2490
1233e2db
CW
2491 err = mutex_lock_interruptible(&obj->mm.lock);
2492 if (err)
2493 return err;
4c7d62c6 2494
2c3a3f44
CW
2495 if (unlikely(!obj->mm.pages)) {
2496 err = ____i915_gem_object_get_pages(obj);
2497 if (err)
2498 goto unlock;
37e680a1 2499
2c3a3f44
CW
2500 smp_mb__before_atomic();
2501 }
2502 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2503
1233e2db
CW
2504unlock:
2505 mutex_unlock(&obj->mm.lock);
03ac84f1 2506 return err;
673a394b
EA
2507}
2508
dd6034c6 2509/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2510static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2511 enum i915_map_type type)
dd6034c6
DG
2512{
2513 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2514 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2515 struct sgt_iter sgt_iter;
2516 struct page *page;
b338fa47
DG
2517 struct page *stack_pages[32];
2518 struct page **pages = stack_pages;
dd6034c6 2519 unsigned long i = 0;
d31d7cb1 2520 pgprot_t pgprot;
dd6034c6
DG
2521 void *addr;
2522
2523 /* A single page can always be kmapped */
d31d7cb1 2524 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2525 return kmap(sg_page(sgt->sgl));
2526
b338fa47
DG
2527 if (n_pages > ARRAY_SIZE(stack_pages)) {
2528 /* Too big for stack -- allocate temporary array instead */
2529 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2530 if (!pages)
2531 return NULL;
2532 }
dd6034c6 2533
85d1225e
DG
2534 for_each_sgt_page(page, sgt_iter, sgt)
2535 pages[i++] = page;
dd6034c6
DG
2536
2537 /* Check that we have the expected number of pages */
2538 GEM_BUG_ON(i != n_pages);
2539
d31d7cb1
CW
2540 switch (type) {
2541 case I915_MAP_WB:
2542 pgprot = PAGE_KERNEL;
2543 break;
2544 case I915_MAP_WC:
2545 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2546 break;
2547 }
2548 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2549
b338fa47
DG
2550 if (pages != stack_pages)
2551 drm_free_large(pages);
dd6034c6
DG
2552
2553 return addr;
2554}
2555
2556/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2557void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2558 enum i915_map_type type)
0a798eb9 2559{
d31d7cb1
CW
2560 enum i915_map_type has_type;
2561 bool pinned;
2562 void *ptr;
0a798eb9
CW
2563 int ret;
2564
d31d7cb1 2565 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2566
1233e2db 2567 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2568 if (ret)
2569 return ERR_PTR(ret);
2570
1233e2db
CW
2571 pinned = true;
2572 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2573 if (unlikely(!obj->mm.pages)) {
2574 ret = ____i915_gem_object_get_pages(obj);
2575 if (ret)
2576 goto err_unlock;
1233e2db 2577
2c3a3f44
CW
2578 smp_mb__before_atomic();
2579 }
2580 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2581 pinned = false;
2582 }
2583 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2584
a4f5ea64 2585 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2586 if (ptr && has_type != type) {
2587 if (pinned) {
2588 ret = -EBUSY;
1233e2db 2589 goto err_unpin;
0a798eb9 2590 }
d31d7cb1
CW
2591
2592 if (is_vmalloc_addr(ptr))
2593 vunmap(ptr);
2594 else
2595 kunmap(kmap_to_page(ptr));
2596
a4f5ea64 2597 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2598 }
2599
d31d7cb1
CW
2600 if (!ptr) {
2601 ptr = i915_gem_object_map(obj, type);
2602 if (!ptr) {
2603 ret = -ENOMEM;
1233e2db 2604 goto err_unpin;
d31d7cb1
CW
2605 }
2606
a4f5ea64 2607 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2608 }
2609
1233e2db
CW
2610out_unlock:
2611 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2612 return ptr;
2613
1233e2db
CW
2614err_unpin:
2615 atomic_dec(&obj->mm.pages_pin_count);
2616err_unlock:
2617 ptr = ERR_PTR(ret);
2618 goto out_unlock;
0a798eb9
CW
2619}
2620
7b4d3a16 2621static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2622{
44e2c070 2623 unsigned long elapsed;
be62acb4 2624
44e2c070 2625 if (ctx->hang_stats.banned)
be62acb4
MK
2626 return true;
2627
7b4d3a16 2628 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2629 if (ctx->hang_stats.ban_period_seconds &&
2630 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2631 DRM_DEBUG("context hanging too fast, banning!\n");
2632 return true;
be62acb4
MK
2633 }
2634
2635 return false;
2636}
2637
7b4d3a16 2638static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2639 const bool guilty)
aa60c664 2640{
7b4d3a16 2641 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2642
2643 if (guilty) {
7b4d3a16 2644 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2645 hs->batch_active++;
2646 hs->guilty_ts = get_seconds();
2647 } else {
2648 hs->batch_pending++;
aa60c664
MK
2649 }
2650}
2651
8d9fc7fd 2652struct drm_i915_gem_request *
0bc40be8 2653i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2654{
4db080f9
CW
2655 struct drm_i915_gem_request *request;
2656
f69a02c9
CW
2657 /* We are called by the error capture and reset at a random
2658 * point in time. In particular, note that neither is crucially
2659 * ordered with an interrupt. After a hang, the GPU is dead and we
2660 * assume that no more writes can happen (we waited long enough for
2661 * all writes that were in transaction to be flushed) - adding an
2662 * extra delay for a recent interrupt is pointless. Hence, we do
2663 * not need an engine->irq_seqno_barrier() before the seqno reads.
2664 */
73cb9701 2665 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2666 if (__i915_gem_request_completed(request))
4db080f9 2667 continue;
aa60c664 2668
b6b0fac0 2669 return request;
4db080f9 2670 }
b6b0fac0
MK
2671
2672 return NULL;
2673}
2674
821ed7df
CW
2675static void reset_request(struct drm_i915_gem_request *request)
2676{
2677 void *vaddr = request->ring->vaddr;
2678 u32 head;
2679
2680 /* As this request likely depends on state from the lost
2681 * context, clear out all the user operations leaving the
2682 * breadcrumb at the end (so we get the fence notifications).
2683 */
2684 head = request->head;
2685 if (request->postfix < head) {
2686 memset(vaddr + head, 0, request->ring->size - head);
2687 head = 0;
2688 }
2689 memset(vaddr + head, 0, request->postfix - head);
2690}
2691
2692static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2693{
2694 struct drm_i915_gem_request *request;
821ed7df 2695 struct i915_gem_context *incomplete_ctx;
80b204bc 2696 struct intel_timeline *timeline;
b6b0fac0
MK
2697 bool ring_hung;
2698
821ed7df
CW
2699 if (engine->irq_seqno_barrier)
2700 engine->irq_seqno_barrier(engine);
2701
0bc40be8 2702 request = i915_gem_find_active_request(engine);
821ed7df 2703 if (!request)
b6b0fac0
MK
2704 return;
2705
0bc40be8 2706 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
77c60701
CW
2707 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2708 ring_hung = false;
2709
7b4d3a16 2710 i915_set_reset_status(request->ctx, ring_hung);
821ed7df
CW
2711 if (!ring_hung)
2712 return;
2713
2714 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
65e4760e 2715 engine->name, request->global_seqno);
821ed7df
CW
2716
2717 /* Setup the CS to resume from the breadcrumb of the hung request */
2718 engine->reset_hw(engine, request);
2719
2720 /* Users of the default context do not rely on logical state
2721 * preserved between batches. They have to emit full state on
2722 * every batch and so it is safe to execute queued requests following
2723 * the hang.
2724 *
2725 * Other contexts preserve state, now corrupt. We want to skip all
2726 * queued requests that reference the corrupt context.
2727 */
2728 incomplete_ctx = request->ctx;
2729 if (i915_gem_context_is_default(incomplete_ctx))
2730 return;
2731
73cb9701 2732 list_for_each_entry_continue(request, &engine->timeline->requests, link)
821ed7df
CW
2733 if (request->ctx == incomplete_ctx)
2734 reset_request(request);
80b204bc
CW
2735
2736 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2737 list_for_each_entry(request, &timeline->requests, link)
2738 reset_request(request);
4db080f9 2739}
aa60c664 2740
821ed7df 2741void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2742{
821ed7df 2743 struct intel_engine_cs *engine;
3b3f1650 2744 enum intel_engine_id id;
608c1a52 2745
4c7d62c6
CW
2746 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2747
821ed7df
CW
2748 i915_gem_retire_requests(dev_priv);
2749
3b3f1650 2750 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2751 i915_gem_reset_engine(engine);
2752
4362f4f6 2753 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2754
2755 if (dev_priv->gt.awake) {
2756 intel_sanitize_gt_powersave(dev_priv);
2757 intel_enable_gt_powersave(dev_priv);
2758 if (INTEL_GEN(dev_priv) >= 6)
2759 gen6_rps_busy(dev_priv);
2760 }
821ed7df
CW
2761}
2762
2763static void nop_submit_request(struct drm_i915_gem_request *request)
2764{
2765}
2766
2767static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2768{
2769 engine->submit_request = nop_submit_request;
70c2a24d 2770
c4b0930b
CW
2771 /* Mark all pending requests as complete so that any concurrent
2772 * (lockless) lookup doesn't try and wait upon the request as we
2773 * reset it.
2774 */
73cb9701 2775 intel_engine_init_global_seqno(engine,
cb399eab 2776 intel_engine_last_submit(engine));
c4b0930b 2777
dcb4c12a
OM
2778 /*
2779 * Clear the execlists queue up before freeing the requests, as those
2780 * are the ones that keep the context and ringbuffer backing objects
2781 * pinned in place.
2782 */
dcb4c12a 2783
7de1691a 2784 if (i915.enable_execlists) {
663f71e7
CW
2785 unsigned long flags;
2786
2787 spin_lock_irqsave(&engine->timeline->lock, flags);
2788
70c2a24d
CW
2789 i915_gem_request_put(engine->execlist_port[0].request);
2790 i915_gem_request_put(engine->execlist_port[1].request);
2791 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2792 engine->execlist_queue = RB_ROOT;
2793 engine->execlist_first = NULL;
663f71e7
CW
2794
2795 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2796 }
673a394b
EA
2797}
2798
821ed7df 2799void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
673a394b 2800{
e2f80391 2801 struct intel_engine_cs *engine;
3b3f1650 2802 enum intel_engine_id id;
673a394b 2803
821ed7df
CW
2804 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2805 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2806
821ed7df 2807 i915_gem_context_lost(dev_priv);
3b3f1650 2808 for_each_engine(engine, dev_priv, id)
821ed7df 2809 i915_gem_cleanup_engine(engine);
b913b33c 2810 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2811
821ed7df 2812 i915_gem_retire_requests(dev_priv);
673a394b
EA
2813}
2814
75ef9da2 2815static void
673a394b
EA
2816i915_gem_retire_work_handler(struct work_struct *work)
2817{
b29c19b6 2818 struct drm_i915_private *dev_priv =
67d97da3 2819 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2820 struct drm_device *dev = &dev_priv->drm;
673a394b 2821
891b48cf 2822 /* Come back later if the device is busy... */
b29c19b6 2823 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2824 i915_gem_retire_requests(dev_priv);
b29c19b6 2825 mutex_unlock(&dev->struct_mutex);
673a394b 2826 }
67d97da3
CW
2827
2828 /* Keep the retire handler running until we are finally idle.
2829 * We do not need to do this test under locking as in the worst-case
2830 * we queue the retire worker once too often.
2831 */
c9615613
CW
2832 if (READ_ONCE(dev_priv->gt.awake)) {
2833 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2834 queue_delayed_work(dev_priv->wq,
2835 &dev_priv->gt.retire_work,
bcb45086 2836 round_jiffies_up_relative(HZ));
c9615613 2837 }
b29c19b6 2838}
0a58705b 2839
b29c19b6
CW
2840static void
2841i915_gem_idle_work_handler(struct work_struct *work)
2842{
2843 struct drm_i915_private *dev_priv =
67d97da3 2844 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2845 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2846 struct intel_engine_cs *engine;
3b3f1650 2847 enum intel_engine_id id;
67d97da3
CW
2848 bool rearm_hangcheck;
2849
2850 if (!READ_ONCE(dev_priv->gt.awake))
2851 return;
2852
0cb5670b
ID
2853 /*
2854 * Wait for last execlists context complete, but bail out in case a
2855 * new request is submitted.
2856 */
2857 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2858 intel_execlists_idle(dev_priv), 10);
2859
28176ef4 2860 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2861 return;
2862
2863 rearm_hangcheck =
2864 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2865
2866 if (!mutex_trylock(&dev->struct_mutex)) {
2867 /* Currently busy, come back later */
2868 mod_delayed_work(dev_priv->wq,
2869 &dev_priv->gt.idle_work,
2870 msecs_to_jiffies(50));
2871 goto out_rearm;
2872 }
2873
93c97dc1
ID
2874 /*
2875 * New request retired after this work handler started, extend active
2876 * period until next instance of the work.
2877 */
2878 if (work_pending(work))
2879 goto out_unlock;
2880
28176ef4 2881 if (dev_priv->gt.active_requests)
67d97da3 2882 goto out_unlock;
b29c19b6 2883
0cb5670b
ID
2884 if (wait_for(intel_execlists_idle(dev_priv), 10))
2885 DRM_ERROR("Timeout waiting for engines to idle\n");
2886
3b3f1650 2887 for_each_engine(engine, dev_priv, id)
67d97da3 2888 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2889
67d97da3
CW
2890 GEM_BUG_ON(!dev_priv->gt.awake);
2891 dev_priv->gt.awake = false;
2892 rearm_hangcheck = false;
30ecad77 2893
67d97da3
CW
2894 if (INTEL_GEN(dev_priv) >= 6)
2895 gen6_rps_idle(dev_priv);
2896 intel_runtime_pm_put(dev_priv);
2897out_unlock:
2898 mutex_unlock(&dev->struct_mutex);
b29c19b6 2899
67d97da3
CW
2900out_rearm:
2901 if (rearm_hangcheck) {
2902 GEM_BUG_ON(!dev_priv->gt.awake);
2903 i915_queue_hangcheck(dev_priv);
35c94185 2904 }
673a394b
EA
2905}
2906
b1f788c6
CW
2907void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2908{
2909 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2910 struct drm_i915_file_private *fpriv = file->driver_priv;
2911 struct i915_vma *vma, *vn;
2912
2913 mutex_lock(&obj->base.dev->struct_mutex);
2914 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2915 if (vma->vm->file == fpriv)
2916 i915_vma_close(vma);
f8a7fde4
CW
2917
2918 if (i915_gem_object_is_active(obj) &&
2919 !i915_gem_object_has_active_reference(obj)) {
2920 i915_gem_object_set_active_reference(obj);
2921 i915_gem_object_get(obj);
2922 }
b1f788c6
CW
2923 mutex_unlock(&obj->base.dev->struct_mutex);
2924}
2925
e95433c7
CW
2926static unsigned long to_wait_timeout(s64 timeout_ns)
2927{
2928 if (timeout_ns < 0)
2929 return MAX_SCHEDULE_TIMEOUT;
2930
2931 if (timeout_ns == 0)
2932 return 0;
2933
2934 return nsecs_to_jiffies_timeout(timeout_ns);
2935}
2936
23ba4fd0
BW
2937/**
2938 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2939 * @dev: drm device pointer
2940 * @data: ioctl data blob
2941 * @file: drm file pointer
23ba4fd0
BW
2942 *
2943 * Returns 0 if successful, else an error is returned with the remaining time in
2944 * the timeout parameter.
2945 * -ETIME: object is still busy after timeout
2946 * -ERESTARTSYS: signal interrupted the wait
2947 * -ENONENT: object doesn't exist
2948 * Also possible, but rare:
2949 * -EAGAIN: GPU wedged
2950 * -ENOMEM: damn
2951 * -ENODEV: Internal IRQ fail
2952 * -E?: The add request failed
2953 *
2954 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2955 * non-zero timeout parameter the wait ioctl will wait for the given number of
2956 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2957 * without holding struct_mutex the object may become re-busied before this
2958 * function completes. A similar but shorter * race condition exists in the busy
2959 * ioctl
2960 */
2961int
2962i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2963{
2964 struct drm_i915_gem_wait *args = data;
2965 struct drm_i915_gem_object *obj;
e95433c7
CW
2966 ktime_t start;
2967 long ret;
23ba4fd0 2968
11b5d511
DV
2969 if (args->flags != 0)
2970 return -EINVAL;
2971
03ac0642 2972 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2973 if (!obj)
23ba4fd0 2974 return -ENOENT;
23ba4fd0 2975
e95433c7
CW
2976 start = ktime_get();
2977
2978 ret = i915_gem_object_wait(obj,
2979 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2980 to_wait_timeout(args->timeout_ns),
2981 to_rps_client(file));
2982
2983 if (args->timeout_ns > 0) {
2984 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2985 if (args->timeout_ns < 0)
2986 args->timeout_ns = 0;
b4716185
CW
2987 }
2988
f0cd5182 2989 i915_gem_object_put(obj);
ff865885 2990 return ret;
23ba4fd0
BW
2991}
2992
73cb9701 2993static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 2994{
73cb9701 2995 int ret, i;
4df2faf4 2996
73cb9701
CW
2997 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
2998 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
2999 if (ret)
3000 return ret;
3001 }
62e63007 3002
73cb9701
CW
3003 return 0;
3004}
3005
3006int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3007{
73cb9701
CW
3008 int ret;
3009
9caa34aa
CW
3010 if (flags & I915_WAIT_LOCKED) {
3011 struct i915_gem_timeline *tl;
3012
3013 lockdep_assert_held(&i915->drm.struct_mutex);
3014
3015 list_for_each_entry(tl, &i915->gt.timelines, link) {
3016 ret = wait_for_timeline(tl, flags);
3017 if (ret)
3018 return ret;
3019 }
3020 } else {
3021 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3022 if (ret)
3023 return ret;
3024 }
4df2faf4 3025
8a1a49f9 3026 return 0;
4df2faf4
DV
3027}
3028
d0da48cf
CW
3029void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3030 bool force)
673a394b 3031{
673a394b
EA
3032 /* If we don't have a page list set up, then we're not pinned
3033 * to GPU, and we can ignore the cache flush because it'll happen
3034 * again at bind time.
3035 */
a4f5ea64 3036 if (!obj->mm.pages)
d0da48cf 3037 return;
673a394b 3038
769ce464
ID
3039 /*
3040 * Stolen memory is always coherent with the GPU as it is explicitly
3041 * marked as wc by the system, or the system is cache-coherent.
3042 */
6a2c4232 3043 if (obj->stolen || obj->phys_handle)
d0da48cf 3044 return;
769ce464 3045
9c23f7fc
CW
3046 /* If the GPU is snooping the contents of the CPU cache,
3047 * we do not need to manually clear the CPU cache lines. However,
3048 * the caches are only snooped when the render cache is
3049 * flushed/invalidated. As we always have to emit invalidations
3050 * and flushes when moving into and out of the RENDER domain, correct
3051 * snooping behaviour occurs naturally as the result of our domain
3052 * tracking.
3053 */
0f71979a
CW
3054 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3055 obj->cache_dirty = true;
d0da48cf 3056 return;
0f71979a 3057 }
9c23f7fc 3058
1c5d22f7 3059 trace_i915_gem_object_clflush(obj);
a4f5ea64 3060 drm_clflush_sg(obj->mm.pages);
0f71979a 3061 obj->cache_dirty = false;
e47c68e9
EA
3062}
3063
3064/** Flushes the GTT write domain for the object if it's dirty. */
3065static void
05394f39 3066i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3067{
3b5724d7 3068 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3069
05394f39 3070 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3071 return;
3072
63256ec5 3073 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3074 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3075 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3076 *
3077 * However, we do have to enforce the order so that all writes through
3078 * the GTT land before any writes to the device, such as updates to
3079 * the GATT itself.
3b5724d7
CW
3080 *
3081 * We also have to wait a bit for the writes to land from the GTT.
3082 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3083 * timing. This issue has only been observed when switching quickly
3084 * between GTT writes and CPU reads from inside the kernel on recent hw,
3085 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3086 * system agents we cannot reproduce this behaviour).
e47c68e9 3087 */
63256ec5 3088 wmb();
3b5724d7 3089 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3090 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3091
d243ad82 3092 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3093
b0dc465f 3094 obj->base.write_domain = 0;
1c5d22f7 3095 trace_i915_gem_object_change_domain(obj,
05394f39 3096 obj->base.read_domains,
b0dc465f 3097 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3098}
3099
3100/** Flushes the CPU write domain for the object if it's dirty. */
3101static void
e62b59e4 3102i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3103{
05394f39 3104 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3105 return;
3106
d0da48cf 3107 i915_gem_clflush_object(obj, obj->pin_display);
de152b62 3108 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3109
b0dc465f 3110 obj->base.write_domain = 0;
1c5d22f7 3111 trace_i915_gem_object_change_domain(obj,
05394f39 3112 obj->base.read_domains,
b0dc465f 3113 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3114}
3115
2ef7eeaa
EA
3116/**
3117 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3118 * @obj: object to act on
3119 * @write: ask for write access or read only
2ef7eeaa
EA
3120 *
3121 * This function returns when the move is complete, including waiting on
3122 * flushes to occur.
3123 */
79e53945 3124int
2021746e 3125i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3126{
1c5d22f7 3127 uint32_t old_write_domain, old_read_domains;
e47c68e9 3128 int ret;
2ef7eeaa 3129
e95433c7 3130 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3131
e95433c7
CW
3132 ret = i915_gem_object_wait(obj,
3133 I915_WAIT_INTERRUPTIBLE |
3134 I915_WAIT_LOCKED |
3135 (write ? I915_WAIT_ALL : 0),
3136 MAX_SCHEDULE_TIMEOUT,
3137 NULL);
88241785
CW
3138 if (ret)
3139 return ret;
3140
c13d87ea
CW
3141 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3142 return 0;
3143
43566ded
CW
3144 /* Flush and acquire obj->pages so that we are coherent through
3145 * direct access in memory with previous cached writes through
3146 * shmemfs and that our cache domain tracking remains valid.
3147 * For example, if the obj->filp was moved to swap without us
3148 * being notified and releasing the pages, we would mistakenly
3149 * continue to assume that the obj remained out of the CPU cached
3150 * domain.
3151 */
a4f5ea64 3152 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3153 if (ret)
3154 return ret;
3155
e62b59e4 3156 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3157
d0a57789
CW
3158 /* Serialise direct access to this object with the barriers for
3159 * coherent writes from the GPU, by effectively invalidating the
3160 * GTT domain upon first access.
3161 */
3162 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3163 mb();
3164
05394f39
CW
3165 old_write_domain = obj->base.write_domain;
3166 old_read_domains = obj->base.read_domains;
1c5d22f7 3167
e47c68e9
EA
3168 /* It should now be out of any other write domains, and we can update
3169 * the domain values for our changes.
3170 */
40e62d5d 3171 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3172 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3173 if (write) {
05394f39
CW
3174 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3175 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3176 obj->mm.dirty = true;
2ef7eeaa
EA
3177 }
3178
1c5d22f7
CW
3179 trace_i915_gem_object_change_domain(obj,
3180 old_read_domains,
3181 old_write_domain);
3182
a4f5ea64 3183 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3184 return 0;
3185}
3186
ef55f92a
CW
3187/**
3188 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3189 * @obj: object to act on
3190 * @cache_level: new cache level to set for the object
ef55f92a
CW
3191 *
3192 * After this function returns, the object will be in the new cache-level
3193 * across all GTT and the contents of the backing storage will be coherent,
3194 * with respect to the new cache-level. In order to keep the backing storage
3195 * coherent for all users, we only allow a single cache level to be set
3196 * globally on the object and prevent it from being changed whilst the
3197 * hardware is reading from the object. That is if the object is currently
3198 * on the scanout it will be set to uncached (or equivalent display
3199 * cache coherency) and all non-MOCS GPU access will also be uncached so
3200 * that all direct access to the scanout remains coherent.
3201 */
e4ffd173
CW
3202int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3203 enum i915_cache_level cache_level)
3204{
aa653a68 3205 struct i915_vma *vma;
ed75a55b 3206 int ret = 0;
e4ffd173 3207
4c7d62c6
CW
3208 lockdep_assert_held(&obj->base.dev->struct_mutex);
3209
e4ffd173 3210 if (obj->cache_level == cache_level)
ed75a55b 3211 goto out;
e4ffd173 3212
ef55f92a
CW
3213 /* Inspect the list of currently bound VMA and unbind any that would
3214 * be invalid given the new cache-level. This is principally to
3215 * catch the issue of the CS prefetch crossing page boundaries and
3216 * reading an invalid PTE on older architectures.
3217 */
aa653a68
CW
3218restart:
3219 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3220 if (!drm_mm_node_allocated(&vma->node))
3221 continue;
3222
20dfbde4 3223 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3224 DRM_DEBUG("can not change the cache level of pinned objects\n");
3225 return -EBUSY;
3226 }
3227
aa653a68
CW
3228 if (i915_gem_valid_gtt_space(vma, cache_level))
3229 continue;
3230
3231 ret = i915_vma_unbind(vma);
3232 if (ret)
3233 return ret;
3234
3235 /* As unbinding may affect other elements in the
3236 * obj->vma_list (due to side-effects from retiring
3237 * an active vma), play safe and restart the iterator.
3238 */
3239 goto restart;
42d6ab48
CW
3240 }
3241
ef55f92a
CW
3242 /* We can reuse the existing drm_mm nodes but need to change the
3243 * cache-level on the PTE. We could simply unbind them all and
3244 * rebind with the correct cache-level on next use. However since
3245 * we already have a valid slot, dma mapping, pages etc, we may as
3246 * rewrite the PTE in the belief that doing so tramples upon less
3247 * state and so involves less work.
3248 */
15717de2 3249 if (obj->bind_count) {
ef55f92a
CW
3250 /* Before we change the PTE, the GPU must not be accessing it.
3251 * If we wait upon the object, we know that all the bound
3252 * VMA are no longer active.
3253 */
e95433c7
CW
3254 ret = i915_gem_object_wait(obj,
3255 I915_WAIT_INTERRUPTIBLE |
3256 I915_WAIT_LOCKED |
3257 I915_WAIT_ALL,
3258 MAX_SCHEDULE_TIMEOUT,
3259 NULL);
e4ffd173
CW
3260 if (ret)
3261 return ret;
3262
0031fb96
TU
3263 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3264 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3265 /* Access to snoopable pages through the GTT is
3266 * incoherent and on some machines causes a hard
3267 * lockup. Relinquish the CPU mmaping to force
3268 * userspace to refault in the pages and we can
3269 * then double check if the GTT mapping is still
3270 * valid for that pointer access.
3271 */
3272 i915_gem_release_mmap(obj);
3273
3274 /* As we no longer need a fence for GTT access,
3275 * we can relinquish it now (and so prevent having
3276 * to steal a fence from someone else on the next
3277 * fence request). Note GPU activity would have
3278 * dropped the fence as all snoopable access is
3279 * supposed to be linear.
3280 */
49ef5294
CW
3281 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3282 ret = i915_vma_put_fence(vma);
3283 if (ret)
3284 return ret;
3285 }
ef55f92a
CW
3286 } else {
3287 /* We either have incoherent backing store and
3288 * so no GTT access or the architecture is fully
3289 * coherent. In such cases, existing GTT mmaps
3290 * ignore the cache bit in the PTE and we can
3291 * rewrite it without confusing the GPU or having
3292 * to force userspace to fault back in its mmaps.
3293 */
e4ffd173
CW
3294 }
3295
1c7f4bca 3296 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3297 if (!drm_mm_node_allocated(&vma->node))
3298 continue;
3299
3300 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3301 if (ret)
3302 return ret;
3303 }
e4ffd173
CW
3304 }
3305
1c7f4bca 3306 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3307 vma->node.color = cache_level;
3308 obj->cache_level = cache_level;
3309
ed75a55b 3310out:
ef55f92a
CW
3311 /* Flush the dirty CPU caches to the backing storage so that the
3312 * object is now coherent at its new cache level (with respect
3313 * to the access domain).
3314 */
d0da48cf
CW
3315 if (obj->cache_dirty && cpu_write_needs_clflush(obj))
3316 i915_gem_clflush_object(obj, true);
e4ffd173 3317
e4ffd173
CW
3318 return 0;
3319}
3320
199adf40
BW
3321int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322 struct drm_file *file)
e6994aee 3323{
199adf40 3324 struct drm_i915_gem_caching *args = data;
e6994aee 3325 struct drm_i915_gem_object *obj;
fbbd37b3 3326 int err = 0;
e6994aee 3327
fbbd37b3
CW
3328 rcu_read_lock();
3329 obj = i915_gem_object_lookup_rcu(file, args->handle);
3330 if (!obj) {
3331 err = -ENOENT;
3332 goto out;
3333 }
e6994aee 3334
651d794f
CW
3335 switch (obj->cache_level) {
3336 case I915_CACHE_LLC:
3337 case I915_CACHE_L3_LLC:
3338 args->caching = I915_CACHING_CACHED;
3339 break;
3340
4257d3ba
CW
3341 case I915_CACHE_WT:
3342 args->caching = I915_CACHING_DISPLAY;
3343 break;
3344
651d794f
CW
3345 default:
3346 args->caching = I915_CACHING_NONE;
3347 break;
3348 }
fbbd37b3
CW
3349out:
3350 rcu_read_unlock();
3351 return err;
e6994aee
CW
3352}
3353
199adf40
BW
3354int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3355 struct drm_file *file)
e6994aee 3356{
9c870d03 3357 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3358 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3359 struct drm_i915_gem_object *obj;
3360 enum i915_cache_level level;
3361 int ret;
3362
199adf40
BW
3363 switch (args->caching) {
3364 case I915_CACHING_NONE:
e6994aee
CW
3365 level = I915_CACHE_NONE;
3366 break;
199adf40 3367 case I915_CACHING_CACHED:
e5756c10
ID
3368 /*
3369 * Due to a HW issue on BXT A stepping, GPU stores via a
3370 * snooped mapping may leave stale data in a corresponding CPU
3371 * cacheline, whereas normally such cachelines would get
3372 * invalidated.
3373 */
9c870d03 3374 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3375 return -ENODEV;
3376
e6994aee
CW
3377 level = I915_CACHE_LLC;
3378 break;
4257d3ba 3379 case I915_CACHING_DISPLAY:
9c870d03 3380 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3381 break;
e6994aee
CW
3382 default:
3383 return -EINVAL;
3384 }
3385
3bc2913e
BW
3386 ret = i915_mutex_lock_interruptible(dev);
3387 if (ret)
9c870d03 3388 return ret;
3bc2913e 3389
03ac0642
CW
3390 obj = i915_gem_object_lookup(file, args->handle);
3391 if (!obj) {
e6994aee
CW
3392 ret = -ENOENT;
3393 goto unlock;
3394 }
3395
3396 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3397 i915_gem_object_put(obj);
e6994aee
CW
3398unlock:
3399 mutex_unlock(&dev->struct_mutex);
3400 return ret;
3401}
3402
b9241ea3 3403/*
2da3b9b9
CW
3404 * Prepare buffer for display plane (scanout, cursors, etc).
3405 * Can be called from an uninterruptible phase (modesetting) and allows
3406 * any flushes to be pipelined (for pageflips).
b9241ea3 3407 */
058d88c4 3408struct i915_vma *
2da3b9b9
CW
3409i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3410 u32 alignment,
e6617330 3411 const struct i915_ggtt_view *view)
b9241ea3 3412{
058d88c4 3413 struct i915_vma *vma;
2da3b9b9 3414 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3415 int ret;
3416
4c7d62c6
CW
3417 lockdep_assert_held(&obj->base.dev->struct_mutex);
3418
cc98b413
CW
3419 /* Mark the pin_display early so that we account for the
3420 * display coherency whilst setting up the cache domains.
3421 */
8a0c39b1 3422 obj->pin_display++;
cc98b413 3423
a7ef0640
EA
3424 /* The display engine is not coherent with the LLC cache on gen6. As
3425 * a result, we make sure that the pinning that is about to occur is
3426 * done with uncached PTEs. This is lowest common denominator for all
3427 * chipsets.
3428 *
3429 * However for gen6+, we could do better by using the GFDT bit instead
3430 * of uncaching, which would allow us to flush all the LLC-cached data
3431 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3432 */
651d794f 3433 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3434 HAS_WT(to_i915(obj->base.dev)) ?
3435 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3436 if (ret) {
3437 vma = ERR_PTR(ret);
cc98b413 3438 goto err_unpin_display;
058d88c4 3439 }
a7ef0640 3440
2da3b9b9
CW
3441 /* As the user may map the buffer once pinned in the display plane
3442 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3443 * always use map_and_fenceable for all scanout buffers. However,
3444 * it may simply be too big to fit into mappable, in which case
3445 * put it anyway and hope that userspace can cope (but always first
3446 * try to preserve the existing ABI).
2da3b9b9 3447 */
2efb813d
CW
3448 vma = ERR_PTR(-ENOSPC);
3449 if (view->type == I915_GGTT_VIEW_NORMAL)
3450 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3451 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3452 if (IS_ERR(vma)) {
3453 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3454 unsigned int flags;
3455
3456 /* Valleyview is definitely limited to scanning out the first
3457 * 512MiB. Lets presume this behaviour was inherited from the
3458 * g4x display engine and that all earlier gen are similarly
3459 * limited. Testing suggests that it is a little more
3460 * complicated than this. For example, Cherryview appears quite
3461 * happy to scanout from anywhere within its global aperture.
3462 */
3463 flags = 0;
3464 if (HAS_GMCH_DISPLAY(i915))
3465 flags = PIN_MAPPABLE;
3466 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3467 }
058d88c4 3468 if (IS_ERR(vma))
cc98b413 3469 goto err_unpin_display;
2da3b9b9 3470
d8923dcf
CW
3471 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3472
e62b59e4 3473 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3474
2da3b9b9 3475 old_write_domain = obj->base.write_domain;
05394f39 3476 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3477
3478 /* It should now be out of any other write domains, and we can update
3479 * the domain values for our changes.
3480 */
e5f1d962 3481 obj->base.write_domain = 0;
05394f39 3482 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3483
3484 trace_i915_gem_object_change_domain(obj,
3485 old_read_domains,
2da3b9b9 3486 old_write_domain);
b9241ea3 3487
058d88c4 3488 return vma;
cc98b413
CW
3489
3490err_unpin_display:
8a0c39b1 3491 obj->pin_display--;
058d88c4 3492 return vma;
cc98b413
CW
3493}
3494
3495void
058d88c4 3496i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3497{
4c7d62c6
CW
3498 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3499
058d88c4 3500 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3501 return;
3502
d8923dcf
CW
3503 if (--vma->obj->pin_display == 0)
3504 vma->display_alignment = 0;
e6617330 3505
383d5823
CW
3506 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3507 if (!i915_vma_is_active(vma))
3508 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3509
058d88c4 3510 i915_vma_unpin(vma);
b9241ea3
ZW
3511}
3512
e47c68e9
EA
3513/**
3514 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3515 * @obj: object to act on
3516 * @write: requesting write or read-only access
e47c68e9
EA
3517 *
3518 * This function returns when the move is complete, including waiting on
3519 * flushes to occur.
3520 */
dabdfe02 3521int
919926ae 3522i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3523{
1c5d22f7 3524 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3525 int ret;
3526
e95433c7 3527 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3528
e95433c7
CW
3529 ret = i915_gem_object_wait(obj,
3530 I915_WAIT_INTERRUPTIBLE |
3531 I915_WAIT_LOCKED |
3532 (write ? I915_WAIT_ALL : 0),
3533 MAX_SCHEDULE_TIMEOUT,
3534 NULL);
88241785
CW
3535 if (ret)
3536 return ret;
3537
c13d87ea
CW
3538 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3539 return 0;
3540
e47c68e9 3541 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3542
05394f39
CW
3543 old_write_domain = obj->base.write_domain;
3544 old_read_domains = obj->base.read_domains;
1c5d22f7 3545
e47c68e9 3546 /* Flush the CPU cache if it's still invalid. */
05394f39 3547 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3548 i915_gem_clflush_object(obj, false);
2ef7eeaa 3549
05394f39 3550 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3551 }
3552
3553 /* It should now be out of any other write domains, and we can update
3554 * the domain values for our changes.
3555 */
40e62d5d 3556 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3557
3558 /* If we're writing through the CPU, then the GPU read domains will
3559 * need to be invalidated at next use.
3560 */
3561 if (write) {
05394f39
CW
3562 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3563 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3564 }
2ef7eeaa 3565
1c5d22f7
CW
3566 trace_i915_gem_object_change_domain(obj,
3567 old_read_domains,
3568 old_write_domain);
3569
2ef7eeaa
EA
3570 return 0;
3571}
3572
673a394b
EA
3573/* Throttle our rendering by waiting until the ring has completed our requests
3574 * emitted over 20 msec ago.
3575 *
b962442e
EA
3576 * Note that if we were to use the current jiffies each time around the loop,
3577 * we wouldn't escape the function with any frames outstanding if the time to
3578 * render a frame was over 20ms.
3579 *
673a394b
EA
3580 * This should get us reasonable parallelism between CPU and GPU but also
3581 * relatively low latency when blocking on a particular request to finish.
3582 */
40a5f0de 3583static int
f787a5f5 3584i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3585{
fac5e23e 3586 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3587 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3588 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3589 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3590 long ret;
93533c29 3591
f4457ae7
CW
3592 /* ABI: return -EIO if already wedged */
3593 if (i915_terminally_wedged(&dev_priv->gpu_error))
3594 return -EIO;
e110e8d6 3595
1c25595f 3596 spin_lock(&file_priv->mm.lock);
f787a5f5 3597 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3598 if (time_after_eq(request->emitted_jiffies, recent_enough))
3599 break;
40a5f0de 3600
fcfa423c
JH
3601 /*
3602 * Note that the request might not have been submitted yet.
3603 * In which case emitted_jiffies will be zero.
3604 */
3605 if (!request->emitted_jiffies)
3606 continue;
3607
54fb2411 3608 target = request;
b962442e 3609 }
ff865885 3610 if (target)
e8a261ea 3611 i915_gem_request_get(target);
1c25595f 3612 spin_unlock(&file_priv->mm.lock);
40a5f0de 3613
54fb2411 3614 if (target == NULL)
f787a5f5 3615 return 0;
2bc43b5c 3616
e95433c7
CW
3617 ret = i915_wait_request(target,
3618 I915_WAIT_INTERRUPTIBLE,
3619 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3620 i915_gem_request_put(target);
ff865885 3621
e95433c7 3622 return ret < 0 ? ret : 0;
40a5f0de
EA
3623}
3624
058d88c4 3625struct i915_vma *
ec7adb6e
JL
3626i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3627 const struct i915_ggtt_view *view,
91b2db6f 3628 u64 size,
2ffffd0f
CW
3629 u64 alignment,
3630 u64 flags)
ec7adb6e 3631{
ad16d2ed
CW
3632 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3633 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3634 struct i915_vma *vma;
3635 int ret;
72e96d64 3636
4c7d62c6
CW
3637 lockdep_assert_held(&obj->base.dev->struct_mutex);
3638
058d88c4 3639 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3640 if (IS_ERR(vma))
058d88c4 3641 return vma;
59bfa124
CW
3642
3643 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3644 if (flags & PIN_NONBLOCK &&
3645 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3646 return ERR_PTR(-ENOSPC);
59bfa124 3647
ad16d2ed
CW
3648 if (flags & PIN_MAPPABLE) {
3649 u32 fence_size;
3650
3651 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3652 i915_gem_object_get_tiling(obj));
3653 /* If the required space is larger than the available
3654 * aperture, we will not able to find a slot for the
3655 * object and unbinding the object now will be in
3656 * vain. Worse, doing so may cause us to ping-pong
3657 * the object in and out of the Global GTT and
3658 * waste a lot of cycles under the mutex.
3659 */
3660 if (fence_size > dev_priv->ggtt.mappable_end)
3661 return ERR_PTR(-E2BIG);
3662
3663 /* If NONBLOCK is set the caller is optimistically
3664 * trying to cache the full object within the mappable
3665 * aperture, and *must* have a fallback in place for
3666 * situations where we cannot bind the object. We
3667 * can be a little more lax here and use the fallback
3668 * more often to avoid costly migrations of ourselves
3669 * and other objects within the aperture.
3670 *
3671 * Half-the-aperture is used as a simple heuristic.
3672 * More interesting would to do search for a free
3673 * block prior to making the commitment to unbind.
3674 * That caters for the self-harm case, and with a
3675 * little more heuristics (e.g. NOFAULT, NOEVICT)
3676 * we could try to minimise harm to others.
3677 */
3678 if (flags & PIN_NONBLOCK &&
3679 fence_size > dev_priv->ggtt.mappable_end / 2)
3680 return ERR_PTR(-ENOSPC);
3681 }
3682
59bfa124
CW
3683 WARN(i915_vma_is_pinned(vma),
3684 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3685 " offset=%08x, req.alignment=%llx,"
3686 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3687 i915_ggtt_offset(vma), alignment,
59bfa124 3688 !!(flags & PIN_MAPPABLE),
05a20d09 3689 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3690 ret = i915_vma_unbind(vma);
3691 if (ret)
058d88c4 3692 return ERR_PTR(ret);
59bfa124
CW
3693 }
3694
058d88c4
CW
3695 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3696 if (ret)
3697 return ERR_PTR(ret);
ec7adb6e 3698
058d88c4 3699 return vma;
673a394b
EA
3700}
3701
edf6b76f 3702static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3703{
3704 /* Note that we could alias engines in the execbuf API, but
3705 * that would be very unwise as it prevents userspace from
3706 * fine control over engine selection. Ahem.
3707 *
3708 * This should be something like EXEC_MAX_ENGINE instead of
3709 * I915_NUM_ENGINES.
3710 */
3711 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3712 return 0x10000 << id;
3713}
3714
3715static __always_inline unsigned int __busy_write_id(unsigned int id)
3716{
70cb472c
CW
3717 /* The uABI guarantees an active writer is also amongst the read
3718 * engines. This would be true if we accessed the activity tracking
3719 * under the lock, but as we perform the lookup of the object and
3720 * its activity locklessly we can not guarantee that the last_write
3721 * being active implies that we have set the same engine flag from
3722 * last_read - hence we always set both read and write busy for
3723 * last_write.
3724 */
3725 return id | __busy_read_flag(id);
3fdc13c7
CW
3726}
3727
edf6b76f 3728static __always_inline unsigned int
d07f0e59 3729__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3730 unsigned int (*flag)(unsigned int id))
3731{
d07f0e59 3732 struct drm_i915_gem_request *rq;
3fdc13c7 3733
d07f0e59
CW
3734 /* We have to check the current hw status of the fence as the uABI
3735 * guarantees forward progress. We could rely on the idle worker
3736 * to eventually flush us, but to minimise latency just ask the
3737 * hardware.
1255501d 3738 *
d07f0e59 3739 * Note we only report on the status of native fences.
1255501d 3740 */
d07f0e59
CW
3741 if (!dma_fence_is_i915(fence))
3742 return 0;
3743
3744 /* opencode to_request() in order to avoid const warnings */
3745 rq = container_of(fence, struct drm_i915_gem_request, fence);
3746 if (i915_gem_request_completed(rq))
3747 return 0;
3748
3749 return flag(rq->engine->exec_id);
3fdc13c7
CW
3750}
3751
edf6b76f 3752static __always_inline unsigned int
d07f0e59 3753busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3754{
d07f0e59 3755 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3756}
3757
edf6b76f 3758static __always_inline unsigned int
d07f0e59 3759busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3760{
d07f0e59
CW
3761 if (!fence)
3762 return 0;
3763
3764 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3765}
3766
673a394b
EA
3767int
3768i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3769 struct drm_file *file)
673a394b
EA
3770{
3771 struct drm_i915_gem_busy *args = data;
05394f39 3772 struct drm_i915_gem_object *obj;
d07f0e59
CW
3773 struct reservation_object_list *list;
3774 unsigned int seq;
fbbd37b3 3775 int err;
673a394b 3776
d07f0e59 3777 err = -ENOENT;
fbbd37b3
CW
3778 rcu_read_lock();
3779 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 3780 if (!obj)
fbbd37b3 3781 goto out;
d1b851fc 3782
d07f0e59
CW
3783 /* A discrepancy here is that we do not report the status of
3784 * non-i915 fences, i.e. even though we may report the object as idle,
3785 * a call to set-domain may still stall waiting for foreign rendering.
3786 * This also means that wait-ioctl may report an object as busy,
3787 * where busy-ioctl considers it idle.
3788 *
3789 * We trade the ability to warn of foreign fences to report on which
3790 * i915 engines are active for the object.
3791 *
3792 * Alternatively, we can trade that extra information on read/write
3793 * activity with
3794 * args->busy =
3795 * !reservation_object_test_signaled_rcu(obj->resv, true);
3796 * to report the overall busyness. This is what the wait-ioctl does.
3797 *
3798 */
3799retry:
3800 seq = raw_read_seqcount(&obj->resv->seq);
426960be 3801
d07f0e59
CW
3802 /* Translate the exclusive fence to the READ *and* WRITE engine */
3803 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 3804
d07f0e59
CW
3805 /* Translate shared fences to READ set of engines */
3806 list = rcu_dereference(obj->resv->fence);
3807 if (list) {
3808 unsigned int shared_count = list->shared_count, i;
3fdc13c7 3809
d07f0e59
CW
3810 for (i = 0; i < shared_count; ++i) {
3811 struct dma_fence *fence =
3812 rcu_dereference(list->shared[i]);
3813
3814 args->busy |= busy_check_reader(fence);
3815 }
426960be 3816 }
673a394b 3817
d07f0e59
CW
3818 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3819 goto retry;
3820
3821 err = 0;
fbbd37b3
CW
3822out:
3823 rcu_read_unlock();
3824 return err;
673a394b
EA
3825}
3826
3827int
3828i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3829 struct drm_file *file_priv)
3830{
0206e353 3831 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3832}
3833
3ef94daa
CW
3834int
3835i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3836 struct drm_file *file_priv)
3837{
fac5e23e 3838 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3839 struct drm_i915_gem_madvise *args = data;
05394f39 3840 struct drm_i915_gem_object *obj;
1233e2db 3841 int err;
3ef94daa
CW
3842
3843 switch (args->madv) {
3844 case I915_MADV_DONTNEED:
3845 case I915_MADV_WILLNEED:
3846 break;
3847 default:
3848 return -EINVAL;
3849 }
3850
03ac0642 3851 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
3852 if (!obj)
3853 return -ENOENT;
3854
3855 err = mutex_lock_interruptible(&obj->mm.lock);
3856 if (err)
3857 goto out;
3ef94daa 3858
a4f5ea64 3859 if (obj->mm.pages &&
3e510a8e 3860 i915_gem_object_is_tiled(obj) &&
656bfa3a 3861 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
3862 if (obj->mm.madv == I915_MADV_WILLNEED) {
3863 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 3864 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
3865 obj->mm.quirked = false;
3866 }
3867 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 3868 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 3869 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
3870 obj->mm.quirked = true;
3871 }
656bfa3a
DV
3872 }
3873
a4f5ea64
CW
3874 if (obj->mm.madv != __I915_MADV_PURGED)
3875 obj->mm.madv = args->madv;
3ef94daa 3876
6c085a72 3877 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 3878 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
3879 i915_gem_object_truncate(obj);
3880
a4f5ea64 3881 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 3882 mutex_unlock(&obj->mm.lock);
bb6baf76 3883
1233e2db 3884out:
f8c417cd 3885 i915_gem_object_put(obj);
1233e2db 3886 return err;
3ef94daa
CW
3887}
3888
37e680a1
CW
3889void i915_gem_object_init(struct drm_i915_gem_object *obj,
3890 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3891{
1233e2db
CW
3892 mutex_init(&obj->mm.lock);
3893
56cea323 3894 INIT_LIST_HEAD(&obj->global_link);
275f039d 3895 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 3896 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3897 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3898 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3899
37e680a1
CW
3900 obj->ops = ops;
3901
d07f0e59
CW
3902 reservation_object_init(&obj->__builtin_resv);
3903 obj->resv = &obj->__builtin_resv;
3904
50349247 3905 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
a4f5ea64
CW
3906
3907 obj->mm.madv = I915_MADV_WILLNEED;
3908 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3909 mutex_init(&obj->mm.get_page.lock);
0327d6ba 3910
f19ec8cb 3911 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3912}
3913
37e680a1 3914static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
3915 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3916 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
3917 .get_pages = i915_gem_object_get_pages_gtt,
3918 .put_pages = i915_gem_object_put_pages_gtt,
3919};
3920
b4bcbe2a
CW
3921/* Note we don't consider signbits :| */
3922#define overflows_type(x, T) \
3923 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3924
3925struct drm_i915_gem_object *
3926i915_gem_object_create(struct drm_device *dev, u64 size)
ac52bc56 3927{
a26e5239 3928 struct drm_i915_private *dev_priv = to_i915(dev);
c397b908 3929 struct drm_i915_gem_object *obj;
5949eac4 3930 struct address_space *mapping;
1a240d4d 3931 gfp_t mask;
fe3db79b 3932 int ret;
ac52bc56 3933
b4bcbe2a
CW
3934 /* There is a prevalence of the assumption that we fit the object's
3935 * page count inside a 32bit _signed_ variable. Let's document this and
3936 * catch if we ever need to fix it. In the meantime, if you do spot
3937 * such a local variable, please consider fixing!
3938 */
3939 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3940 return ERR_PTR(-E2BIG);
3941
3942 if (overflows_type(size, obj->base.size))
3943 return ERR_PTR(-E2BIG);
3944
42dcedd4 3945 obj = i915_gem_object_alloc(dev);
c397b908 3946 if (obj == NULL)
fe3db79b 3947 return ERR_PTR(-ENOMEM);
673a394b 3948
fe3db79b
CW
3949 ret = drm_gem_object_init(dev, &obj->base, size);
3950 if (ret)
3951 goto fail;
673a394b 3952
bed1ea95 3953 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
a26e5239 3954 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
bed1ea95
CW
3955 /* 965gm cannot relocate objects above 4GiB. */
3956 mask &= ~__GFP_HIGHMEM;
3957 mask |= __GFP_DMA32;
3958 }
3959
93c76a3d 3960 mapping = obj->base.filp->f_mapping;
bed1ea95 3961 mapping_set_gfp_mask(mapping, mask);
5949eac4 3962
37e680a1 3963 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3964
c397b908
DV
3965 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3966 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3967
0031fb96 3968 if (HAS_LLC(dev_priv)) {
3d29b842 3969 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3970 * cache) for about a 10% performance improvement
3971 * compared to uncached. Graphics requests other than
3972 * display scanout are coherent with the CPU in
3973 * accessing this cache. This means in this mode we
3974 * don't need to clflush on the CPU side, and on the
3975 * GPU side we only need to flush internal caches to
3976 * get data visible to the CPU.
3977 *
3978 * However, we maintain the display planes as UC, and so
3979 * need to rebind when first used as such.
3980 */
3981 obj->cache_level = I915_CACHE_LLC;
3982 } else
3983 obj->cache_level = I915_CACHE_NONE;
3984
d861e338
DV
3985 trace_i915_gem_object_create(obj);
3986
05394f39 3987 return obj;
fe3db79b
CW
3988
3989fail:
3990 i915_gem_object_free(obj);
fe3db79b 3991 return ERR_PTR(ret);
c397b908
DV
3992}
3993
340fbd8c
CW
3994static bool discard_backing_storage(struct drm_i915_gem_object *obj)
3995{
3996 /* If we are the last user of the backing storage (be it shmemfs
3997 * pages or stolen etc), we know that the pages are going to be
3998 * immediately released. In this case, we can then skip copying
3999 * back the contents from the GPU.
4000 */
4001
a4f5ea64 4002 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4003 return false;
4004
4005 if (obj->base.filp == NULL)
4006 return true;
4007
4008 /* At first glance, this looks racy, but then again so would be
4009 * userspace racing mmap against close. However, the first external
4010 * reference to the filp can only be obtained through the
4011 * i915_gem_mmap_ioctl() which safeguards us against the user
4012 * acquiring such a reference whilst we are in the middle of
4013 * freeing the object.
4014 */
4015 return atomic_long_read(&obj->base.filp->f_count) == 1;
4016}
4017
fbbd37b3
CW
4018static void __i915_gem_free_objects(struct drm_i915_private *i915,
4019 struct llist_node *freed)
673a394b 4020{
fbbd37b3 4021 struct drm_i915_gem_object *obj, *on;
673a394b 4022
fbbd37b3
CW
4023 mutex_lock(&i915->drm.struct_mutex);
4024 intel_runtime_pm_get(i915);
4025 llist_for_each_entry(obj, freed, freed) {
4026 struct i915_vma *vma, *vn;
4027
4028 trace_i915_gem_object_destroy(obj);
4029
4030 GEM_BUG_ON(i915_gem_object_is_active(obj));
4031 list_for_each_entry_safe(vma, vn,
4032 &obj->vma_list, obj_link) {
4033 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4034 GEM_BUG_ON(i915_vma_is_active(vma));
4035 vma->flags &= ~I915_VMA_PIN_MASK;
4036 i915_vma_close(vma);
4037 }
db6c2b41
CW
4038 GEM_BUG_ON(!list_empty(&obj->vma_list));
4039 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4040
56cea323 4041 list_del(&obj->global_link);
fbbd37b3
CW
4042 }
4043 intel_runtime_pm_put(i915);
4044 mutex_unlock(&i915->drm.struct_mutex);
4045
4046 llist_for_each_entry_safe(obj, on, freed, freed) {
4047 GEM_BUG_ON(obj->bind_count);
4048 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4049
4050 if (obj->ops->release)
4051 obj->ops->release(obj);
f65c9168 4052
fbbd37b3
CW
4053 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4054 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4055 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4056 GEM_BUG_ON(obj->mm.pages);
4057
4058 if (obj->base.import_attach)
4059 drm_prime_gem_destroy(&obj->base, NULL);
4060
d07f0e59 4061 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4062 drm_gem_object_release(&obj->base);
4063 i915_gem_info_remove_obj(i915, obj->base.size);
4064
4065 kfree(obj->bit_17);
4066 i915_gem_object_free(obj);
4067 }
4068}
4069
4070static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4071{
4072 struct llist_node *freed;
4073
4074 freed = llist_del_all(&i915->mm.free_list);
4075 if (unlikely(freed))
4076 __i915_gem_free_objects(i915, freed);
4077}
4078
4079static void __i915_gem_free_work(struct work_struct *work)
4080{
4081 struct drm_i915_private *i915 =
4082 container_of(work, struct drm_i915_private, mm.free_work);
4083 struct llist_node *freed;
26e12f89 4084
b1f788c6
CW
4085 /* All file-owned VMA should have been released by this point through
4086 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4087 * However, the object may also be bound into the global GTT (e.g.
4088 * older GPUs without per-process support, or for direct access through
4089 * the GTT either for the user or for scanout). Those VMA still need to
4090 * unbound now.
4091 */
1488fc08 4092
fbbd37b3
CW
4093 while ((freed = llist_del_all(&i915->mm.free_list)))
4094 __i915_gem_free_objects(i915, freed);
4095}
a071fa00 4096
fbbd37b3
CW
4097static void __i915_gem_free_object_rcu(struct rcu_head *head)
4098{
4099 struct drm_i915_gem_object *obj =
4100 container_of(head, typeof(*obj), rcu);
4101 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4102
4103 /* We can't simply use call_rcu() from i915_gem_free_object()
4104 * as we need to block whilst unbinding, and the call_rcu
4105 * task may be called from softirq context. So we take a
4106 * detour through a worker.
4107 */
4108 if (llist_add(&obj->freed, &i915->mm.free_list))
4109 schedule_work(&i915->mm.free_work);
4110}
656bfa3a 4111
fbbd37b3
CW
4112void i915_gem_free_object(struct drm_gem_object *gem_obj)
4113{
4114 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4115
bc0629a7
CW
4116 if (obj->mm.quirked)
4117 __i915_gem_object_unpin_pages(obj);
4118
340fbd8c 4119 if (discard_backing_storage(obj))
a4f5ea64 4120 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4121
fbbd37b3
CW
4122 /* Before we free the object, make sure any pure RCU-only
4123 * read-side critical sections are complete, e.g.
4124 * i915_gem_busy_ioctl(). For the corresponding synchronized
4125 * lookup see i915_gem_object_lookup_rcu().
4126 */
4127 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4128}
4129
f8a7fde4
CW
4130void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4131{
4132 lockdep_assert_held(&obj->base.dev->struct_mutex);
4133
4134 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4135 if (i915_gem_object_is_active(obj))
4136 i915_gem_object_set_active_reference(obj);
4137 else
4138 i915_gem_object_put(obj);
4139}
4140
3033acab
CW
4141static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4142{
4143 struct intel_engine_cs *engine;
4144 enum intel_engine_id id;
4145
4146 for_each_engine(engine, dev_priv, id)
4147 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4148}
4149
dcff85c8 4150int i915_gem_suspend(struct drm_device *dev)
29105ccc 4151{
fac5e23e 4152 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4153 int ret;
28dfe52a 4154
54b4f68f
CW
4155 intel_suspend_gt_powersave(dev_priv);
4156
45c5f202 4157 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4158
4159 /* We have to flush all the executing contexts to main memory so
4160 * that they can saved in the hibernation image. To ensure the last
4161 * context image is coherent, we have to switch away from it. That
4162 * leaves the dev_priv->kernel_context still active when
4163 * we actually suspend, and its image in memory may not match the GPU
4164 * state. Fortunately, the kernel_context is disposable and we do
4165 * not rely on its state.
4166 */
4167 ret = i915_gem_switch_to_kernel_context(dev_priv);
4168 if (ret)
4169 goto err;
4170
22dd3bb9
CW
4171 ret = i915_gem_wait_for_idle(dev_priv,
4172 I915_WAIT_INTERRUPTIBLE |
4173 I915_WAIT_LOCKED);
f7403347 4174 if (ret)
45c5f202 4175 goto err;
f7403347 4176
c033666a 4177 i915_gem_retire_requests(dev_priv);
28176ef4 4178 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4179
3033acab 4180 assert_kernel_context_is_current(dev_priv);
b2e862d0 4181 i915_gem_context_lost(dev_priv);
45c5f202
CW
4182 mutex_unlock(&dev->struct_mutex);
4183
737b1506 4184 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4185 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4186 flush_delayed_work(&dev_priv->gt.idle_work);
fbbd37b3 4187 flush_work(&dev_priv->mm.free_work);
29105ccc 4188
bdcf120b
CW
4189 /* Assert that we sucessfully flushed all the work and
4190 * reset the GPU back to its idle, low power state.
4191 */
67d97da3 4192 WARN_ON(dev_priv->gt.awake);
31ab49ab 4193 WARN_ON(!intel_execlists_idle(dev_priv));
bdcf120b 4194
1c777c5d
ID
4195 /*
4196 * Neither the BIOS, ourselves or any other kernel
4197 * expects the system to be in execlists mode on startup,
4198 * so we need to reset the GPU back to legacy mode. And the only
4199 * known way to disable logical contexts is through a GPU reset.
4200 *
4201 * So in order to leave the system in a known default configuration,
4202 * always reset the GPU upon unload and suspend. Afterwards we then
4203 * clean up the GEM state tracking, flushing off the requests and
4204 * leaving the system in a known idle state.
4205 *
4206 * Note that is of the upmost importance that the GPU is idle and
4207 * all stray writes are flushed *before* we dismantle the backing
4208 * storage for the pinned objects.
4209 *
4210 * However, since we are uncertain that resetting the GPU on older
4211 * machines is a good idea, we don't - just in case it leaves the
4212 * machine in an unusable condition.
4213 */
0031fb96 4214 if (HAS_HW_CONTEXTS(dev_priv)) {
1c777c5d
ID
4215 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4216 WARN_ON(reset && reset != -ENODEV);
4217 }
4218
673a394b 4219 return 0;
45c5f202
CW
4220
4221err:
4222 mutex_unlock(&dev->struct_mutex);
4223 return ret;
673a394b
EA
4224}
4225
5ab57c70
CW
4226void i915_gem_resume(struct drm_device *dev)
4227{
4228 struct drm_i915_private *dev_priv = to_i915(dev);
4229
31ab49ab
ID
4230 WARN_ON(dev_priv->gt.awake);
4231
5ab57c70
CW
4232 mutex_lock(&dev->struct_mutex);
4233 i915_gem_restore_gtt_mappings(dev);
4234
4235 /* As we didn't flush the kernel context before suspend, we cannot
4236 * guarantee that the context image is complete. So let's just reset
4237 * it and start again.
4238 */
821ed7df 4239 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4240
4241 mutex_unlock(&dev->struct_mutex);
4242}
4243
c6be607a 4244void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4245{
c6be607a 4246 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4247 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4248 return;
4249
4250 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4251 DISP_TILE_SURFACE_SWIZZLING);
4252
5db94019 4253 if (IS_GEN5(dev_priv))
11782b02
DV
4254 return;
4255
f691e2f4 4256 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4257 if (IS_GEN6(dev_priv))
6b26c86d 4258 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4259 else if (IS_GEN7(dev_priv))
6b26c86d 4260 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4261 else if (IS_GEN8(dev_priv))
31a5336e 4262 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4263 else
4264 BUG();
f691e2f4 4265}
e21af88d 4266
50a0bc90 4267static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4268{
81e7f200
VS
4269 I915_WRITE(RING_CTL(base), 0);
4270 I915_WRITE(RING_HEAD(base), 0);
4271 I915_WRITE(RING_TAIL(base), 0);
4272 I915_WRITE(RING_START(base), 0);
4273}
4274
50a0bc90 4275static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4276{
50a0bc90
TU
4277 if (IS_I830(dev_priv)) {
4278 init_unused_ring(dev_priv, PRB1_BASE);
4279 init_unused_ring(dev_priv, SRB0_BASE);
4280 init_unused_ring(dev_priv, SRB1_BASE);
4281 init_unused_ring(dev_priv, SRB2_BASE);
4282 init_unused_ring(dev_priv, SRB3_BASE);
4283 } else if (IS_GEN2(dev_priv)) {
4284 init_unused_ring(dev_priv, SRB0_BASE);
4285 init_unused_ring(dev_priv, SRB1_BASE);
4286 } else if (IS_GEN3(dev_priv)) {
4287 init_unused_ring(dev_priv, PRB1_BASE);
4288 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4289 }
4290}
4291
4fc7c971
BW
4292int
4293i915_gem_init_hw(struct drm_device *dev)
4294{
fac5e23e 4295 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4296 struct intel_engine_cs *engine;
3b3f1650 4297 enum intel_engine_id id;
d200cda6 4298 int ret;
4fc7c971 4299
de867c20
CW
4300 dev_priv->gt.last_init_time = ktime_get();
4301
5e4f5189
CW
4302 /* Double layer security blanket, see i915_gem_init() */
4303 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4304
0031fb96 4305 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4306 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4307
772c2a51 4308 if (IS_HASWELL(dev_priv))
50a0bc90 4309 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4310 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4311
6e266956 4312 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4313 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4314 u32 temp = I915_READ(GEN7_MSG_CTL);
4315 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4316 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4317 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4318 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4319 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4320 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4321 }
88a2b2a3
BW
4322 }
4323
c6be607a 4324 i915_gem_init_swizzling(dev_priv);
4fc7c971 4325
d5abdfda
DV
4326 /*
4327 * At least 830 can leave some of the unused rings
4328 * "active" (ie. head != tail) after resume which
4329 * will prevent c3 entry. Makes sure all unused rings
4330 * are totally idle.
4331 */
50a0bc90 4332 init_unused_rings(dev_priv);
d5abdfda 4333
ed54c1a1 4334 BUG_ON(!dev_priv->kernel_context);
90638cc1 4335
c6be607a 4336 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4337 if (ret) {
4338 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4339 goto out;
4340 }
4341
4342 /* Need to do basic initialisation of all rings first: */
3b3f1650 4343 for_each_engine(engine, dev_priv, id) {
e2f80391 4344 ret = engine->init_hw(engine);
35a57ffb 4345 if (ret)
5e4f5189 4346 goto out;
35a57ffb 4347 }
99433931 4348
0ccdacf6
PA
4349 intel_mocs_init_l3cc_table(dev);
4350
33a732f4 4351 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4352 ret = intel_guc_setup(dev);
4353 if (ret)
4354 goto out;
33a732f4 4355
5e4f5189
CW
4356out:
4357 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4358 return ret;
8187a2b7
ZN
4359}
4360
39df9190
CW
4361bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4362{
4363 if (INTEL_INFO(dev_priv)->gen < 6)
4364 return false;
4365
4366 /* TODO: make semaphores and Execlists play nicely together */
4367 if (i915.enable_execlists)
4368 return false;
4369
4370 if (value >= 0)
4371 return value;
4372
4373#ifdef CONFIG_INTEL_IOMMU
4374 /* Enable semaphores on SNB when IO remapping is off */
4375 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4376 return false;
4377#endif
4378
4379 return true;
4380}
4381
1070a42b
CW
4382int i915_gem_init(struct drm_device *dev)
4383{
fac5e23e 4384 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4385 int ret;
4386
1070a42b 4387 mutex_lock(&dev->struct_mutex);
d62b4892 4388
a83014d3 4389 if (!i915.enable_execlists) {
821ed7df 4390 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4391 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4392 } else {
821ed7df 4393 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4394 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4395 }
4396
5e4f5189
CW
4397 /* This is just a security blanket to placate dragons.
4398 * On some systems, we very sporadically observe that the first TLBs
4399 * used by the CS may be stale, despite us poking the TLB reset. If
4400 * we hold the forcewake during initialisation these problems
4401 * just magically go away.
4402 */
4403 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4404
72778cb2 4405 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4406
4407 ret = i915_gem_init_ggtt(dev_priv);
4408 if (ret)
4409 goto out_unlock;
d62b4892 4410
2fa48d8d 4411 ret = i915_gem_context_init(dev);
7bcc3777
JN
4412 if (ret)
4413 goto out_unlock;
2fa48d8d 4414
8b3e2d36 4415 ret = intel_engines_init(dev);
35a57ffb 4416 if (ret)
7bcc3777 4417 goto out_unlock;
2fa48d8d 4418
1070a42b 4419 ret = i915_gem_init_hw(dev);
60990320 4420 if (ret == -EIO) {
7e21d648 4421 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4422 * wedged. But we only want to do this where the GPU is angry,
4423 * for all other failure, such as an allocation failure, bail.
4424 */
4425 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4426 i915_gem_set_wedged(dev_priv);
60990320 4427 ret = 0;
1070a42b 4428 }
7bcc3777
JN
4429
4430out_unlock:
5e4f5189 4431 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4432 mutex_unlock(&dev->struct_mutex);
1070a42b 4433
60990320 4434 return ret;
1070a42b
CW
4435}
4436
8187a2b7 4437void
117897f4 4438i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4439{
fac5e23e 4440 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4441 struct intel_engine_cs *engine;
3b3f1650 4442 enum intel_engine_id id;
8187a2b7 4443
3b3f1650 4444 for_each_engine(engine, dev_priv, id)
117897f4 4445 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4446}
4447
40ae4e16
ID
4448void
4449i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4450{
49ef5294 4451 int i;
40ae4e16
ID
4452
4453 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4454 !IS_CHERRYVIEW(dev_priv))
4455 dev_priv->num_fence_regs = 32;
4456 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4457 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4458 dev_priv->num_fence_regs = 16;
4459 else
4460 dev_priv->num_fence_regs = 8;
4461
c033666a 4462 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4463 dev_priv->num_fence_regs =
4464 I915_READ(vgtif_reg(avail_rs.fence_num));
4465
4466 /* Initialize fence registers to zero */
49ef5294
CW
4467 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4468 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4469
4470 fence->i915 = dev_priv;
4471 fence->id = i;
4472 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4473 }
4362f4f6 4474 i915_gem_restore_fences(dev_priv);
40ae4e16 4475
4362f4f6 4476 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4477}
4478
73cb9701 4479int
d64aa096 4480i915_gem_load_init(struct drm_device *dev)
673a394b 4481{
fac5e23e 4482 struct drm_i915_private *dev_priv = to_i915(dev);
a933568e 4483 int err = -ENOMEM;
42dcedd4 4484
a933568e
TU
4485 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4486 if (!dev_priv->objects)
73cb9701 4487 goto err_out;
73cb9701 4488
a933568e
TU
4489 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4490 if (!dev_priv->vmas)
73cb9701 4491 goto err_objects;
73cb9701 4492
a933568e
TU
4493 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4494 SLAB_HWCACHE_ALIGN |
4495 SLAB_RECLAIM_ACCOUNT |
4496 SLAB_DESTROY_BY_RCU);
4497 if (!dev_priv->requests)
73cb9701 4498 goto err_vmas;
73cb9701 4499
52e54209
CW
4500 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4501 SLAB_HWCACHE_ALIGN |
4502 SLAB_RECLAIM_ACCOUNT);
4503 if (!dev_priv->dependencies)
4504 goto err_requests;
4505
73cb9701
CW
4506 mutex_lock(&dev_priv->drm.struct_mutex);
4507 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4508 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4509 mutex_unlock(&dev_priv->drm.struct_mutex);
4510 if (err)
52e54209 4511 goto err_dependencies;
673a394b 4512
a33afea5 4513 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4514 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4515 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4516 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4517 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4518 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4519 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4520 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4521 i915_gem_retire_work_handler);
67d97da3 4522 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4523 i915_gem_idle_work_handler);
1f15b76f 4524 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4525 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4526
72bfa19c
CW
4527 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4528
6b95a207 4529 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4530
ce453d81
CW
4531 dev_priv->mm.interruptible = true;
4532
6f633402
JL
4533 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4534
b5add959 4535 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4536
4537 return 0;
4538
52e54209
CW
4539err_dependencies:
4540 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4541err_requests:
4542 kmem_cache_destroy(dev_priv->requests);
4543err_vmas:
4544 kmem_cache_destroy(dev_priv->vmas);
4545err_objects:
4546 kmem_cache_destroy(dev_priv->objects);
4547err_out:
4548 return err;
673a394b 4549}
71acb5eb 4550
d64aa096
ID
4551void i915_gem_load_cleanup(struct drm_device *dev)
4552{
4553 struct drm_i915_private *dev_priv = to_i915(dev);
4554
7d5d59e5
CW
4555 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4556
52e54209 4557 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4558 kmem_cache_destroy(dev_priv->requests);
4559 kmem_cache_destroy(dev_priv->vmas);
4560 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4561
4562 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4563 rcu_barrier();
d64aa096
ID
4564}
4565
6a800eab
CW
4566int i915_gem_freeze(struct drm_i915_private *dev_priv)
4567{
4568 intel_runtime_pm_get(dev_priv);
4569
4570 mutex_lock(&dev_priv->drm.struct_mutex);
4571 i915_gem_shrink_all(dev_priv);
4572 mutex_unlock(&dev_priv->drm.struct_mutex);
4573
4574 intel_runtime_pm_put(dev_priv);
4575
4576 return 0;
4577}
4578
461fb99c
CW
4579int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4580{
4581 struct drm_i915_gem_object *obj;
7aab2d53
CW
4582 struct list_head *phases[] = {
4583 &dev_priv->mm.unbound_list,
4584 &dev_priv->mm.bound_list,
4585 NULL
4586 }, **p;
461fb99c
CW
4587
4588 /* Called just before we write the hibernation image.
4589 *
4590 * We need to update the domain tracking to reflect that the CPU
4591 * will be accessing all the pages to create and restore from the
4592 * hibernation, and so upon restoration those pages will be in the
4593 * CPU domain.
4594 *
4595 * To make sure the hibernation image contains the latest state,
4596 * we update that state just before writing out the image.
7aab2d53
CW
4597 *
4598 * To try and reduce the hibernation image, we manually shrink
4599 * the objects as well.
461fb99c
CW
4600 */
4601
6a800eab
CW
4602 mutex_lock(&dev_priv->drm.struct_mutex);
4603 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4604
7aab2d53 4605 for (p = phases; *p; p++) {
56cea323 4606 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4607 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4608 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4609 }
461fb99c 4610 }
6a800eab 4611 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4612
4613 return 0;
4614}
4615
f787a5f5 4616void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4617{
f787a5f5 4618 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4619 struct drm_i915_gem_request *request;
b962442e
EA
4620
4621 /* Clean up our request list when the client is going away, so that
4622 * later retire_requests won't dereference our soon-to-be-gone
4623 * file_priv.
4624 */
1c25595f 4625 spin_lock(&file_priv->mm.lock);
15f7bbc7 4626 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4627 request->file_priv = NULL;
1c25595f 4628 spin_unlock(&file_priv->mm.lock);
b29c19b6 4629
2e1b8730 4630 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4631 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4632 list_del(&file_priv->rps.link);
8d3afd7d 4633 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4634 }
b29c19b6
CW
4635}
4636
4637int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4638{
4639 struct drm_i915_file_private *file_priv;
e422b888 4640 int ret;
b29c19b6
CW
4641
4642 DRM_DEBUG_DRIVER("\n");
4643
4644 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4645 if (!file_priv)
4646 return -ENOMEM;
4647
4648 file->driver_priv = file_priv;
f19ec8cb 4649 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4650 file_priv->file = file;
2e1b8730 4651 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4652
4653 spin_lock_init(&file_priv->mm.lock);
4654 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4655
c80ff16e 4656 file_priv->bsd_engine = -1;
de1add36 4657
e422b888
BW
4658 ret = i915_gem_context_open(dev, file);
4659 if (ret)
4660 kfree(file_priv);
b29c19b6 4661
e422b888 4662 return ret;
b29c19b6
CW
4663}
4664
b680c37a
DV
4665/**
4666 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4667 * @old: current GEM buffer for the frontbuffer slots
4668 * @new: new GEM buffer for the frontbuffer slots
4669 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4670 *
4671 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4672 * from @old and setting them in @new. Both @old and @new can be NULL.
4673 */
a071fa00
DV
4674void i915_gem_track_fb(struct drm_i915_gem_object *old,
4675 struct drm_i915_gem_object *new,
4676 unsigned frontbuffer_bits)
4677{
faf5bf0a
CW
4678 /* Control of individual bits within the mask are guarded by
4679 * the owning plane->mutex, i.e. we can never see concurrent
4680 * manipulation of individual bits. But since the bitfield as a whole
4681 * is updated using RMW, we need to use atomics in order to update
4682 * the bits.
4683 */
4684 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4685 sizeof(atomic_t) * BITS_PER_BYTE);
4686
a071fa00 4687 if (old) {
faf5bf0a
CW
4688 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4689 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4690 }
4691
4692 if (new) {
faf5bf0a
CW
4693 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4694 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4695 }
4696}
4697
ea70299d
DG
4698/* Allocate a new GEM object and fill it with the supplied data */
4699struct drm_i915_gem_object *
4700i915_gem_object_create_from_data(struct drm_device *dev,
4701 const void *data, size_t size)
4702{
4703 struct drm_i915_gem_object *obj;
4704 struct sg_table *sg;
4705 size_t bytes;
4706 int ret;
4707
d37cd8a8 4708 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4709 if (IS_ERR(obj))
ea70299d
DG
4710 return obj;
4711
4712 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4713 if (ret)
4714 goto fail;
4715
a4f5ea64 4716 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4717 if (ret)
4718 goto fail;
4719
a4f5ea64 4720 sg = obj->mm.pages;
ea70299d 4721 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4722 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4723 i915_gem_object_unpin_pages(obj);
4724
4725 if (WARN_ON(bytes != size)) {
4726 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4727 ret = -EFAULT;
4728 goto fail;
4729 }
4730
4731 return obj;
4732
4733fail:
f8c417cd 4734 i915_gem_object_put(obj);
ea70299d
DG
4735 return ERR_PTR(ret);
4736}
96d77634
CW
4737
4738struct scatterlist *
4739i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4740 unsigned int n,
4741 unsigned int *offset)
4742{
a4f5ea64 4743 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4744 struct scatterlist *sg;
4745 unsigned int idx, count;
4746
4747 might_sleep();
4748 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4749 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4750
4751 /* As we iterate forward through the sg, we record each entry in a
4752 * radixtree for quick repeated (backwards) lookups. If we have seen
4753 * this index previously, we will have an entry for it.
4754 *
4755 * Initial lookup is O(N), but this is amortized to O(1) for
4756 * sequential page access (where each new request is consecutive
4757 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4758 * i.e. O(1) with a large constant!
4759 */
4760 if (n < READ_ONCE(iter->sg_idx))
4761 goto lookup;
4762
4763 mutex_lock(&iter->lock);
4764
4765 /* We prefer to reuse the last sg so that repeated lookup of this
4766 * (or the subsequent) sg are fast - comparing against the last
4767 * sg is faster than going through the radixtree.
4768 */
4769
4770 sg = iter->sg_pos;
4771 idx = iter->sg_idx;
4772 count = __sg_page_count(sg);
4773
4774 while (idx + count <= n) {
4775 unsigned long exception, i;
4776 int ret;
4777
4778 /* If we cannot allocate and insert this entry, or the
4779 * individual pages from this range, cancel updating the
4780 * sg_idx so that on this lookup we are forced to linearly
4781 * scan onwards, but on future lookups we will try the
4782 * insertion again (in which case we need to be careful of
4783 * the error return reporting that we have already inserted
4784 * this index).
4785 */
4786 ret = radix_tree_insert(&iter->radix, idx, sg);
4787 if (ret && ret != -EEXIST)
4788 goto scan;
4789
4790 exception =
4791 RADIX_TREE_EXCEPTIONAL_ENTRY |
4792 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4793 for (i = 1; i < count; i++) {
4794 ret = radix_tree_insert(&iter->radix, idx + i,
4795 (void *)exception);
4796 if (ret && ret != -EEXIST)
4797 goto scan;
4798 }
4799
4800 idx += count;
4801 sg = ____sg_next(sg);
4802 count = __sg_page_count(sg);
4803 }
4804
4805scan:
4806 iter->sg_pos = sg;
4807 iter->sg_idx = idx;
4808
4809 mutex_unlock(&iter->lock);
4810
4811 if (unlikely(n < idx)) /* insertion completed by another thread */
4812 goto lookup;
4813
4814 /* In case we failed to insert the entry into the radixtree, we need
4815 * to look beyond the current sg.
4816 */
4817 while (idx + count <= n) {
4818 idx += count;
4819 sg = ____sg_next(sg);
4820 count = __sg_page_count(sg);
4821 }
4822
4823 *offset = n - idx;
4824 return sg;
4825
4826lookup:
4827 rcu_read_lock();
4828
4829 sg = radix_tree_lookup(&iter->radix, n);
4830 GEM_BUG_ON(!sg);
4831
4832 /* If this index is in the middle of multi-page sg entry,
4833 * the radixtree will contain an exceptional entry that points
4834 * to the start of that range. We will return the pointer to
4835 * the base page and the offset of this page within the
4836 * sg entry's range.
4837 */
4838 *offset = 0;
4839 if (unlikely(radix_tree_exception(sg))) {
4840 unsigned long base =
4841 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4842
4843 sg = radix_tree_lookup(&iter->radix, base);
4844 GEM_BUG_ON(!sg);
4845
4846 *offset = n - base;
4847 }
4848
4849 rcu_read_unlock();
4850
4851 return sg;
4852}
4853
4854struct page *
4855i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4856{
4857 struct scatterlist *sg;
4858 unsigned int offset;
4859
4860 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4861
4862 sg = i915_gem_object_get_sg(obj, n, &offset);
4863 return nth_page(sg_page(sg), offset);
4864}
4865
4866/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4867struct page *
4868i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4869 unsigned int n)
4870{
4871 struct page *page;
4872
4873 page = i915_gem_object_get_page(obj, n);
a4f5ea64 4874 if (!obj->mm.dirty)
96d77634
CW
4875 set_page_dirty(page);
4876
4877 return page;
4878}
4879
4880dma_addr_t
4881i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4882 unsigned long n)
4883{
4884 struct scatterlist *sg;
4885 unsigned int offset;
4886
4887 sg = i915_gem_object_get_sg(obj, n, &offset);
4888 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4889}