]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-intel-next-2013-09-21-merged' of git://people.freedesktop.org/~danvet...
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
6c085a72 67static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
7dc19d5a 68static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 207 if (obj->pin_count)
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
ed0291fd 264 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
0b74b508 479 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
0b74b508
XZ
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
974/**
975 * __wait_seqno - wait until execution of seqno has finished
976 * @ring: the ring expected to report seqno
977 * @seqno: duh!
f69061be 978 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
979 * @interruptible: do an interruptible wait (normally yes)
980 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
981 *
f69061be
DV
982 * Note: It is of utmost importance that the passed in seqno and reset_counter
983 * values have been read by the caller in an smp safe manner. Where read-side
984 * locks are involved, it is sufficient to read the reset_counter before
985 * unlocking the lock that protects the seqno. For lockless tricks, the
986 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
987 * inserted.
988 *
b361237b
CW
989 * Returns 0 if the seqno was found within the alloted time. Else returns the
990 * errno with remaining time filled in timeout argument.
991 */
992static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 993 unsigned reset_counter,
b361237b
CW
994 bool interruptible, struct timespec *timeout)
995{
996 drm_i915_private_t *dev_priv = ring->dev->dev_private;
997 struct timespec before, now, wait_time={1,0};
998 unsigned long timeout_jiffies;
999 long end;
1000 bool wait_forever = true;
1001 int ret;
1002
c67a470b
PZ
1003 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1004
b361237b
CW
1005 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1006 return 0;
1007
1008 trace_i915_gem_request_wait_begin(ring, seqno);
1009
1010 if (timeout != NULL) {
1011 wait_time = *timeout;
1012 wait_forever = false;
1013 }
1014
e054cc39 1015 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1016
1017 if (WARN_ON(!ring->irq_get(ring)))
1018 return -ENODEV;
1019
1020 /* Record current time in case interrupted by signal, or wedged * */
1021 getrawmonotonic(&before);
1022
1023#define EXIT_COND \
1024 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1025 i915_reset_in_progress(&dev_priv->gpu_error) || \
1026 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1027 do {
1028 if (interruptible)
1029 end = wait_event_interruptible_timeout(ring->irq_queue,
1030 EXIT_COND,
1031 timeout_jiffies);
1032 else
1033 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034 timeout_jiffies);
1035
f69061be
DV
1036 /* We need to check whether any gpu reset happened in between
1037 * the caller grabbing the seqno and now ... */
1038 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1039 end = -EAGAIN;
1040
1041 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1042 * gone. */
33196ded 1043 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1044 if (ret)
1045 end = ret;
1046 } while (end == 0 && wait_forever);
1047
1048 getrawmonotonic(&now);
1049
1050 ring->irq_put(ring);
1051 trace_i915_gem_request_wait_end(ring, seqno);
1052#undef EXIT_COND
1053
1054 if (timeout) {
1055 struct timespec sleep_time = timespec_sub(now, before);
1056 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1057 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1058 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1059 }
1060
1061 switch (end) {
1062 case -EIO:
1063 case -EAGAIN: /* Wedged */
1064 case -ERESTARTSYS: /* Signal */
1065 return (int)end;
1066 case 0: /* Timeout */
b361237b
CW
1067 return -ETIME;
1068 default: /* Completed */
1069 WARN_ON(end < 0); /* We're not aware of other errors */
1070 return 0;
1071 }
1072}
1073
1074/**
1075 * Waits for a sequence number to be signaled, and cleans up the
1076 * request and object lists appropriately for that event.
1077 */
1078int
1079i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1080{
1081 struct drm_device *dev = ring->dev;
1082 struct drm_i915_private *dev_priv = dev->dev_private;
1083 bool interruptible = dev_priv->mm.interruptible;
1084 int ret;
1085
1086 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1087 BUG_ON(seqno == 0);
1088
33196ded 1089 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1090 if (ret)
1091 return ret;
1092
1093 ret = i915_gem_check_olr(ring, seqno);
1094 if (ret)
1095 return ret;
1096
f69061be
DV
1097 return __wait_seqno(ring, seqno,
1098 atomic_read(&dev_priv->gpu_error.reset_counter),
1099 interruptible, NULL);
b361237b
CW
1100}
1101
d26e3af8
CW
1102static int
1103i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1104 struct intel_ring_buffer *ring)
1105{
1106 i915_gem_retire_requests_ring(ring);
1107
1108 /* Manually manage the write flush as we may have not yet
1109 * retired the buffer.
1110 *
1111 * Note that the last_write_seqno is always the earlier of
1112 * the two (read/write) seqno, so if we haved successfully waited,
1113 * we know we have passed the last write.
1114 */
1115 obj->last_write_seqno = 0;
1116 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1117
1118 return 0;
1119}
1120
b361237b
CW
1121/**
1122 * Ensures that all rendering to the object has completed and the object is
1123 * safe to unbind from the GTT or access from the CPU.
1124 */
1125static __must_check int
1126i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1127 bool readonly)
1128{
1129 struct intel_ring_buffer *ring = obj->ring;
1130 u32 seqno;
1131 int ret;
1132
1133 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1134 if (seqno == 0)
1135 return 0;
1136
1137 ret = i915_wait_seqno(ring, seqno);
1138 if (ret)
1139 return ret;
1140
d26e3af8 1141 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1142}
1143
3236f57a
CW
1144/* A nonblocking variant of the above wait. This is a highly dangerous routine
1145 * as the object state may change during this call.
1146 */
1147static __must_check int
1148i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1149 bool readonly)
1150{
1151 struct drm_device *dev = obj->base.dev;
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153 struct intel_ring_buffer *ring = obj->ring;
f69061be 1154 unsigned reset_counter;
3236f57a
CW
1155 u32 seqno;
1156 int ret;
1157
1158 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1159 BUG_ON(!dev_priv->mm.interruptible);
1160
1161 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1162 if (seqno == 0)
1163 return 0;
1164
33196ded 1165 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1166 if (ret)
1167 return ret;
1168
1169 ret = i915_gem_check_olr(ring, seqno);
1170 if (ret)
1171 return ret;
1172
f69061be 1173 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1174 mutex_unlock(&dev->struct_mutex);
f69061be 1175 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1176 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1177 if (ret)
1178 return ret;
3236f57a 1179
d26e3af8 1180 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1181}
1182
673a394b 1183/**
2ef7eeaa
EA
1184 * Called when user space prepares to use an object with the CPU, either
1185 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1186 */
1187int
1188i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1189 struct drm_file *file)
673a394b
EA
1190{
1191 struct drm_i915_gem_set_domain *args = data;
05394f39 1192 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1193 uint32_t read_domains = args->read_domains;
1194 uint32_t write_domain = args->write_domain;
673a394b
EA
1195 int ret;
1196
2ef7eeaa 1197 /* Only handle setting domains to types used by the CPU. */
21d509e3 1198 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1199 return -EINVAL;
1200
21d509e3 1201 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1202 return -EINVAL;
1203
1204 /* Having something in the write domain implies it's in the read
1205 * domain, and only that read domain. Enforce that in the request.
1206 */
1207 if (write_domain != 0 && read_domains != write_domain)
1208 return -EINVAL;
1209
76c1dec1 1210 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1211 if (ret)
76c1dec1 1212 return ret;
1d7cfea1 1213
05394f39 1214 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1215 if (&obj->base == NULL) {
1d7cfea1
CW
1216 ret = -ENOENT;
1217 goto unlock;
76c1dec1 1218 }
673a394b 1219
3236f57a
CW
1220 /* Try to flush the object off the GPU without holding the lock.
1221 * We will repeat the flush holding the lock in the normal manner
1222 * to catch cases where we are gazumped.
1223 */
1224 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1225 if (ret)
1226 goto unref;
1227
2ef7eeaa
EA
1228 if (read_domains & I915_GEM_DOMAIN_GTT) {
1229 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1230
1231 /* Silently promote "you're not bound, there was nothing to do"
1232 * to success, since the client was just asking us to
1233 * make sure everything was done.
1234 */
1235 if (ret == -EINVAL)
1236 ret = 0;
2ef7eeaa 1237 } else {
e47c68e9 1238 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1239 }
1240
3236f57a 1241unref:
05394f39 1242 drm_gem_object_unreference(&obj->base);
1d7cfea1 1243unlock:
673a394b
EA
1244 mutex_unlock(&dev->struct_mutex);
1245 return ret;
1246}
1247
1248/**
1249 * Called when user space has done writes to this buffer
1250 */
1251int
1252i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1253 struct drm_file *file)
673a394b
EA
1254{
1255 struct drm_i915_gem_sw_finish *args = data;
05394f39 1256 struct drm_i915_gem_object *obj;
673a394b
EA
1257 int ret = 0;
1258
76c1dec1 1259 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1260 if (ret)
76c1dec1 1261 return ret;
1d7cfea1 1262
05394f39 1263 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1264 if (&obj->base == NULL) {
1d7cfea1
CW
1265 ret = -ENOENT;
1266 goto unlock;
673a394b
EA
1267 }
1268
673a394b 1269 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1270 if (obj->pin_display)
1271 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1272
05394f39 1273 drm_gem_object_unreference(&obj->base);
1d7cfea1 1274unlock:
673a394b
EA
1275 mutex_unlock(&dev->struct_mutex);
1276 return ret;
1277}
1278
1279/**
1280 * Maps the contents of an object, returning the address it is mapped
1281 * into.
1282 *
1283 * While the mapping holds a reference on the contents of the object, it doesn't
1284 * imply a ref on the object itself.
1285 */
1286int
1287i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1288 struct drm_file *file)
673a394b
EA
1289{
1290 struct drm_i915_gem_mmap *args = data;
1291 struct drm_gem_object *obj;
673a394b
EA
1292 unsigned long addr;
1293
05394f39 1294 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1295 if (obj == NULL)
bf79cb91 1296 return -ENOENT;
673a394b 1297
1286ff73
DV
1298 /* prime objects have no backing filp to GEM mmap
1299 * pages from.
1300 */
1301 if (!obj->filp) {
1302 drm_gem_object_unreference_unlocked(obj);
1303 return -EINVAL;
1304 }
1305
6be5ceb0 1306 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1307 PROT_READ | PROT_WRITE, MAP_SHARED,
1308 args->offset);
bc9025bd 1309 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1310 if (IS_ERR((void *)addr))
1311 return addr;
1312
1313 args->addr_ptr = (uint64_t) addr;
1314
1315 return 0;
1316}
1317
de151cf6
JB
1318/**
1319 * i915_gem_fault - fault a page into the GTT
1320 * vma: VMA in question
1321 * vmf: fault info
1322 *
1323 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1324 * from userspace. The fault handler takes care of binding the object to
1325 * the GTT (if needed), allocating and programming a fence register (again,
1326 * only if needed based on whether the old reg is still valid or the object
1327 * is tiled) and inserting a new PTE into the faulting process.
1328 *
1329 * Note that the faulting process may involve evicting existing objects
1330 * from the GTT and/or fence registers to make room. So performance may
1331 * suffer if the GTT working set is large or there are few fence registers
1332 * left.
1333 */
1334int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1335{
05394f39
CW
1336 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1337 struct drm_device *dev = obj->base.dev;
7d1c4804 1338 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1339 pgoff_t page_offset;
1340 unsigned long pfn;
1341 int ret = 0;
0f973f27 1342 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1343
1344 /* We don't use vmf->pgoff since that has the fake offset */
1345 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1346 PAGE_SHIFT;
1347
d9bc7e9f
CW
1348 ret = i915_mutex_lock_interruptible(dev);
1349 if (ret)
1350 goto out;
a00b10c3 1351
db53a302
CW
1352 trace_i915_gem_object_fault(obj, page_offset, true, write);
1353
eb119bd6
CW
1354 /* Access to snoopable pages through the GTT is incoherent. */
1355 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1356 ret = -EINVAL;
1357 goto unlock;
1358 }
1359
d9bc7e9f 1360 /* Now bind it into the GTT if needed */
c37e2204 1361 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1362 if (ret)
1363 goto unlock;
4a684a41 1364
c9839303
CW
1365 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1366 if (ret)
1367 goto unpin;
74898d7e 1368
06d98131 1369 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1370 if (ret)
c9839303 1371 goto unpin;
7d1c4804 1372
6299f992
CW
1373 obj->fault_mappable = true;
1374
f343c5f6
BW
1375 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1376 pfn >>= PAGE_SHIFT;
1377 pfn += page_offset;
de151cf6
JB
1378
1379 /* Finally, remap it using the new GTT offset */
1380 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1381unpin:
1382 i915_gem_object_unpin(obj);
c715089f 1383unlock:
de151cf6 1384 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1385out:
de151cf6 1386 switch (ret) {
d9bc7e9f 1387 case -EIO:
a9340cca
DV
1388 /* If this -EIO is due to a gpu hang, give the reset code a
1389 * chance to clean up the mess. Otherwise return the proper
1390 * SIGBUS. */
1f83fee0 1391 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1392 return VM_FAULT_SIGBUS;
045e769a 1393 case -EAGAIN:
571c608d
DV
1394 /*
1395 * EAGAIN means the gpu is hung and we'll wait for the error
1396 * handler to reset everything when re-faulting in
1397 * i915_mutex_lock_interruptible.
d9bc7e9f 1398 */
c715089f
CW
1399 case 0:
1400 case -ERESTARTSYS:
bed636ab 1401 case -EINTR:
e79e0fe3
DR
1402 case -EBUSY:
1403 /*
1404 * EBUSY is ok: this just means that another thread
1405 * already did the job.
1406 */
c715089f 1407 return VM_FAULT_NOPAGE;
de151cf6 1408 case -ENOMEM:
de151cf6 1409 return VM_FAULT_OOM;
a7c2e1aa
DV
1410 case -ENOSPC:
1411 return VM_FAULT_SIGBUS;
de151cf6 1412 default:
a7c2e1aa 1413 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1414 return VM_FAULT_SIGBUS;
de151cf6
JB
1415 }
1416}
1417
901782b2
CW
1418/**
1419 * i915_gem_release_mmap - remove physical page mappings
1420 * @obj: obj in question
1421 *
af901ca1 1422 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1423 * relinquish ownership of the pages back to the system.
1424 *
1425 * It is vital that we remove the page mapping if we have mapped a tiled
1426 * object through the GTT and then lose the fence register due to
1427 * resource pressure. Similarly if the object has been moved out of the
1428 * aperture, than pages mapped into userspace must be revoked. Removing the
1429 * mapping will then trigger a page fault on the next user access, allowing
1430 * fixup by i915_gem_fault().
1431 */
d05ca301 1432void
05394f39 1433i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1434{
6299f992
CW
1435 if (!obj->fault_mappable)
1436 return;
901782b2 1437
51335df9 1438 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1439 obj->fault_mappable = false;
901782b2
CW
1440}
1441
0fa87796 1442uint32_t
e28f8711 1443i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1444{
e28f8711 1445 uint32_t gtt_size;
92b88aeb
CW
1446
1447 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1448 tiling_mode == I915_TILING_NONE)
1449 return size;
92b88aeb
CW
1450
1451 /* Previous chips need a power-of-two fence region when tiling */
1452 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1453 gtt_size = 1024*1024;
92b88aeb 1454 else
e28f8711 1455 gtt_size = 512*1024;
92b88aeb 1456
e28f8711
CW
1457 while (gtt_size < size)
1458 gtt_size <<= 1;
92b88aeb 1459
e28f8711 1460 return gtt_size;
92b88aeb
CW
1461}
1462
de151cf6
JB
1463/**
1464 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1465 * @obj: object to check
1466 *
1467 * Return the required GTT alignment for an object, taking into account
5e783301 1468 * potential fence register mapping.
de151cf6 1469 */
d865110c
ID
1470uint32_t
1471i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1472 int tiling_mode, bool fenced)
de151cf6 1473{
de151cf6
JB
1474 /*
1475 * Minimum alignment is 4k (GTT page size), but might be greater
1476 * if a fence register is needed for the object.
1477 */
d865110c 1478 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1479 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1480 return 4096;
1481
a00b10c3
CW
1482 /*
1483 * Previous chips need to be aligned to the size of the smallest
1484 * fence register that can contain the object.
1485 */
e28f8711 1486 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1487}
1488
d8cb5086
CW
1489static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1490{
1491 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1492 int ret;
1493
0de23977 1494 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1495 return 0;
1496
da494d7c
DV
1497 dev_priv->mm.shrinker_no_lock_stealing = true;
1498
d8cb5086
CW
1499 ret = drm_gem_create_mmap_offset(&obj->base);
1500 if (ret != -ENOSPC)
da494d7c 1501 goto out;
d8cb5086
CW
1502
1503 /* Badly fragmented mmap space? The only way we can recover
1504 * space is by destroying unwanted objects. We can't randomly release
1505 * mmap_offsets as userspace expects them to be persistent for the
1506 * lifetime of the objects. The closest we can is to release the
1507 * offsets on purgeable objects by truncating it and marking it purged,
1508 * which prevents userspace from ever using that object again.
1509 */
1510 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 if (ret != -ENOSPC)
da494d7c 1513 goto out;
d8cb5086
CW
1514
1515 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1516 ret = drm_gem_create_mmap_offset(&obj->base);
1517out:
1518 dev_priv->mm.shrinker_no_lock_stealing = false;
1519
1520 return ret;
d8cb5086
CW
1521}
1522
1523static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1524{
d8cb5086
CW
1525 drm_gem_free_mmap_offset(&obj->base);
1526}
1527
de151cf6 1528int
ff72145b
DA
1529i915_gem_mmap_gtt(struct drm_file *file,
1530 struct drm_device *dev,
1531 uint32_t handle,
1532 uint64_t *offset)
de151cf6 1533{
da761a6e 1534 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1535 struct drm_i915_gem_object *obj;
de151cf6
JB
1536 int ret;
1537
76c1dec1 1538 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1539 if (ret)
76c1dec1 1540 return ret;
de151cf6 1541
ff72145b 1542 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1543 if (&obj->base == NULL) {
1d7cfea1
CW
1544 ret = -ENOENT;
1545 goto unlock;
1546 }
de151cf6 1547
5d4545ae 1548 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1549 ret = -E2BIG;
ff56b0bc 1550 goto out;
da761a6e
CW
1551 }
1552
05394f39 1553 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1554 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1555 ret = -EINVAL;
1556 goto out;
ab18282d
CW
1557 }
1558
d8cb5086
CW
1559 ret = i915_gem_object_create_mmap_offset(obj);
1560 if (ret)
1561 goto out;
de151cf6 1562
0de23977 1563 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1564
1d7cfea1 1565out:
05394f39 1566 drm_gem_object_unreference(&obj->base);
1d7cfea1 1567unlock:
de151cf6 1568 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1569 return ret;
de151cf6
JB
1570}
1571
ff72145b
DA
1572/**
1573 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1574 * @dev: DRM device
1575 * @data: GTT mapping ioctl data
1576 * @file: GEM object info
1577 *
1578 * Simply returns the fake offset to userspace so it can mmap it.
1579 * The mmap call will end up in drm_gem_mmap(), which will set things
1580 * up so we can get faults in the handler above.
1581 *
1582 * The fault handler will take care of binding the object into the GTT
1583 * (since it may have been evicted to make room for something), allocating
1584 * a fence register, and mapping the appropriate aperture address into
1585 * userspace.
1586 */
1587int
1588i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1589 struct drm_file *file)
1590{
1591 struct drm_i915_gem_mmap_gtt *args = data;
1592
ff72145b
DA
1593 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1594}
1595
225067ee
DV
1596/* Immediately discard the backing storage */
1597static void
1598i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1599{
e5281ccd 1600 struct inode *inode;
e5281ccd 1601
4d6294bf 1602 i915_gem_object_free_mmap_offset(obj);
1286ff73 1603
4d6294bf
CW
1604 if (obj->base.filp == NULL)
1605 return;
e5281ccd 1606
225067ee
DV
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*.
1611 */
496ad9aa 1612 inode = file_inode(obj->base.filp);
225067ee 1613 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1614
225067ee
DV
1615 obj->madv = __I915_MADV_PURGED;
1616}
e5281ccd 1617
225067ee
DV
1618static inline int
1619i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620{
1621 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1622}
1623
5cdf5881 1624static void
05394f39 1625i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1626{
90797e6d
ID
1627 struct sg_page_iter sg_iter;
1628 int ret;
1286ff73 1629
05394f39 1630 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1631
6c085a72
CW
1632 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633 if (ret) {
1634 /* In the event of a disaster, abandon all caches and
1635 * hope for the best.
1636 */
1637 WARN_ON(ret != -EIO);
2c22569b 1638 i915_gem_clflush_object(obj, true);
6c085a72
CW
1639 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640 }
1641
6dacfd2f 1642 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1643 i915_gem_object_save_bit_17_swizzle(obj);
1644
05394f39
CW
1645 if (obj->madv == I915_MADV_DONTNEED)
1646 obj->dirty = 0;
3ef94daa 1647
90797e6d 1648 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1649 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1650
05394f39 1651 if (obj->dirty)
9da3da66 1652 set_page_dirty(page);
3ef94daa 1653
05394f39 1654 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1655 mark_page_accessed(page);
3ef94daa 1656
9da3da66 1657 page_cache_release(page);
3ef94daa 1658 }
05394f39 1659 obj->dirty = 0;
673a394b 1660
9da3da66
CW
1661 sg_free_table(obj->pages);
1662 kfree(obj->pages);
37e680a1 1663}
6c085a72 1664
dd624afd 1665int
37e680a1
CW
1666i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667{
1668 const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
2f745ad3 1670 if (obj->pages == NULL)
37e680a1
CW
1671 return 0;
1672
a5570178
CW
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
9843877d 1676 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1677
a2165e31
CW
1678 /* ->put_pages might need to allocate memory for the bit17 swizzle
1679 * array, hence protect them from being reaped by removing them from gtt
1680 * lists early. */
35c20a60 1681 list_del(&obj->global_list);
a2165e31 1682
37e680a1 1683 ops->put_pages(obj);
05394f39 1684 obj->pages = NULL;
37e680a1 1685
6c085a72
CW
1686 if (i915_gem_object_is_purgeable(obj))
1687 i915_gem_object_truncate(obj);
1688
1689 return 0;
1690}
1691
1692static long
93927ca5
DV
1693__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1694 bool purgeable_only)
6c085a72 1695{
57094f82 1696 struct list_head still_bound_list;
6c085a72
CW
1697 struct drm_i915_gem_object *obj, *next;
1698 long count = 0;
1699
1700 list_for_each_entry_safe(obj, next,
1701 &dev_priv->mm.unbound_list,
35c20a60 1702 global_list) {
93927ca5 1703 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1704 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1705 count += obj->base.size >> PAGE_SHIFT;
1706 if (count >= target)
1707 return count;
1708 }
1709 }
1710
57094f82
CW
1711 /*
1712 * As we may completely rewrite the bound list whilst unbinding
1713 * (due to retiring requests) we have to strictly process only
1714 * one element of the list at the time, and recheck the list
1715 * on every iteration.
1716 */
1717 INIT_LIST_HEAD(&still_bound_list);
1718 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1719 struct i915_vma *vma, *v;
80dcfdbd 1720
57094f82
CW
1721 obj = list_first_entry(&dev_priv->mm.bound_list,
1722 typeof(*obj), global_list);
1723 list_move_tail(&obj->global_list, &still_bound_list);
1724
80dcfdbd
BW
1725 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1726 continue;
1727
57094f82
CW
1728 /*
1729 * Hold a reference whilst we unbind this object, as we may
1730 * end up waiting for and retiring requests. This might
1731 * release the final reference (held by the active list)
1732 * and result in the object being freed from under us.
1733 * in this object being freed.
1734 *
1735 * Note 1: Shrinking the bound list is special since only active
1736 * (and hence bound objects) can contain such limbo objects, so
1737 * we don't need special tricks for shrinking the unbound list.
1738 * The only other place where we have to be careful with active
1739 * objects suddenly disappearing due to retiring requests is the
1740 * eviction code.
1741 *
1742 * Note 2: Even though the bound list doesn't hold a reference
1743 * to the object we can safely grab one here: The final object
1744 * unreferencing and the bound_list are both protected by the
1745 * dev->struct_mutex and so we won't ever be able to observe an
1746 * object on the bound_list with a reference count equals 0.
1747 */
1748 drm_gem_object_reference(&obj->base);
1749
07fe0b12
BW
1750 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1751 if (i915_vma_unbind(vma))
1752 break;
80dcfdbd 1753
57094f82 1754 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1755 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1756
1757 drm_gem_object_unreference(&obj->base);
6c085a72 1758 }
57094f82 1759 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1760
1761 return count;
1762}
1763
93927ca5
DV
1764static long
1765i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1766{
1767 return __i915_gem_shrink(dev_priv, target, true);
1768}
1769
7dc19d5a 1770static long
6c085a72
CW
1771i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1772{
1773 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1774 long freed = 0;
6c085a72
CW
1775
1776 i915_gem_evict_everything(dev_priv->dev);
1777
35c20a60 1778 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a
DC
1779 global_list) {
1780 if (obj->pages_pin_count == 0)
1781 freed += obj->base.size >> PAGE_SHIFT;
37e680a1 1782 i915_gem_object_put_pages(obj);
7dc19d5a
DC
1783 }
1784 return freed;
225067ee
DV
1785}
1786
37e680a1 1787static int
6c085a72 1788i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1789{
6c085a72 1790 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1791 int page_count, i;
1792 struct address_space *mapping;
9da3da66
CW
1793 struct sg_table *st;
1794 struct scatterlist *sg;
90797e6d 1795 struct sg_page_iter sg_iter;
e5281ccd 1796 struct page *page;
90797e6d 1797 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1798 gfp_t gfp;
e5281ccd 1799
6c085a72
CW
1800 /* Assert that the object is not currently in any GPU domain. As it
1801 * wasn't in the GTT, there shouldn't be any way it could have been in
1802 * a GPU cache
1803 */
1804 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1805 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1806
9da3da66
CW
1807 st = kmalloc(sizeof(*st), GFP_KERNEL);
1808 if (st == NULL)
1809 return -ENOMEM;
1810
05394f39 1811 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1812 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1813 kfree(st);
e5281ccd 1814 return -ENOMEM;
9da3da66 1815 }
e5281ccd 1816
9da3da66
CW
1817 /* Get the list of pages out of our struct file. They'll be pinned
1818 * at this point until we release them.
1819 *
1820 * Fail silently without starting the shrinker
1821 */
496ad9aa 1822 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1823 gfp = mapping_gfp_mask(mapping);
caf49191 1824 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1825 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1826 sg = st->sgl;
1827 st->nents = 0;
1828 for (i = 0; i < page_count; i++) {
6c085a72
CW
1829 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1830 if (IS_ERR(page)) {
1831 i915_gem_purge(dev_priv, page_count);
1832 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1833 }
1834 if (IS_ERR(page)) {
1835 /* We've tried hard to allocate the memory by reaping
1836 * our own buffer, now let the real VM do its job and
1837 * go down in flames if truly OOM.
1838 */
caf49191 1839 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1840 gfp |= __GFP_IO | __GFP_WAIT;
1841
1842 i915_gem_shrink_all(dev_priv);
1843 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1844 if (IS_ERR(page))
1845 goto err_pages;
1846
caf49191 1847 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1848 gfp &= ~(__GFP_IO | __GFP_WAIT);
1849 }
426729dc
KRW
1850#ifdef CONFIG_SWIOTLB
1851 if (swiotlb_nr_tbl()) {
1852 st->nents++;
1853 sg_set_page(sg, page, PAGE_SIZE, 0);
1854 sg = sg_next(sg);
1855 continue;
1856 }
1857#endif
90797e6d
ID
1858 if (!i || page_to_pfn(page) != last_pfn + 1) {
1859 if (i)
1860 sg = sg_next(sg);
1861 st->nents++;
1862 sg_set_page(sg, page, PAGE_SIZE, 0);
1863 } else {
1864 sg->length += PAGE_SIZE;
1865 }
1866 last_pfn = page_to_pfn(page);
e5281ccd 1867 }
426729dc
KRW
1868#ifdef CONFIG_SWIOTLB
1869 if (!swiotlb_nr_tbl())
1870#endif
1871 sg_mark_end(sg);
74ce6b6c
CW
1872 obj->pages = st;
1873
6dacfd2f 1874 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1875 i915_gem_object_do_bit_17_swizzle(obj);
1876
1877 return 0;
1878
1879err_pages:
90797e6d
ID
1880 sg_mark_end(sg);
1881 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1882 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1883 sg_free_table(st);
1884 kfree(st);
e5281ccd 1885 return PTR_ERR(page);
673a394b
EA
1886}
1887
37e680a1
CW
1888/* Ensure that the associated pages are gathered from the backing storage
1889 * and pinned into our object. i915_gem_object_get_pages() may be called
1890 * multiple times before they are released by a single call to
1891 * i915_gem_object_put_pages() - once the pages are no longer referenced
1892 * either as a result of memory pressure (reaping pages under the shrinker)
1893 * or as the object is itself released.
1894 */
1895int
1896i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1897{
1898 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1899 const struct drm_i915_gem_object_ops *ops = obj->ops;
1900 int ret;
1901
2f745ad3 1902 if (obj->pages)
37e680a1
CW
1903 return 0;
1904
43e28f09
CW
1905 if (obj->madv != I915_MADV_WILLNEED) {
1906 DRM_ERROR("Attempting to obtain a purgeable object\n");
1907 return -EINVAL;
1908 }
1909
a5570178
CW
1910 BUG_ON(obj->pages_pin_count);
1911
37e680a1
CW
1912 ret = ops->get_pages(obj);
1913 if (ret)
1914 return ret;
1915
35c20a60 1916 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1917 return 0;
673a394b
EA
1918}
1919
54cf91dc 1920void
05394f39 1921i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1922 struct intel_ring_buffer *ring)
673a394b 1923{
05394f39 1924 struct drm_device *dev = obj->base.dev;
69dc4987 1925 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1926 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1927
852835f3 1928 BUG_ON(ring == NULL);
02978ff5
CW
1929 if (obj->ring != ring && obj->last_write_seqno) {
1930 /* Keep the seqno relative to the current ring */
1931 obj->last_write_seqno = seqno;
1932 }
05394f39 1933 obj->ring = ring;
673a394b
EA
1934
1935 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1936 if (!obj->active) {
1937 drm_gem_object_reference(&obj->base);
1938 obj->active = 1;
673a394b 1939 }
e35a41de 1940
05394f39 1941 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1942
0201f1ec 1943 obj->last_read_seqno = seqno;
caea7476 1944
7dd49065 1945 if (obj->fenced_gpu_access) {
caea7476 1946 obj->last_fenced_seqno = seqno;
caea7476 1947
7dd49065
CW
1948 /* Bump MRU to take account of the delayed flush */
1949 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1950 struct drm_i915_fence_reg *reg;
1951
1952 reg = &dev_priv->fence_regs[obj->fence_reg];
1953 list_move_tail(&reg->lru_list,
1954 &dev_priv->mm.fence_list);
1955 }
caea7476
CW
1956 }
1957}
1958
1959static void
caea7476 1960i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1961{
ca191b13
BW
1962 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1963 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1964 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 1965
65ce3027 1966 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1967 BUG_ON(!obj->active);
caea7476 1968
ca191b13 1969 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 1970
65ce3027 1971 list_del_init(&obj->ring_list);
caea7476
CW
1972 obj->ring = NULL;
1973
65ce3027
CW
1974 obj->last_read_seqno = 0;
1975 obj->last_write_seqno = 0;
1976 obj->base.write_domain = 0;
1977
1978 obj->last_fenced_seqno = 0;
caea7476 1979 obj->fenced_gpu_access = false;
caea7476
CW
1980
1981 obj->active = 0;
1982 drm_gem_object_unreference(&obj->base);
1983
1984 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1985}
673a394b 1986
9d773091 1987static int
fca26bb4 1988i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1989{
9d773091
CW
1990 struct drm_i915_private *dev_priv = dev->dev_private;
1991 struct intel_ring_buffer *ring;
1992 int ret, i, j;
53d227f2 1993
107f27a5 1994 /* Carefully retire all requests without writing to the rings */
9d773091 1995 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1996 ret = intel_ring_idle(ring);
1997 if (ret)
1998 return ret;
9d773091 1999 }
9d773091 2000 i915_gem_retire_requests(dev);
107f27a5
CW
2001
2002 /* Finally reset hw state */
9d773091 2003 for_each_ring(ring, dev_priv, i) {
fca26bb4 2004 intel_ring_init_seqno(ring, seqno);
498d2ac1 2005
9d773091
CW
2006 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2007 ring->sync_seqno[j] = 0;
2008 }
53d227f2 2009
9d773091 2010 return 0;
53d227f2
DV
2011}
2012
fca26bb4
MK
2013int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2014{
2015 struct drm_i915_private *dev_priv = dev->dev_private;
2016 int ret;
2017
2018 if (seqno == 0)
2019 return -EINVAL;
2020
2021 /* HWS page needs to be set less than what we
2022 * will inject to ring
2023 */
2024 ret = i915_gem_init_seqno(dev, seqno - 1);
2025 if (ret)
2026 return ret;
2027
2028 /* Carefully set the last_seqno value so that wrap
2029 * detection still works
2030 */
2031 dev_priv->next_seqno = seqno;
2032 dev_priv->last_seqno = seqno - 1;
2033 if (dev_priv->last_seqno == 0)
2034 dev_priv->last_seqno--;
2035
2036 return 0;
2037}
2038
9d773091
CW
2039int
2040i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2041{
9d773091
CW
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043
2044 /* reserve 0 for non-seqno */
2045 if (dev_priv->next_seqno == 0) {
fca26bb4 2046 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2047 if (ret)
2048 return ret;
53d227f2 2049
9d773091
CW
2050 dev_priv->next_seqno = 1;
2051 }
53d227f2 2052
f72b3435 2053 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2054 return 0;
53d227f2
DV
2055}
2056
0025c077
MK
2057int __i915_add_request(struct intel_ring_buffer *ring,
2058 struct drm_file *file,
7d736f4f 2059 struct drm_i915_gem_object *obj,
0025c077 2060 u32 *out_seqno)
673a394b 2061{
db53a302 2062 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2063 struct drm_i915_gem_request *request;
7d736f4f 2064 u32 request_ring_position, request_start;
673a394b 2065 int was_empty;
3cce469c
CW
2066 int ret;
2067
7d736f4f 2068 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2069 /*
2070 * Emit any outstanding flushes - execbuf can fail to emit the flush
2071 * after having emitted the batchbuffer command. Hence we need to fix
2072 * things up similar to emitting the lazy request. The difference here
2073 * is that the flush _must_ happen before the next request, no matter
2074 * what.
2075 */
a7b9761d
CW
2076 ret = intel_ring_flush_all_caches(ring);
2077 if (ret)
2078 return ret;
cc889e0f 2079
3c0e234c
CW
2080 request = ring->preallocated_lazy_request;
2081 if (WARN_ON(request == NULL))
acb868d3 2082 return -ENOMEM;
cc889e0f 2083
a71d8d94
CW
2084 /* Record the position of the start of the request so that
2085 * should we detect the updated seqno part-way through the
2086 * GPU processing the request, we never over-estimate the
2087 * position of the head.
2088 */
2089 request_ring_position = intel_ring_get_tail(ring);
2090
9d773091 2091 ret = ring->add_request(ring);
3c0e234c 2092 if (ret)
3bb73aba 2093 return ret;
673a394b 2094
9d773091 2095 request->seqno = intel_ring_get_seqno(ring);
852835f3 2096 request->ring = ring;
7d736f4f 2097 request->head = request_start;
a71d8d94 2098 request->tail = request_ring_position;
7d736f4f
MK
2099
2100 /* Whilst this request exists, batch_obj will be on the
2101 * active_list, and so will hold the active reference. Only when this
2102 * request is retired will the the batch_obj be moved onto the
2103 * inactive_list and lose its active reference. Hence we do not need
2104 * to explicitly hold another reference here.
2105 */
9a7e0c2a 2106 request->batch_obj = obj;
0e50e96b 2107
9a7e0c2a
CW
2108 /* Hold a reference to the current context so that we can inspect
2109 * it later in case a hangcheck error event fires.
2110 */
2111 request->ctx = ring->last_context;
0e50e96b
MK
2112 if (request->ctx)
2113 i915_gem_context_reference(request->ctx);
2114
673a394b 2115 request->emitted_jiffies = jiffies;
852835f3
ZN
2116 was_empty = list_empty(&ring->request_list);
2117 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2118 request->file_priv = NULL;
852835f3 2119
db53a302
CW
2120 if (file) {
2121 struct drm_i915_file_private *file_priv = file->driver_priv;
2122
1c25595f 2123 spin_lock(&file_priv->mm.lock);
f787a5f5 2124 request->file_priv = file_priv;
b962442e 2125 list_add_tail(&request->client_list,
f787a5f5 2126 &file_priv->mm.request_list);
1c25595f 2127 spin_unlock(&file_priv->mm.lock);
b962442e 2128 }
673a394b 2129
9d773091 2130 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2131 ring->outstanding_lazy_seqno = 0;
3c0e234c 2132 ring->preallocated_lazy_request = NULL;
db53a302 2133
db1b76ca 2134 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2135 i915_queue_hangcheck(ring->dev);
2136
f047e395 2137 if (was_empty) {
b3b079db 2138 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2139 &dev_priv->mm.retire_work,
2140 round_jiffies_up_relative(HZ));
f047e395
CW
2141 intel_mark_busy(dev_priv->dev);
2142 }
f65d9421 2143 }
cc889e0f 2144
acb868d3 2145 if (out_seqno)
9d773091 2146 *out_seqno = request->seqno;
3cce469c 2147 return 0;
673a394b
EA
2148}
2149
f787a5f5
CW
2150static inline void
2151i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2152{
1c25595f 2153 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2154
1c25595f
CW
2155 if (!file_priv)
2156 return;
1c5d22f7 2157
1c25595f 2158 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2159 if (request->file_priv) {
2160 list_del(&request->client_list);
2161 request->file_priv = NULL;
2162 }
1c25595f 2163 spin_unlock(&file_priv->mm.lock);
673a394b 2164}
673a394b 2165
d1ccbb5d
BW
2166static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2167 struct i915_address_space *vm)
aa60c664 2168{
d1ccbb5d
BW
2169 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2170 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2171 return true;
2172
2173 return false;
2174}
2175
2176static bool i915_head_inside_request(const u32 acthd_unmasked,
2177 const u32 request_start,
2178 const u32 request_end)
2179{
2180 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2181
2182 if (request_start < request_end) {
2183 if (acthd >= request_start && acthd < request_end)
2184 return true;
2185 } else if (request_start > request_end) {
2186 if (acthd >= request_start || acthd < request_end)
2187 return true;
2188 }
2189
2190 return false;
2191}
2192
d1ccbb5d
BW
2193static struct i915_address_space *
2194request_to_vm(struct drm_i915_gem_request *request)
2195{
2196 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2197 struct i915_address_space *vm;
2198
2199 vm = &dev_priv->gtt.base;
2200
2201 return vm;
2202}
2203
aa60c664
MK
2204static bool i915_request_guilty(struct drm_i915_gem_request *request,
2205 const u32 acthd, bool *inside)
2206{
2207 /* There is a possibility that unmasked head address
2208 * pointing inside the ring, matches the batch_obj address range.
2209 * However this is extremely unlikely.
2210 */
aa60c664 2211 if (request->batch_obj) {
d1ccbb5d
BW
2212 if (i915_head_inside_object(acthd, request->batch_obj,
2213 request_to_vm(request))) {
aa60c664
MK
2214 *inside = true;
2215 return true;
2216 }
2217 }
2218
2219 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2220 *inside = false;
2221 return true;
2222 }
2223
2224 return false;
2225}
2226
be62acb4
MK
2227static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2228{
2229 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2230
2231 if (hs->banned)
2232 return true;
2233
2234 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2235 DRM_ERROR("context hanging too fast, declaring banned!\n");
2236 return true;
2237 }
2238
2239 return false;
2240}
2241
aa60c664
MK
2242static void i915_set_reset_status(struct intel_ring_buffer *ring,
2243 struct drm_i915_gem_request *request,
2244 u32 acthd)
2245{
2246 struct i915_ctx_hang_stats *hs = NULL;
2247 bool inside, guilty;
d1ccbb5d 2248 unsigned long offset = 0;
aa60c664
MK
2249
2250 /* Innocent until proven guilty */
2251 guilty = false;
2252
d1ccbb5d
BW
2253 if (request->batch_obj)
2254 offset = i915_gem_obj_offset(request->batch_obj,
2255 request_to_vm(request));
2256
f2f4d82f 2257 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2258 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2259 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2260 ring->name,
2261 inside ? "inside" : "flushing",
d1ccbb5d 2262 offset,
aa60c664
MK
2263 request->ctx ? request->ctx->id : 0,
2264 acthd);
2265
2266 guilty = true;
2267 }
2268
2269 /* If contexts are disabled or this is the default context, use
2270 * file_priv->reset_state
2271 */
2272 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2273 hs = &request->ctx->hang_stats;
2274 else if (request->file_priv)
2275 hs = &request->file_priv->hang_stats;
2276
2277 if (hs) {
be62acb4
MK
2278 if (guilty) {
2279 hs->banned = i915_context_is_banned(hs);
aa60c664 2280 hs->batch_active++;
be62acb4
MK
2281 hs->guilty_ts = get_seconds();
2282 } else {
aa60c664 2283 hs->batch_pending++;
be62acb4 2284 }
aa60c664
MK
2285 }
2286}
2287
0e50e96b
MK
2288static void i915_gem_free_request(struct drm_i915_gem_request *request)
2289{
2290 list_del(&request->list);
2291 i915_gem_request_remove_from_client(request);
2292
2293 if (request->ctx)
2294 i915_gem_context_unreference(request->ctx);
2295
2296 kfree(request);
2297}
2298
dfaae392
CW
2299static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2300 struct intel_ring_buffer *ring)
9375e446 2301{
aa60c664
MK
2302 u32 completed_seqno;
2303 u32 acthd;
2304
2305 acthd = intel_ring_get_active_head(ring);
2306 completed_seqno = ring->get_seqno(ring, false);
2307
dfaae392
CW
2308 while (!list_empty(&ring->request_list)) {
2309 struct drm_i915_gem_request *request;
673a394b 2310
dfaae392
CW
2311 request = list_first_entry(&ring->request_list,
2312 struct drm_i915_gem_request,
2313 list);
de151cf6 2314
aa60c664
MK
2315 if (request->seqno > completed_seqno)
2316 i915_set_reset_status(ring, request, acthd);
2317
0e50e96b 2318 i915_gem_free_request(request);
dfaae392 2319 }
673a394b 2320
dfaae392 2321 while (!list_empty(&ring->active_list)) {
05394f39 2322 struct drm_i915_gem_object *obj;
9375e446 2323
05394f39
CW
2324 obj = list_first_entry(&ring->active_list,
2325 struct drm_i915_gem_object,
2326 ring_list);
9375e446 2327
05394f39 2328 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2329 }
2330}
2331
19b2dbde 2332void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2333{
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 int i;
2336
4b9de737 2337 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2338 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2339
94a335db
DV
2340 /*
2341 * Commit delayed tiling changes if we have an object still
2342 * attached to the fence, otherwise just clear the fence.
2343 */
2344 if (reg->obj) {
2345 i915_gem_object_update_fence(reg->obj, reg,
2346 reg->obj->tiling_mode);
2347 } else {
2348 i915_gem_write_fence(dev, i, NULL);
2349 }
312817a3
CW
2350 }
2351}
2352
069efc1d 2353void i915_gem_reset(struct drm_device *dev)
673a394b 2354{
77f01230 2355 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2356 struct intel_ring_buffer *ring;
1ec14ad3 2357 int i;
673a394b 2358
b4519513
CW
2359 for_each_ring(ring, dev_priv, i)
2360 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2361
19b2dbde 2362 i915_gem_restore_fences(dev);
673a394b
EA
2363}
2364
2365/**
2366 * This function clears the request list as sequence numbers are passed.
2367 */
a71d8d94 2368void
db53a302 2369i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2370{
673a394b
EA
2371 uint32_t seqno;
2372
db53a302 2373 if (list_empty(&ring->request_list))
6c0594a3
KW
2374 return;
2375
db53a302 2376 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2377
b2eadbc8 2378 seqno = ring->get_seqno(ring, true);
1ec14ad3 2379
852835f3 2380 while (!list_empty(&ring->request_list)) {
673a394b 2381 struct drm_i915_gem_request *request;
673a394b 2382
852835f3 2383 request = list_first_entry(&ring->request_list,
673a394b
EA
2384 struct drm_i915_gem_request,
2385 list);
673a394b 2386
dfaae392 2387 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2388 break;
2389
db53a302 2390 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2391 /* We know the GPU must have read the request to have
2392 * sent us the seqno + interrupt, so use the position
2393 * of tail of the request to update the last known position
2394 * of the GPU head.
2395 */
2396 ring->last_retired_head = request->tail;
b84d5f0c 2397
0e50e96b 2398 i915_gem_free_request(request);
b84d5f0c 2399 }
673a394b 2400
b84d5f0c
CW
2401 /* Move any buffers on the active list that are no longer referenced
2402 * by the ringbuffer to the flushing/inactive lists as appropriate.
2403 */
2404 while (!list_empty(&ring->active_list)) {
05394f39 2405 struct drm_i915_gem_object *obj;
b84d5f0c 2406
0206e353 2407 obj = list_first_entry(&ring->active_list,
05394f39
CW
2408 struct drm_i915_gem_object,
2409 ring_list);
673a394b 2410
0201f1ec 2411 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2412 break;
b84d5f0c 2413
65ce3027 2414 i915_gem_object_move_to_inactive(obj);
673a394b 2415 }
9d34e5db 2416
db53a302
CW
2417 if (unlikely(ring->trace_irq_seqno &&
2418 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2419 ring->irq_put(ring);
db53a302 2420 ring->trace_irq_seqno = 0;
9d34e5db 2421 }
23bc5982 2422
db53a302 2423 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2424}
2425
b09a1fec
CW
2426void
2427i915_gem_retire_requests(struct drm_device *dev)
2428{
2429 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2430 struct intel_ring_buffer *ring;
1ec14ad3 2431 int i;
b09a1fec 2432
b4519513
CW
2433 for_each_ring(ring, dev_priv, i)
2434 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2435}
2436
75ef9da2 2437static void
673a394b
EA
2438i915_gem_retire_work_handler(struct work_struct *work)
2439{
2440 drm_i915_private_t *dev_priv;
2441 struct drm_device *dev;
b4519513 2442 struct intel_ring_buffer *ring;
0a58705b
CW
2443 bool idle;
2444 int i;
673a394b
EA
2445
2446 dev_priv = container_of(work, drm_i915_private_t,
2447 mm.retire_work.work);
2448 dev = dev_priv->dev;
2449
891b48cf
CW
2450 /* Come back later if the device is busy... */
2451 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2452 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2453 round_jiffies_up_relative(HZ));
891b48cf
CW
2454 return;
2455 }
673a394b 2456
b09a1fec 2457 i915_gem_retire_requests(dev);
673a394b 2458
0a58705b
CW
2459 /* Send a periodic flush down the ring so we don't hold onto GEM
2460 * objects indefinitely.
673a394b 2461 */
0a58705b 2462 idle = true;
b4519513 2463 for_each_ring(ring, dev_priv, i) {
3bb73aba 2464 if (ring->gpu_caches_dirty)
0025c077 2465 i915_add_request(ring, NULL);
0a58705b
CW
2466
2467 idle &= list_empty(&ring->request_list);
673a394b
EA
2468 }
2469
db1b76ca 2470 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2471 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2472 round_jiffies_up_relative(HZ));
f047e395
CW
2473 if (idle)
2474 intel_mark_idle(dev);
0a58705b 2475
673a394b 2476 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2477}
2478
30dfebf3
DV
2479/**
2480 * Ensures that an object will eventually get non-busy by flushing any required
2481 * write domains, emitting any outstanding lazy request and retiring and
2482 * completed requests.
2483 */
2484static int
2485i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2486{
2487 int ret;
2488
2489 if (obj->active) {
0201f1ec 2490 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2491 if (ret)
2492 return ret;
2493
30dfebf3
DV
2494 i915_gem_retire_requests_ring(obj->ring);
2495 }
2496
2497 return 0;
2498}
2499
23ba4fd0
BW
2500/**
2501 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2502 * @DRM_IOCTL_ARGS: standard ioctl arguments
2503 *
2504 * Returns 0 if successful, else an error is returned with the remaining time in
2505 * the timeout parameter.
2506 * -ETIME: object is still busy after timeout
2507 * -ERESTARTSYS: signal interrupted the wait
2508 * -ENONENT: object doesn't exist
2509 * Also possible, but rare:
2510 * -EAGAIN: GPU wedged
2511 * -ENOMEM: damn
2512 * -ENODEV: Internal IRQ fail
2513 * -E?: The add request failed
2514 *
2515 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2516 * non-zero timeout parameter the wait ioctl will wait for the given number of
2517 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2518 * without holding struct_mutex the object may become re-busied before this
2519 * function completes. A similar but shorter * race condition exists in the busy
2520 * ioctl
2521 */
2522int
2523i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2524{
f69061be 2525 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2526 struct drm_i915_gem_wait *args = data;
2527 struct drm_i915_gem_object *obj;
2528 struct intel_ring_buffer *ring = NULL;
eac1f14f 2529 struct timespec timeout_stack, *timeout = NULL;
f69061be 2530 unsigned reset_counter;
23ba4fd0
BW
2531 u32 seqno = 0;
2532 int ret = 0;
2533
eac1f14f
BW
2534 if (args->timeout_ns >= 0) {
2535 timeout_stack = ns_to_timespec(args->timeout_ns);
2536 timeout = &timeout_stack;
2537 }
23ba4fd0
BW
2538
2539 ret = i915_mutex_lock_interruptible(dev);
2540 if (ret)
2541 return ret;
2542
2543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2544 if (&obj->base == NULL) {
2545 mutex_unlock(&dev->struct_mutex);
2546 return -ENOENT;
2547 }
2548
30dfebf3
DV
2549 /* Need to make sure the object gets inactive eventually. */
2550 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2551 if (ret)
2552 goto out;
2553
2554 if (obj->active) {
0201f1ec 2555 seqno = obj->last_read_seqno;
23ba4fd0
BW
2556 ring = obj->ring;
2557 }
2558
2559 if (seqno == 0)
2560 goto out;
2561
23ba4fd0
BW
2562 /* Do this after OLR check to make sure we make forward progress polling
2563 * on this IOCTL with a 0 timeout (like busy ioctl)
2564 */
2565 if (!args->timeout_ns) {
2566 ret = -ETIME;
2567 goto out;
2568 }
2569
2570 drm_gem_object_unreference(&obj->base);
f69061be 2571 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2572 mutex_unlock(&dev->struct_mutex);
2573
f69061be 2574 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2575 if (timeout)
eac1f14f 2576 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2577 return ret;
2578
2579out:
2580 drm_gem_object_unreference(&obj->base);
2581 mutex_unlock(&dev->struct_mutex);
2582 return ret;
2583}
2584
5816d648
BW
2585/**
2586 * i915_gem_object_sync - sync an object to a ring.
2587 *
2588 * @obj: object which may be in use on another ring.
2589 * @to: ring we wish to use the object on. May be NULL.
2590 *
2591 * This code is meant to abstract object synchronization with the GPU.
2592 * Calling with NULL implies synchronizing the object with the CPU
2593 * rather than a particular GPU ring.
2594 *
2595 * Returns 0 if successful, else propagates up the lower layer error.
2596 */
2911a35b
BW
2597int
2598i915_gem_object_sync(struct drm_i915_gem_object *obj,
2599 struct intel_ring_buffer *to)
2600{
2601 struct intel_ring_buffer *from = obj->ring;
2602 u32 seqno;
2603 int ret, idx;
2604
2605 if (from == NULL || to == from)
2606 return 0;
2607
5816d648 2608 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2609 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2610
2611 idx = intel_ring_sync_index(from, to);
2612
0201f1ec 2613 seqno = obj->last_read_seqno;
2911a35b
BW
2614 if (seqno <= from->sync_seqno[idx])
2615 return 0;
2616
b4aca010
BW
2617 ret = i915_gem_check_olr(obj->ring, seqno);
2618 if (ret)
2619 return ret;
2911a35b 2620
1500f7ea 2621 ret = to->sync_to(to, from, seqno);
e3a5a225 2622 if (!ret)
7b01e260
MK
2623 /* We use last_read_seqno because sync_to()
2624 * might have just caused seqno wrap under
2625 * the radar.
2626 */
2627 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2628
e3a5a225 2629 return ret;
2911a35b
BW
2630}
2631
b5ffc9bc
CW
2632static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2633{
2634 u32 old_write_domain, old_read_domains;
2635
b5ffc9bc
CW
2636 /* Force a pagefault for domain tracking on next user access */
2637 i915_gem_release_mmap(obj);
2638
b97c3d9c
KP
2639 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2640 return;
2641
97c809fd
CW
2642 /* Wait for any direct GTT access to complete */
2643 mb();
2644
b5ffc9bc
CW
2645 old_read_domains = obj->base.read_domains;
2646 old_write_domain = obj->base.write_domain;
2647
2648 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2649 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2650
2651 trace_i915_gem_object_change_domain(obj,
2652 old_read_domains,
2653 old_write_domain);
2654}
2655
07fe0b12 2656int i915_vma_unbind(struct i915_vma *vma)
673a394b 2657{
07fe0b12 2658 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2659 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2660 int ret;
673a394b 2661
b93dab6e
DV
2662 /* For now we only ever use 1 vma per object */
2663 WARN_ON(!list_is_singular(&obj->vma_list));
2664
07fe0b12 2665 if (list_empty(&vma->vma_link))
673a394b
EA
2666 return 0;
2667
0ff501cb
DV
2668 if (!drm_mm_node_allocated(&vma->node)) {
2669 i915_gem_vma_destroy(vma);
2670
2671 return 0;
2672 }
433544bd 2673
31d8d651
CW
2674 if (obj->pin_count)
2675 return -EBUSY;
673a394b 2676
c4670ad0
CW
2677 BUG_ON(obj->pages == NULL);
2678
a8198eea 2679 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2680 if (ret)
a8198eea
CW
2681 return ret;
2682 /* Continue on if we fail due to EIO, the GPU is hung so we
2683 * should be safe and we need to cleanup or else we might
2684 * cause memory corruption through use-after-free.
2685 */
2686
b5ffc9bc 2687 i915_gem_object_finish_gtt(obj);
5323fd04 2688
96b47b65 2689 /* release the fence reg _after_ flushing */
d9e86c0e 2690 ret = i915_gem_object_put_fence(obj);
1488fc08 2691 if (ret)
d9e86c0e 2692 return ret;
96b47b65 2693
07fe0b12 2694 trace_i915_vma_unbind(vma);
db53a302 2695
74898d7e
DV
2696 if (obj->has_global_gtt_mapping)
2697 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2698 if (obj->has_aliasing_ppgtt_mapping) {
2699 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2700 obj->has_aliasing_ppgtt_mapping = 0;
2701 }
74163907 2702 i915_gem_gtt_finish_object(obj);
401c29f6 2703 i915_gem_object_unpin_pages(obj);
7bddb01f 2704
ca191b13 2705 list_del(&vma->mm_list);
75e9e915 2706 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2707 if (i915_is_ggtt(vma->vm))
2708 obj->map_and_fenceable = true;
673a394b 2709
2f633156 2710 drm_mm_remove_node(&vma->node);
433544bd 2711
2f633156
BW
2712 i915_gem_vma_destroy(vma);
2713
2714 /* Since the unbound list is global, only move to that list if
b93dab6e 2715 * no more VMAs exist. */
2f633156
BW
2716 if (list_empty(&obj->vma_list))
2717 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2718
88241785 2719 return 0;
54cf91dc
CW
2720}
2721
07fe0b12
BW
2722/**
2723 * Unbinds an object from the global GTT aperture.
2724 */
2725int
2726i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2727{
2728 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2729 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2730
58e73e15 2731 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2732 return 0;
2733
2734 if (obj->pin_count)
2735 return -EBUSY;
2736
2737 BUG_ON(obj->pages == NULL);
2738
2739 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2740}
2741
b2da9fe5 2742int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2743{
2744 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2745 struct intel_ring_buffer *ring;
1ec14ad3 2746 int ret, i;
4df2faf4 2747
4df2faf4 2748 /* Flush everything onto the inactive list. */
b4519513 2749 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2750 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2751 if (ret)
2752 return ret;
2753
3e960501 2754 ret = intel_ring_idle(ring);
1ec14ad3
CW
2755 if (ret)
2756 return ret;
2757 }
4df2faf4 2758
8a1a49f9 2759 return 0;
4df2faf4
DV
2760}
2761
9ce079e4
CW
2762static void i965_write_fence_reg(struct drm_device *dev, int reg,
2763 struct drm_i915_gem_object *obj)
de151cf6 2764{
de151cf6 2765 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2766 int fence_reg;
2767 int fence_pitch_shift;
de151cf6 2768
56c844e5
ID
2769 if (INTEL_INFO(dev)->gen >= 6) {
2770 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2771 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2772 } else {
2773 fence_reg = FENCE_REG_965_0;
2774 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2775 }
2776
d18b9619
CW
2777 fence_reg += reg * 8;
2778
2779 /* To w/a incoherency with non-atomic 64-bit register updates,
2780 * we split the 64-bit update into two 32-bit writes. In order
2781 * for a partial fence not to be evaluated between writes, we
2782 * precede the update with write to turn off the fence register,
2783 * and only enable the fence as the last step.
2784 *
2785 * For extra levels of paranoia, we make sure each step lands
2786 * before applying the next step.
2787 */
2788 I915_WRITE(fence_reg, 0);
2789 POSTING_READ(fence_reg);
2790
9ce079e4 2791 if (obj) {
f343c5f6 2792 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2793 uint64_t val;
de151cf6 2794
f343c5f6 2795 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2796 0xfffff000) << 32;
f343c5f6 2797 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2798 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2799 if (obj->tiling_mode == I915_TILING_Y)
2800 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2801 val |= I965_FENCE_REG_VALID;
c6642782 2802
d18b9619
CW
2803 I915_WRITE(fence_reg + 4, val >> 32);
2804 POSTING_READ(fence_reg + 4);
2805
2806 I915_WRITE(fence_reg + 0, val);
2807 POSTING_READ(fence_reg);
2808 } else {
2809 I915_WRITE(fence_reg + 4, 0);
2810 POSTING_READ(fence_reg + 4);
2811 }
de151cf6
JB
2812}
2813
9ce079e4
CW
2814static void i915_write_fence_reg(struct drm_device *dev, int reg,
2815 struct drm_i915_gem_object *obj)
de151cf6 2816{
de151cf6 2817 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2818 u32 val;
de151cf6 2819
9ce079e4 2820 if (obj) {
f343c5f6 2821 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2822 int pitch_val;
2823 int tile_width;
c6642782 2824
f343c5f6 2825 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2826 (size & -size) != size ||
f343c5f6
BW
2827 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2828 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2829 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2830
9ce079e4
CW
2831 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2832 tile_width = 128;
2833 else
2834 tile_width = 512;
2835
2836 /* Note: pitch better be a power of two tile widths */
2837 pitch_val = obj->stride / tile_width;
2838 pitch_val = ffs(pitch_val) - 1;
2839
f343c5f6 2840 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2841 if (obj->tiling_mode == I915_TILING_Y)
2842 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2843 val |= I915_FENCE_SIZE_BITS(size);
2844 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2845 val |= I830_FENCE_REG_VALID;
2846 } else
2847 val = 0;
2848
2849 if (reg < 8)
2850 reg = FENCE_REG_830_0 + reg * 4;
2851 else
2852 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2853
2854 I915_WRITE(reg, val);
2855 POSTING_READ(reg);
de151cf6
JB
2856}
2857
9ce079e4
CW
2858static void i830_write_fence_reg(struct drm_device *dev, int reg,
2859 struct drm_i915_gem_object *obj)
de151cf6 2860{
de151cf6 2861 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2862 uint32_t val;
de151cf6 2863
9ce079e4 2864 if (obj) {
f343c5f6 2865 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2866 uint32_t pitch_val;
de151cf6 2867
f343c5f6 2868 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2869 (size & -size) != size ||
f343c5f6
BW
2870 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2872 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2873
9ce079e4
CW
2874 pitch_val = obj->stride / 128;
2875 pitch_val = ffs(pitch_val) - 1;
de151cf6 2876
f343c5f6 2877 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2878 if (obj->tiling_mode == I915_TILING_Y)
2879 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2880 val |= I830_FENCE_SIZE_BITS(size);
2881 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2882 val |= I830_FENCE_REG_VALID;
2883 } else
2884 val = 0;
c6642782 2885
9ce079e4
CW
2886 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2887 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2888}
2889
d0a57789
CW
2890inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2891{
2892 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2893}
2894
9ce079e4
CW
2895static void i915_gem_write_fence(struct drm_device *dev, int reg,
2896 struct drm_i915_gem_object *obj)
2897{
d0a57789
CW
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899
2900 /* Ensure that all CPU reads are completed before installing a fence
2901 * and all writes before removing the fence.
2902 */
2903 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2904 mb();
2905
94a335db
DV
2906 WARN(obj && (!obj->stride || !obj->tiling_mode),
2907 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2908 obj->stride, obj->tiling_mode);
2909
9ce079e4
CW
2910 switch (INTEL_INFO(dev)->gen) {
2911 case 7:
56c844e5 2912 case 6:
9ce079e4
CW
2913 case 5:
2914 case 4: i965_write_fence_reg(dev, reg, obj); break;
2915 case 3: i915_write_fence_reg(dev, reg, obj); break;
2916 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2917 default: BUG();
9ce079e4 2918 }
d0a57789
CW
2919
2920 /* And similarly be paranoid that no direct access to this region
2921 * is reordered to before the fence is installed.
2922 */
2923 if (i915_gem_object_needs_mb(obj))
2924 mb();
de151cf6
JB
2925}
2926
61050808
CW
2927static inline int fence_number(struct drm_i915_private *dev_priv,
2928 struct drm_i915_fence_reg *fence)
2929{
2930 return fence - dev_priv->fence_regs;
2931}
2932
2933static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2934 struct drm_i915_fence_reg *fence,
2935 bool enable)
2936{
2dc8aae0 2937 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2938 int reg = fence_number(dev_priv, fence);
2939
2940 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2941
2942 if (enable) {
46a0b638 2943 obj->fence_reg = reg;
61050808
CW
2944 fence->obj = obj;
2945 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2946 } else {
2947 obj->fence_reg = I915_FENCE_REG_NONE;
2948 fence->obj = NULL;
2949 list_del_init(&fence->lru_list);
2950 }
94a335db 2951 obj->fence_dirty = false;
61050808
CW
2952}
2953
d9e86c0e 2954static int
d0a57789 2955i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2956{
1c293ea3 2957 if (obj->last_fenced_seqno) {
86d5bc37 2958 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2959 if (ret)
2960 return ret;
d9e86c0e
CW
2961
2962 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2963 }
2964
86d5bc37 2965 obj->fenced_gpu_access = false;
d9e86c0e
CW
2966 return 0;
2967}
2968
2969int
2970i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2971{
61050808 2972 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2973 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2974 int ret;
2975
d0a57789 2976 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2977 if (ret)
2978 return ret;
2979
61050808
CW
2980 if (obj->fence_reg == I915_FENCE_REG_NONE)
2981 return 0;
d9e86c0e 2982
f9c513e9
CW
2983 fence = &dev_priv->fence_regs[obj->fence_reg];
2984
61050808 2985 i915_gem_object_fence_lost(obj);
f9c513e9 2986 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2987
2988 return 0;
2989}
2990
2991static struct drm_i915_fence_reg *
a360bb1a 2992i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2993{
ae3db24a 2994 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2995 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2996 int i;
ae3db24a
DV
2997
2998 /* First try to find a free reg */
d9e86c0e 2999 avail = NULL;
ae3db24a
DV
3000 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3001 reg = &dev_priv->fence_regs[i];
3002 if (!reg->obj)
d9e86c0e 3003 return reg;
ae3db24a 3004
1690e1eb 3005 if (!reg->pin_count)
d9e86c0e 3006 avail = reg;
ae3db24a
DV
3007 }
3008
d9e86c0e
CW
3009 if (avail == NULL)
3010 return NULL;
ae3db24a
DV
3011
3012 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3013 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3014 if (reg->pin_count)
ae3db24a
DV
3015 continue;
3016
8fe301ad 3017 return reg;
ae3db24a
DV
3018 }
3019
8fe301ad 3020 return NULL;
ae3db24a
DV
3021}
3022
de151cf6 3023/**
9a5a53b3 3024 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3025 * @obj: object to map through a fence reg
3026 *
3027 * When mapping objects through the GTT, userspace wants to be able to write
3028 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3029 * This function walks the fence regs looking for a free one for @obj,
3030 * stealing one if it can't find any.
3031 *
3032 * It then sets up the reg based on the object's properties: address, pitch
3033 * and tiling format.
9a5a53b3
CW
3034 *
3035 * For an untiled surface, this removes any existing fence.
de151cf6 3036 */
8c4b8c3f 3037int
06d98131 3038i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3039{
05394f39 3040 struct drm_device *dev = obj->base.dev;
79e53945 3041 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3042 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3043 struct drm_i915_fence_reg *reg;
ae3db24a 3044 int ret;
de151cf6 3045
14415745
CW
3046 /* Have we updated the tiling parameters upon the object and so
3047 * will need to serialise the write to the associated fence register?
3048 */
5d82e3e6 3049 if (obj->fence_dirty) {
d0a57789 3050 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3051 if (ret)
3052 return ret;
3053 }
9a5a53b3 3054
d9e86c0e 3055 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3056 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3057 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3058 if (!obj->fence_dirty) {
14415745
CW
3059 list_move_tail(&reg->lru_list,
3060 &dev_priv->mm.fence_list);
3061 return 0;
3062 }
3063 } else if (enable) {
3064 reg = i915_find_fence_reg(dev);
3065 if (reg == NULL)
3066 return -EDEADLK;
d9e86c0e 3067
14415745
CW
3068 if (reg->obj) {
3069 struct drm_i915_gem_object *old = reg->obj;
3070
d0a57789 3071 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3072 if (ret)
3073 return ret;
3074
14415745 3075 i915_gem_object_fence_lost(old);
29c5a587 3076 }
14415745 3077 } else
a09ba7fa 3078 return 0;
a09ba7fa 3079
14415745 3080 i915_gem_object_update_fence(obj, reg, enable);
14415745 3081
9ce079e4 3082 return 0;
de151cf6
JB
3083}
3084
42d6ab48
CW
3085static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3086 struct drm_mm_node *gtt_space,
3087 unsigned long cache_level)
3088{
3089 struct drm_mm_node *other;
3090
3091 /* On non-LLC machines we have to be careful when putting differing
3092 * types of snoopable memory together to avoid the prefetcher
4239ca77 3093 * crossing memory domains and dying.
42d6ab48
CW
3094 */
3095 if (HAS_LLC(dev))
3096 return true;
3097
c6cfb325 3098 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3099 return true;
3100
3101 if (list_empty(&gtt_space->node_list))
3102 return true;
3103
3104 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3105 if (other->allocated && !other->hole_follows && other->color != cache_level)
3106 return false;
3107
3108 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3109 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3110 return false;
3111
3112 return true;
3113}
3114
3115static void i915_gem_verify_gtt(struct drm_device *dev)
3116{
3117#if WATCH_GTT
3118 struct drm_i915_private *dev_priv = dev->dev_private;
3119 struct drm_i915_gem_object *obj;
3120 int err = 0;
3121
35c20a60 3122 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3123 if (obj->gtt_space == NULL) {
3124 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3125 err++;
3126 continue;
3127 }
3128
3129 if (obj->cache_level != obj->gtt_space->color) {
3130 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3131 i915_gem_obj_ggtt_offset(obj),
3132 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3133 obj->cache_level,
3134 obj->gtt_space->color);
3135 err++;
3136 continue;
3137 }
3138
3139 if (!i915_gem_valid_gtt_space(dev,
3140 obj->gtt_space,
3141 obj->cache_level)) {
3142 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3143 i915_gem_obj_ggtt_offset(obj),
3144 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3145 obj->cache_level);
3146 err++;
3147 continue;
3148 }
3149 }
3150
3151 WARN_ON(err);
3152#endif
3153}
3154
673a394b
EA
3155/**
3156 * Finds free space in the GTT aperture and binds the object there.
3157 */
3158static int
07fe0b12
BW
3159i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3160 struct i915_address_space *vm,
3161 unsigned alignment,
3162 bool map_and_fenceable,
3163 bool nonblocking)
673a394b 3164{
05394f39 3165 struct drm_device *dev = obj->base.dev;
673a394b 3166 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3167 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3168 size_t gtt_max =
3169 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3170 struct i915_vma *vma;
07f73f69 3171 int ret;
673a394b 3172
e28f8711
CW
3173 fence_size = i915_gem_get_gtt_size(dev,
3174 obj->base.size,
3175 obj->tiling_mode);
3176 fence_alignment = i915_gem_get_gtt_alignment(dev,
3177 obj->base.size,
d865110c 3178 obj->tiling_mode, true);
e28f8711 3179 unfenced_alignment =
d865110c 3180 i915_gem_get_gtt_alignment(dev,
e28f8711 3181 obj->base.size,
d865110c 3182 obj->tiling_mode, false);
a00b10c3 3183
673a394b 3184 if (alignment == 0)
5e783301
DV
3185 alignment = map_and_fenceable ? fence_alignment :
3186 unfenced_alignment;
75e9e915 3187 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3188 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3189 return -EINVAL;
3190 }
3191
05394f39 3192 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3193
654fc607
CW
3194 /* If the object is bigger than the entire aperture, reject it early
3195 * before evicting everything in a vain attempt to find space.
3196 */
0a9ae0d7 3197 if (obj->base.size > gtt_max) {
3765f304 3198 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3199 obj->base.size,
3200 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3201 gtt_max);
654fc607
CW
3202 return -E2BIG;
3203 }
3204
37e680a1 3205 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3206 if (ret)
3207 return ret;
3208
fbdda6fb
CW
3209 i915_gem_object_pin_pages(obj);
3210
07fe0b12 3211 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3212
accfef2e 3213 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3214 if (IS_ERR(vma)) {
bc6bc15b
DV
3215 ret = PTR_ERR(vma);
3216 goto err_unpin;
2f633156
BW
3217 }
3218
accfef2e
BW
3219 /* For now we only ever use 1 vma per object */
3220 WARN_ON(!list_is_singular(&obj->vma_list));
3221
0a9ae0d7 3222search_free:
07fe0b12 3223 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3224 size, alignment,
31e5d7c6
DH
3225 obj->cache_level, 0, gtt_max,
3226 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3227 if (ret) {
f6cd1f15 3228 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3229 obj->cache_level,
86a1ee26
CW
3230 map_and_fenceable,
3231 nonblocking);
dc9dd7a2
CW
3232 if (ret == 0)
3233 goto search_free;
9731129c 3234
bc6bc15b 3235 goto err_free_vma;
673a394b 3236 }
2f633156 3237 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3238 obj->cache_level))) {
2f633156 3239 ret = -EINVAL;
bc6bc15b 3240 goto err_remove_node;
673a394b
EA
3241 }
3242
74163907 3243 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3244 if (ret)
bc6bc15b 3245 goto err_remove_node;
673a394b 3246
35c20a60 3247 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3248 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3249
4bd561b3
BW
3250 if (i915_is_ggtt(vm)) {
3251 bool mappable, fenceable;
a00b10c3 3252
49987099
DV
3253 fenceable = (vma->node.size == fence_size &&
3254 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3255
49987099
DV
3256 mappable = (vma->node.start + obj->base.size <=
3257 dev_priv->gtt.mappable_end);
a00b10c3 3258
5cacaac7 3259 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3260 }
75e9e915 3261
7ace7ef2 3262 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3263
07fe0b12 3264 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3265 i915_gem_verify_gtt(dev);
673a394b 3266 return 0;
2f633156 3267
bc6bc15b 3268err_remove_node:
6286ef9b 3269 drm_mm_remove_node(&vma->node);
bc6bc15b 3270err_free_vma:
2f633156 3271 i915_gem_vma_destroy(vma);
bc6bc15b 3272err_unpin:
2f633156 3273 i915_gem_object_unpin_pages(obj);
2f633156 3274 return ret;
673a394b
EA
3275}
3276
000433b6 3277bool
2c22569b
CW
3278i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3279 bool force)
673a394b 3280{
673a394b
EA
3281 /* If we don't have a page list set up, then we're not pinned
3282 * to GPU, and we can ignore the cache flush because it'll happen
3283 * again at bind time.
3284 */
05394f39 3285 if (obj->pages == NULL)
000433b6 3286 return false;
673a394b 3287
769ce464
ID
3288 /*
3289 * Stolen memory is always coherent with the GPU as it is explicitly
3290 * marked as wc by the system, or the system is cache-coherent.
3291 */
3292 if (obj->stolen)
000433b6 3293 return false;
769ce464 3294
9c23f7fc
CW
3295 /* If the GPU is snooping the contents of the CPU cache,
3296 * we do not need to manually clear the CPU cache lines. However,
3297 * the caches are only snooped when the render cache is
3298 * flushed/invalidated. As we always have to emit invalidations
3299 * and flushes when moving into and out of the RENDER domain, correct
3300 * snooping behaviour occurs naturally as the result of our domain
3301 * tracking.
3302 */
2c22569b 3303 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3304 return false;
9c23f7fc 3305
1c5d22f7 3306 trace_i915_gem_object_clflush(obj);
9da3da66 3307 drm_clflush_sg(obj->pages);
000433b6
CW
3308
3309 return true;
e47c68e9
EA
3310}
3311
3312/** Flushes the GTT write domain for the object if it's dirty. */
3313static void
05394f39 3314i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3315{
1c5d22f7
CW
3316 uint32_t old_write_domain;
3317
05394f39 3318 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3319 return;
3320
63256ec5 3321 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3322 * to it immediately go to main memory as far as we know, so there's
3323 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3324 *
3325 * However, we do have to enforce the order so that all writes through
3326 * the GTT land before any writes to the device, such as updates to
3327 * the GATT itself.
e47c68e9 3328 */
63256ec5
CW
3329 wmb();
3330
05394f39
CW
3331 old_write_domain = obj->base.write_domain;
3332 obj->base.write_domain = 0;
1c5d22f7
CW
3333
3334 trace_i915_gem_object_change_domain(obj,
05394f39 3335 obj->base.read_domains,
1c5d22f7 3336 old_write_domain);
e47c68e9
EA
3337}
3338
3339/** Flushes the CPU write domain for the object if it's dirty. */
3340static void
2c22569b
CW
3341i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3342 bool force)
e47c68e9 3343{
1c5d22f7 3344 uint32_t old_write_domain;
e47c68e9 3345
05394f39 3346 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3347 return;
3348
000433b6
CW
3349 if (i915_gem_clflush_object(obj, force))
3350 i915_gem_chipset_flush(obj->base.dev);
3351
05394f39
CW
3352 old_write_domain = obj->base.write_domain;
3353 obj->base.write_domain = 0;
1c5d22f7
CW
3354
3355 trace_i915_gem_object_change_domain(obj,
05394f39 3356 obj->base.read_domains,
1c5d22f7 3357 old_write_domain);
e47c68e9
EA
3358}
3359
2ef7eeaa
EA
3360/**
3361 * Moves a single object to the GTT read, and possibly write domain.
3362 *
3363 * This function returns when the move is complete, including waiting on
3364 * flushes to occur.
3365 */
79e53945 3366int
2021746e 3367i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3368{
8325a09d 3369 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3370 uint32_t old_write_domain, old_read_domains;
e47c68e9 3371 int ret;
2ef7eeaa 3372
02354392 3373 /* Not valid to be called on unbound objects. */
9843877d 3374 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3375 return -EINVAL;
3376
8d7e3de1
CW
3377 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3378 return 0;
3379
0201f1ec 3380 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3381 if (ret)
3382 return ret;
3383
2c22569b 3384 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3385
d0a57789
CW
3386 /* Serialise direct access to this object with the barriers for
3387 * coherent writes from the GPU, by effectively invalidating the
3388 * GTT domain upon first access.
3389 */
3390 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3391 mb();
3392
05394f39
CW
3393 old_write_domain = obj->base.write_domain;
3394 old_read_domains = obj->base.read_domains;
1c5d22f7 3395
e47c68e9
EA
3396 /* It should now be out of any other write domains, and we can update
3397 * the domain values for our changes.
3398 */
05394f39
CW
3399 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3400 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3401 if (write) {
05394f39
CW
3402 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3403 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3404 obj->dirty = 1;
2ef7eeaa
EA
3405 }
3406
1c5d22f7
CW
3407 trace_i915_gem_object_change_domain(obj,
3408 old_read_domains,
3409 old_write_domain);
3410
8325a09d 3411 /* And bump the LRU for this access */
ca191b13
BW
3412 if (i915_gem_object_is_inactive(obj)) {
3413 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3414 &dev_priv->gtt.base);
3415 if (vma)
3416 list_move_tail(&vma->mm_list,
3417 &dev_priv->gtt.base.inactive_list);
3418
3419 }
8325a09d 3420
e47c68e9
EA
3421 return 0;
3422}
3423
e4ffd173
CW
3424int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3425 enum i915_cache_level cache_level)
3426{
7bddb01f
DV
3427 struct drm_device *dev = obj->base.dev;
3428 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3429 struct i915_vma *vma;
e4ffd173
CW
3430 int ret;
3431
3432 if (obj->cache_level == cache_level)
3433 return 0;
3434
3435 if (obj->pin_count) {
3436 DRM_DEBUG("can not change the cache level of pinned objects\n");
3437 return -EBUSY;
3438 }
3439
3089c6f2
BW
3440 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3441 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3442 ret = i915_vma_unbind(vma);
3089c6f2
BW
3443 if (ret)
3444 return ret;
3445
3446 break;
3447 }
42d6ab48
CW
3448 }
3449
3089c6f2 3450 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3451 ret = i915_gem_object_finish_gpu(obj);
3452 if (ret)
3453 return ret;
3454
3455 i915_gem_object_finish_gtt(obj);
3456
3457 /* Before SandyBridge, you could not use tiling or fence
3458 * registers with snooped memory, so relinquish any fences
3459 * currently pointing to our region in the aperture.
3460 */
42d6ab48 3461 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3462 ret = i915_gem_object_put_fence(obj);
3463 if (ret)
3464 return ret;
3465 }
3466
74898d7e
DV
3467 if (obj->has_global_gtt_mapping)
3468 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3469 if (obj->has_aliasing_ppgtt_mapping)
3470 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3471 obj, cache_level);
e4ffd173
CW
3472 }
3473
2c22569b
CW
3474 list_for_each_entry(vma, &obj->vma_list, vma_link)
3475 vma->node.color = cache_level;
3476 obj->cache_level = cache_level;
3477
3478 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3479 u32 old_read_domains, old_write_domain;
3480
3481 /* If we're coming from LLC cached, then we haven't
3482 * actually been tracking whether the data is in the
3483 * CPU cache or not, since we only allow one bit set
3484 * in obj->write_domain and have been skipping the clflushes.
3485 * Just set it to the CPU cache for now.
3486 */
3487 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3488
3489 old_read_domains = obj->base.read_domains;
3490 old_write_domain = obj->base.write_domain;
3491
3492 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3493 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3494
3495 trace_i915_gem_object_change_domain(obj,
3496 old_read_domains,
3497 old_write_domain);
3498 }
3499
42d6ab48 3500 i915_gem_verify_gtt(dev);
e4ffd173
CW
3501 return 0;
3502}
3503
199adf40
BW
3504int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3505 struct drm_file *file)
e6994aee 3506{
199adf40 3507 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3508 struct drm_i915_gem_object *obj;
3509 int ret;
3510
3511 ret = i915_mutex_lock_interruptible(dev);
3512 if (ret)
3513 return ret;
3514
3515 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3516 if (&obj->base == NULL) {
3517 ret = -ENOENT;
3518 goto unlock;
3519 }
3520
651d794f
CW
3521 switch (obj->cache_level) {
3522 case I915_CACHE_LLC:
3523 case I915_CACHE_L3_LLC:
3524 args->caching = I915_CACHING_CACHED;
3525 break;
3526
4257d3ba
CW
3527 case I915_CACHE_WT:
3528 args->caching = I915_CACHING_DISPLAY;
3529 break;
3530
651d794f
CW
3531 default:
3532 args->caching = I915_CACHING_NONE;
3533 break;
3534 }
e6994aee
CW
3535
3536 drm_gem_object_unreference(&obj->base);
3537unlock:
3538 mutex_unlock(&dev->struct_mutex);
3539 return ret;
3540}
3541
199adf40
BW
3542int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file)
e6994aee 3544{
199adf40 3545 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3546 struct drm_i915_gem_object *obj;
3547 enum i915_cache_level level;
3548 int ret;
3549
199adf40
BW
3550 switch (args->caching) {
3551 case I915_CACHING_NONE:
e6994aee
CW
3552 level = I915_CACHE_NONE;
3553 break;
199adf40 3554 case I915_CACHING_CACHED:
e6994aee
CW
3555 level = I915_CACHE_LLC;
3556 break;
4257d3ba
CW
3557 case I915_CACHING_DISPLAY:
3558 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3559 break;
e6994aee
CW
3560 default:
3561 return -EINVAL;
3562 }
3563
3bc2913e
BW
3564 ret = i915_mutex_lock_interruptible(dev);
3565 if (ret)
3566 return ret;
3567
e6994aee
CW
3568 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3569 if (&obj->base == NULL) {
3570 ret = -ENOENT;
3571 goto unlock;
3572 }
3573
3574 ret = i915_gem_object_set_cache_level(obj, level);
3575
3576 drm_gem_object_unreference(&obj->base);
3577unlock:
3578 mutex_unlock(&dev->struct_mutex);
3579 return ret;
3580}
3581
cc98b413
CW
3582static bool is_pin_display(struct drm_i915_gem_object *obj)
3583{
3584 /* There are 3 sources that pin objects:
3585 * 1. The display engine (scanouts, sprites, cursors);
3586 * 2. Reservations for execbuffer;
3587 * 3. The user.
3588 *
3589 * We can ignore reservations as we hold the struct_mutex and
3590 * are only called outside of the reservation path. The user
3591 * can only increment pin_count once, and so if after
3592 * subtracting the potential reference by the user, any pin_count
3593 * remains, it must be due to another use by the display engine.
3594 */
3595 return obj->pin_count - !!obj->user_pin_count;
3596}
3597
b9241ea3 3598/*
2da3b9b9
CW
3599 * Prepare buffer for display plane (scanout, cursors, etc).
3600 * Can be called from an uninterruptible phase (modesetting) and allows
3601 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3602 */
3603int
2da3b9b9
CW
3604i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3605 u32 alignment,
919926ae 3606 struct intel_ring_buffer *pipelined)
b9241ea3 3607{
2da3b9b9 3608 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3609 int ret;
3610
0be73284 3611 if (pipelined != obj->ring) {
2911a35b
BW
3612 ret = i915_gem_object_sync(obj, pipelined);
3613 if (ret)
b9241ea3
ZW
3614 return ret;
3615 }
3616
cc98b413
CW
3617 /* Mark the pin_display early so that we account for the
3618 * display coherency whilst setting up the cache domains.
3619 */
3620 obj->pin_display = true;
3621
a7ef0640
EA
3622 /* The display engine is not coherent with the LLC cache on gen6. As
3623 * a result, we make sure that the pinning that is about to occur is
3624 * done with uncached PTEs. This is lowest common denominator for all
3625 * chipsets.
3626 *
3627 * However for gen6+, we could do better by using the GFDT bit instead
3628 * of uncaching, which would allow us to flush all the LLC-cached data
3629 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3630 */
651d794f
CW
3631 ret = i915_gem_object_set_cache_level(obj,
3632 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3633 if (ret)
cc98b413 3634 goto err_unpin_display;
a7ef0640 3635
2da3b9b9
CW
3636 /* As the user may map the buffer once pinned in the display plane
3637 * (e.g. libkms for the bootup splash), we have to ensure that we
3638 * always use map_and_fenceable for all scanout buffers.
3639 */
c37e2204 3640 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3641 if (ret)
cc98b413 3642 goto err_unpin_display;
2da3b9b9 3643
2c22569b 3644 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3645
2da3b9b9 3646 old_write_domain = obj->base.write_domain;
05394f39 3647 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3648
3649 /* It should now be out of any other write domains, and we can update
3650 * the domain values for our changes.
3651 */
e5f1d962 3652 obj->base.write_domain = 0;
05394f39 3653 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3654
3655 trace_i915_gem_object_change_domain(obj,
3656 old_read_domains,
2da3b9b9 3657 old_write_domain);
b9241ea3
ZW
3658
3659 return 0;
cc98b413
CW
3660
3661err_unpin_display:
3662 obj->pin_display = is_pin_display(obj);
3663 return ret;
3664}
3665
3666void
3667i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3668{
3669 i915_gem_object_unpin(obj);
3670 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3671}
3672
85345517 3673int
a8198eea 3674i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3675{
88241785
CW
3676 int ret;
3677
a8198eea 3678 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3679 return 0;
3680
0201f1ec 3681 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3682 if (ret)
3683 return ret;
3684
a8198eea
CW
3685 /* Ensure that we invalidate the GPU's caches and TLBs. */
3686 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3687 return 0;
85345517
CW
3688}
3689
e47c68e9
EA
3690/**
3691 * Moves a single object to the CPU read, and possibly write domain.
3692 *
3693 * This function returns when the move is complete, including waiting on
3694 * flushes to occur.
3695 */
dabdfe02 3696int
919926ae 3697i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3698{
1c5d22f7 3699 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3700 int ret;
3701
8d7e3de1
CW
3702 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3703 return 0;
3704
0201f1ec 3705 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3706 if (ret)
3707 return ret;
3708
e47c68e9 3709 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3710
05394f39
CW
3711 old_write_domain = obj->base.write_domain;
3712 old_read_domains = obj->base.read_domains;
1c5d22f7 3713
e47c68e9 3714 /* Flush the CPU cache if it's still invalid. */
05394f39 3715 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3716 i915_gem_clflush_object(obj, false);
2ef7eeaa 3717
05394f39 3718 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3719 }
3720
3721 /* It should now be out of any other write domains, and we can update
3722 * the domain values for our changes.
3723 */
05394f39 3724 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3725
3726 /* If we're writing through the CPU, then the GPU read domains will
3727 * need to be invalidated at next use.
3728 */
3729 if (write) {
05394f39
CW
3730 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3731 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3732 }
2ef7eeaa 3733
1c5d22f7
CW
3734 trace_i915_gem_object_change_domain(obj,
3735 old_read_domains,
3736 old_write_domain);
3737
2ef7eeaa
EA
3738 return 0;
3739}
3740
673a394b
EA
3741/* Throttle our rendering by waiting until the ring has completed our requests
3742 * emitted over 20 msec ago.
3743 *
b962442e
EA
3744 * Note that if we were to use the current jiffies each time around the loop,
3745 * we wouldn't escape the function with any frames outstanding if the time to
3746 * render a frame was over 20ms.
3747 *
673a394b
EA
3748 * This should get us reasonable parallelism between CPU and GPU but also
3749 * relatively low latency when blocking on a particular request to finish.
3750 */
40a5f0de 3751static int
f787a5f5 3752i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3753{
f787a5f5
CW
3754 struct drm_i915_private *dev_priv = dev->dev_private;
3755 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3756 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3757 struct drm_i915_gem_request *request;
3758 struct intel_ring_buffer *ring = NULL;
f69061be 3759 unsigned reset_counter;
f787a5f5
CW
3760 u32 seqno = 0;
3761 int ret;
93533c29 3762
308887aa
DV
3763 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3764 if (ret)
3765 return ret;
3766
3767 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3768 if (ret)
3769 return ret;
e110e8d6 3770
1c25595f 3771 spin_lock(&file_priv->mm.lock);
f787a5f5 3772 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3773 if (time_after_eq(request->emitted_jiffies, recent_enough))
3774 break;
40a5f0de 3775
f787a5f5
CW
3776 ring = request->ring;
3777 seqno = request->seqno;
b962442e 3778 }
f69061be 3779 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3780 spin_unlock(&file_priv->mm.lock);
40a5f0de 3781
f787a5f5
CW
3782 if (seqno == 0)
3783 return 0;
2bc43b5c 3784
f69061be 3785 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3786 if (ret == 0)
3787 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3788
3789 return ret;
3790}
3791
673a394b 3792int
05394f39 3793i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3794 struct i915_address_space *vm,
05394f39 3795 uint32_t alignment,
86a1ee26
CW
3796 bool map_and_fenceable,
3797 bool nonblocking)
673a394b 3798{
07fe0b12 3799 struct i915_vma *vma;
673a394b
EA
3800 int ret;
3801
7e81a42e
CW
3802 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3803 return -EBUSY;
ac0c6b5a 3804
07fe0b12
BW
3805 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3806
3807 vma = i915_gem_obj_to_vma(obj, vm);
3808
3809 if (vma) {
3810 if ((alignment &&
3811 vma->node.start & (alignment - 1)) ||
05394f39
CW
3812 (map_and_fenceable && !obj->map_and_fenceable)) {
3813 WARN(obj->pin_count,
ae7d49d8 3814 "bo is already pinned with incorrect alignment:"
f343c5f6 3815 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3816 " obj->map_and_fenceable=%d\n",
07fe0b12 3817 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3818 map_and_fenceable,
05394f39 3819 obj->map_and_fenceable);
07fe0b12 3820 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3821 if (ret)
3822 return ret;
3823 }
3824 }
3825
07fe0b12 3826 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3827 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3828
07fe0b12
BW
3829 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3830 map_and_fenceable,
3831 nonblocking);
9731129c 3832 if (ret)
673a394b 3833 return ret;
8742267a
CW
3834
3835 if (!dev_priv->mm.aliasing_ppgtt)
3836 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3837 }
76446cac 3838
74898d7e
DV
3839 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3840 i915_gem_gtt_bind_object(obj, obj->cache_level);
3841
1b50247a 3842 obj->pin_count++;
6299f992 3843 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3844
3845 return 0;
3846}
3847
3848void
05394f39 3849i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3850{
05394f39 3851 BUG_ON(obj->pin_count == 0);
9843877d 3852 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3853
1b50247a 3854 if (--obj->pin_count == 0)
6299f992 3855 obj->pin_mappable = false;
673a394b
EA
3856}
3857
3858int
3859i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3860 struct drm_file *file)
673a394b
EA
3861{
3862 struct drm_i915_gem_pin *args = data;
05394f39 3863 struct drm_i915_gem_object *obj;
673a394b
EA
3864 int ret;
3865
1d7cfea1
CW
3866 ret = i915_mutex_lock_interruptible(dev);
3867 if (ret)
3868 return ret;
673a394b 3869
05394f39 3870 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3871 if (&obj->base == NULL) {
1d7cfea1
CW
3872 ret = -ENOENT;
3873 goto unlock;
673a394b 3874 }
673a394b 3875
05394f39 3876 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3877 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3878 ret = -EINVAL;
3879 goto out;
3ef94daa
CW
3880 }
3881
05394f39 3882 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3883 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3884 args->handle);
1d7cfea1
CW
3885 ret = -EINVAL;
3886 goto out;
79e53945
JB
3887 }
3888
93be8788 3889 if (obj->user_pin_count == 0) {
c37e2204 3890 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3891 if (ret)
3892 goto out;
673a394b
EA
3893 }
3894
93be8788
CW
3895 obj->user_pin_count++;
3896 obj->pin_filp = file;
3897
f343c5f6 3898 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3899out:
05394f39 3900 drm_gem_object_unreference(&obj->base);
1d7cfea1 3901unlock:
673a394b 3902 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3903 return ret;
673a394b
EA
3904}
3905
3906int
3907i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3908 struct drm_file *file)
673a394b
EA
3909{
3910 struct drm_i915_gem_pin *args = data;
05394f39 3911 struct drm_i915_gem_object *obj;
76c1dec1 3912 int ret;
673a394b 3913
1d7cfea1
CW
3914 ret = i915_mutex_lock_interruptible(dev);
3915 if (ret)
3916 return ret;
673a394b 3917
05394f39 3918 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3919 if (&obj->base == NULL) {
1d7cfea1
CW
3920 ret = -ENOENT;
3921 goto unlock;
673a394b 3922 }
76c1dec1 3923
05394f39 3924 if (obj->pin_filp != file) {
79e53945
JB
3925 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3926 args->handle);
1d7cfea1
CW
3927 ret = -EINVAL;
3928 goto out;
79e53945 3929 }
05394f39
CW
3930 obj->user_pin_count--;
3931 if (obj->user_pin_count == 0) {
3932 obj->pin_filp = NULL;
79e53945
JB
3933 i915_gem_object_unpin(obj);
3934 }
673a394b 3935
1d7cfea1 3936out:
05394f39 3937 drm_gem_object_unreference(&obj->base);
1d7cfea1 3938unlock:
673a394b 3939 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3940 return ret;
673a394b
EA
3941}
3942
3943int
3944i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3945 struct drm_file *file)
673a394b
EA
3946{
3947 struct drm_i915_gem_busy *args = data;
05394f39 3948 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3949 int ret;
3950
76c1dec1 3951 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3952 if (ret)
76c1dec1 3953 return ret;
673a394b 3954
05394f39 3955 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3956 if (&obj->base == NULL) {
1d7cfea1
CW
3957 ret = -ENOENT;
3958 goto unlock;
673a394b 3959 }
d1b851fc 3960
0be555b6
CW
3961 /* Count all active objects as busy, even if they are currently not used
3962 * by the gpu. Users of this interface expect objects to eventually
3963 * become non-busy without any further actions, therefore emit any
3964 * necessary flushes here.
c4de0a5d 3965 */
30dfebf3 3966 ret = i915_gem_object_flush_active(obj);
0be555b6 3967
30dfebf3 3968 args->busy = obj->active;
e9808edd
CW
3969 if (obj->ring) {
3970 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3971 args->busy |= intel_ring_flag(obj->ring) << 16;
3972 }
673a394b 3973
05394f39 3974 drm_gem_object_unreference(&obj->base);
1d7cfea1 3975unlock:
673a394b 3976 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3977 return ret;
673a394b
EA
3978}
3979
3980int
3981i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3982 struct drm_file *file_priv)
3983{
0206e353 3984 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3985}
3986
3ef94daa
CW
3987int
3988i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3989 struct drm_file *file_priv)
3990{
3991 struct drm_i915_gem_madvise *args = data;
05394f39 3992 struct drm_i915_gem_object *obj;
76c1dec1 3993 int ret;
3ef94daa
CW
3994
3995 switch (args->madv) {
3996 case I915_MADV_DONTNEED:
3997 case I915_MADV_WILLNEED:
3998 break;
3999 default:
4000 return -EINVAL;
4001 }
4002
1d7cfea1
CW
4003 ret = i915_mutex_lock_interruptible(dev);
4004 if (ret)
4005 return ret;
4006
05394f39 4007 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4008 if (&obj->base == NULL) {
1d7cfea1
CW
4009 ret = -ENOENT;
4010 goto unlock;
3ef94daa 4011 }
3ef94daa 4012
05394f39 4013 if (obj->pin_count) {
1d7cfea1
CW
4014 ret = -EINVAL;
4015 goto out;
3ef94daa
CW
4016 }
4017
05394f39
CW
4018 if (obj->madv != __I915_MADV_PURGED)
4019 obj->madv = args->madv;
3ef94daa 4020
6c085a72
CW
4021 /* if the object is no longer attached, discard its backing storage */
4022 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4023 i915_gem_object_truncate(obj);
4024
05394f39 4025 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4026
1d7cfea1 4027out:
05394f39 4028 drm_gem_object_unreference(&obj->base);
1d7cfea1 4029unlock:
3ef94daa 4030 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4031 return ret;
3ef94daa
CW
4032}
4033
37e680a1
CW
4034void i915_gem_object_init(struct drm_i915_gem_object *obj,
4035 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4036{
35c20a60 4037 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4038 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4039 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4040 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4041
37e680a1
CW
4042 obj->ops = ops;
4043
0327d6ba
CW
4044 obj->fence_reg = I915_FENCE_REG_NONE;
4045 obj->madv = I915_MADV_WILLNEED;
4046 /* Avoid an unnecessary call to unbind on the first bind. */
4047 obj->map_and_fenceable = true;
4048
4049 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4050}
4051
37e680a1
CW
4052static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4053 .get_pages = i915_gem_object_get_pages_gtt,
4054 .put_pages = i915_gem_object_put_pages_gtt,
4055};
4056
05394f39
CW
4057struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4058 size_t size)
ac52bc56 4059{
c397b908 4060 struct drm_i915_gem_object *obj;
5949eac4 4061 struct address_space *mapping;
1a240d4d 4062 gfp_t mask;
ac52bc56 4063
42dcedd4 4064 obj = i915_gem_object_alloc(dev);
c397b908
DV
4065 if (obj == NULL)
4066 return NULL;
673a394b 4067
c397b908 4068 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4069 i915_gem_object_free(obj);
c397b908
DV
4070 return NULL;
4071 }
673a394b 4072
bed1ea95
CW
4073 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4074 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4075 /* 965gm cannot relocate objects above 4GiB. */
4076 mask &= ~__GFP_HIGHMEM;
4077 mask |= __GFP_DMA32;
4078 }
4079
496ad9aa 4080 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4081 mapping_set_gfp_mask(mapping, mask);
5949eac4 4082
37e680a1 4083 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4084
c397b908
DV
4085 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4086 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4087
3d29b842
ED
4088 if (HAS_LLC(dev)) {
4089 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4090 * cache) for about a 10% performance improvement
4091 * compared to uncached. Graphics requests other than
4092 * display scanout are coherent with the CPU in
4093 * accessing this cache. This means in this mode we
4094 * don't need to clflush on the CPU side, and on the
4095 * GPU side we only need to flush internal caches to
4096 * get data visible to the CPU.
4097 *
4098 * However, we maintain the display planes as UC, and so
4099 * need to rebind when first used as such.
4100 */
4101 obj->cache_level = I915_CACHE_LLC;
4102 } else
4103 obj->cache_level = I915_CACHE_NONE;
4104
d861e338
DV
4105 trace_i915_gem_object_create(obj);
4106
05394f39 4107 return obj;
c397b908
DV
4108}
4109
4110int i915_gem_init_object(struct drm_gem_object *obj)
4111{
4112 BUG();
de151cf6 4113
673a394b
EA
4114 return 0;
4115}
4116
1488fc08 4117void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4118{
1488fc08 4119 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4120 struct drm_device *dev = obj->base.dev;
be72615b 4121 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4122 struct i915_vma *vma, *next;
673a394b 4123
26e12f89
CW
4124 trace_i915_gem_object_destroy(obj);
4125
1488fc08
CW
4126 if (obj->phys_obj)
4127 i915_gem_detach_phys_object(dev, obj);
4128
4129 obj->pin_count = 0;
07fe0b12
BW
4130 /* NB: 0 or 1 elements */
4131 WARN_ON(!list_empty(&obj->vma_list) &&
4132 !list_is_singular(&obj->vma_list));
4133 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4134 int ret = i915_vma_unbind(vma);
4135 if (WARN_ON(ret == -ERESTARTSYS)) {
4136 bool was_interruptible;
1488fc08 4137
07fe0b12
BW
4138 was_interruptible = dev_priv->mm.interruptible;
4139 dev_priv->mm.interruptible = false;
1488fc08 4140
07fe0b12 4141 WARN_ON(i915_vma_unbind(vma));
1488fc08 4142
07fe0b12
BW
4143 dev_priv->mm.interruptible = was_interruptible;
4144 }
1488fc08
CW
4145 }
4146
1d64ae71
BW
4147 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4148 * before progressing. */
4149 if (obj->stolen)
4150 i915_gem_object_unpin_pages(obj);
4151
401c29f6
BW
4152 if (WARN_ON(obj->pages_pin_count))
4153 obj->pages_pin_count = 0;
37e680a1 4154 i915_gem_object_put_pages(obj);
d8cb5086 4155 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4156 i915_gem_object_release_stolen(obj);
de151cf6 4157
9da3da66
CW
4158 BUG_ON(obj->pages);
4159
2f745ad3
CW
4160 if (obj->base.import_attach)
4161 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4162
05394f39
CW
4163 drm_gem_object_release(&obj->base);
4164 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4165
05394f39 4166 kfree(obj->bit_17);
42dcedd4 4167 i915_gem_object_free(obj);
673a394b
EA
4168}
4169
e656a6cb 4170struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4171 struct i915_address_space *vm)
e656a6cb
DV
4172{
4173 struct i915_vma *vma;
4174 list_for_each_entry(vma, &obj->vma_list, vma_link)
4175 if (vma->vm == vm)
4176 return vma;
4177
4178 return NULL;
4179}
4180
4181static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4182 struct i915_address_space *vm)
2f633156
BW
4183{
4184 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4185 if (vma == NULL)
4186 return ERR_PTR(-ENOMEM);
4187
4188 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4189 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4190 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4191 vma->vm = vm;
4192 vma->obj = obj;
4193
8b9c2b94
BW
4194 /* Keep GGTT vmas first to make debug easier */
4195 if (i915_is_ggtt(vm))
4196 list_add(&vma->vma_link, &obj->vma_list);
4197 else
4198 list_add_tail(&vma->vma_link, &obj->vma_list);
4199
2f633156
BW
4200 return vma;
4201}
4202
e656a6cb
DV
4203struct i915_vma *
4204i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4205 struct i915_address_space *vm)
4206{
4207 struct i915_vma *vma;
4208
4209 vma = i915_gem_obj_to_vma(obj, vm);
4210 if (!vma)
4211 vma = __i915_gem_vma_create(obj, vm);
4212
4213 return vma;
4214}
4215
2f633156
BW
4216void i915_gem_vma_destroy(struct i915_vma *vma)
4217{
4218 WARN_ON(vma->node.allocated);
aaa05667
CW
4219
4220 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4221 if (!list_empty(&vma->exec_list))
4222 return;
4223
8b9c2b94 4224 list_del(&vma->vma_link);
b93dab6e 4225
2f633156
BW
4226 kfree(vma);
4227}
4228
29105ccc
CW
4229int
4230i915_gem_idle(struct drm_device *dev)
4231{
4232 drm_i915_private_t *dev_priv = dev->dev_private;
4233 int ret;
28dfe52a 4234
db1b76ca 4235 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4236 mutex_unlock(&dev->struct_mutex);
4237 return 0;
28dfe52a
EA
4238 }
4239
b2da9fe5 4240 ret = i915_gpu_idle(dev);
6dbe2772
KP
4241 if (ret) {
4242 mutex_unlock(&dev->struct_mutex);
673a394b 4243 return ret;
6dbe2772 4244 }
b2da9fe5 4245 i915_gem_retire_requests(dev);
673a394b 4246
29105ccc 4247 /* Under UMS, be paranoid and evict. */
a39d7efc 4248 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4249 i915_gem_evict_everything(dev);
29105ccc 4250
99584db3 4251 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4252
4253 i915_kernel_lost_context(dev);
6dbe2772 4254 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4255
29105ccc
CW
4256 /* Cancel the retire work handler, which should be idle now. */
4257 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4258
673a394b
EA
4259 return 0;
4260}
4261
c3787e2e 4262int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4263{
c3787e2e 4264 struct drm_device *dev = ring->dev;
b9524a1e 4265 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4266 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4267 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4268 int i, ret;
b9524a1e 4269
040d2baa 4270 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4271 return 0;
b9524a1e 4272
c3787e2e
BW
4273 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4274 if (ret)
4275 return ret;
b9524a1e 4276
c3787e2e
BW
4277 /*
4278 * Note: We do not worry about the concurrent register cacheline hang
4279 * here because no other code should access these registers other than
4280 * at initialization time.
4281 */
b9524a1e 4282 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4283 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4284 intel_ring_emit(ring, reg_base + i);
4285 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4286 }
4287
c3787e2e 4288 intel_ring_advance(ring);
b9524a1e 4289
c3787e2e 4290 return ret;
b9524a1e
BW
4291}
4292
f691e2f4
DV
4293void i915_gem_init_swizzling(struct drm_device *dev)
4294{
4295 drm_i915_private_t *dev_priv = dev->dev_private;
4296
11782b02 4297 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4298 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4299 return;
4300
4301 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4302 DISP_TILE_SURFACE_SWIZZLING);
4303
11782b02
DV
4304 if (IS_GEN5(dev))
4305 return;
4306
f691e2f4
DV
4307 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4308 if (IS_GEN6(dev))
6b26c86d 4309 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4310 else if (IS_GEN7(dev))
6b26c86d 4311 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4312 else
4313 BUG();
f691e2f4 4314}
e21af88d 4315
67b1b571
CW
4316static bool
4317intel_enable_blt(struct drm_device *dev)
4318{
4319 if (!HAS_BLT(dev))
4320 return false;
4321
4322 /* The blitter was dysfunctional on early prototypes */
4323 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4324 DRM_INFO("BLT not supported on this pre-production hardware;"
4325 " graphics performance will be degraded.\n");
4326 return false;
4327 }
4328
4329 return true;
4330}
4331
4fc7c971 4332static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4333{
4fc7c971 4334 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4335 int ret;
68f95ba9 4336
5c1143bb 4337 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4338 if (ret)
b6913e4b 4339 return ret;
68f95ba9
CW
4340
4341 if (HAS_BSD(dev)) {
5c1143bb 4342 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4343 if (ret)
4344 goto cleanup_render_ring;
d1b851fc 4345 }
68f95ba9 4346
67b1b571 4347 if (intel_enable_blt(dev)) {
549f7365
CW
4348 ret = intel_init_blt_ring_buffer(dev);
4349 if (ret)
4350 goto cleanup_bsd_ring;
4351 }
4352
9a8a2213
BW
4353 if (HAS_VEBOX(dev)) {
4354 ret = intel_init_vebox_ring_buffer(dev);
4355 if (ret)
4356 goto cleanup_blt_ring;
4357 }
4358
4359
99433931 4360 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4361 if (ret)
9a8a2213 4362 goto cleanup_vebox_ring;
4fc7c971
BW
4363
4364 return 0;
4365
9a8a2213
BW
4366cleanup_vebox_ring:
4367 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4368cleanup_blt_ring:
4369 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4370cleanup_bsd_ring:
4371 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4372cleanup_render_ring:
4373 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4374
4375 return ret;
4376}
4377
4378int
4379i915_gem_init_hw(struct drm_device *dev)
4380{
4381 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4382 int ret, i;
4fc7c971
BW
4383
4384 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4385 return -EIO;
4386
59124506 4387 if (dev_priv->ellc_size)
05e21cc4 4388 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4389
9435373e
RV
4390 if (IS_HSW_GT3(dev))
4391 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4392 else
4393 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4394
88a2b2a3
BW
4395 if (HAS_PCH_NOP(dev)) {
4396 u32 temp = I915_READ(GEN7_MSG_CTL);
4397 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4398 I915_WRITE(GEN7_MSG_CTL, temp);
4399 }
4400
4fc7c971
BW
4401 i915_gem_init_swizzling(dev);
4402
4403 ret = i915_gem_init_rings(dev);
99433931
MK
4404 if (ret)
4405 return ret;
4406
c3787e2e
BW
4407 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4408 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4409
254f965c
BW
4410 /*
4411 * XXX: There was some w/a described somewhere suggesting loading
4412 * contexts before PPGTT.
4413 */
4414 i915_gem_context_init(dev);
b7c36d25
BW
4415 if (dev_priv->mm.aliasing_ppgtt) {
4416 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4417 if (ret) {
4418 i915_gem_cleanup_aliasing_ppgtt(dev);
4419 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4420 }
4421 }
e21af88d 4422
68f95ba9 4423 return 0;
8187a2b7
ZN
4424}
4425
1070a42b
CW
4426int i915_gem_init(struct drm_device *dev)
4427{
4428 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4429 int ret;
4430
1070a42b 4431 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4432
4433 if (IS_VALLEYVIEW(dev)) {
4434 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4435 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4436 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4437 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4438 }
4439
d7e5008f 4440 i915_gem_init_global_gtt(dev);
d62b4892 4441
1070a42b
CW
4442 ret = i915_gem_init_hw(dev);
4443 mutex_unlock(&dev->struct_mutex);
4444 if (ret) {
4445 i915_gem_cleanup_aliasing_ppgtt(dev);
4446 return ret;
4447 }
4448
53ca26ca
DV
4449 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4450 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4451 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4452 return 0;
4453}
4454
8187a2b7
ZN
4455void
4456i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4457{
4458 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4459 struct intel_ring_buffer *ring;
1ec14ad3 4460 int i;
8187a2b7 4461
b4519513
CW
4462 for_each_ring(ring, dev_priv, i)
4463 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4464}
4465
673a394b
EA
4466int
4467i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4468 struct drm_file *file_priv)
4469{
db1b76ca 4470 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4471 int ret;
673a394b 4472
79e53945
JB
4473 if (drm_core_check_feature(dev, DRIVER_MODESET))
4474 return 0;
4475
1f83fee0 4476 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4477 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4478 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4479 }
4480
673a394b 4481 mutex_lock(&dev->struct_mutex);
db1b76ca 4482 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4483
f691e2f4 4484 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4485 if (ret != 0) {
4486 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4487 return ret;
d816f6ac 4488 }
9bb2d6f9 4489
5cef07e1 4490 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4491 mutex_unlock(&dev->struct_mutex);
dbb19d30 4492
5f35308b
CW
4493 ret = drm_irq_install(dev);
4494 if (ret)
4495 goto cleanup_ringbuffer;
dbb19d30 4496
673a394b 4497 return 0;
5f35308b
CW
4498
4499cleanup_ringbuffer:
4500 mutex_lock(&dev->struct_mutex);
4501 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4502 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4503 mutex_unlock(&dev->struct_mutex);
4504
4505 return ret;
673a394b
EA
4506}
4507
4508int
4509i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4510 struct drm_file *file_priv)
4511{
db1b76ca
DV
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 int ret;
4514
79e53945
JB
4515 if (drm_core_check_feature(dev, DRIVER_MODESET))
4516 return 0;
4517
dbb19d30 4518 drm_irq_uninstall(dev);
db1b76ca
DV
4519
4520 mutex_lock(&dev->struct_mutex);
4521 ret = i915_gem_idle(dev);
4522
4523 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4524 * We need to replace this with a semaphore, or something.
4525 * And not confound ums.mm_suspended!
4526 */
4527 if (ret != 0)
4528 dev_priv->ums.mm_suspended = 1;
4529 mutex_unlock(&dev->struct_mutex);
4530
4531 return ret;
673a394b
EA
4532}
4533
4534void
4535i915_gem_lastclose(struct drm_device *dev)
4536{
4537 int ret;
673a394b 4538
e806b495
EA
4539 if (drm_core_check_feature(dev, DRIVER_MODESET))
4540 return;
4541
db1b76ca 4542 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4543 ret = i915_gem_idle(dev);
4544 if (ret)
4545 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4546 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4547}
4548
64193406
CW
4549static void
4550init_ring_lists(struct intel_ring_buffer *ring)
4551{
4552 INIT_LIST_HEAD(&ring->active_list);
4553 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4554}
4555
fc8c067e
BW
4556static void i915_init_vm(struct drm_i915_private *dev_priv,
4557 struct i915_address_space *vm)
4558{
4559 vm->dev = dev_priv->dev;
4560 INIT_LIST_HEAD(&vm->active_list);
4561 INIT_LIST_HEAD(&vm->inactive_list);
4562 INIT_LIST_HEAD(&vm->global_link);
4563 list_add(&vm->global_link, &dev_priv->vm_list);
4564}
4565
673a394b
EA
4566void
4567i915_gem_load(struct drm_device *dev)
4568{
4569 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4570 int i;
4571
4572 dev_priv->slab =
4573 kmem_cache_create("i915_gem_object",
4574 sizeof(struct drm_i915_gem_object), 0,
4575 SLAB_HWCACHE_ALIGN,
4576 NULL);
673a394b 4577
fc8c067e
BW
4578 INIT_LIST_HEAD(&dev_priv->vm_list);
4579 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4580
a33afea5 4581 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4582 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4583 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4584 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4585 for (i = 0; i < I915_NUM_RINGS; i++)
4586 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4587 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4588 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4589 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4590 i915_gem_retire_work_handler);
1f83fee0 4591 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4592
94400120
DA
4593 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4594 if (IS_GEN3(dev)) {
50743298
DV
4595 I915_WRITE(MI_ARB_STATE,
4596 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4597 }
4598
72bfa19c
CW
4599 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4600
de151cf6 4601 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4602 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4603 dev_priv->fence_reg_start = 3;
de151cf6 4604
42b5aeab
VS
4605 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4606 dev_priv->num_fence_regs = 32;
4607 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4608 dev_priv->num_fence_regs = 16;
4609 else
4610 dev_priv->num_fence_regs = 8;
4611
b5aa8a0f 4612 /* Initialize fence registers to zero */
19b2dbde
CW
4613 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4614 i915_gem_restore_fences(dev);
10ed13e4 4615
673a394b 4616 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4617 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4618
ce453d81
CW
4619 dev_priv->mm.interruptible = true;
4620
7dc19d5a
DC
4621 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4622 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4623 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4624 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4625}
71acb5eb
DA
4626
4627/*
4628 * Create a physically contiguous memory object for this object
4629 * e.g. for cursor + overlay regs
4630 */
995b6762
CW
4631static int i915_gem_init_phys_object(struct drm_device *dev,
4632 int id, int size, int align)
71acb5eb
DA
4633{
4634 drm_i915_private_t *dev_priv = dev->dev_private;
4635 struct drm_i915_gem_phys_object *phys_obj;
4636 int ret;
4637
4638 if (dev_priv->mm.phys_objs[id - 1] || !size)
4639 return 0;
4640
9a298b2a 4641 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4642 if (!phys_obj)
4643 return -ENOMEM;
4644
4645 phys_obj->id = id;
4646
6eeefaf3 4647 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4648 if (!phys_obj->handle) {
4649 ret = -ENOMEM;
4650 goto kfree_obj;
4651 }
4652#ifdef CONFIG_X86
4653 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4654#endif
4655
4656 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4657
4658 return 0;
4659kfree_obj:
9a298b2a 4660 kfree(phys_obj);
71acb5eb
DA
4661 return ret;
4662}
4663
995b6762 4664static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4665{
4666 drm_i915_private_t *dev_priv = dev->dev_private;
4667 struct drm_i915_gem_phys_object *phys_obj;
4668
4669 if (!dev_priv->mm.phys_objs[id - 1])
4670 return;
4671
4672 phys_obj = dev_priv->mm.phys_objs[id - 1];
4673 if (phys_obj->cur_obj) {
4674 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4675 }
4676
4677#ifdef CONFIG_X86
4678 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4679#endif
4680 drm_pci_free(dev, phys_obj->handle);
4681 kfree(phys_obj);
4682 dev_priv->mm.phys_objs[id - 1] = NULL;
4683}
4684
4685void i915_gem_free_all_phys_object(struct drm_device *dev)
4686{
4687 int i;
4688
260883c8 4689 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4690 i915_gem_free_phys_object(dev, i);
4691}
4692
4693void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4694 struct drm_i915_gem_object *obj)
71acb5eb 4695{
496ad9aa 4696 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4697 char *vaddr;
71acb5eb 4698 int i;
71acb5eb
DA
4699 int page_count;
4700
05394f39 4701 if (!obj->phys_obj)
71acb5eb 4702 return;
05394f39 4703 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4704
05394f39 4705 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4706 for (i = 0; i < page_count; i++) {
5949eac4 4707 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4708 if (!IS_ERR(page)) {
4709 char *dst = kmap_atomic(page);
4710 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4711 kunmap_atomic(dst);
4712
4713 drm_clflush_pages(&page, 1);
4714
4715 set_page_dirty(page);
4716 mark_page_accessed(page);
4717 page_cache_release(page);
4718 }
71acb5eb 4719 }
e76e9aeb 4720 i915_gem_chipset_flush(dev);
d78b47b9 4721
05394f39
CW
4722 obj->phys_obj->cur_obj = NULL;
4723 obj->phys_obj = NULL;
71acb5eb
DA
4724}
4725
4726int
4727i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4728 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4729 int id,
4730 int align)
71acb5eb 4731{
496ad9aa 4732 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4733 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4734 int ret = 0;
4735 int page_count;
4736 int i;
4737
4738 if (id > I915_MAX_PHYS_OBJECT)
4739 return -EINVAL;
4740
05394f39
CW
4741 if (obj->phys_obj) {
4742 if (obj->phys_obj->id == id)
71acb5eb
DA
4743 return 0;
4744 i915_gem_detach_phys_object(dev, obj);
4745 }
4746
71acb5eb
DA
4747 /* create a new object */
4748 if (!dev_priv->mm.phys_objs[id - 1]) {
4749 ret = i915_gem_init_phys_object(dev, id,
05394f39 4750 obj->base.size, align);
71acb5eb 4751 if (ret) {
05394f39
CW
4752 DRM_ERROR("failed to init phys object %d size: %zu\n",
4753 id, obj->base.size);
e5281ccd 4754 return ret;
71acb5eb
DA
4755 }
4756 }
4757
4758 /* bind to the object */
05394f39
CW
4759 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4760 obj->phys_obj->cur_obj = obj;
71acb5eb 4761
05394f39 4762 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4763
4764 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4765 struct page *page;
4766 char *dst, *src;
4767
5949eac4 4768 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4769 if (IS_ERR(page))
4770 return PTR_ERR(page);
71acb5eb 4771
ff75b9bc 4772 src = kmap_atomic(page);
05394f39 4773 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4774 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4775 kunmap_atomic(src);
71acb5eb 4776
e5281ccd
CW
4777 mark_page_accessed(page);
4778 page_cache_release(page);
4779 }
d78b47b9 4780
71acb5eb 4781 return 0;
71acb5eb
DA
4782}
4783
4784static int
05394f39
CW
4785i915_gem_phys_pwrite(struct drm_device *dev,
4786 struct drm_i915_gem_object *obj,
71acb5eb
DA
4787 struct drm_i915_gem_pwrite *args,
4788 struct drm_file *file_priv)
4789{
05394f39 4790 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4791 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4792
b47b30cc
CW
4793 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4794 unsigned long unwritten;
4795
4796 /* The physical object once assigned is fixed for the lifetime
4797 * of the obj, so we can safely drop the lock and continue
4798 * to access vaddr.
4799 */
4800 mutex_unlock(&dev->struct_mutex);
4801 unwritten = copy_from_user(vaddr, user_data, args->size);
4802 mutex_lock(&dev->struct_mutex);
4803 if (unwritten)
4804 return -EFAULT;
4805 }
71acb5eb 4806
e76e9aeb 4807 i915_gem_chipset_flush(dev);
71acb5eb
DA
4808 return 0;
4809}
b962442e 4810
f787a5f5 4811void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4812{
f787a5f5 4813 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4814
4815 /* Clean up our request list when the client is going away, so that
4816 * later retire_requests won't dereference our soon-to-be-gone
4817 * file_priv.
4818 */
1c25595f 4819 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4820 while (!list_empty(&file_priv->mm.request_list)) {
4821 struct drm_i915_gem_request *request;
4822
4823 request = list_first_entry(&file_priv->mm.request_list,
4824 struct drm_i915_gem_request,
4825 client_list);
4826 list_del(&request->client_list);
4827 request->file_priv = NULL;
4828 }
1c25595f 4829 spin_unlock(&file_priv->mm.lock);
b962442e 4830}
31169714 4831
5774506f
CW
4832static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4833{
4834 if (!mutex_is_locked(mutex))
4835 return false;
4836
4837#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4838 return mutex->owner == task;
4839#else
4840 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4841 return false;
4842#endif
4843}
4844
7dc19d5a
DC
4845static unsigned long
4846i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4847{
17250b71
CW
4848 struct drm_i915_private *dev_priv =
4849 container_of(shrinker,
4850 struct drm_i915_private,
4851 mm.inactive_shrinker);
4852 struct drm_device *dev = dev_priv->dev;
6c085a72 4853 struct drm_i915_gem_object *obj;
5774506f 4854 bool unlock = true;
7dc19d5a 4855 unsigned long count;
17250b71 4856
5774506f
CW
4857 if (!mutex_trylock(&dev->struct_mutex)) {
4858 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4859 return 0;
5774506f 4860
677feac2 4861 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4862 return 0;
677feac2 4863
5774506f
CW
4864 unlock = false;
4865 }
31169714 4866
7dc19d5a 4867 count = 0;
35c20a60 4868 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4869 if (obj->pages_pin_count == 0)
7dc19d5a 4870 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4871
4872 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4873 if (obj->active)
4874 continue;
4875
a5570178 4876 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
7dc19d5a 4877 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4878 }
17250b71 4879
5774506f
CW
4880 if (unlock)
4881 mutex_unlock(&dev->struct_mutex);
7dc19d5a 4882 return count;
31169714 4883}
a70a3148
BW
4884
4885/* All the new VM stuff */
4886unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4887 struct i915_address_space *vm)
4888{
4889 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4890 struct i915_vma *vma;
4891
4892 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4893 vm = &dev_priv->gtt.base;
4894
4895 BUG_ON(list_empty(&o->vma_list));
4896 list_for_each_entry(vma, &o->vma_list, vma_link) {
4897 if (vma->vm == vm)
4898 return vma->node.start;
4899
4900 }
4901 return -1;
4902}
4903
4904bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4905 struct i915_address_space *vm)
4906{
4907 struct i915_vma *vma;
4908
4909 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4910 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4911 return true;
4912
4913 return false;
4914}
4915
4916bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4917{
5a1d5eb0 4918 struct i915_vma *vma;
a70a3148 4919
5a1d5eb0
CW
4920 list_for_each_entry(vma, &o->vma_list, vma_link)
4921 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4922 return true;
4923
4924 return false;
4925}
4926
4927unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4928 struct i915_address_space *vm)
4929{
4930 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4931 struct i915_vma *vma;
4932
4933 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4934 vm = &dev_priv->gtt.base;
4935
4936 BUG_ON(list_empty(&o->vma_list));
4937
4938 list_for_each_entry(vma, &o->vma_list, vma_link)
4939 if (vma->vm == vm)
4940 return vma->node.size;
4941
4942 return 0;
4943}
4944
7dc19d5a
DC
4945static unsigned long
4946i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4947{
4948 struct drm_i915_private *dev_priv =
4949 container_of(shrinker,
4950 struct drm_i915_private,
4951 mm.inactive_shrinker);
4952 struct drm_device *dev = dev_priv->dev;
4953 int nr_to_scan = sc->nr_to_scan;
4954 unsigned long freed;
4955 bool unlock = true;
4956
4957 if (!mutex_trylock(&dev->struct_mutex)) {
4958 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4959 return SHRINK_STOP;
7dc19d5a
DC
4960
4961 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4962 return SHRINK_STOP;
7dc19d5a
DC
4963
4964 unlock = false;
4965 }
4966
4967 freed = i915_gem_purge(dev_priv, nr_to_scan);
4968 if (freed < nr_to_scan)
4969 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
4970 false);
4971 if (freed < nr_to_scan)
4972 freed += i915_gem_shrink_all(dev_priv);
4973
4974 if (unlock)
4975 mutex_unlock(&dev->struct_mutex);
4976 return freed;
4977}