]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
6b5e90f5 38#include <linux/dma-fence-array.h>
fe3288b5 39#include <linux/kthread.h>
c13d87ea 40#include <linux/reservation.h>
5949eac4 41#include <linux/shmem_fs.h>
5a0e3ad6 42#include <linux/slab.h>
20e4933c 43#include <linux/stop_machine.h>
673a394b 44#include <linux/swap.h>
79e53945 45#include <linux/pci.h>
1286ff73 46#include <linux/dma-buf.h>
673a394b 47
fbbd37b3 48static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 49
2c22569b
CW
50static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51{
e27ab73d 52 if (obj->cache_dirty)
b50a5371
AS
53 return false;
54
b8f55be6 55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
56 return true;
57
58 return obj->pin_display;
59}
60
4f1959ee 61static int
bb6dc8d9 62insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
63 struct drm_mm_node *node, u32 size)
64{
65 memset(node, 0, sizeof(*node));
4e64e553
CW
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
4f1959ee
AS
70}
71
72static void
73remove_mappable_node(struct drm_mm_node *node)
74{
75 drm_mm_remove_node(node);
76}
77
73aa808f
CW
78/* some bookkeeping */
79static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 80 u64 size)
73aa808f 81{
c20e8355 82 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
c20e8355 85 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86}
87
88static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 89 u64 size)
73aa808f 90{
c20e8355 91 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
c20e8355 94 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95}
96
21dd3734 97static int
33196ded 98i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 99{
30dbf0c0
CW
100 int ret;
101
4c7d62c6
CW
102 might_sleep();
103
0a6759c6
DV
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
1f83fee0 109 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 110 !i915_reset_backoff(error),
b52992c0 111 I915_RESET_TIMEOUT);
0a6759c6
DV
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
30dbf0c0 116 return ret;
d98c52cf
CW
117 } else {
118 return 0;
0a6759c6 119 }
30dbf0c0
CW
120}
121
54cf91dc 122int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 123{
fac5e23e 124 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
125 int ret;
126
33196ded 127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
76c1dec1
CW
135 return 0;
136}
30dbf0c0 137
5a125c3c
EA
138int
139i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 140 struct drm_file *file)
5a125c3c 141{
72e96d64 142 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 144 struct drm_i915_gem_get_aperture *args = data;
ca1543be 145 struct i915_vma *vma;
ff8f7975 146 u64 pinned;
5a125c3c 147
ff8f7975 148 pinned = ggtt->base.reserved;
73aa808f 149 mutex_lock(&dev->struct_mutex);
1c7f4bca 150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 151 if (i915_vma_is_pinned(vma))
ca1543be 152 pinned += vma->node.size;
1c7f4bca 153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 154 if (i915_vma_is_pinned(vma))
ca1543be 155 pinned += vma->node.size;
73aa808f 156 mutex_unlock(&dev->struct_mutex);
5a125c3c 157
72e96d64 158 args->aper_size = ggtt->base.total;
0206e353 159 args->aper_available_size = args->aper_size - pinned;
6299f992 160
5a125c3c
EA
161 return 0;
162}
163
03ac84f1 164static struct sg_table *
6a2c4232 165i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 166{
93c76a3d 167 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 168 drm_dma_handle_t *phys;
6a2c4232
CW
169 struct sg_table *st;
170 struct scatterlist *sg;
dbb4351b 171 char *vaddr;
6a2c4232 172 int i;
00731155 173
6a2c4232 174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 175 return ERR_PTR(-EINVAL);
6a2c4232 176
dbb4351b
CW
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
6a2c4232
CW
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
dbb4351b
CW
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
6a2c4232
CW
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
09cbfeaf 203 put_page(page);
6a2c4232
CW
204 vaddr += PAGE_SIZE;
205 }
206
c033666a 207 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b
CW
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
6a2c4232
CW
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
dbb4351b
CW
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
6a2c4232
CW
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
00731155 224
dbb4351b 225 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
226 sg_dma_len(sg) = obj->base.size;
227
dbb4351b
CW
228 obj->phys_handle = phys;
229 return st;
230
231err_phys:
232 drm_pci_free(obj->base.dev, phys);
03ac84f1 233 return st;
6a2c4232
CW
234}
235
e27ab73d
CW
236static void __start_cpu_write(struct drm_i915_gem_object *obj)
237{
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242}
243
6a2c4232 244static void
2b3c8317 245__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
246 struct sg_table *pages,
247 bool needs_clflush)
6a2c4232 248{
a4f5ea64 249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 250
a4f5ea64
CW
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
6a2c4232 253
e5facdf9
CW
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 257 drm_clflush_sg(pages);
03ac84f1 258
e27ab73d 259 __start_cpu_write(obj);
03ac84f1
CW
260}
261
262static void
263i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265{
e5facdf9 266 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 267
a4f5ea64 268 if (obj->mm.dirty) {
93c76a3d 269 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 270 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
a4f5ea64 287 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 288 mark_page_accessed(page);
09cbfeaf 289 put_page(page);
00731155
CW
290 vaddr += PAGE_SIZE;
291 }
a4f5ea64 292 obj->mm.dirty = false;
00731155
CW
293 }
294
03ac84f1
CW
295 sg_free_table(pages);
296 kfree(pages);
dbb4351b
CW
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
299}
300
301static void
302i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303{
a4f5ea64 304 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
305}
306
307static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311};
312
581ab1fe
CW
313static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
35a9611c 315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
316{
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
02bef8f9
CW
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 322
02bef8f9
CW
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
aa653a68 327 */
e95433c7
CW
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
02bef8f9
CW
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
aa653a68
CW
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350}
351
e95433c7
CW
352static long
353i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
00e60f26 357{
e95433c7 358 struct drm_i915_gem_request *rq;
00e60f26 359
e95433c7 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 361
e95433c7
CW
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
7b92c1bd 391 gen6_rps_boost(rq, rps);
e95433c7
CW
392 else
393 rps = NULL;
00e60f26
CW
394 }
395
e95433c7
CW
396 timeout = i915_wait_request(rq, flags, timeout);
397
398out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
e95433c7
CW
402 return timeout;
403}
404
405static long
406i915_gem_object_wait_reservation(struct reservation_object *resv,
407 unsigned int flags,
408 long timeout,
409 struct intel_rps_client *rps)
410{
e54ca977 411 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 412 struct dma_fence *excl;
e54ca977 413 bool prune_fences = false;
e95433c7
CW
414
415 if (flags & I915_WAIT_ALL) {
416 struct dma_fence **shared;
417 unsigned int count, i;
00e60f26
CW
418 int ret;
419
e95433c7
CW
420 ret = reservation_object_get_fences_rcu(resv,
421 &excl, &count, &shared);
00e60f26
CW
422 if (ret)
423 return ret;
00e60f26 424
e95433c7
CW
425 for (i = 0; i < count; i++) {
426 timeout = i915_gem_object_wait_fence(shared[i],
427 flags, timeout,
428 rps);
d892e939 429 if (timeout < 0)
e95433c7 430 break;
00e60f26 431
e95433c7
CW
432 dma_fence_put(shared[i]);
433 }
434
435 for (; i < count; i++)
436 dma_fence_put(shared[i]);
437 kfree(shared);
e54ca977
CW
438
439 prune_fences = count && timeout >= 0;
e95433c7
CW
440 } else {
441 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
442 }
443
e54ca977 444 if (excl && timeout >= 0) {
e95433c7 445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
e54ca977
CW
446 prune_fences = timeout >= 0;
447 }
e95433c7
CW
448
449 dma_fence_put(excl);
450
03d1cac6
CW
451 /* Oportunistically prune the fences iff we know they have *all* been
452 * signaled and that the reservation object has not been changed (i.e.
453 * no new fences have been added).
454 */
e54ca977 455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
456 if (reservation_object_trylock(resv)) {
457 if (!__read_seqcount_retry(&resv->seq, seq))
458 reservation_object_add_excl_fence(resv, NULL);
459 reservation_object_unlock(resv);
460 }
e54ca977
CW
461 }
462
e95433c7 463 return timeout;
00e60f26
CW
464}
465
6b5e90f5
CW
466static void __fence_set_priority(struct dma_fence *fence, int prio)
467{
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
470
471 if (!dma_fence_is_i915(fence))
472 return;
473
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
478
479 engine->schedule(rq, prio);
480}
481
482static void fence_set_priority(struct dma_fence *fence, int prio)
483{
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
488
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
493 }
494}
495
496int
497i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
500{
501 struct dma_fence *excl;
502
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
507
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
512
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
516 }
517
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
521 }
522
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
526 }
527 return 0;
528}
529
e95433c7
CW
530/**
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
00e60f26 536 */
e95433c7
CW
537int
538i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
00e60f26 542{
e95433c7
CW
543 might_sleep();
544#if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548#endif
549 GEM_BUG_ON(timeout < 0);
00e60f26 550
d07f0e59
CW
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
e95433c7 554 return timeout < 0 ? timeout : 0;
00e60f26
CW
555}
556
557static struct intel_rps_client *to_rps_client(struct drm_file *file)
558{
559 struct drm_i915_file_private *fpriv = file->driver_priv;
560
561 return &fpriv->rps;
562}
563
00731155
CW
564static int
565i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
03ac84f1 567 struct drm_file *file)
00731155 568{
00731155 569 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 570 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
571
572 /* We manually control the domain here and pretend that it
573 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 */
77a0d1ca 575 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
576 if (copy_from_user(vaddr, user_data, args->size))
577 return -EFAULT;
00731155 578
6a2c4232 579 drm_clflush_virt_range(vaddr, args->size);
10466d2a 580 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 581
d59b21ec 582 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 583 return 0;
00731155
CW
584}
585
187685cb 586void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 587{
efab6d8d 588 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
589}
590
591void i915_gem_object_free(struct drm_i915_gem_object *obj)
592{
fac5e23e 593 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 594 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
595}
596
ff72145b
DA
597static int
598i915_gem_create(struct drm_file *file,
12d79d78 599 struct drm_i915_private *dev_priv,
ff72145b
DA
600 uint64_t size,
601 uint32_t *handle_p)
673a394b 602{
05394f39 603 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
604 int ret;
605 u32 handle;
673a394b 606
ff72145b 607 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
608 if (size == 0)
609 return -EINVAL;
673a394b
EA
610
611 /* Allocate the new object */
12d79d78 612 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
613 if (IS_ERR(obj))
614 return PTR_ERR(obj);
673a394b 615
05394f39 616 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 617 /* drop reference from allocate - handle holds it now */
f0cd5182 618 i915_gem_object_put(obj);
d861e338
DV
619 if (ret)
620 return ret;
202f2fef 621
ff72145b 622 *handle_p = handle;
673a394b
EA
623 return 0;
624}
625
ff72145b
DA
626int
627i915_gem_dumb_create(struct drm_file *file,
628 struct drm_device *dev,
629 struct drm_mode_create_dumb *args)
630{
631 /* have to work out size/pitch and return them */
de45eaf7 632 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 633 args->size = args->pitch * args->height;
12d79d78 634 return i915_gem_create(file, to_i915(dev),
da6b51d0 635 args->size, &args->handle);
ff72145b
DA
636}
637
e27ab73d
CW
638static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639{
640 return !(obj->cache_level == I915_CACHE_NONE ||
641 obj->cache_level == I915_CACHE_WT);
642}
643
ff72145b
DA
644/**
645 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
646 * @dev: drm device pointer
647 * @data: ioctl data blob
648 * @file: drm file pointer
ff72145b
DA
649 */
650int
651i915_gem_create_ioctl(struct drm_device *dev, void *data,
652 struct drm_file *file)
653{
12d79d78 654 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 655 struct drm_i915_gem_create *args = data;
63ed2cb2 656
12d79d78 657 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 658
12d79d78 659 return i915_gem_create(file, dev_priv,
da6b51d0 660 args->size, &args->handle);
ff72145b
DA
661}
662
ef74921b
CW
663static inline enum fb_op_origin
664fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665{
666 return (domain == I915_GEM_DOMAIN_GTT ?
667 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668}
669
670static void
671flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672{
673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675 if (!(obj->base.write_domain & flush_domains))
676 return;
677
678 /* No actual flushing is required for the GTT write domain. Writes
679 * to it "immediately" go to main memory as far as we know, so there's
680 * no chipset flush. It also doesn't land in render cache.
681 *
682 * However, we do have to enforce the order so that all writes through
683 * the GTT land before any writes to the device, such as updates to
684 * the GATT itself.
685 *
686 * We also have to wait a bit for the writes to land from the GTT.
687 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688 * timing. This issue has only been observed when switching quickly
689 * between GTT writes and CPU reads from inside the kernel on recent hw,
690 * and it appears to only affect discrete GTT blocks (i.e. on LLC
691 * system agents we cannot reproduce this behaviour).
692 */
693 wmb();
694
695 switch (obj->base.write_domain) {
696 case I915_GEM_DOMAIN_GTT:
697 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
0168bdfc
CW
698 intel_runtime_pm_get(dev_priv);
699 spin_lock_irq(&dev_priv->uncore.lock);
700 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701 spin_unlock_irq(&dev_priv->uncore.lock);
702 intel_runtime_pm_put(dev_priv);
ef74921b
CW
703 }
704
705 intel_fb_obj_flush(obj,
706 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
707 break;
708
709 case I915_GEM_DOMAIN_CPU:
710 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
711 break;
e27ab73d
CW
712
713 case I915_GEM_DOMAIN_RENDER:
714 if (gpu_write_needs_clflush(obj))
715 obj->cache_dirty = true;
716 break;
ef74921b
CW
717 }
718
719 obj->base.write_domain = 0;
720}
721
8461d226
DV
722static inline int
723__copy_to_user_swizzled(char __user *cpu_vaddr,
724 const char *gpu_vaddr, int gpu_offset,
725 int length)
726{
727 int ret, cpu_offset = 0;
728
729 while (length > 0) {
730 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731 int this_length = min(cacheline_end - gpu_offset, length);
732 int swizzled_gpu_offset = gpu_offset ^ 64;
733
734 ret = __copy_to_user(cpu_vaddr + cpu_offset,
735 gpu_vaddr + swizzled_gpu_offset,
736 this_length);
737 if (ret)
738 return ret + length;
739
740 cpu_offset += this_length;
741 gpu_offset += this_length;
742 length -= this_length;
743 }
744
745 return 0;
746}
747
8c59967c 748static inline int
4f0c7cfb
BW
749__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750 const char __user *cpu_vaddr,
8c59967c
DV
751 int length)
752{
753 int ret, cpu_offset = 0;
754
755 while (length > 0) {
756 int cacheline_end = ALIGN(gpu_offset + 1, 64);
757 int this_length = min(cacheline_end - gpu_offset, length);
758 int swizzled_gpu_offset = gpu_offset ^ 64;
759
760 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761 cpu_vaddr + cpu_offset,
762 this_length);
763 if (ret)
764 return ret + length;
765
766 cpu_offset += this_length;
767 gpu_offset += this_length;
768 length -= this_length;
769 }
770
771 return 0;
772}
773
4c914c0c
BV
774/*
775 * Pins the specified object's pages and synchronizes the object with
776 * GPU accesses. Sets needs_clflush to non-zero if the caller should
777 * flush the object from the CPU cache.
778 */
779int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 780 unsigned int *needs_clflush)
4c914c0c
BV
781{
782 int ret;
783
e95433c7 784 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 785
e95433c7 786 *needs_clflush = 0;
43394c7d
CW
787 if (!i915_gem_object_has_struct_page(obj))
788 return -ENODEV;
4c914c0c 789
e95433c7
CW
790 ret = i915_gem_object_wait(obj,
791 I915_WAIT_INTERRUPTIBLE |
792 I915_WAIT_LOCKED,
793 MAX_SCHEDULE_TIMEOUT,
794 NULL);
c13d87ea
CW
795 if (ret)
796 return ret;
797
a4f5ea64 798 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
799 if (ret)
800 return ret;
801
b8f55be6
CW
802 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 if (ret)
806 goto err_unpin;
807 else
808 goto out;
809 }
810
ef74921b 811 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 812
43394c7d
CW
813 /* If we're not in the cpu read domain, set ourself into the gtt
814 * read domain and manually flush cachelines (if required). This
815 * optimizes for the case when the gpu will dirty the data
816 * anyway again before the next pread happens.
817 */
e27ab73d
CW
818 if (!obj->cache_dirty &&
819 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 820 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 821
7f5f95d8 822out:
9764951e 823 /* return with the pages pinned */
43394c7d 824 return 0;
9764951e
CW
825
826err_unpin:
827 i915_gem_object_unpin_pages(obj);
828 return ret;
43394c7d
CW
829}
830
831int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832 unsigned int *needs_clflush)
833{
834 int ret;
835
e95433c7
CW
836 lockdep_assert_held(&obj->base.dev->struct_mutex);
837
43394c7d
CW
838 *needs_clflush = 0;
839 if (!i915_gem_object_has_struct_page(obj))
840 return -ENODEV;
841
e95433c7
CW
842 ret = i915_gem_object_wait(obj,
843 I915_WAIT_INTERRUPTIBLE |
844 I915_WAIT_LOCKED |
845 I915_WAIT_ALL,
846 MAX_SCHEDULE_TIMEOUT,
847 NULL);
43394c7d
CW
848 if (ret)
849 return ret;
850
a4f5ea64 851 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
852 if (ret)
853 return ret;
854
b8f55be6
CW
855 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
857 ret = i915_gem_object_set_to_cpu_domain(obj, true);
858 if (ret)
859 goto err_unpin;
860 else
861 goto out;
862 }
863
ef74921b 864 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 865
43394c7d
CW
866 /* If we're not in the cpu write domain, set ourself into the
867 * gtt write domain and manually flush cachelines (as required).
868 * This optimizes for the case when the gpu will use the data
869 * right away and we therefore have to clflush anyway.
870 */
e27ab73d 871 if (!obj->cache_dirty) {
7f5f95d8 872 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 873
e27ab73d
CW
874 /*
875 * Same trick applies to invalidate partially written
876 * cachelines read before writing.
877 */
878 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879 *needs_clflush |= CLFLUSH_BEFORE;
880 }
43394c7d 881
7f5f95d8 882out:
43394c7d 883 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 884 obj->mm.dirty = true;
9764951e 885 /* return with the pages pinned */
43394c7d 886 return 0;
9764951e
CW
887
888err_unpin:
889 i915_gem_object_unpin_pages(obj);
890 return ret;
4c914c0c
BV
891}
892
23c18c71
DV
893static void
894shmem_clflush_swizzled_range(char *addr, unsigned long length,
895 bool swizzled)
896{
e7e58eb5 897 if (unlikely(swizzled)) {
23c18c71
DV
898 unsigned long start = (unsigned long) addr;
899 unsigned long end = (unsigned long) addr + length;
900
901 /* For swizzling simply ensure that we always flush both
902 * channels. Lame, but simple and it works. Swizzled
903 * pwrite/pread is far from a hotpath - current userspace
904 * doesn't use it at all. */
905 start = round_down(start, 128);
906 end = round_up(end, 128);
907
908 drm_clflush_virt_range((void *)start, end - start);
909 } else {
910 drm_clflush_virt_range(addr, length);
911 }
912
913}
914
d174bd64
DV
915/* Only difference to the fast-path function is that this can handle bit17
916 * and uses non-atomic copy and kmap functions. */
917static int
bb6dc8d9 918shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
919 char __user *user_data,
920 bool page_do_bit17_swizzling, bool needs_clflush)
921{
922 char *vaddr;
923 int ret;
924
925 vaddr = kmap(page);
926 if (needs_clflush)
bb6dc8d9 927 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 928 page_do_bit17_swizzling);
d174bd64
DV
929
930 if (page_do_bit17_swizzling)
bb6dc8d9 931 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 932 else
bb6dc8d9 933 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
934 kunmap(page);
935
f60d7f0c 936 return ret ? - EFAULT : 0;
d174bd64
DV
937}
938
bb6dc8d9
CW
939static int
940shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941 bool page_do_bit17_swizzling, bool needs_clflush)
942{
943 int ret;
944
945 ret = -ENODEV;
946 if (!page_do_bit17_swizzling) {
947 char *vaddr = kmap_atomic(page);
948
949 if (needs_clflush)
950 drm_clflush_virt_range(vaddr + offset, length);
951 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952 kunmap_atomic(vaddr);
953 }
954 if (ret == 0)
955 return 0;
956
957 return shmem_pread_slow(page, offset, length, user_data,
958 page_do_bit17_swizzling, needs_clflush);
959}
960
961static int
962i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963 struct drm_i915_gem_pread *args)
964{
965 char __user *user_data;
966 u64 remain;
967 unsigned int obj_do_bit17_swizzling;
968 unsigned int needs_clflush;
969 unsigned int idx, offset;
970 int ret;
971
972 obj_do_bit17_swizzling = 0;
973 if (i915_gem_object_needs_bit17_swizzle(obj))
974 obj_do_bit17_swizzling = BIT(17);
975
976 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
977 if (ret)
978 return ret;
979
980 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981 mutex_unlock(&obj->base.dev->struct_mutex);
982 if (ret)
983 return ret;
984
985 remain = args->size;
986 user_data = u64_to_user_ptr(args->data_ptr);
987 offset = offset_in_page(args->offset);
988 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989 struct page *page = i915_gem_object_get_page(obj, idx);
990 int length;
991
992 length = remain;
993 if (offset + length > PAGE_SIZE)
994 length = PAGE_SIZE - offset;
995
996 ret = shmem_pread(page, offset, length, user_data,
997 page_to_phys(page) & obj_do_bit17_swizzling,
998 needs_clflush);
999 if (ret)
1000 break;
1001
1002 remain -= length;
1003 user_data += length;
1004 offset = 0;
1005 }
1006
1007 i915_gem_obj_finish_shmem_access(obj);
1008 return ret;
1009}
1010
1011static inline bool
1012gtt_user_read(struct io_mapping *mapping,
1013 loff_t base, int offset,
1014 char __user *user_data, int length)
b50a5371 1015{
b50a5371 1016 void *vaddr;
bb6dc8d9 1017 unsigned long unwritten;
b50a5371 1018
b50a5371 1019 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
1020 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1021 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1022 io_mapping_unmap_atomic(vaddr);
1023 if (unwritten) {
1024 vaddr = (void __force *)
1025 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 unwritten = copy_to_user(user_data, vaddr + offset, length);
1027 io_mapping_unmap(vaddr);
1028 }
b50a5371
AS
1029 return unwritten;
1030}
1031
1032static int
bb6dc8d9
CW
1033i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1034 const struct drm_i915_gem_pread *args)
b50a5371 1035{
bb6dc8d9
CW
1036 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1037 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1038 struct drm_mm_node node;
bb6dc8d9
CW
1039 struct i915_vma *vma;
1040 void __user *user_data;
1041 u64 remain, offset;
b50a5371
AS
1042 int ret;
1043
bb6dc8d9
CW
1044 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1045 if (ret)
1046 return ret;
1047
1048 intel_runtime_pm_get(i915);
1049 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1051 if (!IS_ERR(vma)) {
1052 node.start = i915_ggtt_offset(vma);
1053 node.allocated = false;
49ef5294 1054 ret = i915_vma_put_fence(vma);
18034584
CW
1055 if (ret) {
1056 i915_vma_unpin(vma);
1057 vma = ERR_PTR(ret);
1058 }
1059 }
058d88c4 1060 if (IS_ERR(vma)) {
bb6dc8d9 1061 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1062 if (ret)
bb6dc8d9
CW
1063 goto out_unlock;
1064 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1065 }
1066
1067 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1068 if (ret)
1069 goto out_unpin;
1070
bb6dc8d9 1071 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1072
bb6dc8d9
CW
1073 user_data = u64_to_user_ptr(args->data_ptr);
1074 remain = args->size;
1075 offset = args->offset;
b50a5371
AS
1076
1077 while (remain > 0) {
1078 /* Operation in this page
1079 *
1080 * page_base = page offset within aperture
1081 * page_offset = offset within page
1082 * page_length = bytes to copy for this page
1083 */
1084 u32 page_base = node.start;
1085 unsigned page_offset = offset_in_page(offset);
1086 unsigned page_length = PAGE_SIZE - page_offset;
1087 page_length = remain < page_length ? remain : page_length;
1088 if (node.allocated) {
1089 wmb();
1090 ggtt->base.insert_page(&ggtt->base,
1091 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1092 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1093 wmb();
1094 } else {
1095 page_base += offset & PAGE_MASK;
1096 }
bb6dc8d9
CW
1097
1098 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1099 user_data, page_length)) {
b50a5371
AS
1100 ret = -EFAULT;
1101 break;
1102 }
1103
1104 remain -= page_length;
1105 user_data += page_length;
1106 offset += page_length;
1107 }
1108
bb6dc8d9 1109 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1110out_unpin:
1111 if (node.allocated) {
1112 wmb();
1113 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1114 node.start, node.size);
b50a5371
AS
1115 remove_mappable_node(&node);
1116 } else {
058d88c4 1117 i915_vma_unpin(vma);
b50a5371 1118 }
bb6dc8d9
CW
1119out_unlock:
1120 intel_runtime_pm_put(i915);
1121 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1122
eb01459f
EA
1123 return ret;
1124}
1125
673a394b
EA
1126/**
1127 * Reads data from the object referenced by handle.
14bb2c11
TU
1128 * @dev: drm device pointer
1129 * @data: ioctl data blob
1130 * @file: drm file pointer
673a394b
EA
1131 *
1132 * On error, the contents of *data are undefined.
1133 */
1134int
1135i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1136 struct drm_file *file)
673a394b
EA
1137{
1138 struct drm_i915_gem_pread *args = data;
05394f39 1139 struct drm_i915_gem_object *obj;
bb6dc8d9 1140 int ret;
673a394b 1141
51311d0a
CW
1142 if (args->size == 0)
1143 return 0;
1144
1145 if (!access_ok(VERIFY_WRITE,
3ed605bc 1146 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1147 args->size))
1148 return -EFAULT;
1149
03ac0642 1150 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1151 if (!obj)
1152 return -ENOENT;
673a394b 1153
7dcd2499 1154 /* Bounds check source. */
966d5bf5 1155 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1156 ret = -EINVAL;
bb6dc8d9 1157 goto out;
ce9d419d
CW
1158 }
1159
db53a302
CW
1160 trace_i915_gem_object_pread(obj, args->offset, args->size);
1161
e95433c7
CW
1162 ret = i915_gem_object_wait(obj,
1163 I915_WAIT_INTERRUPTIBLE,
1164 MAX_SCHEDULE_TIMEOUT,
1165 to_rps_client(file));
258a5ede 1166 if (ret)
bb6dc8d9 1167 goto out;
258a5ede 1168
bb6dc8d9 1169 ret = i915_gem_object_pin_pages(obj);
258a5ede 1170 if (ret)
bb6dc8d9 1171 goto out;
673a394b 1172
bb6dc8d9 1173 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1174 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1175 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1176
bb6dc8d9
CW
1177 i915_gem_object_unpin_pages(obj);
1178out:
f0cd5182 1179 i915_gem_object_put(obj);
eb01459f 1180 return ret;
673a394b
EA
1181}
1182
0839ccb8
KP
1183/* This is the fast write path which cannot handle
1184 * page faults in the source data
9b7530cc 1185 */
0839ccb8 1186
fe115628
CW
1187static inline bool
1188ggtt_write(struct io_mapping *mapping,
1189 loff_t base, int offset,
1190 char __user *user_data, int length)
9b7530cc 1191{
4f0c7cfb 1192 void *vaddr;
0839ccb8 1193 unsigned long unwritten;
9b7530cc 1194
4f0c7cfb 1195 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1196 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1197 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1198 user_data, length);
fe115628
CW
1199 io_mapping_unmap_atomic(vaddr);
1200 if (unwritten) {
1201 vaddr = (void __force *)
1202 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1203 unwritten = copy_from_user(vaddr + offset, user_data, length);
1204 io_mapping_unmap(vaddr);
1205 }
bb6dc8d9 1206
bb6dc8d9
CW
1207 return unwritten;
1208}
1209
3de09aa3
EA
1210/**
1211 * This is the fast pwrite path, where we copy the data directly from the
1212 * user into the GTT, uncached.
fe115628 1213 * @obj: i915 GEM object
14bb2c11 1214 * @args: pwrite arguments structure
3de09aa3 1215 */
673a394b 1216static int
fe115628
CW
1217i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218 const struct drm_i915_gem_pwrite *args)
673a394b 1219{
fe115628 1220 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1221 struct i915_ggtt *ggtt = &i915->ggtt;
1222 struct drm_mm_node node;
fe115628
CW
1223 struct i915_vma *vma;
1224 u64 remain, offset;
1225 void __user *user_data;
4f1959ee 1226 int ret;
b50a5371 1227
fe115628
CW
1228 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1229 if (ret)
1230 return ret;
935aaa69 1231
9c870d03 1232 intel_runtime_pm_get(i915);
058d88c4 1233 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1234 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1235 if (!IS_ERR(vma)) {
1236 node.start = i915_ggtt_offset(vma);
1237 node.allocated = false;
49ef5294 1238 ret = i915_vma_put_fence(vma);
18034584
CW
1239 if (ret) {
1240 i915_vma_unpin(vma);
1241 vma = ERR_PTR(ret);
1242 }
1243 }
058d88c4 1244 if (IS_ERR(vma)) {
bb6dc8d9 1245 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1246 if (ret)
fe115628
CW
1247 goto out_unlock;
1248 GEM_BUG_ON(!node.allocated);
4f1959ee 1249 }
935aaa69
DV
1250
1251 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1252 if (ret)
1253 goto out_unpin;
1254
fe115628
CW
1255 mutex_unlock(&i915->drm.struct_mutex);
1256
b19482d7 1257 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1258
4f1959ee
AS
1259 user_data = u64_to_user_ptr(args->data_ptr);
1260 offset = args->offset;
1261 remain = args->size;
1262 while (remain) {
673a394b
EA
1263 /* Operation in this page
1264 *
0839ccb8
KP
1265 * page_base = page offset within aperture
1266 * page_offset = offset within page
1267 * page_length = bytes to copy for this page
673a394b 1268 */
4f1959ee 1269 u32 page_base = node.start;
bb6dc8d9
CW
1270 unsigned int page_offset = offset_in_page(offset);
1271 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1272 page_length = remain < page_length ? remain : page_length;
1273 if (node.allocated) {
1274 wmb(); /* flush the write before we modify the GGTT */
1275 ggtt->base.insert_page(&ggtt->base,
1276 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1277 node.start, I915_CACHE_NONE, 0);
1278 wmb(); /* flush modifications to the GGTT (insert_page) */
1279 } else {
1280 page_base += offset & PAGE_MASK;
1281 }
0839ccb8 1282 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1283 * source page isn't available. Return the error and we'll
1284 * retry in the slow path.
b50a5371
AS
1285 * If the object is non-shmem backed, we retry again with the
1286 * path that handles page fault.
0839ccb8 1287 */
fe115628
CW
1288 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1289 user_data, page_length)) {
1290 ret = -EFAULT;
1291 break;
935aaa69 1292 }
673a394b 1293
0839ccb8
KP
1294 remain -= page_length;
1295 user_data += page_length;
1296 offset += page_length;
673a394b 1297 }
d59b21ec 1298 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1299
1300 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1301out_unpin:
4f1959ee
AS
1302 if (node.allocated) {
1303 wmb();
1304 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1305 node.start, node.size);
4f1959ee
AS
1306 remove_mappable_node(&node);
1307 } else {
058d88c4 1308 i915_vma_unpin(vma);
4f1959ee 1309 }
fe115628 1310out_unlock:
9c870d03 1311 intel_runtime_pm_put(i915);
fe115628 1312 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1313 return ret;
673a394b
EA
1314}
1315
3043c60c 1316static int
fe115628 1317shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1318 char __user *user_data,
1319 bool page_do_bit17_swizzling,
1320 bool needs_clflush_before,
1321 bool needs_clflush_after)
673a394b 1322{
d174bd64
DV
1323 char *vaddr;
1324 int ret;
e5281ccd 1325
d174bd64 1326 vaddr = kmap(page);
e7e58eb5 1327 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1328 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1329 page_do_bit17_swizzling);
d174bd64 1330 if (page_do_bit17_swizzling)
fe115628
CW
1331 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1332 length);
d174bd64 1333 else
fe115628 1334 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1335 if (needs_clflush_after)
fe115628 1336 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1337 page_do_bit17_swizzling);
d174bd64 1338 kunmap(page);
40123c1f 1339
755d2218 1340 return ret ? -EFAULT : 0;
40123c1f
EA
1341}
1342
fe115628
CW
1343/* Per-page copy function for the shmem pwrite fastpath.
1344 * Flushes invalid cachelines before writing to the target if
1345 * needs_clflush_before is set and flushes out any written cachelines after
1346 * writing if needs_clflush is set.
1347 */
40123c1f 1348static int
fe115628
CW
1349shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1350 bool page_do_bit17_swizzling,
1351 bool needs_clflush_before,
1352 bool needs_clflush_after)
40123c1f 1353{
fe115628
CW
1354 int ret;
1355
1356 ret = -ENODEV;
1357 if (!page_do_bit17_swizzling) {
1358 char *vaddr = kmap_atomic(page);
1359
1360 if (needs_clflush_before)
1361 drm_clflush_virt_range(vaddr + offset, len);
1362 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1363 if (needs_clflush_after)
1364 drm_clflush_virt_range(vaddr + offset, len);
1365
1366 kunmap_atomic(vaddr);
1367 }
1368 if (ret == 0)
1369 return ret;
1370
1371 return shmem_pwrite_slow(page, offset, len, user_data,
1372 page_do_bit17_swizzling,
1373 needs_clflush_before,
1374 needs_clflush_after);
1375}
1376
1377static int
1378i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1379 const struct drm_i915_gem_pwrite *args)
1380{
1381 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1382 void __user *user_data;
1383 u64 remain;
1384 unsigned int obj_do_bit17_swizzling;
1385 unsigned int partial_cacheline_write;
43394c7d 1386 unsigned int needs_clflush;
fe115628
CW
1387 unsigned int offset, idx;
1388 int ret;
40123c1f 1389
fe115628 1390 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1391 if (ret)
1392 return ret;
1393
fe115628
CW
1394 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1395 mutex_unlock(&i915->drm.struct_mutex);
1396 if (ret)
1397 return ret;
673a394b 1398
fe115628
CW
1399 obj_do_bit17_swizzling = 0;
1400 if (i915_gem_object_needs_bit17_swizzle(obj))
1401 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1402
fe115628
CW
1403 /* If we don't overwrite a cacheline completely we need to be
1404 * careful to have up-to-date data by first clflushing. Don't
1405 * overcomplicate things and flush the entire patch.
1406 */
1407 partial_cacheline_write = 0;
1408 if (needs_clflush & CLFLUSH_BEFORE)
1409 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1410
fe115628
CW
1411 user_data = u64_to_user_ptr(args->data_ptr);
1412 remain = args->size;
1413 offset = offset_in_page(args->offset);
1414 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1415 struct page *page = i915_gem_object_get_page(obj, idx);
1416 int length;
40123c1f 1417
fe115628
CW
1418 length = remain;
1419 if (offset + length > PAGE_SIZE)
1420 length = PAGE_SIZE - offset;
755d2218 1421
fe115628
CW
1422 ret = shmem_pwrite(page, offset, length, user_data,
1423 page_to_phys(page) & obj_do_bit17_swizzling,
1424 (offset | length) & partial_cacheline_write,
1425 needs_clflush & CLFLUSH_AFTER);
755d2218 1426 if (ret)
fe115628 1427 break;
755d2218 1428
fe115628
CW
1429 remain -= length;
1430 user_data += length;
1431 offset = 0;
8c59967c 1432 }
673a394b 1433
d59b21ec 1434 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1435 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1436 return ret;
673a394b
EA
1437}
1438
1439/**
1440 * Writes data to the object referenced by handle.
14bb2c11
TU
1441 * @dev: drm device
1442 * @data: ioctl data blob
1443 * @file: drm file
673a394b
EA
1444 *
1445 * On error, the contents of the buffer that were to be modified are undefined.
1446 */
1447int
1448i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1449 struct drm_file *file)
673a394b
EA
1450{
1451 struct drm_i915_gem_pwrite *args = data;
05394f39 1452 struct drm_i915_gem_object *obj;
51311d0a
CW
1453 int ret;
1454
1455 if (args->size == 0)
1456 return 0;
1457
1458 if (!access_ok(VERIFY_READ,
3ed605bc 1459 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1460 args->size))
1461 return -EFAULT;
1462
03ac0642 1463 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1464 if (!obj)
1465 return -ENOENT;
673a394b 1466
7dcd2499 1467 /* Bounds check destination. */
966d5bf5 1468 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1469 ret = -EINVAL;
258a5ede 1470 goto err;
ce9d419d
CW
1471 }
1472
db53a302
CW
1473 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1474
7c55e2c5
CW
1475 ret = -ENODEV;
1476 if (obj->ops->pwrite)
1477 ret = obj->ops->pwrite(obj, args);
1478 if (ret != -ENODEV)
1479 goto err;
1480
e95433c7
CW
1481 ret = i915_gem_object_wait(obj,
1482 I915_WAIT_INTERRUPTIBLE |
1483 I915_WAIT_ALL,
1484 MAX_SCHEDULE_TIMEOUT,
1485 to_rps_client(file));
258a5ede
CW
1486 if (ret)
1487 goto err;
1488
fe115628 1489 ret = i915_gem_object_pin_pages(obj);
258a5ede 1490 if (ret)
fe115628 1491 goto err;
258a5ede 1492
935aaa69 1493 ret = -EFAULT;
673a394b
EA
1494 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1495 * it would end up going through the fenced access, and we'll get
1496 * different detiling behavior between reading and writing.
1497 * pread/pwrite currently are reading and writing from the CPU
1498 * perspective, requiring manual detiling by the client.
1499 */
6eae0059 1500 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1501 cpu_write_needs_clflush(obj))
935aaa69
DV
1502 /* Note that the gtt paths might fail with non-page-backed user
1503 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1504 * textures). Fallback to the shmem path in that case.
1505 */
fe115628 1506 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1507
d1054ee4 1508 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1509 if (obj->phys_handle)
1510 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1511 else
fe115628 1512 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1513 }
5c0480f2 1514
fe115628 1515 i915_gem_object_unpin_pages(obj);
258a5ede 1516err:
f0cd5182 1517 i915_gem_object_put(obj);
258a5ede 1518 return ret;
673a394b
EA
1519}
1520
40e62d5d
CW
1521static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1522{
1523 struct drm_i915_private *i915;
1524 struct list_head *list;
1525 struct i915_vma *vma;
1526
1527 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1528 if (!i915_vma_is_ggtt(vma))
28f412e0 1529 break;
40e62d5d
CW
1530
1531 if (i915_vma_is_active(vma))
1532 continue;
1533
1534 if (!drm_mm_node_allocated(&vma->node))
1535 continue;
1536
1537 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1538 }
1539
1540 i915 = to_i915(obj->base.dev);
1541 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1542 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1543}
1544
673a394b 1545/**
2ef7eeaa
EA
1546 * Called when user space prepares to use an object with the CPU, either
1547 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1548 * @dev: drm device
1549 * @data: ioctl data blob
1550 * @file: drm file
673a394b
EA
1551 */
1552int
1553i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1554 struct drm_file *file)
673a394b
EA
1555{
1556 struct drm_i915_gem_set_domain *args = data;
05394f39 1557 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1558 uint32_t read_domains = args->read_domains;
1559 uint32_t write_domain = args->write_domain;
40e62d5d 1560 int err;
673a394b 1561
2ef7eeaa 1562 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1563 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1564 return -EINVAL;
1565
1566 /* Having something in the write domain implies it's in the read
1567 * domain, and only that read domain. Enforce that in the request.
1568 */
1569 if (write_domain != 0 && read_domains != write_domain)
1570 return -EINVAL;
1571
03ac0642 1572 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1573 if (!obj)
1574 return -ENOENT;
673a394b 1575
3236f57a
CW
1576 /* Try to flush the object off the GPU without holding the lock.
1577 * We will repeat the flush holding the lock in the normal manner
1578 * to catch cases where we are gazumped.
1579 */
40e62d5d 1580 err = i915_gem_object_wait(obj,
e95433c7
CW
1581 I915_WAIT_INTERRUPTIBLE |
1582 (write_domain ? I915_WAIT_ALL : 0),
1583 MAX_SCHEDULE_TIMEOUT,
1584 to_rps_client(file));
40e62d5d 1585 if (err)
f0cd5182 1586 goto out;
b8f9096d 1587
40e62d5d
CW
1588 /* Flush and acquire obj->pages so that we are coherent through
1589 * direct access in memory with previous cached writes through
1590 * shmemfs and that our cache domain tracking remains valid.
1591 * For example, if the obj->filp was moved to swap without us
1592 * being notified and releasing the pages, we would mistakenly
1593 * continue to assume that the obj remained out of the CPU cached
1594 * domain.
1595 */
1596 err = i915_gem_object_pin_pages(obj);
1597 if (err)
f0cd5182 1598 goto out;
40e62d5d
CW
1599
1600 err = i915_mutex_lock_interruptible(dev);
1601 if (err)
f0cd5182 1602 goto out_unpin;
3236f57a 1603
e22d8e3c
CW
1604 if (read_domains & I915_GEM_DOMAIN_WC)
1605 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1606 else if (read_domains & I915_GEM_DOMAIN_GTT)
1607 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1608 else
e22d8e3c 1609 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1610
40e62d5d
CW
1611 /* And bump the LRU for this access */
1612 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1613
673a394b 1614 mutex_unlock(&dev->struct_mutex);
b8f9096d 1615
40e62d5d 1616 if (write_domain != 0)
ef74921b
CW
1617 intel_fb_obj_invalidate(obj,
1618 fb_write_origin(obj, write_domain));
40e62d5d 1619
f0cd5182 1620out_unpin:
40e62d5d 1621 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1622out:
1623 i915_gem_object_put(obj);
40e62d5d 1624 return err;
673a394b
EA
1625}
1626
1627/**
1628 * Called when user space has done writes to this buffer
14bb2c11
TU
1629 * @dev: drm device
1630 * @data: ioctl data blob
1631 * @file: drm file
673a394b
EA
1632 */
1633int
1634i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1635 struct drm_file *file)
673a394b
EA
1636{
1637 struct drm_i915_gem_sw_finish *args = data;
05394f39 1638 struct drm_i915_gem_object *obj;
1d7cfea1 1639
03ac0642 1640 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1641 if (!obj)
1642 return -ENOENT;
673a394b 1643
673a394b 1644 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1645 i915_gem_object_flush_if_display(obj);
f0cd5182 1646 i915_gem_object_put(obj);
5a97bcc6
CW
1647
1648 return 0;
673a394b
EA
1649}
1650
1651/**
14bb2c11
TU
1652 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1653 * it is mapped to.
1654 * @dev: drm device
1655 * @data: ioctl data blob
1656 * @file: drm file
673a394b
EA
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
34367381
DV
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1670 */
1671int
1672i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1673 struct drm_file *file)
673a394b
EA
1674{
1675 struct drm_i915_gem_mmap *args = data;
03ac0642 1676 struct drm_i915_gem_object *obj;
673a394b
EA
1677 unsigned long addr;
1678
1816f923
AG
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
568a58e5 1682 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1683 return -ENODEV;
1684
03ac0642
CW
1685 obj = i915_gem_object_lookup(file, args->handle);
1686 if (!obj)
bf79cb91 1687 return -ENOENT;
673a394b 1688
1286ff73
DV
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
03ac0642 1692 if (!obj->base.filp) {
f0cd5182 1693 i915_gem_object_put(obj);
1286ff73
DV
1694 return -EINVAL;
1695 }
1696
03ac0642 1697 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1816f923
AG
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
80a89a5e 1704 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1705 i915_gem_object_put(obj);
80a89a5e
MH
1706 return -EINTR;
1707 }
1816f923
AG
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
aeecc969
CW
1715
1716 /* This may race, but that's ok, it only gets set */
50349247 1717 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1718 }
f0cd5182 1719 i915_gem_object_put(obj);
673a394b
EA
1720 if (IS_ERR((void *)addr))
1721 return addr;
1722
1723 args->addr_ptr = (uint64_t) addr;
1724
1725 return 0;
1726}
1727
03af84fe
CW
1728static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1729{
6649a0b6 1730 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1731}
1732
4cc69075
CW
1733/**
1734 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735 *
1736 * A history of the GTT mmap interface:
1737 *
1738 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739 * aligned and suitable for fencing, and still fit into the available
1740 * mappable space left by the pinned display objects. A classic problem
1741 * we called the page-fault-of-doom where we would ping-pong between
1742 * two objects that could not fit inside the GTT and so the memcpy
1743 * would page one object in at the expense of the other between every
1744 * single byte.
1745 *
1746 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748 * object is too large for the available space (or simply too large
1749 * for the mappable aperture!), a view is created instead and faulted
1750 * into userspace. (This view is aligned and sized appropriately for
1751 * fenced access.)
1752 *
e22d8e3c
CW
1753 * 2 - Recognise WC as a separate cache domain so that we can flush the
1754 * delayed writes via GTT before performing direct access via WC.
1755 *
4cc69075
CW
1756 * Restrictions:
1757 *
1758 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1759 * hangs on some architectures, corruption on others. An attempt to service
1760 * a GTT page fault from a snoopable object will generate a SIGBUS.
1761 *
1762 * * the object must be able to fit into RAM (physical memory, though no
1763 * limited to the mappable aperture).
1764 *
1765 *
1766 * Caveats:
1767 *
1768 * * a new GTT page fault will synchronize rendering from the GPU and flush
1769 * all data to system memory. Subsequent access will not be synchronized.
1770 *
1771 * * all mappings are revoked on runtime device suspend.
1772 *
1773 * * there are only 8, 16 or 32 fence registers to share between all users
1774 * (older machines require fence register for display and blitter access
1775 * as well). Contention of the fence registers will cause the previous users
1776 * to be unmapped and any new access will generate new page faults.
1777 *
1778 * * running out of memory while servicing a fault may generate a SIGBUS,
1779 * rather than the expected SIGSEGV.
1780 */
1781int i915_gem_mmap_gtt_version(void)
1782{
e22d8e3c 1783 return 2;
4cc69075
CW
1784}
1785
2d4281bb
CW
1786static inline struct i915_ggtt_view
1787compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1788 pgoff_t page_offset,
1789 unsigned int chunk)
1790{
1791 struct i915_ggtt_view view;
1792
1793 if (i915_gem_object_is_tiled(obj))
1794 chunk = roundup(chunk, tile_row_pages(obj));
1795
2d4281bb 1796 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1797 view.partial.offset = rounddown(page_offset, chunk);
1798 view.partial.size =
2d4281bb 1799 min_t(unsigned int, chunk,
8bab1193 1800 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1801
1802 /* If the partial covers the entire object, just create a normal VMA. */
1803 if (chunk >= obj->base.size >> PAGE_SHIFT)
1804 view.type = I915_GGTT_VIEW_NORMAL;
1805
1806 return view;
1807}
1808
de151cf6
JB
1809/**
1810 * i915_gem_fault - fault a page into the GTT
d9072a3e 1811 * @vmf: fault info
de151cf6
JB
1812 *
1813 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1814 * from userspace. The fault handler takes care of binding the object to
1815 * the GTT (if needed), allocating and programming a fence register (again,
1816 * only if needed based on whether the old reg is still valid or the object
1817 * is tiled) and inserting a new PTE into the faulting process.
1818 *
1819 * Note that the faulting process may involve evicting existing objects
1820 * from the GTT and/or fence registers to make room. So performance may
1821 * suffer if the GTT working set is large or there are few fence registers
1822 * left.
4cc69075
CW
1823 *
1824 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1825 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1826 */
11bac800 1827int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1828{
03af84fe 1829#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1830 struct vm_area_struct *area = vmf->vma;
058d88c4 1831 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1832 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1833 struct drm_i915_private *dev_priv = to_i915(dev);
1834 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1835 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1836 struct i915_vma *vma;
de151cf6 1837 pgoff_t page_offset;
82118877 1838 unsigned int flags;
b8f9096d 1839 int ret;
f65c9168 1840
de151cf6 1841 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1842 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1843
db53a302
CW
1844 trace_i915_gem_object_fault(obj, page_offset, true, write);
1845
6e4930f6 1846 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1847 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1848 * repeat the flush holding the lock in the normal manner to catch cases
1849 * where we are gazumped.
1850 */
e95433c7
CW
1851 ret = i915_gem_object_wait(obj,
1852 I915_WAIT_INTERRUPTIBLE,
1853 MAX_SCHEDULE_TIMEOUT,
1854 NULL);
6e4930f6 1855 if (ret)
b8f9096d
CW
1856 goto err;
1857
40e62d5d
CW
1858 ret = i915_gem_object_pin_pages(obj);
1859 if (ret)
1860 goto err;
1861
b8f9096d
CW
1862 intel_runtime_pm_get(dev_priv);
1863
1864 ret = i915_mutex_lock_interruptible(dev);
1865 if (ret)
1866 goto err_rpm;
6e4930f6 1867
eb119bd6 1868 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1869 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1870 ret = -EFAULT;
b8f9096d 1871 goto err_unlock;
eb119bd6
CW
1872 }
1873
82118877
CW
1874 /* If the object is smaller than a couple of partial vma, it is
1875 * not worth only creating a single partial vma - we may as well
1876 * clear enough space for the full object.
1877 */
1878 flags = PIN_MAPPABLE;
1879 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881
a61007a8 1882 /* Now pin it into the GTT as needed */
82118877 1883 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1884 if (IS_ERR(vma)) {
a61007a8 1885 /* Use a partial view if it is bigger than available space */
2d4281bb 1886 struct i915_ggtt_view view =
8201c1fa 1887 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1888
50349247
CW
1889 /* Userspace is now writing through an untracked VMA, abandon
1890 * all hope that the hardware is able to track future writes.
1891 */
1892 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893
a61007a8
CW
1894 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895 }
058d88c4
CW
1896 if (IS_ERR(vma)) {
1897 ret = PTR_ERR(vma);
b8f9096d 1898 goto err_unlock;
058d88c4 1899 }
4a684a41 1900
c9839303
CW
1901 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902 if (ret)
b8f9096d 1903 goto err_unpin;
74898d7e 1904
49ef5294 1905 ret = i915_vma_get_fence(vma);
d9e86c0e 1906 if (ret)
b8f9096d 1907 goto err_unpin;
7d1c4804 1908
275f039d 1909 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1910 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1911 if (list_empty(&obj->userfault_link))
1912 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1913
b90b91d8 1914 /* Finally, remap it using the new GTT offset */
c58305af 1915 ret = remap_io_mapping(area,
8bab1193 1916 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1917 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918 min_t(u64, vma->size, area->vm_end - area->vm_start),
1919 &ggtt->mappable);
a61007a8 1920
b8f9096d 1921err_unpin:
058d88c4 1922 __i915_vma_unpin(vma);
b8f9096d 1923err_unlock:
de151cf6 1924 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1925err_rpm:
1926 intel_runtime_pm_put(dev_priv);
40e62d5d 1927 i915_gem_object_unpin_pages(obj);
b8f9096d 1928err:
de151cf6 1929 switch (ret) {
d9bc7e9f 1930 case -EIO:
2232f031
DV
1931 /*
1932 * We eat errors when the gpu is terminally wedged to avoid
1933 * userspace unduly crashing (gl has no provisions for mmaps to
1934 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935 * and so needs to be reported.
1936 */
1937 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 }
045e769a 1941 case -EAGAIN:
571c608d
DV
1942 /*
1943 * EAGAIN means the gpu is hung and we'll wait for the error
1944 * handler to reset everything when re-faulting in
1945 * i915_mutex_lock_interruptible.
d9bc7e9f 1946 */
c715089f
CW
1947 case 0:
1948 case -ERESTARTSYS:
bed636ab 1949 case -EINTR:
e79e0fe3
DR
1950 case -EBUSY:
1951 /*
1952 * EBUSY is ok: this just means that another thread
1953 * already did the job.
1954 */
f65c9168
PZ
1955 ret = VM_FAULT_NOPAGE;
1956 break;
de151cf6 1957 case -ENOMEM:
f65c9168
PZ
1958 ret = VM_FAULT_OOM;
1959 break;
a7c2e1aa 1960 case -ENOSPC:
45d67817 1961 case -EFAULT:
f65c9168
PZ
1962 ret = VM_FAULT_SIGBUS;
1963 break;
de151cf6 1964 default:
a7c2e1aa 1965 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1966 ret = VM_FAULT_SIGBUS;
1967 break;
de151cf6 1968 }
f65c9168 1969 return ret;
de151cf6
JB
1970}
1971
901782b2
CW
1972/**
1973 * i915_gem_release_mmap - remove physical page mappings
1974 * @obj: obj in question
1975 *
af901ca1 1976 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1977 * relinquish ownership of the pages back to the system.
1978 *
1979 * It is vital that we remove the page mapping if we have mapped a tiled
1980 * object through the GTT and then lose the fence register due to
1981 * resource pressure. Similarly if the object has been moved out of the
1982 * aperture, than pages mapped into userspace must be revoked. Removing the
1983 * mapping will then trigger a page fault on the next user access, allowing
1984 * fixup by i915_gem_fault().
1985 */
d05ca301 1986void
05394f39 1987i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1988{
275f039d 1989 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1990
349f2ccf
CW
1991 /* Serialisation between user GTT access and our code depends upon
1992 * revoking the CPU's PTE whilst the mutex is held. The next user
1993 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1994 *
1995 * Note that RPM complicates somewhat by adding an additional
1996 * requirement that operations to the GGTT be made holding the RPM
1997 * wakeref.
349f2ccf 1998 */
275f039d 1999 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2000 intel_runtime_pm_get(i915);
349f2ccf 2001
3594a3e2 2002 if (list_empty(&obj->userfault_link))
9c870d03 2003 goto out;
901782b2 2004
3594a3e2 2005 list_del_init(&obj->userfault_link);
6796cb16
DH
2006 drm_vma_node_unmap(&obj->base.vma_node,
2007 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
2008
2009 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2010 * memory transactions from userspace before we return. The TLB
2011 * flushing implied above by changing the PTE above *should* be
2012 * sufficient, an extra barrier here just provides us with a bit
2013 * of paranoid documentation about our requirement to serialise
2014 * memory writes before touching registers / GSM.
2015 */
2016 wmb();
9c870d03
CW
2017
2018out:
2019 intel_runtime_pm_put(i915);
901782b2
CW
2020}
2021
7c108fd8 2022void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2023{
3594a3e2 2024 struct drm_i915_gem_object *obj, *on;
7c108fd8 2025 int i;
eedd10f4 2026
3594a3e2
CW
2027 /*
2028 * Only called during RPM suspend. All users of the userfault_list
2029 * must be holding an RPM wakeref to ensure that this can not
2030 * run concurrently with themselves (and use the struct_mutex for
2031 * protection between themselves).
2032 */
275f039d 2033
3594a3e2
CW
2034 list_for_each_entry_safe(obj, on,
2035 &dev_priv->mm.userfault_list, userfault_link) {
2036 list_del_init(&obj->userfault_link);
275f039d
CW
2037 drm_vma_node_unmap(&obj->base.vma_node,
2038 obj->base.dev->anon_inode->i_mapping);
275f039d 2039 }
7c108fd8
CW
2040
2041 /* The fence will be lost when the device powers down. If any were
2042 * in use by hardware (i.e. they are pinned), we should not be powering
2043 * down! All other fences will be reacquired by the user upon waking.
2044 */
2045 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047
e0ec3ec6
CW
2048 /* Ideally we want to assert that the fence register is not
2049 * live at this point (i.e. that no piece of code will be
2050 * trying to write through fence + GTT, as that both violates
2051 * our tracking of activity and associated locking/barriers,
2052 * but also is illegal given that the hw is powered down).
2053 *
2054 * Previously we used reg->pin_count as a "liveness" indicator.
2055 * That is not sufficient, and we need a more fine-grained
2056 * tool if we want to have a sanity check here.
2057 */
7c108fd8
CW
2058
2059 if (!reg->vma)
2060 continue;
2061
2062 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2063 reg->dirty = true;
2064 }
eedd10f4
CW
2065}
2066
d8cb5086
CW
2067static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068{
fac5e23e 2069 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2070 int err;
da494d7c 2071
f3f6184c 2072 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2073 if (likely(!err))
f3f6184c 2074 return 0;
d8cb5086 2075
b42a13d9
CW
2076 /* Attempt to reap some mmap space from dead objects */
2077 do {
2078 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079 if (err)
2080 break;
f3f6184c 2081
b42a13d9 2082 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2083 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2084 if (!err)
2085 break;
2086
2087 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2088
f3f6184c 2089 return err;
d8cb5086
CW
2090}
2091
2092static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093{
d8cb5086
CW
2094 drm_gem_free_mmap_offset(&obj->base);
2095}
2096
da6b51d0 2097int
ff72145b
DA
2098i915_gem_mmap_gtt(struct drm_file *file,
2099 struct drm_device *dev,
da6b51d0 2100 uint32_t handle,
ff72145b 2101 uint64_t *offset)
de151cf6 2102{
05394f39 2103 struct drm_i915_gem_object *obj;
de151cf6
JB
2104 int ret;
2105
03ac0642 2106 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2107 if (!obj)
2108 return -ENOENT;
ab18282d 2109
d8cb5086 2110 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2111 if (ret == 0)
2112 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2113
f0cd5182 2114 i915_gem_object_put(obj);
1d7cfea1 2115 return ret;
de151cf6
JB
2116}
2117
ff72145b
DA
2118/**
2119 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120 * @dev: DRM device
2121 * @data: GTT mapping ioctl data
2122 * @file: GEM object info
2123 *
2124 * Simply returns the fake offset to userspace so it can mmap it.
2125 * The mmap call will end up in drm_gem_mmap(), which will set things
2126 * up so we can get faults in the handler above.
2127 *
2128 * The fault handler will take care of binding the object into the GTT
2129 * (since it may have been evicted to make room for something), allocating
2130 * a fence register, and mapping the appropriate aperture address into
2131 * userspace.
2132 */
2133int
2134i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135 struct drm_file *file)
2136{
2137 struct drm_i915_gem_mmap_gtt *args = data;
2138
da6b51d0 2139 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2140}
2141
225067ee
DV
2142/* Immediately discard the backing storage */
2143static void
2144i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2145{
4d6294bf 2146 i915_gem_object_free_mmap_offset(obj);
1286ff73 2147
4d6294bf
CW
2148 if (obj->base.filp == NULL)
2149 return;
e5281ccd 2150
225067ee
DV
2151 /* Our goal here is to return as much of the memory as
2152 * is possible back to the system as we are called from OOM.
2153 * To do this we must instruct the shmfs to drop all of its
2154 * backing pages, *now*.
2155 */
5537252b 2156 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2157 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2158 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2159}
e5281ccd 2160
5537252b 2161/* Try to discard unwanted pages */
03ac84f1 2162void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2163{
5537252b
CW
2164 struct address_space *mapping;
2165
1233e2db
CW
2166 lockdep_assert_held(&obj->mm.lock);
2167 GEM_BUG_ON(obj->mm.pages);
2168
a4f5ea64 2169 switch (obj->mm.madv) {
5537252b
CW
2170 case I915_MADV_DONTNEED:
2171 i915_gem_object_truncate(obj);
2172 case __I915_MADV_PURGED:
2173 return;
2174 }
2175
2176 if (obj->base.filp == NULL)
2177 return;
2178
93c76a3d 2179 mapping = obj->base.filp->f_mapping,
5537252b 2180 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2181}
2182
5cdf5881 2183static void
03ac84f1
CW
2184i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185 struct sg_table *pages)
673a394b 2186{
85d1225e
DG
2187 struct sgt_iter sgt_iter;
2188 struct page *page;
1286ff73 2189
e5facdf9 2190 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2191
03ac84f1 2192 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2193
6dacfd2f 2194 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2195 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2196
03ac84f1 2197 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2198 if (obj->mm.dirty)
9da3da66 2199 set_page_dirty(page);
3ef94daa 2200
a4f5ea64 2201 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2202 mark_page_accessed(page);
3ef94daa 2203
09cbfeaf 2204 put_page(page);
3ef94daa 2205 }
a4f5ea64 2206 obj->mm.dirty = false;
673a394b 2207
03ac84f1
CW
2208 sg_free_table(pages);
2209 kfree(pages);
37e680a1 2210}
6c085a72 2211
96d77634
CW
2212static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213{
2214 struct radix_tree_iter iter;
6910d852 2215 void __rcu **slot;
96d77634 2216
a4f5ea64
CW
2217 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2218 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2219}
2220
548625ee
CW
2221void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2222 enum i915_mm_subclass subclass)
37e680a1 2223{
03ac84f1 2224 struct sg_table *pages;
37e680a1 2225
a4f5ea64 2226 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2227 return;
a5570178 2228
15717de2 2229 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2230 if (!READ_ONCE(obj->mm.pages))
2231 return;
2232
2233 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2234 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2235 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2236 goto unlock;
3e123027 2237
a2165e31
CW
2238 /* ->put_pages might need to allocate memory for the bit17 swizzle
2239 * array, hence protect them from being reaped by removing them from gtt
2240 * lists early. */
03ac84f1
CW
2241 pages = fetch_and_zero(&obj->mm.pages);
2242 GEM_BUG_ON(!pages);
a2165e31 2243
a4f5ea64 2244 if (obj->mm.mapping) {
4b30cb23
CW
2245 void *ptr;
2246
0ce81788 2247 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2248 if (is_vmalloc_addr(ptr))
2249 vunmap(ptr);
fb8621d3 2250 else
4b30cb23
CW
2251 kunmap(kmap_to_page(ptr));
2252
a4f5ea64 2253 obj->mm.mapping = NULL;
0a798eb9
CW
2254 }
2255
96d77634
CW
2256 __i915_gem_object_reset_page_iter(obj);
2257
4e5462ee
CW
2258 if (!IS_ERR(pages))
2259 obj->ops->put_pages(obj, pages);
2260
1233e2db
CW
2261unlock:
2262 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2263}
2264
935a2f77 2265static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2266{
2267 struct sg_table new_st;
2268 struct scatterlist *sg, *new_sg;
2269 unsigned int i;
2270
2271 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2272 return false;
0c40ce13 2273
8bfc478f 2274 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2275 return false;
0c40ce13
TU
2276
2277 new_sg = new_st.sgl;
2278 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2279 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2280 /* called before being DMA mapped, no need to copy sg->dma_* */
2281 new_sg = sg_next(new_sg);
2282 }
c2dc6cc9 2283 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2284
2285 sg_free_table(orig_st);
2286
2287 *orig_st = new_st;
935a2f77 2288 return true;
0c40ce13
TU
2289}
2290
03ac84f1 2291static struct sg_table *
6c085a72 2292i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2293{
fac5e23e 2294 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2295 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2296 unsigned long i;
e5281ccd 2297 struct address_space *mapping;
9da3da66
CW
2298 struct sg_table *st;
2299 struct scatterlist *sg;
85d1225e 2300 struct sgt_iter sgt_iter;
e5281ccd 2301 struct page *page;
90797e6d 2302 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2303 unsigned int max_segment;
4846bf0c 2304 gfp_t noreclaim;
e2273302 2305 int ret;
e5281ccd 2306
6c085a72
CW
2307 /* Assert that the object is not currently in any GPU domain. As it
2308 * wasn't in the GTT, there shouldn't be any way it could have been in
2309 * a GPU cache
2310 */
03ac84f1
CW
2311 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2312 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2313
7453c549 2314 max_segment = swiotlb_max_segment();
871dfbd6 2315 if (!max_segment)
4ff340f0 2316 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2317
9da3da66
CW
2318 st = kmalloc(sizeof(*st), GFP_KERNEL);
2319 if (st == NULL)
03ac84f1 2320 return ERR_PTR(-ENOMEM);
9da3da66 2321
d766ef53 2322rebuild_st:
9da3da66 2323 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2324 kfree(st);
03ac84f1 2325 return ERR_PTR(-ENOMEM);
9da3da66 2326 }
e5281ccd 2327
9da3da66
CW
2328 /* Get the list of pages out of our struct file. They'll be pinned
2329 * at this point until we release them.
2330 *
2331 * Fail silently without starting the shrinker
2332 */
93c76a3d 2333 mapping = obj->base.filp->f_mapping;
0f6ab55d 2334 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2335 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2336
90797e6d
ID
2337 sg = st->sgl;
2338 st->nents = 0;
2339 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2340 const unsigned int shrink[] = {
2341 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2342 0,
2343 }, *s = shrink;
2344 gfp_t gfp = noreclaim;
2345
2346 do {
6c085a72 2347 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2348 if (likely(!IS_ERR(page)))
2349 break;
2350
2351 if (!*s) {
2352 ret = PTR_ERR(page);
2353 goto err_sg;
2354 }
2355
912d572d 2356 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2357 cond_resched();
24f8e00a 2358
6c085a72
CW
2359 /* We've tried hard to allocate the memory by reaping
2360 * our own buffer, now let the real VM do its job and
2361 * go down in flames if truly OOM.
24f8e00a
CW
2362 *
2363 * However, since graphics tend to be disposable,
2364 * defer the oom here by reporting the ENOMEM back
2365 * to userspace.
6c085a72 2366 */
4846bf0c
CW
2367 if (!*s) {
2368 /* reclaim and warn, but no oom */
2369 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2370
2371 /* Our bo are always dirty and so we require
2372 * kswapd to reclaim our pages (direct reclaim
2373 * does not effectively begin pageout of our
2374 * buffers on its own). However, direct reclaim
2375 * only waits for kswapd when under allocation
2376 * congestion. So as a result __GFP_RECLAIM is
2377 * unreliable and fails to actually reclaim our
2378 * dirty pages -- unless you try over and over
2379 * again with !__GFP_NORETRY. However, we still
2380 * want to fail this allocation rather than
2381 * trigger the out-of-memory killer and for
dbb32956 2382 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2383 */
dbb32956 2384 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2385 }
4846bf0c
CW
2386 } while (1);
2387
871dfbd6
CW
2388 if (!i ||
2389 sg->length >= max_segment ||
2390 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2391 if (i)
2392 sg = sg_next(sg);
2393 st->nents++;
2394 sg_set_page(sg, page, PAGE_SIZE, 0);
2395 } else {
2396 sg->length += PAGE_SIZE;
2397 }
2398 last_pfn = page_to_pfn(page);
3bbbe706
DV
2399
2400 /* Check that the i965g/gm workaround works. */
2401 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2402 }
871dfbd6 2403 if (sg) /* loop terminated early; short sg table */
426729dc 2404 sg_mark_end(sg);
74ce6b6c 2405
0c40ce13
TU
2406 /* Trim unused sg entries to avoid wasting memory. */
2407 i915_sg_trim(st);
2408
03ac84f1 2409 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2410 if (ret) {
2411 /* DMA remapping failed? One possible cause is that
2412 * it could not reserve enough large entries, asking
2413 * for PAGE_SIZE chunks instead may be helpful.
2414 */
2415 if (max_segment > PAGE_SIZE) {
2416 for_each_sgt_page(page, sgt_iter, st)
2417 put_page(page);
2418 sg_free_table(st);
2419
2420 max_segment = PAGE_SIZE;
2421 goto rebuild_st;
2422 } else {
2423 dev_warn(&dev_priv->drm.pdev->dev,
2424 "Failed to DMA remap %lu pages\n",
2425 page_count);
2426 goto err_pages;
2427 }
2428 }
e2273302 2429
6dacfd2f 2430 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2431 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2432
03ac84f1 2433 return st;
e5281ccd 2434
b17993b7 2435err_sg:
90797e6d 2436 sg_mark_end(sg);
b17993b7 2437err_pages:
85d1225e
DG
2438 for_each_sgt_page(page, sgt_iter, st)
2439 put_page(page);
9da3da66
CW
2440 sg_free_table(st);
2441 kfree(st);
0820baf3
CW
2442
2443 /* shmemfs first checks if there is enough memory to allocate the page
2444 * and reports ENOSPC should there be insufficient, along with the usual
2445 * ENOMEM for a genuine allocation failure.
2446 *
2447 * We use ENOSPC in our driver to mean that we have run out of aperture
2448 * space and so want to translate the error from shmemfs back to our
2449 * usual understanding of ENOMEM.
2450 */
e2273302
ID
2451 if (ret == -ENOSPC)
2452 ret = -ENOMEM;
2453
03ac84f1
CW
2454 return ERR_PTR(ret);
2455}
2456
2457void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2458 struct sg_table *pages)
2459{
1233e2db 2460 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2461
2462 obj->mm.get_page.sg_pos = pages->sgl;
2463 obj->mm.get_page.sg_idx = 0;
2464
2465 obj->mm.pages = pages;
2c3a3f44
CW
2466
2467 if (i915_gem_object_is_tiled(obj) &&
2468 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2469 GEM_BUG_ON(obj->mm.quirked);
2470 __i915_gem_object_pin_pages(obj);
2471 obj->mm.quirked = true;
2472 }
03ac84f1
CW
2473}
2474
2475static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2476{
2477 struct sg_table *pages;
2478
2c3a3f44
CW
2479 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2480
03ac84f1
CW
2481 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2482 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2483 return -EFAULT;
2484 }
2485
2486 pages = obj->ops->get_pages(obj);
2487 if (unlikely(IS_ERR(pages)))
2488 return PTR_ERR(pages);
2489
2490 __i915_gem_object_set_pages(obj, pages);
2491 return 0;
673a394b
EA
2492}
2493
37e680a1 2494/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2495 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2496 * multiple times before they are released by a single call to
1233e2db 2497 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2498 * either as a result of memory pressure (reaping pages under the shrinker)
2499 * or as the object is itself released.
2500 */
a4f5ea64 2501int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2502{
03ac84f1 2503 int err;
37e680a1 2504
1233e2db
CW
2505 err = mutex_lock_interruptible(&obj->mm.lock);
2506 if (err)
2507 return err;
4c7d62c6 2508
4e5462ee 2509 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2510 err = ____i915_gem_object_get_pages(obj);
2511 if (err)
2512 goto unlock;
37e680a1 2513
2c3a3f44
CW
2514 smp_mb__before_atomic();
2515 }
2516 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2517
1233e2db
CW
2518unlock:
2519 mutex_unlock(&obj->mm.lock);
03ac84f1 2520 return err;
673a394b
EA
2521}
2522
dd6034c6 2523/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2524static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2525 enum i915_map_type type)
dd6034c6
DG
2526{
2527 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2528 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2529 struct sgt_iter sgt_iter;
2530 struct page *page;
b338fa47
DG
2531 struct page *stack_pages[32];
2532 struct page **pages = stack_pages;
dd6034c6 2533 unsigned long i = 0;
d31d7cb1 2534 pgprot_t pgprot;
dd6034c6
DG
2535 void *addr;
2536
2537 /* A single page can always be kmapped */
d31d7cb1 2538 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2539 return kmap(sg_page(sgt->sgl));
2540
b338fa47
DG
2541 if (n_pages > ARRAY_SIZE(stack_pages)) {
2542 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2543 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2544 if (!pages)
2545 return NULL;
2546 }
dd6034c6 2547
85d1225e
DG
2548 for_each_sgt_page(page, sgt_iter, sgt)
2549 pages[i++] = page;
dd6034c6
DG
2550
2551 /* Check that we have the expected number of pages */
2552 GEM_BUG_ON(i != n_pages);
2553
d31d7cb1 2554 switch (type) {
3b24e7e8
CW
2555 default:
2556 MISSING_CASE(type);
2557 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2558 case I915_MAP_WB:
2559 pgprot = PAGE_KERNEL;
2560 break;
2561 case I915_MAP_WC:
2562 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2563 break;
2564 }
2565 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2566
b338fa47 2567 if (pages != stack_pages)
2098105e 2568 kvfree(pages);
dd6034c6
DG
2569
2570 return addr;
2571}
2572
2573/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2574void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2575 enum i915_map_type type)
0a798eb9 2576{
d31d7cb1
CW
2577 enum i915_map_type has_type;
2578 bool pinned;
2579 void *ptr;
0a798eb9
CW
2580 int ret;
2581
d31d7cb1 2582 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2583
1233e2db 2584 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2585 if (ret)
2586 return ERR_PTR(ret);
2587
3b24e7e8
CW
2588 pinned = !(type & I915_MAP_OVERRIDE);
2589 type &= ~I915_MAP_OVERRIDE;
2590
1233e2db 2591 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
4e5462ee 2592 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2593 ret = ____i915_gem_object_get_pages(obj);
2594 if (ret)
2595 goto err_unlock;
1233e2db 2596
2c3a3f44
CW
2597 smp_mb__before_atomic();
2598 }
2599 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2600 pinned = false;
2601 }
2602 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2603
0ce81788 2604 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2605 if (ptr && has_type != type) {
2606 if (pinned) {
2607 ret = -EBUSY;
1233e2db 2608 goto err_unpin;
0a798eb9 2609 }
d31d7cb1
CW
2610
2611 if (is_vmalloc_addr(ptr))
2612 vunmap(ptr);
2613 else
2614 kunmap(kmap_to_page(ptr));
2615
a4f5ea64 2616 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2617 }
2618
d31d7cb1
CW
2619 if (!ptr) {
2620 ptr = i915_gem_object_map(obj, type);
2621 if (!ptr) {
2622 ret = -ENOMEM;
1233e2db 2623 goto err_unpin;
d31d7cb1
CW
2624 }
2625
0ce81788 2626 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2627 }
2628
1233e2db
CW
2629out_unlock:
2630 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2631 return ptr;
2632
1233e2db
CW
2633err_unpin:
2634 atomic_dec(&obj->mm.pages_pin_count);
2635err_unlock:
2636 ptr = ERR_PTR(ret);
2637 goto out_unlock;
0a798eb9
CW
2638}
2639
7c55e2c5
CW
2640static int
2641i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2642 const struct drm_i915_gem_pwrite *arg)
2643{
2644 struct address_space *mapping = obj->base.filp->f_mapping;
2645 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2646 u64 remain, offset;
2647 unsigned int pg;
2648
2649 /* Before we instantiate/pin the backing store for our use, we
2650 * can prepopulate the shmemfs filp efficiently using a write into
2651 * the pagecache. We avoid the penalty of instantiating all the
2652 * pages, important if the user is just writing to a few and never
2653 * uses the object on the GPU, and using a direct write into shmemfs
2654 * allows it to avoid the cost of retrieving a page (either swapin
2655 * or clearing-before-use) before it is overwritten.
2656 */
2657 if (READ_ONCE(obj->mm.pages))
2658 return -ENODEV;
2659
2660 /* Before the pages are instantiated the object is treated as being
2661 * in the CPU domain. The pages will be clflushed as required before
2662 * use, and we can freely write into the pages directly. If userspace
2663 * races pwrite with any other operation; corruption will ensue -
2664 * that is userspace's prerogative!
2665 */
2666
2667 remain = arg->size;
2668 offset = arg->offset;
2669 pg = offset_in_page(offset);
2670
2671 do {
2672 unsigned int len, unwritten;
2673 struct page *page;
2674 void *data, *vaddr;
2675 int err;
2676
2677 len = PAGE_SIZE - pg;
2678 if (len > remain)
2679 len = remain;
2680
2681 err = pagecache_write_begin(obj->base.filp, mapping,
2682 offset, len, 0,
2683 &page, &data);
2684 if (err < 0)
2685 return err;
2686
2687 vaddr = kmap(page);
2688 unwritten = copy_from_user(vaddr + pg, user_data, len);
2689 kunmap(page);
2690
2691 err = pagecache_write_end(obj->base.filp, mapping,
2692 offset, len, len - unwritten,
2693 page, data);
2694 if (err < 0)
2695 return err;
2696
2697 if (unwritten)
2698 return -EFAULT;
2699
2700 remain -= len;
2701 user_data += len;
2702 offset += len;
2703 pg = 0;
2704 } while (remain);
2705
2706 return 0;
2707}
2708
77b25a97
CW
2709static bool ban_context(const struct i915_gem_context *ctx,
2710 unsigned int score)
be62acb4 2711{
6095868a 2712 return (i915_gem_context_is_bannable(ctx) &&
77b25a97 2713 score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2714}
2715
e5e1fc47 2716static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2717{
77b25a97
CW
2718 unsigned int score;
2719 bool banned;
b083a087 2720
77b25a97 2721 atomic_inc(&ctx->guilty_count);
b083a087 2722
77b25a97
CW
2723 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2724 banned = ban_context(ctx, score);
2725 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2726 ctx->name, score, yesno(banned));
2727 if (!banned)
b083a087
MK
2728 return;
2729
77b25a97
CW
2730 i915_gem_context_set_banned(ctx);
2731 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2732 atomic_inc(&ctx->file_priv->context_bans);
2733 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2734 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2735 }
e5e1fc47
MK
2736}
2737
2738static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2739{
77b25a97 2740 atomic_inc(&ctx->active_count);
aa60c664
MK
2741}
2742
8d9fc7fd 2743struct drm_i915_gem_request *
0bc40be8 2744i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2745{
754c9fd5
CW
2746 struct drm_i915_gem_request *request, *active = NULL;
2747 unsigned long flags;
4db080f9 2748
f69a02c9
CW
2749 /* We are called by the error capture and reset at a random
2750 * point in time. In particular, note that neither is crucially
2751 * ordered with an interrupt. After a hang, the GPU is dead and we
2752 * assume that no more writes can happen (we waited long enough for
2753 * all writes that were in transaction to be flushed) - adding an
2754 * extra delay for a recent interrupt is pointless. Hence, we do
2755 * not need an engine->irq_seqno_barrier() before the seqno reads.
2756 */
754c9fd5 2757 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2758 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2759 if (__i915_gem_request_completed(request,
2760 request->global_seqno))
4db080f9 2761 continue;
aa60c664 2762
36193acd 2763 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2764 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2765 &request->fence.flags));
754c9fd5
CW
2766
2767 active = request;
2768 break;
4db080f9 2769 }
754c9fd5 2770 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2771
754c9fd5 2772 return active;
b6b0fac0
MK
2773}
2774
bf2f0436
MK
2775static bool engine_stalled(struct intel_engine_cs *engine)
2776{
2777 if (!engine->hangcheck.stalled)
2778 return false;
2779
2780 /* Check for possible seqno movement after hang declaration */
2781 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2782 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2783 return false;
2784 }
2785
2786 return true;
2787}
2788
a1ef70e1
MT
2789/*
2790 * Ensure irq handler finishes, and not run again.
2791 * Also return the active request so that we only search for it once.
2792 */
2793struct drm_i915_gem_request *
2794i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2795{
2796 struct drm_i915_gem_request *request = NULL;
2797
2798 /* Prevent the signaler thread from updating the request
2799 * state (by calling dma_fence_signal) as we are processing
2800 * the reset. The write from the GPU of the seqno is
2801 * asynchronous and the signaler thread may see a different
2802 * value to us and declare the request complete, even though
2803 * the reset routine have picked that request as the active
2804 * (incomplete) request. This conflict is not handled
2805 * gracefully!
2806 */
2807 kthread_park(engine->breadcrumbs.signaler);
2808
2809 /* Prevent request submission to the hardware until we have
2810 * completed the reset in i915_gem_reset_finish(). If a request
2811 * is completed by one engine, it may then queue a request
2812 * to a second via its engine->irq_tasklet *just* as we are
2813 * calling engine->init_hw() and also writing the ELSP.
2814 * Turning off the engine->irq_tasklet until the reset is over
2815 * prevents the race.
2816 */
2817 tasklet_kill(&engine->irq_tasklet);
2818 tasklet_disable(&engine->irq_tasklet);
2819
2820 if (engine->irq_seqno_barrier)
2821 engine->irq_seqno_barrier(engine);
2822
d1d1ebf4
CW
2823 request = i915_gem_find_active_request(engine);
2824 if (request && request->fence.error == -EIO)
2825 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
2826
2827 return request;
2828}
2829
0e178aef 2830int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2831{
2832 struct intel_engine_cs *engine;
a1ef70e1 2833 struct drm_i915_gem_request *request;
4c965543 2834 enum intel_engine_id id;
0e178aef 2835 int err = 0;
4c965543 2836
0e178aef 2837 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
2838 request = i915_gem_reset_prepare_engine(engine);
2839 if (IS_ERR(request)) {
2840 err = PTR_ERR(request);
2841 continue;
0e178aef 2842 }
c64992e0
MT
2843
2844 engine->hangcheck.active_request = request;
0e178aef
CW
2845 }
2846
4c965543 2847 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2848
2849 return err;
4c965543
CW
2850}
2851
36193acd 2852static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2853{
2854 void *vaddr = request->ring->vaddr;
2855 u32 head;
2856
2857 /* As this request likely depends on state from the lost
2858 * context, clear out all the user operations leaving the
2859 * breadcrumb at the end (so we get the fence notifications).
2860 */
2861 head = request->head;
2862 if (request->postfix < head) {
2863 memset(vaddr + head, 0, request->ring->size - head);
2864 head = 0;
2865 }
2866 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2867
2868 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2869}
2870
36193acd
MK
2871static void engine_skip_context(struct drm_i915_gem_request *request)
2872{
2873 struct intel_engine_cs *engine = request->engine;
2874 struct i915_gem_context *hung_ctx = request->ctx;
2875 struct intel_timeline *timeline;
2876 unsigned long flags;
2877
2878 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2879
2880 spin_lock_irqsave(&engine->timeline->lock, flags);
2881 spin_lock(&timeline->lock);
2882
2883 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2884 if (request->ctx == hung_ctx)
2885 skip_request(request);
2886
2887 list_for_each_entry(request, &timeline->requests, link)
2888 skip_request(request);
2889
2890 spin_unlock(&timeline->lock);
2891 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2892}
2893
d1d1ebf4
CW
2894/* Returns the request if it was guilty of the hang */
2895static struct drm_i915_gem_request *
2896i915_gem_reset_request(struct intel_engine_cs *engine,
2897 struct drm_i915_gem_request *request)
61da5362 2898{
71895a08
MK
2899 /* The guilty request will get skipped on a hung engine.
2900 *
2901 * Users of client default contexts do not rely on logical
2902 * state preserved between batches so it is safe to execute
2903 * queued requests following the hang. Non default contexts
2904 * rely on preserved state, so skipping a batch loses the
2905 * evolution of the state and it needs to be considered corrupted.
2906 * Executing more queued batches on top of corrupted state is
2907 * risky. But we take the risk by trying to advance through
2908 * the queued requests in order to make the client behaviour
2909 * more predictable around resets, by not throwing away random
2910 * amount of batches it has prepared for execution. Sophisticated
2911 * clients can use gem_reset_stats_ioctl and dma fence status
2912 * (exported via sync_file info ioctl on explicit fences) to observe
2913 * when it loses the context state and should rebuild accordingly.
2914 *
2915 * The context ban, and ultimately the client ban, mechanism are safety
2916 * valves if client submission ends up resulting in nothing more than
2917 * subsequent hangs.
2918 */
2919
d1d1ebf4 2920 if (engine_stalled(engine)) {
61da5362
MK
2921 i915_gem_context_mark_guilty(request->ctx);
2922 skip_request(request);
d1d1ebf4
CW
2923
2924 /* If this context is now banned, skip all pending requests. */
2925 if (i915_gem_context_is_banned(request->ctx))
2926 engine_skip_context(request);
61da5362 2927 } else {
d1d1ebf4
CW
2928 /*
2929 * Since this is not the hung engine, it may have advanced
2930 * since the hang declaration. Double check by refinding
2931 * the active request at the time of the reset.
2932 */
2933 request = i915_gem_find_active_request(engine);
2934 if (request) {
2935 i915_gem_context_mark_innocent(request->ctx);
2936 dma_fence_set_error(&request->fence, -EAGAIN);
2937
2938 /* Rewind the engine to replay the incomplete rq */
2939 spin_lock_irq(&engine->timeline->lock);
2940 request = list_prev_entry(request, link);
2941 if (&request->link == &engine->timeline->requests)
2942 request = NULL;
2943 spin_unlock_irq(&engine->timeline->lock);
2944 }
61da5362
MK
2945 }
2946
d1d1ebf4 2947 return request;
61da5362
MK
2948}
2949
a1ef70e1
MT
2950void i915_gem_reset_engine(struct intel_engine_cs *engine,
2951 struct drm_i915_gem_request *request)
b6b0fac0 2952{
ed454f2c
CW
2953 engine->irq_posted = 0;
2954
d1d1ebf4
CW
2955 if (request)
2956 request = i915_gem_reset_request(engine, request);
2957
2958 if (request) {
c0dcb203
CW
2959 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2960 engine->name, request->global_seqno);
c0dcb203 2961 }
821ed7df
CW
2962
2963 /* Setup the CS to resume from the breadcrumb of the hung request */
2964 engine->reset_hw(engine, request);
4db080f9 2965}
aa60c664 2966
d8027093 2967void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2968{
821ed7df 2969 struct intel_engine_cs *engine;
3b3f1650 2970 enum intel_engine_id id;
608c1a52 2971
4c7d62c6
CW
2972 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2973
821ed7df
CW
2974 i915_gem_retire_requests(dev_priv);
2975
2ae55738
CW
2976 for_each_engine(engine, dev_priv, id) {
2977 struct i915_gem_context *ctx;
2978
c64992e0 2979 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2ae55738
CW
2980 ctx = fetch_and_zero(&engine->last_retired_context);
2981 if (ctx)
2982 engine->context_unpin(engine, ctx);
2983 }
821ed7df 2984
4362f4f6 2985 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2986
2987 if (dev_priv->gt.awake) {
2988 intel_sanitize_gt_powersave(dev_priv);
2989 intel_enable_gt_powersave(dev_priv);
2990 if (INTEL_GEN(dev_priv) >= 6)
2991 gen6_rps_busy(dev_priv);
2992 }
821ed7df
CW
2993}
2994
a1ef70e1
MT
2995void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2996{
2997 tasklet_enable(&engine->irq_tasklet);
2998 kthread_unpark(engine->breadcrumbs.signaler);
2999}
3000
d8027093
CW
3001void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3002{
1f7b847d
CW
3003 struct intel_engine_cs *engine;
3004 enum intel_engine_id id;
3005
d8027093 3006 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3007
fe3288b5 3008 for_each_engine(engine, dev_priv, id) {
c64992e0 3009 engine->hangcheck.active_request = NULL;
a1ef70e1 3010 i915_gem_reset_finish_engine(engine);
fe3288b5 3011 }
d8027093
CW
3012}
3013
821ed7df
CW
3014static void nop_submit_request(struct drm_i915_gem_request *request)
3015{
bf2eac3b 3016 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3cd9442f 3017 dma_fence_set_error(&request->fence, -EIO);
3dcf93f7
CW
3018 i915_gem_request_submit(request);
3019 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
3020}
3021
2a20d6f8 3022static void engine_set_wedged(struct intel_engine_cs *engine)
821ed7df 3023{
3cd9442f
CW
3024 struct drm_i915_gem_request *request;
3025 unsigned long flags;
3026
20e4933c
CW
3027 /* We need to be sure that no thread is running the old callback as
3028 * we install the nop handler (otherwise we would submit a request
3029 * to hardware that will never complete). In order to prevent this
3030 * race, we wait until the machine is idle before making the swap
3031 * (using stop_machine()).
3032 */
821ed7df 3033 engine->submit_request = nop_submit_request;
70c2a24d 3034
3cd9442f
CW
3035 /* Mark all executing requests as skipped */
3036 spin_lock_irqsave(&engine->timeline->lock, flags);
3037 list_for_each_entry(request, &engine->timeline->requests, link)
36703e79
CW
3038 if (!i915_gem_request_completed(request))
3039 dma_fence_set_error(&request->fence, -EIO);
3cd9442f
CW
3040 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3041
dcb4c12a
OM
3042 /*
3043 * Clear the execlists queue up before freeing the requests, as those
3044 * are the ones that keep the context and ringbuffer backing objects
3045 * pinned in place.
3046 */
dcb4c12a 3047
7de1691a 3048 if (i915.enable_execlists) {
77f0d0e9 3049 struct execlist_port *port = engine->execlist_port;
663f71e7 3050 unsigned long flags;
77f0d0e9 3051 unsigned int n;
663f71e7
CW
3052
3053 spin_lock_irqsave(&engine->timeline->lock, flags);
3054
77f0d0e9
CW
3055 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3056 i915_gem_request_put(port_request(&port[n]));
70c2a24d 3057 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
3058 engine->execlist_queue = RB_ROOT;
3059 engine->execlist_first = NULL;
663f71e7
CW
3060
3061 spin_unlock_irqrestore(&engine->timeline->lock, flags);
4ee056f4
CW
3062
3063 /* The port is checked prior to scheduling a tasklet, but
3064 * just in case we have suspended the tasklet to do the
3065 * wedging make sure that when it wakes, it decides there
3066 * is no work to do by clearing the irq_posted bit.
3067 */
3068 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
dcb4c12a 3069 }
5e32d748
CW
3070
3071 /* Mark all pending requests as complete so that any concurrent
3072 * (lockless) lookup doesn't try and wait upon the request as we
3073 * reset it.
3074 */
3075 intel_engine_init_global_seqno(engine,
3076 intel_engine_last_submit(engine));
673a394b
EA
3077}
3078
20e4933c 3079static int __i915_gem_set_wedged_BKL(void *data)
673a394b 3080{
20e4933c 3081 struct drm_i915_private *i915 = data;
e2f80391 3082 struct intel_engine_cs *engine;
3b3f1650 3083 enum intel_engine_id id;
673a394b 3084
20e4933c 3085 for_each_engine(engine, i915, id)
2a20d6f8 3086 engine_set_wedged(engine);
20e4933c 3087
3d7adbbf
CW
3088 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3089 wake_up_all(&i915->gpu_error.reset_queue);
3090
20e4933c
CW
3091 return 0;
3092}
3093
3094void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3095{
20e4933c 3096 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
673a394b
EA
3097}
3098
2e8f9d32
CW
3099bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3100{
3101 struct i915_gem_timeline *tl;
3102 int i;
3103
3104 lockdep_assert_held(&i915->drm.struct_mutex);
3105 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3106 return true;
3107
3108 /* Before unwedging, make sure that all pending operations
3109 * are flushed and errored out - we may have requests waiting upon
3110 * third party fences. We marked all inflight requests as EIO, and
3111 * every execbuf since returned EIO, for consistency we want all
3112 * the currently pending requests to also be marked as EIO, which
3113 * is done inside our nop_submit_request - and so we must wait.
3114 *
3115 * No more can be submitted until we reset the wedged bit.
3116 */
3117 list_for_each_entry(tl, &i915->gt.timelines, link) {
3118 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3119 struct drm_i915_gem_request *rq;
3120
3121 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3122 &i915->drm.struct_mutex);
3123 if (!rq)
3124 continue;
3125
3126 /* We can't use our normal waiter as we want to
3127 * avoid recursively trying to handle the current
3128 * reset. The basic dma_fence_default_wait() installs
3129 * a callback for dma_fence_signal(), which is
3130 * triggered by our nop handler (indirectly, the
3131 * callback enables the signaler thread which is
3132 * woken by the nop_submit_request() advancing the seqno
3133 * and when the seqno passes the fence, the signaler
3134 * then signals the fence waking us up).
3135 */
3136 if (dma_fence_default_wait(&rq->fence, true,
3137 MAX_SCHEDULE_TIMEOUT) < 0)
3138 return false;
3139 }
3140 }
3141
3142 /* Undo nop_submit_request. We prevent all new i915 requests from
3143 * being queued (by disallowing execbuf whilst wedged) so having
3144 * waited for all active requests above, we know the system is idle
3145 * and do not have to worry about a thread being inside
3146 * engine->submit_request() as we swap over. So unlike installing
3147 * the nop_submit_request on reset, we can do this from normal
3148 * context and do not require stop_machine().
3149 */
3150 intel_engines_reset_default_submission(i915);
36703e79 3151 i915_gem_contexts_lost(i915);
2e8f9d32
CW
3152
3153 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3154 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3155
3156 return true;
3157}
3158
75ef9da2 3159static void
673a394b
EA
3160i915_gem_retire_work_handler(struct work_struct *work)
3161{
b29c19b6 3162 struct drm_i915_private *dev_priv =
67d97da3 3163 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3164 struct drm_device *dev = &dev_priv->drm;
673a394b 3165
891b48cf 3166 /* Come back later if the device is busy... */
b29c19b6 3167 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3168 i915_gem_retire_requests(dev_priv);
b29c19b6 3169 mutex_unlock(&dev->struct_mutex);
673a394b 3170 }
67d97da3
CW
3171
3172 /* Keep the retire handler running until we are finally idle.
3173 * We do not need to do this test under locking as in the worst-case
3174 * we queue the retire worker once too often.
3175 */
c9615613
CW
3176 if (READ_ONCE(dev_priv->gt.awake)) {
3177 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3178 queue_delayed_work(dev_priv->wq,
3179 &dev_priv->gt.retire_work,
bcb45086 3180 round_jiffies_up_relative(HZ));
c9615613 3181 }
b29c19b6 3182}
0a58705b 3183
b29c19b6
CW
3184static void
3185i915_gem_idle_work_handler(struct work_struct *work)
3186{
3187 struct drm_i915_private *dev_priv =
67d97da3 3188 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3189 struct drm_device *dev = &dev_priv->drm;
67d97da3
CW
3190 bool rearm_hangcheck;
3191
3192 if (!READ_ONCE(dev_priv->gt.awake))
3193 return;
3194
0cb5670b
ID
3195 /*
3196 * Wait for last execlists context complete, but bail out in case a
3197 * new request is submitted.
3198 */
8490ae20 3199 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3200 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3201 return;
3202
3203 rearm_hangcheck =
3204 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3205
3206 if (!mutex_trylock(&dev->struct_mutex)) {
3207 /* Currently busy, come back later */
3208 mod_delayed_work(dev_priv->wq,
3209 &dev_priv->gt.idle_work,
3210 msecs_to_jiffies(50));
3211 goto out_rearm;
3212 }
3213
93c97dc1
ID
3214 /*
3215 * New request retired after this work handler started, extend active
3216 * period until next instance of the work.
3217 */
3218 if (work_pending(work))
3219 goto out_unlock;
3220
28176ef4 3221 if (dev_priv->gt.active_requests)
67d97da3 3222 goto out_unlock;
b29c19b6 3223
05425249 3224 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3225 DRM_ERROR("Timeout waiting for engines to idle\n");
3226
6c067579 3227 intel_engines_mark_idle(dev_priv);
47979480 3228 i915_gem_timelines_mark_idle(dev_priv);
35c94185 3229
67d97da3
CW
3230 GEM_BUG_ON(!dev_priv->gt.awake);
3231 dev_priv->gt.awake = false;
3232 rearm_hangcheck = false;
30ecad77 3233
67d97da3
CW
3234 if (INTEL_GEN(dev_priv) >= 6)
3235 gen6_rps_idle(dev_priv);
3236 intel_runtime_pm_put(dev_priv);
3237out_unlock:
3238 mutex_unlock(&dev->struct_mutex);
b29c19b6 3239
67d97da3
CW
3240out_rearm:
3241 if (rearm_hangcheck) {
3242 GEM_BUG_ON(!dev_priv->gt.awake);
3243 i915_queue_hangcheck(dev_priv);
35c94185 3244 }
673a394b
EA
3245}
3246
b1f788c6
CW
3247void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3248{
d1b48c1e 3249 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3250 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3251 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3252 struct i915_lut_handle *lut, *ln;
b1f788c6 3253
d1b48c1e
CW
3254 mutex_lock(&i915->drm.struct_mutex);
3255
3256 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3257 struct i915_gem_context *ctx = lut->ctx;
3258 struct i915_vma *vma;
3259
3260 if (ctx->file_priv != fpriv)
3261 continue;
3262
3263 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3264
fa3722f6
CW
3265 GEM_BUG_ON(vma->obj != obj);
3266
3267 /* We allow the process to have multiple handles to the same
3268 * vma, in the same fd namespace, by virtue of flink/open.
3269 */
3270 GEM_BUG_ON(!vma->open_count);
3271 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3272 i915_vma_close(vma);
f8a7fde4 3273
d1b48c1e
CW
3274 list_del(&lut->obj_link);
3275 list_del(&lut->ctx_link);
4ff4b44c 3276
d1b48c1e
CW
3277 kmem_cache_free(i915->luts, lut);
3278 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3279 }
d1b48c1e
CW
3280
3281 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3282}
3283
e95433c7
CW
3284static unsigned long to_wait_timeout(s64 timeout_ns)
3285{
3286 if (timeout_ns < 0)
3287 return MAX_SCHEDULE_TIMEOUT;
3288
3289 if (timeout_ns == 0)
3290 return 0;
3291
3292 return nsecs_to_jiffies_timeout(timeout_ns);
3293}
3294
23ba4fd0
BW
3295/**
3296 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3297 * @dev: drm device pointer
3298 * @data: ioctl data blob
3299 * @file: drm file pointer
23ba4fd0
BW
3300 *
3301 * Returns 0 if successful, else an error is returned with the remaining time in
3302 * the timeout parameter.
3303 * -ETIME: object is still busy after timeout
3304 * -ERESTARTSYS: signal interrupted the wait
3305 * -ENONENT: object doesn't exist
3306 * Also possible, but rare:
b8050148 3307 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3308 * -ENOMEM: damn
3309 * -ENODEV: Internal IRQ fail
3310 * -E?: The add request failed
3311 *
3312 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3313 * non-zero timeout parameter the wait ioctl will wait for the given number of
3314 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3315 * without holding struct_mutex the object may become re-busied before this
3316 * function completes. A similar but shorter * race condition exists in the busy
3317 * ioctl
3318 */
3319int
3320i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3321{
3322 struct drm_i915_gem_wait *args = data;
3323 struct drm_i915_gem_object *obj;
e95433c7
CW
3324 ktime_t start;
3325 long ret;
23ba4fd0 3326
11b5d511
DV
3327 if (args->flags != 0)
3328 return -EINVAL;
3329
03ac0642 3330 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3331 if (!obj)
23ba4fd0 3332 return -ENOENT;
23ba4fd0 3333
e95433c7
CW
3334 start = ktime_get();
3335
3336 ret = i915_gem_object_wait(obj,
3337 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3338 to_wait_timeout(args->timeout_ns),
3339 to_rps_client(file));
3340
3341 if (args->timeout_ns > 0) {
3342 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3343 if (args->timeout_ns < 0)
3344 args->timeout_ns = 0;
c1d2061b
CW
3345
3346 /*
3347 * Apparently ktime isn't accurate enough and occasionally has a
3348 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3349 * things up to make the test happy. We allow up to 1 jiffy.
3350 *
3351 * This is a regression from the timespec->ktime conversion.
3352 */
3353 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3354 args->timeout_ns = 0;
b8050148
CW
3355
3356 /* Asked to wait beyond the jiffie/scheduler precision? */
3357 if (ret == -ETIME && args->timeout_ns)
3358 ret = -EAGAIN;
b4716185
CW
3359 }
3360
f0cd5182 3361 i915_gem_object_put(obj);
ff865885 3362 return ret;
23ba4fd0
BW
3363}
3364
73cb9701 3365static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3366{
73cb9701 3367 int ret, i;
4df2faf4 3368
73cb9701
CW
3369 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3370 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3371 if (ret)
3372 return ret;
3373 }
62e63007 3374
73cb9701
CW
3375 return 0;
3376}
3377
25112b64
CW
3378static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3379{
3380 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3381}
3382
3383static int wait_for_engines(struct drm_i915_private *i915)
3384{
3385 struct intel_engine_cs *engine;
3386 enum intel_engine_id id;
3387
3388 for_each_engine(engine, i915, id) {
3389 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3390 i915_gem_set_wedged(i915);
3391 return -EIO;
3392 }
3393
3394 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3395 intel_engine_last_submit(engine));
3396 }
3397
3398 return 0;
3399}
3400
73cb9701
CW
3401int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3402{
73cb9701
CW
3403 int ret;
3404
863e9fde
CW
3405 /* If the device is asleep, we have no requests outstanding */
3406 if (!READ_ONCE(i915->gt.awake))
3407 return 0;
3408
9caa34aa
CW
3409 if (flags & I915_WAIT_LOCKED) {
3410 struct i915_gem_timeline *tl;
3411
3412 lockdep_assert_held(&i915->drm.struct_mutex);
3413
3414 list_for_each_entry(tl, &i915->gt.timelines, link) {
3415 ret = wait_for_timeline(tl, flags);
3416 if (ret)
3417 return ret;
3418 }
72022a70
CW
3419
3420 i915_gem_retire_requests(i915);
3421 GEM_BUG_ON(i915->gt.active_requests);
25112b64
CW
3422
3423 ret = wait_for_engines(i915);
9caa34aa
CW
3424 } else {
3425 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3 3426 }
4df2faf4 3427
25112b64 3428 return ret;
4df2faf4
DV
3429}
3430
5a97bcc6
CW
3431static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3432{
e27ab73d
CW
3433 /*
3434 * We manually flush the CPU domain so that we can override and
3435 * force the flush for the display, and perform it asyncrhonously.
3436 */
3437 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3438 if (obj->cache_dirty)
3439 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3440 obj->base.write_domain = 0;
3441}
3442
3443void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3444{
3445 if (!READ_ONCE(obj->pin_display))
3446 return;
3447
3448 mutex_lock(&obj->base.dev->struct_mutex);
3449 __i915_gem_object_flush_for_display(obj);
3450 mutex_unlock(&obj->base.dev->struct_mutex);
3451}
3452
e22d8e3c
CW
3453/**
3454 * Moves a single object to the WC read, and possibly write domain.
3455 * @obj: object to act on
3456 * @write: ask for write access or read only
3457 *
3458 * This function returns when the move is complete, including waiting on
3459 * flushes to occur.
3460 */
3461int
3462i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3463{
3464 int ret;
3465
3466 lockdep_assert_held(&obj->base.dev->struct_mutex);
3467
3468 ret = i915_gem_object_wait(obj,
3469 I915_WAIT_INTERRUPTIBLE |
3470 I915_WAIT_LOCKED |
3471 (write ? I915_WAIT_ALL : 0),
3472 MAX_SCHEDULE_TIMEOUT,
3473 NULL);
3474 if (ret)
3475 return ret;
3476
3477 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3478 return 0;
3479
3480 /* Flush and acquire obj->pages so that we are coherent through
3481 * direct access in memory with previous cached writes through
3482 * shmemfs and that our cache domain tracking remains valid.
3483 * For example, if the obj->filp was moved to swap without us
3484 * being notified and releasing the pages, we would mistakenly
3485 * continue to assume that the obj remained out of the CPU cached
3486 * domain.
3487 */
3488 ret = i915_gem_object_pin_pages(obj);
3489 if (ret)
3490 return ret;
3491
3492 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3493
3494 /* Serialise direct access to this object with the barriers for
3495 * coherent writes from the GPU, by effectively invalidating the
3496 * WC domain upon first access.
3497 */
3498 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3499 mb();
3500
3501 /* It should now be out of any other write domains, and we can update
3502 * the domain values for our changes.
3503 */
3504 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3505 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3506 if (write) {
3507 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3508 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3509 obj->mm.dirty = true;
3510 }
3511
3512 i915_gem_object_unpin_pages(obj);
3513 return 0;
3514}
3515
2ef7eeaa
EA
3516/**
3517 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3518 * @obj: object to act on
3519 * @write: ask for write access or read only
2ef7eeaa
EA
3520 *
3521 * This function returns when the move is complete, including waiting on
3522 * flushes to occur.
3523 */
79e53945 3524int
2021746e 3525i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3526{
e47c68e9 3527 int ret;
2ef7eeaa 3528
e95433c7 3529 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3530
e95433c7
CW
3531 ret = i915_gem_object_wait(obj,
3532 I915_WAIT_INTERRUPTIBLE |
3533 I915_WAIT_LOCKED |
3534 (write ? I915_WAIT_ALL : 0),
3535 MAX_SCHEDULE_TIMEOUT,
3536 NULL);
88241785
CW
3537 if (ret)
3538 return ret;
3539
c13d87ea
CW
3540 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3541 return 0;
3542
43566ded
CW
3543 /* Flush and acquire obj->pages so that we are coherent through
3544 * direct access in memory with previous cached writes through
3545 * shmemfs and that our cache domain tracking remains valid.
3546 * For example, if the obj->filp was moved to swap without us
3547 * being notified and releasing the pages, we would mistakenly
3548 * continue to assume that the obj remained out of the CPU cached
3549 * domain.
3550 */
a4f5ea64 3551 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3552 if (ret)
3553 return ret;
3554
ef74921b 3555 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3556
d0a57789
CW
3557 /* Serialise direct access to this object with the barriers for
3558 * coherent writes from the GPU, by effectively invalidating the
3559 * GTT domain upon first access.
3560 */
3561 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3562 mb();
3563
e47c68e9
EA
3564 /* It should now be out of any other write domains, and we can update
3565 * the domain values for our changes.
3566 */
40e62d5d 3567 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3568 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3569 if (write) {
05394f39
CW
3570 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3571 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3572 obj->mm.dirty = true;
2ef7eeaa
EA
3573 }
3574
a4f5ea64 3575 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3576 return 0;
3577}
3578
ef55f92a
CW
3579/**
3580 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3581 * @obj: object to act on
3582 * @cache_level: new cache level to set for the object
ef55f92a
CW
3583 *
3584 * After this function returns, the object will be in the new cache-level
3585 * across all GTT and the contents of the backing storage will be coherent,
3586 * with respect to the new cache-level. In order to keep the backing storage
3587 * coherent for all users, we only allow a single cache level to be set
3588 * globally on the object and prevent it from being changed whilst the
3589 * hardware is reading from the object. That is if the object is currently
3590 * on the scanout it will be set to uncached (or equivalent display
3591 * cache coherency) and all non-MOCS GPU access will also be uncached so
3592 * that all direct access to the scanout remains coherent.
3593 */
e4ffd173
CW
3594int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3595 enum i915_cache_level cache_level)
3596{
aa653a68 3597 struct i915_vma *vma;
a6a7cc4b 3598 int ret;
e4ffd173 3599
4c7d62c6
CW
3600 lockdep_assert_held(&obj->base.dev->struct_mutex);
3601
e4ffd173 3602 if (obj->cache_level == cache_level)
a6a7cc4b 3603 return 0;
e4ffd173 3604
ef55f92a
CW
3605 /* Inspect the list of currently bound VMA and unbind any that would
3606 * be invalid given the new cache-level. This is principally to
3607 * catch the issue of the CS prefetch crossing page boundaries and
3608 * reading an invalid PTE on older architectures.
3609 */
aa653a68
CW
3610restart:
3611 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3612 if (!drm_mm_node_allocated(&vma->node))
3613 continue;
3614
20dfbde4 3615 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3616 DRM_DEBUG("can not change the cache level of pinned objects\n");
3617 return -EBUSY;
3618 }
3619
aa653a68
CW
3620 if (i915_gem_valid_gtt_space(vma, cache_level))
3621 continue;
3622
3623 ret = i915_vma_unbind(vma);
3624 if (ret)
3625 return ret;
3626
3627 /* As unbinding may affect other elements in the
3628 * obj->vma_list (due to side-effects from retiring
3629 * an active vma), play safe and restart the iterator.
3630 */
3631 goto restart;
42d6ab48
CW
3632 }
3633
ef55f92a
CW
3634 /* We can reuse the existing drm_mm nodes but need to change the
3635 * cache-level on the PTE. We could simply unbind them all and
3636 * rebind with the correct cache-level on next use. However since
3637 * we already have a valid slot, dma mapping, pages etc, we may as
3638 * rewrite the PTE in the belief that doing so tramples upon less
3639 * state and so involves less work.
3640 */
15717de2 3641 if (obj->bind_count) {
ef55f92a
CW
3642 /* Before we change the PTE, the GPU must not be accessing it.
3643 * If we wait upon the object, we know that all the bound
3644 * VMA are no longer active.
3645 */
e95433c7
CW
3646 ret = i915_gem_object_wait(obj,
3647 I915_WAIT_INTERRUPTIBLE |
3648 I915_WAIT_LOCKED |
3649 I915_WAIT_ALL,
3650 MAX_SCHEDULE_TIMEOUT,
3651 NULL);
e4ffd173
CW
3652 if (ret)
3653 return ret;
3654
0031fb96
TU
3655 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3656 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3657 /* Access to snoopable pages through the GTT is
3658 * incoherent and on some machines causes a hard
3659 * lockup. Relinquish the CPU mmaping to force
3660 * userspace to refault in the pages and we can
3661 * then double check if the GTT mapping is still
3662 * valid for that pointer access.
3663 */
3664 i915_gem_release_mmap(obj);
3665
3666 /* As we no longer need a fence for GTT access,
3667 * we can relinquish it now (and so prevent having
3668 * to steal a fence from someone else on the next
3669 * fence request). Note GPU activity would have
3670 * dropped the fence as all snoopable access is
3671 * supposed to be linear.
3672 */
49ef5294
CW
3673 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3674 ret = i915_vma_put_fence(vma);
3675 if (ret)
3676 return ret;
3677 }
ef55f92a
CW
3678 } else {
3679 /* We either have incoherent backing store and
3680 * so no GTT access or the architecture is fully
3681 * coherent. In such cases, existing GTT mmaps
3682 * ignore the cache bit in the PTE and we can
3683 * rewrite it without confusing the GPU or having
3684 * to force userspace to fault back in its mmaps.
3685 */
e4ffd173
CW
3686 }
3687
1c7f4bca 3688 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3689 if (!drm_mm_node_allocated(&vma->node))
3690 continue;
3691
3692 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3693 if (ret)
3694 return ret;
3695 }
e4ffd173
CW
3696 }
3697
1c7f4bca 3698 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 3699 vma->node.color = cache_level;
b8f55be6 3700 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 3701 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 3702
e4ffd173
CW
3703 return 0;
3704}
3705
199adf40
BW
3706int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3707 struct drm_file *file)
e6994aee 3708{
199adf40 3709 struct drm_i915_gem_caching *args = data;
e6994aee 3710 struct drm_i915_gem_object *obj;
fbbd37b3 3711 int err = 0;
e6994aee 3712
fbbd37b3
CW
3713 rcu_read_lock();
3714 obj = i915_gem_object_lookup_rcu(file, args->handle);
3715 if (!obj) {
3716 err = -ENOENT;
3717 goto out;
3718 }
e6994aee 3719
651d794f
CW
3720 switch (obj->cache_level) {
3721 case I915_CACHE_LLC:
3722 case I915_CACHE_L3_LLC:
3723 args->caching = I915_CACHING_CACHED;
3724 break;
3725
4257d3ba
CW
3726 case I915_CACHE_WT:
3727 args->caching = I915_CACHING_DISPLAY;
3728 break;
3729
651d794f
CW
3730 default:
3731 args->caching = I915_CACHING_NONE;
3732 break;
3733 }
fbbd37b3
CW
3734out:
3735 rcu_read_unlock();
3736 return err;
e6994aee
CW
3737}
3738
199adf40
BW
3739int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3740 struct drm_file *file)
e6994aee 3741{
9c870d03 3742 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3743 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3744 struct drm_i915_gem_object *obj;
3745 enum i915_cache_level level;
d65415df 3746 int ret = 0;
e6994aee 3747
199adf40
BW
3748 switch (args->caching) {
3749 case I915_CACHING_NONE:
e6994aee
CW
3750 level = I915_CACHE_NONE;
3751 break;
199adf40 3752 case I915_CACHING_CACHED:
e5756c10
ID
3753 /*
3754 * Due to a HW issue on BXT A stepping, GPU stores via a
3755 * snooped mapping may leave stale data in a corresponding CPU
3756 * cacheline, whereas normally such cachelines would get
3757 * invalidated.
3758 */
9c870d03 3759 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3760 return -ENODEV;
3761
e6994aee
CW
3762 level = I915_CACHE_LLC;
3763 break;
4257d3ba 3764 case I915_CACHING_DISPLAY:
9c870d03 3765 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3766 break;
e6994aee
CW
3767 default:
3768 return -EINVAL;
3769 }
3770
d65415df
CW
3771 obj = i915_gem_object_lookup(file, args->handle);
3772 if (!obj)
3773 return -ENOENT;
3774
3775 if (obj->cache_level == level)
3776 goto out;
3777
3778 ret = i915_gem_object_wait(obj,
3779 I915_WAIT_INTERRUPTIBLE,
3780 MAX_SCHEDULE_TIMEOUT,
3781 to_rps_client(file));
3bc2913e 3782 if (ret)
d65415df 3783 goto out;
3bc2913e 3784
d65415df
CW
3785 ret = i915_mutex_lock_interruptible(dev);
3786 if (ret)
3787 goto out;
e6994aee
CW
3788
3789 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3790 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3791
3792out:
3793 i915_gem_object_put(obj);
e6994aee
CW
3794 return ret;
3795}
3796
b9241ea3 3797/*
2da3b9b9
CW
3798 * Prepare buffer for display plane (scanout, cursors, etc).
3799 * Can be called from an uninterruptible phase (modesetting) and allows
3800 * any flushes to be pipelined (for pageflips).
b9241ea3 3801 */
058d88c4 3802struct i915_vma *
2da3b9b9
CW
3803i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3804 u32 alignment,
e6617330 3805 const struct i915_ggtt_view *view)
b9241ea3 3806{
058d88c4 3807 struct i915_vma *vma;
b9241ea3
ZW
3808 int ret;
3809
4c7d62c6
CW
3810 lockdep_assert_held(&obj->base.dev->struct_mutex);
3811
cc98b413
CW
3812 /* Mark the pin_display early so that we account for the
3813 * display coherency whilst setting up the cache domains.
3814 */
8a0c39b1 3815 obj->pin_display++;
cc98b413 3816
a7ef0640
EA
3817 /* The display engine is not coherent with the LLC cache on gen6. As
3818 * a result, we make sure that the pinning that is about to occur is
3819 * done with uncached PTEs. This is lowest common denominator for all
3820 * chipsets.
3821 *
3822 * However for gen6+, we could do better by using the GFDT bit instead
3823 * of uncaching, which would allow us to flush all the LLC-cached data
3824 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3825 */
651d794f 3826 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3827 HAS_WT(to_i915(obj->base.dev)) ?
3828 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3829 if (ret) {
3830 vma = ERR_PTR(ret);
cc98b413 3831 goto err_unpin_display;
058d88c4 3832 }
a7ef0640 3833
2da3b9b9
CW
3834 /* As the user may map the buffer once pinned in the display plane
3835 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3836 * always use map_and_fenceable for all scanout buffers. However,
3837 * it may simply be too big to fit into mappable, in which case
3838 * put it anyway and hope that userspace can cope (but always first
3839 * try to preserve the existing ABI).
2da3b9b9 3840 */
2efb813d 3841 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3842 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3843 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3844 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3845 if (IS_ERR(vma)) {
3846 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3847 unsigned int flags;
3848
3849 /* Valleyview is definitely limited to scanning out the first
3850 * 512MiB. Lets presume this behaviour was inherited from the
3851 * g4x display engine and that all earlier gen are similarly
3852 * limited. Testing suggests that it is a little more
3853 * complicated than this. For example, Cherryview appears quite
3854 * happy to scanout from anywhere within its global aperture.
3855 */
3856 flags = 0;
3857 if (HAS_GMCH_DISPLAY(i915))
3858 flags = PIN_MAPPABLE;
3859 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3860 }
058d88c4 3861 if (IS_ERR(vma))
cc98b413 3862 goto err_unpin_display;
2da3b9b9 3863
d8923dcf
CW
3864 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3865
a6a7cc4b 3866 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3867 __i915_gem_object_flush_for_display(obj);
d59b21ec 3868 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3869
2da3b9b9
CW
3870 /* It should now be out of any other write domains, and we can update
3871 * the domain values for our changes.
3872 */
05394f39 3873 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3874
058d88c4 3875 return vma;
cc98b413
CW
3876
3877err_unpin_display:
8a0c39b1 3878 obj->pin_display--;
058d88c4 3879 return vma;
cc98b413
CW
3880}
3881
3882void
058d88c4 3883i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3884{
49d73912 3885 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3886
058d88c4 3887 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3888 return;
3889
d8923dcf 3890 if (--vma->obj->pin_display == 0)
f51455d4 3891 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3892
383d5823 3893 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3894 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3895
058d88c4 3896 i915_vma_unpin(vma);
b9241ea3
ZW
3897}
3898
e47c68e9
EA
3899/**
3900 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3901 * @obj: object to act on
3902 * @write: requesting write or read-only access
e47c68e9
EA
3903 *
3904 * This function returns when the move is complete, including waiting on
3905 * flushes to occur.
3906 */
dabdfe02 3907int
919926ae 3908i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3909{
e47c68e9
EA
3910 int ret;
3911
e95433c7 3912 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3913
e95433c7
CW
3914 ret = i915_gem_object_wait(obj,
3915 I915_WAIT_INTERRUPTIBLE |
3916 I915_WAIT_LOCKED |
3917 (write ? I915_WAIT_ALL : 0),
3918 MAX_SCHEDULE_TIMEOUT,
3919 NULL);
88241785
CW
3920 if (ret)
3921 return ret;
3922
ef74921b 3923 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 3924
e47c68e9 3925 /* Flush the CPU cache if it's still invalid. */
05394f39 3926 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 3927 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 3928 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3929 }
3930
3931 /* It should now be out of any other write domains, and we can update
3932 * the domain values for our changes.
3933 */
e27ab73d 3934 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3935
3936 /* If we're writing through the CPU, then the GPU read domains will
3937 * need to be invalidated at next use.
3938 */
e27ab73d
CW
3939 if (write)
3940 __start_cpu_write(obj);
2ef7eeaa
EA
3941
3942 return 0;
3943}
3944
673a394b
EA
3945/* Throttle our rendering by waiting until the ring has completed our requests
3946 * emitted over 20 msec ago.
3947 *
b962442e
EA
3948 * Note that if we were to use the current jiffies each time around the loop,
3949 * we wouldn't escape the function with any frames outstanding if the time to
3950 * render a frame was over 20ms.
3951 *
673a394b
EA
3952 * This should get us reasonable parallelism between CPU and GPU but also
3953 * relatively low latency when blocking on a particular request to finish.
3954 */
40a5f0de 3955static int
f787a5f5 3956i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3957{
fac5e23e 3958 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3959 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3960 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3961 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3962 long ret;
93533c29 3963
f4457ae7
CW
3964 /* ABI: return -EIO if already wedged */
3965 if (i915_terminally_wedged(&dev_priv->gpu_error))
3966 return -EIO;
e110e8d6 3967
1c25595f 3968 spin_lock(&file_priv->mm.lock);
c8659efa 3969 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
3970 if (time_after_eq(request->emitted_jiffies, recent_enough))
3971 break;
40a5f0de 3972
c8659efa
CW
3973 if (target) {
3974 list_del(&target->client_link);
3975 target->file_priv = NULL;
3976 }
fcfa423c 3977
54fb2411 3978 target = request;
b962442e 3979 }
ff865885 3980 if (target)
e8a261ea 3981 i915_gem_request_get(target);
1c25595f 3982 spin_unlock(&file_priv->mm.lock);
40a5f0de 3983
54fb2411 3984 if (target == NULL)
f787a5f5 3985 return 0;
2bc43b5c 3986
e95433c7
CW
3987 ret = i915_wait_request(target,
3988 I915_WAIT_INTERRUPTIBLE,
3989 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3990 i915_gem_request_put(target);
ff865885 3991
e95433c7 3992 return ret < 0 ? ret : 0;
40a5f0de
EA
3993}
3994
058d88c4 3995struct i915_vma *
ec7adb6e
JL
3996i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3997 const struct i915_ggtt_view *view,
91b2db6f 3998 u64 size,
2ffffd0f
CW
3999 u64 alignment,
4000 u64 flags)
ec7adb6e 4001{
ad16d2ed
CW
4002 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4003 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
4004 struct i915_vma *vma;
4005 int ret;
72e96d64 4006
4c7d62c6
CW
4007 lockdep_assert_held(&obj->base.dev->struct_mutex);
4008
718659a6 4009 vma = i915_vma_instance(obj, vm, view);
e0216b76 4010 if (unlikely(IS_ERR(vma)))
058d88c4 4011 return vma;
59bfa124
CW
4012
4013 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4014 if (flags & PIN_NONBLOCK &&
4015 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 4016 return ERR_PTR(-ENOSPC);
59bfa124 4017
ad16d2ed 4018 if (flags & PIN_MAPPABLE) {
ad16d2ed
CW
4019 /* If the required space is larger than the available
4020 * aperture, we will not able to find a slot for the
4021 * object and unbinding the object now will be in
4022 * vain. Worse, doing so may cause us to ping-pong
4023 * the object in and out of the Global GTT and
4024 * waste a lot of cycles under the mutex.
4025 */
944397f0 4026 if (vma->fence_size > dev_priv->ggtt.mappable_end)
ad16d2ed
CW
4027 return ERR_PTR(-E2BIG);
4028
4029 /* If NONBLOCK is set the caller is optimistically
4030 * trying to cache the full object within the mappable
4031 * aperture, and *must* have a fallback in place for
4032 * situations where we cannot bind the object. We
4033 * can be a little more lax here and use the fallback
4034 * more often to avoid costly migrations of ourselves
4035 * and other objects within the aperture.
4036 *
4037 * Half-the-aperture is used as a simple heuristic.
4038 * More interesting would to do search for a free
4039 * block prior to making the commitment to unbind.
4040 * That caters for the self-harm case, and with a
4041 * little more heuristics (e.g. NOFAULT, NOEVICT)
4042 * we could try to minimise harm to others.
4043 */
4044 if (flags & PIN_NONBLOCK &&
944397f0 4045 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4046 return ERR_PTR(-ENOSPC);
4047 }
4048
59bfa124
CW
4049 WARN(i915_vma_is_pinned(vma),
4050 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4051 " offset=%08x, req.alignment=%llx,"
4052 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4053 i915_ggtt_offset(vma), alignment,
59bfa124 4054 !!(flags & PIN_MAPPABLE),
05a20d09 4055 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4056 ret = i915_vma_unbind(vma);
4057 if (ret)
058d88c4 4058 return ERR_PTR(ret);
59bfa124
CW
4059 }
4060
058d88c4
CW
4061 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4062 if (ret)
4063 return ERR_PTR(ret);
ec7adb6e 4064
058d88c4 4065 return vma;
673a394b
EA
4066}
4067
edf6b76f 4068static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4069{
4070 /* Note that we could alias engines in the execbuf API, but
4071 * that would be very unwise as it prevents userspace from
4072 * fine control over engine selection. Ahem.
4073 *
4074 * This should be something like EXEC_MAX_ENGINE instead of
4075 * I915_NUM_ENGINES.
4076 */
4077 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4078 return 0x10000 << id;
4079}
4080
4081static __always_inline unsigned int __busy_write_id(unsigned int id)
4082{
70cb472c
CW
4083 /* The uABI guarantees an active writer is also amongst the read
4084 * engines. This would be true if we accessed the activity tracking
4085 * under the lock, but as we perform the lookup of the object and
4086 * its activity locklessly we can not guarantee that the last_write
4087 * being active implies that we have set the same engine flag from
4088 * last_read - hence we always set both read and write busy for
4089 * last_write.
4090 */
4091 return id | __busy_read_flag(id);
3fdc13c7
CW
4092}
4093
edf6b76f 4094static __always_inline unsigned int
d07f0e59 4095__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4096 unsigned int (*flag)(unsigned int id))
4097{
d07f0e59 4098 struct drm_i915_gem_request *rq;
3fdc13c7 4099
d07f0e59
CW
4100 /* We have to check the current hw status of the fence as the uABI
4101 * guarantees forward progress. We could rely on the idle worker
4102 * to eventually flush us, but to minimise latency just ask the
4103 * hardware.
1255501d 4104 *
d07f0e59 4105 * Note we only report on the status of native fences.
1255501d 4106 */
d07f0e59
CW
4107 if (!dma_fence_is_i915(fence))
4108 return 0;
4109
4110 /* opencode to_request() in order to avoid const warnings */
4111 rq = container_of(fence, struct drm_i915_gem_request, fence);
4112 if (i915_gem_request_completed(rq))
4113 return 0;
4114
1d39f281 4115 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4116}
4117
edf6b76f 4118static __always_inline unsigned int
d07f0e59 4119busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4120{
d07f0e59 4121 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4122}
4123
edf6b76f 4124static __always_inline unsigned int
d07f0e59 4125busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4126{
d07f0e59
CW
4127 if (!fence)
4128 return 0;
4129
4130 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4131}
4132
673a394b
EA
4133int
4134i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4135 struct drm_file *file)
673a394b
EA
4136{
4137 struct drm_i915_gem_busy *args = data;
05394f39 4138 struct drm_i915_gem_object *obj;
d07f0e59
CW
4139 struct reservation_object_list *list;
4140 unsigned int seq;
fbbd37b3 4141 int err;
673a394b 4142
d07f0e59 4143 err = -ENOENT;
fbbd37b3
CW
4144 rcu_read_lock();
4145 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4146 if (!obj)
fbbd37b3 4147 goto out;
d1b851fc 4148
d07f0e59
CW
4149 /* A discrepancy here is that we do not report the status of
4150 * non-i915 fences, i.e. even though we may report the object as idle,
4151 * a call to set-domain may still stall waiting for foreign rendering.
4152 * This also means that wait-ioctl may report an object as busy,
4153 * where busy-ioctl considers it idle.
4154 *
4155 * We trade the ability to warn of foreign fences to report on which
4156 * i915 engines are active for the object.
4157 *
4158 * Alternatively, we can trade that extra information on read/write
4159 * activity with
4160 * args->busy =
4161 * !reservation_object_test_signaled_rcu(obj->resv, true);
4162 * to report the overall busyness. This is what the wait-ioctl does.
4163 *
4164 */
4165retry:
4166 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4167
d07f0e59
CW
4168 /* Translate the exclusive fence to the READ *and* WRITE engine */
4169 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4170
d07f0e59
CW
4171 /* Translate shared fences to READ set of engines */
4172 list = rcu_dereference(obj->resv->fence);
4173 if (list) {
4174 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4175
d07f0e59
CW
4176 for (i = 0; i < shared_count; ++i) {
4177 struct dma_fence *fence =
4178 rcu_dereference(list->shared[i]);
4179
4180 args->busy |= busy_check_reader(fence);
4181 }
426960be 4182 }
673a394b 4183
d07f0e59
CW
4184 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4185 goto retry;
4186
4187 err = 0;
fbbd37b3
CW
4188out:
4189 rcu_read_unlock();
4190 return err;
673a394b
EA
4191}
4192
4193int
4194i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4195 struct drm_file *file_priv)
4196{
0206e353 4197 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4198}
4199
3ef94daa
CW
4200int
4201i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4202 struct drm_file *file_priv)
4203{
fac5e23e 4204 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4205 struct drm_i915_gem_madvise *args = data;
05394f39 4206 struct drm_i915_gem_object *obj;
1233e2db 4207 int err;
3ef94daa
CW
4208
4209 switch (args->madv) {
4210 case I915_MADV_DONTNEED:
4211 case I915_MADV_WILLNEED:
4212 break;
4213 default:
4214 return -EINVAL;
4215 }
4216
03ac0642 4217 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4218 if (!obj)
4219 return -ENOENT;
4220
4221 err = mutex_lock_interruptible(&obj->mm.lock);
4222 if (err)
4223 goto out;
3ef94daa 4224
a4f5ea64 4225 if (obj->mm.pages &&
3e510a8e 4226 i915_gem_object_is_tiled(obj) &&
656bfa3a 4227 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4228 if (obj->mm.madv == I915_MADV_WILLNEED) {
4229 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4230 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4231 obj->mm.quirked = false;
4232 }
4233 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4234 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4235 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4236 obj->mm.quirked = true;
4237 }
656bfa3a
DV
4238 }
4239
a4f5ea64
CW
4240 if (obj->mm.madv != __I915_MADV_PURGED)
4241 obj->mm.madv = args->madv;
3ef94daa 4242
6c085a72 4243 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4244 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4245 i915_gem_object_truncate(obj);
4246
a4f5ea64 4247 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4248 mutex_unlock(&obj->mm.lock);
bb6baf76 4249
1233e2db 4250out:
f8c417cd 4251 i915_gem_object_put(obj);
1233e2db 4252 return err;
3ef94daa
CW
4253}
4254
5b8c8aec
CW
4255static void
4256frontbuffer_retire(struct i915_gem_active *active,
4257 struct drm_i915_gem_request *request)
4258{
4259 struct drm_i915_gem_object *obj =
4260 container_of(active, typeof(*obj), frontbuffer_write);
4261
d59b21ec 4262 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4263}
4264
37e680a1
CW
4265void i915_gem_object_init(struct drm_i915_gem_object *obj,
4266 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4267{
1233e2db
CW
4268 mutex_init(&obj->mm.lock);
4269
56cea323 4270 INIT_LIST_HEAD(&obj->global_link);
275f039d 4271 INIT_LIST_HEAD(&obj->userfault_link);
2f633156 4272 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4273 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4274 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4275
37e680a1
CW
4276 obj->ops = ops;
4277
d07f0e59
CW
4278 reservation_object_init(&obj->__builtin_resv);
4279 obj->resv = &obj->__builtin_resv;
4280
50349247 4281 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4282 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4283
4284 obj->mm.madv = I915_MADV_WILLNEED;
4285 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4286 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4287
f19ec8cb 4288 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4289}
4290
37e680a1 4291static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4292 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4293 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4294
37e680a1
CW
4295 .get_pages = i915_gem_object_get_pages_gtt,
4296 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4297
4298 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4299};
4300
b4bcbe2a 4301struct drm_i915_gem_object *
12d79d78 4302i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4303{
c397b908 4304 struct drm_i915_gem_object *obj;
5949eac4 4305 struct address_space *mapping;
b8f55be6 4306 unsigned int cache_level;
1a240d4d 4307 gfp_t mask;
fe3db79b 4308 int ret;
ac52bc56 4309
b4bcbe2a
CW
4310 /* There is a prevalence of the assumption that we fit the object's
4311 * page count inside a 32bit _signed_ variable. Let's document this and
4312 * catch if we ever need to fix it. In the meantime, if you do spot
4313 * such a local variable, please consider fixing!
4314 */
7a3ee5de 4315 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4316 return ERR_PTR(-E2BIG);
4317
4318 if (overflows_type(size, obj->base.size))
4319 return ERR_PTR(-E2BIG);
4320
187685cb 4321 obj = i915_gem_object_alloc(dev_priv);
c397b908 4322 if (obj == NULL)
fe3db79b 4323 return ERR_PTR(-ENOMEM);
673a394b 4324
12d79d78 4325 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4326 if (ret)
4327 goto fail;
673a394b 4328
bed1ea95 4329 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4330 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4331 /* 965gm cannot relocate objects above 4GiB. */
4332 mask &= ~__GFP_HIGHMEM;
4333 mask |= __GFP_DMA32;
4334 }
4335
93c76a3d 4336 mapping = obj->base.filp->f_mapping;
bed1ea95 4337 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4338 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4339
37e680a1 4340 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4341
c397b908
DV
4342 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4343 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4344
b8f55be6 4345 if (HAS_LLC(dev_priv))
3d29b842 4346 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4347 * cache) for about a 10% performance improvement
4348 * compared to uncached. Graphics requests other than
4349 * display scanout are coherent with the CPU in
4350 * accessing this cache. This means in this mode we
4351 * don't need to clflush on the CPU side, and on the
4352 * GPU side we only need to flush internal caches to
4353 * get data visible to the CPU.
4354 *
4355 * However, we maintain the display planes as UC, and so
4356 * need to rebind when first used as such.
4357 */
b8f55be6
CW
4358 cache_level = I915_CACHE_LLC;
4359 else
4360 cache_level = I915_CACHE_NONE;
a1871112 4361
b8f55be6 4362 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4363
d861e338
DV
4364 trace_i915_gem_object_create(obj);
4365
05394f39 4366 return obj;
fe3db79b
CW
4367
4368fail:
4369 i915_gem_object_free(obj);
fe3db79b 4370 return ERR_PTR(ret);
c397b908
DV
4371}
4372
340fbd8c
CW
4373static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4374{
4375 /* If we are the last user of the backing storage (be it shmemfs
4376 * pages or stolen etc), we know that the pages are going to be
4377 * immediately released. In this case, we can then skip copying
4378 * back the contents from the GPU.
4379 */
4380
a4f5ea64 4381 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4382 return false;
4383
4384 if (obj->base.filp == NULL)
4385 return true;
4386
4387 /* At first glance, this looks racy, but then again so would be
4388 * userspace racing mmap against close. However, the first external
4389 * reference to the filp can only be obtained through the
4390 * i915_gem_mmap_ioctl() which safeguards us against the user
4391 * acquiring such a reference whilst we are in the middle of
4392 * freeing the object.
4393 */
4394 return atomic_long_read(&obj->base.filp->f_count) == 1;
4395}
4396
fbbd37b3
CW
4397static void __i915_gem_free_objects(struct drm_i915_private *i915,
4398 struct llist_node *freed)
673a394b 4399{
fbbd37b3 4400 struct drm_i915_gem_object *obj, *on;
673a394b 4401
fbbd37b3
CW
4402 mutex_lock(&i915->drm.struct_mutex);
4403 intel_runtime_pm_get(i915);
4404 llist_for_each_entry(obj, freed, freed) {
4405 struct i915_vma *vma, *vn;
4406
4407 trace_i915_gem_object_destroy(obj);
4408
4409 GEM_BUG_ON(i915_gem_object_is_active(obj));
4410 list_for_each_entry_safe(vma, vn,
4411 &obj->vma_list, obj_link) {
fbbd37b3
CW
4412 GEM_BUG_ON(i915_vma_is_active(vma));
4413 vma->flags &= ~I915_VMA_PIN_MASK;
4414 i915_vma_close(vma);
4415 }
db6c2b41
CW
4416 GEM_BUG_ON(!list_empty(&obj->vma_list));
4417 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4418
56cea323 4419 list_del(&obj->global_link);
fbbd37b3
CW
4420 }
4421 intel_runtime_pm_put(i915);
4422 mutex_unlock(&i915->drm.struct_mutex);
4423
f2be9d68
CW
4424 cond_resched();
4425
fbbd37b3
CW
4426 llist_for_each_entry_safe(obj, on, freed, freed) {
4427 GEM_BUG_ON(obj->bind_count);
4428 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4429
4430 if (obj->ops->release)
4431 obj->ops->release(obj);
f65c9168 4432
fbbd37b3
CW
4433 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4434 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4435 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4436 GEM_BUG_ON(obj->mm.pages);
4437
4438 if (obj->base.import_attach)
4439 drm_prime_gem_destroy(&obj->base, NULL);
4440
d07f0e59 4441 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4442 drm_gem_object_release(&obj->base);
4443 i915_gem_info_remove_obj(i915, obj->base.size);
4444
4445 kfree(obj->bit_17);
4446 i915_gem_object_free(obj);
4447 }
4448}
4449
4450static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4451{
4452 struct llist_node *freed;
4453
4454 freed = llist_del_all(&i915->mm.free_list);
4455 if (unlikely(freed))
4456 __i915_gem_free_objects(i915, freed);
4457}
4458
4459static void __i915_gem_free_work(struct work_struct *work)
4460{
4461 struct drm_i915_private *i915 =
4462 container_of(work, struct drm_i915_private, mm.free_work);
4463 struct llist_node *freed;
26e12f89 4464
b1f788c6
CW
4465 /* All file-owned VMA should have been released by this point through
4466 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4467 * However, the object may also be bound into the global GTT (e.g.
4468 * older GPUs without per-process support, or for direct access through
4469 * the GTT either for the user or for scanout). Those VMA still need to
4470 * unbound now.
4471 */
1488fc08 4472
5ad08be7 4473 while ((freed = llist_del_all(&i915->mm.free_list))) {
fbbd37b3 4474 __i915_gem_free_objects(i915, freed);
5ad08be7
CW
4475 if (need_resched())
4476 break;
4477 }
fbbd37b3 4478}
a071fa00 4479
fbbd37b3
CW
4480static void __i915_gem_free_object_rcu(struct rcu_head *head)
4481{
4482 struct drm_i915_gem_object *obj =
4483 container_of(head, typeof(*obj), rcu);
4484 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4485
4486 /* We can't simply use call_rcu() from i915_gem_free_object()
4487 * as we need to block whilst unbinding, and the call_rcu
4488 * task may be called from softirq context. So we take a
4489 * detour through a worker.
4490 */
4491 if (llist_add(&obj->freed, &i915->mm.free_list))
4492 schedule_work(&i915->mm.free_work);
4493}
656bfa3a 4494
fbbd37b3
CW
4495void i915_gem_free_object(struct drm_gem_object *gem_obj)
4496{
4497 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4498
bc0629a7
CW
4499 if (obj->mm.quirked)
4500 __i915_gem_object_unpin_pages(obj);
4501
340fbd8c 4502 if (discard_backing_storage(obj))
a4f5ea64 4503 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4504
fbbd37b3
CW
4505 /* Before we free the object, make sure any pure RCU-only
4506 * read-side critical sections are complete, e.g.
4507 * i915_gem_busy_ioctl(). For the corresponding synchronized
4508 * lookup see i915_gem_object_lookup_rcu().
4509 */
4510 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4511}
4512
f8a7fde4
CW
4513void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4514{
4515 lockdep_assert_held(&obj->base.dev->struct_mutex);
4516
d1b48c1e
CW
4517 if (!i915_gem_object_has_active_reference(obj) &&
4518 i915_gem_object_is_active(obj))
f8a7fde4
CW
4519 i915_gem_object_set_active_reference(obj);
4520 else
4521 i915_gem_object_put(obj);
4522}
4523
3033acab
CW
4524static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4525{
4526 struct intel_engine_cs *engine;
4527 enum intel_engine_id id;
4528
4529 for_each_engine(engine, dev_priv, id)
f131e356
CW
4530 GEM_BUG_ON(engine->last_retired_context &&
4531 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4532}
4533
24145517
CW
4534void i915_gem_sanitize(struct drm_i915_private *i915)
4535{
4536 /*
4537 * If we inherit context state from the BIOS or earlier occupants
4538 * of the GPU, the GPU may be in an inconsistent state when we
4539 * try to take over. The only way to remove the earlier state
4540 * is by resetting. However, resetting on earlier gen is tricky as
4541 * it may impact the display and we are uncertain about the stability
ea117b8d 4542 * of the reset, so this could be applied to even earlier gen.
24145517 4543 */
ea117b8d 4544 if (INTEL_GEN(i915) >= 5) {
24145517
CW
4545 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4546 WARN_ON(reset && reset != -ENODEV);
4547 }
4548}
4549
bf9e8429 4550int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4551{
bf9e8429 4552 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4553 int ret;
28dfe52a 4554
c998e8a0 4555 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4556 intel_suspend_gt_powersave(dev_priv);
4557
45c5f202 4558 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4559
4560 /* We have to flush all the executing contexts to main memory so
4561 * that they can saved in the hibernation image. To ensure the last
4562 * context image is coherent, we have to switch away from it. That
4563 * leaves the dev_priv->kernel_context still active when
4564 * we actually suspend, and its image in memory may not match the GPU
4565 * state. Fortunately, the kernel_context is disposable and we do
4566 * not rely on its state.
4567 */
4568 ret = i915_gem_switch_to_kernel_context(dev_priv);
4569 if (ret)
c998e8a0 4570 goto err_unlock;
5ab57c70 4571
22dd3bb9
CW
4572 ret = i915_gem_wait_for_idle(dev_priv,
4573 I915_WAIT_INTERRUPTIBLE |
4574 I915_WAIT_LOCKED);
f7403347 4575 if (ret)
c998e8a0 4576 goto err_unlock;
f7403347 4577
3033acab 4578 assert_kernel_context_is_current(dev_priv);
829a0af2 4579 i915_gem_contexts_lost(dev_priv);
45c5f202
CW
4580 mutex_unlock(&dev->struct_mutex);
4581
63987bfe
SAK
4582 intel_guc_suspend(dev_priv);
4583
737b1506 4584 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4585 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4586
4587 /* As the idle_work is rearming if it detects a race, play safe and
4588 * repeat the flush until it is definitely idle.
4589 */
4590 while (flush_delayed_work(&dev_priv->gt.idle_work))
4591 ;
4592
bdcf120b
CW
4593 /* Assert that we sucessfully flushed all the work and
4594 * reset the GPU back to its idle, low power state.
4595 */
67d97da3 4596 WARN_ON(dev_priv->gt.awake);
05425249 4597 WARN_ON(!intel_engines_are_idle(dev_priv));
bdcf120b 4598
1c777c5d
ID
4599 /*
4600 * Neither the BIOS, ourselves or any other kernel
4601 * expects the system to be in execlists mode on startup,
4602 * so we need to reset the GPU back to legacy mode. And the only
4603 * known way to disable logical contexts is through a GPU reset.
4604 *
4605 * So in order to leave the system in a known default configuration,
4606 * always reset the GPU upon unload and suspend. Afterwards we then
4607 * clean up the GEM state tracking, flushing off the requests and
4608 * leaving the system in a known idle state.
4609 *
4610 * Note that is of the upmost importance that the GPU is idle and
4611 * all stray writes are flushed *before* we dismantle the backing
4612 * storage for the pinned objects.
4613 *
4614 * However, since we are uncertain that resetting the GPU on older
4615 * machines is a good idea, we don't - just in case it leaves the
4616 * machine in an unusable condition.
4617 */
24145517 4618 i915_gem_sanitize(dev_priv);
c998e8a0 4619 goto out_rpm_put;
1c777c5d 4620
c998e8a0 4621err_unlock:
45c5f202 4622 mutex_unlock(&dev->struct_mutex);
c998e8a0
CW
4623out_rpm_put:
4624 intel_runtime_pm_put(dev_priv);
45c5f202 4625 return ret;
673a394b
EA
4626}
4627
bf9e8429 4628void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4629{
bf9e8429 4630 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4631
31ab49ab
ID
4632 WARN_ON(dev_priv->gt.awake);
4633
5ab57c70 4634 mutex_lock(&dev->struct_mutex);
275a991c 4635 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4636
4637 /* As we didn't flush the kernel context before suspend, we cannot
4638 * guarantee that the context image is complete. So let's just reset
4639 * it and start again.
4640 */
821ed7df 4641 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4642
4643 mutex_unlock(&dev->struct_mutex);
4644}
4645
c6be607a 4646void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4647{
c6be607a 4648 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4649 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4650 return;
4651
4652 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4653 DISP_TILE_SURFACE_SWIZZLING);
4654
5db94019 4655 if (IS_GEN5(dev_priv))
11782b02
DV
4656 return;
4657
f691e2f4 4658 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4659 if (IS_GEN6(dev_priv))
6b26c86d 4660 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4661 else if (IS_GEN7(dev_priv))
6b26c86d 4662 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4663 else if (IS_GEN8(dev_priv))
31a5336e 4664 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4665 else
4666 BUG();
f691e2f4 4667}
e21af88d 4668
50a0bc90 4669static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4670{
81e7f200
VS
4671 I915_WRITE(RING_CTL(base), 0);
4672 I915_WRITE(RING_HEAD(base), 0);
4673 I915_WRITE(RING_TAIL(base), 0);
4674 I915_WRITE(RING_START(base), 0);
4675}
4676
50a0bc90 4677static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4678{
50a0bc90
TU
4679 if (IS_I830(dev_priv)) {
4680 init_unused_ring(dev_priv, PRB1_BASE);
4681 init_unused_ring(dev_priv, SRB0_BASE);
4682 init_unused_ring(dev_priv, SRB1_BASE);
4683 init_unused_ring(dev_priv, SRB2_BASE);
4684 init_unused_ring(dev_priv, SRB3_BASE);
4685 } else if (IS_GEN2(dev_priv)) {
4686 init_unused_ring(dev_priv, SRB0_BASE);
4687 init_unused_ring(dev_priv, SRB1_BASE);
4688 } else if (IS_GEN3(dev_priv)) {
4689 init_unused_ring(dev_priv, PRB1_BASE);
4690 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4691 }
4692}
4693
20a8a74a 4694static int __i915_gem_restart_engines(void *data)
4fc7c971 4695{
20a8a74a 4696 struct drm_i915_private *i915 = data;
e2f80391 4697 struct intel_engine_cs *engine;
3b3f1650 4698 enum intel_engine_id id;
20a8a74a
CW
4699 int err;
4700
4701 for_each_engine(engine, i915, id) {
4702 err = engine->init_hw(engine);
4703 if (err)
4704 return err;
4705 }
4706
4707 return 0;
4708}
4709
4710int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4711{
d200cda6 4712 int ret;
4fc7c971 4713
de867c20
CW
4714 dev_priv->gt.last_init_time = ktime_get();
4715
5e4f5189
CW
4716 /* Double layer security blanket, see i915_gem_init() */
4717 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4718
0031fb96 4719 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4720 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4721
772c2a51 4722 if (IS_HASWELL(dev_priv))
50a0bc90 4723 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4724 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4725
6e266956 4726 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4727 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4728 u32 temp = I915_READ(GEN7_MSG_CTL);
4729 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4730 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4731 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4732 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4733 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4734 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4735 }
88a2b2a3
BW
4736 }
4737
c6be607a 4738 i915_gem_init_swizzling(dev_priv);
4fc7c971 4739
d5abdfda
DV
4740 /*
4741 * At least 830 can leave some of the unused rings
4742 * "active" (ie. head != tail) after resume which
4743 * will prevent c3 entry. Makes sure all unused rings
4744 * are totally idle.
4745 */
50a0bc90 4746 init_unused_rings(dev_priv);
d5abdfda 4747
ed54c1a1 4748 BUG_ON(!dev_priv->kernel_context);
90638cc1 4749
c6be607a 4750 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4751 if (ret) {
4752 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4753 goto out;
4754 }
4755
4756 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4757 ret = __i915_gem_restart_engines(dev_priv);
4758 if (ret)
4759 goto out;
99433931 4760
bf9e8429 4761 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4762
b8991403
OM
4763 /* We can't enable contexts until all firmware is loaded */
4764 ret = intel_uc_init_hw(dev_priv);
4765 if (ret)
4766 goto out;
33a732f4 4767
5e4f5189
CW
4768out:
4769 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4770 return ret;
8187a2b7
ZN
4771}
4772
39df9190
CW
4773bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4774{
4775 if (INTEL_INFO(dev_priv)->gen < 6)
4776 return false;
4777
4778 /* TODO: make semaphores and Execlists play nicely together */
4779 if (i915.enable_execlists)
4780 return false;
4781
4782 if (value >= 0)
4783 return value;
4784
39df9190 4785 /* Enable semaphores on SNB when IO remapping is off */
80debff8 4786 if (IS_GEN6(dev_priv) && intel_vtd_active())
39df9190 4787 return false;
39df9190
CW
4788
4789 return true;
4790}
4791
bf9e8429 4792int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4793{
1070a42b
CW
4794 int ret;
4795
bf9e8429 4796 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4797
94312828 4798 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 4799
a83014d3 4800 if (!i915.enable_execlists) {
821ed7df 4801 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4802 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4803 } else {
821ed7df 4804 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4805 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4806 }
4807
5e4f5189
CW
4808 /* This is just a security blanket to placate dragons.
4809 * On some systems, we very sporadically observe that the first TLBs
4810 * used by the CS may be stale, despite us poking the TLB reset. If
4811 * we hold the forcewake during initialisation these problems
4812 * just magically go away.
4813 */
4814 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4815
8a2421bd
CW
4816 ret = i915_gem_init_userptr(dev_priv);
4817 if (ret)
4818 goto out_unlock;
f6b9d5ca
CW
4819
4820 ret = i915_gem_init_ggtt(dev_priv);
4821 if (ret)
4822 goto out_unlock;
d62b4892 4823
829a0af2 4824 ret = i915_gem_contexts_init(dev_priv);
7bcc3777
JN
4825 if (ret)
4826 goto out_unlock;
2fa48d8d 4827
bf9e8429 4828 ret = intel_engines_init(dev_priv);
35a57ffb 4829 if (ret)
7bcc3777 4830 goto out_unlock;
2fa48d8d 4831
bf9e8429 4832 ret = i915_gem_init_hw(dev_priv);
60990320 4833 if (ret == -EIO) {
7e21d648 4834 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4835 * wedged. But we only want to do this where the GPU is angry,
4836 * for all other failure, such as an allocation failure, bail.
4837 */
4838 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4839 i915_gem_set_wedged(dev_priv);
60990320 4840 ret = 0;
1070a42b 4841 }
7bcc3777
JN
4842
4843out_unlock:
5e4f5189 4844 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4845 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4846
60990320 4847 return ret;
1070a42b
CW
4848}
4849
24145517
CW
4850void i915_gem_init_mmio(struct drm_i915_private *i915)
4851{
4852 i915_gem_sanitize(i915);
4853}
4854
8187a2b7 4855void
cb15d9f8 4856i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4857{
e2f80391 4858 struct intel_engine_cs *engine;
3b3f1650 4859 enum intel_engine_id id;
8187a2b7 4860
3b3f1650 4861 for_each_engine(engine, dev_priv, id)
117897f4 4862 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4863}
4864
40ae4e16
ID
4865void
4866i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4867{
49ef5294 4868 int i;
40ae4e16
ID
4869
4870 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4871 !IS_CHERRYVIEW(dev_priv))
4872 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4873 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4874 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4875 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4876 dev_priv->num_fence_regs = 16;
4877 else
4878 dev_priv->num_fence_regs = 8;
4879
c033666a 4880 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4881 dev_priv->num_fence_regs =
4882 I915_READ(vgtif_reg(avail_rs.fence_num));
4883
4884 /* Initialize fence registers to zero */
49ef5294
CW
4885 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4886 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4887
4888 fence->i915 = dev_priv;
4889 fence->id = i;
4890 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4891 }
4362f4f6 4892 i915_gem_restore_fences(dev_priv);
40ae4e16 4893
4362f4f6 4894 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4895}
4896
73cb9701 4897int
cb15d9f8 4898i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4899{
a933568e 4900 int err = -ENOMEM;
42dcedd4 4901
a933568e
TU
4902 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4903 if (!dev_priv->objects)
73cb9701 4904 goto err_out;
73cb9701 4905
a933568e
TU
4906 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4907 if (!dev_priv->vmas)
73cb9701 4908 goto err_objects;
73cb9701 4909
d1b48c1e
CW
4910 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4911 if (!dev_priv->luts)
4912 goto err_vmas;
4913
a933568e
TU
4914 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4915 SLAB_HWCACHE_ALIGN |
4916 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 4917 SLAB_TYPESAFE_BY_RCU);
a933568e 4918 if (!dev_priv->requests)
d1b48c1e 4919 goto err_luts;
73cb9701 4920
52e54209
CW
4921 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4922 SLAB_HWCACHE_ALIGN |
4923 SLAB_RECLAIM_ACCOUNT);
4924 if (!dev_priv->dependencies)
4925 goto err_requests;
4926
c5cf9a91
CW
4927 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4928 if (!dev_priv->priorities)
4929 goto err_dependencies;
4930
73cb9701
CW
4931 mutex_lock(&dev_priv->drm.struct_mutex);
4932 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4933 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4934 mutex_unlock(&dev_priv->drm.struct_mutex);
4935 if (err)
c5cf9a91 4936 goto err_priorities;
673a394b 4937
fbbd37b3
CW
4938 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4939 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4940 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4941 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4942 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4943 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4944 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4945 i915_gem_retire_work_handler);
67d97da3 4946 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4947 i915_gem_idle_work_handler);
1f15b76f 4948 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4949 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4950
6f633402
JL
4951 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4952
b5add959 4953 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4954
4955 return 0;
4956
c5cf9a91
CW
4957err_priorities:
4958 kmem_cache_destroy(dev_priv->priorities);
52e54209
CW
4959err_dependencies:
4960 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4961err_requests:
4962 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
4963err_luts:
4964 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
4965err_vmas:
4966 kmem_cache_destroy(dev_priv->vmas);
4967err_objects:
4968 kmem_cache_destroy(dev_priv->objects);
4969err_out:
4970 return err;
673a394b 4971}
71acb5eb 4972
cb15d9f8 4973void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4974{
c4d4c1c6 4975 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 4976 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 4977 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 4978
ea84aa77
MA
4979 mutex_lock(&dev_priv->drm.struct_mutex);
4980 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4981 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4982 mutex_unlock(&dev_priv->drm.struct_mutex);
4983
c5cf9a91 4984 kmem_cache_destroy(dev_priv->priorities);
52e54209 4985 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 4986 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 4987 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
4988 kmem_cache_destroy(dev_priv->vmas);
4989 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4990
4991 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4992 rcu_barrier();
d64aa096
ID
4993}
4994
6a800eab
CW
4995int i915_gem_freeze(struct drm_i915_private *dev_priv)
4996{
d0aa301a
CW
4997 /* Discard all purgeable objects, let userspace recover those as
4998 * required after resuming.
4999 */
6a800eab 5000 i915_gem_shrink_all(dev_priv);
6a800eab 5001
6a800eab
CW
5002 return 0;
5003}
5004
461fb99c
CW
5005int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5006{
5007 struct drm_i915_gem_object *obj;
7aab2d53
CW
5008 struct list_head *phases[] = {
5009 &dev_priv->mm.unbound_list,
5010 &dev_priv->mm.bound_list,
5011 NULL
5012 }, **p;
461fb99c
CW
5013
5014 /* Called just before we write the hibernation image.
5015 *
5016 * We need to update the domain tracking to reflect that the CPU
5017 * will be accessing all the pages to create and restore from the
5018 * hibernation, and so upon restoration those pages will be in the
5019 * CPU domain.
5020 *
5021 * To make sure the hibernation image contains the latest state,
5022 * we update that state just before writing out the image.
7aab2d53
CW
5023 *
5024 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5025 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5026 */
5027
912d572d 5028 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
17b93c40 5029 i915_gem_drain_freed_objects(dev_priv);
461fb99c 5030
d0aa301a 5031 mutex_lock(&dev_priv->drm.struct_mutex);
7aab2d53 5032 for (p = phases; *p; p++) {
e27ab73d
CW
5033 list_for_each_entry(obj, *p, global_link)
5034 __start_cpu_write(obj);
461fb99c 5035 }
6a800eab 5036 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
5037
5038 return 0;
5039}
5040
f787a5f5 5041void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5042{
f787a5f5 5043 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 5044 struct drm_i915_gem_request *request;
b962442e
EA
5045
5046 /* Clean up our request list when the client is going away, so that
5047 * later retire_requests won't dereference our soon-to-be-gone
5048 * file_priv.
5049 */
1c25595f 5050 spin_lock(&file_priv->mm.lock);
c8659efa 5051 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5052 request->file_priv = NULL;
1c25595f 5053 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5054}
5055
829a0af2 5056int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5057{
5058 struct drm_i915_file_private *file_priv;
e422b888 5059 int ret;
b29c19b6 5060
c4c29d7b 5061 DRM_DEBUG("\n");
b29c19b6
CW
5062
5063 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064 if (!file_priv)
5065 return -ENOMEM;
5066
5067 file->driver_priv = file_priv;
829a0af2 5068 file_priv->dev_priv = i915;
ab0e7ff9 5069 file_priv->file = file;
b29c19b6
CW
5070
5071 spin_lock_init(&file_priv->mm.lock);
5072 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5073
c80ff16e 5074 file_priv->bsd_engine = -1;
de1add36 5075
829a0af2 5076 ret = i915_gem_context_open(i915, file);
e422b888
BW
5077 if (ret)
5078 kfree(file_priv);
b29c19b6 5079
e422b888 5080 return ret;
b29c19b6
CW
5081}
5082
b680c37a
DV
5083/**
5084 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5085 * @old: current GEM buffer for the frontbuffer slots
5086 * @new: new GEM buffer for the frontbuffer slots
5087 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5088 *
5089 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090 * from @old and setting them in @new. Both @old and @new can be NULL.
5091 */
a071fa00
DV
5092void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093 struct drm_i915_gem_object *new,
5094 unsigned frontbuffer_bits)
5095{
faf5bf0a
CW
5096 /* Control of individual bits within the mask are guarded by
5097 * the owning plane->mutex, i.e. we can never see concurrent
5098 * manipulation of individual bits. But since the bitfield as a whole
5099 * is updated using RMW, we need to use atomics in order to update
5100 * the bits.
5101 */
5102 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5103 sizeof(atomic_t) * BITS_PER_BYTE);
5104
a071fa00 5105 if (old) {
faf5bf0a
CW
5106 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5107 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5108 }
5109
5110 if (new) {
faf5bf0a
CW
5111 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5112 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5113 }
5114}
5115
ea70299d
DG
5116/* Allocate a new GEM object and fill it with the supplied data */
5117struct drm_i915_gem_object *
12d79d78 5118i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5119 const void *data, size_t size)
5120{
5121 struct drm_i915_gem_object *obj;
be062fa4
CW
5122 struct file *file;
5123 size_t offset;
5124 int err;
ea70299d 5125
12d79d78 5126 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5127 if (IS_ERR(obj))
ea70299d
DG
5128 return obj;
5129
ce8ff099 5130 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5131
be062fa4
CW
5132 file = obj->base.filp;
5133 offset = 0;
5134 do {
5135 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5136 struct page *page;
5137 void *pgdata, *vaddr;
ea70299d 5138
be062fa4
CW
5139 err = pagecache_write_begin(file, file->f_mapping,
5140 offset, len, 0,
5141 &page, &pgdata);
5142 if (err < 0)
5143 goto fail;
ea70299d 5144
be062fa4
CW
5145 vaddr = kmap(page);
5146 memcpy(vaddr, data, len);
5147 kunmap(page);
5148
5149 err = pagecache_write_end(file, file->f_mapping,
5150 offset, len, len,
5151 page, pgdata);
5152 if (err < 0)
5153 goto fail;
5154
5155 size -= len;
5156 data += len;
5157 offset += len;
5158 } while (size);
ea70299d
DG
5159
5160 return obj;
5161
5162fail:
f8c417cd 5163 i915_gem_object_put(obj);
be062fa4 5164 return ERR_PTR(err);
ea70299d 5165}
96d77634
CW
5166
5167struct scatterlist *
5168i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5169 unsigned int n,
5170 unsigned int *offset)
5171{
a4f5ea64 5172 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5173 struct scatterlist *sg;
5174 unsigned int idx, count;
5175
5176 might_sleep();
5177 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5178 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5179
5180 /* As we iterate forward through the sg, we record each entry in a
5181 * radixtree for quick repeated (backwards) lookups. If we have seen
5182 * this index previously, we will have an entry for it.
5183 *
5184 * Initial lookup is O(N), but this is amortized to O(1) for
5185 * sequential page access (where each new request is consecutive
5186 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5187 * i.e. O(1) with a large constant!
5188 */
5189 if (n < READ_ONCE(iter->sg_idx))
5190 goto lookup;
5191
5192 mutex_lock(&iter->lock);
5193
5194 /* We prefer to reuse the last sg so that repeated lookup of this
5195 * (or the subsequent) sg are fast - comparing against the last
5196 * sg is faster than going through the radixtree.
5197 */
5198
5199 sg = iter->sg_pos;
5200 idx = iter->sg_idx;
5201 count = __sg_page_count(sg);
5202
5203 while (idx + count <= n) {
5204 unsigned long exception, i;
5205 int ret;
5206
5207 /* If we cannot allocate and insert this entry, or the
5208 * individual pages from this range, cancel updating the
5209 * sg_idx so that on this lookup we are forced to linearly
5210 * scan onwards, but on future lookups we will try the
5211 * insertion again (in which case we need to be careful of
5212 * the error return reporting that we have already inserted
5213 * this index).
5214 */
5215 ret = radix_tree_insert(&iter->radix, idx, sg);
5216 if (ret && ret != -EEXIST)
5217 goto scan;
5218
5219 exception =
5220 RADIX_TREE_EXCEPTIONAL_ENTRY |
5221 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5222 for (i = 1; i < count; i++) {
5223 ret = radix_tree_insert(&iter->radix, idx + i,
5224 (void *)exception);
5225 if (ret && ret != -EEXIST)
5226 goto scan;
5227 }
5228
5229 idx += count;
5230 sg = ____sg_next(sg);
5231 count = __sg_page_count(sg);
5232 }
5233
5234scan:
5235 iter->sg_pos = sg;
5236 iter->sg_idx = idx;
5237
5238 mutex_unlock(&iter->lock);
5239
5240 if (unlikely(n < idx)) /* insertion completed by another thread */
5241 goto lookup;
5242
5243 /* In case we failed to insert the entry into the radixtree, we need
5244 * to look beyond the current sg.
5245 */
5246 while (idx + count <= n) {
5247 idx += count;
5248 sg = ____sg_next(sg);
5249 count = __sg_page_count(sg);
5250 }
5251
5252 *offset = n - idx;
5253 return sg;
5254
5255lookup:
5256 rcu_read_lock();
5257
5258 sg = radix_tree_lookup(&iter->radix, n);
5259 GEM_BUG_ON(!sg);
5260
5261 /* If this index is in the middle of multi-page sg entry,
5262 * the radixtree will contain an exceptional entry that points
5263 * to the start of that range. We will return the pointer to
5264 * the base page and the offset of this page within the
5265 * sg entry's range.
5266 */
5267 *offset = 0;
5268 if (unlikely(radix_tree_exception(sg))) {
5269 unsigned long base =
5270 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5271
5272 sg = radix_tree_lookup(&iter->radix, base);
5273 GEM_BUG_ON(!sg);
5274
5275 *offset = n - base;
5276 }
5277
5278 rcu_read_unlock();
5279
5280 return sg;
5281}
5282
5283struct page *
5284i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5285{
5286 struct scatterlist *sg;
5287 unsigned int offset;
5288
5289 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5290
5291 sg = i915_gem_object_get_sg(obj, n, &offset);
5292 return nth_page(sg_page(sg), offset);
5293}
5294
5295/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5296struct page *
5297i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5298 unsigned int n)
5299{
5300 struct page *page;
5301
5302 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5303 if (!obj->mm.dirty)
96d77634
CW
5304 set_page_dirty(page);
5305
5306 return page;
5307}
5308
5309dma_addr_t
5310i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5311 unsigned long n)
5312{
5313 struct scatterlist *sg;
5314 unsigned int offset;
5315
5316 sg = i915_gem_object_get_sg(obj, n, &offset);
5317 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5318}
935a2f77 5319
8eeb7906
CW
5320int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5321{
5322 struct sg_table *pages;
5323 int err;
5324
5325 if (align > obj->base.size)
5326 return -EINVAL;
5327
5328 if (obj->ops == &i915_gem_phys_ops)
5329 return 0;
5330
5331 if (obj->ops != &i915_gem_object_ops)
5332 return -EINVAL;
5333
5334 err = i915_gem_object_unbind(obj);
5335 if (err)
5336 return err;
5337
5338 mutex_lock(&obj->mm.lock);
5339
5340 if (obj->mm.madv != I915_MADV_WILLNEED) {
5341 err = -EFAULT;
5342 goto err_unlock;
5343 }
5344
5345 if (obj->mm.quirked) {
5346 err = -EFAULT;
5347 goto err_unlock;
5348 }
5349
5350 if (obj->mm.mapping) {
5351 err = -EBUSY;
5352 goto err_unlock;
5353 }
5354
5355 pages = obj->mm.pages;
5356 obj->ops = &i915_gem_phys_ops;
5357
8fb6a5df 5358 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
5359 if (err)
5360 goto err_xfer;
5361
5362 /* Perma-pin (until release) the physical set of pages */
5363 __i915_gem_object_pin_pages(obj);
5364
5365 if (!IS_ERR_OR_NULL(pages))
5366 i915_gem_object_ops.put_pages(obj, pages);
5367 mutex_unlock(&obj->mm.lock);
5368 return 0;
5369
5370err_xfer:
5371 obj->ops = &i915_gem_object_ops;
5372 obj->mm.pages = pages;
5373err_unlock:
5374 mutex_unlock(&obj->mm.lock);
5375 return err;
5376}
5377
935a2f77
CW
5378#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5379#include "selftests/scatterlist.c"
66d9cb5d 5380#include "selftests/mock_gem_device.c"
44653988 5381#include "selftests/huge_gem_object.c"
8335fd65 5382#include "selftests/i915_gem_object.c"
17059450 5383#include "selftests/i915_gem_coherency.c"
935a2f77 5384#endif