]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Implement a framework for batch buffer pools
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
35c20a60 173 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 174 if (i915_gem_obj_is_pinned(obj))
f343c5f6 175 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
853ba5d2 178 args->aper_size = dev_priv->gtt.base.total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
6a2c4232
CW
184static int
185i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 186{
6a2c4232
CW
187 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188 char *vaddr = obj->phys_handle->vaddr;
189 struct sg_table *st;
190 struct scatterlist *sg;
191 int i;
00731155 192
6a2c4232
CW
193 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194 return -EINVAL;
195
196 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 struct page *page;
198 char *src;
199
200 page = shmem_read_mapping_page(mapping, i);
201 if (IS_ERR(page))
202 return PTR_ERR(page);
203
204 src = kmap_atomic(page);
205 memcpy(vaddr, src, PAGE_SIZE);
206 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 kunmap_atomic(src);
208
209 page_cache_release(page);
210 vaddr += PAGE_SIZE;
211 }
212
213 i915_gem_chipset_flush(obj->base.dev);
214
215 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (st == NULL)
217 return -ENOMEM;
218
219 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220 kfree(st);
221 return -ENOMEM;
222 }
223
224 sg = st->sgl;
225 sg->offset = 0;
226 sg->length = obj->base.size;
00731155 227
6a2c4232
CW
228 sg_dma_address(sg) = obj->phys_handle->busaddr;
229 sg_dma_len(sg) = obj->base.size;
230
231 obj->pages = st;
232 obj->has_dma_mapping = true;
233 return 0;
234}
235
236static void
237i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238{
239 int ret;
240
241 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 242
6a2c4232
CW
243 ret = i915_gem_object_set_to_cpu_domain(obj, true);
244 if (ret) {
245 /* In the event of a disaster, abandon all caches and
246 * hope for the best.
247 */
248 WARN_ON(ret != -EIO);
249 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250 }
251
252 if (obj->madv == I915_MADV_DONTNEED)
253 obj->dirty = 0;
254
255 if (obj->dirty) {
00731155 256 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 257 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
258 int i;
259
260 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
261 struct page *page;
262 char *dst;
263
264 page = shmem_read_mapping_page(mapping, i);
265 if (IS_ERR(page))
266 continue;
267
268 dst = kmap_atomic(page);
269 drm_clflush_virt_range(vaddr, PAGE_SIZE);
270 memcpy(dst, vaddr, PAGE_SIZE);
271 kunmap_atomic(dst);
272
273 set_page_dirty(page);
274 if (obj->madv == I915_MADV_WILLNEED)
00731155 275 mark_page_accessed(page);
6a2c4232 276 page_cache_release(page);
00731155
CW
277 vaddr += PAGE_SIZE;
278 }
6a2c4232 279 obj->dirty = 0;
00731155
CW
280 }
281
6a2c4232
CW
282 sg_free_table(obj->pages);
283 kfree(obj->pages);
284
285 obj->has_dma_mapping = false;
286}
287
288static void
289i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290{
291 drm_pci_free(obj->base.dev, obj->phys_handle);
292}
293
294static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295 .get_pages = i915_gem_object_get_pages_phys,
296 .put_pages = i915_gem_object_put_pages_phys,
297 .release = i915_gem_object_release_phys,
298};
299
300static int
301drop_pages(struct drm_i915_gem_object *obj)
302{
303 struct i915_vma *vma, *next;
304 int ret;
305
306 drm_gem_object_reference(&obj->base);
307 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308 if (i915_vma_unbind(vma))
309 break;
310
311 ret = i915_gem_object_put_pages(obj);
312 drm_gem_object_unreference(&obj->base);
313
314 return ret;
00731155
CW
315}
316
317int
318i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319 int align)
320{
321 drm_dma_handle_t *phys;
6a2c4232 322 int ret;
00731155
CW
323
324 if (obj->phys_handle) {
325 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326 return -EBUSY;
327
328 return 0;
329 }
330
331 if (obj->madv != I915_MADV_WILLNEED)
332 return -EFAULT;
333
334 if (obj->base.filp == NULL)
335 return -EINVAL;
336
6a2c4232
CW
337 ret = drop_pages(obj);
338 if (ret)
339 return ret;
340
00731155
CW
341 /* create a new object */
342 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343 if (!phys)
344 return -ENOMEM;
345
00731155 346 obj->phys_handle = phys;
6a2c4232
CW
347 obj->ops = &i915_gem_phys_ops;
348
349 return i915_gem_object_get_pages(obj);
00731155
CW
350}
351
352static int
353i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354 struct drm_i915_gem_pwrite *args,
355 struct drm_file *file_priv)
356{
357 struct drm_device *dev = obj->base.dev;
358 void *vaddr = obj->phys_handle->vaddr + args->offset;
359 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
360 int ret;
361
362 /* We manually control the domain here and pretend that it
363 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364 */
365 ret = i915_gem_object_wait_rendering(obj, false);
366 if (ret)
367 return ret;
00731155
CW
368
369 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370 unsigned long unwritten;
371
372 /* The physical object once assigned is fixed for the lifetime
373 * of the obj, so we can safely drop the lock and continue
374 * to access vaddr.
375 */
376 mutex_unlock(&dev->struct_mutex);
377 unwritten = copy_from_user(vaddr, user_data, args->size);
378 mutex_lock(&dev->struct_mutex);
379 if (unwritten)
380 return -EFAULT;
381 }
382
6a2c4232 383 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
384 i915_gem_chipset_flush(dev);
385 return 0;
386}
387
42dcedd4
CW
388void *i915_gem_object_alloc(struct drm_device *dev)
389{
390 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
392}
393
394void i915_gem_object_free(struct drm_i915_gem_object *obj)
395{
396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 kmem_cache_free(dev_priv->slab, obj);
398}
399
ff72145b
DA
400static int
401i915_gem_create(struct drm_file *file,
402 struct drm_device *dev,
403 uint64_t size,
355a7018 404 bool dumb,
ff72145b 405 uint32_t *handle_p)
673a394b 406{
05394f39 407 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
408 int ret;
409 u32 handle;
673a394b 410
ff72145b 411 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
412 if (size == 0)
413 return -EINVAL;
673a394b
EA
414
415 /* Allocate the new object */
ff72145b 416 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
417 if (obj == NULL)
418 return -ENOMEM;
419
355a7018 420 obj->base.dumb = dumb;
05394f39 421 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 422 /* drop reference from allocate - handle holds it now */
d861e338
DV
423 drm_gem_object_unreference_unlocked(&obj->base);
424 if (ret)
425 return ret;
202f2fef 426
ff72145b 427 *handle_p = handle;
673a394b
EA
428 return 0;
429}
430
ff72145b
DA
431int
432i915_gem_dumb_create(struct drm_file *file,
433 struct drm_device *dev,
434 struct drm_mode_create_dumb *args)
435{
436 /* have to work out size/pitch and return them */
de45eaf7 437 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
438 args->size = args->pitch * args->height;
439 return i915_gem_create(file, dev,
355a7018 440 args->size, true, &args->handle);
ff72145b
DA
441}
442
ff72145b
DA
443/**
444 * Creates a new mm object and returns a handle to it.
445 */
446int
447i915_gem_create_ioctl(struct drm_device *dev, void *data,
448 struct drm_file *file)
449{
450 struct drm_i915_gem_create *args = data;
63ed2cb2 451
ff72145b 452 return i915_gem_create(file, dev,
355a7018 453 args->size, false, &args->handle);
ff72145b
DA
454}
455
8461d226
DV
456static inline int
457__copy_to_user_swizzled(char __user *cpu_vaddr,
458 const char *gpu_vaddr, int gpu_offset,
459 int length)
460{
461 int ret, cpu_offset = 0;
462
463 while (length > 0) {
464 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465 int this_length = min(cacheline_end - gpu_offset, length);
466 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469 gpu_vaddr + swizzled_gpu_offset,
470 this_length);
471 if (ret)
472 return ret + length;
473
474 cpu_offset += this_length;
475 gpu_offset += this_length;
476 length -= this_length;
477 }
478
479 return 0;
480}
481
8c59967c 482static inline int
4f0c7cfb
BW
483__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484 const char __user *cpu_vaddr,
8c59967c
DV
485 int length)
486{
487 int ret, cpu_offset = 0;
488
489 while (length > 0) {
490 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491 int this_length = min(cacheline_end - gpu_offset, length);
492 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495 cpu_vaddr + cpu_offset,
496 this_length);
497 if (ret)
498 return ret + length;
499
500 cpu_offset += this_length;
501 gpu_offset += this_length;
502 length -= this_length;
503 }
504
505 return 0;
506}
507
4c914c0c
BV
508/*
509 * Pins the specified object's pages and synchronizes the object with
510 * GPU accesses. Sets needs_clflush to non-zero if the caller should
511 * flush the object from the CPU cache.
512 */
513int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514 int *needs_clflush)
515{
516 int ret;
517
518 *needs_clflush = 0;
519
520 if (!obj->base.filp)
521 return -EINVAL;
522
523 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524 /* If we're not in the cpu read domain, set ourself into the gtt
525 * read domain and manually flush cachelines (if required). This
526 * optimizes for the case when the gpu will dirty the data
527 * anyway again before the next pread happens. */
528 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529 obj->cache_level);
530 ret = i915_gem_object_wait_rendering(obj, true);
531 if (ret)
532 return ret;
c8725f3d
CW
533
534 i915_gem_object_retire(obj);
4c914c0c
BV
535 }
536
537 ret = i915_gem_object_get_pages(obj);
538 if (ret)
539 return ret;
540
541 i915_gem_object_pin_pages(obj);
542
543 return ret;
544}
545
d174bd64
DV
546/* Per-page copy function for the shmem pread fastpath.
547 * Flushes invalid cachelines before reading the target if
548 * needs_clflush is set. */
eb01459f 549static int
d174bd64
DV
550shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551 char __user *user_data,
552 bool page_do_bit17_swizzling, bool needs_clflush)
553{
554 char *vaddr;
555 int ret;
556
e7e58eb5 557 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
558 return -EINVAL;
559
560 vaddr = kmap_atomic(page);
561 if (needs_clflush)
562 drm_clflush_virt_range(vaddr + shmem_page_offset,
563 page_length);
564 ret = __copy_to_user_inatomic(user_data,
565 vaddr + shmem_page_offset,
566 page_length);
567 kunmap_atomic(vaddr);
568
f60d7f0c 569 return ret ? -EFAULT : 0;
d174bd64
DV
570}
571
23c18c71
DV
572static void
573shmem_clflush_swizzled_range(char *addr, unsigned long length,
574 bool swizzled)
575{
e7e58eb5 576 if (unlikely(swizzled)) {
23c18c71
DV
577 unsigned long start = (unsigned long) addr;
578 unsigned long end = (unsigned long) addr + length;
579
580 /* For swizzling simply ensure that we always flush both
581 * channels. Lame, but simple and it works. Swizzled
582 * pwrite/pread is far from a hotpath - current userspace
583 * doesn't use it at all. */
584 start = round_down(start, 128);
585 end = round_up(end, 128);
586
587 drm_clflush_virt_range((void *)start, end - start);
588 } else {
589 drm_clflush_virt_range(addr, length);
590 }
591
592}
593
d174bd64
DV
594/* Only difference to the fast-path function is that this can handle bit17
595 * and uses non-atomic copy and kmap functions. */
596static int
597shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598 char __user *user_data,
599 bool page_do_bit17_swizzling, bool needs_clflush)
600{
601 char *vaddr;
602 int ret;
603
604 vaddr = kmap(page);
605 if (needs_clflush)
23c18c71
DV
606 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607 page_length,
608 page_do_bit17_swizzling);
d174bd64
DV
609
610 if (page_do_bit17_swizzling)
611 ret = __copy_to_user_swizzled(user_data,
612 vaddr, shmem_page_offset,
613 page_length);
614 else
615 ret = __copy_to_user(user_data,
616 vaddr + shmem_page_offset,
617 page_length);
618 kunmap(page);
619
f60d7f0c 620 return ret ? - EFAULT : 0;
d174bd64
DV
621}
622
eb01459f 623static int
dbf7bff0
DV
624i915_gem_shmem_pread(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
626 struct drm_i915_gem_pread *args,
627 struct drm_file *file)
eb01459f 628{
8461d226 629 char __user *user_data;
eb01459f 630 ssize_t remain;
8461d226 631 loff_t offset;
eb2c0c81 632 int shmem_page_offset, page_length, ret = 0;
8461d226 633 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 634 int prefaulted = 0;
8489731c 635 int needs_clflush = 0;
67d5a50c 636 struct sg_page_iter sg_iter;
eb01459f 637
2bb4629a 638 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
639 remain = args->size;
640
8461d226 641 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 642
4c914c0c 643 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
644 if (ret)
645 return ret;
646
8461d226 647 offset = args->offset;
eb01459f 648
67d5a50c
ID
649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650 offset >> PAGE_SHIFT) {
2db76d7c 651 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
652
653 if (remain <= 0)
654 break;
655
eb01459f
EA
656 /* Operation in this page
657 *
eb01459f 658 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
659 * page_length = bytes to copy for this page
660 */
c8cbbb8b 661 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
662 page_length = remain;
663 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 665
8461d226
DV
666 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667 (page_to_phys(page) & (1 << 17)) != 0;
668
d174bd64
DV
669 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670 user_data, page_do_bit17_swizzling,
671 needs_clflush);
672 if (ret == 0)
673 goto next_page;
dbf7bff0 674
dbf7bff0
DV
675 mutex_unlock(&dev->struct_mutex);
676
d330a953 677 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 678 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
679 /* Userspace is tricking us, but we've already clobbered
680 * its pages with the prefault and promised to write the
681 * data up to the first fault. Hence ignore any errors
682 * and just continue. */
683 (void)ret;
684 prefaulted = 1;
685 }
eb01459f 686
d174bd64
DV
687 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688 user_data, page_do_bit17_swizzling,
689 needs_clflush);
eb01459f 690
dbf7bff0 691 mutex_lock(&dev->struct_mutex);
f60d7f0c 692
f60d7f0c 693 if (ret)
8461d226 694 goto out;
8461d226 695
17793c9a 696next_page:
eb01459f 697 remain -= page_length;
8461d226 698 user_data += page_length;
eb01459f
EA
699 offset += page_length;
700 }
701
4f27b75d 702out:
f60d7f0c
CW
703 i915_gem_object_unpin_pages(obj);
704
eb01459f
EA
705 return ret;
706}
707
673a394b
EA
708/**
709 * Reads data from the object referenced by handle.
710 *
711 * On error, the contents of *data are undefined.
712 */
713int
714i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 715 struct drm_file *file)
673a394b
EA
716{
717 struct drm_i915_gem_pread *args = data;
05394f39 718 struct drm_i915_gem_object *obj;
35b62a89 719 int ret = 0;
673a394b 720
51311d0a
CW
721 if (args->size == 0)
722 return 0;
723
724 if (!access_ok(VERIFY_WRITE,
2bb4629a 725 to_user_ptr(args->data_ptr),
51311d0a
CW
726 args->size))
727 return -EFAULT;
728
4f27b75d 729 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 730 if (ret)
4f27b75d 731 return ret;
673a394b 732
05394f39 733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 734 if (&obj->base == NULL) {
1d7cfea1
CW
735 ret = -ENOENT;
736 goto unlock;
4f27b75d 737 }
673a394b 738
7dcd2499 739 /* Bounds check source. */
05394f39
CW
740 if (args->offset > obj->base.size ||
741 args->size > obj->base.size - args->offset) {
ce9d419d 742 ret = -EINVAL;
35b62a89 743 goto out;
ce9d419d
CW
744 }
745
1286ff73
DV
746 /* prime objects have no backing filp to GEM pread/pwrite
747 * pages from.
748 */
749 if (!obj->base.filp) {
750 ret = -EINVAL;
751 goto out;
752 }
753
db53a302
CW
754 trace_i915_gem_object_pread(obj, args->offset, args->size);
755
dbf7bff0 756 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 757
35b62a89 758out:
05394f39 759 drm_gem_object_unreference(&obj->base);
1d7cfea1 760unlock:
4f27b75d 761 mutex_unlock(&dev->struct_mutex);
eb01459f 762 return ret;
673a394b
EA
763}
764
0839ccb8
KP
765/* This is the fast write path which cannot handle
766 * page faults in the source data
9b7530cc 767 */
0839ccb8
KP
768
769static inline int
770fast_user_write(struct io_mapping *mapping,
771 loff_t page_base, int page_offset,
772 char __user *user_data,
773 int length)
9b7530cc 774{
4f0c7cfb
BW
775 void __iomem *vaddr_atomic;
776 void *vaddr;
0839ccb8 777 unsigned long unwritten;
9b7530cc 778
3e4d3af5 779 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
780 /* We can use the cpu mem copy function because this is X86. */
781 vaddr = (void __force*)vaddr_atomic + page_offset;
782 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 783 user_data, length);
3e4d3af5 784 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 785 return unwritten;
0839ccb8
KP
786}
787
3de09aa3
EA
788/**
789 * This is the fast pwrite path, where we copy the data directly from the
790 * user into the GTT, uncached.
791 */
673a394b 792static int
05394f39
CW
793i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794 struct drm_i915_gem_object *obj,
3de09aa3 795 struct drm_i915_gem_pwrite *args,
05394f39 796 struct drm_file *file)
673a394b 797{
3e31c6c0 798 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 799 ssize_t remain;
0839ccb8 800 loff_t offset, page_base;
673a394b 801 char __user *user_data;
935aaa69
DV
802 int page_offset, page_length, ret;
803
1ec9e26d 804 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
805 if (ret)
806 goto out;
807
808 ret = i915_gem_object_set_to_gtt_domain(obj, true);
809 if (ret)
810 goto out_unpin;
811
812 ret = i915_gem_object_put_fence(obj);
813 if (ret)
814 goto out_unpin;
673a394b 815
2bb4629a 816 user_data = to_user_ptr(args->data_ptr);
673a394b 817 remain = args->size;
673a394b 818
f343c5f6 819 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
820
821 while (remain > 0) {
822 /* Operation in this page
823 *
0839ccb8
KP
824 * page_base = page offset within aperture
825 * page_offset = offset within page
826 * page_length = bytes to copy for this page
673a394b 827 */
c8cbbb8b
CW
828 page_base = offset & PAGE_MASK;
829 page_offset = offset_in_page(offset);
0839ccb8
KP
830 page_length = remain;
831 if ((page_offset + remain) > PAGE_SIZE)
832 page_length = PAGE_SIZE - page_offset;
833
0839ccb8 834 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
835 * source page isn't available. Return the error and we'll
836 * retry in the slow path.
0839ccb8 837 */
5d4545ae 838 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
839 page_offset, user_data, page_length)) {
840 ret = -EFAULT;
841 goto out_unpin;
842 }
673a394b 843
0839ccb8
KP
844 remain -= page_length;
845 user_data += page_length;
846 offset += page_length;
673a394b 847 }
673a394b 848
935aaa69 849out_unpin:
d7f46fc4 850 i915_gem_object_ggtt_unpin(obj);
935aaa69 851out:
3de09aa3 852 return ret;
673a394b
EA
853}
854
d174bd64
DV
855/* Per-page copy function for the shmem pwrite fastpath.
856 * Flushes invalid cachelines before writing to the target if
857 * needs_clflush_before is set and flushes out any written cachelines after
858 * writing if needs_clflush is set. */
3043c60c 859static int
d174bd64
DV
860shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861 char __user *user_data,
862 bool page_do_bit17_swizzling,
863 bool needs_clflush_before,
864 bool needs_clflush_after)
673a394b 865{
d174bd64 866 char *vaddr;
673a394b 867 int ret;
3de09aa3 868
e7e58eb5 869 if (unlikely(page_do_bit17_swizzling))
d174bd64 870 return -EINVAL;
3de09aa3 871
d174bd64
DV
872 vaddr = kmap_atomic(page);
873 if (needs_clflush_before)
874 drm_clflush_virt_range(vaddr + shmem_page_offset,
875 page_length);
c2831a94
CW
876 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877 user_data, page_length);
d174bd64
DV
878 if (needs_clflush_after)
879 drm_clflush_virt_range(vaddr + shmem_page_offset,
880 page_length);
881 kunmap_atomic(vaddr);
3de09aa3 882
755d2218 883 return ret ? -EFAULT : 0;
3de09aa3
EA
884}
885
d174bd64
DV
886/* Only difference to the fast-path function is that this can handle bit17
887 * and uses non-atomic copy and kmap functions. */
3043c60c 888static int
d174bd64
DV
889shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890 char __user *user_data,
891 bool page_do_bit17_swizzling,
892 bool needs_clflush_before,
893 bool needs_clflush_after)
673a394b 894{
d174bd64
DV
895 char *vaddr;
896 int ret;
e5281ccd 897
d174bd64 898 vaddr = kmap(page);
e7e58eb5 899 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
900 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901 page_length,
902 page_do_bit17_swizzling);
d174bd64
DV
903 if (page_do_bit17_swizzling)
904 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
905 user_data,
906 page_length);
d174bd64
DV
907 else
908 ret = __copy_from_user(vaddr + shmem_page_offset,
909 user_data,
910 page_length);
911 if (needs_clflush_after)
23c18c71
DV
912 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913 page_length,
914 page_do_bit17_swizzling);
d174bd64 915 kunmap(page);
40123c1f 916
755d2218 917 return ret ? -EFAULT : 0;
40123c1f
EA
918}
919
40123c1f 920static int
e244a443
DV
921i915_gem_shmem_pwrite(struct drm_device *dev,
922 struct drm_i915_gem_object *obj,
923 struct drm_i915_gem_pwrite *args,
924 struct drm_file *file)
40123c1f 925{
40123c1f 926 ssize_t remain;
8c59967c
DV
927 loff_t offset;
928 char __user *user_data;
eb2c0c81 929 int shmem_page_offset, page_length, ret = 0;
8c59967c 930 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 931 int hit_slowpath = 0;
58642885
DV
932 int needs_clflush_after = 0;
933 int needs_clflush_before = 0;
67d5a50c 934 struct sg_page_iter sg_iter;
40123c1f 935
2bb4629a 936 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
937 remain = args->size;
938
8c59967c 939 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 940
58642885
DV
941 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942 /* If we're not in the cpu write domain, set ourself into the gtt
943 * write domain and manually flush cachelines (if required). This
944 * optimizes for the case when the gpu will use the data
945 * right away and we therefore have to clflush anyway. */
2c22569b 946 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
947 ret = i915_gem_object_wait_rendering(obj, false);
948 if (ret)
949 return ret;
c8725f3d
CW
950
951 i915_gem_object_retire(obj);
58642885 952 }
c76ce038
CW
953 /* Same trick applies to invalidate partially written cachelines read
954 * before writing. */
955 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956 needs_clflush_before =
957 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 958
755d2218
CW
959 ret = i915_gem_object_get_pages(obj);
960 if (ret)
961 return ret;
962
963 i915_gem_object_pin_pages(obj);
964
673a394b 965 offset = args->offset;
05394f39 966 obj->dirty = 1;
673a394b 967
67d5a50c
ID
968 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969 offset >> PAGE_SHIFT) {
2db76d7c 970 struct page *page = sg_page_iter_page(&sg_iter);
58642885 971 int partial_cacheline_write;
e5281ccd 972
9da3da66
CW
973 if (remain <= 0)
974 break;
975
40123c1f
EA
976 /* Operation in this page
977 *
40123c1f 978 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
979 * page_length = bytes to copy for this page
980 */
c8cbbb8b 981 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
982
983 page_length = remain;
984 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 986
58642885
DV
987 /* If we don't overwrite a cacheline completely we need to be
988 * careful to have up-to-date data by first clflushing. Don't
989 * overcomplicate things and flush the entire patch. */
990 partial_cacheline_write = needs_clflush_before &&
991 ((shmem_page_offset | page_length)
992 & (boot_cpu_data.x86_clflush_size - 1));
993
8c59967c
DV
994 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995 (page_to_phys(page) & (1 << 17)) != 0;
996
d174bd64
DV
997 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001 if (ret == 0)
1002 goto next_page;
e244a443
DV
1003
1004 hit_slowpath = 1;
e244a443 1005 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1006 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007 user_data, page_do_bit17_swizzling,
1008 partial_cacheline_write,
1009 needs_clflush_after);
40123c1f 1010
e244a443 1011 mutex_lock(&dev->struct_mutex);
755d2218 1012
755d2218 1013 if (ret)
8c59967c 1014 goto out;
8c59967c 1015
17793c9a 1016next_page:
40123c1f 1017 remain -= page_length;
8c59967c 1018 user_data += page_length;
40123c1f 1019 offset += page_length;
673a394b
EA
1020 }
1021
fbd5a26d 1022out:
755d2218
CW
1023 i915_gem_object_unpin_pages(obj);
1024
e244a443 1025 if (hit_slowpath) {
8dcf015e
DV
1026 /*
1027 * Fixup: Flush cpu caches in case we didn't flush the dirty
1028 * cachelines in-line while writing and the object moved
1029 * out of the cpu write domain while we've dropped the lock.
1030 */
1031 if (!needs_clflush_after &&
1032 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1033 if (i915_gem_clflush_object(obj, obj->pin_display))
1034 i915_gem_chipset_flush(dev);
e244a443 1035 }
8c59967c 1036 }
673a394b 1037
58642885 1038 if (needs_clflush_after)
e76e9aeb 1039 i915_gem_chipset_flush(dev);
58642885 1040
40123c1f 1041 return ret;
673a394b
EA
1042}
1043
1044/**
1045 * Writes data to the object referenced by handle.
1046 *
1047 * On error, the contents of the buffer that were to be modified are undefined.
1048 */
1049int
1050i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1051 struct drm_file *file)
673a394b
EA
1052{
1053 struct drm_i915_gem_pwrite *args = data;
05394f39 1054 struct drm_i915_gem_object *obj;
51311d0a
CW
1055 int ret;
1056
1057 if (args->size == 0)
1058 return 0;
1059
1060 if (!access_ok(VERIFY_READ,
2bb4629a 1061 to_user_ptr(args->data_ptr),
51311d0a
CW
1062 args->size))
1063 return -EFAULT;
1064
d330a953 1065 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1066 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067 args->size);
1068 if (ret)
1069 return -EFAULT;
1070 }
673a394b 1071
fbd5a26d 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
fbd5a26d 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
fbd5a26d 1080 }
673a394b 1081
7dcd2499 1082 /* Bounds check destination. */
05394f39
CW
1083 if (args->offset > obj->base.size ||
1084 args->size > obj->base.size - args->offset) {
ce9d419d 1085 ret = -EINVAL;
35b62a89 1086 goto out;
ce9d419d
CW
1087 }
1088
1286ff73
DV
1089 /* prime objects have no backing filp to GEM pread/pwrite
1090 * pages from.
1091 */
1092 if (!obj->base.filp) {
1093 ret = -EINVAL;
1094 goto out;
1095 }
1096
db53a302
CW
1097 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
935aaa69 1099 ret = -EFAULT;
673a394b
EA
1100 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101 * it would end up going through the fenced access, and we'll get
1102 * different detiling behavior between reading and writing.
1103 * pread/pwrite currently are reading and writing from the CPU
1104 * perspective, requiring manual detiling by the client.
1105 */
2c22569b
CW
1106 if (obj->tiling_mode == I915_TILING_NONE &&
1107 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108 cpu_write_needs_clflush(obj)) {
fbd5a26d 1109 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1110 /* Note that the gtt paths might fail with non-page-backed user
1111 * pointers (e.g. gtt mappings when moving data between
1112 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1113 }
673a394b 1114
6a2c4232
CW
1115 if (ret == -EFAULT || ret == -ENOSPC) {
1116 if (obj->phys_handle)
1117 ret = i915_gem_phys_pwrite(obj, args, file);
1118 else
1119 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120 }
5c0480f2 1121
35b62a89 1122out:
05394f39 1123 drm_gem_object_unreference(&obj->base);
1d7cfea1 1124unlock:
fbd5a26d 1125 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1126 return ret;
1127}
1128
b361237b 1129int
33196ded 1130i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1131 bool interruptible)
1132{
1f83fee0 1133 if (i915_reset_in_progress(error)) {
b361237b
CW
1134 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135 * -EIO unconditionally for these. */
1136 if (!interruptible)
1137 return -EIO;
1138
1f83fee0
DV
1139 /* Recovery complete, but the reset failed ... */
1140 if (i915_terminally_wedged(error))
b361237b
CW
1141 return -EIO;
1142
6689c167
MA
1143 /*
1144 * Check if GPU Reset is in progress - we need intel_ring_begin
1145 * to work properly to reinit the hw state while the gpu is
1146 * still marked as reset-in-progress. Handle this with a flag.
1147 */
1148 if (!error->reload_in_reset)
1149 return -EAGAIN;
b361237b
CW
1150 }
1151
1152 return 0;
1153}
1154
1155/*
b6660d59 1156 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1157 */
84c33a64 1158int
b6660d59 1159i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1160{
1161 int ret;
1162
b6660d59 1163 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1164
1165 ret = 0;
b6660d59 1166 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1167 ret = i915_add_request(req->ring);
b361237b
CW
1168
1169 return ret;
1170}
1171
094f9a54
CW
1172static void fake_irq(unsigned long data)
1173{
1174 wake_up_process((struct task_struct *)data);
1175}
1176
1177static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1178 struct intel_engine_cs *ring)
094f9a54
CW
1179{
1180 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1181}
1182
b29c19b6
CW
1183static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1184{
1185 if (file_priv == NULL)
1186 return true;
1187
1188 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1189}
1190
b361237b 1191/**
9c654818
JH
1192 * __i915_wait_request - wait until execution of request has finished
1193 * @req: duh!
1194 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1195 * @interruptible: do an interruptible wait (normally yes)
1196 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1197 *
f69061be
DV
1198 * Note: It is of utmost importance that the passed in seqno and reset_counter
1199 * values have been read by the caller in an smp safe manner. Where read-side
1200 * locks are involved, it is sufficient to read the reset_counter before
1201 * unlocking the lock that protects the seqno. For lockless tricks, the
1202 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1203 * inserted.
1204 *
9c654818 1205 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1206 * errno with remaining time filled in timeout argument.
1207 */
9c654818 1208int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1209 unsigned reset_counter,
b29c19b6 1210 bool interruptible,
5ed0bdf2 1211 s64 *timeout,
b29c19b6 1212 struct drm_i915_file_private *file_priv)
b361237b 1213{
9c654818 1214 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1215 struct drm_device *dev = ring->dev;
3e31c6c0 1216 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1217 const bool irq_test_in_progress =
1218 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1219 DEFINE_WAIT(wait);
47e9766d 1220 unsigned long timeout_expire;
5ed0bdf2 1221 s64 before, now;
b361237b
CW
1222 int ret;
1223
9df7575f 1224 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1225
1b5a433a 1226 if (i915_gem_request_completed(req, true))
b361237b
CW
1227 return 0;
1228
5ed0bdf2 1229 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1230
ec5cc0f9 1231 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1232 gen6_rps_boost(dev_priv);
1233 if (file_priv)
1234 mod_delayed_work(dev_priv->wq,
1235 &file_priv->mm.idle_work,
1236 msecs_to_jiffies(100));
1237 }
1238
168c3f21 1239 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1240 return -ENODEV;
1241
094f9a54 1242 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1243 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1244 before = ktime_get_raw_ns();
094f9a54
CW
1245 for (;;) {
1246 struct timer_list timer;
b361237b 1247
094f9a54
CW
1248 prepare_to_wait(&ring->irq_queue, &wait,
1249 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1250
f69061be
DV
1251 /* We need to check whether any gpu reset happened in between
1252 * the caller grabbing the seqno and now ... */
094f9a54
CW
1253 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1254 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1255 * is truely gone. */
1256 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1257 if (ret == 0)
1258 ret = -EAGAIN;
1259 break;
1260 }
f69061be 1261
1b5a433a 1262 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1263 ret = 0;
1264 break;
1265 }
b361237b 1266
094f9a54
CW
1267 if (interruptible && signal_pending(current)) {
1268 ret = -ERESTARTSYS;
1269 break;
1270 }
1271
47e9766d 1272 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1273 ret = -ETIME;
1274 break;
1275 }
1276
1277 timer.function = NULL;
1278 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1279 unsigned long expire;
1280
094f9a54 1281 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1282 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1283 mod_timer(&timer, expire);
1284 }
1285
5035c275 1286 io_schedule();
094f9a54 1287
094f9a54
CW
1288 if (timer.function) {
1289 del_singleshot_timer_sync(&timer);
1290 destroy_timer_on_stack(&timer);
1291 }
1292 }
5ed0bdf2 1293 now = ktime_get_raw_ns();
74328ee5 1294 trace_i915_gem_request_wait_end(req);
b361237b 1295
168c3f21
MK
1296 if (!irq_test_in_progress)
1297 ring->irq_put(ring);
094f9a54
CW
1298
1299 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1300
1301 if (timeout) {
5ed0bdf2
TG
1302 s64 tres = *timeout - (now - before);
1303
1304 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1305 }
1306
094f9a54 1307 return ret;
b361237b
CW
1308}
1309
1310/**
a4b3a571 1311 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1312 * request and object lists appropriately for that event.
1313 */
1314int
a4b3a571 1315i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1316{
a4b3a571
DV
1317 struct drm_device *dev;
1318 struct drm_i915_private *dev_priv;
1319 bool interruptible;
16e9a21f 1320 unsigned reset_counter;
b361237b
CW
1321 int ret;
1322
a4b3a571
DV
1323 BUG_ON(req == NULL);
1324
1325 dev = req->ring->dev;
1326 dev_priv = dev->dev_private;
1327 interruptible = dev_priv->mm.interruptible;
1328
b361237b 1329 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1330
33196ded 1331 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1332 if (ret)
1333 return ret;
1334
a4b3a571 1335 ret = i915_gem_check_olr(req);
b361237b
CW
1336 if (ret)
1337 return ret;
1338
16e9a21f 1339 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1340 i915_gem_request_reference(req);
9c654818
JH
1341 ret = __i915_wait_request(req, reset_counter,
1342 interruptible, NULL, NULL);
a4b3a571
DV
1343 i915_gem_request_unreference(req);
1344 return ret;
b361237b
CW
1345}
1346
d26e3af8 1347static int
8e639549 1348i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1349{
c8725f3d
CW
1350 if (!obj->active)
1351 return 0;
d26e3af8
CW
1352
1353 /* Manually manage the write flush as we may have not yet
1354 * retired the buffer.
1355 *
97b2a6a1
JH
1356 * Note that the last_write_req is always the earlier of
1357 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1358 * we know we have passed the last write.
1359 */
97b2a6a1 1360 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1361
1362 return 0;
1363}
1364
b361237b
CW
1365/**
1366 * Ensures that all rendering to the object has completed and the object is
1367 * safe to unbind from the GTT or access from the CPU.
1368 */
1369static __must_check int
1370i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1371 bool readonly)
1372{
97b2a6a1 1373 struct drm_i915_gem_request *req;
b361237b
CW
1374 int ret;
1375
97b2a6a1
JH
1376 req = readonly ? obj->last_write_req : obj->last_read_req;
1377 if (!req)
b361237b
CW
1378 return 0;
1379
a4b3a571 1380 ret = i915_wait_request(req);
b361237b
CW
1381 if (ret)
1382 return ret;
1383
8e639549 1384 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1385}
1386
3236f57a
CW
1387/* A nonblocking variant of the above wait. This is a highly dangerous routine
1388 * as the object state may change during this call.
1389 */
1390static __must_check int
1391i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1392 struct drm_i915_file_private *file_priv,
3236f57a
CW
1393 bool readonly)
1394{
97b2a6a1 1395 struct drm_i915_gem_request *req;
3236f57a
CW
1396 struct drm_device *dev = obj->base.dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1398 unsigned reset_counter;
3236f57a
CW
1399 int ret;
1400
1401 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1402 BUG_ON(!dev_priv->mm.interruptible);
1403
97b2a6a1
JH
1404 req = readonly ? obj->last_write_req : obj->last_read_req;
1405 if (!req)
3236f57a
CW
1406 return 0;
1407
33196ded 1408 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1409 if (ret)
1410 return ret;
1411
b6660d59 1412 ret = i915_gem_check_olr(req);
3236f57a
CW
1413 if (ret)
1414 return ret;
1415
f69061be 1416 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1417 i915_gem_request_reference(req);
3236f57a 1418 mutex_unlock(&dev->struct_mutex);
9c654818 1419 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1420 mutex_lock(&dev->struct_mutex);
ff865885 1421 i915_gem_request_unreference(req);
d26e3af8
CW
1422 if (ret)
1423 return ret;
3236f57a 1424
8e639549 1425 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1426}
1427
673a394b 1428/**
2ef7eeaa
EA
1429 * Called when user space prepares to use an object with the CPU, either
1430 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1431 */
1432int
1433i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1434 struct drm_file *file)
673a394b
EA
1435{
1436 struct drm_i915_gem_set_domain *args = data;
05394f39 1437 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1438 uint32_t read_domains = args->read_domains;
1439 uint32_t write_domain = args->write_domain;
673a394b
EA
1440 int ret;
1441
2ef7eeaa 1442 /* Only handle setting domains to types used by the CPU. */
21d509e3 1443 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1444 return -EINVAL;
1445
21d509e3 1446 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1447 return -EINVAL;
1448
1449 /* Having something in the write domain implies it's in the read
1450 * domain, and only that read domain. Enforce that in the request.
1451 */
1452 if (write_domain != 0 && read_domains != write_domain)
1453 return -EINVAL;
1454
76c1dec1 1455 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1456 if (ret)
76c1dec1 1457 return ret;
1d7cfea1 1458
05394f39 1459 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1460 if (&obj->base == NULL) {
1d7cfea1
CW
1461 ret = -ENOENT;
1462 goto unlock;
76c1dec1 1463 }
673a394b 1464
3236f57a
CW
1465 /* Try to flush the object off the GPU without holding the lock.
1466 * We will repeat the flush holding the lock in the normal manner
1467 * to catch cases where we are gazumped.
1468 */
6e4930f6
CW
1469 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1470 file->driver_priv,
1471 !write_domain);
3236f57a
CW
1472 if (ret)
1473 goto unref;
1474
2ef7eeaa
EA
1475 if (read_domains & I915_GEM_DOMAIN_GTT) {
1476 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1477
1478 /* Silently promote "you're not bound, there was nothing to do"
1479 * to success, since the client was just asking us to
1480 * make sure everything was done.
1481 */
1482 if (ret == -EINVAL)
1483 ret = 0;
2ef7eeaa 1484 } else {
e47c68e9 1485 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1486 }
1487
3236f57a 1488unref:
05394f39 1489 drm_gem_object_unreference(&obj->base);
1d7cfea1 1490unlock:
673a394b
EA
1491 mutex_unlock(&dev->struct_mutex);
1492 return ret;
1493}
1494
1495/**
1496 * Called when user space has done writes to this buffer
1497 */
1498int
1499i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1500 struct drm_file *file)
673a394b
EA
1501{
1502 struct drm_i915_gem_sw_finish *args = data;
05394f39 1503 struct drm_i915_gem_object *obj;
673a394b
EA
1504 int ret = 0;
1505
76c1dec1 1506 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1507 if (ret)
76c1dec1 1508 return ret;
1d7cfea1 1509
05394f39 1510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1511 if (&obj->base == NULL) {
1d7cfea1
CW
1512 ret = -ENOENT;
1513 goto unlock;
673a394b
EA
1514 }
1515
673a394b 1516 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1517 if (obj->pin_display)
1518 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1519
05394f39 1520 drm_gem_object_unreference(&obj->base);
1d7cfea1 1521unlock:
673a394b
EA
1522 mutex_unlock(&dev->struct_mutex);
1523 return ret;
1524}
1525
1526/**
1527 * Maps the contents of an object, returning the address it is mapped
1528 * into.
1529 *
1530 * While the mapping holds a reference on the contents of the object, it doesn't
1531 * imply a ref on the object itself.
34367381
DV
1532 *
1533 * IMPORTANT:
1534 *
1535 * DRM driver writers who look a this function as an example for how to do GEM
1536 * mmap support, please don't implement mmap support like here. The modern way
1537 * to implement DRM mmap support is with an mmap offset ioctl (like
1538 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539 * That way debug tooling like valgrind will understand what's going on, hiding
1540 * the mmap call in a driver private ioctl will break that. The i915 driver only
1541 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1542 */
1543int
1544i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1545 struct drm_file *file)
673a394b
EA
1546{
1547 struct drm_i915_gem_mmap *args = data;
1548 struct drm_gem_object *obj;
673a394b
EA
1549 unsigned long addr;
1550
05394f39 1551 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1552 if (obj == NULL)
bf79cb91 1553 return -ENOENT;
673a394b 1554
1286ff73
DV
1555 /* prime objects have no backing filp to GEM mmap
1556 * pages from.
1557 */
1558 if (!obj->filp) {
1559 drm_gem_object_unreference_unlocked(obj);
1560 return -EINVAL;
1561 }
1562
6be5ceb0 1563 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1564 PROT_READ | PROT_WRITE, MAP_SHARED,
1565 args->offset);
bc9025bd 1566 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1567 if (IS_ERR((void *)addr))
1568 return addr;
1569
1570 args->addr_ptr = (uint64_t) addr;
1571
1572 return 0;
1573}
1574
de151cf6
JB
1575/**
1576 * i915_gem_fault - fault a page into the GTT
1577 * vma: VMA in question
1578 * vmf: fault info
1579 *
1580 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1581 * from userspace. The fault handler takes care of binding the object to
1582 * the GTT (if needed), allocating and programming a fence register (again,
1583 * only if needed based on whether the old reg is still valid or the object
1584 * is tiled) and inserting a new PTE into the faulting process.
1585 *
1586 * Note that the faulting process may involve evicting existing objects
1587 * from the GTT and/or fence registers to make room. So performance may
1588 * suffer if the GTT working set is large or there are few fence registers
1589 * left.
1590 */
1591int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1592{
05394f39
CW
1593 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1594 struct drm_device *dev = obj->base.dev;
3e31c6c0 1595 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1596 pgoff_t page_offset;
1597 unsigned long pfn;
1598 int ret = 0;
0f973f27 1599 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1600
f65c9168
PZ
1601 intel_runtime_pm_get(dev_priv);
1602
de151cf6
JB
1603 /* We don't use vmf->pgoff since that has the fake offset */
1604 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1605 PAGE_SHIFT;
1606
d9bc7e9f
CW
1607 ret = i915_mutex_lock_interruptible(dev);
1608 if (ret)
1609 goto out;
a00b10c3 1610
db53a302
CW
1611 trace_i915_gem_object_fault(obj, page_offset, true, write);
1612
6e4930f6
CW
1613 /* Try to flush the object off the GPU first without holding the lock.
1614 * Upon reacquiring the lock, we will perform our sanity checks and then
1615 * repeat the flush holding the lock in the normal manner to catch cases
1616 * where we are gazumped.
1617 */
1618 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1619 if (ret)
1620 goto unlock;
1621
eb119bd6
CW
1622 /* Access to snoopable pages through the GTT is incoherent. */
1623 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1624 ret = -EFAULT;
eb119bd6
CW
1625 goto unlock;
1626 }
1627
d9bc7e9f 1628 /* Now bind it into the GTT if needed */
1ec9e26d 1629 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1630 if (ret)
1631 goto unlock;
4a684a41 1632
c9839303
CW
1633 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1634 if (ret)
1635 goto unpin;
74898d7e 1636
06d98131 1637 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1638 if (ret)
c9839303 1639 goto unpin;
7d1c4804 1640
b90b91d8 1641 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1642 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1643 pfn >>= PAGE_SHIFT;
de151cf6 1644
b90b91d8 1645 if (!obj->fault_mappable) {
beff0d0f
VS
1646 unsigned long size = min_t(unsigned long,
1647 vma->vm_end - vma->vm_start,
1648 obj->base.size);
b90b91d8
CW
1649 int i;
1650
beff0d0f 1651 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1652 ret = vm_insert_pfn(vma,
1653 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1654 pfn + i);
1655 if (ret)
1656 break;
1657 }
1658
1659 obj->fault_mappable = true;
1660 } else
1661 ret = vm_insert_pfn(vma,
1662 (unsigned long)vmf->virtual_address,
1663 pfn + page_offset);
c9839303 1664unpin:
d7f46fc4 1665 i915_gem_object_ggtt_unpin(obj);
c715089f 1666unlock:
de151cf6 1667 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1668out:
de151cf6 1669 switch (ret) {
d9bc7e9f 1670 case -EIO:
2232f031
DV
1671 /*
1672 * We eat errors when the gpu is terminally wedged to avoid
1673 * userspace unduly crashing (gl has no provisions for mmaps to
1674 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1675 * and so needs to be reported.
1676 */
1677 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1678 ret = VM_FAULT_SIGBUS;
1679 break;
1680 }
045e769a 1681 case -EAGAIN:
571c608d
DV
1682 /*
1683 * EAGAIN means the gpu is hung and we'll wait for the error
1684 * handler to reset everything when re-faulting in
1685 * i915_mutex_lock_interruptible.
d9bc7e9f 1686 */
c715089f
CW
1687 case 0:
1688 case -ERESTARTSYS:
bed636ab 1689 case -EINTR:
e79e0fe3
DR
1690 case -EBUSY:
1691 /*
1692 * EBUSY is ok: this just means that another thread
1693 * already did the job.
1694 */
f65c9168
PZ
1695 ret = VM_FAULT_NOPAGE;
1696 break;
de151cf6 1697 case -ENOMEM:
f65c9168
PZ
1698 ret = VM_FAULT_OOM;
1699 break;
a7c2e1aa 1700 case -ENOSPC:
45d67817 1701 case -EFAULT:
f65c9168
PZ
1702 ret = VM_FAULT_SIGBUS;
1703 break;
de151cf6 1704 default:
a7c2e1aa 1705 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1706 ret = VM_FAULT_SIGBUS;
1707 break;
de151cf6 1708 }
f65c9168
PZ
1709
1710 intel_runtime_pm_put(dev_priv);
1711 return ret;
de151cf6
JB
1712}
1713
901782b2
CW
1714/**
1715 * i915_gem_release_mmap - remove physical page mappings
1716 * @obj: obj in question
1717 *
af901ca1 1718 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1719 * relinquish ownership of the pages back to the system.
1720 *
1721 * It is vital that we remove the page mapping if we have mapped a tiled
1722 * object through the GTT and then lose the fence register due to
1723 * resource pressure. Similarly if the object has been moved out of the
1724 * aperture, than pages mapped into userspace must be revoked. Removing the
1725 * mapping will then trigger a page fault on the next user access, allowing
1726 * fixup by i915_gem_fault().
1727 */
d05ca301 1728void
05394f39 1729i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1730{
6299f992
CW
1731 if (!obj->fault_mappable)
1732 return;
901782b2 1733
6796cb16
DH
1734 drm_vma_node_unmap(&obj->base.vma_node,
1735 obj->base.dev->anon_inode->i_mapping);
6299f992 1736 obj->fault_mappable = false;
901782b2
CW
1737}
1738
eedd10f4
CW
1739void
1740i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1741{
1742 struct drm_i915_gem_object *obj;
1743
1744 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1745 i915_gem_release_mmap(obj);
1746}
1747
0fa87796 1748uint32_t
e28f8711 1749i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1750{
e28f8711 1751 uint32_t gtt_size;
92b88aeb
CW
1752
1753 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1754 tiling_mode == I915_TILING_NONE)
1755 return size;
92b88aeb
CW
1756
1757 /* Previous chips need a power-of-two fence region when tiling */
1758 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1759 gtt_size = 1024*1024;
92b88aeb 1760 else
e28f8711 1761 gtt_size = 512*1024;
92b88aeb 1762
e28f8711
CW
1763 while (gtt_size < size)
1764 gtt_size <<= 1;
92b88aeb 1765
e28f8711 1766 return gtt_size;
92b88aeb
CW
1767}
1768
de151cf6
JB
1769/**
1770 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1771 * @obj: object to check
1772 *
1773 * Return the required GTT alignment for an object, taking into account
5e783301 1774 * potential fence register mapping.
de151cf6 1775 */
d865110c
ID
1776uint32_t
1777i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1778 int tiling_mode, bool fenced)
de151cf6 1779{
de151cf6
JB
1780 /*
1781 * Minimum alignment is 4k (GTT page size), but might be greater
1782 * if a fence register is needed for the object.
1783 */
d865110c 1784 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1785 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1786 return 4096;
1787
a00b10c3
CW
1788 /*
1789 * Previous chips need to be aligned to the size of the smallest
1790 * fence register that can contain the object.
1791 */
e28f8711 1792 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1793}
1794
d8cb5086
CW
1795static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1796{
1797 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1798 int ret;
1799
0de23977 1800 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1801 return 0;
1802
da494d7c
DV
1803 dev_priv->mm.shrinker_no_lock_stealing = true;
1804
d8cb5086
CW
1805 ret = drm_gem_create_mmap_offset(&obj->base);
1806 if (ret != -ENOSPC)
da494d7c 1807 goto out;
d8cb5086
CW
1808
1809 /* Badly fragmented mmap space? The only way we can recover
1810 * space is by destroying unwanted objects. We can't randomly release
1811 * mmap_offsets as userspace expects them to be persistent for the
1812 * lifetime of the objects. The closest we can is to release the
1813 * offsets on purgeable objects by truncating it and marking it purged,
1814 * which prevents userspace from ever using that object again.
1815 */
21ab4e74
CW
1816 i915_gem_shrink(dev_priv,
1817 obj->base.size >> PAGE_SHIFT,
1818 I915_SHRINK_BOUND |
1819 I915_SHRINK_UNBOUND |
1820 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1821 ret = drm_gem_create_mmap_offset(&obj->base);
1822 if (ret != -ENOSPC)
da494d7c 1823 goto out;
d8cb5086
CW
1824
1825 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1826 ret = drm_gem_create_mmap_offset(&obj->base);
1827out:
1828 dev_priv->mm.shrinker_no_lock_stealing = false;
1829
1830 return ret;
d8cb5086
CW
1831}
1832
1833static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1834{
d8cb5086
CW
1835 drm_gem_free_mmap_offset(&obj->base);
1836}
1837
355a7018 1838static int
ff72145b
DA
1839i915_gem_mmap_gtt(struct drm_file *file,
1840 struct drm_device *dev,
355a7018 1841 uint32_t handle, bool dumb,
ff72145b 1842 uint64_t *offset)
de151cf6 1843{
da761a6e 1844 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1845 struct drm_i915_gem_object *obj;
de151cf6
JB
1846 int ret;
1847
76c1dec1 1848 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1849 if (ret)
76c1dec1 1850 return ret;
de151cf6 1851
ff72145b 1852 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1853 if (&obj->base == NULL) {
1d7cfea1
CW
1854 ret = -ENOENT;
1855 goto unlock;
1856 }
de151cf6 1857
355a7018
TH
1858 /*
1859 * We don't allow dumb mmaps on objects created using another
1860 * interface.
1861 */
1862 WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1863 "Illegal dumb map of accelerated buffer.\n");
1864
5d4545ae 1865 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1866 ret = -E2BIG;
ff56b0bc 1867 goto out;
da761a6e
CW
1868 }
1869
05394f39 1870 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1871 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1872 ret = -EFAULT;
1d7cfea1 1873 goto out;
ab18282d
CW
1874 }
1875
d8cb5086
CW
1876 ret = i915_gem_object_create_mmap_offset(obj);
1877 if (ret)
1878 goto out;
de151cf6 1879
0de23977 1880 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1881
1d7cfea1 1882out:
05394f39 1883 drm_gem_object_unreference(&obj->base);
1d7cfea1 1884unlock:
de151cf6 1885 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1886 return ret;
de151cf6
JB
1887}
1888
355a7018
TH
1889int
1890i915_gem_dumb_map_offset(struct drm_file *file,
1891 struct drm_device *dev,
1892 uint32_t handle,
1893 uint64_t *offset)
1894{
1895 return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1896}
1897
ff72145b
DA
1898/**
1899 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1900 * @dev: DRM device
1901 * @data: GTT mapping ioctl data
1902 * @file: GEM object info
1903 *
1904 * Simply returns the fake offset to userspace so it can mmap it.
1905 * The mmap call will end up in drm_gem_mmap(), which will set things
1906 * up so we can get faults in the handler above.
1907 *
1908 * The fault handler will take care of binding the object into the GTT
1909 * (since it may have been evicted to make room for something), allocating
1910 * a fence register, and mapping the appropriate aperture address into
1911 * userspace.
1912 */
1913int
1914i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1915 struct drm_file *file)
1916{
1917 struct drm_i915_gem_mmap_gtt *args = data;
1918
355a7018 1919 return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
ff72145b
DA
1920}
1921
5537252b
CW
1922static inline int
1923i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1924{
1925 return obj->madv == I915_MADV_DONTNEED;
1926}
1927
225067ee
DV
1928/* Immediately discard the backing storage */
1929static void
1930i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1931{
4d6294bf 1932 i915_gem_object_free_mmap_offset(obj);
1286ff73 1933
4d6294bf
CW
1934 if (obj->base.filp == NULL)
1935 return;
e5281ccd 1936
225067ee
DV
1937 /* Our goal here is to return as much of the memory as
1938 * is possible back to the system as we are called from OOM.
1939 * To do this we must instruct the shmfs to drop all of its
1940 * backing pages, *now*.
1941 */
5537252b 1942 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1943 obj->madv = __I915_MADV_PURGED;
1944}
e5281ccd 1945
5537252b
CW
1946/* Try to discard unwanted pages */
1947static void
1948i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1949{
5537252b
CW
1950 struct address_space *mapping;
1951
1952 switch (obj->madv) {
1953 case I915_MADV_DONTNEED:
1954 i915_gem_object_truncate(obj);
1955 case __I915_MADV_PURGED:
1956 return;
1957 }
1958
1959 if (obj->base.filp == NULL)
1960 return;
1961
1962 mapping = file_inode(obj->base.filp)->i_mapping,
1963 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1964}
1965
5cdf5881 1966static void
05394f39 1967i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1968{
90797e6d
ID
1969 struct sg_page_iter sg_iter;
1970 int ret;
1286ff73 1971
05394f39 1972 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1973
6c085a72
CW
1974 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1975 if (ret) {
1976 /* In the event of a disaster, abandon all caches and
1977 * hope for the best.
1978 */
1979 WARN_ON(ret != -EIO);
2c22569b 1980 i915_gem_clflush_object(obj, true);
6c085a72
CW
1981 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1982 }
1983
6dacfd2f 1984 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1985 i915_gem_object_save_bit_17_swizzle(obj);
1986
05394f39
CW
1987 if (obj->madv == I915_MADV_DONTNEED)
1988 obj->dirty = 0;
3ef94daa 1989
90797e6d 1990 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1991 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1992
05394f39 1993 if (obj->dirty)
9da3da66 1994 set_page_dirty(page);
3ef94daa 1995
05394f39 1996 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1997 mark_page_accessed(page);
3ef94daa 1998
9da3da66 1999 page_cache_release(page);
3ef94daa 2000 }
05394f39 2001 obj->dirty = 0;
673a394b 2002
9da3da66
CW
2003 sg_free_table(obj->pages);
2004 kfree(obj->pages);
37e680a1 2005}
6c085a72 2006
dd624afd 2007int
37e680a1
CW
2008i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2009{
2010 const struct drm_i915_gem_object_ops *ops = obj->ops;
2011
2f745ad3 2012 if (obj->pages == NULL)
37e680a1
CW
2013 return 0;
2014
a5570178
CW
2015 if (obj->pages_pin_count)
2016 return -EBUSY;
2017
9843877d 2018 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2019
a2165e31
CW
2020 /* ->put_pages might need to allocate memory for the bit17 swizzle
2021 * array, hence protect them from being reaped by removing them from gtt
2022 * lists early. */
35c20a60 2023 list_del(&obj->global_list);
a2165e31 2024
37e680a1 2025 ops->put_pages(obj);
05394f39 2026 obj->pages = NULL;
37e680a1 2027
5537252b 2028 i915_gem_object_invalidate(obj);
6c085a72
CW
2029
2030 return 0;
2031}
2032
21ab4e74
CW
2033unsigned long
2034i915_gem_shrink(struct drm_i915_private *dev_priv,
2035 long target, unsigned flags)
6c085a72 2036{
60a53727
CW
2037 const struct {
2038 struct list_head *list;
2039 unsigned int bit;
2040 } phases[] = {
2041 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2042 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2043 { NULL, 0 },
2044 }, *phase;
d9973b43 2045 unsigned long count = 0;
6c085a72 2046
57094f82 2047 /*
c8725f3d 2048 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2049 * (due to retiring requests) we have to strictly process only
2050 * one element of the list at the time, and recheck the list
2051 * on every iteration.
c8725f3d
CW
2052 *
2053 * In particular, we must hold a reference whilst removing the
2054 * object as we may end up waiting for and/or retiring the objects.
2055 * This might release the final reference (held by the active list)
2056 * and result in the object being freed from under us. This is
2057 * similar to the precautions the eviction code must take whilst
2058 * removing objects.
2059 *
2060 * Also note that although these lists do not hold a reference to
2061 * the object we can safely grab one here: The final object
2062 * unreferencing and the bound_list are both protected by the
2063 * dev->struct_mutex and so we won't ever be able to observe an
2064 * object on the bound_list with a reference count equals 0.
57094f82 2065 */
60a53727 2066 for (phase = phases; phase->list; phase++) {
21ab4e74 2067 struct list_head still_in_list;
c8725f3d 2068
60a53727
CW
2069 if ((flags & phase->bit) == 0)
2070 continue;
80dcfdbd 2071
21ab4e74 2072 INIT_LIST_HEAD(&still_in_list);
60a53727 2073 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2074 struct drm_i915_gem_object *obj;
2075 struct i915_vma *vma, *v;
57094f82 2076
60a53727 2077 obj = list_first_entry(phase->list,
21ab4e74
CW
2078 typeof(*obj), global_list);
2079 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2080
60a53727
CW
2081 if (flags & I915_SHRINK_PURGEABLE &&
2082 !i915_gem_object_is_purgeable(obj))
21ab4e74 2083 continue;
57094f82 2084
21ab4e74 2085 drm_gem_object_reference(&obj->base);
80dcfdbd 2086
60a53727
CW
2087 /* For the unbound phase, this should be a no-op! */
2088 list_for_each_entry_safe(vma, v,
2089 &obj->vma_list, vma_link)
21ab4e74
CW
2090 if (i915_vma_unbind(vma))
2091 break;
57094f82 2092
21ab4e74
CW
2093 if (i915_gem_object_put_pages(obj) == 0)
2094 count += obj->base.size >> PAGE_SHIFT;
2095
2096 drm_gem_object_unreference(&obj->base);
2097 }
60a53727 2098 list_splice(&still_in_list, phase->list);
6c085a72
CW
2099 }
2100
2101 return count;
2102}
2103
d9973b43 2104static unsigned long
6c085a72
CW
2105i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2106{
6c085a72 2107 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2108 return i915_gem_shrink(dev_priv, LONG_MAX,
2109 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2110}
2111
37e680a1 2112static int
6c085a72 2113i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2114{
6c085a72 2115 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2116 int page_count, i;
2117 struct address_space *mapping;
9da3da66
CW
2118 struct sg_table *st;
2119 struct scatterlist *sg;
90797e6d 2120 struct sg_page_iter sg_iter;
e5281ccd 2121 struct page *page;
90797e6d 2122 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2123 gfp_t gfp;
e5281ccd 2124
6c085a72
CW
2125 /* Assert that the object is not currently in any GPU domain. As it
2126 * wasn't in the GTT, there shouldn't be any way it could have been in
2127 * a GPU cache
2128 */
2129 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2130 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2131
9da3da66
CW
2132 st = kmalloc(sizeof(*st), GFP_KERNEL);
2133 if (st == NULL)
2134 return -ENOMEM;
2135
05394f39 2136 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2137 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2138 kfree(st);
e5281ccd 2139 return -ENOMEM;
9da3da66 2140 }
e5281ccd 2141
9da3da66
CW
2142 /* Get the list of pages out of our struct file. They'll be pinned
2143 * at this point until we release them.
2144 *
2145 * Fail silently without starting the shrinker
2146 */
496ad9aa 2147 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2148 gfp = mapping_gfp_mask(mapping);
caf49191 2149 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2150 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2151 sg = st->sgl;
2152 st->nents = 0;
2153 for (i = 0; i < page_count; i++) {
6c085a72
CW
2154 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2155 if (IS_ERR(page)) {
21ab4e74
CW
2156 i915_gem_shrink(dev_priv,
2157 page_count,
2158 I915_SHRINK_BOUND |
2159 I915_SHRINK_UNBOUND |
2160 I915_SHRINK_PURGEABLE);
6c085a72
CW
2161 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2162 }
2163 if (IS_ERR(page)) {
2164 /* We've tried hard to allocate the memory by reaping
2165 * our own buffer, now let the real VM do its job and
2166 * go down in flames if truly OOM.
2167 */
6c085a72 2168 i915_gem_shrink_all(dev_priv);
f461d1be 2169 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2170 if (IS_ERR(page))
2171 goto err_pages;
6c085a72 2172 }
426729dc
KRW
2173#ifdef CONFIG_SWIOTLB
2174 if (swiotlb_nr_tbl()) {
2175 st->nents++;
2176 sg_set_page(sg, page, PAGE_SIZE, 0);
2177 sg = sg_next(sg);
2178 continue;
2179 }
2180#endif
90797e6d
ID
2181 if (!i || page_to_pfn(page) != last_pfn + 1) {
2182 if (i)
2183 sg = sg_next(sg);
2184 st->nents++;
2185 sg_set_page(sg, page, PAGE_SIZE, 0);
2186 } else {
2187 sg->length += PAGE_SIZE;
2188 }
2189 last_pfn = page_to_pfn(page);
3bbbe706
DV
2190
2191 /* Check that the i965g/gm workaround works. */
2192 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2193 }
426729dc
KRW
2194#ifdef CONFIG_SWIOTLB
2195 if (!swiotlb_nr_tbl())
2196#endif
2197 sg_mark_end(sg);
74ce6b6c
CW
2198 obj->pages = st;
2199
6dacfd2f 2200 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2201 i915_gem_object_do_bit_17_swizzle(obj);
2202
656bfa3a
DV
2203 if (obj->tiling_mode != I915_TILING_NONE &&
2204 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2205 i915_gem_object_pin_pages(obj);
2206
e5281ccd
CW
2207 return 0;
2208
2209err_pages:
90797e6d
ID
2210 sg_mark_end(sg);
2211 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2212 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2213 sg_free_table(st);
2214 kfree(st);
0820baf3
CW
2215
2216 /* shmemfs first checks if there is enough memory to allocate the page
2217 * and reports ENOSPC should there be insufficient, along with the usual
2218 * ENOMEM for a genuine allocation failure.
2219 *
2220 * We use ENOSPC in our driver to mean that we have run out of aperture
2221 * space and so want to translate the error from shmemfs back to our
2222 * usual understanding of ENOMEM.
2223 */
2224 if (PTR_ERR(page) == -ENOSPC)
2225 return -ENOMEM;
2226 else
2227 return PTR_ERR(page);
673a394b
EA
2228}
2229
37e680a1
CW
2230/* Ensure that the associated pages are gathered from the backing storage
2231 * and pinned into our object. i915_gem_object_get_pages() may be called
2232 * multiple times before they are released by a single call to
2233 * i915_gem_object_put_pages() - once the pages are no longer referenced
2234 * either as a result of memory pressure (reaping pages under the shrinker)
2235 * or as the object is itself released.
2236 */
2237int
2238i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2239{
2240 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241 const struct drm_i915_gem_object_ops *ops = obj->ops;
2242 int ret;
2243
2f745ad3 2244 if (obj->pages)
37e680a1
CW
2245 return 0;
2246
43e28f09 2247 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2248 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2249 return -EFAULT;
43e28f09
CW
2250 }
2251
a5570178
CW
2252 BUG_ON(obj->pages_pin_count);
2253
37e680a1
CW
2254 ret = ops->get_pages(obj);
2255 if (ret)
2256 return ret;
2257
35c20a60 2258 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2259 return 0;
673a394b
EA
2260}
2261
e2d05a8b 2262static void
05394f39 2263i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2264 struct intel_engine_cs *ring)
673a394b 2265{
41c52415
JH
2266 struct drm_i915_gem_request *req;
2267 struct intel_engine_cs *old_ring;
617dbe27 2268
852835f3 2269 BUG_ON(ring == NULL);
41c52415
JH
2270
2271 req = intel_ring_get_request(ring);
2272 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2273
2274 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2275 /* Keep the request relative to the current ring */
2276 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2277 }
673a394b
EA
2278
2279 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2280 if (!obj->active) {
2281 drm_gem_object_reference(&obj->base);
2282 obj->active = 1;
673a394b 2283 }
e35a41de 2284
05394f39 2285 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2286
97b2a6a1 2287 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2288}
2289
e2d05a8b 2290void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2291 struct intel_engine_cs *ring)
e2d05a8b
BW
2292{
2293 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2294 return i915_gem_object_move_to_active(vma->obj, ring);
2295}
2296
caea7476 2297static void
caea7476 2298i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2299{
feb822cf 2300 struct i915_vma *vma;
ce44b0ea 2301
65ce3027 2302 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2303 BUG_ON(!obj->active);
caea7476 2304
fe14d5f4
TU
2305 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2306 if (!list_empty(&vma->mm_list))
2307 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2308 }
caea7476 2309
f99d7069
DV
2310 intel_fb_obj_flush(obj, true);
2311
65ce3027 2312 list_del_init(&obj->ring_list);
caea7476 2313
97b2a6a1
JH
2314 i915_gem_request_assign(&obj->last_read_req, NULL);
2315 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2316 obj->base.write_domain = 0;
2317
97b2a6a1 2318 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2319
2320 obj->active = 0;
2321 drm_gem_object_unreference(&obj->base);
2322
2323 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2324}
673a394b 2325
c8725f3d
CW
2326static void
2327i915_gem_object_retire(struct drm_i915_gem_object *obj)
2328{
41c52415 2329 if (obj->last_read_req == NULL)
c8725f3d
CW
2330 return;
2331
1b5a433a 2332 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2333 i915_gem_object_move_to_inactive(obj);
2334}
2335
9d773091 2336static int
fca26bb4 2337i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2338{
9d773091 2339 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2340 struct intel_engine_cs *ring;
9d773091 2341 int ret, i, j;
53d227f2 2342
107f27a5 2343 /* Carefully retire all requests without writing to the rings */
9d773091 2344 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2345 ret = intel_ring_idle(ring);
2346 if (ret)
2347 return ret;
9d773091 2348 }
9d773091 2349 i915_gem_retire_requests(dev);
107f27a5
CW
2350
2351 /* Finally reset hw state */
9d773091 2352 for_each_ring(ring, dev_priv, i) {
fca26bb4 2353 intel_ring_init_seqno(ring, seqno);
498d2ac1 2354
ebc348b2
BW
2355 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2356 ring->semaphore.sync_seqno[j] = 0;
9d773091 2357 }
53d227f2 2358
9d773091 2359 return 0;
53d227f2
DV
2360}
2361
fca26bb4
MK
2362int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2363{
2364 struct drm_i915_private *dev_priv = dev->dev_private;
2365 int ret;
2366
2367 if (seqno == 0)
2368 return -EINVAL;
2369
2370 /* HWS page needs to be set less than what we
2371 * will inject to ring
2372 */
2373 ret = i915_gem_init_seqno(dev, seqno - 1);
2374 if (ret)
2375 return ret;
2376
2377 /* Carefully set the last_seqno value so that wrap
2378 * detection still works
2379 */
2380 dev_priv->next_seqno = seqno;
2381 dev_priv->last_seqno = seqno - 1;
2382 if (dev_priv->last_seqno == 0)
2383 dev_priv->last_seqno--;
2384
2385 return 0;
2386}
2387
9d773091
CW
2388int
2389i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2390{
9d773091
CW
2391 struct drm_i915_private *dev_priv = dev->dev_private;
2392
2393 /* reserve 0 for non-seqno */
2394 if (dev_priv->next_seqno == 0) {
fca26bb4 2395 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2396 if (ret)
2397 return ret;
53d227f2 2398
9d773091
CW
2399 dev_priv->next_seqno = 1;
2400 }
53d227f2 2401
f72b3435 2402 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2403 return 0;
53d227f2
DV
2404}
2405
a4872ba6 2406int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2407 struct drm_file *file,
9400ae5c 2408 struct drm_i915_gem_object *obj)
673a394b 2409{
3e31c6c0 2410 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2411 struct drm_i915_gem_request *request;
48e29f55 2412 struct intel_ringbuffer *ringbuf;
7d736f4f 2413 u32 request_ring_position, request_start;
3cce469c
CW
2414 int ret;
2415
6259cead 2416 request = ring->outstanding_lazy_request;
48e29f55
OM
2417 if (WARN_ON(request == NULL))
2418 return -ENOMEM;
2419
2420 if (i915.enable_execlists) {
2421 struct intel_context *ctx = request->ctx;
2422 ringbuf = ctx->engine[ring->id].ringbuf;
2423 } else
2424 ringbuf = ring->buffer;
2425
2426 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2427 /*
2428 * Emit any outstanding flushes - execbuf can fail to emit the flush
2429 * after having emitted the batchbuffer command. Hence we need to fix
2430 * things up similar to emitting the lazy request. The difference here
2431 * is that the flush _must_ happen before the next request, no matter
2432 * what.
2433 */
48e29f55
OM
2434 if (i915.enable_execlists) {
2435 ret = logical_ring_flush_all_caches(ringbuf);
2436 if (ret)
2437 return ret;
2438 } else {
2439 ret = intel_ring_flush_all_caches(ring);
2440 if (ret)
2441 return ret;
2442 }
cc889e0f 2443
a71d8d94
CW
2444 /* Record the position of the start of the request so that
2445 * should we detect the updated seqno part-way through the
2446 * GPU processing the request, we never over-estimate the
2447 * position of the head.
2448 */
48e29f55 2449 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2450
48e29f55
OM
2451 if (i915.enable_execlists) {
2452 ret = ring->emit_request(ringbuf);
2453 if (ret)
2454 return ret;
2455 } else {
2456 ret = ring->add_request(ring);
2457 if (ret)
2458 return ret;
2459 }
673a394b 2460
7d736f4f 2461 request->head = request_start;
a71d8d94 2462 request->tail = request_ring_position;
7d736f4f
MK
2463
2464 /* Whilst this request exists, batch_obj will be on the
2465 * active_list, and so will hold the active reference. Only when this
2466 * request is retired will the the batch_obj be moved onto the
2467 * inactive_list and lose its active reference. Hence we do not need
2468 * to explicitly hold another reference here.
2469 */
9a7e0c2a 2470 request->batch_obj = obj;
0e50e96b 2471
48e29f55
OM
2472 if (!i915.enable_execlists) {
2473 /* Hold a reference to the current context so that we can inspect
2474 * it later in case a hangcheck error event fires.
2475 */
2476 request->ctx = ring->last_context;
2477 if (request->ctx)
2478 i915_gem_context_reference(request->ctx);
2479 }
0e50e96b 2480
673a394b 2481 request->emitted_jiffies = jiffies;
852835f3 2482 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2483 request->file_priv = NULL;
852835f3 2484
db53a302
CW
2485 if (file) {
2486 struct drm_i915_file_private *file_priv = file->driver_priv;
2487
1c25595f 2488 spin_lock(&file_priv->mm.lock);
f787a5f5 2489 request->file_priv = file_priv;
b962442e 2490 list_add_tail(&request->client_list,
f787a5f5 2491 &file_priv->mm.request_list);
1c25595f 2492 spin_unlock(&file_priv->mm.lock);
b962442e 2493 }
673a394b 2494
74328ee5 2495 trace_i915_gem_request_add(request);
6259cead 2496 ring->outstanding_lazy_request = NULL;
db53a302 2497
87255483 2498 i915_queue_hangcheck(ring->dev);
10cd45b6 2499
87255483
DV
2500 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2501 queue_delayed_work(dev_priv->wq,
2502 &dev_priv->mm.retire_work,
2503 round_jiffies_up_relative(HZ));
2504 intel_mark_busy(dev_priv->dev);
cc889e0f 2505
3cce469c 2506 return 0;
673a394b
EA
2507}
2508
f787a5f5
CW
2509static inline void
2510i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2511{
1c25595f 2512 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2513
1c25595f
CW
2514 if (!file_priv)
2515 return;
1c5d22f7 2516
1c25595f 2517 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2518 list_del(&request->client_list);
2519 request->file_priv = NULL;
1c25595f 2520 spin_unlock(&file_priv->mm.lock);
673a394b 2521}
673a394b 2522
939fd762 2523static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2524 const struct intel_context *ctx)
be62acb4 2525{
44e2c070 2526 unsigned long elapsed;
be62acb4 2527
44e2c070
MK
2528 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2529
2530 if (ctx->hang_stats.banned)
be62acb4
MK
2531 return true;
2532
2533 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2534 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2535 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2536 return true;
88b4aa87
MK
2537 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2538 if (i915_stop_ring_allow_warn(dev_priv))
2539 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2540 return true;
3fac8978 2541 }
be62acb4
MK
2542 }
2543
2544 return false;
2545}
2546
939fd762 2547static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2548 struct intel_context *ctx,
b6b0fac0 2549 const bool guilty)
aa60c664 2550{
44e2c070
MK
2551 struct i915_ctx_hang_stats *hs;
2552
2553 if (WARN_ON(!ctx))
2554 return;
aa60c664 2555
44e2c070
MK
2556 hs = &ctx->hang_stats;
2557
2558 if (guilty) {
939fd762 2559 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2560 hs->batch_active++;
2561 hs->guilty_ts = get_seconds();
2562 } else {
2563 hs->batch_pending++;
aa60c664
MK
2564 }
2565}
2566
0e50e96b
MK
2567static void i915_gem_free_request(struct drm_i915_gem_request *request)
2568{
2569 list_del(&request->list);
2570 i915_gem_request_remove_from_client(request);
2571
abfe262a
JH
2572 i915_gem_request_unreference(request);
2573}
2574
2575void i915_gem_request_free(struct kref *req_ref)
2576{
2577 struct drm_i915_gem_request *req = container_of(req_ref,
2578 typeof(*req), ref);
2579 struct intel_context *ctx = req->ctx;
2580
0794aed3
TD
2581 if (ctx) {
2582 if (i915.enable_execlists) {
abfe262a 2583 struct intel_engine_cs *ring = req->ring;
0e50e96b 2584
0794aed3
TD
2585 if (ctx != ring->default_context)
2586 intel_lr_context_unpin(ring, ctx);
2587 }
abfe262a 2588
dcb4c12a
OM
2589 i915_gem_context_unreference(ctx);
2590 }
abfe262a
JH
2591
2592 kfree(req);
0e50e96b
MK
2593}
2594
8d9fc7fd 2595struct drm_i915_gem_request *
a4872ba6 2596i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2597{
4db080f9
CW
2598 struct drm_i915_gem_request *request;
2599
2600 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2601 if (i915_gem_request_completed(request, false))
4db080f9 2602 continue;
aa60c664 2603
b6b0fac0 2604 return request;
4db080f9 2605 }
b6b0fac0
MK
2606
2607 return NULL;
2608}
2609
2610static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2611 struct intel_engine_cs *ring)
b6b0fac0
MK
2612{
2613 struct drm_i915_gem_request *request;
2614 bool ring_hung;
2615
8d9fc7fd 2616 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2617
2618 if (request == NULL)
2619 return;
2620
2621 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2622
939fd762 2623 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2624
2625 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2626 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2627}
aa60c664 2628
4db080f9 2629static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2630 struct intel_engine_cs *ring)
4db080f9 2631{
dfaae392 2632 while (!list_empty(&ring->active_list)) {
05394f39 2633 struct drm_i915_gem_object *obj;
9375e446 2634
05394f39
CW
2635 obj = list_first_entry(&ring->active_list,
2636 struct drm_i915_gem_object,
2637 ring_list);
9375e446 2638
05394f39 2639 i915_gem_object_move_to_inactive(obj);
673a394b 2640 }
1d62beea 2641
dcb4c12a
OM
2642 /*
2643 * Clear the execlists queue up before freeing the requests, as those
2644 * are the ones that keep the context and ringbuffer backing objects
2645 * pinned in place.
2646 */
2647 while (!list_empty(&ring->execlist_queue)) {
2648 struct intel_ctx_submit_request *submit_req;
2649
2650 submit_req = list_first_entry(&ring->execlist_queue,
2651 struct intel_ctx_submit_request,
2652 execlist_link);
2653 list_del(&submit_req->execlist_link);
2654 intel_runtime_pm_put(dev_priv);
2655 i915_gem_context_unreference(submit_req->ctx);
2656 kfree(submit_req);
2657 }
2658
1d62beea
BW
2659 /*
2660 * We must free the requests after all the corresponding objects have
2661 * been moved off active lists. Which is the same order as the normal
2662 * retire_requests function does. This is important if object hold
2663 * implicit references on things like e.g. ppgtt address spaces through
2664 * the request.
2665 */
2666 while (!list_empty(&ring->request_list)) {
2667 struct drm_i915_gem_request *request;
2668
2669 request = list_first_entry(&ring->request_list,
2670 struct drm_i915_gem_request,
2671 list);
2672
2673 i915_gem_free_request(request);
2674 }
e3efda49 2675
6259cead
JH
2676 /* This may not have been flushed before the reset, so clean it now */
2677 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2678}
2679
19b2dbde 2680void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2681{
2682 struct drm_i915_private *dev_priv = dev->dev_private;
2683 int i;
2684
4b9de737 2685 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2686 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2687
94a335db
DV
2688 /*
2689 * Commit delayed tiling changes if we have an object still
2690 * attached to the fence, otherwise just clear the fence.
2691 */
2692 if (reg->obj) {
2693 i915_gem_object_update_fence(reg->obj, reg,
2694 reg->obj->tiling_mode);
2695 } else {
2696 i915_gem_write_fence(dev, i, NULL);
2697 }
312817a3
CW
2698 }
2699}
2700
069efc1d 2701void i915_gem_reset(struct drm_device *dev)
673a394b 2702{
77f01230 2703 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2704 struct intel_engine_cs *ring;
1ec14ad3 2705 int i;
673a394b 2706
4db080f9
CW
2707 /*
2708 * Before we free the objects from the requests, we need to inspect
2709 * them for finding the guilty party. As the requests only borrow
2710 * their reference to the objects, the inspection must be done first.
2711 */
2712 for_each_ring(ring, dev_priv, i)
2713 i915_gem_reset_ring_status(dev_priv, ring);
2714
b4519513 2715 for_each_ring(ring, dev_priv, i)
4db080f9 2716 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2717
acce9ffa
BW
2718 i915_gem_context_reset(dev);
2719
19b2dbde 2720 i915_gem_restore_fences(dev);
673a394b
EA
2721}
2722
2723/**
2724 * This function clears the request list as sequence numbers are passed.
2725 */
1cf0ba14 2726void
a4872ba6 2727i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2728{
db53a302 2729 if (list_empty(&ring->request_list))
6c0594a3
KW
2730 return;
2731
db53a302 2732 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2733
e9103038
CW
2734 /* Move any buffers on the active list that are no longer referenced
2735 * by the ringbuffer to the flushing/inactive lists as appropriate,
2736 * before we free the context associated with the requests.
2737 */
2738 while (!list_empty(&ring->active_list)) {
2739 struct drm_i915_gem_object *obj;
2740
2741 obj = list_first_entry(&ring->active_list,
2742 struct drm_i915_gem_object,
2743 ring_list);
2744
1b5a433a 2745 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2746 break;
2747
2748 i915_gem_object_move_to_inactive(obj);
2749 }
2750
2751
852835f3 2752 while (!list_empty(&ring->request_list)) {
673a394b 2753 struct drm_i915_gem_request *request;
48e29f55 2754 struct intel_ringbuffer *ringbuf;
673a394b 2755
852835f3 2756 request = list_first_entry(&ring->request_list,
673a394b
EA
2757 struct drm_i915_gem_request,
2758 list);
673a394b 2759
1b5a433a 2760 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2761 break;
2762
74328ee5 2763 trace_i915_gem_request_retire(request);
48e29f55
OM
2764
2765 /* This is one of the few common intersection points
2766 * between legacy ringbuffer submission and execlists:
2767 * we need to tell them apart in order to find the correct
2768 * ringbuffer to which the request belongs to.
2769 */
2770 if (i915.enable_execlists) {
2771 struct intel_context *ctx = request->ctx;
2772 ringbuf = ctx->engine[ring->id].ringbuf;
2773 } else
2774 ringbuf = ring->buffer;
2775
a71d8d94
CW
2776 /* We know the GPU must have read the request to have
2777 * sent us the seqno + interrupt, so use the position
2778 * of tail of the request to update the last known position
2779 * of the GPU head.
2780 */
48e29f55 2781 ringbuf->last_retired_head = request->tail;
b84d5f0c 2782
0e50e96b 2783 i915_gem_free_request(request);
b84d5f0c 2784 }
673a394b 2785
581c26e8
JH
2786 if (unlikely(ring->trace_irq_req &&
2787 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2788 ring->irq_put(ring);
581c26e8 2789 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2790 }
23bc5982 2791
db53a302 2792 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2793}
2794
b29c19b6 2795bool
b09a1fec
CW
2796i915_gem_retire_requests(struct drm_device *dev)
2797{
3e31c6c0 2798 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2799 struct intel_engine_cs *ring;
b29c19b6 2800 bool idle = true;
1ec14ad3 2801 int i;
b09a1fec 2802
b29c19b6 2803 for_each_ring(ring, dev_priv, i) {
b4519513 2804 i915_gem_retire_requests_ring(ring);
b29c19b6 2805 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2806 if (i915.enable_execlists) {
2807 unsigned long flags;
2808
2809 spin_lock_irqsave(&ring->execlist_lock, flags);
2810 idle &= list_empty(&ring->execlist_queue);
2811 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2812
2813 intel_execlists_retire_requests(ring);
2814 }
b29c19b6
CW
2815 }
2816
2817 if (idle)
2818 mod_delayed_work(dev_priv->wq,
2819 &dev_priv->mm.idle_work,
2820 msecs_to_jiffies(100));
2821
2822 return idle;
b09a1fec
CW
2823}
2824
75ef9da2 2825static void
673a394b
EA
2826i915_gem_retire_work_handler(struct work_struct *work)
2827{
b29c19b6
CW
2828 struct drm_i915_private *dev_priv =
2829 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2830 struct drm_device *dev = dev_priv->dev;
0a58705b 2831 bool idle;
673a394b 2832
891b48cf 2833 /* Come back later if the device is busy... */
b29c19b6
CW
2834 idle = false;
2835 if (mutex_trylock(&dev->struct_mutex)) {
2836 idle = i915_gem_retire_requests(dev);
2837 mutex_unlock(&dev->struct_mutex);
673a394b 2838 }
b29c19b6 2839 if (!idle)
bcb45086
CW
2840 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2841 round_jiffies_up_relative(HZ));
b29c19b6 2842}
0a58705b 2843
b29c19b6
CW
2844static void
2845i915_gem_idle_work_handler(struct work_struct *work)
2846{
2847 struct drm_i915_private *dev_priv =
2848 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2849
2850 intel_mark_idle(dev_priv->dev);
673a394b
EA
2851}
2852
30dfebf3
DV
2853/**
2854 * Ensures that an object will eventually get non-busy by flushing any required
2855 * write domains, emitting any outstanding lazy request and retiring and
2856 * completed requests.
2857 */
2858static int
2859i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2860{
41c52415 2861 struct intel_engine_cs *ring;
30dfebf3
DV
2862 int ret;
2863
2864 if (obj->active) {
41c52415
JH
2865 ring = i915_gem_request_get_ring(obj->last_read_req);
2866
b6660d59 2867 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2868 if (ret)
2869 return ret;
2870
41c52415 2871 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2872 }
2873
2874 return 0;
2875}
2876
23ba4fd0
BW
2877/**
2878 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2879 * @DRM_IOCTL_ARGS: standard ioctl arguments
2880 *
2881 * Returns 0 if successful, else an error is returned with the remaining time in
2882 * the timeout parameter.
2883 * -ETIME: object is still busy after timeout
2884 * -ERESTARTSYS: signal interrupted the wait
2885 * -ENONENT: object doesn't exist
2886 * Also possible, but rare:
2887 * -EAGAIN: GPU wedged
2888 * -ENOMEM: damn
2889 * -ENODEV: Internal IRQ fail
2890 * -E?: The add request failed
2891 *
2892 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2893 * non-zero timeout parameter the wait ioctl will wait for the given number of
2894 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2895 * without holding struct_mutex the object may become re-busied before this
2896 * function completes. A similar but shorter * race condition exists in the busy
2897 * ioctl
2898 */
2899int
2900i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2901{
3e31c6c0 2902 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2903 struct drm_i915_gem_wait *args = data;
2904 struct drm_i915_gem_object *obj;
ff865885 2905 struct drm_i915_gem_request *req;
f69061be 2906 unsigned reset_counter;
23ba4fd0
BW
2907 int ret = 0;
2908
11b5d511
DV
2909 if (args->flags != 0)
2910 return -EINVAL;
2911
23ba4fd0
BW
2912 ret = i915_mutex_lock_interruptible(dev);
2913 if (ret)
2914 return ret;
2915
2916 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2917 if (&obj->base == NULL) {
2918 mutex_unlock(&dev->struct_mutex);
2919 return -ENOENT;
2920 }
2921
30dfebf3
DV
2922 /* Need to make sure the object gets inactive eventually. */
2923 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2924 if (ret)
2925 goto out;
2926
97b2a6a1
JH
2927 if (!obj->active || !obj->last_read_req)
2928 goto out;
23ba4fd0 2929
ff865885 2930 req = obj->last_read_req;
23ba4fd0 2931
23ba4fd0 2932 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2933 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2934 */
5ed0bdf2 2935 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2936 ret = -ETIME;
2937 goto out;
2938 }
2939
2940 drm_gem_object_unreference(&obj->base);
f69061be 2941 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2942 i915_gem_request_reference(req);
23ba4fd0
BW
2943 mutex_unlock(&dev->struct_mutex);
2944
9c654818
JH
2945 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2946 file->driver_priv);
ff865885
JH
2947 mutex_lock(&dev->struct_mutex);
2948 i915_gem_request_unreference(req);
2949 mutex_unlock(&dev->struct_mutex);
2950 return ret;
23ba4fd0
BW
2951
2952out:
2953 drm_gem_object_unreference(&obj->base);
2954 mutex_unlock(&dev->struct_mutex);
2955 return ret;
2956}
2957
5816d648
BW
2958/**
2959 * i915_gem_object_sync - sync an object to a ring.
2960 *
2961 * @obj: object which may be in use on another ring.
2962 * @to: ring we wish to use the object on. May be NULL.
2963 *
2964 * This code is meant to abstract object synchronization with the GPU.
2965 * Calling with NULL implies synchronizing the object with the CPU
2966 * rather than a particular GPU ring.
2967 *
2968 * Returns 0 if successful, else propagates up the lower layer error.
2969 */
2911a35b
BW
2970int
2971i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2972 struct intel_engine_cs *to)
2911a35b 2973{
41c52415 2974 struct intel_engine_cs *from;
2911a35b
BW
2975 u32 seqno;
2976 int ret, idx;
2977
41c52415
JH
2978 from = i915_gem_request_get_ring(obj->last_read_req);
2979
2911a35b
BW
2980 if (from == NULL || to == from)
2981 return 0;
2982
5816d648 2983 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2984 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2985
2986 idx = intel_ring_sync_index(from, to);
2987
97b2a6a1 2988 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2989 /* Optimization: Avoid semaphore sync when we are sure we already
2990 * waited for an object with higher seqno */
ebc348b2 2991 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2992 return 0;
2993
b6660d59 2994 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
2995 if (ret)
2996 return ret;
2911a35b 2997
74328ee5 2998 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 2999 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3000 if (!ret)
97b2a6a1 3001 /* We use last_read_req because sync_to()
7b01e260
MK
3002 * might have just caused seqno wrap under
3003 * the radar.
3004 */
97b2a6a1
JH
3005 from->semaphore.sync_seqno[idx] =
3006 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3007
e3a5a225 3008 return ret;
2911a35b
BW
3009}
3010
b5ffc9bc
CW
3011static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3012{
3013 u32 old_write_domain, old_read_domains;
3014
b5ffc9bc
CW
3015 /* Force a pagefault for domain tracking on next user access */
3016 i915_gem_release_mmap(obj);
3017
b97c3d9c
KP
3018 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3019 return;
3020
97c809fd
CW
3021 /* Wait for any direct GTT access to complete */
3022 mb();
3023
b5ffc9bc
CW
3024 old_read_domains = obj->base.read_domains;
3025 old_write_domain = obj->base.write_domain;
3026
3027 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3028 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3029
3030 trace_i915_gem_object_change_domain(obj,
3031 old_read_domains,
3032 old_write_domain);
3033}
3034
07fe0b12 3035int i915_vma_unbind(struct i915_vma *vma)
673a394b 3036{
07fe0b12 3037 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3038 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3039 int ret;
673a394b 3040
07fe0b12 3041 if (list_empty(&vma->vma_link))
673a394b
EA
3042 return 0;
3043
0ff501cb
DV
3044 if (!drm_mm_node_allocated(&vma->node)) {
3045 i915_gem_vma_destroy(vma);
0ff501cb
DV
3046 return 0;
3047 }
433544bd 3048
d7f46fc4 3049 if (vma->pin_count)
31d8d651 3050 return -EBUSY;
673a394b 3051
c4670ad0
CW
3052 BUG_ON(obj->pages == NULL);
3053
a8198eea 3054 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3055 if (ret)
a8198eea
CW
3056 return ret;
3057 /* Continue on if we fail due to EIO, the GPU is hung so we
3058 * should be safe and we need to cleanup or else we might
3059 * cause memory corruption through use-after-free.
3060 */
3061
fe14d5f4
TU
3062 if (i915_is_ggtt(vma->vm) &&
3063 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3064 i915_gem_object_finish_gtt(obj);
5323fd04 3065
8b1bc9b4
DV
3066 /* release the fence reg _after_ flushing */
3067 ret = i915_gem_object_put_fence(obj);
3068 if (ret)
3069 return ret;
3070 }
96b47b65 3071
07fe0b12 3072 trace_i915_vma_unbind(vma);
db53a302 3073
6f65e29a
BW
3074 vma->unbind_vma(vma);
3075
64bf9303 3076 list_del_init(&vma->mm_list);
fe14d5f4
TU
3077 if (i915_is_ggtt(vma->vm)) {
3078 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3079 obj->map_and_fenceable = false;
3080 } else if (vma->ggtt_view.pages) {
3081 sg_free_table(vma->ggtt_view.pages);
3082 kfree(vma->ggtt_view.pages);
3083 vma->ggtt_view.pages = NULL;
3084 }
3085 }
673a394b 3086
2f633156
BW
3087 drm_mm_remove_node(&vma->node);
3088 i915_gem_vma_destroy(vma);
3089
3090 /* Since the unbound list is global, only move to that list if
b93dab6e 3091 * no more VMAs exist. */
9490edb5 3092 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3093 /* Throw away the active reference before
3094 * moving to the unbound list. */
3095 i915_gem_object_retire(obj);
3096
9490edb5 3097 i915_gem_gtt_finish_object(obj);
2f633156 3098 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3099 }
673a394b 3100
70903c3b
CW
3101 /* And finally now the object is completely decoupled from this vma,
3102 * we can drop its hold on the backing storage and allow it to be
3103 * reaped by the shrinker.
3104 */
3105 i915_gem_object_unpin_pages(obj);
3106
88241785 3107 return 0;
54cf91dc
CW
3108}
3109
b2da9fe5 3110int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3111{
3e31c6c0 3112 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3113 struct intel_engine_cs *ring;
1ec14ad3 3114 int ret, i;
4df2faf4 3115
4df2faf4 3116 /* Flush everything onto the inactive list. */
b4519513 3117 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3118 if (!i915.enable_execlists) {
3119 ret = i915_switch_context(ring, ring->default_context);
3120 if (ret)
3121 return ret;
3122 }
b6c7488d 3123
3e960501 3124 ret = intel_ring_idle(ring);
1ec14ad3
CW
3125 if (ret)
3126 return ret;
3127 }
4df2faf4 3128
8a1a49f9 3129 return 0;
4df2faf4
DV
3130}
3131
9ce079e4
CW
3132static void i965_write_fence_reg(struct drm_device *dev, int reg,
3133 struct drm_i915_gem_object *obj)
de151cf6 3134{
3e31c6c0 3135 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3136 int fence_reg;
3137 int fence_pitch_shift;
de151cf6 3138
56c844e5
ID
3139 if (INTEL_INFO(dev)->gen >= 6) {
3140 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3141 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3142 } else {
3143 fence_reg = FENCE_REG_965_0;
3144 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3145 }
3146
d18b9619
CW
3147 fence_reg += reg * 8;
3148
3149 /* To w/a incoherency with non-atomic 64-bit register updates,
3150 * we split the 64-bit update into two 32-bit writes. In order
3151 * for a partial fence not to be evaluated between writes, we
3152 * precede the update with write to turn off the fence register,
3153 * and only enable the fence as the last step.
3154 *
3155 * For extra levels of paranoia, we make sure each step lands
3156 * before applying the next step.
3157 */
3158 I915_WRITE(fence_reg, 0);
3159 POSTING_READ(fence_reg);
3160
9ce079e4 3161 if (obj) {
f343c5f6 3162 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3163 uint64_t val;
de151cf6 3164
f343c5f6 3165 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3166 0xfffff000) << 32;
f343c5f6 3167 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3168 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3169 if (obj->tiling_mode == I915_TILING_Y)
3170 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3171 val |= I965_FENCE_REG_VALID;
c6642782 3172
d18b9619
CW
3173 I915_WRITE(fence_reg + 4, val >> 32);
3174 POSTING_READ(fence_reg + 4);
3175
3176 I915_WRITE(fence_reg + 0, val);
3177 POSTING_READ(fence_reg);
3178 } else {
3179 I915_WRITE(fence_reg + 4, 0);
3180 POSTING_READ(fence_reg + 4);
3181 }
de151cf6
JB
3182}
3183
9ce079e4
CW
3184static void i915_write_fence_reg(struct drm_device *dev, int reg,
3185 struct drm_i915_gem_object *obj)
de151cf6 3186{
3e31c6c0 3187 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3188 u32 val;
de151cf6 3189
9ce079e4 3190 if (obj) {
f343c5f6 3191 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3192 int pitch_val;
3193 int tile_width;
c6642782 3194
f343c5f6 3195 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3196 (size & -size) != size ||
f343c5f6
BW
3197 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3198 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3199 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3200
9ce079e4
CW
3201 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3202 tile_width = 128;
3203 else
3204 tile_width = 512;
3205
3206 /* Note: pitch better be a power of two tile widths */
3207 pitch_val = obj->stride / tile_width;
3208 pitch_val = ffs(pitch_val) - 1;
3209
f343c5f6 3210 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3211 if (obj->tiling_mode == I915_TILING_Y)
3212 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3213 val |= I915_FENCE_SIZE_BITS(size);
3214 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3215 val |= I830_FENCE_REG_VALID;
3216 } else
3217 val = 0;
3218
3219 if (reg < 8)
3220 reg = FENCE_REG_830_0 + reg * 4;
3221 else
3222 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3223
3224 I915_WRITE(reg, val);
3225 POSTING_READ(reg);
de151cf6
JB
3226}
3227
9ce079e4
CW
3228static void i830_write_fence_reg(struct drm_device *dev, int reg,
3229 struct drm_i915_gem_object *obj)
de151cf6 3230{
3e31c6c0 3231 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3232 uint32_t val;
de151cf6 3233
9ce079e4 3234 if (obj) {
f343c5f6 3235 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3236 uint32_t pitch_val;
de151cf6 3237
f343c5f6 3238 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3239 (size & -size) != size ||
f343c5f6
BW
3240 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3241 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3242 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3243
9ce079e4
CW
3244 pitch_val = obj->stride / 128;
3245 pitch_val = ffs(pitch_val) - 1;
de151cf6 3246
f343c5f6 3247 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3248 if (obj->tiling_mode == I915_TILING_Y)
3249 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3250 val |= I830_FENCE_SIZE_BITS(size);
3251 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3252 val |= I830_FENCE_REG_VALID;
3253 } else
3254 val = 0;
c6642782 3255
9ce079e4
CW
3256 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3257 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3258}
3259
d0a57789
CW
3260inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3261{
3262 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3263}
3264
9ce079e4
CW
3265static void i915_gem_write_fence(struct drm_device *dev, int reg,
3266 struct drm_i915_gem_object *obj)
3267{
d0a57789
CW
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269
3270 /* Ensure that all CPU reads are completed before installing a fence
3271 * and all writes before removing the fence.
3272 */
3273 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3274 mb();
3275
94a335db
DV
3276 WARN(obj && (!obj->stride || !obj->tiling_mode),
3277 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3278 obj->stride, obj->tiling_mode);
3279
9ce079e4 3280 switch (INTEL_INFO(dev)->gen) {
01209dd5 3281 case 9:
5ab31333 3282 case 8:
9ce079e4 3283 case 7:
56c844e5 3284 case 6:
9ce079e4
CW
3285 case 5:
3286 case 4: i965_write_fence_reg(dev, reg, obj); break;
3287 case 3: i915_write_fence_reg(dev, reg, obj); break;
3288 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3289 default: BUG();
9ce079e4 3290 }
d0a57789
CW
3291
3292 /* And similarly be paranoid that no direct access to this region
3293 * is reordered to before the fence is installed.
3294 */
3295 if (i915_gem_object_needs_mb(obj))
3296 mb();
de151cf6
JB
3297}
3298
61050808
CW
3299static inline int fence_number(struct drm_i915_private *dev_priv,
3300 struct drm_i915_fence_reg *fence)
3301{
3302 return fence - dev_priv->fence_regs;
3303}
3304
3305static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3306 struct drm_i915_fence_reg *fence,
3307 bool enable)
3308{
2dc8aae0 3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3310 int reg = fence_number(dev_priv, fence);
3311
3312 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3313
3314 if (enable) {
46a0b638 3315 obj->fence_reg = reg;
61050808
CW
3316 fence->obj = obj;
3317 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3318 } else {
3319 obj->fence_reg = I915_FENCE_REG_NONE;
3320 fence->obj = NULL;
3321 list_del_init(&fence->lru_list);
3322 }
94a335db 3323 obj->fence_dirty = false;
61050808
CW
3324}
3325
d9e86c0e 3326static int
d0a57789 3327i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3328{
97b2a6a1 3329 if (obj->last_fenced_req) {
a4b3a571 3330 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3331 if (ret)
3332 return ret;
d9e86c0e 3333
97b2a6a1 3334 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3335 }
3336
3337 return 0;
3338}
3339
3340int
3341i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3342{
61050808 3343 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3344 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3345 int ret;
3346
d0a57789 3347 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3348 if (ret)
3349 return ret;
3350
61050808
CW
3351 if (obj->fence_reg == I915_FENCE_REG_NONE)
3352 return 0;
d9e86c0e 3353
f9c513e9
CW
3354 fence = &dev_priv->fence_regs[obj->fence_reg];
3355
aff10b30
DV
3356 if (WARN_ON(fence->pin_count))
3357 return -EBUSY;
3358
61050808 3359 i915_gem_object_fence_lost(obj);
f9c513e9 3360 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3361
3362 return 0;
3363}
3364
3365static struct drm_i915_fence_reg *
a360bb1a 3366i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3367{
ae3db24a 3368 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3369 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3370 int i;
ae3db24a
DV
3371
3372 /* First try to find a free reg */
d9e86c0e 3373 avail = NULL;
ae3db24a
DV
3374 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3375 reg = &dev_priv->fence_regs[i];
3376 if (!reg->obj)
d9e86c0e 3377 return reg;
ae3db24a 3378
1690e1eb 3379 if (!reg->pin_count)
d9e86c0e 3380 avail = reg;
ae3db24a
DV
3381 }
3382
d9e86c0e 3383 if (avail == NULL)
5dce5b93 3384 goto deadlock;
ae3db24a
DV
3385
3386 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3387 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3388 if (reg->pin_count)
ae3db24a
DV
3389 continue;
3390
8fe301ad 3391 return reg;
ae3db24a
DV
3392 }
3393
5dce5b93
CW
3394deadlock:
3395 /* Wait for completion of pending flips which consume fences */
3396 if (intel_has_pending_fb_unpin(dev))
3397 return ERR_PTR(-EAGAIN);
3398
3399 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3400}
3401
de151cf6 3402/**
9a5a53b3 3403 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3404 * @obj: object to map through a fence reg
3405 *
3406 * When mapping objects through the GTT, userspace wants to be able to write
3407 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3408 * This function walks the fence regs looking for a free one for @obj,
3409 * stealing one if it can't find any.
3410 *
3411 * It then sets up the reg based on the object's properties: address, pitch
3412 * and tiling format.
9a5a53b3
CW
3413 *
3414 * For an untiled surface, this removes any existing fence.
de151cf6 3415 */
8c4b8c3f 3416int
06d98131 3417i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3418{
05394f39 3419 struct drm_device *dev = obj->base.dev;
79e53945 3420 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3421 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3422 struct drm_i915_fence_reg *reg;
ae3db24a 3423 int ret;
de151cf6 3424
14415745
CW
3425 /* Have we updated the tiling parameters upon the object and so
3426 * will need to serialise the write to the associated fence register?
3427 */
5d82e3e6 3428 if (obj->fence_dirty) {
d0a57789 3429 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3430 if (ret)
3431 return ret;
3432 }
9a5a53b3 3433
d9e86c0e 3434 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3435 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3436 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3437 if (!obj->fence_dirty) {
14415745
CW
3438 list_move_tail(&reg->lru_list,
3439 &dev_priv->mm.fence_list);
3440 return 0;
3441 }
3442 } else if (enable) {
e6a84468
CW
3443 if (WARN_ON(!obj->map_and_fenceable))
3444 return -EINVAL;
3445
14415745 3446 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3447 if (IS_ERR(reg))
3448 return PTR_ERR(reg);
d9e86c0e 3449
14415745
CW
3450 if (reg->obj) {
3451 struct drm_i915_gem_object *old = reg->obj;
3452
d0a57789 3453 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3454 if (ret)
3455 return ret;
3456
14415745 3457 i915_gem_object_fence_lost(old);
29c5a587 3458 }
14415745 3459 } else
a09ba7fa 3460 return 0;
a09ba7fa 3461
14415745 3462 i915_gem_object_update_fence(obj, reg, enable);
14415745 3463
9ce079e4 3464 return 0;
de151cf6
JB
3465}
3466
4144f9b5 3467static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3468 unsigned long cache_level)
3469{
4144f9b5 3470 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3471 struct drm_mm_node *other;
3472
4144f9b5
CW
3473 /*
3474 * On some machines we have to be careful when putting differing types
3475 * of snoopable memory together to avoid the prefetcher crossing memory
3476 * domains and dying. During vm initialisation, we decide whether or not
3477 * these constraints apply and set the drm_mm.color_adjust
3478 * appropriately.
42d6ab48 3479 */
4144f9b5 3480 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3481 return true;
3482
c6cfb325 3483 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3484 return true;
3485
3486 if (list_empty(&gtt_space->node_list))
3487 return true;
3488
3489 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3490 if (other->allocated && !other->hole_follows && other->color != cache_level)
3491 return false;
3492
3493 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3494 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3495 return false;
3496
3497 return true;
3498}
3499
673a394b
EA
3500/**
3501 * Finds free space in the GTT aperture and binds the object there.
3502 */
262de145 3503static struct i915_vma *
07fe0b12
BW
3504i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3505 struct i915_address_space *vm,
3506 unsigned alignment,
fe14d5f4
TU
3507 uint64_t flags,
3508 const struct i915_ggtt_view *view)
673a394b 3509{
05394f39 3510 struct drm_device *dev = obj->base.dev;
3e31c6c0 3511 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3512 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3513 unsigned long start =
3514 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3515 unsigned long end =
1ec9e26d 3516 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3517 struct i915_vma *vma;
07f73f69 3518 int ret;
673a394b 3519
e28f8711
CW
3520 fence_size = i915_gem_get_gtt_size(dev,
3521 obj->base.size,
3522 obj->tiling_mode);
3523 fence_alignment = i915_gem_get_gtt_alignment(dev,
3524 obj->base.size,
d865110c 3525 obj->tiling_mode, true);
e28f8711 3526 unfenced_alignment =
d865110c 3527 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3528 obj->base.size,
3529 obj->tiling_mode, false);
a00b10c3 3530
673a394b 3531 if (alignment == 0)
1ec9e26d 3532 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3533 unfenced_alignment;
1ec9e26d 3534 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3535 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3536 return ERR_PTR(-EINVAL);
673a394b
EA
3537 }
3538
1ec9e26d 3539 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3540
654fc607
CW
3541 /* If the object is bigger than the entire aperture, reject it early
3542 * before evicting everything in a vain attempt to find space.
3543 */
d23db88c
CW
3544 if (obj->base.size > end) {
3545 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3546 obj->base.size,
1ec9e26d 3547 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3548 end);
262de145 3549 return ERR_PTR(-E2BIG);
654fc607
CW
3550 }
3551
37e680a1 3552 ret = i915_gem_object_get_pages(obj);
6c085a72 3553 if (ret)
262de145 3554 return ERR_PTR(ret);
6c085a72 3555
fbdda6fb
CW
3556 i915_gem_object_pin_pages(obj);
3557
fe14d5f4 3558 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
262de145 3559 if (IS_ERR(vma))
bc6bc15b 3560 goto err_unpin;
2f633156 3561
0a9ae0d7 3562search_free:
07fe0b12 3563 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3564 size, alignment,
d23db88c
CW
3565 obj->cache_level,
3566 start, end,
62347f9e
LK
3567 DRM_MM_SEARCH_DEFAULT,
3568 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3569 if (ret) {
f6cd1f15 3570 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3571 obj->cache_level,
3572 start, end,
3573 flags);
dc9dd7a2
CW
3574 if (ret == 0)
3575 goto search_free;
9731129c 3576
bc6bc15b 3577 goto err_free_vma;
673a394b 3578 }
4144f9b5 3579 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3580 ret = -EINVAL;
bc6bc15b 3581 goto err_remove_node;
673a394b
EA
3582 }
3583
74163907 3584 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3585 if (ret)
bc6bc15b 3586 goto err_remove_node;
673a394b 3587
fe14d5f4
TU
3588 trace_i915_vma_bind(vma, flags);
3589 ret = i915_vma_bind(vma, obj->cache_level,
3590 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591 if (ret)
3592 goto err_finish_gtt;
3593
35c20a60 3594 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3595 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3596
262de145 3597 return vma;
2f633156 3598
fe14d5f4
TU
3599err_finish_gtt:
3600 i915_gem_gtt_finish_object(obj);
bc6bc15b 3601err_remove_node:
6286ef9b 3602 drm_mm_remove_node(&vma->node);
bc6bc15b 3603err_free_vma:
2f633156 3604 i915_gem_vma_destroy(vma);
262de145 3605 vma = ERR_PTR(ret);
bc6bc15b 3606err_unpin:
2f633156 3607 i915_gem_object_unpin_pages(obj);
262de145 3608 return vma;
673a394b
EA
3609}
3610
000433b6 3611bool
2c22569b
CW
3612i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3613 bool force)
673a394b 3614{
673a394b
EA
3615 /* If we don't have a page list set up, then we're not pinned
3616 * to GPU, and we can ignore the cache flush because it'll happen
3617 * again at bind time.
3618 */
05394f39 3619 if (obj->pages == NULL)
000433b6 3620 return false;
673a394b 3621
769ce464
ID
3622 /*
3623 * Stolen memory is always coherent with the GPU as it is explicitly
3624 * marked as wc by the system, or the system is cache-coherent.
3625 */
6a2c4232 3626 if (obj->stolen || obj->phys_handle)
000433b6 3627 return false;
769ce464 3628
9c23f7fc
CW
3629 /* If the GPU is snooping the contents of the CPU cache,
3630 * we do not need to manually clear the CPU cache lines. However,
3631 * the caches are only snooped when the render cache is
3632 * flushed/invalidated. As we always have to emit invalidations
3633 * and flushes when moving into and out of the RENDER domain, correct
3634 * snooping behaviour occurs naturally as the result of our domain
3635 * tracking.
3636 */
2c22569b 3637 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3638 return false;
9c23f7fc 3639
1c5d22f7 3640 trace_i915_gem_object_clflush(obj);
9da3da66 3641 drm_clflush_sg(obj->pages);
000433b6
CW
3642
3643 return true;
e47c68e9
EA
3644}
3645
3646/** Flushes the GTT write domain for the object if it's dirty. */
3647static void
05394f39 3648i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3649{
1c5d22f7
CW
3650 uint32_t old_write_domain;
3651
05394f39 3652 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3653 return;
3654
63256ec5 3655 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3656 * to it immediately go to main memory as far as we know, so there's
3657 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3658 *
3659 * However, we do have to enforce the order so that all writes through
3660 * the GTT land before any writes to the device, such as updates to
3661 * the GATT itself.
e47c68e9 3662 */
63256ec5
CW
3663 wmb();
3664
05394f39
CW
3665 old_write_domain = obj->base.write_domain;
3666 obj->base.write_domain = 0;
1c5d22f7 3667
f99d7069
DV
3668 intel_fb_obj_flush(obj, false);
3669
1c5d22f7 3670 trace_i915_gem_object_change_domain(obj,
05394f39 3671 obj->base.read_domains,
1c5d22f7 3672 old_write_domain);
e47c68e9
EA
3673}
3674
3675/** Flushes the CPU write domain for the object if it's dirty. */
3676static void
2c22569b
CW
3677i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3678 bool force)
e47c68e9 3679{
1c5d22f7 3680 uint32_t old_write_domain;
e47c68e9 3681
05394f39 3682 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3683 return;
3684
000433b6
CW
3685 if (i915_gem_clflush_object(obj, force))
3686 i915_gem_chipset_flush(obj->base.dev);
3687
05394f39
CW
3688 old_write_domain = obj->base.write_domain;
3689 obj->base.write_domain = 0;
1c5d22f7 3690
f99d7069
DV
3691 intel_fb_obj_flush(obj, false);
3692
1c5d22f7 3693 trace_i915_gem_object_change_domain(obj,
05394f39 3694 obj->base.read_domains,
1c5d22f7 3695 old_write_domain);
e47c68e9
EA
3696}
3697
2ef7eeaa
EA
3698/**
3699 * Moves a single object to the GTT read, and possibly write domain.
3700 *
3701 * This function returns when the move is complete, including waiting on
3702 * flushes to occur.
3703 */
79e53945 3704int
2021746e 3705i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3706{
3e31c6c0 3707 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3708 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3709 uint32_t old_write_domain, old_read_domains;
e47c68e9 3710 int ret;
2ef7eeaa 3711
02354392 3712 /* Not valid to be called on unbound objects. */
dc8cd1e7 3713 if (vma == NULL)
02354392
EA
3714 return -EINVAL;
3715
8d7e3de1
CW
3716 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717 return 0;
3718
0201f1ec 3719 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3720 if (ret)
3721 return ret;
3722
c8725f3d 3723 i915_gem_object_retire(obj);
2c22569b 3724 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3725
d0a57789
CW
3726 /* Serialise direct access to this object with the barriers for
3727 * coherent writes from the GPU, by effectively invalidating the
3728 * GTT domain upon first access.
3729 */
3730 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3731 mb();
3732
05394f39
CW
3733 old_write_domain = obj->base.write_domain;
3734 old_read_domains = obj->base.read_domains;
1c5d22f7 3735
e47c68e9
EA
3736 /* It should now be out of any other write domains, and we can update
3737 * the domain values for our changes.
3738 */
05394f39
CW
3739 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3740 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3741 if (write) {
05394f39
CW
3742 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3743 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3744 obj->dirty = 1;
2ef7eeaa
EA
3745 }
3746
f99d7069
DV
3747 if (write)
3748 intel_fb_obj_invalidate(obj, NULL);
3749
1c5d22f7
CW
3750 trace_i915_gem_object_change_domain(obj,
3751 old_read_domains,
3752 old_write_domain);
3753
8325a09d 3754 /* And bump the LRU for this access */
dc8cd1e7
CW
3755 if (i915_gem_object_is_inactive(obj))
3756 list_move_tail(&vma->mm_list,
3757 &dev_priv->gtt.base.inactive_list);
8325a09d 3758
e47c68e9
EA
3759 return 0;
3760}
3761
e4ffd173
CW
3762int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3763 enum i915_cache_level cache_level)
3764{
7bddb01f 3765 struct drm_device *dev = obj->base.dev;
df6f783a 3766 struct i915_vma *vma, *next;
e4ffd173
CW
3767 int ret;
3768
3769 if (obj->cache_level == cache_level)
3770 return 0;
3771
d7f46fc4 3772 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3773 DRM_DEBUG("can not change the cache level of pinned objects\n");
3774 return -EBUSY;
3775 }
3776
df6f783a 3777 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3778 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3779 ret = i915_vma_unbind(vma);
3089c6f2
BW
3780 if (ret)
3781 return ret;
3089c6f2 3782 }
42d6ab48
CW
3783 }
3784
3089c6f2 3785 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3786 ret = i915_gem_object_finish_gpu(obj);
3787 if (ret)
3788 return ret;
3789
3790 i915_gem_object_finish_gtt(obj);
3791
3792 /* Before SandyBridge, you could not use tiling or fence
3793 * registers with snooped memory, so relinquish any fences
3794 * currently pointing to our region in the aperture.
3795 */
42d6ab48 3796 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3797 ret = i915_gem_object_put_fence(obj);
3798 if (ret)
3799 return ret;
3800 }
3801
6f65e29a 3802 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3803 if (drm_mm_node_allocated(&vma->node)) {
3804 ret = i915_vma_bind(vma, cache_level,
3805 vma->bound & GLOBAL_BIND);
3806 if (ret)
3807 return ret;
3808 }
e4ffd173
CW
3809 }
3810
2c22569b
CW
3811 list_for_each_entry(vma, &obj->vma_list, vma_link)
3812 vma->node.color = cache_level;
3813 obj->cache_level = cache_level;
3814
3815 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3816 u32 old_read_domains, old_write_domain;
3817
3818 /* If we're coming from LLC cached, then we haven't
3819 * actually been tracking whether the data is in the
3820 * CPU cache or not, since we only allow one bit set
3821 * in obj->write_domain and have been skipping the clflushes.
3822 * Just set it to the CPU cache for now.
3823 */
c8725f3d 3824 i915_gem_object_retire(obj);
e4ffd173 3825 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3826
3827 old_read_domains = obj->base.read_domains;
3828 old_write_domain = obj->base.write_domain;
3829
3830 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3831 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3832
3833 trace_i915_gem_object_change_domain(obj,
3834 old_read_domains,
3835 old_write_domain);
3836 }
3837
e4ffd173
CW
3838 return 0;
3839}
3840
199adf40
BW
3841int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3842 struct drm_file *file)
e6994aee 3843{
199adf40 3844 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3845 struct drm_i915_gem_object *obj;
3846 int ret;
3847
3848 ret = i915_mutex_lock_interruptible(dev);
3849 if (ret)
3850 return ret;
3851
3852 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3853 if (&obj->base == NULL) {
3854 ret = -ENOENT;
3855 goto unlock;
3856 }
3857
651d794f
CW
3858 switch (obj->cache_level) {
3859 case I915_CACHE_LLC:
3860 case I915_CACHE_L3_LLC:
3861 args->caching = I915_CACHING_CACHED;
3862 break;
3863
4257d3ba
CW
3864 case I915_CACHE_WT:
3865 args->caching = I915_CACHING_DISPLAY;
3866 break;
3867
651d794f
CW
3868 default:
3869 args->caching = I915_CACHING_NONE;
3870 break;
3871 }
e6994aee
CW
3872
3873 drm_gem_object_unreference(&obj->base);
3874unlock:
3875 mutex_unlock(&dev->struct_mutex);
3876 return ret;
3877}
3878
199adf40
BW
3879int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3880 struct drm_file *file)
e6994aee 3881{
199adf40 3882 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3883 struct drm_i915_gem_object *obj;
3884 enum i915_cache_level level;
3885 int ret;
3886
199adf40
BW
3887 switch (args->caching) {
3888 case I915_CACHING_NONE:
e6994aee
CW
3889 level = I915_CACHE_NONE;
3890 break;
199adf40 3891 case I915_CACHING_CACHED:
e6994aee
CW
3892 level = I915_CACHE_LLC;
3893 break;
4257d3ba
CW
3894 case I915_CACHING_DISPLAY:
3895 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3896 break;
e6994aee
CW
3897 default:
3898 return -EINVAL;
3899 }
3900
3bc2913e
BW
3901 ret = i915_mutex_lock_interruptible(dev);
3902 if (ret)
3903 return ret;
3904
e6994aee
CW
3905 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3906 if (&obj->base == NULL) {
3907 ret = -ENOENT;
3908 goto unlock;
3909 }
3910
3911 ret = i915_gem_object_set_cache_level(obj, level);
3912
3913 drm_gem_object_unreference(&obj->base);
3914unlock:
3915 mutex_unlock(&dev->struct_mutex);
3916 return ret;
3917}
3918
cc98b413
CW
3919static bool is_pin_display(struct drm_i915_gem_object *obj)
3920{
19656430
OM
3921 struct i915_vma *vma;
3922
19656430
OM
3923 vma = i915_gem_obj_to_ggtt(obj);
3924 if (!vma)
3925 return false;
3926
4feb7659 3927 /* There are 2 sources that pin objects:
cc98b413
CW
3928 * 1. The display engine (scanouts, sprites, cursors);
3929 * 2. Reservations for execbuffer;
cc98b413
CW
3930 *
3931 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3932 * are only called outside of the reservation path.
cc98b413 3933 */
4feb7659 3934 return vma->pin_count;
cc98b413
CW
3935}
3936
b9241ea3 3937/*
2da3b9b9
CW
3938 * Prepare buffer for display plane (scanout, cursors, etc).
3939 * Can be called from an uninterruptible phase (modesetting) and allows
3940 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3941 */
3942int
2da3b9b9
CW
3943i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3944 u32 alignment,
a4872ba6 3945 struct intel_engine_cs *pipelined)
b9241ea3 3946{
2da3b9b9 3947 u32 old_read_domains, old_write_domain;
19656430 3948 bool was_pin_display;
b9241ea3
ZW
3949 int ret;
3950
41c52415 3951 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3952 ret = i915_gem_object_sync(obj, pipelined);
3953 if (ret)
b9241ea3
ZW
3954 return ret;
3955 }
3956
cc98b413
CW
3957 /* Mark the pin_display early so that we account for the
3958 * display coherency whilst setting up the cache domains.
3959 */
19656430 3960 was_pin_display = obj->pin_display;
cc98b413
CW
3961 obj->pin_display = true;
3962
a7ef0640
EA
3963 /* The display engine is not coherent with the LLC cache on gen6. As
3964 * a result, we make sure that the pinning that is about to occur is
3965 * done with uncached PTEs. This is lowest common denominator for all
3966 * chipsets.
3967 *
3968 * However for gen6+, we could do better by using the GFDT bit instead
3969 * of uncaching, which would allow us to flush all the LLC-cached data
3970 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3971 */
651d794f
CW
3972 ret = i915_gem_object_set_cache_level(obj,
3973 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3974 if (ret)
cc98b413 3975 goto err_unpin_display;
a7ef0640 3976
2da3b9b9
CW
3977 /* As the user may map the buffer once pinned in the display plane
3978 * (e.g. libkms for the bootup splash), we have to ensure that we
3979 * always use map_and_fenceable for all scanout buffers.
3980 */
1ec9e26d 3981 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3982 if (ret)
cc98b413 3983 goto err_unpin_display;
2da3b9b9 3984
2c22569b 3985 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3986
2da3b9b9 3987 old_write_domain = obj->base.write_domain;
05394f39 3988 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3989
3990 /* It should now be out of any other write domains, and we can update
3991 * the domain values for our changes.
3992 */
e5f1d962 3993 obj->base.write_domain = 0;
05394f39 3994 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3995
3996 trace_i915_gem_object_change_domain(obj,
3997 old_read_domains,
2da3b9b9 3998 old_write_domain);
b9241ea3
ZW
3999
4000 return 0;
cc98b413
CW
4001
4002err_unpin_display:
19656430
OM
4003 WARN_ON(was_pin_display != is_pin_display(obj));
4004 obj->pin_display = was_pin_display;
cc98b413
CW
4005 return ret;
4006}
4007
4008void
4009i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4010{
d7f46fc4 4011 i915_gem_object_ggtt_unpin(obj);
cc98b413 4012 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4013}
4014
85345517 4015int
a8198eea 4016i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4017{
88241785
CW
4018 int ret;
4019
a8198eea 4020 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4021 return 0;
4022
0201f1ec 4023 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4024 if (ret)
4025 return ret;
4026
a8198eea
CW
4027 /* Ensure that we invalidate the GPU's caches and TLBs. */
4028 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4029 return 0;
85345517
CW
4030}
4031
e47c68e9
EA
4032/**
4033 * Moves a single object to the CPU read, and possibly write domain.
4034 *
4035 * This function returns when the move is complete, including waiting on
4036 * flushes to occur.
4037 */
dabdfe02 4038int
919926ae 4039i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4040{
1c5d22f7 4041 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4042 int ret;
4043
8d7e3de1
CW
4044 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4045 return 0;
4046
0201f1ec 4047 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4048 if (ret)
4049 return ret;
4050
c8725f3d 4051 i915_gem_object_retire(obj);
e47c68e9 4052 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4053
05394f39
CW
4054 old_write_domain = obj->base.write_domain;
4055 old_read_domains = obj->base.read_domains;
1c5d22f7 4056
e47c68e9 4057 /* Flush the CPU cache if it's still invalid. */
05394f39 4058 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4059 i915_gem_clflush_object(obj, false);
2ef7eeaa 4060
05394f39 4061 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4062 }
4063
4064 /* It should now be out of any other write domains, and we can update
4065 * the domain values for our changes.
4066 */
05394f39 4067 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4068
4069 /* If we're writing through the CPU, then the GPU read domains will
4070 * need to be invalidated at next use.
4071 */
4072 if (write) {
05394f39
CW
4073 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4074 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4075 }
2ef7eeaa 4076
f99d7069
DV
4077 if (write)
4078 intel_fb_obj_invalidate(obj, NULL);
4079
1c5d22f7
CW
4080 trace_i915_gem_object_change_domain(obj,
4081 old_read_domains,
4082 old_write_domain);
4083
2ef7eeaa
EA
4084 return 0;
4085}
4086
673a394b
EA
4087/* Throttle our rendering by waiting until the ring has completed our requests
4088 * emitted over 20 msec ago.
4089 *
b962442e
EA
4090 * Note that if we were to use the current jiffies each time around the loop,
4091 * we wouldn't escape the function with any frames outstanding if the time to
4092 * render a frame was over 20ms.
4093 *
673a394b
EA
4094 * This should get us reasonable parallelism between CPU and GPU but also
4095 * relatively low latency when blocking on a particular request to finish.
4096 */
40a5f0de 4097static int
f787a5f5 4098i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4099{
f787a5f5
CW
4100 struct drm_i915_private *dev_priv = dev->dev_private;
4101 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4102 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4103 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4104 unsigned reset_counter;
f787a5f5 4105 int ret;
93533c29 4106
308887aa
DV
4107 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4108 if (ret)
4109 return ret;
4110
4111 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4112 if (ret)
4113 return ret;
e110e8d6 4114
1c25595f 4115 spin_lock(&file_priv->mm.lock);
f787a5f5 4116 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4117 if (time_after_eq(request->emitted_jiffies, recent_enough))
4118 break;
40a5f0de 4119
54fb2411 4120 target = request;
b962442e 4121 }
f69061be 4122 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4123 if (target)
4124 i915_gem_request_reference(target);
1c25595f 4125 spin_unlock(&file_priv->mm.lock);
40a5f0de 4126
54fb2411 4127 if (target == NULL)
f787a5f5 4128 return 0;
2bc43b5c 4129
9c654818 4130 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4131 if (ret == 0)
4132 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4133
ff865885
JH
4134 mutex_lock(&dev->struct_mutex);
4135 i915_gem_request_unreference(target);
4136 mutex_unlock(&dev->struct_mutex);
4137
40a5f0de
EA
4138 return ret;
4139}
4140
d23db88c
CW
4141static bool
4142i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4143{
4144 struct drm_i915_gem_object *obj = vma->obj;
4145
4146 if (alignment &&
4147 vma->node.start & (alignment - 1))
4148 return true;
4149
4150 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4151 return true;
4152
4153 if (flags & PIN_OFFSET_BIAS &&
4154 vma->node.start < (flags & PIN_OFFSET_MASK))
4155 return true;
4156
4157 return false;
4158}
4159
673a394b 4160int
fe14d5f4
TU
4161i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4162 struct i915_address_space *vm,
4163 uint32_t alignment,
4164 uint64_t flags,
4165 const struct i915_ggtt_view *view)
673a394b 4166{
6e7186af 4167 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4168 struct i915_vma *vma;
ef79e17c 4169 unsigned bound;
673a394b
EA
4170 int ret;
4171
6e7186af
BW
4172 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4173 return -ENODEV;
4174
bf3d149b 4175 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4176 return -EINVAL;
07fe0b12 4177
c826c449
CW
4178 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4179 return -EINVAL;
4180
fe14d5f4 4181 vma = i915_gem_obj_to_vma_view(obj, vm, view);
07fe0b12 4182 if (vma) {
d7f46fc4
BW
4183 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4184 return -EBUSY;
4185
d23db88c 4186 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4187 WARN(vma->pin_count,
ae7d49d8 4188 "bo is already pinned with incorrect alignment:"
f343c5f6 4189 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4190 " obj->map_and_fenceable=%d\n",
fe14d5f4
TU
4191 i915_gem_obj_offset_view(obj, vm, view->type),
4192 alignment,
d23db88c 4193 !!(flags & PIN_MAPPABLE),
05394f39 4194 obj->map_and_fenceable);
07fe0b12 4195 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4196 if (ret)
4197 return ret;
8ea99c92
DV
4198
4199 vma = NULL;
ac0c6b5a
CW
4200 }
4201 }
4202
ef79e17c 4203 bound = vma ? vma->bound : 0;
8ea99c92 4204 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
fe14d5f4
TU
4205 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4206 flags, view);
262de145
DV
4207 if (IS_ERR(vma))
4208 return PTR_ERR(vma);
22c344e9 4209 }
76446cac 4210
fe14d5f4
TU
4211 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4212 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4213 if (ret)
4214 return ret;
4215 }
74898d7e 4216
ef79e17c
CW
4217 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4218 bool mappable, fenceable;
4219 u32 fence_size, fence_alignment;
4220
4221 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4222 obj->base.size,
4223 obj->tiling_mode);
4224 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4225 obj->base.size,
4226 obj->tiling_mode,
4227 true);
4228
4229 fenceable = (vma->node.size == fence_size &&
4230 (vma->node.start & (fence_alignment - 1)) == 0);
4231
4232 mappable = (vma->node.start + obj->base.size <=
4233 dev_priv->gtt.mappable_end);
4234
4235 obj->map_and_fenceable = mappable && fenceable;
4236 }
4237
4238 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4239
8ea99c92 4240 vma->pin_count++;
1ec9e26d
DV
4241 if (flags & PIN_MAPPABLE)
4242 obj->pin_mappable |= true;
673a394b
EA
4243
4244 return 0;
4245}
4246
4247void
d7f46fc4 4248i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4249{
d7f46fc4 4250 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4251
d7f46fc4
BW
4252 BUG_ON(!vma);
4253 BUG_ON(vma->pin_count == 0);
4254 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4255
4256 if (--vma->pin_count == 0)
6299f992 4257 obj->pin_mappable = false;
673a394b
EA
4258}
4259
d8ffa60b
DV
4260bool
4261i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4262{
4263 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4264 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4265 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4266
4267 WARN_ON(!ggtt_vma ||
4268 dev_priv->fence_regs[obj->fence_reg].pin_count >
4269 ggtt_vma->pin_count);
4270 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4271 return true;
4272 } else
4273 return false;
4274}
4275
4276void
4277i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4278{
4279 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4280 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4281 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4282 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4283 }
4284}
4285
673a394b
EA
4286int
4287i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4288 struct drm_file *file)
673a394b
EA
4289{
4290 struct drm_i915_gem_busy *args = data;
05394f39 4291 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4292 int ret;
4293
76c1dec1 4294 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4295 if (ret)
76c1dec1 4296 return ret;
673a394b 4297
05394f39 4298 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4299 if (&obj->base == NULL) {
1d7cfea1
CW
4300 ret = -ENOENT;
4301 goto unlock;
673a394b 4302 }
d1b851fc 4303
0be555b6
CW
4304 /* Count all active objects as busy, even if they are currently not used
4305 * by the gpu. Users of this interface expect objects to eventually
4306 * become non-busy without any further actions, therefore emit any
4307 * necessary flushes here.
c4de0a5d 4308 */
30dfebf3 4309 ret = i915_gem_object_flush_active(obj);
0be555b6 4310
30dfebf3 4311 args->busy = obj->active;
41c52415
JH
4312 if (obj->last_read_req) {
4313 struct intel_engine_cs *ring;
e9808edd 4314 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4315 ring = i915_gem_request_get_ring(obj->last_read_req);
4316 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4317 }
673a394b 4318
05394f39 4319 drm_gem_object_unreference(&obj->base);
1d7cfea1 4320unlock:
673a394b 4321 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4322 return ret;
673a394b
EA
4323}
4324
4325int
4326i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4327 struct drm_file *file_priv)
4328{
0206e353 4329 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4330}
4331
3ef94daa
CW
4332int
4333i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4334 struct drm_file *file_priv)
4335{
656bfa3a 4336 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4337 struct drm_i915_gem_madvise *args = data;
05394f39 4338 struct drm_i915_gem_object *obj;
76c1dec1 4339 int ret;
3ef94daa
CW
4340
4341 switch (args->madv) {
4342 case I915_MADV_DONTNEED:
4343 case I915_MADV_WILLNEED:
4344 break;
4345 default:
4346 return -EINVAL;
4347 }
4348
1d7cfea1
CW
4349 ret = i915_mutex_lock_interruptible(dev);
4350 if (ret)
4351 return ret;
4352
05394f39 4353 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4354 if (&obj->base == NULL) {
1d7cfea1
CW
4355 ret = -ENOENT;
4356 goto unlock;
3ef94daa 4357 }
3ef94daa 4358
d7f46fc4 4359 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4360 ret = -EINVAL;
4361 goto out;
3ef94daa
CW
4362 }
4363
656bfa3a
DV
4364 if (obj->pages &&
4365 obj->tiling_mode != I915_TILING_NONE &&
4366 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4367 if (obj->madv == I915_MADV_WILLNEED)
4368 i915_gem_object_unpin_pages(obj);
4369 if (args->madv == I915_MADV_WILLNEED)
4370 i915_gem_object_pin_pages(obj);
4371 }
4372
05394f39
CW
4373 if (obj->madv != __I915_MADV_PURGED)
4374 obj->madv = args->madv;
3ef94daa 4375
6c085a72
CW
4376 /* if the object is no longer attached, discard its backing storage */
4377 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4378 i915_gem_object_truncate(obj);
4379
05394f39 4380 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4381
1d7cfea1 4382out:
05394f39 4383 drm_gem_object_unreference(&obj->base);
1d7cfea1 4384unlock:
3ef94daa 4385 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4386 return ret;
3ef94daa
CW
4387}
4388
37e680a1
CW
4389void i915_gem_object_init(struct drm_i915_gem_object *obj,
4390 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4391{
35c20a60 4392 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4393 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4394 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4395 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4396 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4397
37e680a1
CW
4398 obj->ops = ops;
4399
0327d6ba
CW
4400 obj->fence_reg = I915_FENCE_REG_NONE;
4401 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4402
4403 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4404}
4405
37e680a1
CW
4406static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4407 .get_pages = i915_gem_object_get_pages_gtt,
4408 .put_pages = i915_gem_object_put_pages_gtt,
4409};
4410
05394f39
CW
4411struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4412 size_t size)
ac52bc56 4413{
c397b908 4414 struct drm_i915_gem_object *obj;
5949eac4 4415 struct address_space *mapping;
1a240d4d 4416 gfp_t mask;
ac52bc56 4417
42dcedd4 4418 obj = i915_gem_object_alloc(dev);
c397b908
DV
4419 if (obj == NULL)
4420 return NULL;
673a394b 4421
c397b908 4422 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4423 i915_gem_object_free(obj);
c397b908
DV
4424 return NULL;
4425 }
673a394b 4426
bed1ea95
CW
4427 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4428 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4429 /* 965gm cannot relocate objects above 4GiB. */
4430 mask &= ~__GFP_HIGHMEM;
4431 mask |= __GFP_DMA32;
4432 }
4433
496ad9aa 4434 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4435 mapping_set_gfp_mask(mapping, mask);
5949eac4 4436
37e680a1 4437 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4438
c397b908
DV
4439 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4440 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4441
3d29b842
ED
4442 if (HAS_LLC(dev)) {
4443 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4444 * cache) for about a 10% performance improvement
4445 * compared to uncached. Graphics requests other than
4446 * display scanout are coherent with the CPU in
4447 * accessing this cache. This means in this mode we
4448 * don't need to clflush on the CPU side, and on the
4449 * GPU side we only need to flush internal caches to
4450 * get data visible to the CPU.
4451 *
4452 * However, we maintain the display planes as UC, and so
4453 * need to rebind when first used as such.
4454 */
4455 obj->cache_level = I915_CACHE_LLC;
4456 } else
4457 obj->cache_level = I915_CACHE_NONE;
4458
d861e338
DV
4459 trace_i915_gem_object_create(obj);
4460
05394f39 4461 return obj;
c397b908
DV
4462}
4463
340fbd8c
CW
4464static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4465{
4466 /* If we are the last user of the backing storage (be it shmemfs
4467 * pages or stolen etc), we know that the pages are going to be
4468 * immediately released. In this case, we can then skip copying
4469 * back the contents from the GPU.
4470 */
4471
4472 if (obj->madv != I915_MADV_WILLNEED)
4473 return false;
4474
4475 if (obj->base.filp == NULL)
4476 return true;
4477
4478 /* At first glance, this looks racy, but then again so would be
4479 * userspace racing mmap against close. However, the first external
4480 * reference to the filp can only be obtained through the
4481 * i915_gem_mmap_ioctl() which safeguards us against the user
4482 * acquiring such a reference whilst we are in the middle of
4483 * freeing the object.
4484 */
4485 return atomic_long_read(&obj->base.filp->f_count) == 1;
4486}
4487
1488fc08 4488void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4489{
1488fc08 4490 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4491 struct drm_device *dev = obj->base.dev;
3e31c6c0 4492 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4493 struct i915_vma *vma, *next;
673a394b 4494
f65c9168
PZ
4495 intel_runtime_pm_get(dev_priv);
4496
26e12f89
CW
4497 trace_i915_gem_object_destroy(obj);
4498
07fe0b12 4499 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4500 int ret;
4501
4502 vma->pin_count = 0;
4503 ret = i915_vma_unbind(vma);
07fe0b12
BW
4504 if (WARN_ON(ret == -ERESTARTSYS)) {
4505 bool was_interruptible;
1488fc08 4506
07fe0b12
BW
4507 was_interruptible = dev_priv->mm.interruptible;
4508 dev_priv->mm.interruptible = false;
1488fc08 4509
07fe0b12 4510 WARN_ON(i915_vma_unbind(vma));
1488fc08 4511
07fe0b12
BW
4512 dev_priv->mm.interruptible = was_interruptible;
4513 }
1488fc08
CW
4514 }
4515
1d64ae71
BW
4516 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4517 * before progressing. */
4518 if (obj->stolen)
4519 i915_gem_object_unpin_pages(obj);
4520
a071fa00
DV
4521 WARN_ON(obj->frontbuffer_bits);
4522
656bfa3a
DV
4523 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4524 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4525 obj->tiling_mode != I915_TILING_NONE)
4526 i915_gem_object_unpin_pages(obj);
4527
401c29f6
BW
4528 if (WARN_ON(obj->pages_pin_count))
4529 obj->pages_pin_count = 0;
340fbd8c 4530 if (discard_backing_storage(obj))
5537252b 4531 obj->madv = I915_MADV_DONTNEED;
37e680a1 4532 i915_gem_object_put_pages(obj);
d8cb5086 4533 i915_gem_object_free_mmap_offset(obj);
de151cf6 4534
9da3da66
CW
4535 BUG_ON(obj->pages);
4536
2f745ad3
CW
4537 if (obj->base.import_attach)
4538 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4539
5cc9ed4b
CW
4540 if (obj->ops->release)
4541 obj->ops->release(obj);
4542
05394f39
CW
4543 drm_gem_object_release(&obj->base);
4544 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4545
05394f39 4546 kfree(obj->bit_17);
42dcedd4 4547 i915_gem_object_free(obj);
f65c9168
PZ
4548
4549 intel_runtime_pm_put(dev_priv);
673a394b
EA
4550}
4551
fe14d5f4
TU
4552struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4553 struct i915_address_space *vm,
4554 const struct i915_ggtt_view *view)
e656a6cb
DV
4555{
4556 struct i915_vma *vma;
4557 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4 4558 if (vma->vm == vm && vma->ggtt_view.type == view->type)
e656a6cb
DV
4559 return vma;
4560
4561 return NULL;
4562}
4563
2f633156
BW
4564void i915_gem_vma_destroy(struct i915_vma *vma)
4565{
b9d06dd9 4566 struct i915_address_space *vm = NULL;
2f633156 4567 WARN_ON(vma->node.allocated);
aaa05667
CW
4568
4569 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4570 if (!list_empty(&vma->exec_list))
4571 return;
4572
b9d06dd9 4573 vm = vma->vm;
b9d06dd9 4574
841cd773
DV
4575 if (!i915_is_ggtt(vm))
4576 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4577
8b9c2b94 4578 list_del(&vma->vma_link);
b93dab6e 4579
2f633156
BW
4580 kfree(vma);
4581}
4582
e3efda49
CW
4583static void
4584i915_gem_stop_ringbuffers(struct drm_device *dev)
4585{
4586 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4587 struct intel_engine_cs *ring;
e3efda49
CW
4588 int i;
4589
4590 for_each_ring(ring, dev_priv, i)
a83014d3 4591 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4592}
4593
29105ccc 4594int
45c5f202 4595i915_gem_suspend(struct drm_device *dev)
29105ccc 4596{
3e31c6c0 4597 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4598 int ret = 0;
28dfe52a 4599
45c5f202 4600 mutex_lock(&dev->struct_mutex);
b2da9fe5 4601 ret = i915_gpu_idle(dev);
f7403347 4602 if (ret)
45c5f202 4603 goto err;
f7403347 4604
b2da9fe5 4605 i915_gem_retire_requests(dev);
673a394b 4606
29105ccc 4607 /* Under UMS, be paranoid and evict. */
a39d7efc 4608 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4609 i915_gem_evict_everything(dev);
29105ccc 4610
e3efda49 4611 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4612 mutex_unlock(&dev->struct_mutex);
4613
4614 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4615 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4616 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4617
bdcf120b
CW
4618 /* Assert that we sucessfully flushed all the work and
4619 * reset the GPU back to its idle, low power state.
4620 */
4621 WARN_ON(dev_priv->mm.busy);
4622
673a394b 4623 return 0;
45c5f202
CW
4624
4625err:
4626 mutex_unlock(&dev->struct_mutex);
4627 return ret;
673a394b
EA
4628}
4629
a4872ba6 4630int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4631{
c3787e2e 4632 struct drm_device *dev = ring->dev;
3e31c6c0 4633 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4634 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4635 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4636 int i, ret;
b9524a1e 4637
040d2baa 4638 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4639 return 0;
b9524a1e 4640
c3787e2e
BW
4641 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4642 if (ret)
4643 return ret;
b9524a1e 4644
c3787e2e
BW
4645 /*
4646 * Note: We do not worry about the concurrent register cacheline hang
4647 * here because no other code should access these registers other than
4648 * at initialization time.
4649 */
b9524a1e 4650 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4651 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4652 intel_ring_emit(ring, reg_base + i);
4653 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4654 }
4655
c3787e2e 4656 intel_ring_advance(ring);
b9524a1e 4657
c3787e2e 4658 return ret;
b9524a1e
BW
4659}
4660
f691e2f4
DV
4661void i915_gem_init_swizzling(struct drm_device *dev)
4662{
3e31c6c0 4663 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4664
11782b02 4665 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4666 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4667 return;
4668
4669 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4670 DISP_TILE_SURFACE_SWIZZLING);
4671
11782b02
DV
4672 if (IS_GEN5(dev))
4673 return;
4674
f691e2f4
DV
4675 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4676 if (IS_GEN6(dev))
6b26c86d 4677 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4678 else if (IS_GEN7(dev))
6b26c86d 4679 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4680 else if (IS_GEN8(dev))
4681 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4682 else
4683 BUG();
f691e2f4 4684}
e21af88d 4685
67b1b571
CW
4686static bool
4687intel_enable_blt(struct drm_device *dev)
4688{
4689 if (!HAS_BLT(dev))
4690 return false;
4691
4692 /* The blitter was dysfunctional on early prototypes */
4693 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4694 DRM_INFO("BLT not supported on this pre-production hardware;"
4695 " graphics performance will be degraded.\n");
4696 return false;
4697 }
4698
4699 return true;
4700}
4701
81e7f200
VS
4702static void init_unused_ring(struct drm_device *dev, u32 base)
4703{
4704 struct drm_i915_private *dev_priv = dev->dev_private;
4705
4706 I915_WRITE(RING_CTL(base), 0);
4707 I915_WRITE(RING_HEAD(base), 0);
4708 I915_WRITE(RING_TAIL(base), 0);
4709 I915_WRITE(RING_START(base), 0);
4710}
4711
4712static void init_unused_rings(struct drm_device *dev)
4713{
4714 if (IS_I830(dev)) {
4715 init_unused_ring(dev, PRB1_BASE);
4716 init_unused_ring(dev, SRB0_BASE);
4717 init_unused_ring(dev, SRB1_BASE);
4718 init_unused_ring(dev, SRB2_BASE);
4719 init_unused_ring(dev, SRB3_BASE);
4720 } else if (IS_GEN2(dev)) {
4721 init_unused_ring(dev, SRB0_BASE);
4722 init_unused_ring(dev, SRB1_BASE);
4723 } else if (IS_GEN3(dev)) {
4724 init_unused_ring(dev, PRB1_BASE);
4725 init_unused_ring(dev, PRB2_BASE);
4726 }
4727}
4728
a83014d3 4729int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4730{
4fc7c971 4731 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4732 int ret;
68f95ba9 4733
5c1143bb 4734 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4735 if (ret)
b6913e4b 4736 return ret;
68f95ba9
CW
4737
4738 if (HAS_BSD(dev)) {
5c1143bb 4739 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4740 if (ret)
4741 goto cleanup_render_ring;
d1b851fc 4742 }
68f95ba9 4743
67b1b571 4744 if (intel_enable_blt(dev)) {
549f7365
CW
4745 ret = intel_init_blt_ring_buffer(dev);
4746 if (ret)
4747 goto cleanup_bsd_ring;
4748 }
4749
9a8a2213
BW
4750 if (HAS_VEBOX(dev)) {
4751 ret = intel_init_vebox_ring_buffer(dev);
4752 if (ret)
4753 goto cleanup_blt_ring;
4754 }
4755
845f74a7
ZY
4756 if (HAS_BSD2(dev)) {
4757 ret = intel_init_bsd2_ring_buffer(dev);
4758 if (ret)
4759 goto cleanup_vebox_ring;
4760 }
9a8a2213 4761
99433931 4762 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4763 if (ret)
845f74a7 4764 goto cleanup_bsd2_ring;
4fc7c971
BW
4765
4766 return 0;
4767
845f74a7
ZY
4768cleanup_bsd2_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4770cleanup_vebox_ring:
4771 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4772cleanup_blt_ring:
4773 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4774cleanup_bsd_ring:
4775 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4776cleanup_render_ring:
4777 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4778
4779 return ret;
4780}
4781
4782int
4783i915_gem_init_hw(struct drm_device *dev)
4784{
3e31c6c0 4785 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4786 struct intel_engine_cs *ring;
35a85ac6 4787 int ret, i;
4fc7c971
BW
4788
4789 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4790 return -EIO;
4791
59124506 4792 if (dev_priv->ellc_size)
05e21cc4 4793 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4794
0bf21347
VS
4795 if (IS_HASWELL(dev))
4796 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4797 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4798
88a2b2a3 4799 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4800 if (IS_IVYBRIDGE(dev)) {
4801 u32 temp = I915_READ(GEN7_MSG_CTL);
4802 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4803 I915_WRITE(GEN7_MSG_CTL, temp);
4804 } else if (INTEL_INFO(dev)->gen >= 7) {
4805 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4806 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4807 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4808 }
88a2b2a3
BW
4809 }
4810
4fc7c971
BW
4811 i915_gem_init_swizzling(dev);
4812
d5abdfda
DV
4813 /*
4814 * At least 830 can leave some of the unused rings
4815 * "active" (ie. head != tail) after resume which
4816 * will prevent c3 entry. Makes sure all unused rings
4817 * are totally idle.
4818 */
4819 init_unused_rings(dev);
4820
35a57ffb
DV
4821 for_each_ring(ring, dev_priv, i) {
4822 ret = ring->init_hw(ring);
4823 if (ret)
4824 return ret;
4825 }
99433931 4826
c3787e2e
BW
4827 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4828 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4829
254f965c 4830 /*
2fa48d8d
BW
4831 * XXX: Contexts should only be initialized once. Doing a switch to the
4832 * default context switch however is something we'd like to do after
4833 * reset or thaw (the latter may not actually be necessary for HW, but
4834 * goes with our code better). Context switching requires rings (for
4835 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4836 */
2fa48d8d 4837 ret = i915_gem_context_enable(dev_priv);
60990320 4838 if (ret && ret != -EIO) {
2fa48d8d 4839 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4840 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4841
4842 return ret;
4843 }
4844
4845 ret = i915_ppgtt_init_hw(dev);
4846 if (ret && ret != -EIO) {
4847 DRM_ERROR("PPGTT enable failed %d\n", ret);
4848 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4849 }
e21af88d 4850
2fa48d8d 4851 return ret;
8187a2b7
ZN
4852}
4853
1070a42b
CW
4854int i915_gem_init(struct drm_device *dev)
4855{
4856 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4857 int ret;
4858
127f1003
OM
4859 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4860 i915.enable_execlists);
4861
1070a42b 4862 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4863
4864 if (IS_VALLEYVIEW(dev)) {
4865 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4866 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4867 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4868 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4869 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4870 }
4871
a83014d3
OM
4872 if (!i915.enable_execlists) {
4873 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4874 dev_priv->gt.init_rings = i915_gem_init_rings;
4875 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4876 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4877 } else {
4878 dev_priv->gt.do_execbuf = intel_execlists_submission;
4879 dev_priv->gt.init_rings = intel_logical_rings_init;
4880 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4881 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4882 }
4883
6c5566a8 4884 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4885 if (ret)
4886 goto out_unlock;
6c5566a8 4887
d7e5008f 4888 i915_gem_init_global_gtt(dev);
d62b4892 4889
2fa48d8d 4890 ret = i915_gem_context_init(dev);
7bcc3777
JN
4891 if (ret)
4892 goto out_unlock;
2fa48d8d 4893
35a57ffb
DV
4894 ret = dev_priv->gt.init_rings(dev);
4895 if (ret)
7bcc3777 4896 goto out_unlock;
35a57ffb 4897
1070a42b 4898 ret = i915_gem_init_hw(dev);
60990320
CW
4899 if (ret == -EIO) {
4900 /* Allow ring initialisation to fail by marking the GPU as
4901 * wedged. But we only want to do this where the GPU is angry,
4902 * for all other failure, such as an allocation failure, bail.
4903 */
4904 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4905 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4906 ret = 0;
1070a42b 4907 }
7bcc3777
JN
4908
4909out_unlock:
60990320 4910 mutex_unlock(&dev->struct_mutex);
1070a42b 4911
60990320 4912 return ret;
1070a42b
CW
4913}
4914
8187a2b7
ZN
4915void
4916i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4917{
3e31c6c0 4918 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4919 struct intel_engine_cs *ring;
1ec14ad3 4920 int i;
8187a2b7 4921
b4519513 4922 for_each_ring(ring, dev_priv, i)
a83014d3 4923 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4924}
4925
64193406 4926static void
a4872ba6 4927init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4928{
4929 INIT_LIST_HEAD(&ring->active_list);
4930 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4931}
4932
7e0d96bc
BW
4933void i915_init_vm(struct drm_i915_private *dev_priv,
4934 struct i915_address_space *vm)
fc8c067e 4935{
7e0d96bc
BW
4936 if (!i915_is_ggtt(vm))
4937 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4938 vm->dev = dev_priv->dev;
4939 INIT_LIST_HEAD(&vm->active_list);
4940 INIT_LIST_HEAD(&vm->inactive_list);
4941 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4942 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4943}
4944
673a394b
EA
4945void
4946i915_gem_load(struct drm_device *dev)
4947{
3e31c6c0 4948 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4949 int i;
4950
4951 dev_priv->slab =
4952 kmem_cache_create("i915_gem_object",
4953 sizeof(struct drm_i915_gem_object), 0,
4954 SLAB_HWCACHE_ALIGN,
4955 NULL);
673a394b 4956
fc8c067e
BW
4957 INIT_LIST_HEAD(&dev_priv->vm_list);
4958 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4959
a33afea5 4960 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4961 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4962 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4963 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4964 for (i = 0; i < I915_NUM_RINGS; i++)
4965 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4966 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4967 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4968 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4969 i915_gem_retire_work_handler);
b29c19b6
CW
4970 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4971 i915_gem_idle_work_handler);
1f83fee0 4972 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4973
94400120 4974 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4975 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4976 I915_WRITE(MI_ARB_STATE,
4977 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4978 }
4979
72bfa19c
CW
4980 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4981
de151cf6 4982 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4983 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4984 dev_priv->fence_reg_start = 3;
de151cf6 4985
42b5aeab
VS
4986 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4987 dev_priv->num_fence_regs = 32;
4988 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4989 dev_priv->num_fence_regs = 16;
4990 else
4991 dev_priv->num_fence_regs = 8;
4992
b5aa8a0f 4993 /* Initialize fence registers to zero */
19b2dbde
CW
4994 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4995 i915_gem_restore_fences(dev);
10ed13e4 4996
673a394b 4997 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4998 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4999
ce453d81
CW
5000 dev_priv->mm.interruptible = true;
5001
ceabbba5
CW
5002 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5003 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5004 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5005 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5006
5007 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5008 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
5009
5010 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5011}
71acb5eb 5012
f787a5f5 5013void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5014{
f787a5f5 5015 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5016
b29c19b6
CW
5017 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5018
b962442e
EA
5019 /* Clean up our request list when the client is going away, so that
5020 * later retire_requests won't dereference our soon-to-be-gone
5021 * file_priv.
5022 */
1c25595f 5023 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5024 while (!list_empty(&file_priv->mm.request_list)) {
5025 struct drm_i915_gem_request *request;
5026
5027 request = list_first_entry(&file_priv->mm.request_list,
5028 struct drm_i915_gem_request,
5029 client_list);
5030 list_del(&request->client_list);
5031 request->file_priv = NULL;
5032 }
1c25595f 5033 spin_unlock(&file_priv->mm.lock);
b962442e 5034}
31169714 5035
b29c19b6
CW
5036static void
5037i915_gem_file_idle_work_handler(struct work_struct *work)
5038{
5039 struct drm_i915_file_private *file_priv =
5040 container_of(work, typeof(*file_priv), mm.idle_work.work);
5041
5042 atomic_set(&file_priv->rps_wait_boost, false);
5043}
5044
5045int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5046{
5047 struct drm_i915_file_private *file_priv;
e422b888 5048 int ret;
b29c19b6
CW
5049
5050 DRM_DEBUG_DRIVER("\n");
5051
5052 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5053 if (!file_priv)
5054 return -ENOMEM;
5055
5056 file->driver_priv = file_priv;
5057 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5058 file_priv->file = file;
b29c19b6
CW
5059
5060 spin_lock_init(&file_priv->mm.lock);
5061 INIT_LIST_HEAD(&file_priv->mm.request_list);
5062 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5063 i915_gem_file_idle_work_handler);
5064
e422b888
BW
5065 ret = i915_gem_context_open(dev, file);
5066 if (ret)
5067 kfree(file_priv);
b29c19b6 5068
e422b888 5069 return ret;
b29c19b6
CW
5070}
5071
b680c37a
DV
5072/**
5073 * i915_gem_track_fb - update frontbuffer tracking
5074 * old: current GEM buffer for the frontbuffer slots
5075 * new: new GEM buffer for the frontbuffer slots
5076 * frontbuffer_bits: bitmask of frontbuffer slots
5077 *
5078 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5079 * from @old and setting them in @new. Both @old and @new can be NULL.
5080 */
a071fa00
DV
5081void i915_gem_track_fb(struct drm_i915_gem_object *old,
5082 struct drm_i915_gem_object *new,
5083 unsigned frontbuffer_bits)
5084{
5085 if (old) {
5086 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5087 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5088 old->frontbuffer_bits &= ~frontbuffer_bits;
5089 }
5090
5091 if (new) {
5092 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5093 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5094 new->frontbuffer_bits |= frontbuffer_bits;
5095 }
5096}
5097
5774506f
CW
5098static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5099{
5100 if (!mutex_is_locked(mutex))
5101 return false;
5102
5103#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5104 return mutex->owner == task;
5105#else
5106 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5107 return false;
5108#endif
5109}
5110
b453c4db
CW
5111static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5112{
5113 if (!mutex_trylock(&dev->struct_mutex)) {
5114 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5115 return false;
5116
5117 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5118 return false;
5119
5120 *unlock = false;
5121 } else
5122 *unlock = true;
5123
5124 return true;
5125}
5126
ceabbba5
CW
5127static int num_vma_bound(struct drm_i915_gem_object *obj)
5128{
5129 struct i915_vma *vma;
5130 int count = 0;
5131
5132 list_for_each_entry(vma, &obj->vma_list, vma_link)
5133 if (drm_mm_node_allocated(&vma->node))
5134 count++;
5135
5136 return count;
5137}
5138
7dc19d5a 5139static unsigned long
ceabbba5 5140i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5141{
17250b71 5142 struct drm_i915_private *dev_priv =
ceabbba5 5143 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5144 struct drm_device *dev = dev_priv->dev;
6c085a72 5145 struct drm_i915_gem_object *obj;
7dc19d5a 5146 unsigned long count;
b453c4db 5147 bool unlock;
17250b71 5148
b453c4db
CW
5149 if (!i915_gem_shrinker_lock(dev, &unlock))
5150 return 0;
31169714 5151
7dc19d5a 5152 count = 0;
35c20a60 5153 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5154 if (obj->pages_pin_count == 0)
7dc19d5a 5155 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5156
5157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5158 if (!i915_gem_obj_is_pinned(obj) &&
5159 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5160 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5161 }
17250b71 5162
5774506f
CW
5163 if (unlock)
5164 mutex_unlock(&dev->struct_mutex);
d9973b43 5165
7dc19d5a 5166 return count;
31169714 5167}
a70a3148
BW
5168
5169/* All the new VM stuff */
fe14d5f4
TU
5170unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5171 struct i915_address_space *vm,
5172 enum i915_ggtt_view_type view)
a70a3148
BW
5173{
5174 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5175 struct i915_vma *vma;
5176
896ab1a5 5177 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5178
a70a3148 5179 list_for_each_entry(vma, &o->vma_list, vma_link) {
fe14d5f4 5180 if (vma->vm == vm && vma->ggtt_view.type == view)
a70a3148
BW
5181 return vma->node.start;
5182
5183 }
f25748ea
DV
5184 WARN(1, "%s vma for this object not found.\n",
5185 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5186 return -1;
5187}
5188
fe14d5f4
TU
5189bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5190 struct i915_address_space *vm,
5191 enum i915_ggtt_view_type view)
a70a3148
BW
5192{
5193 struct i915_vma *vma;
5194
5195 list_for_each_entry(vma, &o->vma_list, vma_link)
fe14d5f4
TU
5196 if (vma->vm == vm &&
5197 vma->ggtt_view.type == view &&
5198 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5199 return true;
5200
5201 return false;
5202}
5203
5204bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5205{
5a1d5eb0 5206 struct i915_vma *vma;
a70a3148 5207
5a1d5eb0
CW
5208 list_for_each_entry(vma, &o->vma_list, vma_link)
5209 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5210 return true;
5211
5212 return false;
5213}
5214
5215unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5216 struct i915_address_space *vm)
5217{
5218 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5219 struct i915_vma *vma;
5220
896ab1a5 5221 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5222
5223 BUG_ON(list_empty(&o->vma_list));
5224
5225 list_for_each_entry(vma, &o->vma_list, vma_link)
5226 if (vma->vm == vm)
5227 return vma->node.size;
5228
5229 return 0;
5230}
5231
7dc19d5a 5232static unsigned long
ceabbba5 5233i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5234{
5235 struct drm_i915_private *dev_priv =
ceabbba5 5236 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5237 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5238 unsigned long freed;
b453c4db 5239 bool unlock;
7dc19d5a 5240
b453c4db
CW
5241 if (!i915_gem_shrinker_lock(dev, &unlock))
5242 return SHRINK_STOP;
7dc19d5a 5243
21ab4e74
CW
5244 freed = i915_gem_shrink(dev_priv,
5245 sc->nr_to_scan,
5246 I915_SHRINK_BOUND |
5247 I915_SHRINK_UNBOUND |
5248 I915_SHRINK_PURGEABLE);
d9973b43 5249 if (freed < sc->nr_to_scan)
21ab4e74
CW
5250 freed += i915_gem_shrink(dev_priv,
5251 sc->nr_to_scan - freed,
5252 I915_SHRINK_BOUND |
5253 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5254 if (unlock)
5255 mutex_unlock(&dev->struct_mutex);
d9973b43 5256
7dc19d5a
DC
5257 return freed;
5258}
5c2abbea 5259
2cfcd32a
CW
5260static int
5261i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5262{
5263 struct drm_i915_private *dev_priv =
5264 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5265 struct drm_device *dev = dev_priv->dev;
5266 struct drm_i915_gem_object *obj;
5267 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5268 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5269 bool was_interruptible;
5270 bool unlock;
5271
a1db2fa7 5272 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5273 schedule_timeout_killable(1);
a1db2fa7
CW
5274 if (fatal_signal_pending(current))
5275 return NOTIFY_DONE;
5276 }
2cfcd32a
CW
5277 if (timeout == 0) {
5278 pr_err("Unable to purge GPU memory due lock contention.\n");
5279 return NOTIFY_DONE;
5280 }
5281
5282 was_interruptible = dev_priv->mm.interruptible;
5283 dev_priv->mm.interruptible = false;
5284
005445c5 5285 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5286
5287 dev_priv->mm.interruptible = was_interruptible;
5288
5289 /* Because we may be allocating inside our own driver, we cannot
5290 * assert that there are no objects with pinned pages that are not
5291 * being pointed to by hardware.
5292 */
5293 unbound = bound = pinned = 0;
5294 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5295 if (!obj->base.filp) /* not backed by a freeable object */
5296 continue;
5297
5298 if (obj->pages_pin_count)
5299 pinned += obj->base.size;
5300 else
5301 unbound += obj->base.size;
5302 }
5303 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5304 if (!obj->base.filp)
5305 continue;
5306
5307 if (obj->pages_pin_count)
5308 pinned += obj->base.size;
5309 else
5310 bound += obj->base.size;
5311 }
5312
5313 if (unlock)
5314 mutex_unlock(&dev->struct_mutex);
5315
bb9059d3
CW
5316 if (freed_pages || unbound || bound)
5317 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5318 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5319 if (unbound || bound)
5320 pr_err("%lu and %lu bytes still available in the "
5321 "bound and unbound GPU page lists.\n",
5322 bound, unbound);
5323
005445c5 5324 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5325 return NOTIFY_DONE;
5326}
5327
5c2abbea
BW
5328struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5329{
f7635669 5330 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5c2abbea
BW
5331 struct i915_vma *vma;
5332
fe14d5f4
TU
5333 list_for_each_entry(vma, &obj->vma_list, vma_link)
5334 if (vma->vm == ggtt &&
5335 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
f7635669 5336 return vma;
5c2abbea 5337
f7635669 5338 return NULL;
5c2abbea 5339}