]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: fixup active list locking in object_unbind
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
673a394b 34#include <linux/swap.h>
79e53945 35#include <linux/pci.h>
673a394b 36
28dfe52a
EA
37#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
e47c68e9
EA
39static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
42static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
de151cf6 51static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
07f73f69 52static int i915_gem_evict_something(struct drm_device *dev, int min_size);
ab5ee576 53static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
71acb5eb
DA
54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
673a394b 57
31169714
CW
58static LIST_HEAD(shrink_list);
59static DEFINE_SPINLOCK(shrink_list_lock);
60
79e53945
JB
61int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
673a394b
EA
63{
64 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 65
79e53945
JB
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
69 return -EINVAL;
70 }
71
79e53945
JB
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
673a394b 74
79e53945
JB
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78}
673a394b 79
79e53945
JB
80int
81i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83{
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
89 mutex_unlock(&dev->struct_mutex);
90
79e53945 91 return ret;
673a394b
EA
92}
93
5a125c3c
EA
94int
95i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97{
5a125c3c 98 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
2678d9d6
KP
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
5a125c3c
EA
106
107 return 0;
108}
109
673a394b
EA
110
111/**
112 * Creates a new mm object and returns a handle to it.
113 */
114int
115i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117{
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
a1a2d1d3
PP
120 int ret;
121 u32 handle;
673a394b
EA
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
bc9025bd 131 drm_gem_object_handle_unreference_unlocked(obj);
673a394b
EA
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139}
140
eb01459f
EA
141static inline int
142fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146{
147 char __iomem *vaddr;
2bc43b5c 148 int unwritten;
eb01459f
EA
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
2bc43b5c 153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
154 kunmap_atomic(vaddr, KM_USER0);
155
2bc43b5c
FM
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
eb01459f
EA
160}
161
280b713b
EA
162static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163{
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169}
170
40123c1f
EA
171static inline int
172slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177{
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196}
197
280b713b
EA
198static inline int
199slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205{
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254}
255
eb01459f
EA
256/**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261static int
262i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265{
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
4bdadb97 278 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314fail_put_pages:
315 i915_gem_object_put_pages(obj);
316fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320}
321
07f73f69
CW
322static int
323i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324{
325 int ret;
326
4bdadb97 327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
07f73f69
CW
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
4bdadb97 339 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
340 }
341
342 return ret;
343}
344
eb01459f
EA
345/**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351static int
352i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355{
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
280b713b 367 int do_bit17_swizzling;
eb01459f
EA
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
8e7d2b2c 379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 385 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
280b713b
EA
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
eb01459f
EA
394 mutex_lock(&dev->struct_mutex);
395
07f73f69
CW
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
eb01459f
EA
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
280b713b
EA
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
eb01459f
EA
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450fail_put_pages:
451 i915_gem_object_put_pages(obj);
452fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
8e7d2b2c 459 drm_free_large(user_pages);
eb01459f
EA
460
461 return ret;
462}
463
673a394b
EA
464/**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469int
470i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472{
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
673a394b
EA
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
bc9025bd 489 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
490 return -EINVAL;
491 }
492
280b713b 493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
673a394b 501
bc9025bd 502 drm_gem_object_unreference_unlocked(obj);
673a394b 503
eb01459f 504 return ret;
673a394b
EA
505}
506
0839ccb8
KP
507/* This is the fast write path which cannot handle
508 * page faults in the source data
9b7530cc 509 */
0839ccb8
KP
510
511static inline int
512fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
9b7530cc 516{
9b7530cc 517 char *vaddr_atomic;
0839ccb8 518 unsigned long unwritten;
9b7530cc 519
0839ccb8
KP
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527}
528
529/* Here's the write path which can sleep for
530 * page faults
531 */
532
533static inline int
3de09aa3
EA
534slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
0839ccb8 538{
3de09aa3 539 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
540 unsigned long unwritten;
541
3de09aa3
EA
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
549 if (unwritten)
550 return -EFAULT;
9b7530cc 551 return 0;
9b7530cc
LT
552}
553
40123c1f
EA
554static inline int
555fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559{
560 char __iomem *vaddr;
d0088775 561 unsigned long unwritten;
40123c1f
EA
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
d0088775 566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
567 kunmap_atomic(vaddr, KM_USER0);
568
d0088775
DA
569 if (unwritten)
570 return -EFAULT;
40123c1f
EA
571 return 0;
572}
573
3de09aa3
EA
574/**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
673a394b 578static int
3de09aa3
EA
579i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
673a394b
EA
582{
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 584 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 585 ssize_t remain;
0839ccb8 586 loff_t offset, page_base;
673a394b 587 char __user *user_data;
0839ccb8
KP
588 int page_offset, page_length;
589 int ret;
673a394b
EA
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
2ef7eeaa 603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
0839ccb8
KP
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
673a394b 616 */
0839ccb8
KP
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
0839ccb8 629 */
3de09aa3
EA
630 if (ret)
631 goto fail;
673a394b 632
0839ccb8
KP
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
673a394b 636 }
673a394b
EA
637
638fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643}
644
3de09aa3
EA
645/**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
3043c60c 652static int
3de09aa3
EA
653i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
673a394b 656{
3de09aa3
EA
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 666 int ret;
3de09aa3
EA
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
8e7d2b2c 679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
673a394b
EA
691
692 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742out_unpin_object:
743 i915_gem_object_unpin(obj);
744out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
8e7d2b2c 749 drm_free_large(user_pages);
3de09aa3
EA
750
751 return ret;
752}
753
40123c1f
EA
754/**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
3043c60c 758static int
40123c1f
EA
759i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
673a394b 762{
40123c1f
EA
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
673a394b 768 int ret;
40123c1f
EA
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
673a394b
EA
772
773 mutex_lock(&dev->struct_mutex);
774
4bdadb97 775 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
776 if (ret != 0)
777 goto fail_unlock;
673a394b 778
e47c68e9 779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811fail_put_pages:
812 i915_gem_object_put_pages(obj);
813fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817}
818
819/**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826static int
827i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830{
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
280b713b 842 int do_bit17_swizzling;
40123c1f
EA
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
8e7d2b2c 854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
673a394b
EA
865 }
866
280b713b
EA
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
40123c1f
EA
869 mutex_lock(&dev->struct_mutex);
870
07f73f69
CW
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
40123c1f
EA
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
673a394b 880 offset = args->offset;
40123c1f 881 obj_priv->dirty = 1;
673a394b 882
40123c1f
EA
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
280b713b
EA
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
40123c1f
EA
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
673a394b
EA
923 }
924
40123c1f
EA
925fail_put_pages:
926 i915_gem_object_put_pages(obj);
927fail_unlock:
673a394b 928 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
929fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
8e7d2b2c 932 drm_free_large(user_pages);
673a394b 933
40123c1f 934 return ret;
673a394b
EA
935}
936
937/**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942int
943i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945{
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
bc9025bd 962 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
71acb5eb
DA
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
280b713b
EA
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
673a394b
EA
990
991#if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994#endif
995
bc9025bd 996 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
997
998 return ret;
999}
1000
1001/**
2ef7eeaa
EA
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1004 */
1005int
1006i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008{
a09ba7fa 1009 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
652c393a 1012 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
673a394b
EA
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
2ef7eeaa 1020 /* Only handle setting domains to types used by the CPU. */
21d509e3 1021 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1022 return -EINVAL;
1023
21d509e3 1024 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
673a394b
EA
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
652c393a 1036 obj_priv = obj->driver_private;
673a394b
EA
1037
1038 mutex_lock(&dev->struct_mutex);
652c393a
JB
1039
1040 intel_mark_busy(dev, obj);
1041
673a394b 1042#if WATCH_BUF
cfd43c02 1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1044 obj, obj->size, read_domains, write_domain);
673a394b 1045#endif
2ef7eeaa
EA
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1048
a09ba7fa
EA
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
02354392
EA
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
2ef7eeaa 1063 } else {
e47c68e9 1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1065 }
1066
673a394b
EA
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070}
1071
1072/**
1073 * Called when user space has done writes to this buffer
1074 */
1075int
1076i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078{
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094#if WATCH_BUF
cfd43c02 1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1096 __func__, args->handle, obj, obj->size);
1097#endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
673a394b
EA
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107}
1108
1109/**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116int
1117i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119{
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
bc9025bd 1139 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146}
1147
de151cf6
JB
1148/**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165{
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
0f973f27 1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
e67b8ce1 1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1183 if (ret)
1184 goto unlock;
07f4f3e8 1185
14b60391 1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
07f4f3e8
KH
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1189 if (ret)
1190 goto unlock;
de151cf6
JB
1191 }
1192
1193 /* Need a new fence register? */
a09ba7fa 1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1195 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1196 if (ret)
1197 goto unlock;
d9ddcb96 1198 }
de151cf6
JB
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1205unlock:
de151cf6
JB
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
c715089f
CW
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
de151cf6
JB
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
de151cf6 1215 default:
c715089f 1216 return VM_FAULT_SIGBUS;
de151cf6
JB
1217 }
1218}
1219
1220/**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231static int
1232i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233{
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
f77d390c 1238 struct drm_local_map *map;
de151cf6
JB
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
9a298b2a 1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1271 ret = -ENOMEM;
de151cf6
JB
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283out_free_list:
9a298b2a 1284 kfree(list->map);
de151cf6
JB
1285
1286 return ret;
1287}
1288
901782b2
CW
1289/**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
af901ca1 1293 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
d05ca301 1303void
901782b2
CW
1304i915_gem_release_mmap(struct drm_gem_object *obj)
1305{
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312}
1313
ab00b3e5
JB
1314static void
1315i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316{
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
9a298b2a 1331 kfree(list->map);
ab00b3e5
JB
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336}
1337
de151cf6
JB
1338/**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345static uint32_t
1346i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347{
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372}
1373
1374/**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389int
1390i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392{
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
ab18282d
CW
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
de151cf6
JB
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
de151cf6 1423 return ret;
13af1062 1424 }
de151cf6
JB
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
de151cf6
JB
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
e67b8ce1 1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
14b60391 1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447}
1448
6911a9b8 1449void
856fa198 1450i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1451{
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
856fa198 1456 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1458
856fa198
EA
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
673a394b 1461
280b713b
EA
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
3ef94daa 1465 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1466 obj_priv->dirty = 0;
3ef94daa
CW
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->pages[i] == NULL)
1470 break;
1471
1472 if (obj_priv->dirty)
1473 set_page_dirty(obj_priv->pages[i]);
1474
1475 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1476 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1477
1478 page_cache_release(obj_priv->pages[i]);
1479 }
673a394b
EA
1480 obj_priv->dirty = 0;
1481
8e7d2b2c 1482 drm_free_large(obj_priv->pages);
856fa198 1483 obj_priv->pages = NULL;
673a394b
EA
1484}
1485
1486static void
ce44b0ea 1487i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1488{
1489 struct drm_device *dev = obj->dev;
1490 drm_i915_private_t *dev_priv = dev->dev_private;
1491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493 /* Add a reference if we're newly entering the active list. */
1494 if (!obj_priv->active) {
1495 drm_gem_object_reference(obj);
1496 obj_priv->active = 1;
1497 }
1498 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1499 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1500 list_move_tail(&obj_priv->list,
1501 &dev_priv->mm.active_list);
5e118f41 1502 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1503 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1504}
1505
ce44b0ea
EA
1506static void
1507i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508{
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516}
673a394b 1517
963b4836
CW
1518/* Immediately discard the backing storage */
1519static void
1520i915_gem_object_truncate(struct drm_gem_object *obj)
1521{
bb6baf76
CW
1522 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523 struct inode *inode;
963b4836 1524
bb6baf76
CW
1525 inode = obj->filp->f_path.dentry->d_inode;
1526 if (inode->i_op->truncate)
1527 inode->i_op->truncate (inode);
1528
1529 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1530}
1531
1532static inline int
1533i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534{
1535 return obj_priv->madv == I915_MADV_DONTNEED;
1536}
1537
673a394b
EA
1538static void
1539i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540{
1541 struct drm_device *dev = obj->dev;
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545 i915_verify_inactive(dev, __FILE__, __LINE__);
1546 if (obj_priv->pin_count != 0)
1547 list_del_init(&obj_priv->list);
1548 else
1549 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
99fcb766
DV
1551 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
ce44b0ea 1553 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1554 if (obj_priv->active) {
1555 obj_priv->active = 0;
1556 drm_gem_object_unreference(obj);
1557 }
1558 i915_verify_inactive(dev, __FILE__, __LINE__);
1559}
1560
1561/**
1562 * Creates a new sequence number, emitting a write of it to the status page
1563 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1564 *
1565 * Must be called with struct_lock held.
1566 *
1567 * Returned sequence numbers are nonzero on success.
1568 */
5a5a0c64 1569uint32_t
b962442e
EA
1570i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1571 uint32_t flush_domains)
673a394b
EA
1572{
1573 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1574 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1575 struct drm_i915_gem_request *request;
1576 uint32_t seqno;
1577 int was_empty;
1578 RING_LOCALS;
1579
b962442e
EA
1580 if (file_priv != NULL)
1581 i915_file_priv = file_priv->driver_priv;
1582
9a298b2a 1583 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1584 if (request == NULL)
1585 return 0;
1586
1587 /* Grab the seqno we're going to make this request be, and bump the
1588 * next (skipping 0 so it can be the reserved no-seqno value).
1589 */
1590 seqno = dev_priv->mm.next_gem_seqno;
1591 dev_priv->mm.next_gem_seqno++;
1592 if (dev_priv->mm.next_gem_seqno == 0)
1593 dev_priv->mm.next_gem_seqno++;
1594
1595 BEGIN_LP_RING(4);
1596 OUT_RING(MI_STORE_DWORD_INDEX);
1597 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1598 OUT_RING(seqno);
1599
1600 OUT_RING(MI_USER_INTERRUPT);
1601 ADVANCE_LP_RING();
1602
44d98a61 1603 DRM_DEBUG_DRIVER("%d\n", seqno);
673a394b
EA
1604
1605 request->seqno = seqno;
1606 request->emitted_jiffies = jiffies;
673a394b
EA
1607 was_empty = list_empty(&dev_priv->mm.request_list);
1608 list_add_tail(&request->list, &dev_priv->mm.request_list);
b962442e
EA
1609 if (i915_file_priv) {
1610 list_add_tail(&request->client_list,
1611 &i915_file_priv->mm.request_list);
1612 } else {
1613 INIT_LIST_HEAD(&request->client_list);
1614 }
673a394b 1615
ce44b0ea
EA
1616 /* Associate any objects on the flushing list matching the write
1617 * domain we're flushing with our flush.
1618 */
1619 if (flush_domains != 0) {
1620 struct drm_i915_gem_object *obj_priv, *next;
1621
1622 list_for_each_entry_safe(obj_priv, next,
99fcb766
DV
1623 &dev_priv->mm.gpu_write_list,
1624 gpu_write_list) {
ce44b0ea
EA
1625 struct drm_gem_object *obj = obj_priv->obj;
1626
1627 if ((obj->write_domain & flush_domains) ==
1628 obj->write_domain) {
1c5d22f7
CW
1629 uint32_t old_write_domain = obj->write_domain;
1630
ce44b0ea 1631 obj->write_domain = 0;
99fcb766 1632 list_del_init(&obj_priv->gpu_write_list);
ce44b0ea 1633 i915_gem_object_move_to_active(obj, seqno);
1c5d22f7
CW
1634
1635 trace_i915_gem_object_change_domain(obj,
1636 obj->read_domains,
1637 old_write_domain);
ce44b0ea
EA
1638 }
1639 }
1640
1641 }
1642
f65d9421
BG
1643 if (!dev_priv->mm.suspended) {
1644 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1645 if (was_empty)
1646 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1647 }
673a394b
EA
1648 return seqno;
1649}
1650
1651/**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
3043c60c 1657static uint32_t
673a394b
EA
1658i915_retire_commands(struct drm_device *dev)
1659{
1660 drm_i915_private_t *dev_priv = dev->dev_private;
1661 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1662 uint32_t flush_domains = 0;
1663 RING_LOCALS;
1664
1665 /* The sampler always gets flushed on i965 (sigh) */
1666 if (IS_I965G(dev))
1667 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1668 BEGIN_LP_RING(2);
1669 OUT_RING(cmd);
1670 OUT_RING(0); /* noop */
1671 ADVANCE_LP_RING();
1672 return flush_domains;
1673}
1674
1675/**
1676 * Moves buffers associated only with the given active seqno from the active
1677 * to inactive list, potentially freeing them.
1678 */
1679static void
1680i915_gem_retire_request(struct drm_device *dev,
1681 struct drm_i915_gem_request *request)
1682{
1683 drm_i915_private_t *dev_priv = dev->dev_private;
1684
1c5d22f7
CW
1685 trace_i915_gem_request_retire(dev, request->seqno);
1686
673a394b
EA
1687 /* Move any buffers on the active list that are no longer referenced
1688 * by the ringbuffer to the flushing/inactive lists as appropriate.
1689 */
5e118f41 1690 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1691 while (!list_empty(&dev_priv->mm.active_list)) {
1692 struct drm_gem_object *obj;
1693 struct drm_i915_gem_object *obj_priv;
1694
1695 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1696 struct drm_i915_gem_object,
1697 list);
1698 obj = obj_priv->obj;
1699
1700 /* If the seqno being retired doesn't match the oldest in the
1701 * list, then the oldest in the list must still be newer than
1702 * this seqno.
1703 */
1704 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1705 goto out;
de151cf6 1706
673a394b
EA
1707#if WATCH_LRU
1708 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1709 __func__, request->seqno, obj);
1710#endif
1711
ce44b0ea
EA
1712 if (obj->write_domain != 0)
1713 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1714 else {
1715 /* Take a reference on the object so it won't be
1716 * freed while the spinlock is held. The list
1717 * protection for this spinlock is safe when breaking
1718 * the lock like this since the next thing we do
1719 * is just get the head of the list again.
1720 */
1721 drm_gem_object_reference(obj);
673a394b 1722 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1723 spin_unlock(&dev_priv->mm.active_list_lock);
1724 drm_gem_object_unreference(obj);
1725 spin_lock(&dev_priv->mm.active_list_lock);
1726 }
673a394b 1727 }
5e118f41
CW
1728out:
1729 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1730}
1731
1732/**
1733 * Returns true if seq1 is later than seq2.
1734 */
22be1724 1735bool
673a394b
EA
1736i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1737{
1738 return (int32_t)(seq1 - seq2) >= 0;
1739}
1740
1741uint32_t
1742i915_get_gem_seqno(struct drm_device *dev)
1743{
1744 drm_i915_private_t *dev_priv = dev->dev_private;
1745
1746 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1747}
1748
1749/**
1750 * This function clears the request list as sequence numbers are passed.
1751 */
1752void
1753i915_gem_retire_requests(struct drm_device *dev)
1754{
1755 drm_i915_private_t *dev_priv = dev->dev_private;
1756 uint32_t seqno;
1757
9d34e5db 1758 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
6c0594a3
KW
1759 return;
1760
673a394b
EA
1761 seqno = i915_get_gem_seqno(dev);
1762
1763 while (!list_empty(&dev_priv->mm.request_list)) {
1764 struct drm_i915_gem_request *request;
1765 uint32_t retiring_seqno;
1766
1767 request = list_first_entry(&dev_priv->mm.request_list,
1768 struct drm_i915_gem_request,
1769 list);
1770 retiring_seqno = request->seqno;
1771
1772 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1773 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1774 i915_gem_retire_request(dev, request);
1775
1776 list_del(&request->list);
b962442e 1777 list_del(&request->client_list);
9a298b2a 1778 kfree(request);
673a394b
EA
1779 } else
1780 break;
1781 }
9d34e5db
CW
1782
1783 if (unlikely (dev_priv->trace_irq_seqno &&
1784 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1785 i915_user_irq_put(dev);
1786 dev_priv->trace_irq_seqno = 0;
1787 }
673a394b
EA
1788}
1789
1790void
1791i915_gem_retire_work_handler(struct work_struct *work)
1792{
1793 drm_i915_private_t *dev_priv;
1794 struct drm_device *dev;
1795
1796 dev_priv = container_of(work, drm_i915_private_t,
1797 mm.retire_work.work);
1798 dev = dev_priv->dev;
1799
1800 mutex_lock(&dev->struct_mutex);
1801 i915_gem_retire_requests(dev);
6dbe2772
KP
1802 if (!dev_priv->mm.suspended &&
1803 !list_empty(&dev_priv->mm.request_list))
9c9fe1f8 1804 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1805 mutex_unlock(&dev->struct_mutex);
1806}
1807
5a5a0c64 1808int
48764bf4 1809i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
673a394b
EA
1810{
1811 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1812 u32 ier;
673a394b
EA
1813 int ret = 0;
1814
1815 BUG_ON(seqno == 0);
1816
ba1234d1 1817 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1818 return -EIO;
1819
673a394b 1820 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
bad720ff 1821 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1822 ier = I915_READ(DEIER) | I915_READ(GTIER);
1823 else
1824 ier = I915_READ(IER);
802c7eb6
JB
1825 if (!ier) {
1826 DRM_ERROR("something (likely vbetool) disabled "
1827 "interrupts, re-enabling\n");
1828 i915_driver_irq_preinstall(dev);
1829 i915_driver_irq_postinstall(dev);
1830 }
1831
1c5d22f7
CW
1832 trace_i915_gem_request_wait_begin(dev, seqno);
1833
673a394b
EA
1834 dev_priv->mm.waiting_gem_seqno = seqno;
1835 i915_user_irq_get(dev);
48764bf4
DV
1836 if (interruptible)
1837 ret = wait_event_interruptible(dev_priv->irq_queue,
1838 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1839 atomic_read(&dev_priv->mm.wedged));
1840 else
1841 wait_event(dev_priv->irq_queue,
1842 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1843 atomic_read(&dev_priv->mm.wedged));
1844
673a394b
EA
1845 i915_user_irq_put(dev);
1846 dev_priv->mm.waiting_gem_seqno = 0;
1c5d22f7
CW
1847
1848 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1849 }
ba1234d1 1850 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1851 ret = -EIO;
1852
1853 if (ret && ret != -ERESTARTSYS)
1854 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1855 __func__, ret, seqno, i915_get_gem_seqno(dev));
1856
1857 /* Directly dispatch request retiring. While we have the work queue
1858 * to handle this, the waiter on a request often wants an associated
1859 * buffer to have made it to the inactive list, and we would need
1860 * a separate wait queue to handle that.
1861 */
1862 if (ret == 0)
1863 i915_gem_retire_requests(dev);
1864
1865 return ret;
1866}
1867
48764bf4
DV
1868/**
1869 * Waits for a sequence number to be signaled, and cleans up the
1870 * request and object lists appropriately for that event.
1871 */
1872static int
1873i915_wait_request(struct drm_device *dev, uint32_t seqno)
1874{
1875 return i915_do_wait_request(dev, seqno, 1);
1876}
1877
673a394b
EA
1878static void
1879i915_gem_flush(struct drm_device *dev,
1880 uint32_t invalidate_domains,
1881 uint32_t flush_domains)
1882{
1883 drm_i915_private_t *dev_priv = dev->dev_private;
1884 uint32_t cmd;
1885 RING_LOCALS;
1886
1887#if WATCH_EXEC
1888 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1889 invalidate_domains, flush_domains);
1890#endif
1c5d22f7
CW
1891 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1892 invalidate_domains, flush_domains);
673a394b
EA
1893
1894 if (flush_domains & I915_GEM_DOMAIN_CPU)
1895 drm_agp_chipset_flush(dev);
1896
21d509e3 1897 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
673a394b
EA
1898 /*
1899 * read/write caches:
1900 *
1901 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1902 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1903 * also flushed at 2d versus 3d pipeline switches.
1904 *
1905 * read-only caches:
1906 *
1907 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1908 * MI_READ_FLUSH is set, and is always flushed on 965.
1909 *
1910 * I915_GEM_DOMAIN_COMMAND may not exist?
1911 *
1912 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1913 * invalidated when MI_EXE_FLUSH is set.
1914 *
1915 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1916 * invalidated with every MI_FLUSH.
1917 *
1918 * TLBs:
1919 *
1920 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1921 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1922 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1923 * are flushed at any MI_FLUSH.
1924 */
1925
1926 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1927 if ((invalidate_domains|flush_domains) &
1928 I915_GEM_DOMAIN_RENDER)
1929 cmd &= ~MI_NO_WRITE_FLUSH;
1930 if (!IS_I965G(dev)) {
1931 /*
1932 * On the 965, the sampler cache always gets flushed
1933 * and this bit is reserved.
1934 */
1935 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1936 cmd |= MI_READ_FLUSH;
1937 }
1938 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1939 cmd |= MI_EXE_FLUSH;
1940
1941#if WATCH_EXEC
1942 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1943#endif
1944 BEGIN_LP_RING(2);
1945 OUT_RING(cmd);
48764bf4 1946 OUT_RING(MI_NOOP);
673a394b
EA
1947 ADVANCE_LP_RING();
1948 }
1949}
1950
1951/**
1952 * Ensures that all rendering to the object has completed and the object is
1953 * safe to unbind from the GTT or access from the CPU.
1954 */
1955static int
1956i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1957{
1958 struct drm_device *dev = obj->dev;
1959 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1960 int ret;
1961
e47c68e9
EA
1962 /* This function only exists to support waiting for existing rendering,
1963 * not for emitting required flushes.
673a394b 1964 */
e47c68e9 1965 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1966
1967 /* If there is rendering queued on the buffer being evicted, wait for
1968 * it.
1969 */
1970 if (obj_priv->active) {
1971#if WATCH_BUF
1972 DRM_INFO("%s: object %p wait for seqno %08x\n",
1973 __func__, obj, obj_priv->last_rendering_seqno);
1974#endif
1975 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1976 if (ret != 0)
1977 return ret;
1978 }
1979
1980 return 0;
1981}
1982
1983/**
1984 * Unbinds an object from the GTT aperture.
1985 */
0f973f27 1986int
673a394b
EA
1987i915_gem_object_unbind(struct drm_gem_object *obj)
1988{
1989 struct drm_device *dev = obj->dev;
4a87b8ca 1990 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
1991 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1992 int ret = 0;
1993
1994#if WATCH_BUF
1995 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1996 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1997#endif
1998 if (obj_priv->gtt_space == NULL)
1999 return 0;
2000
2001 if (obj_priv->pin_count != 0) {
2002 DRM_ERROR("Attempting to unbind pinned buffer\n");
2003 return -EINVAL;
2004 }
2005
5323fd04
EA
2006 /* blow away mappings if mapped through GTT */
2007 i915_gem_release_mmap(obj);
2008
673a394b
EA
2009 /* Move the object to the CPU domain to ensure that
2010 * any possible CPU writes while it's not in the GTT
2011 * are flushed when we go to remap it. This will
2012 * also ensure that all pending GPU writes are finished
2013 * before we unbind.
2014 */
e47c68e9 2015 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 2016 if (ret) {
e47c68e9
EA
2017 if (ret != -ERESTARTSYS)
2018 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
2019 return ret;
2020 }
2021
5323fd04
EA
2022 BUG_ON(obj_priv->active);
2023
96b47b65
DV
2024 /* release the fence reg _after_ flushing */
2025 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2026 i915_gem_clear_fence_reg(obj);
2027
673a394b
EA
2028 if (obj_priv->agp_mem != NULL) {
2029 drm_unbind_agp(obj_priv->agp_mem);
2030 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2031 obj_priv->agp_mem = NULL;
2032 }
2033
856fa198 2034 i915_gem_object_put_pages(obj);
a32808c0 2035 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2036
2037 if (obj_priv->gtt_space) {
2038 atomic_dec(&dev->gtt_count);
2039 atomic_sub(obj->size, &dev->gtt_memory);
2040
2041 drm_mm_put_block(obj_priv->gtt_space);
2042 obj_priv->gtt_space = NULL;
2043 }
2044
2045 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2046 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2047 if (!list_empty(&obj_priv->list))
2048 list_del_init(&obj_priv->list);
4a87b8ca 2049 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2050
963b4836
CW
2051 if (i915_gem_object_is_purgeable(obj_priv))
2052 i915_gem_object_truncate(obj);
2053
1c5d22f7
CW
2054 trace_i915_gem_object_unbind(obj);
2055
673a394b
EA
2056 return 0;
2057}
2058
07f73f69
CW
2059static struct drm_gem_object *
2060i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2061{
2062 drm_i915_private_t *dev_priv = dev->dev_private;
2063 struct drm_i915_gem_object *obj_priv;
2064 struct drm_gem_object *best = NULL;
2065 struct drm_gem_object *first = NULL;
2066
2067 /* Try to find the smallest clean object */
2068 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2069 struct drm_gem_object *obj = obj_priv->obj;
2070 if (obj->size >= min_size) {
963b4836
CW
2071 if ((!obj_priv->dirty ||
2072 i915_gem_object_is_purgeable(obj_priv)) &&
07f73f69
CW
2073 (!best || obj->size < best->size)) {
2074 best = obj;
2075 if (best->size == min_size)
2076 return best;
2077 }
2078 if (!first)
2079 first = obj;
2080 }
2081 }
2082
2083 return best ? best : first;
2084}
2085
673a394b 2086static int
07f73f69
CW
2087i915_gem_evict_everything(struct drm_device *dev)
2088{
2089 drm_i915_private_t *dev_priv = dev->dev_private;
07f73f69 2090 int ret;
99fcb766 2091 uint32_t seqno;
07f73f69
CW
2092 bool lists_empty;
2093
07f73f69
CW
2094 spin_lock(&dev_priv->mm.active_list_lock);
2095 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2096 list_empty(&dev_priv->mm.flushing_list) &&
2097 list_empty(&dev_priv->mm.active_list));
2098 spin_unlock(&dev_priv->mm.active_list_lock);
2099
9731129c 2100 if (lists_empty)
07f73f69 2101 return -ENOSPC;
07f73f69
CW
2102
2103 /* Flush everything (on to the inactive lists) and evict */
2104 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2105 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2106 if (seqno == 0)
2107 return -ENOMEM;
2108
2109 ret = i915_wait_request(dev, seqno);
2110 if (ret)
2111 return ret;
2112
99fcb766
DV
2113 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2114
ab5ee576 2115 ret = i915_gem_evict_from_inactive_list(dev);
07f73f69
CW
2116 if (ret)
2117 return ret;
2118
2119 spin_lock(&dev_priv->mm.active_list_lock);
2120 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2121 list_empty(&dev_priv->mm.flushing_list) &&
2122 list_empty(&dev_priv->mm.active_list));
2123 spin_unlock(&dev_priv->mm.active_list_lock);
2124 BUG_ON(!lists_empty);
2125
2126 return 0;
2127}
2128
673a394b 2129static int
07f73f69 2130i915_gem_evict_something(struct drm_device *dev, int min_size)
673a394b
EA
2131{
2132 drm_i915_private_t *dev_priv = dev->dev_private;
2133 struct drm_gem_object *obj;
07f73f69 2134 int ret;
673a394b
EA
2135
2136 for (;;) {
07f73f69
CW
2137 i915_gem_retire_requests(dev);
2138
673a394b
EA
2139 /* If there's an inactive buffer available now, grab it
2140 * and be done.
2141 */
07f73f69
CW
2142 obj = i915_gem_find_inactive_object(dev, min_size);
2143 if (obj) {
2144 struct drm_i915_gem_object *obj_priv;
2145
673a394b
EA
2146#if WATCH_LRU
2147 DRM_INFO("%s: evicting %p\n", __func__, obj);
2148#endif
07f73f69
CW
2149 obj_priv = obj->driver_private;
2150 BUG_ON(obj_priv->pin_count != 0);
673a394b
EA
2151 BUG_ON(obj_priv->active);
2152
2153 /* Wait on the rendering and unbind the buffer. */
07f73f69 2154 return i915_gem_object_unbind(obj);
673a394b
EA
2155 }
2156
2157 /* If we didn't get anything, but the ring is still processing
07f73f69
CW
2158 * things, wait for the next to finish and hopefully leave us
2159 * a buffer to evict.
673a394b
EA
2160 */
2161 if (!list_empty(&dev_priv->mm.request_list)) {
2162 struct drm_i915_gem_request *request;
2163
2164 request = list_first_entry(&dev_priv->mm.request_list,
2165 struct drm_i915_gem_request,
2166 list);
2167
2168 ret = i915_wait_request(dev, request->seqno);
2169 if (ret)
07f73f69 2170 return ret;
673a394b 2171
07f73f69 2172 continue;
673a394b
EA
2173 }
2174
2175 /* If we didn't have anything on the request list but there
2176 * are buffers awaiting a flush, emit one and try again.
2177 * When we wait on it, those buffers waiting for that flush
2178 * will get moved to inactive.
2179 */
2180 if (!list_empty(&dev_priv->mm.flushing_list)) {
07f73f69 2181 struct drm_i915_gem_object *obj_priv;
673a394b 2182
9a1e2582
CW
2183 /* Find an object that we can immediately reuse */
2184 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2185 obj = obj_priv->obj;
2186 if (obj->size >= min_size)
2187 break;
673a394b 2188
9a1e2582
CW
2189 obj = NULL;
2190 }
673a394b 2191
9a1e2582
CW
2192 if (obj != NULL) {
2193 uint32_t seqno;
673a394b 2194
9a1e2582
CW
2195 i915_gem_flush(dev,
2196 obj->write_domain,
2197 obj->write_domain);
2198 seqno = i915_add_request(dev, NULL, obj->write_domain);
2199 if (seqno == 0)
2200 return -ENOMEM;
ac94a962 2201
9a1e2582
CW
2202 ret = i915_wait_request(dev, seqno);
2203 if (ret)
2204 return ret;
2205
2206 continue;
2207 }
673a394b
EA
2208 }
2209
07f73f69
CW
2210 /* If we didn't do any of the above, there's no single buffer
2211 * large enough to swap out for the new one, so just evict
2212 * everything and start again. (This should be rare.)
673a394b 2213 */
9731129c 2214 if (!list_empty (&dev_priv->mm.inactive_list))
ab5ee576 2215 return i915_gem_evict_from_inactive_list(dev);
9731129c 2216 else
07f73f69 2217 return i915_gem_evict_everything(dev);
ac94a962 2218 }
ac94a962
KP
2219}
2220
6911a9b8 2221int
4bdadb97
CW
2222i915_gem_object_get_pages(struct drm_gem_object *obj,
2223 gfp_t gfpmask)
673a394b
EA
2224{
2225 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2226 int page_count, i;
2227 struct address_space *mapping;
2228 struct inode *inode;
2229 struct page *page;
2230 int ret;
2231
856fa198 2232 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2233 return 0;
2234
2235 /* Get the list of pages out of our struct file. They'll be pinned
2236 * at this point until we release them.
2237 */
2238 page_count = obj->size / PAGE_SIZE;
856fa198 2239 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2240 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2241 if (obj_priv->pages == NULL) {
856fa198 2242 obj_priv->pages_refcount--;
673a394b
EA
2243 return -ENOMEM;
2244 }
2245
2246 inode = obj->filp->f_path.dentry->d_inode;
2247 mapping = inode->i_mapping;
2248 for (i = 0; i < page_count; i++) {
4bdadb97
CW
2249 page = read_cache_page_gfp(mapping, i,
2250 mapping_gfp_mask (mapping) |
2251 __GFP_COLD |
2252 gfpmask);
673a394b
EA
2253 if (IS_ERR(page)) {
2254 ret = PTR_ERR(page);
856fa198 2255 i915_gem_object_put_pages(obj);
673a394b
EA
2256 return ret;
2257 }
856fa198 2258 obj_priv->pages[i] = page;
673a394b 2259 }
280b713b
EA
2260
2261 if (obj_priv->tiling_mode != I915_TILING_NONE)
2262 i915_gem_object_do_bit_17_swizzle(obj);
2263
673a394b
EA
2264 return 0;
2265}
2266
4e901fdc
EA
2267static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2268{
2269 struct drm_gem_object *obj = reg->obj;
2270 struct drm_device *dev = obj->dev;
2271 drm_i915_private_t *dev_priv = dev->dev_private;
2272 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2273 int regnum = obj_priv->fence_reg;
2274 uint64_t val;
2275
2276 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2277 0xfffff000) << 32;
2278 val |= obj_priv->gtt_offset & 0xfffff000;
2279 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2280 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2281
2282 if (obj_priv->tiling_mode == I915_TILING_Y)
2283 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2284 val |= I965_FENCE_REG_VALID;
2285
2286 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2287}
2288
de151cf6
JB
2289static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2290{
2291 struct drm_gem_object *obj = reg->obj;
2292 struct drm_device *dev = obj->dev;
2293 drm_i915_private_t *dev_priv = dev->dev_private;
2294 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2295 int regnum = obj_priv->fence_reg;
2296 uint64_t val;
2297
2298 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2299 0xfffff000) << 32;
2300 val |= obj_priv->gtt_offset & 0xfffff000;
2301 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2302 if (obj_priv->tiling_mode == I915_TILING_Y)
2303 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2304 val |= I965_FENCE_REG_VALID;
2305
2306 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2307}
2308
2309static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2310{
2311 struct drm_gem_object *obj = reg->obj;
2312 struct drm_device *dev = obj->dev;
2313 drm_i915_private_t *dev_priv = dev->dev_private;
2314 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2315 int regnum = obj_priv->fence_reg;
0f973f27 2316 int tile_width;
dc529a4f 2317 uint32_t fence_reg, val;
de151cf6
JB
2318 uint32_t pitch_val;
2319
2320 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2321 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2322 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2323 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2324 return;
2325 }
2326
0f973f27
JB
2327 if (obj_priv->tiling_mode == I915_TILING_Y &&
2328 HAS_128_BYTE_Y_TILING(dev))
2329 tile_width = 128;
de151cf6 2330 else
0f973f27
JB
2331 tile_width = 512;
2332
2333 /* Note: pitch better be a power of two tile widths */
2334 pitch_val = obj_priv->stride / tile_width;
2335 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2336
2337 val = obj_priv->gtt_offset;
2338 if (obj_priv->tiling_mode == I915_TILING_Y)
2339 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2340 val |= I915_FENCE_SIZE_BITS(obj->size);
2341 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2342 val |= I830_FENCE_REG_VALID;
2343
dc529a4f
EA
2344 if (regnum < 8)
2345 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2346 else
2347 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2348 I915_WRITE(fence_reg, val);
de151cf6
JB
2349}
2350
2351static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2352{
2353 struct drm_gem_object *obj = reg->obj;
2354 struct drm_device *dev = obj->dev;
2355 drm_i915_private_t *dev_priv = dev->dev_private;
2356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2357 int regnum = obj_priv->fence_reg;
2358 uint32_t val;
2359 uint32_t pitch_val;
8d7773a3 2360 uint32_t fence_size_bits;
de151cf6 2361
8d7773a3 2362 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2363 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2364 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2365 __func__, obj_priv->gtt_offset);
de151cf6
JB
2366 return;
2367 }
2368
e76a16de
EA
2369 pitch_val = obj_priv->stride / 128;
2370 pitch_val = ffs(pitch_val) - 1;
2371 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2372
de151cf6
JB
2373 val = obj_priv->gtt_offset;
2374 if (obj_priv->tiling_mode == I915_TILING_Y)
2375 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2376 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2377 WARN_ON(fence_size_bits & ~0x00000f00);
2378 val |= fence_size_bits;
de151cf6
JB
2379 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2380 val |= I830_FENCE_REG_VALID;
2381
2382 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2383}
2384
2385/**
2386 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2387 * @obj: object to map through a fence reg
2388 *
2389 * When mapping objects through the GTT, userspace wants to be able to write
2390 * to them without having to worry about swizzling if the object is tiled.
2391 *
2392 * This function walks the fence regs looking for a free one for @obj,
2393 * stealing one if it can't find any.
2394 *
2395 * It then sets up the reg based on the object's properties: address, pitch
2396 * and tiling format.
2397 */
8c4b8c3f
CW
2398int
2399i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2400{
2401 struct drm_device *dev = obj->dev;
79e53945 2402 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2403 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2404 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2405 struct drm_i915_gem_object *old_obj_priv = NULL;
2406 int i, ret, avail;
de151cf6 2407
a09ba7fa
EA
2408 /* Just update our place in the LRU if our fence is getting used. */
2409 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2410 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2411 return 0;
2412 }
2413
de151cf6
JB
2414 switch (obj_priv->tiling_mode) {
2415 case I915_TILING_NONE:
2416 WARN(1, "allocating a fence for non-tiled object?\n");
2417 break;
2418 case I915_TILING_X:
0f973f27
JB
2419 if (!obj_priv->stride)
2420 return -EINVAL;
2421 WARN((obj_priv->stride & (512 - 1)),
2422 "object 0x%08x is X tiled but has non-512B pitch\n",
2423 obj_priv->gtt_offset);
de151cf6
JB
2424 break;
2425 case I915_TILING_Y:
0f973f27
JB
2426 if (!obj_priv->stride)
2427 return -EINVAL;
2428 WARN((obj_priv->stride & (128 - 1)),
2429 "object 0x%08x is Y tiled but has non-128B pitch\n",
2430 obj_priv->gtt_offset);
de151cf6
JB
2431 break;
2432 }
2433
2434 /* First try to find a free reg */
fc7170ba 2435 avail = 0;
de151cf6
JB
2436 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2437 reg = &dev_priv->fence_regs[i];
2438 if (!reg->obj)
2439 break;
fc7170ba
CW
2440
2441 old_obj_priv = reg->obj->driver_private;
2442 if (!old_obj_priv->pin_count)
2443 avail++;
de151cf6
JB
2444 }
2445
2446 /* None available, try to steal one or wait for a user to finish */
2447 if (i == dev_priv->num_fence_regs) {
a09ba7fa 2448 struct drm_gem_object *old_obj = NULL;
de151cf6 2449
fc7170ba 2450 if (avail == 0)
2939e1f5 2451 return -ENOSPC;
fc7170ba 2452
a09ba7fa
EA
2453 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2454 fence_list) {
2455 old_obj = old_obj_priv->obj;
d7619c4b 2456
d7619c4b
CW
2457 if (old_obj_priv->pin_count)
2458 continue;
2459
a09ba7fa
EA
2460 /* Take a reference, as otherwise the wait_rendering
2461 * below may cause the object to get freed out from
2462 * under us.
2463 */
2464 drm_gem_object_reference(old_obj);
2465
a09ba7fa 2466 break;
de151cf6
JB
2467 }
2468
a09ba7fa 2469 i = old_obj_priv->fence_reg;
58c2fb64
CW
2470 reg = &dev_priv->fence_regs[i];
2471
798750e3 2472 ret = i915_gem_object_put_fence_reg(old_obj);
a09ba7fa 2473 drm_gem_object_unreference(old_obj);
798750e3
DV
2474 if (ret != 0)
2475 return ret;
de151cf6
JB
2476 }
2477
2478 obj_priv->fence_reg = i;
a09ba7fa
EA
2479 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2480
de151cf6
JB
2481 reg->obj = obj;
2482
4e901fdc
EA
2483 if (IS_GEN6(dev))
2484 sandybridge_write_fence_reg(reg);
2485 else if (IS_I965G(dev))
de151cf6
JB
2486 i965_write_fence_reg(reg);
2487 else if (IS_I9XX(dev))
2488 i915_write_fence_reg(reg);
2489 else
2490 i830_write_fence_reg(reg);
d9ddcb96 2491
1c5d22f7
CW
2492 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2493
d9ddcb96 2494 return 0;
de151cf6
JB
2495}
2496
2497/**
2498 * i915_gem_clear_fence_reg - clear out fence register info
2499 * @obj: object to clear
2500 *
2501 * Zeroes out the fence register itself and clears out the associated
2502 * data structures in dev_priv and obj_priv.
2503 */
2504static void
2505i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2506{
2507 struct drm_device *dev = obj->dev;
79e53945 2508 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2509 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2510
4e901fdc
EA
2511 if (IS_GEN6(dev)) {
2512 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2513 (obj_priv->fence_reg * 8), 0);
2514 } else if (IS_I965G(dev)) {
de151cf6 2515 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2516 } else {
dc529a4f
EA
2517 uint32_t fence_reg;
2518
2519 if (obj_priv->fence_reg < 8)
2520 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2521 else
2522 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2523 8) * 4;
2524
2525 I915_WRITE(fence_reg, 0);
2526 }
de151cf6
JB
2527
2528 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2529 obj_priv->fence_reg = I915_FENCE_REG_NONE;
a09ba7fa 2530 list_del_init(&obj_priv->fence_list);
de151cf6
JB
2531}
2532
52dc7d32
CW
2533/**
2534 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2535 * to the buffer to finish, and then resets the fence register.
2536 * @obj: tiled object holding a fence register.
2537 *
2538 * Zeroes out the fence register itself and clears out the associated
2539 * data structures in dev_priv and obj_priv.
2540 */
2541int
2542i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2543{
2544 struct drm_device *dev = obj->dev;
2545 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2546
2547 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2548 return 0;
2549
10ae9bd2
DV
2550 /* If we've changed tiling, GTT-mappings of the object
2551 * need to re-fault to ensure that the correct fence register
2552 * setup is in place.
2553 */
2554 i915_gem_release_mmap(obj);
2555
52dc7d32
CW
2556 /* On the i915, GPU access to tiled buffers is via a fence,
2557 * therefore we must wait for any outstanding access to complete
2558 * before clearing the fence.
2559 */
2560 if (!IS_I965G(dev)) {
2561 int ret;
2562
2563 i915_gem_object_flush_gpu_write_domain(obj);
52dc7d32
CW
2564 ret = i915_gem_object_wait_rendering(obj);
2565 if (ret != 0)
2566 return ret;
2567 }
2568
4a726612 2569 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2570 i915_gem_clear_fence_reg (obj);
2571
2572 return 0;
2573}
2574
673a394b
EA
2575/**
2576 * Finds free space in the GTT aperture and binds the object there.
2577 */
2578static int
2579i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2580{
2581 struct drm_device *dev = obj->dev;
2582 drm_i915_private_t *dev_priv = dev->dev_private;
2583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2584 struct drm_mm_node *free_space;
4bdadb97 2585 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2586 int ret;
673a394b 2587
bb6baf76 2588 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2589 DRM_ERROR("Attempting to bind a purgeable object\n");
2590 return -EINVAL;
2591 }
2592
673a394b 2593 if (alignment == 0)
0f973f27 2594 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2595 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2596 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2597 return -EINVAL;
2598 }
2599
2600 search_free:
2601 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2602 obj->size, alignment, 0);
2603 if (free_space != NULL) {
2604 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2605 alignment);
2606 if (obj_priv->gtt_space != NULL) {
2607 obj_priv->gtt_space->private = obj;
2608 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2609 }
2610 }
2611 if (obj_priv->gtt_space == NULL) {
2612 /* If the gtt is empty and we're still having trouble
2613 * fitting our object in, we're out of memory.
2614 */
2615#if WATCH_LRU
2616 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2617#endif
07f73f69 2618 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2619 if (ret)
673a394b 2620 return ret;
9731129c 2621
673a394b
EA
2622 goto search_free;
2623 }
2624
2625#if WATCH_BUF
cfd43c02 2626 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2627 obj->size, obj_priv->gtt_offset);
2628#endif
4bdadb97 2629 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2630 if (ret) {
2631 drm_mm_put_block(obj_priv->gtt_space);
2632 obj_priv->gtt_space = NULL;
07f73f69
CW
2633
2634 if (ret == -ENOMEM) {
2635 /* first try to clear up some space from the GTT */
2636 ret = i915_gem_evict_something(dev, obj->size);
2637 if (ret) {
07f73f69 2638 /* now try to shrink everyone else */
4bdadb97
CW
2639 if (gfpmask) {
2640 gfpmask = 0;
2641 goto search_free;
07f73f69
CW
2642 }
2643
2644 return ret;
2645 }
2646
2647 goto search_free;
2648 }
2649
673a394b
EA
2650 return ret;
2651 }
2652
673a394b
EA
2653 /* Create an AGP memory structure pointing at our pages, and bind it
2654 * into the GTT.
2655 */
2656 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2657 obj_priv->pages,
07f73f69 2658 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2659 obj_priv->gtt_offset,
2660 obj_priv->agp_type);
673a394b 2661 if (obj_priv->agp_mem == NULL) {
856fa198 2662 i915_gem_object_put_pages(obj);
673a394b
EA
2663 drm_mm_put_block(obj_priv->gtt_space);
2664 obj_priv->gtt_space = NULL;
07f73f69
CW
2665
2666 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2667 if (ret)
07f73f69 2668 return ret;
07f73f69
CW
2669
2670 goto search_free;
673a394b
EA
2671 }
2672 atomic_inc(&dev->gtt_count);
2673 atomic_add(obj->size, &dev->gtt_memory);
2674
2675 /* Assert that the object is not currently in any GPU domain. As it
2676 * wasn't in the GTT, there shouldn't be any way it could have been in
2677 * a GPU cache
2678 */
21d509e3
CW
2679 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2680 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2681
1c5d22f7
CW
2682 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2683
673a394b
EA
2684 return 0;
2685}
2686
2687void
2688i915_gem_clflush_object(struct drm_gem_object *obj)
2689{
2690 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2691
2692 /* If we don't have a page list set up, then we're not pinned
2693 * to GPU, and we can ignore the cache flush because it'll happen
2694 * again at bind time.
2695 */
856fa198 2696 if (obj_priv->pages == NULL)
673a394b
EA
2697 return;
2698
1c5d22f7 2699 trace_i915_gem_object_clflush(obj);
cfa16a0d 2700
856fa198 2701 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2702}
2703
e47c68e9
EA
2704/** Flushes any GPU write domain for the object if it's dirty. */
2705static void
2706i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2707{
2708 struct drm_device *dev = obj->dev;
2709 uint32_t seqno;
1c5d22f7 2710 uint32_t old_write_domain;
e47c68e9
EA
2711
2712 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2713 return;
2714
2715 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2716 old_write_domain = obj->write_domain;
e47c68e9 2717 i915_gem_flush(dev, 0, obj->write_domain);
b962442e 2718 seqno = i915_add_request(dev, NULL, obj->write_domain);
99fcb766 2719 BUG_ON(obj->write_domain);
e47c68e9 2720 i915_gem_object_move_to_active(obj, seqno);
1c5d22f7
CW
2721
2722 trace_i915_gem_object_change_domain(obj,
2723 obj->read_domains,
2724 old_write_domain);
e47c68e9
EA
2725}
2726
2727/** Flushes the GTT write domain for the object if it's dirty. */
2728static void
2729i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2730{
1c5d22f7
CW
2731 uint32_t old_write_domain;
2732
e47c68e9
EA
2733 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2734 return;
2735
2736 /* No actual flushing is required for the GTT write domain. Writes
2737 * to it immediately go to main memory as far as we know, so there's
2738 * no chipset flush. It also doesn't land in render cache.
2739 */
1c5d22f7 2740 old_write_domain = obj->write_domain;
e47c68e9 2741 obj->write_domain = 0;
1c5d22f7
CW
2742
2743 trace_i915_gem_object_change_domain(obj,
2744 obj->read_domains,
2745 old_write_domain);
e47c68e9
EA
2746}
2747
2748/** Flushes the CPU write domain for the object if it's dirty. */
2749static void
2750i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2751{
2752 struct drm_device *dev = obj->dev;
1c5d22f7 2753 uint32_t old_write_domain;
e47c68e9
EA
2754
2755 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2756 return;
2757
2758 i915_gem_clflush_object(obj);
2759 drm_agp_chipset_flush(dev);
1c5d22f7 2760 old_write_domain = obj->write_domain;
e47c68e9 2761 obj->write_domain = 0;
1c5d22f7
CW
2762
2763 trace_i915_gem_object_change_domain(obj,
2764 obj->read_domains,
2765 old_write_domain);
e47c68e9
EA
2766}
2767
6b95a207
KH
2768void
2769i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2770{
2771 switch (obj->write_domain) {
2772 case I915_GEM_DOMAIN_GTT:
2773 i915_gem_object_flush_gtt_write_domain(obj);
2774 break;
2775 case I915_GEM_DOMAIN_CPU:
2776 i915_gem_object_flush_cpu_write_domain(obj);
2777 break;
2778 default:
2779 i915_gem_object_flush_gpu_write_domain(obj);
2780 break;
2781 }
2782}
2783
2ef7eeaa
EA
2784/**
2785 * Moves a single object to the GTT read, and possibly write domain.
2786 *
2787 * This function returns when the move is complete, including waiting on
2788 * flushes to occur.
2789 */
79e53945 2790int
2ef7eeaa
EA
2791i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2792{
2ef7eeaa 2793 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 2794 uint32_t old_write_domain, old_read_domains;
e47c68e9 2795 int ret;
2ef7eeaa 2796
02354392
EA
2797 /* Not valid to be called on unbound objects. */
2798 if (obj_priv->gtt_space == NULL)
2799 return -EINVAL;
2800
e47c68e9
EA
2801 i915_gem_object_flush_gpu_write_domain(obj);
2802 /* Wait on any GPU rendering and flushing to occur. */
2803 ret = i915_gem_object_wait_rendering(obj);
2804 if (ret != 0)
2805 return ret;
2806
1c5d22f7
CW
2807 old_write_domain = obj->write_domain;
2808 old_read_domains = obj->read_domains;
2809
e47c68e9
EA
2810 /* If we're writing through the GTT domain, then CPU and GPU caches
2811 * will need to be invalidated at next use.
2ef7eeaa 2812 */
e47c68e9
EA
2813 if (write)
2814 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2815
e47c68e9 2816 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2817
e47c68e9
EA
2818 /* It should now be out of any other write domains, and we can update
2819 * the domain values for our changes.
2820 */
2821 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2822 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2823 if (write) {
2824 obj->write_domain = I915_GEM_DOMAIN_GTT;
2825 obj_priv->dirty = 1;
2ef7eeaa
EA
2826 }
2827
1c5d22f7
CW
2828 trace_i915_gem_object_change_domain(obj,
2829 old_read_domains,
2830 old_write_domain);
2831
e47c68e9
EA
2832 return 0;
2833}
2834
b9241ea3
ZW
2835/*
2836 * Prepare buffer for display plane. Use uninterruptible for possible flush
2837 * wait, as in modesetting process we're not supposed to be interrupted.
2838 */
2839int
2840i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2841{
2842 struct drm_device *dev = obj->dev;
2843 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2844 uint32_t old_write_domain, old_read_domains;
2845 int ret;
2846
2847 /* Not valid to be called on unbound objects. */
2848 if (obj_priv->gtt_space == NULL)
2849 return -EINVAL;
2850
2851 i915_gem_object_flush_gpu_write_domain(obj);
2852
2853 /* Wait on any GPU rendering and flushing to occur. */
2854 if (obj_priv->active) {
2855#if WATCH_BUF
2856 DRM_INFO("%s: object %p wait for seqno %08x\n",
2857 __func__, obj, obj_priv->last_rendering_seqno);
2858#endif
2859 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2860 if (ret != 0)
2861 return ret;
2862 }
2863
2864 old_write_domain = obj->write_domain;
2865 old_read_domains = obj->read_domains;
2866
2867 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2868
2869 i915_gem_object_flush_cpu_write_domain(obj);
2870
2871 /* It should now be out of any other write domains, and we can update
2872 * the domain values for our changes.
2873 */
2874 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2875 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2876 obj->write_domain = I915_GEM_DOMAIN_GTT;
2877 obj_priv->dirty = 1;
2878
2879 trace_i915_gem_object_change_domain(obj,
2880 old_read_domains,
2881 old_write_domain);
2882
2883 return 0;
2884}
2885
e47c68e9
EA
2886/**
2887 * Moves a single object to the CPU read, and possibly write domain.
2888 *
2889 * This function returns when the move is complete, including waiting on
2890 * flushes to occur.
2891 */
2892static int
2893i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2894{
1c5d22f7 2895 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2896 int ret;
2897
2898 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2899 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2900 ret = i915_gem_object_wait_rendering(obj);
2901 if (ret != 0)
2902 return ret;
2ef7eeaa 2903
e47c68e9 2904 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2905
e47c68e9
EA
2906 /* If we have a partially-valid cache of the object in the CPU,
2907 * finish invalidating it and free the per-page flags.
2ef7eeaa 2908 */
e47c68e9 2909 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2910
1c5d22f7
CW
2911 old_write_domain = obj->write_domain;
2912 old_read_domains = obj->read_domains;
2913
e47c68e9
EA
2914 /* Flush the CPU cache if it's still invalid. */
2915 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2916 i915_gem_clflush_object(obj);
2ef7eeaa 2917
e47c68e9 2918 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2919 }
2920
2921 /* It should now be out of any other write domains, and we can update
2922 * the domain values for our changes.
2923 */
e47c68e9
EA
2924 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2925
2926 /* If we're writing through the CPU, then the GPU read domains will
2927 * need to be invalidated at next use.
2928 */
2929 if (write) {
2930 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2931 obj->write_domain = I915_GEM_DOMAIN_CPU;
2932 }
2ef7eeaa 2933
1c5d22f7
CW
2934 trace_i915_gem_object_change_domain(obj,
2935 old_read_domains,
2936 old_write_domain);
2937
2ef7eeaa
EA
2938 return 0;
2939}
2940
673a394b
EA
2941/*
2942 * Set the next domain for the specified object. This
2943 * may not actually perform the necessary flushing/invaliding though,
2944 * as that may want to be batched with other set_domain operations
2945 *
2946 * This is (we hope) the only really tricky part of gem. The goal
2947 * is fairly simple -- track which caches hold bits of the object
2948 * and make sure they remain coherent. A few concrete examples may
2949 * help to explain how it works. For shorthand, we use the notation
2950 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2951 * a pair of read and write domain masks.
2952 *
2953 * Case 1: the batch buffer
2954 *
2955 * 1. Allocated
2956 * 2. Written by CPU
2957 * 3. Mapped to GTT
2958 * 4. Read by GPU
2959 * 5. Unmapped from GTT
2960 * 6. Freed
2961 *
2962 * Let's take these a step at a time
2963 *
2964 * 1. Allocated
2965 * Pages allocated from the kernel may still have
2966 * cache contents, so we set them to (CPU, CPU) always.
2967 * 2. Written by CPU (using pwrite)
2968 * The pwrite function calls set_domain (CPU, CPU) and
2969 * this function does nothing (as nothing changes)
2970 * 3. Mapped by GTT
2971 * This function asserts that the object is not
2972 * currently in any GPU-based read or write domains
2973 * 4. Read by GPU
2974 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2975 * As write_domain is zero, this function adds in the
2976 * current read domains (CPU+COMMAND, 0).
2977 * flush_domains is set to CPU.
2978 * invalidate_domains is set to COMMAND
2979 * clflush is run to get data out of the CPU caches
2980 * then i915_dev_set_domain calls i915_gem_flush to
2981 * emit an MI_FLUSH and drm_agp_chipset_flush
2982 * 5. Unmapped from GTT
2983 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2984 * flush_domains and invalidate_domains end up both zero
2985 * so no flushing/invalidating happens
2986 * 6. Freed
2987 * yay, done
2988 *
2989 * Case 2: The shared render buffer
2990 *
2991 * 1. Allocated
2992 * 2. Mapped to GTT
2993 * 3. Read/written by GPU
2994 * 4. set_domain to (CPU,CPU)
2995 * 5. Read/written by CPU
2996 * 6. Read/written by GPU
2997 *
2998 * 1. Allocated
2999 * Same as last example, (CPU, CPU)
3000 * 2. Mapped to GTT
3001 * Nothing changes (assertions find that it is not in the GPU)
3002 * 3. Read/written by GPU
3003 * execbuffer calls set_domain (RENDER, RENDER)
3004 * flush_domains gets CPU
3005 * invalidate_domains gets GPU
3006 * clflush (obj)
3007 * MI_FLUSH and drm_agp_chipset_flush
3008 * 4. set_domain (CPU, CPU)
3009 * flush_domains gets GPU
3010 * invalidate_domains gets CPU
3011 * wait_rendering (obj) to make sure all drawing is complete.
3012 * This will include an MI_FLUSH to get the data from GPU
3013 * to memory
3014 * clflush (obj) to invalidate the CPU cache
3015 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3016 * 5. Read/written by CPU
3017 * cache lines are loaded and dirtied
3018 * 6. Read written by GPU
3019 * Same as last GPU access
3020 *
3021 * Case 3: The constant buffer
3022 *
3023 * 1. Allocated
3024 * 2. Written by CPU
3025 * 3. Read by GPU
3026 * 4. Updated (written) by CPU again
3027 * 5. Read by GPU
3028 *
3029 * 1. Allocated
3030 * (CPU, CPU)
3031 * 2. Written by CPU
3032 * (CPU, CPU)
3033 * 3. Read by GPU
3034 * (CPU+RENDER, 0)
3035 * flush_domains = CPU
3036 * invalidate_domains = RENDER
3037 * clflush (obj)
3038 * MI_FLUSH
3039 * drm_agp_chipset_flush
3040 * 4. Updated (written) by CPU again
3041 * (CPU, CPU)
3042 * flush_domains = 0 (no previous write domain)
3043 * invalidate_domains = 0 (no new read domains)
3044 * 5. Read by GPU
3045 * (CPU+RENDER, 0)
3046 * flush_domains = CPU
3047 * invalidate_domains = RENDER
3048 * clflush (obj)
3049 * MI_FLUSH
3050 * drm_agp_chipset_flush
3051 */
c0d90829 3052static void
8b0e378a 3053i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3054{
3055 struct drm_device *dev = obj->dev;
3056 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3057 uint32_t invalidate_domains = 0;
3058 uint32_t flush_domains = 0;
1c5d22f7 3059 uint32_t old_read_domains;
e47c68e9 3060
8b0e378a
EA
3061 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3062 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3063
652c393a
JB
3064 intel_mark_busy(dev, obj);
3065
673a394b
EA
3066#if WATCH_BUF
3067 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3068 __func__, obj,
8b0e378a
EA
3069 obj->read_domains, obj->pending_read_domains,
3070 obj->write_domain, obj->pending_write_domain);
673a394b
EA
3071#endif
3072 /*
3073 * If the object isn't moving to a new write domain,
3074 * let the object stay in multiple read domains
3075 */
8b0e378a
EA
3076 if (obj->pending_write_domain == 0)
3077 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3078 else
3079 obj_priv->dirty = 1;
3080
3081 /*
3082 * Flush the current write domain if
3083 * the new read domains don't match. Invalidate
3084 * any read domains which differ from the old
3085 * write domain
3086 */
8b0e378a
EA
3087 if (obj->write_domain &&
3088 obj->write_domain != obj->pending_read_domains) {
673a394b 3089 flush_domains |= obj->write_domain;
8b0e378a
EA
3090 invalidate_domains |=
3091 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3092 }
3093 /*
3094 * Invalidate any read caches which may have
3095 * stale data. That is, any new read domains.
3096 */
8b0e378a 3097 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3098 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3099#if WATCH_BUF
3100 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3101 __func__, flush_domains, invalidate_domains);
3102#endif
673a394b
EA
3103 i915_gem_clflush_object(obj);
3104 }
3105
1c5d22f7
CW
3106 old_read_domains = obj->read_domains;
3107
efbeed96
EA
3108 /* The actual obj->write_domain will be updated with
3109 * pending_write_domain after we emit the accumulated flush for all
3110 * of our domain changes in execbuffers (which clears objects'
3111 * write_domains). So if we have a current write domain that we
3112 * aren't changing, set pending_write_domain to that.
3113 */
3114 if (flush_domains == 0 && obj->pending_write_domain == 0)
3115 obj->pending_write_domain = obj->write_domain;
8b0e378a 3116 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3117
3118 dev->invalidate_domains |= invalidate_domains;
3119 dev->flush_domains |= flush_domains;
3120#if WATCH_BUF
3121 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3122 __func__,
3123 obj->read_domains, obj->write_domain,
3124 dev->invalidate_domains, dev->flush_domains);
3125#endif
1c5d22f7
CW
3126
3127 trace_i915_gem_object_change_domain(obj,
3128 old_read_domains,
3129 obj->write_domain);
673a394b
EA
3130}
3131
3132/**
e47c68e9 3133 * Moves the object from a partially CPU read to a full one.
673a394b 3134 *
e47c68e9
EA
3135 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3136 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3137 */
e47c68e9
EA
3138static void
3139i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
3140{
3141 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 3142
e47c68e9
EA
3143 if (!obj_priv->page_cpu_valid)
3144 return;
3145
3146 /* If we're partially in the CPU read domain, finish moving it in.
3147 */
3148 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3149 int i;
3150
3151 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3152 if (obj_priv->page_cpu_valid[i])
3153 continue;
856fa198 3154 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3155 }
e47c68e9
EA
3156 }
3157
3158 /* Free the page_cpu_valid mappings which are now stale, whether
3159 * or not we've got I915_GEM_DOMAIN_CPU.
3160 */
9a298b2a 3161 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3162 obj_priv->page_cpu_valid = NULL;
3163}
3164
3165/**
3166 * Set the CPU read domain on a range of the object.
3167 *
3168 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3169 * not entirely valid. The page_cpu_valid member of the object flags which
3170 * pages have been flushed, and will be respected by
3171 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3172 * of the whole object.
3173 *
3174 * This function returns when the move is complete, including waiting on
3175 * flushes to occur.
3176 */
3177static int
3178i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3179 uint64_t offset, uint64_t size)
3180{
3181 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 3182 uint32_t old_read_domains;
e47c68e9 3183 int i, ret;
673a394b 3184
e47c68e9
EA
3185 if (offset == 0 && size == obj->size)
3186 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3187
e47c68e9
EA
3188 i915_gem_object_flush_gpu_write_domain(obj);
3189 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3190 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3191 if (ret != 0)
6a47baa6 3192 return ret;
e47c68e9
EA
3193 i915_gem_object_flush_gtt_write_domain(obj);
3194
3195 /* If we're already fully in the CPU read domain, we're done. */
3196 if (obj_priv->page_cpu_valid == NULL &&
3197 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3198 return 0;
673a394b 3199
e47c68e9
EA
3200 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3201 * newly adding I915_GEM_DOMAIN_CPU
3202 */
673a394b 3203 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3204 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3205 GFP_KERNEL);
e47c68e9
EA
3206 if (obj_priv->page_cpu_valid == NULL)
3207 return -ENOMEM;
3208 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3209 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3210
3211 /* Flush the cache on any pages that are still invalid from the CPU's
3212 * perspective.
3213 */
e47c68e9
EA
3214 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3215 i++) {
673a394b
EA
3216 if (obj_priv->page_cpu_valid[i])
3217 continue;
3218
856fa198 3219 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3220
3221 obj_priv->page_cpu_valid[i] = 1;
3222 }
3223
e47c68e9
EA
3224 /* It should now be out of any other write domains, and we can update
3225 * the domain values for our changes.
3226 */
3227 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3228
1c5d22f7 3229 old_read_domains = obj->read_domains;
e47c68e9
EA
3230 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3231
1c5d22f7
CW
3232 trace_i915_gem_object_change_domain(obj,
3233 old_read_domains,
3234 obj->write_domain);
3235
673a394b
EA
3236 return 0;
3237}
3238
673a394b
EA
3239/**
3240 * Pin an object to the GTT and evaluate the relocations landing in it.
3241 */
3242static int
3243i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3244 struct drm_file *file_priv,
76446cac 3245 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3246 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3247{
3248 struct drm_device *dev = obj->dev;
0839ccb8 3249 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3250 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3251 int i, ret;
0839ccb8 3252 void __iomem *reloc_page;
76446cac
JB
3253 bool need_fence;
3254
3255 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3256 obj_priv->tiling_mode != I915_TILING_NONE;
3257
3258 /* Check fence reg constraints and rebind if necessary */
f590d279
OA
3259 if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3260 obj_priv->tiling_mode))
76446cac 3261 i915_gem_object_unbind(obj);
673a394b
EA
3262
3263 /* Choose the GTT offset for our buffer and put it there. */
3264 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3265 if (ret)
3266 return ret;
3267
76446cac
JB
3268 /*
3269 * Pre-965 chips need a fence register set up in order to
3270 * properly handle blits to/from tiled surfaces.
3271 */
3272 if (need_fence) {
3273 ret = i915_gem_object_get_fence_reg(obj);
3274 if (ret != 0) {
3275 if (ret != -EBUSY && ret != -ERESTARTSYS)
3276 DRM_ERROR("Failure to install fence: %d\n",
3277 ret);
3278 i915_gem_object_unpin(obj);
3279 return ret;
3280 }
3281 }
3282
673a394b
EA
3283 entry->offset = obj_priv->gtt_offset;
3284
673a394b
EA
3285 /* Apply the relocations, using the GTT aperture to avoid cache
3286 * flushing requirements.
3287 */
3288 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3289 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3290 struct drm_gem_object *target_obj;
3291 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3292 uint32_t reloc_val, reloc_offset;
3293 uint32_t __iomem *reloc_entry;
673a394b 3294
673a394b 3295 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3296 reloc->target_handle);
673a394b
EA
3297 if (target_obj == NULL) {
3298 i915_gem_object_unpin(obj);
3299 return -EBADF;
3300 }
3301 target_obj_priv = target_obj->driver_private;
3302
8542a0bb
CW
3303#if WATCH_RELOC
3304 DRM_INFO("%s: obj %p offset %08x target %d "
3305 "read %08x write %08x gtt %08x "
3306 "presumed %08x delta %08x\n",
3307 __func__,
3308 obj,
3309 (int) reloc->offset,
3310 (int) reloc->target_handle,
3311 (int) reloc->read_domains,
3312 (int) reloc->write_domain,
3313 (int) target_obj_priv->gtt_offset,
3314 (int) reloc->presumed_offset,
3315 reloc->delta);
3316#endif
3317
673a394b
EA
3318 /* The target buffer should have appeared before us in the
3319 * exec_object list, so it should have a GTT space bound by now.
3320 */
3321 if (target_obj_priv->gtt_space == NULL) {
3322 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3323 reloc->target_handle);
673a394b
EA
3324 drm_gem_object_unreference(target_obj);
3325 i915_gem_object_unpin(obj);
3326 return -EINVAL;
3327 }
3328
8542a0bb 3329 /* Validate that the target is in a valid r/w GPU domain */
40a5f0de
EA
3330 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3331 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3332 DRM_ERROR("reloc with read/write CPU domains: "
3333 "obj %p target %d offset %d "
3334 "read %08x write %08x",
40a5f0de
EA
3335 obj, reloc->target_handle,
3336 (int) reloc->offset,
3337 reloc->read_domains,
3338 reloc->write_domain);
491152b8
CW
3339 drm_gem_object_unreference(target_obj);
3340 i915_gem_object_unpin(obj);
e47c68e9
EA
3341 return -EINVAL;
3342 }
40a5f0de
EA
3343 if (reloc->write_domain && target_obj->pending_write_domain &&
3344 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3345 DRM_ERROR("Write domain conflict: "
3346 "obj %p target %d offset %d "
3347 "new %08x old %08x\n",
40a5f0de
EA
3348 obj, reloc->target_handle,
3349 (int) reloc->offset,
3350 reloc->write_domain,
673a394b
EA
3351 target_obj->pending_write_domain);
3352 drm_gem_object_unreference(target_obj);
3353 i915_gem_object_unpin(obj);
3354 return -EINVAL;
3355 }
3356
40a5f0de
EA
3357 target_obj->pending_read_domains |= reloc->read_domains;
3358 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3359
3360 /* If the relocation already has the right value in it, no
3361 * more work needs to be done.
3362 */
40a5f0de 3363 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3364 drm_gem_object_unreference(target_obj);
3365 continue;
3366 }
3367
8542a0bb
CW
3368 /* Check that the relocation address is valid... */
3369 if (reloc->offset > obj->size - 4) {
3370 DRM_ERROR("Relocation beyond object bounds: "
3371 "obj %p target %d offset %d size %d.\n",
3372 obj, reloc->target_handle,
3373 (int) reloc->offset, (int) obj->size);
3374 drm_gem_object_unreference(target_obj);
3375 i915_gem_object_unpin(obj);
3376 return -EINVAL;
3377 }
3378 if (reloc->offset & 3) {
3379 DRM_ERROR("Relocation not 4-byte aligned: "
3380 "obj %p target %d offset %d.\n",
3381 obj, reloc->target_handle,
3382 (int) reloc->offset);
3383 drm_gem_object_unreference(target_obj);
3384 i915_gem_object_unpin(obj);
3385 return -EINVAL;
3386 }
3387
3388 /* and points to somewhere within the target object. */
3389 if (reloc->delta >= target_obj->size) {
3390 DRM_ERROR("Relocation beyond target object bounds: "
3391 "obj %p target %d delta %d size %d.\n",
3392 obj, reloc->target_handle,
3393 (int) reloc->delta, (int) target_obj->size);
3394 drm_gem_object_unreference(target_obj);
3395 i915_gem_object_unpin(obj);
3396 return -EINVAL;
3397 }
3398
2ef7eeaa
EA
3399 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3400 if (ret != 0) {
3401 drm_gem_object_unreference(target_obj);
3402 i915_gem_object_unpin(obj);
3403 return -EINVAL;
673a394b
EA
3404 }
3405
3406 /* Map the page containing the relocation we're going to
3407 * perform.
3408 */
40a5f0de 3409 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3410 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3411 (reloc_offset &
3412 ~(PAGE_SIZE - 1)));
3043c60c 3413 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3414 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3415 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3416
3417#if WATCH_BUF
3418 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3419 obj, (unsigned int) reloc->offset,
673a394b
EA
3420 readl(reloc_entry), reloc_val);
3421#endif
3422 writel(reloc_val, reloc_entry);
0839ccb8 3423 io_mapping_unmap_atomic(reloc_page);
673a394b 3424
40a5f0de
EA
3425 /* The updated presumed offset for this entry will be
3426 * copied back out to the user.
673a394b 3427 */
40a5f0de 3428 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3429
3430 drm_gem_object_unreference(target_obj);
3431 }
3432
673a394b
EA
3433#if WATCH_BUF
3434 if (0)
3435 i915_gem_dump_object(obj, 128, __func__, ~0);
3436#endif
3437 return 0;
3438}
3439
3440/** Dispatch a batchbuffer to the ring
3441 */
3442static int
3443i915_dispatch_gem_execbuffer(struct drm_device *dev,
76446cac 3444 struct drm_i915_gem_execbuffer2 *exec,
201361a5 3445 struct drm_clip_rect *cliprects,
673a394b
EA
3446 uint64_t exec_offset)
3447{
3448 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3449 int nbox = exec->num_cliprects;
3450 int i = 0, count;
83d60795 3451 uint32_t exec_start, exec_len;
673a394b
EA
3452 RING_LOCALS;
3453
3454 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3455 exec_len = (uint32_t) exec->batch_len;
3456
8f0dc5bf 3457 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
1c5d22f7 3458
673a394b
EA
3459 count = nbox ? nbox : 1;
3460
3461 for (i = 0; i < count; i++) {
3462 if (i < nbox) {
201361a5 3463 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3464 exec->DR1, exec->DR4);
3465 if (ret)
3466 return ret;
3467 }
3468
3469 if (IS_I830(dev) || IS_845G(dev)) {
3470 BEGIN_LP_RING(4);
3471 OUT_RING(MI_BATCH_BUFFER);
3472 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3473 OUT_RING(exec_start + exec_len - 4);
3474 OUT_RING(0);
3475 ADVANCE_LP_RING();
3476 } else {
3477 BEGIN_LP_RING(2);
3478 if (IS_I965G(dev)) {
3479 OUT_RING(MI_BATCH_BUFFER_START |
3480 (2 << 6) |
3481 MI_BATCH_NON_SECURE_I965);
3482 OUT_RING(exec_start);
3483 } else {
3484 OUT_RING(MI_BATCH_BUFFER_START |
3485 (2 << 6));
3486 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3487 }
3488 ADVANCE_LP_RING();
3489 }
3490 }
3491
3492 /* XXX breadcrumb */
3493 return 0;
3494}
3495
3496/* Throttle our rendering by waiting until the ring has completed our requests
3497 * emitted over 20 msec ago.
3498 *
b962442e
EA
3499 * Note that if we were to use the current jiffies each time around the loop,
3500 * we wouldn't escape the function with any frames outstanding if the time to
3501 * render a frame was over 20ms.
3502 *
673a394b
EA
3503 * This should get us reasonable parallelism between CPU and GPU but also
3504 * relatively low latency when blocking on a particular request to finish.
3505 */
3506static int
3507i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3508{
3509 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3510 int ret = 0;
b962442e 3511 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3512
3513 mutex_lock(&dev->struct_mutex);
b962442e
EA
3514 while (!list_empty(&i915_file_priv->mm.request_list)) {
3515 struct drm_i915_gem_request *request;
3516
3517 request = list_first_entry(&i915_file_priv->mm.request_list,
3518 struct drm_i915_gem_request,
3519 client_list);
3520
3521 if (time_after_eq(request->emitted_jiffies, recent_enough))
3522 break;
3523
3524 ret = i915_wait_request(dev, request->seqno);
3525 if (ret != 0)
3526 break;
3527 }
673a394b 3528 mutex_unlock(&dev->struct_mutex);
b962442e 3529
673a394b
EA
3530 return ret;
3531}
3532
40a5f0de 3533static int
76446cac 3534i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3535 uint32_t buffer_count,
3536 struct drm_i915_gem_relocation_entry **relocs)
3537{
3538 uint32_t reloc_count = 0, reloc_index = 0, i;
3539 int ret;
3540
3541 *relocs = NULL;
3542 for (i = 0; i < buffer_count; i++) {
3543 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3544 return -EINVAL;
3545 reloc_count += exec_list[i].relocation_count;
3546 }
3547
8e7d2b2c 3548 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3549 if (*relocs == NULL) {
3550 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3551 return -ENOMEM;
76446cac 3552 }
40a5f0de
EA
3553
3554 for (i = 0; i < buffer_count; i++) {
3555 struct drm_i915_gem_relocation_entry __user *user_relocs;
3556
3557 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3558
3559 ret = copy_from_user(&(*relocs)[reloc_index],
3560 user_relocs,
3561 exec_list[i].relocation_count *
3562 sizeof(**relocs));
3563 if (ret != 0) {
8e7d2b2c 3564 drm_free_large(*relocs);
40a5f0de 3565 *relocs = NULL;
2bc43b5c 3566 return -EFAULT;
40a5f0de
EA
3567 }
3568
3569 reloc_index += exec_list[i].relocation_count;
3570 }
3571
2bc43b5c 3572 return 0;
40a5f0de
EA
3573}
3574
3575static int
76446cac 3576i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3577 uint32_t buffer_count,
3578 struct drm_i915_gem_relocation_entry *relocs)
3579{
3580 uint32_t reloc_count = 0, i;
2bc43b5c 3581 int ret = 0;
40a5f0de 3582
93533c29
CW
3583 if (relocs == NULL)
3584 return 0;
3585
40a5f0de
EA
3586 for (i = 0; i < buffer_count; i++) {
3587 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3588 int unwritten;
40a5f0de
EA
3589
3590 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3591
2bc43b5c
FM
3592 unwritten = copy_to_user(user_relocs,
3593 &relocs[reloc_count],
3594 exec_list[i].relocation_count *
3595 sizeof(*relocs));
3596
3597 if (unwritten) {
3598 ret = -EFAULT;
3599 goto err;
40a5f0de
EA
3600 }
3601
3602 reloc_count += exec_list[i].relocation_count;
3603 }
3604
2bc43b5c 3605err:
8e7d2b2c 3606 drm_free_large(relocs);
40a5f0de
EA
3607
3608 return ret;
3609}
3610
83d60795 3611static int
76446cac 3612i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3613 uint64_t exec_offset)
3614{
3615 uint32_t exec_start, exec_len;
3616
3617 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3618 exec_len = (uint32_t) exec->batch_len;
3619
3620 if ((exec_start | exec_len) & 0x7)
3621 return -EINVAL;
3622
3623 if (!exec_start)
3624 return -EINVAL;
3625
3626 return 0;
3627}
3628
6b95a207
KH
3629static int
3630i915_gem_wait_for_pending_flip(struct drm_device *dev,
3631 struct drm_gem_object **object_list,
3632 int count)
3633{
3634 drm_i915_private_t *dev_priv = dev->dev_private;
3635 struct drm_i915_gem_object *obj_priv;
3636 DEFINE_WAIT(wait);
3637 int i, ret = 0;
3638
3639 for (;;) {
3640 prepare_to_wait(&dev_priv->pending_flip_queue,
3641 &wait, TASK_INTERRUPTIBLE);
3642 for (i = 0; i < count; i++) {
3643 obj_priv = object_list[i]->driver_private;
3644 if (atomic_read(&obj_priv->pending_flip) > 0)
3645 break;
3646 }
3647 if (i == count)
3648 break;
3649
3650 if (!signal_pending(current)) {
3651 mutex_unlock(&dev->struct_mutex);
3652 schedule();
3653 mutex_lock(&dev->struct_mutex);
3654 continue;
3655 }
3656 ret = -ERESTARTSYS;
3657 break;
3658 }
3659 finish_wait(&dev_priv->pending_flip_queue, &wait);
3660
3661 return ret;
3662}
3663
673a394b 3664int
76446cac
JB
3665i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3666 struct drm_file *file_priv,
3667 struct drm_i915_gem_execbuffer2 *args,
3668 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3669{
3670 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3671 struct drm_gem_object **object_list = NULL;
3672 struct drm_gem_object *batch_obj;
b70d11da 3673 struct drm_i915_gem_object *obj_priv;
201361a5 3674 struct drm_clip_rect *cliprects = NULL;
93533c29 3675 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3676 int ret = 0, ret2, i, pinned = 0;
673a394b 3677 uint64_t exec_offset;
40a5f0de 3678 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3679 int pin_tries, flips;
673a394b
EA
3680
3681#if WATCH_EXEC
3682 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3683 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3684#endif
3685
4f481ed2
EA
3686 if (args->buffer_count < 1) {
3687 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3688 return -EINVAL;
3689 }
c8e0f93a 3690 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3691 if (object_list == NULL) {
3692 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3693 args->buffer_count);
3694 ret = -ENOMEM;
3695 goto pre_mutex_err;
3696 }
673a394b 3697
201361a5 3698 if (args->num_cliprects != 0) {
9a298b2a
EA
3699 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3700 GFP_KERNEL);
a40e8d31
OA
3701 if (cliprects == NULL) {
3702 ret = -ENOMEM;
201361a5 3703 goto pre_mutex_err;
a40e8d31 3704 }
201361a5
EA
3705
3706 ret = copy_from_user(cliprects,
3707 (struct drm_clip_rect __user *)
3708 (uintptr_t) args->cliprects_ptr,
3709 sizeof(*cliprects) * args->num_cliprects);
3710 if (ret != 0) {
3711 DRM_ERROR("copy %d cliprects failed: %d\n",
3712 args->num_cliprects, ret);
3713 goto pre_mutex_err;
3714 }
3715 }
3716
40a5f0de
EA
3717 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3718 &relocs);
3719 if (ret != 0)
3720 goto pre_mutex_err;
3721
673a394b
EA
3722 mutex_lock(&dev->struct_mutex);
3723
3724 i915_verify_inactive(dev, __FILE__, __LINE__);
3725
ba1234d1 3726 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3727 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3728 ret = -EIO;
3729 goto pre_mutex_err;
673a394b
EA
3730 }
3731
3732 if (dev_priv->mm.suspended) {
673a394b 3733 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3734 ret = -EBUSY;
3735 goto pre_mutex_err;
673a394b
EA
3736 }
3737
ac94a962 3738 /* Look up object handles */
6b95a207 3739 flips = 0;
673a394b
EA
3740 for (i = 0; i < args->buffer_count; i++) {
3741 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3742 exec_list[i].handle);
3743 if (object_list[i] == NULL) {
3744 DRM_ERROR("Invalid object handle %d at index %d\n",
3745 exec_list[i].handle, i);
0ce907f8
CW
3746 /* prevent error path from reading uninitialized data */
3747 args->buffer_count = i + 1;
673a394b
EA
3748 ret = -EBADF;
3749 goto err;
3750 }
b70d11da
KH
3751
3752 obj_priv = object_list[i]->driver_private;
3753 if (obj_priv->in_execbuffer) {
3754 DRM_ERROR("Object %p appears more than once in object list\n",
3755 object_list[i]);
0ce907f8
CW
3756 /* prevent error path from reading uninitialized data */
3757 args->buffer_count = i + 1;
b70d11da
KH
3758 ret = -EBADF;
3759 goto err;
3760 }
3761 obj_priv->in_execbuffer = true;
6b95a207
KH
3762 flips += atomic_read(&obj_priv->pending_flip);
3763 }
3764
3765 if (flips > 0) {
3766 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3767 args->buffer_count);
3768 if (ret)
3769 goto err;
ac94a962 3770 }
673a394b 3771
ac94a962
KP
3772 /* Pin and relocate */
3773 for (pin_tries = 0; ; pin_tries++) {
3774 ret = 0;
40a5f0de
EA
3775 reloc_index = 0;
3776
ac94a962
KP
3777 for (i = 0; i < args->buffer_count; i++) {
3778 object_list[i]->pending_read_domains = 0;
3779 object_list[i]->pending_write_domain = 0;
3780 ret = i915_gem_object_pin_and_relocate(object_list[i],
3781 file_priv,
40a5f0de
EA
3782 &exec_list[i],
3783 &relocs[reloc_index]);
ac94a962
KP
3784 if (ret)
3785 break;
3786 pinned = i + 1;
40a5f0de 3787 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3788 }
3789 /* success */
3790 if (ret == 0)
3791 break;
3792
3793 /* error other than GTT full, or we've already tried again */
2939e1f5 3794 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3795 if (ret != -ERESTARTSYS) {
3796 unsigned long long total_size = 0;
3797 for (i = 0; i < args->buffer_count; i++)
3798 total_size += object_list[i]->size;
3799 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3800 pinned+1, args->buffer_count,
3801 total_size, ret);
3802 DRM_ERROR("%d objects [%d pinned], "
3803 "%d object bytes [%d pinned], "
3804 "%d/%d gtt bytes\n",
3805 atomic_read(&dev->object_count),
3806 atomic_read(&dev->pin_count),
3807 atomic_read(&dev->object_memory),
3808 atomic_read(&dev->pin_memory),
3809 atomic_read(&dev->gtt_memory),
3810 dev->gtt_total);
3811 }
673a394b
EA
3812 goto err;
3813 }
ac94a962
KP
3814
3815 /* unpin all of our buffers */
3816 for (i = 0; i < pinned; i++)
3817 i915_gem_object_unpin(object_list[i]);
b1177636 3818 pinned = 0;
ac94a962
KP
3819
3820 /* evict everyone we can from the aperture */
3821 ret = i915_gem_evict_everything(dev);
07f73f69 3822 if (ret && ret != -ENOSPC)
ac94a962 3823 goto err;
673a394b
EA
3824 }
3825
3826 /* Set the pending read domains for the batch buffer to COMMAND */
3827 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3828 if (batch_obj->pending_write_domain) {
3829 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3830 ret = -EINVAL;
3831 goto err;
3832 }
3833 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3834
83d60795
CW
3835 /* Sanity check the batch buffer, prior to moving objects */
3836 exec_offset = exec_list[args->buffer_count - 1].offset;
3837 ret = i915_gem_check_execbuffer (args, exec_offset);
3838 if (ret != 0) {
3839 DRM_ERROR("execbuf with invalid offset/length\n");
3840 goto err;
3841 }
3842
673a394b
EA
3843 i915_verify_inactive(dev, __FILE__, __LINE__);
3844
646f0f6e
KP
3845 /* Zero the global flush/invalidate flags. These
3846 * will be modified as new domains are computed
3847 * for each object
3848 */
3849 dev->invalidate_domains = 0;
3850 dev->flush_domains = 0;
3851
673a394b
EA
3852 for (i = 0; i < args->buffer_count; i++) {
3853 struct drm_gem_object *obj = object_list[i];
673a394b 3854
646f0f6e 3855 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3856 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3857 }
3858
3859 i915_verify_inactive(dev, __FILE__, __LINE__);
3860
646f0f6e
KP
3861 if (dev->invalidate_domains | dev->flush_domains) {
3862#if WATCH_EXEC
3863 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3864 __func__,
3865 dev->invalidate_domains,
3866 dev->flush_domains);
3867#endif
3868 i915_gem_flush(dev,
3869 dev->invalidate_domains,
3870 dev->flush_domains);
99fcb766 3871 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
b962442e
EA
3872 (void)i915_add_request(dev, file_priv,
3873 dev->flush_domains);
646f0f6e 3874 }
673a394b 3875
efbeed96
EA
3876 for (i = 0; i < args->buffer_count; i++) {
3877 struct drm_gem_object *obj = object_list[i];
99fcb766 3878 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 3879 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3880
3881 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3882 if (obj->write_domain)
3883 list_move_tail(&obj_priv->gpu_write_list,
3884 &dev_priv->mm.gpu_write_list);
3885 else
3886 list_del_init(&obj_priv->gpu_write_list);
3887
1c5d22f7
CW
3888 trace_i915_gem_object_change_domain(obj,
3889 obj->read_domains,
3890 old_write_domain);
efbeed96
EA
3891 }
3892
673a394b
EA
3893 i915_verify_inactive(dev, __FILE__, __LINE__);
3894
3895#if WATCH_COHERENCY
3896 for (i = 0; i < args->buffer_count; i++) {
3897 i915_gem_object_check_coherency(object_list[i],
3898 exec_list[i].handle);
3899 }
3900#endif
3901
673a394b 3902#if WATCH_EXEC
6911a9b8 3903 i915_gem_dump_object(batch_obj,
673a394b
EA
3904 args->batch_len,
3905 __func__,
3906 ~0);
3907#endif
3908
673a394b 3909 /* Exec the batchbuffer */
201361a5 3910 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3911 if (ret) {
3912 DRM_ERROR("dispatch failed %d\n", ret);
3913 goto err;
3914 }
3915
3916 /*
3917 * Ensure that the commands in the batch buffer are
3918 * finished before the interrupt fires
3919 */
3920 flush_domains = i915_retire_commands(dev);
3921
3922 i915_verify_inactive(dev, __FILE__, __LINE__);
3923
3924 /*
3925 * Get a seqno representing the execution of the current buffer,
3926 * which we can wait on. We would like to mitigate these interrupts,
3927 * likely by only creating seqnos occasionally (so that we have
3928 * *some* interrupts representing completion of buffers that we can
3929 * wait on when trying to clear up gtt space).
3930 */
b962442e 3931 seqno = i915_add_request(dev, file_priv, flush_domains);
673a394b 3932 BUG_ON(seqno == 0);
673a394b
EA
3933 for (i = 0; i < args->buffer_count; i++) {
3934 struct drm_gem_object *obj = object_list[i];
673a394b 3935
ce44b0ea 3936 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3937#if WATCH_LRU
3938 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3939#endif
3940 }
3941#if WATCH_LRU
3942 i915_dump_lru(dev, __func__);
3943#endif
3944
3945 i915_verify_inactive(dev, __FILE__, __LINE__);
3946
673a394b 3947err:
aad87dff
JL
3948 for (i = 0; i < pinned; i++)
3949 i915_gem_object_unpin(object_list[i]);
3950
b70d11da
KH
3951 for (i = 0; i < args->buffer_count; i++) {
3952 if (object_list[i]) {
3953 obj_priv = object_list[i]->driver_private;
3954 obj_priv->in_execbuffer = false;
3955 }
aad87dff 3956 drm_gem_object_unreference(object_list[i]);
b70d11da 3957 }
673a394b 3958
673a394b
EA
3959 mutex_unlock(&dev->struct_mutex);
3960
93533c29 3961pre_mutex_err:
40a5f0de
EA
3962 /* Copy the updated relocations out regardless of current error
3963 * state. Failure to update the relocs would mean that the next
3964 * time userland calls execbuf, it would do so with presumed offset
3965 * state that didn't match the actual object state.
3966 */
3967 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3968 relocs);
3969 if (ret2 != 0) {
3970 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3971
3972 if (ret == 0)
3973 ret = ret2;
3974 }
3975
8e7d2b2c 3976 drm_free_large(object_list);
9a298b2a 3977 kfree(cliprects);
673a394b
EA
3978
3979 return ret;
3980}
3981
76446cac
JB
3982/*
3983 * Legacy execbuffer just creates an exec2 list from the original exec object
3984 * list array and passes it to the real function.
3985 */
3986int
3987i915_gem_execbuffer(struct drm_device *dev, void *data,
3988 struct drm_file *file_priv)
3989{
3990 struct drm_i915_gem_execbuffer *args = data;
3991 struct drm_i915_gem_execbuffer2 exec2;
3992 struct drm_i915_gem_exec_object *exec_list = NULL;
3993 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3994 int ret, i;
3995
3996#if WATCH_EXEC
3997 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3998 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3999#endif
4000
4001 if (args->buffer_count < 1) {
4002 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4003 return -EINVAL;
4004 }
4005
4006 /* Copy in the exec list from userland */
4007 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4008 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4009 if (exec_list == NULL || exec2_list == NULL) {
4010 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4011 args->buffer_count);
4012 drm_free_large(exec_list);
4013 drm_free_large(exec2_list);
4014 return -ENOMEM;
4015 }
4016 ret = copy_from_user(exec_list,
4017 (struct drm_i915_relocation_entry __user *)
4018 (uintptr_t) args->buffers_ptr,
4019 sizeof(*exec_list) * args->buffer_count);
4020 if (ret != 0) {
4021 DRM_ERROR("copy %d exec entries failed %d\n",
4022 args->buffer_count, ret);
4023 drm_free_large(exec_list);
4024 drm_free_large(exec2_list);
4025 return -EFAULT;
4026 }
4027
4028 for (i = 0; i < args->buffer_count; i++) {
4029 exec2_list[i].handle = exec_list[i].handle;
4030 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4031 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4032 exec2_list[i].alignment = exec_list[i].alignment;
4033 exec2_list[i].offset = exec_list[i].offset;
4034 if (!IS_I965G(dev))
4035 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4036 else
4037 exec2_list[i].flags = 0;
4038 }
4039
4040 exec2.buffers_ptr = args->buffers_ptr;
4041 exec2.buffer_count = args->buffer_count;
4042 exec2.batch_start_offset = args->batch_start_offset;
4043 exec2.batch_len = args->batch_len;
4044 exec2.DR1 = args->DR1;
4045 exec2.DR4 = args->DR4;
4046 exec2.num_cliprects = args->num_cliprects;
4047 exec2.cliprects_ptr = args->cliprects_ptr;
4048 exec2.flags = 0;
4049
4050 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4051 if (!ret) {
4052 /* Copy the new buffer offsets back to the user's exec list. */
4053 for (i = 0; i < args->buffer_count; i++)
4054 exec_list[i].offset = exec2_list[i].offset;
4055 /* ... and back out to userspace */
4056 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4057 (uintptr_t) args->buffers_ptr,
4058 exec_list,
4059 sizeof(*exec_list) * args->buffer_count);
4060 if (ret) {
4061 ret = -EFAULT;
4062 DRM_ERROR("failed to copy %d exec entries "
4063 "back to user (%d)\n",
4064 args->buffer_count, ret);
4065 }
76446cac
JB
4066 }
4067
4068 drm_free_large(exec_list);
4069 drm_free_large(exec2_list);
4070 return ret;
4071}
4072
4073int
4074i915_gem_execbuffer2(struct drm_device *dev, void *data,
4075 struct drm_file *file_priv)
4076{
4077 struct drm_i915_gem_execbuffer2 *args = data;
4078 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4079 int ret;
4080
4081#if WATCH_EXEC
4082 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4083 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4084#endif
4085
4086 if (args->buffer_count < 1) {
4087 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4088 return -EINVAL;
4089 }
4090
4091 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4092 if (exec2_list == NULL) {
4093 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4094 args->buffer_count);
4095 return -ENOMEM;
4096 }
4097 ret = copy_from_user(exec2_list,
4098 (struct drm_i915_relocation_entry __user *)
4099 (uintptr_t) args->buffers_ptr,
4100 sizeof(*exec2_list) * args->buffer_count);
4101 if (ret != 0) {
4102 DRM_ERROR("copy %d exec entries failed %d\n",
4103 args->buffer_count, ret);
4104 drm_free_large(exec2_list);
4105 return -EFAULT;
4106 }
4107
4108 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4109 if (!ret) {
4110 /* Copy the new buffer offsets back to the user's exec list. */
4111 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4112 (uintptr_t) args->buffers_ptr,
4113 exec2_list,
4114 sizeof(*exec2_list) * args->buffer_count);
4115 if (ret) {
4116 ret = -EFAULT;
4117 DRM_ERROR("failed to copy %d exec entries "
4118 "back to user (%d)\n",
4119 args->buffer_count, ret);
4120 }
4121 }
4122
4123 drm_free_large(exec2_list);
4124 return ret;
4125}
4126
673a394b
EA
4127int
4128i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4129{
4130 struct drm_device *dev = obj->dev;
4131 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4132 int ret;
4133
4134 i915_verify_inactive(dev, __FILE__, __LINE__);
4135 if (obj_priv->gtt_space == NULL) {
4136 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4137 if (ret)
673a394b 4138 return ret;
22c344e9 4139 }
76446cac 4140
673a394b
EA
4141 obj_priv->pin_count++;
4142
4143 /* If the object is not active and not pending a flush,
4144 * remove it from the inactive list
4145 */
4146 if (obj_priv->pin_count == 1) {
4147 atomic_inc(&dev->pin_count);
4148 atomic_add(obj->size, &dev->pin_memory);
4149 if (!obj_priv->active &&
21d509e3 4150 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
4151 !list_empty(&obj_priv->list))
4152 list_del_init(&obj_priv->list);
4153 }
4154 i915_verify_inactive(dev, __FILE__, __LINE__);
4155
4156 return 0;
4157}
4158
4159void
4160i915_gem_object_unpin(struct drm_gem_object *obj)
4161{
4162 struct drm_device *dev = obj->dev;
4163 drm_i915_private_t *dev_priv = dev->dev_private;
4164 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4165
4166 i915_verify_inactive(dev, __FILE__, __LINE__);
4167 obj_priv->pin_count--;
4168 BUG_ON(obj_priv->pin_count < 0);
4169 BUG_ON(obj_priv->gtt_space == NULL);
4170
4171 /* If the object is no longer pinned, and is
4172 * neither active nor being flushed, then stick it on
4173 * the inactive list
4174 */
4175 if (obj_priv->pin_count == 0) {
4176 if (!obj_priv->active &&
21d509e3 4177 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4178 list_move_tail(&obj_priv->list,
4179 &dev_priv->mm.inactive_list);
4180 atomic_dec(&dev->pin_count);
4181 atomic_sub(obj->size, &dev->pin_memory);
4182 }
4183 i915_verify_inactive(dev, __FILE__, __LINE__);
4184}
4185
4186int
4187i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4188 struct drm_file *file_priv)
4189{
4190 struct drm_i915_gem_pin *args = data;
4191 struct drm_gem_object *obj;
4192 struct drm_i915_gem_object *obj_priv;
4193 int ret;
4194
4195 mutex_lock(&dev->struct_mutex);
4196
4197 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4198 if (obj == NULL) {
4199 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4200 args->handle);
4201 mutex_unlock(&dev->struct_mutex);
4202 return -EBADF;
4203 }
4204 obj_priv = obj->driver_private;
4205
bb6baf76
CW
4206 if (obj_priv->madv != I915_MADV_WILLNEED) {
4207 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4208 drm_gem_object_unreference(obj);
4209 mutex_unlock(&dev->struct_mutex);
4210 return -EINVAL;
4211 }
4212
79e53945
JB
4213 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4214 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4215 args->handle);
96dec61d 4216 drm_gem_object_unreference(obj);
673a394b 4217 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4218 return -EINVAL;
4219 }
4220
4221 obj_priv->user_pin_count++;
4222 obj_priv->pin_filp = file_priv;
4223 if (obj_priv->user_pin_count == 1) {
4224 ret = i915_gem_object_pin(obj, args->alignment);
4225 if (ret != 0) {
4226 drm_gem_object_unreference(obj);
4227 mutex_unlock(&dev->struct_mutex);
4228 return ret;
4229 }
673a394b
EA
4230 }
4231
4232 /* XXX - flush the CPU caches for pinned objects
4233 * as the X server doesn't manage domains yet
4234 */
e47c68e9 4235 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4236 args->offset = obj_priv->gtt_offset;
4237 drm_gem_object_unreference(obj);
4238 mutex_unlock(&dev->struct_mutex);
4239
4240 return 0;
4241}
4242
4243int
4244i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4245 struct drm_file *file_priv)
4246{
4247 struct drm_i915_gem_pin *args = data;
4248 struct drm_gem_object *obj;
79e53945 4249 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4250
4251 mutex_lock(&dev->struct_mutex);
4252
4253 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4254 if (obj == NULL) {
4255 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4256 args->handle);
4257 mutex_unlock(&dev->struct_mutex);
4258 return -EBADF;
4259 }
4260
79e53945
JB
4261 obj_priv = obj->driver_private;
4262 if (obj_priv->pin_filp != file_priv) {
4263 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4264 args->handle);
4265 drm_gem_object_unreference(obj);
4266 mutex_unlock(&dev->struct_mutex);
4267 return -EINVAL;
4268 }
4269 obj_priv->user_pin_count--;
4270 if (obj_priv->user_pin_count == 0) {
4271 obj_priv->pin_filp = NULL;
4272 i915_gem_object_unpin(obj);
4273 }
673a394b
EA
4274
4275 drm_gem_object_unreference(obj);
4276 mutex_unlock(&dev->struct_mutex);
4277 return 0;
4278}
4279
4280int
4281i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4282 struct drm_file *file_priv)
4283{
4284 struct drm_i915_gem_busy *args = data;
4285 struct drm_gem_object *obj;
4286 struct drm_i915_gem_object *obj_priv;
4287
673a394b
EA
4288 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4289 if (obj == NULL) {
4290 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4291 args->handle);
673a394b
EA
4292 return -EBADF;
4293 }
4294
b1ce786c 4295 mutex_lock(&dev->struct_mutex);
f21289b3
EA
4296 /* Update the active list for the hardware's current position.
4297 * Otherwise this only updates on a delayed timer or when irqs are
4298 * actually unmasked, and our working set ends up being larger than
4299 * required.
4300 */
4301 i915_gem_retire_requests(dev);
4302
673a394b 4303 obj_priv = obj->driver_private;
c4de0a5d
EA
4304 /* Don't count being on the flushing list against the object being
4305 * done. Otherwise, a buffer left on the flushing list but not getting
4306 * flushed (because nobody's flushing that domain) won't ever return
4307 * unbusy and get reused by libdrm's bo cache. The other expected
4308 * consumer of this interface, OpenGL's occlusion queries, also specs
4309 * that the objects get unbusy "eventually" without any interference.
4310 */
4311 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
4312
4313 drm_gem_object_unreference(obj);
4314 mutex_unlock(&dev->struct_mutex);
4315 return 0;
4316}
4317
4318int
4319i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4320 struct drm_file *file_priv)
4321{
4322 return i915_gem_ring_throttle(dev, file_priv);
4323}
4324
3ef94daa
CW
4325int
4326i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4327 struct drm_file *file_priv)
4328{
4329 struct drm_i915_gem_madvise *args = data;
4330 struct drm_gem_object *obj;
4331 struct drm_i915_gem_object *obj_priv;
4332
4333 switch (args->madv) {
4334 case I915_MADV_DONTNEED:
4335 case I915_MADV_WILLNEED:
4336 break;
4337 default:
4338 return -EINVAL;
4339 }
4340
4341 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4342 if (obj == NULL) {
4343 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4344 args->handle);
4345 return -EBADF;
4346 }
4347
4348 mutex_lock(&dev->struct_mutex);
4349 obj_priv = obj->driver_private;
4350
4351 if (obj_priv->pin_count) {
4352 drm_gem_object_unreference(obj);
4353 mutex_unlock(&dev->struct_mutex);
4354
4355 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4356 return -EINVAL;
4357 }
4358
bb6baf76
CW
4359 if (obj_priv->madv != __I915_MADV_PURGED)
4360 obj_priv->madv = args->madv;
3ef94daa 4361
2d7ef395
CW
4362 /* if the object is no longer bound, discard its backing storage */
4363 if (i915_gem_object_is_purgeable(obj_priv) &&
4364 obj_priv->gtt_space == NULL)
4365 i915_gem_object_truncate(obj);
4366
bb6baf76
CW
4367 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4368
3ef94daa
CW
4369 drm_gem_object_unreference(obj);
4370 mutex_unlock(&dev->struct_mutex);
4371
4372 return 0;
4373}
4374
673a394b
EA
4375int i915_gem_init_object(struct drm_gem_object *obj)
4376{
4377 struct drm_i915_gem_object *obj_priv;
4378
9a298b2a 4379 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
673a394b
EA
4380 if (obj_priv == NULL)
4381 return -ENOMEM;
4382
4383 /*
4384 * We've just allocated pages from the kernel,
4385 * so they've just been written by the CPU with
4386 * zeros. They'll need to be clflushed before we
4387 * use them with the GPU.
4388 */
4389 obj->write_domain = I915_GEM_DOMAIN_CPU;
4390 obj->read_domains = I915_GEM_DOMAIN_CPU;
4391
ba1eb1d8
KP
4392 obj_priv->agp_type = AGP_USER_MEMORY;
4393
673a394b
EA
4394 obj->driver_private = obj_priv;
4395 obj_priv->obj = obj;
de151cf6 4396 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 4397 INIT_LIST_HEAD(&obj_priv->list);
99fcb766 4398 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
a09ba7fa 4399 INIT_LIST_HEAD(&obj_priv->fence_list);
3ef94daa 4400 obj_priv->madv = I915_MADV_WILLNEED;
de151cf6 4401
1c5d22f7 4402 trace_i915_gem_object_create(obj);
de151cf6 4403
673a394b
EA
4404 return 0;
4405}
4406
4407void i915_gem_free_object(struct drm_gem_object *obj)
4408{
de151cf6 4409 struct drm_device *dev = obj->dev;
673a394b
EA
4410 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4411
1c5d22f7
CW
4412 trace_i915_gem_object_destroy(obj);
4413
673a394b
EA
4414 while (obj_priv->pin_count > 0)
4415 i915_gem_object_unpin(obj);
4416
71acb5eb
DA
4417 if (obj_priv->phys_obj)
4418 i915_gem_detach_phys_object(dev, obj);
4419
673a394b
EA
4420 i915_gem_object_unbind(obj);
4421
7e616158
CW
4422 if (obj_priv->mmap_offset)
4423 i915_gem_free_mmap_offset(obj);
de151cf6 4424
9a298b2a 4425 kfree(obj_priv->page_cpu_valid);
280b713b 4426 kfree(obj_priv->bit_17);
9a298b2a 4427 kfree(obj->driver_private);
673a394b
EA
4428}
4429
ab5ee576 4430/** Unbinds all inactive objects. */
673a394b 4431static int
ab5ee576 4432i915_gem_evict_from_inactive_list(struct drm_device *dev)
673a394b 4433{
ab5ee576 4434 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4435
ab5ee576
CW
4436 while (!list_empty(&dev_priv->mm.inactive_list)) {
4437 struct drm_gem_object *obj;
4438 int ret;
673a394b 4439
ab5ee576
CW
4440 obj = list_first_entry(&dev_priv->mm.inactive_list,
4441 struct drm_i915_gem_object,
4442 list)->obj;
673a394b
EA
4443
4444 ret = i915_gem_object_unbind(obj);
4445 if (ret != 0) {
ab5ee576 4446 DRM_ERROR("Error unbinding object: %d\n", ret);
673a394b
EA
4447 return ret;
4448 }
4449 }
4450
673a394b
EA
4451 return 0;
4452}
4453
29105ccc
CW
4454static int
4455i915_gpu_idle(struct drm_device *dev)
673a394b
EA
4456{
4457 drm_i915_private_t *dev_priv = dev->dev_private;
29105ccc
CW
4458 bool lists_empty;
4459 uint32_t seqno;
673a394b 4460
29105ccc
CW
4461 spin_lock(&dev_priv->mm.active_list_lock);
4462 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4463 list_empty(&dev_priv->mm.active_list);
4464 spin_unlock(&dev_priv->mm.active_list_lock);
6dbe2772 4465
29105ccc 4466 if (lists_empty)
673a394b 4467 return 0;
673a394b 4468
29105ccc 4469 /* Flush everything onto the inactive list. */
21d509e3
CW
4470 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4471 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
29105ccc 4472 if (seqno == 0)
673a394b 4473 return -ENOMEM;
1c5d22f7 4474
29105ccc
CW
4475 return i915_wait_request(dev, seqno);
4476}
28dfe52a 4477
29105ccc
CW
4478int
4479i915_gem_idle(struct drm_device *dev)
4480{
4481 drm_i915_private_t *dev_priv = dev->dev_private;
4482 int ret;
28dfe52a 4483
29105ccc 4484 mutex_lock(&dev->struct_mutex);
1c5d22f7 4485
29105ccc
CW
4486 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4487 mutex_unlock(&dev->struct_mutex);
4488 return 0;
28dfe52a
EA
4489 }
4490
29105ccc 4491 ret = i915_gpu_idle(dev);
6dbe2772
KP
4492 if (ret) {
4493 mutex_unlock(&dev->struct_mutex);
673a394b 4494 return ret;
6dbe2772 4495 }
673a394b 4496
29105ccc
CW
4497 /* Under UMS, be paranoid and evict. */
4498 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4499 ret = i915_gem_evict_from_inactive_list(dev);
4500 if (ret) {
4501 mutex_unlock(&dev->struct_mutex);
4502 return ret;
4503 }
4504 }
4505
4506 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4507 * We need to replace this with a semaphore, or something.
4508 * And not confound mm.suspended!
4509 */
4510 dev_priv->mm.suspended = 1;
4511 del_timer(&dev_priv->hangcheck_timer);
4512
4513 i915_kernel_lost_context(dev);
6dbe2772 4514 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4515
6dbe2772
KP
4516 mutex_unlock(&dev->struct_mutex);
4517
29105ccc
CW
4518 /* Cancel the retire work handler, which should be idle now. */
4519 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4520
673a394b
EA
4521 return 0;
4522}
4523
4524static int
4525i915_gem_init_hws(struct drm_device *dev)
4526{
4527 drm_i915_private_t *dev_priv = dev->dev_private;
4528 struct drm_gem_object *obj;
4529 struct drm_i915_gem_object *obj_priv;
4530 int ret;
4531
4532 /* If we need a physical address for the status page, it's already
4533 * initialized at driver load time.
4534 */
4535 if (!I915_NEED_GFX_HWS(dev))
4536 return 0;
4537
4538 obj = drm_gem_object_alloc(dev, 4096);
4539 if (obj == NULL) {
4540 DRM_ERROR("Failed to allocate status page\n");
4541 return -ENOMEM;
4542 }
4543 obj_priv = obj->driver_private;
ba1eb1d8 4544 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
4545
4546 ret = i915_gem_object_pin(obj, 4096);
4547 if (ret != 0) {
4548 drm_gem_object_unreference(obj);
4549 return ret;
4550 }
4551
4552 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 4553
856fa198 4554 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 4555 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
4556 DRM_ERROR("Failed to map status page.\n");
4557 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 4558 i915_gem_object_unpin(obj);
673a394b
EA
4559 drm_gem_object_unreference(obj);
4560 return -EINVAL;
4561 }
4562 dev_priv->hws_obj = obj;
673a394b 4563 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
f6e450a6
EA
4564 if (IS_GEN6(dev)) {
4565 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4566 I915_READ(HWS_PGA_GEN6); /* posting read */
4567 } else {
4568 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4569 I915_READ(HWS_PGA); /* posting read */
4570 }
44d98a61 4571 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
673a394b
EA
4572
4573 return 0;
4574}
4575
85a7bb98
CW
4576static void
4577i915_gem_cleanup_hws(struct drm_device *dev)
4578{
4579 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
4580 struct drm_gem_object *obj;
4581 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
4582
4583 if (dev_priv->hws_obj == NULL)
4584 return;
4585
bab2d1f6
CW
4586 obj = dev_priv->hws_obj;
4587 obj_priv = obj->driver_private;
4588
856fa198 4589 kunmap(obj_priv->pages[0]);
85a7bb98
CW
4590 i915_gem_object_unpin(obj);
4591 drm_gem_object_unreference(obj);
4592 dev_priv->hws_obj = NULL;
bab2d1f6 4593
85a7bb98
CW
4594 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4595 dev_priv->hw_status_page = NULL;
4596
4597 /* Write high address into HWS_PGA when disabling. */
4598 I915_WRITE(HWS_PGA, 0x1ffff000);
4599}
4600
79e53945 4601int
673a394b
EA
4602i915_gem_init_ringbuffer(struct drm_device *dev)
4603{
4604 drm_i915_private_t *dev_priv = dev->dev_private;
4605 struct drm_gem_object *obj;
4606 struct drm_i915_gem_object *obj_priv;
79e53945 4607 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 4608 int ret;
50aa253d 4609 u32 head;
673a394b
EA
4610
4611 ret = i915_gem_init_hws(dev);
4612 if (ret != 0)
4613 return ret;
4614
4615 obj = drm_gem_object_alloc(dev, 128 * 1024);
4616 if (obj == NULL) {
4617 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 4618 i915_gem_cleanup_hws(dev);
673a394b
EA
4619 return -ENOMEM;
4620 }
4621 obj_priv = obj->driver_private;
4622
4623 ret = i915_gem_object_pin(obj, 4096);
4624 if (ret != 0) {
4625 drm_gem_object_unreference(obj);
85a7bb98 4626 i915_gem_cleanup_hws(dev);
673a394b
EA
4627 return ret;
4628 }
4629
4630 /* Set up the kernel mapping for the ring. */
79e53945 4631 ring->Size = obj->size;
673a394b 4632
79e53945
JB
4633 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4634 ring->map.size = obj->size;
4635 ring->map.type = 0;
4636 ring->map.flags = 0;
4637 ring->map.mtrr = 0;
673a394b 4638
79e53945
JB
4639 drm_core_ioremap_wc(&ring->map, dev);
4640 if (ring->map.handle == NULL) {
673a394b
EA
4641 DRM_ERROR("Failed to map ringbuffer.\n");
4642 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 4643 i915_gem_object_unpin(obj);
673a394b 4644 drm_gem_object_unreference(obj);
85a7bb98 4645 i915_gem_cleanup_hws(dev);
673a394b
EA
4646 return -EINVAL;
4647 }
79e53945
JB
4648 ring->ring_obj = obj;
4649 ring->virtual_start = ring->map.handle;
673a394b
EA
4650
4651 /* Stop the ring if it's running. */
4652 I915_WRITE(PRB0_CTL, 0);
673a394b 4653 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4654 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4655
4656 /* Initialize the ring. */
4657 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4658 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4659
4660 /* G45 ring initialization fails to reset head to zero */
4661 if (head != 0) {
4662 DRM_ERROR("Ring head not reset to zero "
4663 "ctl %08x head %08x tail %08x start %08x\n",
4664 I915_READ(PRB0_CTL),
4665 I915_READ(PRB0_HEAD),
4666 I915_READ(PRB0_TAIL),
4667 I915_READ(PRB0_START));
4668 I915_WRITE(PRB0_HEAD, 0);
4669
4670 DRM_ERROR("Ring head forced to zero "
4671 "ctl %08x head %08x tail %08x start %08x\n",
4672 I915_READ(PRB0_CTL),
4673 I915_READ(PRB0_HEAD),
4674 I915_READ(PRB0_TAIL),
4675 I915_READ(PRB0_START));
4676 }
4677
673a394b
EA
4678 I915_WRITE(PRB0_CTL,
4679 ((obj->size - 4096) & RING_NR_PAGES) |
4680 RING_NO_REPORT |
4681 RING_VALID);
4682
50aa253d
KP
4683 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4684
4685 /* If the head is still not zero, the ring is dead */
4686 if (head != 0) {
4687 DRM_ERROR("Ring initialization failed "
4688 "ctl %08x head %08x tail %08x start %08x\n",
4689 I915_READ(PRB0_CTL),
4690 I915_READ(PRB0_HEAD),
4691 I915_READ(PRB0_TAIL),
4692 I915_READ(PRB0_START));
4693 return -EIO;
4694 }
4695
673a394b 4696 /* Update our cache of the ring state */
79e53945
JB
4697 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4698 i915_kernel_lost_context(dev);
4699 else {
4700 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4701 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4702 ring->space = ring->head - (ring->tail + 8);
4703 if (ring->space < 0)
4704 ring->space += ring->Size;
4705 }
673a394b
EA
4706
4707 return 0;
4708}
4709
79e53945 4710void
673a394b
EA
4711i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4712{
4713 drm_i915_private_t *dev_priv = dev->dev_private;
4714
4715 if (dev_priv->ring.ring_obj == NULL)
4716 return;
4717
4718 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4719
4720 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4721 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4722 dev_priv->ring.ring_obj = NULL;
4723 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4724
85a7bb98 4725 i915_gem_cleanup_hws(dev);
673a394b
EA
4726}
4727
4728int
4729i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4730 struct drm_file *file_priv)
4731{
4732 drm_i915_private_t *dev_priv = dev->dev_private;
4733 int ret;
4734
79e53945
JB
4735 if (drm_core_check_feature(dev, DRIVER_MODESET))
4736 return 0;
4737
ba1234d1 4738 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4739 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4740 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4741 }
4742
673a394b 4743 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4744 dev_priv->mm.suspended = 0;
4745
4746 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4747 if (ret != 0) {
4748 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4749 return ret;
d816f6ac 4750 }
9bb2d6f9 4751
5e118f41 4752 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4753 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4754 spin_unlock(&dev_priv->mm.active_list_lock);
4755
673a394b
EA
4756 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4757 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4758 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4759 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4760
4761 drm_irq_install(dev);
4762
673a394b
EA
4763 return 0;
4764}
4765
4766int
4767i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4768 struct drm_file *file_priv)
4769{
79e53945
JB
4770 if (drm_core_check_feature(dev, DRIVER_MODESET))
4771 return 0;
4772
dbb19d30 4773 drm_irq_uninstall(dev);
e6890f6f 4774 return i915_gem_idle(dev);
673a394b
EA
4775}
4776
4777void
4778i915_gem_lastclose(struct drm_device *dev)
4779{
4780 int ret;
673a394b 4781
e806b495
EA
4782 if (drm_core_check_feature(dev, DRIVER_MODESET))
4783 return;
4784
6dbe2772
KP
4785 ret = i915_gem_idle(dev);
4786 if (ret)
4787 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4788}
4789
4790void
4791i915_gem_load(struct drm_device *dev)
4792{
b5aa8a0f 4793 int i;
673a394b
EA
4794 drm_i915_private_t *dev_priv = dev->dev_private;
4795
5e118f41 4796 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4797 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4798 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4799 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b
EA
4800 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4801 INIT_LIST_HEAD(&dev_priv->mm.request_list);
a09ba7fa 4802 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
673a394b
EA
4803 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4804 i915_gem_retire_work_handler);
4805 dev_priv->mm.next_gem_seqno = 1;
4806
31169714
CW
4807 spin_lock(&shrink_list_lock);
4808 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4809 spin_unlock(&shrink_list_lock);
4810
de151cf6 4811 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4812 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4813 dev_priv->fence_reg_start = 3;
de151cf6 4814
0f973f27 4815 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4816 dev_priv->num_fence_regs = 16;
4817 else
4818 dev_priv->num_fence_regs = 8;
4819
b5aa8a0f
GH
4820 /* Initialize fence registers to zero */
4821 if (IS_I965G(dev)) {
4822 for (i = 0; i < 16; i++)
4823 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4824 } else {
4825 for (i = 0; i < 8; i++)
4826 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4827 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4828 for (i = 0; i < 8; i++)
4829 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4830 }
673a394b 4831 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4832 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4833}
71acb5eb
DA
4834
4835/*
4836 * Create a physically contiguous memory object for this object
4837 * e.g. for cursor + overlay regs
4838 */
4839int i915_gem_init_phys_object(struct drm_device *dev,
4840 int id, int size)
4841{
4842 drm_i915_private_t *dev_priv = dev->dev_private;
4843 struct drm_i915_gem_phys_object *phys_obj;
4844 int ret;
4845
4846 if (dev_priv->mm.phys_objs[id - 1] || !size)
4847 return 0;
4848
9a298b2a 4849 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4850 if (!phys_obj)
4851 return -ENOMEM;
4852
4853 phys_obj->id = id;
4854
e6be8d9d 4855 phys_obj->handle = drm_pci_alloc(dev, size, 0);
71acb5eb
DA
4856 if (!phys_obj->handle) {
4857 ret = -ENOMEM;
4858 goto kfree_obj;
4859 }
4860#ifdef CONFIG_X86
4861 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4862#endif
4863
4864 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4865
4866 return 0;
4867kfree_obj:
9a298b2a 4868 kfree(phys_obj);
71acb5eb
DA
4869 return ret;
4870}
4871
4872void i915_gem_free_phys_object(struct drm_device *dev, int id)
4873{
4874 drm_i915_private_t *dev_priv = dev->dev_private;
4875 struct drm_i915_gem_phys_object *phys_obj;
4876
4877 if (!dev_priv->mm.phys_objs[id - 1])
4878 return;
4879
4880 phys_obj = dev_priv->mm.phys_objs[id - 1];
4881 if (phys_obj->cur_obj) {
4882 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4883 }
4884
4885#ifdef CONFIG_X86
4886 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4887#endif
4888 drm_pci_free(dev, phys_obj->handle);
4889 kfree(phys_obj);
4890 dev_priv->mm.phys_objs[id - 1] = NULL;
4891}
4892
4893void i915_gem_free_all_phys_object(struct drm_device *dev)
4894{
4895 int i;
4896
260883c8 4897 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4898 i915_gem_free_phys_object(dev, i);
4899}
4900
4901void i915_gem_detach_phys_object(struct drm_device *dev,
4902 struct drm_gem_object *obj)
4903{
4904 struct drm_i915_gem_object *obj_priv;
4905 int i;
4906 int ret;
4907 int page_count;
4908
4909 obj_priv = obj->driver_private;
4910 if (!obj_priv->phys_obj)
4911 return;
4912
4bdadb97 4913 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4914 if (ret)
4915 goto out;
4916
4917 page_count = obj->size / PAGE_SIZE;
4918
4919 for (i = 0; i < page_count; i++) {
856fa198 4920 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4921 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4922
4923 memcpy(dst, src, PAGE_SIZE);
4924 kunmap_atomic(dst, KM_USER0);
4925 }
856fa198 4926 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4927 drm_agp_chipset_flush(dev);
d78b47b9
CW
4928
4929 i915_gem_object_put_pages(obj);
71acb5eb
DA
4930out:
4931 obj_priv->phys_obj->cur_obj = NULL;
4932 obj_priv->phys_obj = NULL;
4933}
4934
4935int
4936i915_gem_attach_phys_object(struct drm_device *dev,
4937 struct drm_gem_object *obj, int id)
4938{
4939 drm_i915_private_t *dev_priv = dev->dev_private;
4940 struct drm_i915_gem_object *obj_priv;
4941 int ret = 0;
4942 int page_count;
4943 int i;
4944
4945 if (id > I915_MAX_PHYS_OBJECT)
4946 return -EINVAL;
4947
4948 obj_priv = obj->driver_private;
4949
4950 if (obj_priv->phys_obj) {
4951 if (obj_priv->phys_obj->id == id)
4952 return 0;
4953 i915_gem_detach_phys_object(dev, obj);
4954 }
4955
4956
4957 /* create a new object */
4958 if (!dev_priv->mm.phys_objs[id - 1]) {
4959 ret = i915_gem_init_phys_object(dev, id,
4960 obj->size);
4961 if (ret) {
aeb565df 4962 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4963 goto out;
4964 }
4965 }
4966
4967 /* bind to the object */
4968 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4969 obj_priv->phys_obj->cur_obj = obj;
4970
4bdadb97 4971 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4972 if (ret) {
4973 DRM_ERROR("failed to get page list\n");
4974 goto out;
4975 }
4976
4977 page_count = obj->size / PAGE_SIZE;
4978
4979 for (i = 0; i < page_count; i++) {
856fa198 4980 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4981 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4982
4983 memcpy(dst, src, PAGE_SIZE);
4984 kunmap_atomic(src, KM_USER0);
4985 }
4986
d78b47b9
CW
4987 i915_gem_object_put_pages(obj);
4988
71acb5eb
DA
4989 return 0;
4990out:
4991 return ret;
4992}
4993
4994static int
4995i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4996 struct drm_i915_gem_pwrite *args,
4997 struct drm_file *file_priv)
4998{
4999 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5000 void *obj_addr;
5001 int ret;
5002 char __user *user_data;
5003
5004 user_data = (char __user *) (uintptr_t) args->data_ptr;
5005 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5006
44d98a61 5007 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
5008 ret = copy_from_user(obj_addr, user_data, args->size);
5009 if (ret)
5010 return -EFAULT;
5011
5012 drm_agp_chipset_flush(dev);
5013 return 0;
5014}
b962442e
EA
5015
5016void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5017{
5018 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5019
5020 /* Clean up our request list when the client is going away, so that
5021 * later retire_requests won't dereference our soon-to-be-gone
5022 * file_priv.
5023 */
5024 mutex_lock(&dev->struct_mutex);
5025 while (!list_empty(&i915_file_priv->mm.request_list))
5026 list_del_init(i915_file_priv->mm.request_list.next);
5027 mutex_unlock(&dev->struct_mutex);
5028}
31169714 5029
31169714
CW
5030static int
5031i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5032{
5033 drm_i915_private_t *dev_priv, *next_dev;
5034 struct drm_i915_gem_object *obj_priv, *next_obj;
5035 int cnt = 0;
5036 int would_deadlock = 1;
5037
5038 /* "fast-path" to count number of available objects */
5039 if (nr_to_scan == 0) {
5040 spin_lock(&shrink_list_lock);
5041 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5042 struct drm_device *dev = dev_priv->dev;
5043
5044 if (mutex_trylock(&dev->struct_mutex)) {
5045 list_for_each_entry(obj_priv,
5046 &dev_priv->mm.inactive_list,
5047 list)
5048 cnt++;
5049 mutex_unlock(&dev->struct_mutex);
5050 }
5051 }
5052 spin_unlock(&shrink_list_lock);
5053
5054 return (cnt / 100) * sysctl_vfs_cache_pressure;
5055 }
5056
5057 spin_lock(&shrink_list_lock);
5058
5059 /* first scan for clean buffers */
5060 list_for_each_entry_safe(dev_priv, next_dev,
5061 &shrink_list, mm.shrink_list) {
5062 struct drm_device *dev = dev_priv->dev;
5063
5064 if (! mutex_trylock(&dev->struct_mutex))
5065 continue;
5066
5067 spin_unlock(&shrink_list_lock);
5068
5069 i915_gem_retire_requests(dev);
5070
5071 list_for_each_entry_safe(obj_priv, next_obj,
5072 &dev_priv->mm.inactive_list,
5073 list) {
5074 if (i915_gem_object_is_purgeable(obj_priv)) {
963b4836 5075 i915_gem_object_unbind(obj_priv->obj);
31169714
CW
5076 if (--nr_to_scan <= 0)
5077 break;
5078 }
5079 }
5080
5081 spin_lock(&shrink_list_lock);
5082 mutex_unlock(&dev->struct_mutex);
5083
963b4836
CW
5084 would_deadlock = 0;
5085
31169714
CW
5086 if (nr_to_scan <= 0)
5087 break;
5088 }
5089
5090 /* second pass, evict/count anything still on the inactive list */
5091 list_for_each_entry_safe(dev_priv, next_dev,
5092 &shrink_list, mm.shrink_list) {
5093 struct drm_device *dev = dev_priv->dev;
5094
5095 if (! mutex_trylock(&dev->struct_mutex))
5096 continue;
5097
5098 spin_unlock(&shrink_list_lock);
5099
5100 list_for_each_entry_safe(obj_priv, next_obj,
5101 &dev_priv->mm.inactive_list,
5102 list) {
5103 if (nr_to_scan > 0) {
963b4836 5104 i915_gem_object_unbind(obj_priv->obj);
31169714
CW
5105 nr_to_scan--;
5106 } else
5107 cnt++;
5108 }
5109
5110 spin_lock(&shrink_list_lock);
5111 mutex_unlock(&dev->struct_mutex);
5112
5113 would_deadlock = 0;
5114 }
5115
5116 spin_unlock(&shrink_list_lock);
5117
5118 if (would_deadlock)
5119 return -1;
5120 else if (cnt > 0)
5121 return (cnt / 100) * sysctl_vfs_cache_pressure;
5122 else
5123 return 0;
5124}
5125
5126static struct shrinker shrinker = {
5127 .shrink = i915_gem_shrink,
5128 .seeks = DEFAULT_SEEKS,
5129};
5130
5131__init void
5132i915_gem_shrinker_init(void)
5133{
5134 register_shrinker(&shrinker);
5135}
5136
5137__exit void
5138i915_gem_shrinker_exit(void)
5139{
5140 unregister_shrinker(&shrinker);
5141}