]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Enable interrupt-based AGPBUSY# enable on 85x
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
05394f39
CW
50static int i915_gem_phys_pwrite(struct drm_device *dev,
51 struct drm_i915_gem_object *obj,
71acb5eb 52 struct drm_i915_gem_pwrite *args,
05394f39 53 struct drm_file *file);
673a394b 54
61050808
CW
55static void i915_gem_write_fence(struct drm_device *dev, int reg,
56 struct drm_i915_gem_object *obj);
57static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
58 struct drm_i915_fence_reg *fence,
59 bool enable);
60
ceabbba5 61static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 62 struct shrink_control *sc);
ceabbba5 63static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 64 struct shrink_control *sc);
2cfcd32a
CW
65static int i915_gem_shrinker_oom(struct notifier_block *nb,
66 unsigned long event,
67 void *ptr);
d9973b43
CW
68static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
69static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 207 if (i915_gem_obj_is_pinned(obj))
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
4c914c0c
BV
335/*
336 * Pins the specified object's pages and synchronizes the object with
337 * GPU accesses. Sets needs_clflush to non-zero if the caller should
338 * flush the object from the CPU cache.
339 */
340int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
341 int *needs_clflush)
342{
343 int ret;
344
345 *needs_clflush = 0;
346
347 if (!obj->base.filp)
348 return -EINVAL;
349
350 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
351 /* If we're not in the cpu read domain, set ourself into the gtt
352 * read domain and manually flush cachelines (if required). This
353 * optimizes for the case when the gpu will dirty the data
354 * anyway again before the next pread happens. */
355 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
356 obj->cache_level);
357 ret = i915_gem_object_wait_rendering(obj, true);
358 if (ret)
359 return ret;
c8725f3d
CW
360
361 i915_gem_object_retire(obj);
4c914c0c
BV
362 }
363
364 ret = i915_gem_object_get_pages(obj);
365 if (ret)
366 return ret;
367
368 i915_gem_object_pin_pages(obj);
369
370 return ret;
371}
372
d174bd64
DV
373/* Per-page copy function for the shmem pread fastpath.
374 * Flushes invalid cachelines before reading the target if
375 * needs_clflush is set. */
eb01459f 376static int
d174bd64
DV
377shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
378 char __user *user_data,
379 bool page_do_bit17_swizzling, bool needs_clflush)
380{
381 char *vaddr;
382 int ret;
383
e7e58eb5 384 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
385 return -EINVAL;
386
387 vaddr = kmap_atomic(page);
388 if (needs_clflush)
389 drm_clflush_virt_range(vaddr + shmem_page_offset,
390 page_length);
391 ret = __copy_to_user_inatomic(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap_atomic(vaddr);
395
f60d7f0c 396 return ret ? -EFAULT : 0;
d174bd64
DV
397}
398
23c18c71
DV
399static void
400shmem_clflush_swizzled_range(char *addr, unsigned long length,
401 bool swizzled)
402{
e7e58eb5 403 if (unlikely(swizzled)) {
23c18c71
DV
404 unsigned long start = (unsigned long) addr;
405 unsigned long end = (unsigned long) addr + length;
406
407 /* For swizzling simply ensure that we always flush both
408 * channels. Lame, but simple and it works. Swizzled
409 * pwrite/pread is far from a hotpath - current userspace
410 * doesn't use it at all. */
411 start = round_down(start, 128);
412 end = round_up(end, 128);
413
414 drm_clflush_virt_range((void *)start, end - start);
415 } else {
416 drm_clflush_virt_range(addr, length);
417 }
418
419}
420
d174bd64
DV
421/* Only difference to the fast-path function is that this can handle bit17
422 * and uses non-atomic copy and kmap functions. */
423static int
424shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
425 char __user *user_data,
426 bool page_do_bit17_swizzling, bool needs_clflush)
427{
428 char *vaddr;
429 int ret;
430
431 vaddr = kmap(page);
432 if (needs_clflush)
23c18c71
DV
433 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
434 page_length,
435 page_do_bit17_swizzling);
d174bd64
DV
436
437 if (page_do_bit17_swizzling)
438 ret = __copy_to_user_swizzled(user_data,
439 vaddr, shmem_page_offset,
440 page_length);
441 else
442 ret = __copy_to_user(user_data,
443 vaddr + shmem_page_offset,
444 page_length);
445 kunmap(page);
446
f60d7f0c 447 return ret ? - EFAULT : 0;
d174bd64
DV
448}
449
eb01459f 450static int
dbf7bff0
DV
451i915_gem_shmem_pread(struct drm_device *dev,
452 struct drm_i915_gem_object *obj,
453 struct drm_i915_gem_pread *args,
454 struct drm_file *file)
eb01459f 455{
8461d226 456 char __user *user_data;
eb01459f 457 ssize_t remain;
8461d226 458 loff_t offset;
eb2c0c81 459 int shmem_page_offset, page_length, ret = 0;
8461d226 460 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 461 int prefaulted = 0;
8489731c 462 int needs_clflush = 0;
67d5a50c 463 struct sg_page_iter sg_iter;
eb01459f 464
2bb4629a 465 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
466 remain = args->size;
467
8461d226 468 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 469
4c914c0c 470 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
471 if (ret)
472 return ret;
473
8461d226 474 offset = args->offset;
eb01459f 475
67d5a50c
ID
476 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
477 offset >> PAGE_SHIFT) {
2db76d7c 478 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
479
480 if (remain <= 0)
481 break;
482
eb01459f
EA
483 /* Operation in this page
484 *
eb01459f 485 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
486 * page_length = bytes to copy for this page
487 */
c8cbbb8b 488 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
489 page_length = remain;
490 if ((shmem_page_offset + page_length) > PAGE_SIZE)
491 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 492
8461d226
DV
493 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
494 (page_to_phys(page) & (1 << 17)) != 0;
495
d174bd64
DV
496 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
497 user_data, page_do_bit17_swizzling,
498 needs_clflush);
499 if (ret == 0)
500 goto next_page;
dbf7bff0 501
dbf7bff0
DV
502 mutex_unlock(&dev->struct_mutex);
503
d330a953 504 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 505 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
506 /* Userspace is tricking us, but we've already clobbered
507 * its pages with the prefault and promised to write the
508 * data up to the first fault. Hence ignore any errors
509 * and just continue. */
510 (void)ret;
511 prefaulted = 1;
512 }
eb01459f 513
d174bd64
DV
514 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
515 user_data, page_do_bit17_swizzling,
516 needs_clflush);
eb01459f 517
dbf7bff0 518 mutex_lock(&dev->struct_mutex);
f60d7f0c 519
f60d7f0c 520 if (ret)
8461d226 521 goto out;
8461d226 522
17793c9a 523next_page:
eb01459f 524 remain -= page_length;
8461d226 525 user_data += page_length;
eb01459f
EA
526 offset += page_length;
527 }
528
4f27b75d 529out:
f60d7f0c
CW
530 i915_gem_object_unpin_pages(obj);
531
eb01459f
EA
532 return ret;
533}
534
673a394b
EA
535/**
536 * Reads data from the object referenced by handle.
537 *
538 * On error, the contents of *data are undefined.
539 */
540int
541i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 542 struct drm_file *file)
673a394b
EA
543{
544 struct drm_i915_gem_pread *args = data;
05394f39 545 struct drm_i915_gem_object *obj;
35b62a89 546 int ret = 0;
673a394b 547
51311d0a
CW
548 if (args->size == 0)
549 return 0;
550
551 if (!access_ok(VERIFY_WRITE,
2bb4629a 552 to_user_ptr(args->data_ptr),
51311d0a
CW
553 args->size))
554 return -EFAULT;
555
4f27b75d 556 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 557 if (ret)
4f27b75d 558 return ret;
673a394b 559
05394f39 560 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 561 if (&obj->base == NULL) {
1d7cfea1
CW
562 ret = -ENOENT;
563 goto unlock;
4f27b75d 564 }
673a394b 565
7dcd2499 566 /* Bounds check source. */
05394f39
CW
567 if (args->offset > obj->base.size ||
568 args->size > obj->base.size - args->offset) {
ce9d419d 569 ret = -EINVAL;
35b62a89 570 goto out;
ce9d419d
CW
571 }
572
1286ff73
DV
573 /* prime objects have no backing filp to GEM pread/pwrite
574 * pages from.
575 */
576 if (!obj->base.filp) {
577 ret = -EINVAL;
578 goto out;
579 }
580
db53a302
CW
581 trace_i915_gem_object_pread(obj, args->offset, args->size);
582
dbf7bff0 583 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 584
35b62a89 585out:
05394f39 586 drm_gem_object_unreference(&obj->base);
1d7cfea1 587unlock:
4f27b75d 588 mutex_unlock(&dev->struct_mutex);
eb01459f 589 return ret;
673a394b
EA
590}
591
0839ccb8
KP
592/* This is the fast write path which cannot handle
593 * page faults in the source data
9b7530cc 594 */
0839ccb8
KP
595
596static inline int
597fast_user_write(struct io_mapping *mapping,
598 loff_t page_base, int page_offset,
599 char __user *user_data,
600 int length)
9b7530cc 601{
4f0c7cfb
BW
602 void __iomem *vaddr_atomic;
603 void *vaddr;
0839ccb8 604 unsigned long unwritten;
9b7530cc 605
3e4d3af5 606 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
607 /* We can use the cpu mem copy function because this is X86. */
608 vaddr = (void __force*)vaddr_atomic + page_offset;
609 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 610 user_data, length);
3e4d3af5 611 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 612 return unwritten;
0839ccb8
KP
613}
614
3de09aa3
EA
615/**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
673a394b 619static int
05394f39
CW
620i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
3de09aa3 622 struct drm_i915_gem_pwrite *args,
05394f39 623 struct drm_file *file)
673a394b 624{
3e31c6c0 625 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 626 ssize_t remain;
0839ccb8 627 loff_t offset, page_base;
673a394b 628 char __user *user_data;
935aaa69
DV
629 int page_offset, page_length, ret;
630
1ec9e26d 631 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
632 if (ret)
633 goto out;
634
635 ret = i915_gem_object_set_to_gtt_domain(obj, true);
636 if (ret)
637 goto out_unpin;
638
639 ret = i915_gem_object_put_fence(obj);
640 if (ret)
641 goto out_unpin;
673a394b 642
2bb4629a 643 user_data = to_user_ptr(args->data_ptr);
673a394b 644 remain = args->size;
673a394b 645
f343c5f6 646 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
647
648 while (remain > 0) {
649 /* Operation in this page
650 *
0839ccb8
KP
651 * page_base = page offset within aperture
652 * page_offset = offset within page
653 * page_length = bytes to copy for this page
673a394b 654 */
c8cbbb8b
CW
655 page_base = offset & PAGE_MASK;
656 page_offset = offset_in_page(offset);
0839ccb8
KP
657 page_length = remain;
658 if ((page_offset + remain) > PAGE_SIZE)
659 page_length = PAGE_SIZE - page_offset;
660
0839ccb8 661 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
662 * source page isn't available. Return the error and we'll
663 * retry in the slow path.
0839ccb8 664 */
5d4545ae 665 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
666 page_offset, user_data, page_length)) {
667 ret = -EFAULT;
668 goto out_unpin;
669 }
673a394b 670
0839ccb8
KP
671 remain -= page_length;
672 user_data += page_length;
673 offset += page_length;
673a394b 674 }
673a394b 675
935aaa69 676out_unpin:
d7f46fc4 677 i915_gem_object_ggtt_unpin(obj);
935aaa69 678out:
3de09aa3 679 return ret;
673a394b
EA
680}
681
d174bd64
DV
682/* Per-page copy function for the shmem pwrite fastpath.
683 * Flushes invalid cachelines before writing to the target if
684 * needs_clflush_before is set and flushes out any written cachelines after
685 * writing if needs_clflush is set. */
3043c60c 686static int
d174bd64
DV
687shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
688 char __user *user_data,
689 bool page_do_bit17_swizzling,
690 bool needs_clflush_before,
691 bool needs_clflush_after)
673a394b 692{
d174bd64 693 char *vaddr;
673a394b 694 int ret;
3de09aa3 695
e7e58eb5 696 if (unlikely(page_do_bit17_swizzling))
d174bd64 697 return -EINVAL;
3de09aa3 698
d174bd64
DV
699 vaddr = kmap_atomic(page);
700 if (needs_clflush_before)
701 drm_clflush_virt_range(vaddr + shmem_page_offset,
702 page_length);
c2831a94
CW
703 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
704 user_data, page_length);
d174bd64
DV
705 if (needs_clflush_after)
706 drm_clflush_virt_range(vaddr + shmem_page_offset,
707 page_length);
708 kunmap_atomic(vaddr);
3de09aa3 709
755d2218 710 return ret ? -EFAULT : 0;
3de09aa3
EA
711}
712
d174bd64
DV
713/* Only difference to the fast-path function is that this can handle bit17
714 * and uses non-atomic copy and kmap functions. */
3043c60c 715static int
d174bd64
DV
716shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
717 char __user *user_data,
718 bool page_do_bit17_swizzling,
719 bool needs_clflush_before,
720 bool needs_clflush_after)
673a394b 721{
d174bd64
DV
722 char *vaddr;
723 int ret;
e5281ccd 724
d174bd64 725 vaddr = kmap(page);
e7e58eb5 726 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
727 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
728 page_length,
729 page_do_bit17_swizzling);
d174bd64
DV
730 if (page_do_bit17_swizzling)
731 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
732 user_data,
733 page_length);
d174bd64
DV
734 else
735 ret = __copy_from_user(vaddr + shmem_page_offset,
736 user_data,
737 page_length);
738 if (needs_clflush_after)
23c18c71
DV
739 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
740 page_length,
741 page_do_bit17_swizzling);
d174bd64 742 kunmap(page);
40123c1f 743
755d2218 744 return ret ? -EFAULT : 0;
40123c1f
EA
745}
746
40123c1f 747static int
e244a443
DV
748i915_gem_shmem_pwrite(struct drm_device *dev,
749 struct drm_i915_gem_object *obj,
750 struct drm_i915_gem_pwrite *args,
751 struct drm_file *file)
40123c1f 752{
40123c1f 753 ssize_t remain;
8c59967c
DV
754 loff_t offset;
755 char __user *user_data;
eb2c0c81 756 int shmem_page_offset, page_length, ret = 0;
8c59967c 757 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 758 int hit_slowpath = 0;
58642885
DV
759 int needs_clflush_after = 0;
760 int needs_clflush_before = 0;
67d5a50c 761 struct sg_page_iter sg_iter;
40123c1f 762
2bb4629a 763 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
764 remain = args->size;
765
8c59967c 766 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 767
58642885
DV
768 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
769 /* If we're not in the cpu write domain, set ourself into the gtt
770 * write domain and manually flush cachelines (if required). This
771 * optimizes for the case when the gpu will use the data
772 * right away and we therefore have to clflush anyway. */
2c22569b 773 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
774 ret = i915_gem_object_wait_rendering(obj, false);
775 if (ret)
776 return ret;
c8725f3d
CW
777
778 i915_gem_object_retire(obj);
58642885 779 }
c76ce038
CW
780 /* Same trick applies to invalidate partially written cachelines read
781 * before writing. */
782 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
783 needs_clflush_before =
784 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 785
755d2218
CW
786 ret = i915_gem_object_get_pages(obj);
787 if (ret)
788 return ret;
789
790 i915_gem_object_pin_pages(obj);
791
673a394b 792 offset = args->offset;
05394f39 793 obj->dirty = 1;
673a394b 794
67d5a50c
ID
795 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
796 offset >> PAGE_SHIFT) {
2db76d7c 797 struct page *page = sg_page_iter_page(&sg_iter);
58642885 798 int partial_cacheline_write;
e5281ccd 799
9da3da66
CW
800 if (remain <= 0)
801 break;
802
40123c1f
EA
803 /* Operation in this page
804 *
40123c1f 805 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
806 * page_length = bytes to copy for this page
807 */
c8cbbb8b 808 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
809
810 page_length = remain;
811 if ((shmem_page_offset + page_length) > PAGE_SIZE)
812 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 813
58642885
DV
814 /* If we don't overwrite a cacheline completely we need to be
815 * careful to have up-to-date data by first clflushing. Don't
816 * overcomplicate things and flush the entire patch. */
817 partial_cacheline_write = needs_clflush_before &&
818 ((shmem_page_offset | page_length)
819 & (boot_cpu_data.x86_clflush_size - 1));
820
8c59967c
DV
821 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
822 (page_to_phys(page) & (1 << 17)) != 0;
823
d174bd64
DV
824 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
825 user_data, page_do_bit17_swizzling,
826 partial_cacheline_write,
827 needs_clflush_after);
828 if (ret == 0)
829 goto next_page;
e244a443
DV
830
831 hit_slowpath = 1;
e244a443 832 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
833 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
834 user_data, page_do_bit17_swizzling,
835 partial_cacheline_write,
836 needs_clflush_after);
40123c1f 837
e244a443 838 mutex_lock(&dev->struct_mutex);
755d2218 839
755d2218 840 if (ret)
8c59967c 841 goto out;
8c59967c 842
17793c9a 843next_page:
40123c1f 844 remain -= page_length;
8c59967c 845 user_data += page_length;
40123c1f 846 offset += page_length;
673a394b
EA
847 }
848
fbd5a26d 849out:
755d2218
CW
850 i915_gem_object_unpin_pages(obj);
851
e244a443 852 if (hit_slowpath) {
8dcf015e
DV
853 /*
854 * Fixup: Flush cpu caches in case we didn't flush the dirty
855 * cachelines in-line while writing and the object moved
856 * out of the cpu write domain while we've dropped the lock.
857 */
858 if (!needs_clflush_after &&
859 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
860 if (i915_gem_clflush_object(obj, obj->pin_display))
861 i915_gem_chipset_flush(dev);
e244a443 862 }
8c59967c 863 }
673a394b 864
58642885 865 if (needs_clflush_after)
e76e9aeb 866 i915_gem_chipset_flush(dev);
58642885 867
40123c1f 868 return ret;
673a394b
EA
869}
870
871/**
872 * Writes data to the object referenced by handle.
873 *
874 * On error, the contents of the buffer that were to be modified are undefined.
875 */
876int
877i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 878 struct drm_file *file)
673a394b
EA
879{
880 struct drm_i915_gem_pwrite *args = data;
05394f39 881 struct drm_i915_gem_object *obj;
51311d0a
CW
882 int ret;
883
884 if (args->size == 0)
885 return 0;
886
887 if (!access_ok(VERIFY_READ,
2bb4629a 888 to_user_ptr(args->data_ptr),
51311d0a
CW
889 args->size))
890 return -EFAULT;
891
d330a953 892 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
893 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
894 args->size);
895 if (ret)
896 return -EFAULT;
897 }
673a394b 898
fbd5a26d 899 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 900 if (ret)
fbd5a26d 901 return ret;
1d7cfea1 902
05394f39 903 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 904 if (&obj->base == NULL) {
1d7cfea1
CW
905 ret = -ENOENT;
906 goto unlock;
fbd5a26d 907 }
673a394b 908
7dcd2499 909 /* Bounds check destination. */
05394f39
CW
910 if (args->offset > obj->base.size ||
911 args->size > obj->base.size - args->offset) {
ce9d419d 912 ret = -EINVAL;
35b62a89 913 goto out;
ce9d419d
CW
914 }
915
1286ff73
DV
916 /* prime objects have no backing filp to GEM pread/pwrite
917 * pages from.
918 */
919 if (!obj->base.filp) {
920 ret = -EINVAL;
921 goto out;
922 }
923
db53a302
CW
924 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
925
935aaa69 926 ret = -EFAULT;
673a394b
EA
927 /* We can only do the GTT pwrite on untiled buffers, as otherwise
928 * it would end up going through the fenced access, and we'll get
929 * different detiling behavior between reading and writing.
930 * pread/pwrite currently are reading and writing from the CPU
931 * perspective, requiring manual detiling by the client.
932 */
5c0480f2 933 if (obj->phys_obj) {
fbd5a26d 934 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
935 goto out;
936 }
937
2c22569b
CW
938 if (obj->tiling_mode == I915_TILING_NONE &&
939 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
940 cpu_write_needs_clflush(obj)) {
fbd5a26d 941 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
942 /* Note that the gtt paths might fail with non-page-backed user
943 * pointers (e.g. gtt mappings when moving data between
944 * textures). Fallback to the shmem path in that case. */
fbd5a26d 945 }
673a394b 946
86a1ee26 947 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 948 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 949
35b62a89 950out:
05394f39 951 drm_gem_object_unreference(&obj->base);
1d7cfea1 952unlock:
fbd5a26d 953 mutex_unlock(&dev->struct_mutex);
673a394b
EA
954 return ret;
955}
956
b361237b 957int
33196ded 958i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
959 bool interruptible)
960{
1f83fee0 961 if (i915_reset_in_progress(error)) {
b361237b
CW
962 /* Non-interruptible callers can't handle -EAGAIN, hence return
963 * -EIO unconditionally for these. */
964 if (!interruptible)
965 return -EIO;
966
1f83fee0
DV
967 /* Recovery complete, but the reset failed ... */
968 if (i915_terminally_wedged(error))
b361237b
CW
969 return -EIO;
970
971 return -EAGAIN;
972 }
973
974 return 0;
975}
976
977/*
978 * Compare seqno against outstanding lazy request. Emit a request if they are
979 * equal.
980 */
981static int
a4872ba6 982i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
983{
984 int ret;
985
986 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
987
988 ret = 0;
1823521d 989 if (seqno == ring->outstanding_lazy_seqno)
0025c077 990 ret = i915_add_request(ring, NULL);
b361237b
CW
991
992 return ret;
993}
994
094f9a54
CW
995static void fake_irq(unsigned long data)
996{
997 wake_up_process((struct task_struct *)data);
998}
999
1000static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1001 struct intel_engine_cs *ring)
094f9a54
CW
1002{
1003 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1004}
1005
b29c19b6
CW
1006static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1007{
1008 if (file_priv == NULL)
1009 return true;
1010
1011 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1012}
1013
b361237b
CW
1014/**
1015 * __wait_seqno - wait until execution of seqno has finished
1016 * @ring: the ring expected to report seqno
1017 * @seqno: duh!
f69061be 1018 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1019 * @interruptible: do an interruptible wait (normally yes)
1020 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1021 *
f69061be
DV
1022 * Note: It is of utmost importance that the passed in seqno and reset_counter
1023 * values have been read by the caller in an smp safe manner. Where read-side
1024 * locks are involved, it is sufficient to read the reset_counter before
1025 * unlocking the lock that protects the seqno. For lockless tricks, the
1026 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1027 * inserted.
1028 *
b361237b
CW
1029 * Returns 0 if the seqno was found within the alloted time. Else returns the
1030 * errno with remaining time filled in timeout argument.
1031 */
a4872ba6 1032static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1033 unsigned reset_counter,
b29c19b6
CW
1034 bool interruptible,
1035 struct timespec *timeout,
1036 struct drm_i915_file_private *file_priv)
b361237b 1037{
3d13ef2e 1038 struct drm_device *dev = ring->dev;
3e31c6c0 1039 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1040 const bool irq_test_in_progress =
1041 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1042 struct timespec before, now;
1043 DEFINE_WAIT(wait);
47e9766d 1044 unsigned long timeout_expire;
b361237b
CW
1045 int ret;
1046
5d584b2e 1047 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1048
b361237b
CW
1049 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1050 return 0;
1051
47e9766d 1052 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1053
3d13ef2e 1054 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1055 gen6_rps_boost(dev_priv);
1056 if (file_priv)
1057 mod_delayed_work(dev_priv->wq,
1058 &file_priv->mm.idle_work,
1059 msecs_to_jiffies(100));
1060 }
1061
168c3f21 1062 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1063 return -ENODEV;
1064
094f9a54
CW
1065 /* Record current time in case interrupted by signal, or wedged */
1066 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1067 getrawmonotonic(&before);
094f9a54
CW
1068 for (;;) {
1069 struct timer_list timer;
b361237b 1070
094f9a54
CW
1071 prepare_to_wait(&ring->irq_queue, &wait,
1072 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1073
f69061be
DV
1074 /* We need to check whether any gpu reset happened in between
1075 * the caller grabbing the seqno and now ... */
094f9a54
CW
1076 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1077 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1078 * is truely gone. */
1079 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1080 if (ret == 0)
1081 ret = -EAGAIN;
1082 break;
1083 }
f69061be 1084
094f9a54
CW
1085 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1086 ret = 0;
1087 break;
1088 }
b361237b 1089
094f9a54
CW
1090 if (interruptible && signal_pending(current)) {
1091 ret = -ERESTARTSYS;
1092 break;
1093 }
1094
47e9766d 1095 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1096 ret = -ETIME;
1097 break;
1098 }
1099
1100 timer.function = NULL;
1101 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1102 unsigned long expire;
1103
094f9a54 1104 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1105 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1106 mod_timer(&timer, expire);
1107 }
1108
5035c275 1109 io_schedule();
094f9a54 1110
094f9a54
CW
1111 if (timer.function) {
1112 del_singleshot_timer_sync(&timer);
1113 destroy_timer_on_stack(&timer);
1114 }
1115 }
b361237b 1116 getrawmonotonic(&now);
094f9a54 1117 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1118
168c3f21
MK
1119 if (!irq_test_in_progress)
1120 ring->irq_put(ring);
094f9a54
CW
1121
1122 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1123
1124 if (timeout) {
1125 struct timespec sleep_time = timespec_sub(now, before);
1126 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1127 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1128 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1129 }
1130
094f9a54 1131 return ret;
b361237b
CW
1132}
1133
1134/**
1135 * Waits for a sequence number to be signaled, and cleans up the
1136 * request and object lists appropriately for that event.
1137 */
1138int
a4872ba6 1139i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1140{
1141 struct drm_device *dev = ring->dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 bool interruptible = dev_priv->mm.interruptible;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(seqno == 0);
1148
33196ded 1149 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1150 if (ret)
1151 return ret;
1152
1153 ret = i915_gem_check_olr(ring, seqno);
1154 if (ret)
1155 return ret;
1156
f69061be
DV
1157 return __wait_seqno(ring, seqno,
1158 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1159 interruptible, NULL, NULL);
b361237b
CW
1160}
1161
d26e3af8
CW
1162static int
1163i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1164 struct intel_engine_cs *ring)
d26e3af8 1165{
c8725f3d
CW
1166 if (!obj->active)
1167 return 0;
d26e3af8
CW
1168
1169 /* Manually manage the write flush as we may have not yet
1170 * retired the buffer.
1171 *
1172 * Note that the last_write_seqno is always the earlier of
1173 * the two (read/write) seqno, so if we haved successfully waited,
1174 * we know we have passed the last write.
1175 */
1176 obj->last_write_seqno = 0;
d26e3af8
CW
1177
1178 return 0;
1179}
1180
b361237b
CW
1181/**
1182 * Ensures that all rendering to the object has completed and the object is
1183 * safe to unbind from the GTT or access from the CPU.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1187 bool readonly)
1188{
a4872ba6 1189 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1190 u32 seqno;
1191 int ret;
1192
1193 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1194 if (seqno == 0)
1195 return 0;
1196
1197 ret = i915_wait_seqno(ring, seqno);
1198 if (ret)
1199 return ret;
1200
d26e3af8 1201 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1202}
1203
3236f57a
CW
1204/* A nonblocking variant of the above wait. This is a highly dangerous routine
1205 * as the object state may change during this call.
1206 */
1207static __must_check int
1208i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1209 struct drm_i915_file_private *file_priv,
3236f57a
CW
1210 bool readonly)
1211{
1212 struct drm_device *dev = obj->base.dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1214 struct intel_engine_cs *ring = obj->ring;
f69061be 1215 unsigned reset_counter;
3236f57a
CW
1216 u32 seqno;
1217 int ret;
1218
1219 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1220 BUG_ON(!dev_priv->mm.interruptible);
1221
1222 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1223 if (seqno == 0)
1224 return 0;
1225
33196ded 1226 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1227 if (ret)
1228 return ret;
1229
1230 ret = i915_gem_check_olr(ring, seqno);
1231 if (ret)
1232 return ret;
1233
f69061be 1234 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1235 mutex_unlock(&dev->struct_mutex);
6e4930f6 1236 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1237 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1238 if (ret)
1239 return ret;
3236f57a 1240
d26e3af8 1241 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1242}
1243
673a394b 1244/**
2ef7eeaa
EA
1245 * Called when user space prepares to use an object with the CPU, either
1246 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1247 */
1248int
1249i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1250 struct drm_file *file)
673a394b
EA
1251{
1252 struct drm_i915_gem_set_domain *args = data;
05394f39 1253 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1254 uint32_t read_domains = args->read_domains;
1255 uint32_t write_domain = args->write_domain;
673a394b
EA
1256 int ret;
1257
2ef7eeaa 1258 /* Only handle setting domains to types used by the CPU. */
21d509e3 1259 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1260 return -EINVAL;
1261
21d509e3 1262 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1263 return -EINVAL;
1264
1265 /* Having something in the write domain implies it's in the read
1266 * domain, and only that read domain. Enforce that in the request.
1267 */
1268 if (write_domain != 0 && read_domains != write_domain)
1269 return -EINVAL;
1270
76c1dec1 1271 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1272 if (ret)
76c1dec1 1273 return ret;
1d7cfea1 1274
05394f39 1275 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1276 if (&obj->base == NULL) {
1d7cfea1
CW
1277 ret = -ENOENT;
1278 goto unlock;
76c1dec1 1279 }
673a394b 1280
3236f57a
CW
1281 /* Try to flush the object off the GPU without holding the lock.
1282 * We will repeat the flush holding the lock in the normal manner
1283 * to catch cases where we are gazumped.
1284 */
6e4930f6
CW
1285 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1286 file->driver_priv,
1287 !write_domain);
3236f57a
CW
1288 if (ret)
1289 goto unref;
1290
2ef7eeaa
EA
1291 if (read_domains & I915_GEM_DOMAIN_GTT) {
1292 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1293
1294 /* Silently promote "you're not bound, there was nothing to do"
1295 * to success, since the client was just asking us to
1296 * make sure everything was done.
1297 */
1298 if (ret == -EINVAL)
1299 ret = 0;
2ef7eeaa 1300 } else {
e47c68e9 1301 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1302 }
1303
3236f57a 1304unref:
05394f39 1305 drm_gem_object_unreference(&obj->base);
1d7cfea1 1306unlock:
673a394b
EA
1307 mutex_unlock(&dev->struct_mutex);
1308 return ret;
1309}
1310
1311/**
1312 * Called when user space has done writes to this buffer
1313 */
1314int
1315i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1316 struct drm_file *file)
673a394b
EA
1317{
1318 struct drm_i915_gem_sw_finish *args = data;
05394f39 1319 struct drm_i915_gem_object *obj;
673a394b
EA
1320 int ret = 0;
1321
76c1dec1 1322 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1323 if (ret)
76c1dec1 1324 return ret;
1d7cfea1 1325
05394f39 1326 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1327 if (&obj->base == NULL) {
1d7cfea1
CW
1328 ret = -ENOENT;
1329 goto unlock;
673a394b
EA
1330 }
1331
673a394b 1332 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1333 if (obj->pin_display)
1334 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1335
05394f39 1336 drm_gem_object_unreference(&obj->base);
1d7cfea1 1337unlock:
673a394b
EA
1338 mutex_unlock(&dev->struct_mutex);
1339 return ret;
1340}
1341
1342/**
1343 * Maps the contents of an object, returning the address it is mapped
1344 * into.
1345 *
1346 * While the mapping holds a reference on the contents of the object, it doesn't
1347 * imply a ref on the object itself.
1348 */
1349int
1350i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1351 struct drm_file *file)
673a394b
EA
1352{
1353 struct drm_i915_gem_mmap *args = data;
1354 struct drm_gem_object *obj;
673a394b
EA
1355 unsigned long addr;
1356
05394f39 1357 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1358 if (obj == NULL)
bf79cb91 1359 return -ENOENT;
673a394b 1360
1286ff73
DV
1361 /* prime objects have no backing filp to GEM mmap
1362 * pages from.
1363 */
1364 if (!obj->filp) {
1365 drm_gem_object_unreference_unlocked(obj);
1366 return -EINVAL;
1367 }
1368
6be5ceb0 1369 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1370 PROT_READ | PROT_WRITE, MAP_SHARED,
1371 args->offset);
bc9025bd 1372 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1373 if (IS_ERR((void *)addr))
1374 return addr;
1375
1376 args->addr_ptr = (uint64_t) addr;
1377
1378 return 0;
1379}
1380
de151cf6
JB
1381/**
1382 * i915_gem_fault - fault a page into the GTT
1383 * vma: VMA in question
1384 * vmf: fault info
1385 *
1386 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1387 * from userspace. The fault handler takes care of binding the object to
1388 * the GTT (if needed), allocating and programming a fence register (again,
1389 * only if needed based on whether the old reg is still valid or the object
1390 * is tiled) and inserting a new PTE into the faulting process.
1391 *
1392 * Note that the faulting process may involve evicting existing objects
1393 * from the GTT and/or fence registers to make room. So performance may
1394 * suffer if the GTT working set is large or there are few fence registers
1395 * left.
1396 */
1397int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1398{
05394f39
CW
1399 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1400 struct drm_device *dev = obj->base.dev;
3e31c6c0 1401 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1402 pgoff_t page_offset;
1403 unsigned long pfn;
1404 int ret = 0;
0f973f27 1405 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1406
f65c9168
PZ
1407 intel_runtime_pm_get(dev_priv);
1408
de151cf6
JB
1409 /* We don't use vmf->pgoff since that has the fake offset */
1410 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1411 PAGE_SHIFT;
1412
d9bc7e9f
CW
1413 ret = i915_mutex_lock_interruptible(dev);
1414 if (ret)
1415 goto out;
a00b10c3 1416
db53a302
CW
1417 trace_i915_gem_object_fault(obj, page_offset, true, write);
1418
6e4930f6
CW
1419 /* Try to flush the object off the GPU first without holding the lock.
1420 * Upon reacquiring the lock, we will perform our sanity checks and then
1421 * repeat the flush holding the lock in the normal manner to catch cases
1422 * where we are gazumped.
1423 */
1424 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1425 if (ret)
1426 goto unlock;
1427
eb119bd6
CW
1428 /* Access to snoopable pages through the GTT is incoherent. */
1429 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1430 ret = -EINVAL;
1431 goto unlock;
1432 }
1433
d9bc7e9f 1434 /* Now bind it into the GTT if needed */
1ec9e26d 1435 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1436 if (ret)
1437 goto unlock;
4a684a41 1438
c9839303
CW
1439 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1440 if (ret)
1441 goto unpin;
74898d7e 1442
06d98131 1443 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1444 if (ret)
c9839303 1445 goto unpin;
7d1c4804 1446
6299f992
CW
1447 obj->fault_mappable = true;
1448
f343c5f6
BW
1449 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1450 pfn >>= PAGE_SHIFT;
1451 pfn += page_offset;
de151cf6
JB
1452
1453 /* Finally, remap it using the new GTT offset */
1454 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1455unpin:
d7f46fc4 1456 i915_gem_object_ggtt_unpin(obj);
c715089f 1457unlock:
de151cf6 1458 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1459out:
de151cf6 1460 switch (ret) {
d9bc7e9f 1461 case -EIO:
a9340cca
DV
1462 /* If this -EIO is due to a gpu hang, give the reset code a
1463 * chance to clean up the mess. Otherwise return the proper
1464 * SIGBUS. */
f65c9168
PZ
1465 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1466 ret = VM_FAULT_SIGBUS;
1467 break;
1468 }
045e769a 1469 case -EAGAIN:
571c608d
DV
1470 /*
1471 * EAGAIN means the gpu is hung and we'll wait for the error
1472 * handler to reset everything when re-faulting in
1473 * i915_mutex_lock_interruptible.
d9bc7e9f 1474 */
c715089f
CW
1475 case 0:
1476 case -ERESTARTSYS:
bed636ab 1477 case -EINTR:
e79e0fe3
DR
1478 case -EBUSY:
1479 /*
1480 * EBUSY is ok: this just means that another thread
1481 * already did the job.
1482 */
f65c9168
PZ
1483 ret = VM_FAULT_NOPAGE;
1484 break;
de151cf6 1485 case -ENOMEM:
f65c9168
PZ
1486 ret = VM_FAULT_OOM;
1487 break;
a7c2e1aa 1488 case -ENOSPC:
45d67817 1489 case -EFAULT:
f65c9168
PZ
1490 ret = VM_FAULT_SIGBUS;
1491 break;
de151cf6 1492 default:
a7c2e1aa 1493 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1494 ret = VM_FAULT_SIGBUS;
1495 break;
de151cf6 1496 }
f65c9168
PZ
1497
1498 intel_runtime_pm_put(dev_priv);
1499 return ret;
de151cf6
JB
1500}
1501
48018a57
PZ
1502void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1503{
1504 struct i915_vma *vma;
1505
1506 /*
1507 * Only the global gtt is relevant for gtt memory mappings, so restrict
1508 * list traversal to objects bound into the global address space. Note
1509 * that the active list should be empty, but better safe than sorry.
1510 */
1511 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1512 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1513 i915_gem_release_mmap(vma->obj);
1514 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1515 i915_gem_release_mmap(vma->obj);
1516}
1517
901782b2
CW
1518/**
1519 * i915_gem_release_mmap - remove physical page mappings
1520 * @obj: obj in question
1521 *
af901ca1 1522 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1523 * relinquish ownership of the pages back to the system.
1524 *
1525 * It is vital that we remove the page mapping if we have mapped a tiled
1526 * object through the GTT and then lose the fence register due to
1527 * resource pressure. Similarly if the object has been moved out of the
1528 * aperture, than pages mapped into userspace must be revoked. Removing the
1529 * mapping will then trigger a page fault on the next user access, allowing
1530 * fixup by i915_gem_fault().
1531 */
d05ca301 1532void
05394f39 1533i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1534{
6299f992
CW
1535 if (!obj->fault_mappable)
1536 return;
901782b2 1537
6796cb16
DH
1538 drm_vma_node_unmap(&obj->base.vma_node,
1539 obj->base.dev->anon_inode->i_mapping);
6299f992 1540 obj->fault_mappable = false;
901782b2
CW
1541}
1542
0fa87796 1543uint32_t
e28f8711 1544i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1545{
e28f8711 1546 uint32_t gtt_size;
92b88aeb
CW
1547
1548 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1549 tiling_mode == I915_TILING_NONE)
1550 return size;
92b88aeb
CW
1551
1552 /* Previous chips need a power-of-two fence region when tiling */
1553 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1554 gtt_size = 1024*1024;
92b88aeb 1555 else
e28f8711 1556 gtt_size = 512*1024;
92b88aeb 1557
e28f8711
CW
1558 while (gtt_size < size)
1559 gtt_size <<= 1;
92b88aeb 1560
e28f8711 1561 return gtt_size;
92b88aeb
CW
1562}
1563
de151cf6
JB
1564/**
1565 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1566 * @obj: object to check
1567 *
1568 * Return the required GTT alignment for an object, taking into account
5e783301 1569 * potential fence register mapping.
de151cf6 1570 */
d865110c
ID
1571uint32_t
1572i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1573 int tiling_mode, bool fenced)
de151cf6 1574{
de151cf6
JB
1575 /*
1576 * Minimum alignment is 4k (GTT page size), but might be greater
1577 * if a fence register is needed for the object.
1578 */
d865110c 1579 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1580 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1581 return 4096;
1582
a00b10c3
CW
1583 /*
1584 * Previous chips need to be aligned to the size of the smallest
1585 * fence register that can contain the object.
1586 */
e28f8711 1587 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1588}
1589
d8cb5086
CW
1590static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1591{
1592 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1593 int ret;
1594
0de23977 1595 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1596 return 0;
1597
da494d7c
DV
1598 dev_priv->mm.shrinker_no_lock_stealing = true;
1599
d8cb5086
CW
1600 ret = drm_gem_create_mmap_offset(&obj->base);
1601 if (ret != -ENOSPC)
da494d7c 1602 goto out;
d8cb5086
CW
1603
1604 /* Badly fragmented mmap space? The only way we can recover
1605 * space is by destroying unwanted objects. We can't randomly release
1606 * mmap_offsets as userspace expects them to be persistent for the
1607 * lifetime of the objects. The closest we can is to release the
1608 * offsets on purgeable objects by truncating it and marking it purged,
1609 * which prevents userspace from ever using that object again.
1610 */
1611 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1612 ret = drm_gem_create_mmap_offset(&obj->base);
1613 if (ret != -ENOSPC)
da494d7c 1614 goto out;
d8cb5086
CW
1615
1616 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1617 ret = drm_gem_create_mmap_offset(&obj->base);
1618out:
1619 dev_priv->mm.shrinker_no_lock_stealing = false;
1620
1621 return ret;
d8cb5086
CW
1622}
1623
1624static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1625{
d8cb5086
CW
1626 drm_gem_free_mmap_offset(&obj->base);
1627}
1628
de151cf6 1629int
ff72145b
DA
1630i915_gem_mmap_gtt(struct drm_file *file,
1631 struct drm_device *dev,
1632 uint32_t handle,
1633 uint64_t *offset)
de151cf6 1634{
da761a6e 1635 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1636 struct drm_i915_gem_object *obj;
de151cf6
JB
1637 int ret;
1638
76c1dec1 1639 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1640 if (ret)
76c1dec1 1641 return ret;
de151cf6 1642
ff72145b 1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1644 if (&obj->base == NULL) {
1d7cfea1
CW
1645 ret = -ENOENT;
1646 goto unlock;
1647 }
de151cf6 1648
5d4545ae 1649 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1650 ret = -E2BIG;
ff56b0bc 1651 goto out;
da761a6e
CW
1652 }
1653
05394f39 1654 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1655 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1656 ret = -EFAULT;
1d7cfea1 1657 goto out;
ab18282d
CW
1658 }
1659
d8cb5086
CW
1660 ret = i915_gem_object_create_mmap_offset(obj);
1661 if (ret)
1662 goto out;
de151cf6 1663
0de23977 1664 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1665
1d7cfea1 1666out:
05394f39 1667 drm_gem_object_unreference(&obj->base);
1d7cfea1 1668unlock:
de151cf6 1669 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1670 return ret;
de151cf6
JB
1671}
1672
ff72145b
DA
1673/**
1674 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1675 * @dev: DRM device
1676 * @data: GTT mapping ioctl data
1677 * @file: GEM object info
1678 *
1679 * Simply returns the fake offset to userspace so it can mmap it.
1680 * The mmap call will end up in drm_gem_mmap(), which will set things
1681 * up so we can get faults in the handler above.
1682 *
1683 * The fault handler will take care of binding the object into the GTT
1684 * (since it may have been evicted to make room for something), allocating
1685 * a fence register, and mapping the appropriate aperture address into
1686 * userspace.
1687 */
1688int
1689i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1690 struct drm_file *file)
1691{
1692 struct drm_i915_gem_mmap_gtt *args = data;
1693
ff72145b
DA
1694 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1695}
1696
5537252b
CW
1697static inline int
1698i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1699{
1700 return obj->madv == I915_MADV_DONTNEED;
1701}
1702
225067ee
DV
1703/* Immediately discard the backing storage */
1704static void
1705i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1706{
4d6294bf 1707 i915_gem_object_free_mmap_offset(obj);
1286ff73 1708
4d6294bf
CW
1709 if (obj->base.filp == NULL)
1710 return;
e5281ccd 1711
225067ee
DV
1712 /* Our goal here is to return as much of the memory as
1713 * is possible back to the system as we are called from OOM.
1714 * To do this we must instruct the shmfs to drop all of its
1715 * backing pages, *now*.
1716 */
5537252b 1717 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1718 obj->madv = __I915_MADV_PURGED;
1719}
e5281ccd 1720
5537252b
CW
1721/* Try to discard unwanted pages */
1722static void
1723i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1724{
5537252b
CW
1725 struct address_space *mapping;
1726
1727 switch (obj->madv) {
1728 case I915_MADV_DONTNEED:
1729 i915_gem_object_truncate(obj);
1730 case __I915_MADV_PURGED:
1731 return;
1732 }
1733
1734 if (obj->base.filp == NULL)
1735 return;
1736
1737 mapping = file_inode(obj->base.filp)->i_mapping,
1738 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1739}
1740
5cdf5881 1741static void
05394f39 1742i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1743{
90797e6d
ID
1744 struct sg_page_iter sg_iter;
1745 int ret;
1286ff73 1746
05394f39 1747 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1748
6c085a72
CW
1749 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1750 if (ret) {
1751 /* In the event of a disaster, abandon all caches and
1752 * hope for the best.
1753 */
1754 WARN_ON(ret != -EIO);
2c22569b 1755 i915_gem_clflush_object(obj, true);
6c085a72
CW
1756 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1757 }
1758
6dacfd2f 1759 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1760 i915_gem_object_save_bit_17_swizzle(obj);
1761
05394f39
CW
1762 if (obj->madv == I915_MADV_DONTNEED)
1763 obj->dirty = 0;
3ef94daa 1764
90797e6d 1765 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1766 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1767
05394f39 1768 if (obj->dirty)
9da3da66 1769 set_page_dirty(page);
3ef94daa 1770
05394f39 1771 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1772 mark_page_accessed(page);
3ef94daa 1773
9da3da66 1774 page_cache_release(page);
3ef94daa 1775 }
05394f39 1776 obj->dirty = 0;
673a394b 1777
9da3da66
CW
1778 sg_free_table(obj->pages);
1779 kfree(obj->pages);
37e680a1 1780}
6c085a72 1781
dd624afd 1782int
37e680a1
CW
1783i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1784{
1785 const struct drm_i915_gem_object_ops *ops = obj->ops;
1786
2f745ad3 1787 if (obj->pages == NULL)
37e680a1
CW
1788 return 0;
1789
a5570178
CW
1790 if (obj->pages_pin_count)
1791 return -EBUSY;
1792
9843877d 1793 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1794
a2165e31
CW
1795 /* ->put_pages might need to allocate memory for the bit17 swizzle
1796 * array, hence protect them from being reaped by removing them from gtt
1797 * lists early. */
35c20a60 1798 list_del(&obj->global_list);
a2165e31 1799
37e680a1 1800 ops->put_pages(obj);
05394f39 1801 obj->pages = NULL;
37e680a1 1802
5537252b 1803 i915_gem_object_invalidate(obj);
6c085a72
CW
1804
1805 return 0;
1806}
1807
d9973b43 1808static unsigned long
93927ca5
DV
1809__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1810 bool purgeable_only)
6c085a72 1811{
c8725f3d
CW
1812 struct list_head still_in_list;
1813 struct drm_i915_gem_object *obj;
d9973b43 1814 unsigned long count = 0;
6c085a72 1815
57094f82 1816 /*
c8725f3d 1817 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1818 * (due to retiring requests) we have to strictly process only
1819 * one element of the list at the time, and recheck the list
1820 * on every iteration.
c8725f3d
CW
1821 *
1822 * In particular, we must hold a reference whilst removing the
1823 * object as we may end up waiting for and/or retiring the objects.
1824 * This might release the final reference (held by the active list)
1825 * and result in the object being freed from under us. This is
1826 * similar to the precautions the eviction code must take whilst
1827 * removing objects.
1828 *
1829 * Also note that although these lists do not hold a reference to
1830 * the object we can safely grab one here: The final object
1831 * unreferencing and the bound_list are both protected by the
1832 * dev->struct_mutex and so we won't ever be able to observe an
1833 * object on the bound_list with a reference count equals 0.
57094f82 1834 */
c8725f3d
CW
1835 INIT_LIST_HEAD(&still_in_list);
1836 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1837 obj = list_first_entry(&dev_priv->mm.unbound_list,
1838 typeof(*obj), global_list);
1839 list_move_tail(&obj->global_list, &still_in_list);
1840
1841 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1842 continue;
1843
1844 drm_gem_object_reference(&obj->base);
1845
1846 if (i915_gem_object_put_pages(obj) == 0)
1847 count += obj->base.size >> PAGE_SHIFT;
1848
1849 drm_gem_object_unreference(&obj->base);
1850 }
1851 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1852
1853 INIT_LIST_HEAD(&still_in_list);
57094f82 1854 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1855 struct i915_vma *vma, *v;
80dcfdbd 1856
57094f82
CW
1857 obj = list_first_entry(&dev_priv->mm.bound_list,
1858 typeof(*obj), global_list);
c8725f3d 1859 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1860
80dcfdbd
BW
1861 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1862 continue;
1863
57094f82
CW
1864 drm_gem_object_reference(&obj->base);
1865
07fe0b12
BW
1866 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1867 if (i915_vma_unbind(vma))
1868 break;
80dcfdbd 1869
57094f82 1870 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1871 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1872
1873 drm_gem_object_unreference(&obj->base);
6c085a72 1874 }
c8725f3d 1875 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
1876
1877 return count;
1878}
1879
d9973b43 1880static unsigned long
93927ca5
DV
1881i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1882{
1883 return __i915_gem_shrink(dev_priv, target, true);
1884}
1885
d9973b43 1886static unsigned long
6c085a72
CW
1887i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1888{
6c085a72 1889 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 1890 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
1891}
1892
37e680a1 1893static int
6c085a72 1894i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1895{
6c085a72 1896 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1897 int page_count, i;
1898 struct address_space *mapping;
9da3da66
CW
1899 struct sg_table *st;
1900 struct scatterlist *sg;
90797e6d 1901 struct sg_page_iter sg_iter;
e5281ccd 1902 struct page *page;
90797e6d 1903 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1904 gfp_t gfp;
e5281ccd 1905
6c085a72
CW
1906 /* Assert that the object is not currently in any GPU domain. As it
1907 * wasn't in the GTT, there shouldn't be any way it could have been in
1908 * a GPU cache
1909 */
1910 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1911 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1912
9da3da66
CW
1913 st = kmalloc(sizeof(*st), GFP_KERNEL);
1914 if (st == NULL)
1915 return -ENOMEM;
1916
05394f39 1917 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1918 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1919 kfree(st);
e5281ccd 1920 return -ENOMEM;
9da3da66 1921 }
e5281ccd 1922
9da3da66
CW
1923 /* Get the list of pages out of our struct file. They'll be pinned
1924 * at this point until we release them.
1925 *
1926 * Fail silently without starting the shrinker
1927 */
496ad9aa 1928 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1929 gfp = mapping_gfp_mask(mapping);
caf49191 1930 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1931 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1932 sg = st->sgl;
1933 st->nents = 0;
1934 for (i = 0; i < page_count; i++) {
6c085a72
CW
1935 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1936 if (IS_ERR(page)) {
1937 i915_gem_purge(dev_priv, page_count);
1938 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1939 }
1940 if (IS_ERR(page)) {
1941 /* We've tried hard to allocate the memory by reaping
1942 * our own buffer, now let the real VM do its job and
1943 * go down in flames if truly OOM.
1944 */
caf49191 1945 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1946 gfp |= __GFP_IO | __GFP_WAIT;
1947
1948 i915_gem_shrink_all(dev_priv);
1949 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1950 if (IS_ERR(page))
1951 goto err_pages;
1952
caf49191 1953 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1954 gfp &= ~(__GFP_IO | __GFP_WAIT);
1955 }
426729dc
KRW
1956#ifdef CONFIG_SWIOTLB
1957 if (swiotlb_nr_tbl()) {
1958 st->nents++;
1959 sg_set_page(sg, page, PAGE_SIZE, 0);
1960 sg = sg_next(sg);
1961 continue;
1962 }
1963#endif
90797e6d
ID
1964 if (!i || page_to_pfn(page) != last_pfn + 1) {
1965 if (i)
1966 sg = sg_next(sg);
1967 st->nents++;
1968 sg_set_page(sg, page, PAGE_SIZE, 0);
1969 } else {
1970 sg->length += PAGE_SIZE;
1971 }
1972 last_pfn = page_to_pfn(page);
3bbbe706
DV
1973
1974 /* Check that the i965g/gm workaround works. */
1975 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1976 }
426729dc
KRW
1977#ifdef CONFIG_SWIOTLB
1978 if (!swiotlb_nr_tbl())
1979#endif
1980 sg_mark_end(sg);
74ce6b6c
CW
1981 obj->pages = st;
1982
6dacfd2f 1983 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1984 i915_gem_object_do_bit_17_swizzle(obj);
1985
1986 return 0;
1987
1988err_pages:
90797e6d
ID
1989 sg_mark_end(sg);
1990 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1991 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1992 sg_free_table(st);
1993 kfree(st);
0820baf3
CW
1994
1995 /* shmemfs first checks if there is enough memory to allocate the page
1996 * and reports ENOSPC should there be insufficient, along with the usual
1997 * ENOMEM for a genuine allocation failure.
1998 *
1999 * We use ENOSPC in our driver to mean that we have run out of aperture
2000 * space and so want to translate the error from shmemfs back to our
2001 * usual understanding of ENOMEM.
2002 */
2003 if (PTR_ERR(page) == -ENOSPC)
2004 return -ENOMEM;
2005 else
2006 return PTR_ERR(page);
673a394b
EA
2007}
2008
37e680a1
CW
2009/* Ensure that the associated pages are gathered from the backing storage
2010 * and pinned into our object. i915_gem_object_get_pages() may be called
2011 * multiple times before they are released by a single call to
2012 * i915_gem_object_put_pages() - once the pages are no longer referenced
2013 * either as a result of memory pressure (reaping pages under the shrinker)
2014 * or as the object is itself released.
2015 */
2016int
2017i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2018{
2019 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2020 const struct drm_i915_gem_object_ops *ops = obj->ops;
2021 int ret;
2022
2f745ad3 2023 if (obj->pages)
37e680a1
CW
2024 return 0;
2025
43e28f09 2026 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2027 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2028 return -EFAULT;
43e28f09
CW
2029 }
2030
a5570178
CW
2031 BUG_ON(obj->pages_pin_count);
2032
37e680a1
CW
2033 ret = ops->get_pages(obj);
2034 if (ret)
2035 return ret;
2036
35c20a60 2037 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2038 return 0;
673a394b
EA
2039}
2040
e2d05a8b 2041static void
05394f39 2042i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2043 struct intel_engine_cs *ring)
673a394b 2044{
05394f39 2045 struct drm_device *dev = obj->base.dev;
69dc4987 2046 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2047 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2048
852835f3 2049 BUG_ON(ring == NULL);
02978ff5
CW
2050 if (obj->ring != ring && obj->last_write_seqno) {
2051 /* Keep the seqno relative to the current ring */
2052 obj->last_write_seqno = seqno;
2053 }
05394f39 2054 obj->ring = ring;
673a394b
EA
2055
2056 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2057 if (!obj->active) {
2058 drm_gem_object_reference(&obj->base);
2059 obj->active = 1;
673a394b 2060 }
e35a41de 2061
05394f39 2062 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2063
0201f1ec 2064 obj->last_read_seqno = seqno;
caea7476 2065
7dd49065 2066 if (obj->fenced_gpu_access) {
caea7476 2067 obj->last_fenced_seqno = seqno;
caea7476 2068
7dd49065
CW
2069 /* Bump MRU to take account of the delayed flush */
2070 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2071 struct drm_i915_fence_reg *reg;
2072
2073 reg = &dev_priv->fence_regs[obj->fence_reg];
2074 list_move_tail(&reg->lru_list,
2075 &dev_priv->mm.fence_list);
2076 }
caea7476
CW
2077 }
2078}
2079
e2d05a8b 2080void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2081 struct intel_engine_cs *ring)
e2d05a8b
BW
2082{
2083 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2084 return i915_gem_object_move_to_active(vma->obj, ring);
2085}
2086
caea7476 2087static void
caea7476 2088i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2089{
ca191b13 2090 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2091 struct i915_address_space *vm;
2092 struct i915_vma *vma;
ce44b0ea 2093
65ce3027 2094 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2095 BUG_ON(!obj->active);
caea7476 2096
feb822cf
BW
2097 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2098 vma = i915_gem_obj_to_vma(obj, vm);
2099 if (vma && !list_empty(&vma->mm_list))
2100 list_move_tail(&vma->mm_list, &vm->inactive_list);
2101 }
caea7476 2102
65ce3027 2103 list_del_init(&obj->ring_list);
caea7476
CW
2104 obj->ring = NULL;
2105
65ce3027
CW
2106 obj->last_read_seqno = 0;
2107 obj->last_write_seqno = 0;
2108 obj->base.write_domain = 0;
2109
2110 obj->last_fenced_seqno = 0;
caea7476 2111 obj->fenced_gpu_access = false;
caea7476
CW
2112
2113 obj->active = 0;
2114 drm_gem_object_unreference(&obj->base);
2115
2116 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2117}
673a394b 2118
c8725f3d
CW
2119static void
2120i915_gem_object_retire(struct drm_i915_gem_object *obj)
2121{
a4872ba6 2122 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2123
2124 if (ring == NULL)
2125 return;
2126
2127 if (i915_seqno_passed(ring->get_seqno(ring, true),
2128 obj->last_read_seqno))
2129 i915_gem_object_move_to_inactive(obj);
2130}
2131
9d773091 2132static int
fca26bb4 2133i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2134{
9d773091 2135 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2136 struct intel_engine_cs *ring;
9d773091 2137 int ret, i, j;
53d227f2 2138
107f27a5 2139 /* Carefully retire all requests without writing to the rings */
9d773091 2140 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2141 ret = intel_ring_idle(ring);
2142 if (ret)
2143 return ret;
9d773091 2144 }
9d773091 2145 i915_gem_retire_requests(dev);
107f27a5
CW
2146
2147 /* Finally reset hw state */
9d773091 2148 for_each_ring(ring, dev_priv, i) {
fca26bb4 2149 intel_ring_init_seqno(ring, seqno);
498d2ac1 2150
ebc348b2
BW
2151 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2152 ring->semaphore.sync_seqno[j] = 0;
9d773091 2153 }
53d227f2 2154
9d773091 2155 return 0;
53d227f2
DV
2156}
2157
fca26bb4
MK
2158int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2159{
2160 struct drm_i915_private *dev_priv = dev->dev_private;
2161 int ret;
2162
2163 if (seqno == 0)
2164 return -EINVAL;
2165
2166 /* HWS page needs to be set less than what we
2167 * will inject to ring
2168 */
2169 ret = i915_gem_init_seqno(dev, seqno - 1);
2170 if (ret)
2171 return ret;
2172
2173 /* Carefully set the last_seqno value so that wrap
2174 * detection still works
2175 */
2176 dev_priv->next_seqno = seqno;
2177 dev_priv->last_seqno = seqno - 1;
2178 if (dev_priv->last_seqno == 0)
2179 dev_priv->last_seqno--;
2180
2181 return 0;
2182}
2183
9d773091
CW
2184int
2185i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2186{
9d773091
CW
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188
2189 /* reserve 0 for non-seqno */
2190 if (dev_priv->next_seqno == 0) {
fca26bb4 2191 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2192 if (ret)
2193 return ret;
53d227f2 2194
9d773091
CW
2195 dev_priv->next_seqno = 1;
2196 }
53d227f2 2197
f72b3435 2198 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2199 return 0;
53d227f2
DV
2200}
2201
a4872ba6 2202int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2203 struct drm_file *file,
7d736f4f 2204 struct drm_i915_gem_object *obj,
0025c077 2205 u32 *out_seqno)
673a394b 2206{
3e31c6c0 2207 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2208 struct drm_i915_gem_request *request;
7d736f4f 2209 u32 request_ring_position, request_start;
3cce469c
CW
2210 int ret;
2211
7d736f4f 2212 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2213 /*
2214 * Emit any outstanding flushes - execbuf can fail to emit the flush
2215 * after having emitted the batchbuffer command. Hence we need to fix
2216 * things up similar to emitting the lazy request. The difference here
2217 * is that the flush _must_ happen before the next request, no matter
2218 * what.
2219 */
a7b9761d
CW
2220 ret = intel_ring_flush_all_caches(ring);
2221 if (ret)
2222 return ret;
cc889e0f 2223
3c0e234c
CW
2224 request = ring->preallocated_lazy_request;
2225 if (WARN_ON(request == NULL))
acb868d3 2226 return -ENOMEM;
cc889e0f 2227
a71d8d94
CW
2228 /* Record the position of the start of the request so that
2229 * should we detect the updated seqno part-way through the
2230 * GPU processing the request, we never over-estimate the
2231 * position of the head.
2232 */
2233 request_ring_position = intel_ring_get_tail(ring);
2234
9d773091 2235 ret = ring->add_request(ring);
3c0e234c 2236 if (ret)
3bb73aba 2237 return ret;
673a394b 2238
9d773091 2239 request->seqno = intel_ring_get_seqno(ring);
852835f3 2240 request->ring = ring;
7d736f4f 2241 request->head = request_start;
a71d8d94 2242 request->tail = request_ring_position;
7d736f4f
MK
2243
2244 /* Whilst this request exists, batch_obj will be on the
2245 * active_list, and so will hold the active reference. Only when this
2246 * request is retired will the the batch_obj be moved onto the
2247 * inactive_list and lose its active reference. Hence we do not need
2248 * to explicitly hold another reference here.
2249 */
9a7e0c2a 2250 request->batch_obj = obj;
0e50e96b 2251
9a7e0c2a
CW
2252 /* Hold a reference to the current context so that we can inspect
2253 * it later in case a hangcheck error event fires.
2254 */
2255 request->ctx = ring->last_context;
0e50e96b
MK
2256 if (request->ctx)
2257 i915_gem_context_reference(request->ctx);
2258
673a394b 2259 request->emitted_jiffies = jiffies;
852835f3 2260 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2261 request->file_priv = NULL;
852835f3 2262
db53a302
CW
2263 if (file) {
2264 struct drm_i915_file_private *file_priv = file->driver_priv;
2265
1c25595f 2266 spin_lock(&file_priv->mm.lock);
f787a5f5 2267 request->file_priv = file_priv;
b962442e 2268 list_add_tail(&request->client_list,
f787a5f5 2269 &file_priv->mm.request_list);
1c25595f 2270 spin_unlock(&file_priv->mm.lock);
b962442e 2271 }
673a394b 2272
9d773091 2273 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2274 ring->outstanding_lazy_seqno = 0;
3c0e234c 2275 ring->preallocated_lazy_request = NULL;
db53a302 2276
db1b76ca 2277 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2278 i915_queue_hangcheck(ring->dev);
2279
f62a0076
CW
2280 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2281 queue_delayed_work(dev_priv->wq,
2282 &dev_priv->mm.retire_work,
2283 round_jiffies_up_relative(HZ));
2284 intel_mark_busy(dev_priv->dev);
f65d9421 2285 }
cc889e0f 2286
acb868d3 2287 if (out_seqno)
9d773091 2288 *out_seqno = request->seqno;
3cce469c 2289 return 0;
673a394b
EA
2290}
2291
f787a5f5
CW
2292static inline void
2293i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2294{
1c25595f 2295 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2296
1c25595f
CW
2297 if (!file_priv)
2298 return;
1c5d22f7 2299
1c25595f 2300 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2301 list_del(&request->client_list);
2302 request->file_priv = NULL;
1c25595f 2303 spin_unlock(&file_priv->mm.lock);
673a394b 2304}
673a394b 2305
939fd762 2306static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2307 const struct intel_context *ctx)
be62acb4 2308{
44e2c070 2309 unsigned long elapsed;
be62acb4 2310
44e2c070
MK
2311 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2312
2313 if (ctx->hang_stats.banned)
be62acb4
MK
2314 return true;
2315
2316 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2317 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2318 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2319 return true;
88b4aa87
MK
2320 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2321 if (i915_stop_ring_allow_warn(dev_priv))
2322 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2323 return true;
3fac8978 2324 }
be62acb4
MK
2325 }
2326
2327 return false;
2328}
2329
939fd762 2330static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2331 struct intel_context *ctx,
b6b0fac0 2332 const bool guilty)
aa60c664 2333{
44e2c070
MK
2334 struct i915_ctx_hang_stats *hs;
2335
2336 if (WARN_ON(!ctx))
2337 return;
aa60c664 2338
44e2c070
MK
2339 hs = &ctx->hang_stats;
2340
2341 if (guilty) {
939fd762 2342 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2343 hs->batch_active++;
2344 hs->guilty_ts = get_seconds();
2345 } else {
2346 hs->batch_pending++;
aa60c664
MK
2347 }
2348}
2349
0e50e96b
MK
2350static void i915_gem_free_request(struct drm_i915_gem_request *request)
2351{
2352 list_del(&request->list);
2353 i915_gem_request_remove_from_client(request);
2354
2355 if (request->ctx)
2356 i915_gem_context_unreference(request->ctx);
2357
2358 kfree(request);
2359}
2360
8d9fc7fd 2361struct drm_i915_gem_request *
a4872ba6 2362i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2363{
4db080f9 2364 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2365 u32 completed_seqno;
2366
2367 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2368
2369 list_for_each_entry(request, &ring->request_list, list) {
2370 if (i915_seqno_passed(completed_seqno, request->seqno))
2371 continue;
aa60c664 2372
b6b0fac0 2373 return request;
4db080f9 2374 }
b6b0fac0
MK
2375
2376 return NULL;
2377}
2378
2379static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2380 struct intel_engine_cs *ring)
b6b0fac0
MK
2381{
2382 struct drm_i915_gem_request *request;
2383 bool ring_hung;
2384
8d9fc7fd 2385 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2386
2387 if (request == NULL)
2388 return;
2389
2390 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2391
939fd762 2392 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2393
2394 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2395 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2396}
aa60c664 2397
4db080f9 2398static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2399 struct intel_engine_cs *ring)
4db080f9 2400{
dfaae392 2401 while (!list_empty(&ring->active_list)) {
05394f39 2402 struct drm_i915_gem_object *obj;
9375e446 2403
05394f39
CW
2404 obj = list_first_entry(&ring->active_list,
2405 struct drm_i915_gem_object,
2406 ring_list);
9375e446 2407
05394f39 2408 i915_gem_object_move_to_inactive(obj);
673a394b 2409 }
1d62beea
BW
2410
2411 /*
2412 * We must free the requests after all the corresponding objects have
2413 * been moved off active lists. Which is the same order as the normal
2414 * retire_requests function does. This is important if object hold
2415 * implicit references on things like e.g. ppgtt address spaces through
2416 * the request.
2417 */
2418 while (!list_empty(&ring->request_list)) {
2419 struct drm_i915_gem_request *request;
2420
2421 request = list_first_entry(&ring->request_list,
2422 struct drm_i915_gem_request,
2423 list);
2424
2425 i915_gem_free_request(request);
2426 }
e3efda49
CW
2427
2428 /* These may not have been flush before the reset, do so now */
2429 kfree(ring->preallocated_lazy_request);
2430 ring->preallocated_lazy_request = NULL;
2431 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2432}
2433
19b2dbde 2434void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2435{
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 int i;
2438
4b9de737 2439 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2440 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2441
94a335db
DV
2442 /*
2443 * Commit delayed tiling changes if we have an object still
2444 * attached to the fence, otherwise just clear the fence.
2445 */
2446 if (reg->obj) {
2447 i915_gem_object_update_fence(reg->obj, reg,
2448 reg->obj->tiling_mode);
2449 } else {
2450 i915_gem_write_fence(dev, i, NULL);
2451 }
312817a3
CW
2452 }
2453}
2454
069efc1d 2455void i915_gem_reset(struct drm_device *dev)
673a394b 2456{
77f01230 2457 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2458 struct intel_engine_cs *ring;
1ec14ad3 2459 int i;
673a394b 2460
4db080f9
CW
2461 /*
2462 * Before we free the objects from the requests, we need to inspect
2463 * them for finding the guilty party. As the requests only borrow
2464 * their reference to the objects, the inspection must be done first.
2465 */
2466 for_each_ring(ring, dev_priv, i)
2467 i915_gem_reset_ring_status(dev_priv, ring);
2468
b4519513 2469 for_each_ring(ring, dev_priv, i)
4db080f9 2470 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2471
acce9ffa
BW
2472 i915_gem_context_reset(dev);
2473
19b2dbde 2474 i915_gem_restore_fences(dev);
673a394b
EA
2475}
2476
2477/**
2478 * This function clears the request list as sequence numbers are passed.
2479 */
1cf0ba14 2480void
a4872ba6 2481i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2482{
673a394b
EA
2483 uint32_t seqno;
2484
db53a302 2485 if (list_empty(&ring->request_list))
6c0594a3
KW
2486 return;
2487
db53a302 2488 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2489
b2eadbc8 2490 seqno = ring->get_seqno(ring, true);
1ec14ad3 2491
e9103038
CW
2492 /* Move any buffers on the active list that are no longer referenced
2493 * by the ringbuffer to the flushing/inactive lists as appropriate,
2494 * before we free the context associated with the requests.
2495 */
2496 while (!list_empty(&ring->active_list)) {
2497 struct drm_i915_gem_object *obj;
2498
2499 obj = list_first_entry(&ring->active_list,
2500 struct drm_i915_gem_object,
2501 ring_list);
2502
2503 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2504 break;
2505
2506 i915_gem_object_move_to_inactive(obj);
2507 }
2508
2509
852835f3 2510 while (!list_empty(&ring->request_list)) {
673a394b 2511 struct drm_i915_gem_request *request;
673a394b 2512
852835f3 2513 request = list_first_entry(&ring->request_list,
673a394b
EA
2514 struct drm_i915_gem_request,
2515 list);
673a394b 2516
dfaae392 2517 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2518 break;
2519
db53a302 2520 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2521 /* We know the GPU must have read the request to have
2522 * sent us the seqno + interrupt, so use the position
2523 * of tail of the request to update the last known position
2524 * of the GPU head.
2525 */
ee1b1e5e 2526 ring->buffer->last_retired_head = request->tail;
b84d5f0c 2527
0e50e96b 2528 i915_gem_free_request(request);
b84d5f0c 2529 }
673a394b 2530
db53a302
CW
2531 if (unlikely(ring->trace_irq_seqno &&
2532 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2533 ring->irq_put(ring);
db53a302 2534 ring->trace_irq_seqno = 0;
9d34e5db 2535 }
23bc5982 2536
db53a302 2537 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2538}
2539
b29c19b6 2540bool
b09a1fec
CW
2541i915_gem_retire_requests(struct drm_device *dev)
2542{
3e31c6c0 2543 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2544 struct intel_engine_cs *ring;
b29c19b6 2545 bool idle = true;
1ec14ad3 2546 int i;
b09a1fec 2547
b29c19b6 2548 for_each_ring(ring, dev_priv, i) {
b4519513 2549 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2550 idle &= list_empty(&ring->request_list);
2551 }
2552
2553 if (idle)
2554 mod_delayed_work(dev_priv->wq,
2555 &dev_priv->mm.idle_work,
2556 msecs_to_jiffies(100));
2557
2558 return idle;
b09a1fec
CW
2559}
2560
75ef9da2 2561static void
673a394b
EA
2562i915_gem_retire_work_handler(struct work_struct *work)
2563{
b29c19b6
CW
2564 struct drm_i915_private *dev_priv =
2565 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2566 struct drm_device *dev = dev_priv->dev;
0a58705b 2567 bool idle;
673a394b 2568
891b48cf 2569 /* Come back later if the device is busy... */
b29c19b6
CW
2570 idle = false;
2571 if (mutex_trylock(&dev->struct_mutex)) {
2572 idle = i915_gem_retire_requests(dev);
2573 mutex_unlock(&dev->struct_mutex);
673a394b 2574 }
b29c19b6 2575 if (!idle)
bcb45086
CW
2576 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2577 round_jiffies_up_relative(HZ));
b29c19b6 2578}
0a58705b 2579
b29c19b6
CW
2580static void
2581i915_gem_idle_work_handler(struct work_struct *work)
2582{
2583 struct drm_i915_private *dev_priv =
2584 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2585
2586 intel_mark_idle(dev_priv->dev);
673a394b
EA
2587}
2588
30dfebf3
DV
2589/**
2590 * Ensures that an object will eventually get non-busy by flushing any required
2591 * write domains, emitting any outstanding lazy request and retiring and
2592 * completed requests.
2593 */
2594static int
2595i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2596{
2597 int ret;
2598
2599 if (obj->active) {
0201f1ec 2600 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2601 if (ret)
2602 return ret;
2603
30dfebf3
DV
2604 i915_gem_retire_requests_ring(obj->ring);
2605 }
2606
2607 return 0;
2608}
2609
23ba4fd0
BW
2610/**
2611 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2612 * @DRM_IOCTL_ARGS: standard ioctl arguments
2613 *
2614 * Returns 0 if successful, else an error is returned with the remaining time in
2615 * the timeout parameter.
2616 * -ETIME: object is still busy after timeout
2617 * -ERESTARTSYS: signal interrupted the wait
2618 * -ENONENT: object doesn't exist
2619 * Also possible, but rare:
2620 * -EAGAIN: GPU wedged
2621 * -ENOMEM: damn
2622 * -ENODEV: Internal IRQ fail
2623 * -E?: The add request failed
2624 *
2625 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2626 * non-zero timeout parameter the wait ioctl will wait for the given number of
2627 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2628 * without holding struct_mutex the object may become re-busied before this
2629 * function completes. A similar but shorter * race condition exists in the busy
2630 * ioctl
2631 */
2632int
2633i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2634{
3e31c6c0 2635 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2636 struct drm_i915_gem_wait *args = data;
2637 struct drm_i915_gem_object *obj;
a4872ba6 2638 struct intel_engine_cs *ring = NULL;
eac1f14f 2639 struct timespec timeout_stack, *timeout = NULL;
f69061be 2640 unsigned reset_counter;
23ba4fd0
BW
2641 u32 seqno = 0;
2642 int ret = 0;
2643
eac1f14f
BW
2644 if (args->timeout_ns >= 0) {
2645 timeout_stack = ns_to_timespec(args->timeout_ns);
2646 timeout = &timeout_stack;
2647 }
23ba4fd0
BW
2648
2649 ret = i915_mutex_lock_interruptible(dev);
2650 if (ret)
2651 return ret;
2652
2653 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2654 if (&obj->base == NULL) {
2655 mutex_unlock(&dev->struct_mutex);
2656 return -ENOENT;
2657 }
2658
30dfebf3
DV
2659 /* Need to make sure the object gets inactive eventually. */
2660 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2661 if (ret)
2662 goto out;
2663
2664 if (obj->active) {
0201f1ec 2665 seqno = obj->last_read_seqno;
23ba4fd0
BW
2666 ring = obj->ring;
2667 }
2668
2669 if (seqno == 0)
2670 goto out;
2671
23ba4fd0
BW
2672 /* Do this after OLR check to make sure we make forward progress polling
2673 * on this IOCTL with a 0 timeout (like busy ioctl)
2674 */
2675 if (!args->timeout_ns) {
2676 ret = -ETIME;
2677 goto out;
2678 }
2679
2680 drm_gem_object_unreference(&obj->base);
f69061be 2681 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2682 mutex_unlock(&dev->struct_mutex);
2683
b29c19b6 2684 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2685 if (timeout)
eac1f14f 2686 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2687 return ret;
2688
2689out:
2690 drm_gem_object_unreference(&obj->base);
2691 mutex_unlock(&dev->struct_mutex);
2692 return ret;
2693}
2694
5816d648
BW
2695/**
2696 * i915_gem_object_sync - sync an object to a ring.
2697 *
2698 * @obj: object which may be in use on another ring.
2699 * @to: ring we wish to use the object on. May be NULL.
2700 *
2701 * This code is meant to abstract object synchronization with the GPU.
2702 * Calling with NULL implies synchronizing the object with the CPU
2703 * rather than a particular GPU ring.
2704 *
2705 * Returns 0 if successful, else propagates up the lower layer error.
2706 */
2911a35b
BW
2707int
2708i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2709 struct intel_engine_cs *to)
2911a35b 2710{
a4872ba6 2711 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2712 u32 seqno;
2713 int ret, idx;
2714
2715 if (from == NULL || to == from)
2716 return 0;
2717
5816d648 2718 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2719 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2720
2721 idx = intel_ring_sync_index(from, to);
2722
0201f1ec 2723 seqno = obj->last_read_seqno;
ebc348b2 2724 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2725 return 0;
2726
b4aca010
BW
2727 ret = i915_gem_check_olr(obj->ring, seqno);
2728 if (ret)
2729 return ret;
2911a35b 2730
b52b89da 2731 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2732 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2733 if (!ret)
7b01e260
MK
2734 /* We use last_read_seqno because sync_to()
2735 * might have just caused seqno wrap under
2736 * the radar.
2737 */
ebc348b2 2738 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2739
e3a5a225 2740 return ret;
2911a35b
BW
2741}
2742
b5ffc9bc
CW
2743static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2744{
2745 u32 old_write_domain, old_read_domains;
2746
b5ffc9bc
CW
2747 /* Force a pagefault for domain tracking on next user access */
2748 i915_gem_release_mmap(obj);
2749
b97c3d9c
KP
2750 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2751 return;
2752
97c809fd
CW
2753 /* Wait for any direct GTT access to complete */
2754 mb();
2755
b5ffc9bc
CW
2756 old_read_domains = obj->base.read_domains;
2757 old_write_domain = obj->base.write_domain;
2758
2759 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2760 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2761
2762 trace_i915_gem_object_change_domain(obj,
2763 old_read_domains,
2764 old_write_domain);
2765}
2766
07fe0b12 2767int i915_vma_unbind(struct i915_vma *vma)
673a394b 2768{
07fe0b12 2769 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2770 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2771 int ret;
673a394b 2772
07fe0b12 2773 if (list_empty(&vma->vma_link))
673a394b
EA
2774 return 0;
2775
0ff501cb
DV
2776 if (!drm_mm_node_allocated(&vma->node)) {
2777 i915_gem_vma_destroy(vma);
0ff501cb
DV
2778 return 0;
2779 }
433544bd 2780
d7f46fc4 2781 if (vma->pin_count)
31d8d651 2782 return -EBUSY;
673a394b 2783
c4670ad0
CW
2784 BUG_ON(obj->pages == NULL);
2785
a8198eea 2786 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2787 if (ret)
a8198eea
CW
2788 return ret;
2789 /* Continue on if we fail due to EIO, the GPU is hung so we
2790 * should be safe and we need to cleanup or else we might
2791 * cause memory corruption through use-after-free.
2792 */
2793
8b1bc9b4
DV
2794 if (i915_is_ggtt(vma->vm)) {
2795 i915_gem_object_finish_gtt(obj);
5323fd04 2796
8b1bc9b4
DV
2797 /* release the fence reg _after_ flushing */
2798 ret = i915_gem_object_put_fence(obj);
2799 if (ret)
2800 return ret;
2801 }
96b47b65 2802
07fe0b12 2803 trace_i915_vma_unbind(vma);
db53a302 2804
6f65e29a
BW
2805 vma->unbind_vma(vma);
2806
74163907 2807 i915_gem_gtt_finish_object(obj);
7bddb01f 2808
64bf9303 2809 list_del_init(&vma->mm_list);
75e9e915 2810 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2811 if (i915_is_ggtt(vma->vm))
2812 obj->map_and_fenceable = true;
673a394b 2813
2f633156
BW
2814 drm_mm_remove_node(&vma->node);
2815 i915_gem_vma_destroy(vma);
2816
2817 /* Since the unbound list is global, only move to that list if
b93dab6e 2818 * no more VMAs exist. */
2f633156
BW
2819 if (list_empty(&obj->vma_list))
2820 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2821
70903c3b
CW
2822 /* And finally now the object is completely decoupled from this vma,
2823 * we can drop its hold on the backing storage and allow it to be
2824 * reaped by the shrinker.
2825 */
2826 i915_gem_object_unpin_pages(obj);
2827
88241785 2828 return 0;
54cf91dc
CW
2829}
2830
b2da9fe5 2831int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2832{
3e31c6c0 2833 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2834 struct intel_engine_cs *ring;
1ec14ad3 2835 int ret, i;
4df2faf4 2836
4df2faf4 2837 /* Flush everything onto the inactive list. */
b4519513 2838 for_each_ring(ring, dev_priv, i) {
691e6415 2839 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2840 if (ret)
2841 return ret;
2842
3e960501 2843 ret = intel_ring_idle(ring);
1ec14ad3
CW
2844 if (ret)
2845 return ret;
2846 }
4df2faf4 2847
8a1a49f9 2848 return 0;
4df2faf4
DV
2849}
2850
9ce079e4
CW
2851static void i965_write_fence_reg(struct drm_device *dev, int reg,
2852 struct drm_i915_gem_object *obj)
de151cf6 2853{
3e31c6c0 2854 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2855 int fence_reg;
2856 int fence_pitch_shift;
de151cf6 2857
56c844e5
ID
2858 if (INTEL_INFO(dev)->gen >= 6) {
2859 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2860 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2861 } else {
2862 fence_reg = FENCE_REG_965_0;
2863 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2864 }
2865
d18b9619
CW
2866 fence_reg += reg * 8;
2867
2868 /* To w/a incoherency with non-atomic 64-bit register updates,
2869 * we split the 64-bit update into two 32-bit writes. In order
2870 * for a partial fence not to be evaluated between writes, we
2871 * precede the update with write to turn off the fence register,
2872 * and only enable the fence as the last step.
2873 *
2874 * For extra levels of paranoia, we make sure each step lands
2875 * before applying the next step.
2876 */
2877 I915_WRITE(fence_reg, 0);
2878 POSTING_READ(fence_reg);
2879
9ce079e4 2880 if (obj) {
f343c5f6 2881 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2882 uint64_t val;
de151cf6 2883
f343c5f6 2884 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2885 0xfffff000) << 32;
f343c5f6 2886 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2887 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2888 if (obj->tiling_mode == I915_TILING_Y)
2889 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2890 val |= I965_FENCE_REG_VALID;
c6642782 2891
d18b9619
CW
2892 I915_WRITE(fence_reg + 4, val >> 32);
2893 POSTING_READ(fence_reg + 4);
2894
2895 I915_WRITE(fence_reg + 0, val);
2896 POSTING_READ(fence_reg);
2897 } else {
2898 I915_WRITE(fence_reg + 4, 0);
2899 POSTING_READ(fence_reg + 4);
2900 }
de151cf6
JB
2901}
2902
9ce079e4
CW
2903static void i915_write_fence_reg(struct drm_device *dev, int reg,
2904 struct drm_i915_gem_object *obj)
de151cf6 2905{
3e31c6c0 2906 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 2907 u32 val;
de151cf6 2908
9ce079e4 2909 if (obj) {
f343c5f6 2910 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2911 int pitch_val;
2912 int tile_width;
c6642782 2913
f343c5f6 2914 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2915 (size & -size) != size ||
f343c5f6
BW
2916 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2917 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2918 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2919
9ce079e4
CW
2920 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2921 tile_width = 128;
2922 else
2923 tile_width = 512;
2924
2925 /* Note: pitch better be a power of two tile widths */
2926 pitch_val = obj->stride / tile_width;
2927 pitch_val = ffs(pitch_val) - 1;
2928
f343c5f6 2929 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2930 if (obj->tiling_mode == I915_TILING_Y)
2931 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2932 val |= I915_FENCE_SIZE_BITS(size);
2933 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2934 val |= I830_FENCE_REG_VALID;
2935 } else
2936 val = 0;
2937
2938 if (reg < 8)
2939 reg = FENCE_REG_830_0 + reg * 4;
2940 else
2941 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2942
2943 I915_WRITE(reg, val);
2944 POSTING_READ(reg);
de151cf6
JB
2945}
2946
9ce079e4
CW
2947static void i830_write_fence_reg(struct drm_device *dev, int reg,
2948 struct drm_i915_gem_object *obj)
de151cf6 2949{
3e31c6c0 2950 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 2951 uint32_t val;
de151cf6 2952
9ce079e4 2953 if (obj) {
f343c5f6 2954 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2955 uint32_t pitch_val;
de151cf6 2956
f343c5f6 2957 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2958 (size & -size) != size ||
f343c5f6
BW
2959 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2960 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2961 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2962
9ce079e4
CW
2963 pitch_val = obj->stride / 128;
2964 pitch_val = ffs(pitch_val) - 1;
de151cf6 2965
f343c5f6 2966 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2967 if (obj->tiling_mode == I915_TILING_Y)
2968 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2969 val |= I830_FENCE_SIZE_BITS(size);
2970 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2971 val |= I830_FENCE_REG_VALID;
2972 } else
2973 val = 0;
c6642782 2974
9ce079e4
CW
2975 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2976 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2977}
2978
d0a57789
CW
2979inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2980{
2981 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2982}
2983
9ce079e4
CW
2984static void i915_gem_write_fence(struct drm_device *dev, int reg,
2985 struct drm_i915_gem_object *obj)
2986{
d0a57789
CW
2987 struct drm_i915_private *dev_priv = dev->dev_private;
2988
2989 /* Ensure that all CPU reads are completed before installing a fence
2990 * and all writes before removing the fence.
2991 */
2992 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2993 mb();
2994
94a335db
DV
2995 WARN(obj && (!obj->stride || !obj->tiling_mode),
2996 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2997 obj->stride, obj->tiling_mode);
2998
9ce079e4 2999 switch (INTEL_INFO(dev)->gen) {
5ab31333 3000 case 8:
9ce079e4 3001 case 7:
56c844e5 3002 case 6:
9ce079e4
CW
3003 case 5:
3004 case 4: i965_write_fence_reg(dev, reg, obj); break;
3005 case 3: i915_write_fence_reg(dev, reg, obj); break;
3006 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3007 default: BUG();
9ce079e4 3008 }
d0a57789
CW
3009
3010 /* And similarly be paranoid that no direct access to this region
3011 * is reordered to before the fence is installed.
3012 */
3013 if (i915_gem_object_needs_mb(obj))
3014 mb();
de151cf6
JB
3015}
3016
61050808
CW
3017static inline int fence_number(struct drm_i915_private *dev_priv,
3018 struct drm_i915_fence_reg *fence)
3019{
3020 return fence - dev_priv->fence_regs;
3021}
3022
3023static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3024 struct drm_i915_fence_reg *fence,
3025 bool enable)
3026{
2dc8aae0 3027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3028 int reg = fence_number(dev_priv, fence);
3029
3030 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3031
3032 if (enable) {
46a0b638 3033 obj->fence_reg = reg;
61050808
CW
3034 fence->obj = obj;
3035 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3036 } else {
3037 obj->fence_reg = I915_FENCE_REG_NONE;
3038 fence->obj = NULL;
3039 list_del_init(&fence->lru_list);
3040 }
94a335db 3041 obj->fence_dirty = false;
61050808
CW
3042}
3043
d9e86c0e 3044static int
d0a57789 3045i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3046{
1c293ea3 3047 if (obj->last_fenced_seqno) {
86d5bc37 3048 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3049 if (ret)
3050 return ret;
d9e86c0e
CW
3051
3052 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3053 }
3054
86d5bc37 3055 obj->fenced_gpu_access = false;
d9e86c0e
CW
3056 return 0;
3057}
3058
3059int
3060i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3061{
61050808 3062 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3063 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3064 int ret;
3065
d0a57789 3066 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3067 if (ret)
3068 return ret;
3069
61050808
CW
3070 if (obj->fence_reg == I915_FENCE_REG_NONE)
3071 return 0;
d9e86c0e 3072
f9c513e9
CW
3073 fence = &dev_priv->fence_regs[obj->fence_reg];
3074
aff10b30
DV
3075 if (WARN_ON(fence->pin_count))
3076 return -EBUSY;
3077
61050808 3078 i915_gem_object_fence_lost(obj);
f9c513e9 3079 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3080
3081 return 0;
3082}
3083
3084static struct drm_i915_fence_reg *
a360bb1a 3085i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3086{
ae3db24a 3087 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3088 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3089 int i;
ae3db24a
DV
3090
3091 /* First try to find a free reg */
d9e86c0e 3092 avail = NULL;
ae3db24a
DV
3093 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3094 reg = &dev_priv->fence_regs[i];
3095 if (!reg->obj)
d9e86c0e 3096 return reg;
ae3db24a 3097
1690e1eb 3098 if (!reg->pin_count)
d9e86c0e 3099 avail = reg;
ae3db24a
DV
3100 }
3101
d9e86c0e 3102 if (avail == NULL)
5dce5b93 3103 goto deadlock;
ae3db24a
DV
3104
3105 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3106 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3107 if (reg->pin_count)
ae3db24a
DV
3108 continue;
3109
8fe301ad 3110 return reg;
ae3db24a
DV
3111 }
3112
5dce5b93
CW
3113deadlock:
3114 /* Wait for completion of pending flips which consume fences */
3115 if (intel_has_pending_fb_unpin(dev))
3116 return ERR_PTR(-EAGAIN);
3117
3118 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3119}
3120
de151cf6 3121/**
9a5a53b3 3122 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3123 * @obj: object to map through a fence reg
3124 *
3125 * When mapping objects through the GTT, userspace wants to be able to write
3126 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3127 * This function walks the fence regs looking for a free one for @obj,
3128 * stealing one if it can't find any.
3129 *
3130 * It then sets up the reg based on the object's properties: address, pitch
3131 * and tiling format.
9a5a53b3
CW
3132 *
3133 * For an untiled surface, this removes any existing fence.
de151cf6 3134 */
8c4b8c3f 3135int
06d98131 3136i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3137{
05394f39 3138 struct drm_device *dev = obj->base.dev;
79e53945 3139 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3140 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3141 struct drm_i915_fence_reg *reg;
ae3db24a 3142 int ret;
de151cf6 3143
14415745
CW
3144 /* Have we updated the tiling parameters upon the object and so
3145 * will need to serialise the write to the associated fence register?
3146 */
5d82e3e6 3147 if (obj->fence_dirty) {
d0a57789 3148 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3149 if (ret)
3150 return ret;
3151 }
9a5a53b3 3152
d9e86c0e 3153 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3154 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3155 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3156 if (!obj->fence_dirty) {
14415745
CW
3157 list_move_tail(&reg->lru_list,
3158 &dev_priv->mm.fence_list);
3159 return 0;
3160 }
3161 } else if (enable) {
3162 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3163 if (IS_ERR(reg))
3164 return PTR_ERR(reg);
d9e86c0e 3165
14415745
CW
3166 if (reg->obj) {
3167 struct drm_i915_gem_object *old = reg->obj;
3168
d0a57789 3169 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3170 if (ret)
3171 return ret;
3172
14415745 3173 i915_gem_object_fence_lost(old);
29c5a587 3174 }
14415745 3175 } else
a09ba7fa 3176 return 0;
a09ba7fa 3177
14415745 3178 i915_gem_object_update_fence(obj, reg, enable);
14415745 3179
9ce079e4 3180 return 0;
de151cf6
JB
3181}
3182
42d6ab48
CW
3183static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3184 struct drm_mm_node *gtt_space,
3185 unsigned long cache_level)
3186{
3187 struct drm_mm_node *other;
3188
3189 /* On non-LLC machines we have to be careful when putting differing
3190 * types of snoopable memory together to avoid the prefetcher
4239ca77 3191 * crossing memory domains and dying.
42d6ab48
CW
3192 */
3193 if (HAS_LLC(dev))
3194 return true;
3195
c6cfb325 3196 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3197 return true;
3198
3199 if (list_empty(&gtt_space->node_list))
3200 return true;
3201
3202 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3203 if (other->allocated && !other->hole_follows && other->color != cache_level)
3204 return false;
3205
3206 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3207 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3208 return false;
3209
3210 return true;
3211}
3212
3213static void i915_gem_verify_gtt(struct drm_device *dev)
3214{
3215#if WATCH_GTT
3216 struct drm_i915_private *dev_priv = dev->dev_private;
3217 struct drm_i915_gem_object *obj;
3218 int err = 0;
3219
35c20a60 3220 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3221 if (obj->gtt_space == NULL) {
3222 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3223 err++;
3224 continue;
3225 }
3226
3227 if (obj->cache_level != obj->gtt_space->color) {
3228 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3229 i915_gem_obj_ggtt_offset(obj),
3230 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3231 obj->cache_level,
3232 obj->gtt_space->color);
3233 err++;
3234 continue;
3235 }
3236
3237 if (!i915_gem_valid_gtt_space(dev,
3238 obj->gtt_space,
3239 obj->cache_level)) {
3240 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3241 i915_gem_obj_ggtt_offset(obj),
3242 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3243 obj->cache_level);
3244 err++;
3245 continue;
3246 }
3247 }
3248
3249 WARN_ON(err);
3250#endif
3251}
3252
673a394b
EA
3253/**
3254 * Finds free space in the GTT aperture and binds the object there.
3255 */
262de145 3256static struct i915_vma *
07fe0b12
BW
3257i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3258 struct i915_address_space *vm,
3259 unsigned alignment,
1ec9e26d 3260 unsigned flags)
673a394b 3261{
05394f39 3262 struct drm_device *dev = obj->base.dev;
3e31c6c0 3263 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3264 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3265 size_t gtt_max =
1ec9e26d 3266 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3267 struct i915_vma *vma;
07f73f69 3268 int ret;
673a394b 3269
e28f8711
CW
3270 fence_size = i915_gem_get_gtt_size(dev,
3271 obj->base.size,
3272 obj->tiling_mode);
3273 fence_alignment = i915_gem_get_gtt_alignment(dev,
3274 obj->base.size,
d865110c 3275 obj->tiling_mode, true);
e28f8711 3276 unfenced_alignment =
d865110c 3277 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3278 obj->base.size,
3279 obj->tiling_mode, false);
a00b10c3 3280
673a394b 3281 if (alignment == 0)
1ec9e26d 3282 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3283 unfenced_alignment;
1ec9e26d 3284 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3285 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3286 return ERR_PTR(-EINVAL);
673a394b
EA
3287 }
3288
1ec9e26d 3289 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3290
654fc607
CW
3291 /* If the object is bigger than the entire aperture, reject it early
3292 * before evicting everything in a vain attempt to find space.
3293 */
0a9ae0d7 3294 if (obj->base.size > gtt_max) {
bd9b6a4e 3295 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3296 obj->base.size,
1ec9e26d 3297 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3298 gtt_max);
262de145 3299 return ERR_PTR(-E2BIG);
654fc607
CW
3300 }
3301
37e680a1 3302 ret = i915_gem_object_get_pages(obj);
6c085a72 3303 if (ret)
262de145 3304 return ERR_PTR(ret);
6c085a72 3305
fbdda6fb
CW
3306 i915_gem_object_pin_pages(obj);
3307
accfef2e 3308 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3309 if (IS_ERR(vma))
bc6bc15b 3310 goto err_unpin;
2f633156 3311
0a9ae0d7 3312search_free:
07fe0b12 3313 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3314 size, alignment,
31e5d7c6 3315 obj->cache_level, 0, gtt_max,
62347f9e
LK
3316 DRM_MM_SEARCH_DEFAULT,
3317 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3318 if (ret) {
f6cd1f15 3319 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3320 obj->cache_level, flags);
dc9dd7a2
CW
3321 if (ret == 0)
3322 goto search_free;
9731129c 3323
bc6bc15b 3324 goto err_free_vma;
673a394b 3325 }
2f633156 3326 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3327 obj->cache_level))) {
2f633156 3328 ret = -EINVAL;
bc6bc15b 3329 goto err_remove_node;
673a394b
EA
3330 }
3331
74163907 3332 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3333 if (ret)
bc6bc15b 3334 goto err_remove_node;
673a394b 3335
35c20a60 3336 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3337 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3338
4bd561b3
BW
3339 if (i915_is_ggtt(vm)) {
3340 bool mappable, fenceable;
a00b10c3 3341
49987099
DV
3342 fenceable = (vma->node.size == fence_size &&
3343 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3344
49987099
DV
3345 mappable = (vma->node.start + obj->base.size <=
3346 dev_priv->gtt.mappable_end);
a00b10c3 3347
5cacaac7 3348 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3349 }
75e9e915 3350
1ec9e26d 3351 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3352
1ec9e26d 3353 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3354 vma->bind_vma(vma, obj->cache_level,
3355 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3356
42d6ab48 3357 i915_gem_verify_gtt(dev);
262de145 3358 return vma;
2f633156 3359
bc6bc15b 3360err_remove_node:
6286ef9b 3361 drm_mm_remove_node(&vma->node);
bc6bc15b 3362err_free_vma:
2f633156 3363 i915_gem_vma_destroy(vma);
262de145 3364 vma = ERR_PTR(ret);
bc6bc15b 3365err_unpin:
2f633156 3366 i915_gem_object_unpin_pages(obj);
262de145 3367 return vma;
673a394b
EA
3368}
3369
000433b6 3370bool
2c22569b
CW
3371i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3372 bool force)
673a394b 3373{
673a394b
EA
3374 /* If we don't have a page list set up, then we're not pinned
3375 * to GPU, and we can ignore the cache flush because it'll happen
3376 * again at bind time.
3377 */
05394f39 3378 if (obj->pages == NULL)
000433b6 3379 return false;
673a394b 3380
769ce464
ID
3381 /*
3382 * Stolen memory is always coherent with the GPU as it is explicitly
3383 * marked as wc by the system, or the system is cache-coherent.
3384 */
3385 if (obj->stolen)
000433b6 3386 return false;
769ce464 3387
9c23f7fc
CW
3388 /* If the GPU is snooping the contents of the CPU cache,
3389 * we do not need to manually clear the CPU cache lines. However,
3390 * the caches are only snooped when the render cache is
3391 * flushed/invalidated. As we always have to emit invalidations
3392 * and flushes when moving into and out of the RENDER domain, correct
3393 * snooping behaviour occurs naturally as the result of our domain
3394 * tracking.
3395 */
2c22569b 3396 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3397 return false;
9c23f7fc 3398
1c5d22f7 3399 trace_i915_gem_object_clflush(obj);
9da3da66 3400 drm_clflush_sg(obj->pages);
000433b6
CW
3401
3402 return true;
e47c68e9
EA
3403}
3404
3405/** Flushes the GTT write domain for the object if it's dirty. */
3406static void
05394f39 3407i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3408{
1c5d22f7
CW
3409 uint32_t old_write_domain;
3410
05394f39 3411 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3412 return;
3413
63256ec5 3414 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3415 * to it immediately go to main memory as far as we know, so there's
3416 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3417 *
3418 * However, we do have to enforce the order so that all writes through
3419 * the GTT land before any writes to the device, such as updates to
3420 * the GATT itself.
e47c68e9 3421 */
63256ec5
CW
3422 wmb();
3423
05394f39
CW
3424 old_write_domain = obj->base.write_domain;
3425 obj->base.write_domain = 0;
1c5d22f7
CW
3426
3427 trace_i915_gem_object_change_domain(obj,
05394f39 3428 obj->base.read_domains,
1c5d22f7 3429 old_write_domain);
e47c68e9
EA
3430}
3431
3432/** Flushes the CPU write domain for the object if it's dirty. */
3433static void
2c22569b
CW
3434i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3435 bool force)
e47c68e9 3436{
1c5d22f7 3437 uint32_t old_write_domain;
e47c68e9 3438
05394f39 3439 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3440 return;
3441
000433b6
CW
3442 if (i915_gem_clflush_object(obj, force))
3443 i915_gem_chipset_flush(obj->base.dev);
3444
05394f39
CW
3445 old_write_domain = obj->base.write_domain;
3446 obj->base.write_domain = 0;
1c5d22f7
CW
3447
3448 trace_i915_gem_object_change_domain(obj,
05394f39 3449 obj->base.read_domains,
1c5d22f7 3450 old_write_domain);
e47c68e9
EA
3451}
3452
2ef7eeaa
EA
3453/**
3454 * Moves a single object to the GTT read, and possibly write domain.
3455 *
3456 * This function returns when the move is complete, including waiting on
3457 * flushes to occur.
3458 */
79e53945 3459int
2021746e 3460i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3461{
3e31c6c0 3462 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3463 uint32_t old_write_domain, old_read_domains;
e47c68e9 3464 int ret;
2ef7eeaa 3465
02354392 3466 /* Not valid to be called on unbound objects. */
9843877d 3467 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3468 return -EINVAL;
3469
8d7e3de1
CW
3470 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3471 return 0;
3472
0201f1ec 3473 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3474 if (ret)
3475 return ret;
3476
c8725f3d 3477 i915_gem_object_retire(obj);
2c22569b 3478 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3479
d0a57789
CW
3480 /* Serialise direct access to this object with the barriers for
3481 * coherent writes from the GPU, by effectively invalidating the
3482 * GTT domain upon first access.
3483 */
3484 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3485 mb();
3486
05394f39
CW
3487 old_write_domain = obj->base.write_domain;
3488 old_read_domains = obj->base.read_domains;
1c5d22f7 3489
e47c68e9
EA
3490 /* It should now be out of any other write domains, and we can update
3491 * the domain values for our changes.
3492 */
05394f39
CW
3493 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3494 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3495 if (write) {
05394f39
CW
3496 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3497 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3498 obj->dirty = 1;
2ef7eeaa
EA
3499 }
3500
1c5d22f7
CW
3501 trace_i915_gem_object_change_domain(obj,
3502 old_read_domains,
3503 old_write_domain);
3504
8325a09d 3505 /* And bump the LRU for this access */
ca191b13 3506 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3507 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3508 if (vma)
3509 list_move_tail(&vma->mm_list,
3510 &dev_priv->gtt.base.inactive_list);
3511
3512 }
8325a09d 3513
e47c68e9
EA
3514 return 0;
3515}
3516
e4ffd173
CW
3517int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3518 enum i915_cache_level cache_level)
3519{
7bddb01f 3520 struct drm_device *dev = obj->base.dev;
df6f783a 3521 struct i915_vma *vma, *next;
e4ffd173
CW
3522 int ret;
3523
3524 if (obj->cache_level == cache_level)
3525 return 0;
3526
d7f46fc4 3527 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3528 DRM_DEBUG("can not change the cache level of pinned objects\n");
3529 return -EBUSY;
3530 }
3531
df6f783a 3532 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3533 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3534 ret = i915_vma_unbind(vma);
3089c6f2
BW
3535 if (ret)
3536 return ret;
3089c6f2 3537 }
42d6ab48
CW
3538 }
3539
3089c6f2 3540 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3541 ret = i915_gem_object_finish_gpu(obj);
3542 if (ret)
3543 return ret;
3544
3545 i915_gem_object_finish_gtt(obj);
3546
3547 /* Before SandyBridge, you could not use tiling or fence
3548 * registers with snooped memory, so relinquish any fences
3549 * currently pointing to our region in the aperture.
3550 */
42d6ab48 3551 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3552 ret = i915_gem_object_put_fence(obj);
3553 if (ret)
3554 return ret;
3555 }
3556
6f65e29a 3557 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3558 if (drm_mm_node_allocated(&vma->node))
3559 vma->bind_vma(vma, cache_level,
3560 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3561 }
3562
2c22569b
CW
3563 list_for_each_entry(vma, &obj->vma_list, vma_link)
3564 vma->node.color = cache_level;
3565 obj->cache_level = cache_level;
3566
3567 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3568 u32 old_read_domains, old_write_domain;
3569
3570 /* If we're coming from LLC cached, then we haven't
3571 * actually been tracking whether the data is in the
3572 * CPU cache or not, since we only allow one bit set
3573 * in obj->write_domain and have been skipping the clflushes.
3574 * Just set it to the CPU cache for now.
3575 */
c8725f3d 3576 i915_gem_object_retire(obj);
e4ffd173 3577 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3578
3579 old_read_domains = obj->base.read_domains;
3580 old_write_domain = obj->base.write_domain;
3581
3582 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3583 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3584
3585 trace_i915_gem_object_change_domain(obj,
3586 old_read_domains,
3587 old_write_domain);
3588 }
3589
42d6ab48 3590 i915_gem_verify_gtt(dev);
e4ffd173
CW
3591 return 0;
3592}
3593
199adf40
BW
3594int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3595 struct drm_file *file)
e6994aee 3596{
199adf40 3597 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3598 struct drm_i915_gem_object *obj;
3599 int ret;
3600
3601 ret = i915_mutex_lock_interruptible(dev);
3602 if (ret)
3603 return ret;
3604
3605 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606 if (&obj->base == NULL) {
3607 ret = -ENOENT;
3608 goto unlock;
3609 }
3610
651d794f
CW
3611 switch (obj->cache_level) {
3612 case I915_CACHE_LLC:
3613 case I915_CACHE_L3_LLC:
3614 args->caching = I915_CACHING_CACHED;
3615 break;
3616
4257d3ba
CW
3617 case I915_CACHE_WT:
3618 args->caching = I915_CACHING_DISPLAY;
3619 break;
3620
651d794f
CW
3621 default:
3622 args->caching = I915_CACHING_NONE;
3623 break;
3624 }
e6994aee
CW
3625
3626 drm_gem_object_unreference(&obj->base);
3627unlock:
3628 mutex_unlock(&dev->struct_mutex);
3629 return ret;
3630}
3631
199adf40
BW
3632int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3633 struct drm_file *file)
e6994aee 3634{
199adf40 3635 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3636 struct drm_i915_gem_object *obj;
3637 enum i915_cache_level level;
3638 int ret;
3639
199adf40
BW
3640 switch (args->caching) {
3641 case I915_CACHING_NONE:
e6994aee
CW
3642 level = I915_CACHE_NONE;
3643 break;
199adf40 3644 case I915_CACHING_CACHED:
e6994aee
CW
3645 level = I915_CACHE_LLC;
3646 break;
4257d3ba
CW
3647 case I915_CACHING_DISPLAY:
3648 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3649 break;
e6994aee
CW
3650 default:
3651 return -EINVAL;
3652 }
3653
3bc2913e
BW
3654 ret = i915_mutex_lock_interruptible(dev);
3655 if (ret)
3656 return ret;
3657
e6994aee
CW
3658 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3659 if (&obj->base == NULL) {
3660 ret = -ENOENT;
3661 goto unlock;
3662 }
3663
3664 ret = i915_gem_object_set_cache_level(obj, level);
3665
3666 drm_gem_object_unreference(&obj->base);
3667unlock:
3668 mutex_unlock(&dev->struct_mutex);
3669 return ret;
3670}
3671
cc98b413
CW
3672static bool is_pin_display(struct drm_i915_gem_object *obj)
3673{
19656430
OM
3674 struct i915_vma *vma;
3675
3676 if (list_empty(&obj->vma_list))
3677 return false;
3678
3679 vma = i915_gem_obj_to_ggtt(obj);
3680 if (!vma)
3681 return false;
3682
cc98b413
CW
3683 /* There are 3 sources that pin objects:
3684 * 1. The display engine (scanouts, sprites, cursors);
3685 * 2. Reservations for execbuffer;
3686 * 3. The user.
3687 *
3688 * We can ignore reservations as we hold the struct_mutex and
3689 * are only called outside of the reservation path. The user
3690 * can only increment pin_count once, and so if after
3691 * subtracting the potential reference by the user, any pin_count
3692 * remains, it must be due to another use by the display engine.
3693 */
19656430 3694 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3695}
3696
b9241ea3 3697/*
2da3b9b9
CW
3698 * Prepare buffer for display plane (scanout, cursors, etc).
3699 * Can be called from an uninterruptible phase (modesetting) and allows
3700 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3701 */
3702int
2da3b9b9
CW
3703i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3704 u32 alignment,
a4872ba6 3705 struct intel_engine_cs *pipelined)
b9241ea3 3706{
2da3b9b9 3707 u32 old_read_domains, old_write_domain;
19656430 3708 bool was_pin_display;
b9241ea3
ZW
3709 int ret;
3710
0be73284 3711 if (pipelined != obj->ring) {
2911a35b
BW
3712 ret = i915_gem_object_sync(obj, pipelined);
3713 if (ret)
b9241ea3
ZW
3714 return ret;
3715 }
3716
cc98b413
CW
3717 /* Mark the pin_display early so that we account for the
3718 * display coherency whilst setting up the cache domains.
3719 */
19656430 3720 was_pin_display = obj->pin_display;
cc98b413
CW
3721 obj->pin_display = true;
3722
a7ef0640
EA
3723 /* The display engine is not coherent with the LLC cache on gen6. As
3724 * a result, we make sure that the pinning that is about to occur is
3725 * done with uncached PTEs. This is lowest common denominator for all
3726 * chipsets.
3727 *
3728 * However for gen6+, we could do better by using the GFDT bit instead
3729 * of uncaching, which would allow us to flush all the LLC-cached data
3730 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3731 */
651d794f
CW
3732 ret = i915_gem_object_set_cache_level(obj,
3733 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3734 if (ret)
cc98b413 3735 goto err_unpin_display;
a7ef0640 3736
2da3b9b9
CW
3737 /* As the user may map the buffer once pinned in the display plane
3738 * (e.g. libkms for the bootup splash), we have to ensure that we
3739 * always use map_and_fenceable for all scanout buffers.
3740 */
1ec9e26d 3741 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3742 if (ret)
cc98b413 3743 goto err_unpin_display;
2da3b9b9 3744
2c22569b 3745 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3746
2da3b9b9 3747 old_write_domain = obj->base.write_domain;
05394f39 3748 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3749
3750 /* It should now be out of any other write domains, and we can update
3751 * the domain values for our changes.
3752 */
e5f1d962 3753 obj->base.write_domain = 0;
05394f39 3754 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3755
3756 trace_i915_gem_object_change_domain(obj,
3757 old_read_domains,
2da3b9b9 3758 old_write_domain);
b9241ea3
ZW
3759
3760 return 0;
cc98b413
CW
3761
3762err_unpin_display:
19656430
OM
3763 WARN_ON(was_pin_display != is_pin_display(obj));
3764 obj->pin_display = was_pin_display;
cc98b413
CW
3765 return ret;
3766}
3767
3768void
3769i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3770{
d7f46fc4 3771 i915_gem_object_ggtt_unpin(obj);
cc98b413 3772 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3773}
3774
85345517 3775int
a8198eea 3776i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3777{
88241785
CW
3778 int ret;
3779
a8198eea 3780 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3781 return 0;
3782
0201f1ec 3783 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3784 if (ret)
3785 return ret;
3786
a8198eea
CW
3787 /* Ensure that we invalidate the GPU's caches and TLBs. */
3788 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3789 return 0;
85345517
CW
3790}
3791
e47c68e9
EA
3792/**
3793 * Moves a single object to the CPU read, and possibly write domain.
3794 *
3795 * This function returns when the move is complete, including waiting on
3796 * flushes to occur.
3797 */
dabdfe02 3798int
919926ae 3799i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3800{
1c5d22f7 3801 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3802 int ret;
3803
8d7e3de1
CW
3804 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3805 return 0;
3806
0201f1ec 3807 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3808 if (ret)
3809 return ret;
3810
c8725f3d 3811 i915_gem_object_retire(obj);
e47c68e9 3812 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3813
05394f39
CW
3814 old_write_domain = obj->base.write_domain;
3815 old_read_domains = obj->base.read_domains;
1c5d22f7 3816
e47c68e9 3817 /* Flush the CPU cache if it's still invalid. */
05394f39 3818 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3819 i915_gem_clflush_object(obj, false);
2ef7eeaa 3820
05394f39 3821 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3822 }
3823
3824 /* It should now be out of any other write domains, and we can update
3825 * the domain values for our changes.
3826 */
05394f39 3827 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3828
3829 /* If we're writing through the CPU, then the GPU read domains will
3830 * need to be invalidated at next use.
3831 */
3832 if (write) {
05394f39
CW
3833 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3834 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3835 }
2ef7eeaa 3836
1c5d22f7
CW
3837 trace_i915_gem_object_change_domain(obj,
3838 old_read_domains,
3839 old_write_domain);
3840
2ef7eeaa
EA
3841 return 0;
3842}
3843
673a394b
EA
3844/* Throttle our rendering by waiting until the ring has completed our requests
3845 * emitted over 20 msec ago.
3846 *
b962442e
EA
3847 * Note that if we were to use the current jiffies each time around the loop,
3848 * we wouldn't escape the function with any frames outstanding if the time to
3849 * render a frame was over 20ms.
3850 *
673a394b
EA
3851 * This should get us reasonable parallelism between CPU and GPU but also
3852 * relatively low latency when blocking on a particular request to finish.
3853 */
40a5f0de 3854static int
f787a5f5 3855i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3856{
f787a5f5
CW
3857 struct drm_i915_private *dev_priv = dev->dev_private;
3858 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3859 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 3860 struct drm_i915_gem_request *request;
a4872ba6 3861 struct intel_engine_cs *ring = NULL;
f69061be 3862 unsigned reset_counter;
f787a5f5
CW
3863 u32 seqno = 0;
3864 int ret;
93533c29 3865
308887aa
DV
3866 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3867 if (ret)
3868 return ret;
3869
3870 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3871 if (ret)
3872 return ret;
e110e8d6 3873
1c25595f 3874 spin_lock(&file_priv->mm.lock);
f787a5f5 3875 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3876 if (time_after_eq(request->emitted_jiffies, recent_enough))
3877 break;
40a5f0de 3878
f787a5f5
CW
3879 ring = request->ring;
3880 seqno = request->seqno;
b962442e 3881 }
f69061be 3882 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3883 spin_unlock(&file_priv->mm.lock);
40a5f0de 3884
f787a5f5
CW
3885 if (seqno == 0)
3886 return 0;
2bc43b5c 3887
b29c19b6 3888 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3889 if (ret == 0)
3890 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3891
3892 return ret;
3893}
3894
673a394b 3895int
05394f39 3896i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3897 struct i915_address_space *vm,
05394f39 3898 uint32_t alignment,
1ec9e26d 3899 unsigned flags)
673a394b 3900{
6e7186af 3901 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 3902 struct i915_vma *vma;
673a394b
EA
3903 int ret;
3904
6e7186af
BW
3905 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3906 return -ENODEV;
3907
bf3d149b 3908 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3909 return -EINVAL;
07fe0b12
BW
3910
3911 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3912 if (vma) {
d7f46fc4
BW
3913 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3914 return -EBUSY;
3915
07fe0b12
BW
3916 if ((alignment &&
3917 vma->node.start & (alignment - 1)) ||
1ec9e26d 3918 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3919 WARN(vma->pin_count,
ae7d49d8 3920 "bo is already pinned with incorrect alignment:"
f343c5f6 3921 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3922 " obj->map_and_fenceable=%d\n",
07fe0b12 3923 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3924 flags & PIN_MAPPABLE,
05394f39 3925 obj->map_and_fenceable);
07fe0b12 3926 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3927 if (ret)
3928 return ret;
8ea99c92
DV
3929
3930 vma = NULL;
ac0c6b5a
CW
3931 }
3932 }
3933
8ea99c92 3934 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3935 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3936 if (IS_ERR(vma))
3937 return PTR_ERR(vma);
22c344e9 3938 }
76446cac 3939
8ea99c92
DV
3940 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3941 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3942
8ea99c92 3943 vma->pin_count++;
1ec9e26d
DV
3944 if (flags & PIN_MAPPABLE)
3945 obj->pin_mappable |= true;
673a394b
EA
3946
3947 return 0;
3948}
3949
3950void
d7f46fc4 3951i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3952{
d7f46fc4 3953 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3954
d7f46fc4
BW
3955 BUG_ON(!vma);
3956 BUG_ON(vma->pin_count == 0);
3957 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3958
3959 if (--vma->pin_count == 0)
6299f992 3960 obj->pin_mappable = false;
673a394b
EA
3961}
3962
d8ffa60b
DV
3963bool
3964i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3965{
3966 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3967 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3968 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3969
3970 WARN_ON(!ggtt_vma ||
3971 dev_priv->fence_regs[obj->fence_reg].pin_count >
3972 ggtt_vma->pin_count);
3973 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3974 return true;
3975 } else
3976 return false;
3977}
3978
3979void
3980i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3981{
3982 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3984 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3985 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3986 }
3987}
3988
673a394b
EA
3989int
3990i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3991 struct drm_file *file)
673a394b
EA
3992{
3993 struct drm_i915_gem_pin *args = data;
05394f39 3994 struct drm_i915_gem_object *obj;
673a394b
EA
3995 int ret;
3996
02f6bccc
DV
3997 if (INTEL_INFO(dev)->gen >= 6)
3998 return -ENODEV;
3999
1d7cfea1
CW
4000 ret = i915_mutex_lock_interruptible(dev);
4001 if (ret)
4002 return ret;
673a394b 4003
05394f39 4004 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4005 if (&obj->base == NULL) {
1d7cfea1
CW
4006 ret = -ENOENT;
4007 goto unlock;
673a394b 4008 }
673a394b 4009
05394f39 4010 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4011 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4012 ret = -EFAULT;
1d7cfea1 4013 goto out;
3ef94daa
CW
4014 }
4015
05394f39 4016 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4017 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4018 args->handle);
1d7cfea1
CW
4019 ret = -EINVAL;
4020 goto out;
79e53945
JB
4021 }
4022
aa5f8021
DV
4023 if (obj->user_pin_count == ULONG_MAX) {
4024 ret = -EBUSY;
4025 goto out;
4026 }
4027
93be8788 4028 if (obj->user_pin_count == 0) {
1ec9e26d 4029 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4030 if (ret)
4031 goto out;
673a394b
EA
4032 }
4033
93be8788
CW
4034 obj->user_pin_count++;
4035 obj->pin_filp = file;
4036
f343c5f6 4037 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4038out:
05394f39 4039 drm_gem_object_unreference(&obj->base);
1d7cfea1 4040unlock:
673a394b 4041 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4042 return ret;
673a394b
EA
4043}
4044
4045int
4046i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4047 struct drm_file *file)
673a394b
EA
4048{
4049 struct drm_i915_gem_pin *args = data;
05394f39 4050 struct drm_i915_gem_object *obj;
76c1dec1 4051 int ret;
673a394b 4052
1d7cfea1
CW
4053 ret = i915_mutex_lock_interruptible(dev);
4054 if (ret)
4055 return ret;
673a394b 4056
05394f39 4057 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4058 if (&obj->base == NULL) {
1d7cfea1
CW
4059 ret = -ENOENT;
4060 goto unlock;
673a394b 4061 }
76c1dec1 4062
05394f39 4063 if (obj->pin_filp != file) {
bd9b6a4e 4064 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4065 args->handle);
1d7cfea1
CW
4066 ret = -EINVAL;
4067 goto out;
79e53945 4068 }
05394f39
CW
4069 obj->user_pin_count--;
4070 if (obj->user_pin_count == 0) {
4071 obj->pin_filp = NULL;
d7f46fc4 4072 i915_gem_object_ggtt_unpin(obj);
79e53945 4073 }
673a394b 4074
1d7cfea1 4075out:
05394f39 4076 drm_gem_object_unreference(&obj->base);
1d7cfea1 4077unlock:
673a394b 4078 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4079 return ret;
673a394b
EA
4080}
4081
4082int
4083i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4084 struct drm_file *file)
673a394b
EA
4085{
4086 struct drm_i915_gem_busy *args = data;
05394f39 4087 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4088 int ret;
4089
76c1dec1 4090 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4091 if (ret)
76c1dec1 4092 return ret;
673a394b 4093
05394f39 4094 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4095 if (&obj->base == NULL) {
1d7cfea1
CW
4096 ret = -ENOENT;
4097 goto unlock;
673a394b 4098 }
d1b851fc 4099
0be555b6
CW
4100 /* Count all active objects as busy, even if they are currently not used
4101 * by the gpu. Users of this interface expect objects to eventually
4102 * become non-busy without any further actions, therefore emit any
4103 * necessary flushes here.
c4de0a5d 4104 */
30dfebf3 4105 ret = i915_gem_object_flush_active(obj);
0be555b6 4106
30dfebf3 4107 args->busy = obj->active;
e9808edd
CW
4108 if (obj->ring) {
4109 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4110 args->busy |= intel_ring_flag(obj->ring) << 16;
4111 }
673a394b 4112
05394f39 4113 drm_gem_object_unreference(&obj->base);
1d7cfea1 4114unlock:
673a394b 4115 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4116 return ret;
673a394b
EA
4117}
4118
4119int
4120i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4121 struct drm_file *file_priv)
4122{
0206e353 4123 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4124}
4125
3ef94daa
CW
4126int
4127i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4128 struct drm_file *file_priv)
4129{
4130 struct drm_i915_gem_madvise *args = data;
05394f39 4131 struct drm_i915_gem_object *obj;
76c1dec1 4132 int ret;
3ef94daa
CW
4133
4134 switch (args->madv) {
4135 case I915_MADV_DONTNEED:
4136 case I915_MADV_WILLNEED:
4137 break;
4138 default:
4139 return -EINVAL;
4140 }
4141
1d7cfea1
CW
4142 ret = i915_mutex_lock_interruptible(dev);
4143 if (ret)
4144 return ret;
4145
05394f39 4146 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4147 if (&obj->base == NULL) {
1d7cfea1
CW
4148 ret = -ENOENT;
4149 goto unlock;
3ef94daa 4150 }
3ef94daa 4151
d7f46fc4 4152 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4153 ret = -EINVAL;
4154 goto out;
3ef94daa
CW
4155 }
4156
05394f39
CW
4157 if (obj->madv != __I915_MADV_PURGED)
4158 obj->madv = args->madv;
3ef94daa 4159
6c085a72
CW
4160 /* if the object is no longer attached, discard its backing storage */
4161 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4162 i915_gem_object_truncate(obj);
4163
05394f39 4164 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4165
1d7cfea1 4166out:
05394f39 4167 drm_gem_object_unreference(&obj->base);
1d7cfea1 4168unlock:
3ef94daa 4169 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4170 return ret;
3ef94daa
CW
4171}
4172
37e680a1
CW
4173void i915_gem_object_init(struct drm_i915_gem_object *obj,
4174 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4175{
35c20a60 4176 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4177 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4178 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4179 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4180
37e680a1
CW
4181 obj->ops = ops;
4182
0327d6ba
CW
4183 obj->fence_reg = I915_FENCE_REG_NONE;
4184 obj->madv = I915_MADV_WILLNEED;
4185 /* Avoid an unnecessary call to unbind on the first bind. */
4186 obj->map_and_fenceable = true;
4187
4188 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4189}
4190
37e680a1
CW
4191static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4192 .get_pages = i915_gem_object_get_pages_gtt,
4193 .put_pages = i915_gem_object_put_pages_gtt,
4194};
4195
05394f39
CW
4196struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4197 size_t size)
ac52bc56 4198{
c397b908 4199 struct drm_i915_gem_object *obj;
5949eac4 4200 struct address_space *mapping;
1a240d4d 4201 gfp_t mask;
ac52bc56 4202
42dcedd4 4203 obj = i915_gem_object_alloc(dev);
c397b908
DV
4204 if (obj == NULL)
4205 return NULL;
673a394b 4206
c397b908 4207 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4208 i915_gem_object_free(obj);
c397b908
DV
4209 return NULL;
4210 }
673a394b 4211
bed1ea95
CW
4212 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4213 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4214 /* 965gm cannot relocate objects above 4GiB. */
4215 mask &= ~__GFP_HIGHMEM;
4216 mask |= __GFP_DMA32;
4217 }
4218
496ad9aa 4219 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4220 mapping_set_gfp_mask(mapping, mask);
5949eac4 4221
37e680a1 4222 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4223
c397b908
DV
4224 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4226
3d29b842
ED
4227 if (HAS_LLC(dev)) {
4228 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4229 * cache) for about a 10% performance improvement
4230 * compared to uncached. Graphics requests other than
4231 * display scanout are coherent with the CPU in
4232 * accessing this cache. This means in this mode we
4233 * don't need to clflush on the CPU side, and on the
4234 * GPU side we only need to flush internal caches to
4235 * get data visible to the CPU.
4236 *
4237 * However, we maintain the display planes as UC, and so
4238 * need to rebind when first used as such.
4239 */
4240 obj->cache_level = I915_CACHE_LLC;
4241 } else
4242 obj->cache_level = I915_CACHE_NONE;
4243
d861e338
DV
4244 trace_i915_gem_object_create(obj);
4245
05394f39 4246 return obj;
c397b908
DV
4247}
4248
340fbd8c
CW
4249static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4250{
4251 /* If we are the last user of the backing storage (be it shmemfs
4252 * pages or stolen etc), we know that the pages are going to be
4253 * immediately released. In this case, we can then skip copying
4254 * back the contents from the GPU.
4255 */
4256
4257 if (obj->madv != I915_MADV_WILLNEED)
4258 return false;
4259
4260 if (obj->base.filp == NULL)
4261 return true;
4262
4263 /* At first glance, this looks racy, but then again so would be
4264 * userspace racing mmap against close. However, the first external
4265 * reference to the filp can only be obtained through the
4266 * i915_gem_mmap_ioctl() which safeguards us against the user
4267 * acquiring such a reference whilst we are in the middle of
4268 * freeing the object.
4269 */
4270 return atomic_long_read(&obj->base.filp->f_count) == 1;
4271}
4272
1488fc08 4273void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4274{
1488fc08 4275 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4276 struct drm_device *dev = obj->base.dev;
3e31c6c0 4277 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4278 struct i915_vma *vma, *next;
673a394b 4279
f65c9168
PZ
4280 intel_runtime_pm_get(dev_priv);
4281
26e12f89
CW
4282 trace_i915_gem_object_destroy(obj);
4283
1488fc08
CW
4284 if (obj->phys_obj)
4285 i915_gem_detach_phys_object(dev, obj);
4286
07fe0b12 4287 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4288 int ret;
4289
4290 vma->pin_count = 0;
4291 ret = i915_vma_unbind(vma);
07fe0b12
BW
4292 if (WARN_ON(ret == -ERESTARTSYS)) {
4293 bool was_interruptible;
1488fc08 4294
07fe0b12
BW
4295 was_interruptible = dev_priv->mm.interruptible;
4296 dev_priv->mm.interruptible = false;
1488fc08 4297
07fe0b12 4298 WARN_ON(i915_vma_unbind(vma));
1488fc08 4299
07fe0b12
BW
4300 dev_priv->mm.interruptible = was_interruptible;
4301 }
1488fc08
CW
4302 }
4303
1d64ae71
BW
4304 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4305 * before progressing. */
4306 if (obj->stolen)
4307 i915_gem_object_unpin_pages(obj);
4308
401c29f6
BW
4309 if (WARN_ON(obj->pages_pin_count))
4310 obj->pages_pin_count = 0;
340fbd8c 4311 if (discard_backing_storage(obj))
5537252b 4312 obj->madv = I915_MADV_DONTNEED;
37e680a1 4313 i915_gem_object_put_pages(obj);
d8cb5086 4314 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4315 i915_gem_object_release_stolen(obj);
de151cf6 4316
9da3da66
CW
4317 BUG_ON(obj->pages);
4318
2f745ad3
CW
4319 if (obj->base.import_attach)
4320 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4321
5cc9ed4b
CW
4322 if (obj->ops->release)
4323 obj->ops->release(obj);
4324
05394f39
CW
4325 drm_gem_object_release(&obj->base);
4326 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4327
05394f39 4328 kfree(obj->bit_17);
42dcedd4 4329 i915_gem_object_free(obj);
f65c9168
PZ
4330
4331 intel_runtime_pm_put(dev_priv);
673a394b
EA
4332}
4333
e656a6cb 4334struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4335 struct i915_address_space *vm)
e656a6cb
DV
4336{
4337 struct i915_vma *vma;
4338 list_for_each_entry(vma, &obj->vma_list, vma_link)
4339 if (vma->vm == vm)
4340 return vma;
4341
4342 return NULL;
4343}
4344
2f633156
BW
4345void i915_gem_vma_destroy(struct i915_vma *vma)
4346{
4347 WARN_ON(vma->node.allocated);
aaa05667
CW
4348
4349 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4350 if (!list_empty(&vma->exec_list))
4351 return;
4352
8b9c2b94 4353 list_del(&vma->vma_link);
b93dab6e 4354
2f633156
BW
4355 kfree(vma);
4356}
4357
e3efda49
CW
4358static void
4359i915_gem_stop_ringbuffers(struct drm_device *dev)
4360{
4361 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4362 struct intel_engine_cs *ring;
e3efda49
CW
4363 int i;
4364
4365 for_each_ring(ring, dev_priv, i)
4366 intel_stop_ring_buffer(ring);
4367}
4368
29105ccc 4369int
45c5f202 4370i915_gem_suspend(struct drm_device *dev)
29105ccc 4371{
3e31c6c0 4372 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4373 int ret = 0;
28dfe52a 4374
45c5f202 4375 mutex_lock(&dev->struct_mutex);
f7403347 4376 if (dev_priv->ums.mm_suspended)
45c5f202 4377 goto err;
28dfe52a 4378
b2da9fe5 4379 ret = i915_gpu_idle(dev);
f7403347 4380 if (ret)
45c5f202 4381 goto err;
f7403347 4382
b2da9fe5 4383 i915_gem_retire_requests(dev);
673a394b 4384
29105ccc 4385 /* Under UMS, be paranoid and evict. */
a39d7efc 4386 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4387 i915_gem_evict_everything(dev);
29105ccc 4388
29105ccc 4389 i915_kernel_lost_context(dev);
e3efda49 4390 i915_gem_stop_ringbuffers(dev);
29105ccc 4391
45c5f202
CW
4392 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4393 * We need to replace this with a semaphore, or something.
4394 * And not confound ums.mm_suspended!
4395 */
4396 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4397 DRIVER_MODESET);
4398 mutex_unlock(&dev->struct_mutex);
4399
4400 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4401 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4402 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4403
673a394b 4404 return 0;
45c5f202
CW
4405
4406err:
4407 mutex_unlock(&dev->struct_mutex);
4408 return ret;
673a394b
EA
4409}
4410
a4872ba6 4411int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4412{
c3787e2e 4413 struct drm_device *dev = ring->dev;
3e31c6c0 4414 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4415 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4416 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4417 int i, ret;
b9524a1e 4418
040d2baa 4419 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4420 return 0;
b9524a1e 4421
c3787e2e
BW
4422 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4423 if (ret)
4424 return ret;
b9524a1e 4425
c3787e2e
BW
4426 /*
4427 * Note: We do not worry about the concurrent register cacheline hang
4428 * here because no other code should access these registers other than
4429 * at initialization time.
4430 */
b9524a1e 4431 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4432 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4433 intel_ring_emit(ring, reg_base + i);
4434 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4435 }
4436
c3787e2e 4437 intel_ring_advance(ring);
b9524a1e 4438
c3787e2e 4439 return ret;
b9524a1e
BW
4440}
4441
f691e2f4
DV
4442void i915_gem_init_swizzling(struct drm_device *dev)
4443{
3e31c6c0 4444 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4445
11782b02 4446 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4447 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4448 return;
4449
4450 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4451 DISP_TILE_SURFACE_SWIZZLING);
4452
11782b02
DV
4453 if (IS_GEN5(dev))
4454 return;
4455
f691e2f4
DV
4456 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4457 if (IS_GEN6(dev))
6b26c86d 4458 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4459 else if (IS_GEN7(dev))
6b26c86d 4460 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4461 else if (IS_GEN8(dev))
4462 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4463 else
4464 BUG();
f691e2f4 4465}
e21af88d 4466
67b1b571
CW
4467static bool
4468intel_enable_blt(struct drm_device *dev)
4469{
4470 if (!HAS_BLT(dev))
4471 return false;
4472
4473 /* The blitter was dysfunctional on early prototypes */
4474 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4475 DRM_INFO("BLT not supported on this pre-production hardware;"
4476 " graphics performance will be degraded.\n");
4477 return false;
4478 }
4479
4480 return true;
4481}
4482
4fc7c971 4483static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4484{
4fc7c971 4485 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4486 int ret;
68f95ba9 4487
5c1143bb 4488 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4489 if (ret)
b6913e4b 4490 return ret;
68f95ba9
CW
4491
4492 if (HAS_BSD(dev)) {
5c1143bb 4493 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4494 if (ret)
4495 goto cleanup_render_ring;
d1b851fc 4496 }
68f95ba9 4497
67b1b571 4498 if (intel_enable_blt(dev)) {
549f7365
CW
4499 ret = intel_init_blt_ring_buffer(dev);
4500 if (ret)
4501 goto cleanup_bsd_ring;
4502 }
4503
9a8a2213
BW
4504 if (HAS_VEBOX(dev)) {
4505 ret = intel_init_vebox_ring_buffer(dev);
4506 if (ret)
4507 goto cleanup_blt_ring;
4508 }
4509
845f74a7
ZY
4510 if (HAS_BSD2(dev)) {
4511 ret = intel_init_bsd2_ring_buffer(dev);
4512 if (ret)
4513 goto cleanup_vebox_ring;
4514 }
9a8a2213 4515
99433931 4516 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4517 if (ret)
845f74a7 4518 goto cleanup_bsd2_ring;
4fc7c971
BW
4519
4520 return 0;
4521
845f74a7
ZY
4522cleanup_bsd2_ring:
4523 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4524cleanup_vebox_ring:
4525 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4526cleanup_blt_ring:
4527 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4528cleanup_bsd_ring:
4529 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4530cleanup_render_ring:
4531 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4532
4533 return ret;
4534}
4535
4536int
4537i915_gem_init_hw(struct drm_device *dev)
4538{
3e31c6c0 4539 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4540 int ret, i;
4fc7c971
BW
4541
4542 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4543 return -EIO;
4544
59124506 4545 if (dev_priv->ellc_size)
05e21cc4 4546 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4547
0bf21347
VS
4548 if (IS_HASWELL(dev))
4549 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4550 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4551
88a2b2a3 4552 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4553 if (IS_IVYBRIDGE(dev)) {
4554 u32 temp = I915_READ(GEN7_MSG_CTL);
4555 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4556 I915_WRITE(GEN7_MSG_CTL, temp);
4557 } else if (INTEL_INFO(dev)->gen >= 7) {
4558 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4559 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4560 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4561 }
88a2b2a3
BW
4562 }
4563
4fc7c971
BW
4564 i915_gem_init_swizzling(dev);
4565
4566 ret = i915_gem_init_rings(dev);
99433931
MK
4567 if (ret)
4568 return ret;
4569
c3787e2e
BW
4570 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4571 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4572
254f965c 4573 /*
2fa48d8d
BW
4574 * XXX: Contexts should only be initialized once. Doing a switch to the
4575 * default context switch however is something we'd like to do after
4576 * reset or thaw (the latter may not actually be necessary for HW, but
4577 * goes with our code better). Context switching requires rings (for
4578 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4579 */
2fa48d8d 4580 ret = i915_gem_context_enable(dev_priv);
60990320 4581 if (ret && ret != -EIO) {
2fa48d8d 4582 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4583 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4584 }
e21af88d 4585
2fa48d8d 4586 return ret;
8187a2b7
ZN
4587}
4588
1070a42b
CW
4589int i915_gem_init(struct drm_device *dev)
4590{
4591 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4592 int ret;
4593
1070a42b 4594 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4595
4596 if (IS_VALLEYVIEW(dev)) {
4597 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4598 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4599 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4600 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4601 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4602 }
4603
5cc9ed4b 4604 i915_gem_init_userptr(dev);
d7e5008f 4605 i915_gem_init_global_gtt(dev);
d62b4892 4606
2fa48d8d 4607 ret = i915_gem_context_init(dev);
e3848694
MK
4608 if (ret) {
4609 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4610 return ret;
e3848694 4611 }
2fa48d8d 4612
1070a42b 4613 ret = i915_gem_init_hw(dev);
60990320
CW
4614 if (ret == -EIO) {
4615 /* Allow ring initialisation to fail by marking the GPU as
4616 * wedged. But we only want to do this where the GPU is angry,
4617 * for all other failure, such as an allocation failure, bail.
4618 */
4619 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4620 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4621 ret = 0;
1070a42b 4622 }
60990320 4623 mutex_unlock(&dev->struct_mutex);
1070a42b 4624
53ca26ca
DV
4625 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4626 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4627 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4628 return ret;
1070a42b
CW
4629}
4630
8187a2b7
ZN
4631void
4632i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4633{
3e31c6c0 4634 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4635 struct intel_engine_cs *ring;
1ec14ad3 4636 int i;
8187a2b7 4637
b4519513
CW
4638 for_each_ring(ring, dev_priv, i)
4639 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4640}
4641
673a394b
EA
4642int
4643i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4644 struct drm_file *file_priv)
4645{
db1b76ca 4646 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4647 int ret;
673a394b 4648
79e53945
JB
4649 if (drm_core_check_feature(dev, DRIVER_MODESET))
4650 return 0;
4651
1f83fee0 4652 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4653 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4654 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4655 }
4656
673a394b 4657 mutex_lock(&dev->struct_mutex);
db1b76ca 4658 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4659
f691e2f4 4660 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4661 if (ret != 0) {
4662 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4663 return ret;
d816f6ac 4664 }
9bb2d6f9 4665
5cef07e1 4666 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4667
bb0f1b5c 4668 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4669 if (ret)
4670 goto cleanup_ringbuffer;
e090c53b 4671 mutex_unlock(&dev->struct_mutex);
dbb19d30 4672
673a394b 4673 return 0;
5f35308b
CW
4674
4675cleanup_ringbuffer:
5f35308b 4676 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4677 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4678 mutex_unlock(&dev->struct_mutex);
4679
4680 return ret;
673a394b
EA
4681}
4682
4683int
4684i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4685 struct drm_file *file_priv)
4686{
79e53945
JB
4687 if (drm_core_check_feature(dev, DRIVER_MODESET))
4688 return 0;
4689
e090c53b 4690 mutex_lock(&dev->struct_mutex);
dbb19d30 4691 drm_irq_uninstall(dev);
e090c53b 4692 mutex_unlock(&dev->struct_mutex);
db1b76ca 4693
45c5f202 4694 return i915_gem_suspend(dev);
673a394b
EA
4695}
4696
4697void
4698i915_gem_lastclose(struct drm_device *dev)
4699{
4700 int ret;
673a394b 4701
e806b495
EA
4702 if (drm_core_check_feature(dev, DRIVER_MODESET))
4703 return;
4704
45c5f202 4705 ret = i915_gem_suspend(dev);
6dbe2772
KP
4706 if (ret)
4707 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4708}
4709
64193406 4710static void
a4872ba6 4711init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4712{
4713 INIT_LIST_HEAD(&ring->active_list);
4714 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4715}
4716
7e0d96bc
BW
4717void i915_init_vm(struct drm_i915_private *dev_priv,
4718 struct i915_address_space *vm)
fc8c067e 4719{
7e0d96bc
BW
4720 if (!i915_is_ggtt(vm))
4721 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4722 vm->dev = dev_priv->dev;
4723 INIT_LIST_HEAD(&vm->active_list);
4724 INIT_LIST_HEAD(&vm->inactive_list);
4725 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4726 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4727}
4728
673a394b
EA
4729void
4730i915_gem_load(struct drm_device *dev)
4731{
3e31c6c0 4732 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4733 int i;
4734
4735 dev_priv->slab =
4736 kmem_cache_create("i915_gem_object",
4737 sizeof(struct drm_i915_gem_object), 0,
4738 SLAB_HWCACHE_ALIGN,
4739 NULL);
673a394b 4740
fc8c067e
BW
4741 INIT_LIST_HEAD(&dev_priv->vm_list);
4742 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4743
a33afea5 4744 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4745 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4746 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4747 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4748 for (i = 0; i < I915_NUM_RINGS; i++)
4749 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4750 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4751 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4752 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4753 i915_gem_retire_work_handler);
b29c19b6
CW
4754 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4755 i915_gem_idle_work_handler);
1f83fee0 4756 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4757
94400120
DA
4758 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4759 if (IS_GEN3(dev)) {
50743298
DV
4760 I915_WRITE(MI_ARB_STATE,
4761 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4762 }
4763
72bfa19c
CW
4764 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4765
de151cf6 4766 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4767 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4768 dev_priv->fence_reg_start = 3;
de151cf6 4769
42b5aeab
VS
4770 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4771 dev_priv->num_fence_regs = 32;
4772 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4773 dev_priv->num_fence_regs = 16;
4774 else
4775 dev_priv->num_fence_regs = 8;
4776
b5aa8a0f 4777 /* Initialize fence registers to zero */
19b2dbde
CW
4778 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4779 i915_gem_restore_fences(dev);
10ed13e4 4780
673a394b 4781 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4782 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4783
ce453d81
CW
4784 dev_priv->mm.interruptible = true;
4785
ceabbba5
CW
4786 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4787 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4788 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4789 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4790
4791 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4792 register_oom_notifier(&dev_priv->mm.oom_notifier);
673a394b 4793}
71acb5eb
DA
4794
4795/*
4796 * Create a physically contiguous memory object for this object
4797 * e.g. for cursor + overlay regs
4798 */
995b6762
CW
4799static int i915_gem_init_phys_object(struct drm_device *dev,
4800 int id, int size, int align)
71acb5eb 4801{
3e31c6c0 4802 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4803 struct drm_i915_gem_phys_object *phys_obj;
4804 int ret;
4805
4806 if (dev_priv->mm.phys_objs[id - 1] || !size)
4807 return 0;
4808
b14c5679 4809 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4810 if (!phys_obj)
4811 return -ENOMEM;
4812
4813 phys_obj->id = id;
4814
6eeefaf3 4815 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4816 if (!phys_obj->handle) {
4817 ret = -ENOMEM;
4818 goto kfree_obj;
4819 }
4820#ifdef CONFIG_X86
4821 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4822#endif
4823
4824 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4825
4826 return 0;
4827kfree_obj:
9a298b2a 4828 kfree(phys_obj);
71acb5eb
DA
4829 return ret;
4830}
4831
995b6762 4832static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb 4833{
3e31c6c0 4834 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4835 struct drm_i915_gem_phys_object *phys_obj;
4836
4837 if (!dev_priv->mm.phys_objs[id - 1])
4838 return;
4839
4840 phys_obj = dev_priv->mm.phys_objs[id - 1];
4841 if (phys_obj->cur_obj) {
4842 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4843 }
4844
4845#ifdef CONFIG_X86
4846 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4847#endif
4848 drm_pci_free(dev, phys_obj->handle);
4849 kfree(phys_obj);
4850 dev_priv->mm.phys_objs[id - 1] = NULL;
4851}
4852
4853void i915_gem_free_all_phys_object(struct drm_device *dev)
4854{
4855 int i;
4856
260883c8 4857 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4858 i915_gem_free_phys_object(dev, i);
4859}
4860
4861void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4862 struct drm_i915_gem_object *obj)
71acb5eb 4863{
496ad9aa 4864 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4865 char *vaddr;
71acb5eb 4866 int i;
71acb5eb
DA
4867 int page_count;
4868
05394f39 4869 if (!obj->phys_obj)
71acb5eb 4870 return;
05394f39 4871 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4872
05394f39 4873 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4874 for (i = 0; i < page_count; i++) {
5949eac4 4875 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4876 if (!IS_ERR(page)) {
4877 char *dst = kmap_atomic(page);
4878 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4879 kunmap_atomic(dst);
4880
4881 drm_clflush_pages(&page, 1);
4882
4883 set_page_dirty(page);
4884 mark_page_accessed(page);
4885 page_cache_release(page);
4886 }
71acb5eb 4887 }
e76e9aeb 4888 i915_gem_chipset_flush(dev);
d78b47b9 4889
05394f39
CW
4890 obj->phys_obj->cur_obj = NULL;
4891 obj->phys_obj = NULL;
71acb5eb
DA
4892}
4893
4894int
4895i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4896 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4897 int id,
4898 int align)
71acb5eb 4899{
496ad9aa 4900 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
3e31c6c0 4901 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4902 int ret = 0;
4903 int page_count;
4904 int i;
4905
4906 if (id > I915_MAX_PHYS_OBJECT)
4907 return -EINVAL;
4908
05394f39
CW
4909 if (obj->phys_obj) {
4910 if (obj->phys_obj->id == id)
71acb5eb
DA
4911 return 0;
4912 i915_gem_detach_phys_object(dev, obj);
4913 }
4914
71acb5eb
DA
4915 /* create a new object */
4916 if (!dev_priv->mm.phys_objs[id - 1]) {
4917 ret = i915_gem_init_phys_object(dev, id,
05394f39 4918 obj->base.size, align);
71acb5eb 4919 if (ret) {
05394f39
CW
4920 DRM_ERROR("failed to init phys object %d size: %zu\n",
4921 id, obj->base.size);
e5281ccd 4922 return ret;
71acb5eb
DA
4923 }
4924 }
4925
4926 /* bind to the object */
05394f39
CW
4927 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4928 obj->phys_obj->cur_obj = obj;
71acb5eb 4929
05394f39 4930 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4931
4932 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4933 struct page *page;
4934 char *dst, *src;
4935
5949eac4 4936 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4937 if (IS_ERR(page))
4938 return PTR_ERR(page);
71acb5eb 4939
ff75b9bc 4940 src = kmap_atomic(page);
05394f39 4941 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4942 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4943 kunmap_atomic(src);
71acb5eb 4944
e5281ccd
CW
4945 mark_page_accessed(page);
4946 page_cache_release(page);
4947 }
d78b47b9 4948
71acb5eb 4949 return 0;
71acb5eb
DA
4950}
4951
4952static int
05394f39
CW
4953i915_gem_phys_pwrite(struct drm_device *dev,
4954 struct drm_i915_gem_object *obj,
71acb5eb
DA
4955 struct drm_i915_gem_pwrite *args,
4956 struct drm_file *file_priv)
4957{
05394f39 4958 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4959 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4960
b47b30cc
CW
4961 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4962 unsigned long unwritten;
4963
4964 /* The physical object once assigned is fixed for the lifetime
4965 * of the obj, so we can safely drop the lock and continue
4966 * to access vaddr.
4967 */
4968 mutex_unlock(&dev->struct_mutex);
4969 unwritten = copy_from_user(vaddr, user_data, args->size);
4970 mutex_lock(&dev->struct_mutex);
4971 if (unwritten)
4972 return -EFAULT;
4973 }
71acb5eb 4974
e76e9aeb 4975 i915_gem_chipset_flush(dev);
71acb5eb
DA
4976 return 0;
4977}
b962442e 4978
f787a5f5 4979void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4980{
f787a5f5 4981 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4982
b29c19b6
CW
4983 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4984
b962442e
EA
4985 /* Clean up our request list when the client is going away, so that
4986 * later retire_requests won't dereference our soon-to-be-gone
4987 * file_priv.
4988 */
1c25595f 4989 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4990 while (!list_empty(&file_priv->mm.request_list)) {
4991 struct drm_i915_gem_request *request;
4992
4993 request = list_first_entry(&file_priv->mm.request_list,
4994 struct drm_i915_gem_request,
4995 client_list);
4996 list_del(&request->client_list);
4997 request->file_priv = NULL;
4998 }
1c25595f 4999 spin_unlock(&file_priv->mm.lock);
b962442e 5000}
31169714 5001
b29c19b6
CW
5002static void
5003i915_gem_file_idle_work_handler(struct work_struct *work)
5004{
5005 struct drm_i915_file_private *file_priv =
5006 container_of(work, typeof(*file_priv), mm.idle_work.work);
5007
5008 atomic_set(&file_priv->rps_wait_boost, false);
5009}
5010
5011int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5012{
5013 struct drm_i915_file_private *file_priv;
e422b888 5014 int ret;
b29c19b6
CW
5015
5016 DRM_DEBUG_DRIVER("\n");
5017
5018 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5019 if (!file_priv)
5020 return -ENOMEM;
5021
5022 file->driver_priv = file_priv;
5023 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5024 file_priv->file = file;
b29c19b6
CW
5025
5026 spin_lock_init(&file_priv->mm.lock);
5027 INIT_LIST_HEAD(&file_priv->mm.request_list);
5028 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5029 i915_gem_file_idle_work_handler);
5030
e422b888
BW
5031 ret = i915_gem_context_open(dev, file);
5032 if (ret)
5033 kfree(file_priv);
b29c19b6 5034
e422b888 5035 return ret;
b29c19b6
CW
5036}
5037
5774506f
CW
5038static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5039{
5040 if (!mutex_is_locked(mutex))
5041 return false;
5042
5043#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5044 return mutex->owner == task;
5045#else
5046 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5047 return false;
5048#endif
5049}
5050
b453c4db
CW
5051static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5052{
5053 if (!mutex_trylock(&dev->struct_mutex)) {
5054 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5055 return false;
5056
5057 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5058 return false;
5059
5060 *unlock = false;
5061 } else
5062 *unlock = true;
5063
5064 return true;
5065}
5066
ceabbba5
CW
5067static int num_vma_bound(struct drm_i915_gem_object *obj)
5068{
5069 struct i915_vma *vma;
5070 int count = 0;
5071
5072 list_for_each_entry(vma, &obj->vma_list, vma_link)
5073 if (drm_mm_node_allocated(&vma->node))
5074 count++;
5075
5076 return count;
5077}
5078
7dc19d5a 5079static unsigned long
ceabbba5 5080i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5081{
17250b71 5082 struct drm_i915_private *dev_priv =
ceabbba5 5083 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5084 struct drm_device *dev = dev_priv->dev;
6c085a72 5085 struct drm_i915_gem_object *obj;
7dc19d5a 5086 unsigned long count;
b453c4db 5087 bool unlock;
17250b71 5088
b453c4db
CW
5089 if (!i915_gem_shrinker_lock(dev, &unlock))
5090 return 0;
31169714 5091
7dc19d5a 5092 count = 0;
35c20a60 5093 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5094 if (obj->pages_pin_count == 0)
7dc19d5a 5095 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5096
5097 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5098 if (!i915_gem_obj_is_pinned(obj) &&
5099 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5100 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5101 }
17250b71 5102
5774506f
CW
5103 if (unlock)
5104 mutex_unlock(&dev->struct_mutex);
d9973b43 5105
7dc19d5a 5106 return count;
31169714 5107}
a70a3148
BW
5108
5109/* All the new VM stuff */
5110unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5111 struct i915_address_space *vm)
5112{
5113 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5114 struct i915_vma *vma;
5115
6f425321
BW
5116 if (!dev_priv->mm.aliasing_ppgtt ||
5117 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5118 vm = &dev_priv->gtt.base;
5119
5120 BUG_ON(list_empty(&o->vma_list));
5121 list_for_each_entry(vma, &o->vma_list, vma_link) {
5122 if (vma->vm == vm)
5123 return vma->node.start;
5124
5125 }
5126 return -1;
5127}
5128
5129bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5130 struct i915_address_space *vm)
5131{
5132 struct i915_vma *vma;
5133
5134 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5135 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5136 return true;
5137
5138 return false;
5139}
5140
5141bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5142{
5a1d5eb0 5143 struct i915_vma *vma;
a70a3148 5144
5a1d5eb0
CW
5145 list_for_each_entry(vma, &o->vma_list, vma_link)
5146 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5147 return true;
5148
5149 return false;
5150}
5151
5152unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5153 struct i915_address_space *vm)
5154{
5155 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5156 struct i915_vma *vma;
5157
6f425321
BW
5158 if (!dev_priv->mm.aliasing_ppgtt ||
5159 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5160 vm = &dev_priv->gtt.base;
5161
5162 BUG_ON(list_empty(&o->vma_list));
5163
5164 list_for_each_entry(vma, &o->vma_list, vma_link)
5165 if (vma->vm == vm)
5166 return vma->node.size;
5167
5168 return 0;
5169}
5170
7dc19d5a 5171static unsigned long
ceabbba5 5172i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5173{
5174 struct drm_i915_private *dev_priv =
ceabbba5 5175 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5176 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5177 unsigned long freed;
b453c4db 5178 bool unlock;
7dc19d5a 5179
b453c4db
CW
5180 if (!i915_gem_shrinker_lock(dev, &unlock))
5181 return SHRINK_STOP;
7dc19d5a 5182
d9973b43
CW
5183 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5184 if (freed < sc->nr_to_scan)
5185 freed += __i915_gem_shrink(dev_priv,
5186 sc->nr_to_scan - freed,
5187 false);
7dc19d5a
DC
5188 if (unlock)
5189 mutex_unlock(&dev->struct_mutex);
d9973b43 5190
7dc19d5a
DC
5191 return freed;
5192}
5c2abbea 5193
2cfcd32a
CW
5194static int
5195i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5196{
5197 struct drm_i915_private *dev_priv =
5198 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5199 struct drm_device *dev = dev_priv->dev;
5200 struct drm_i915_gem_object *obj;
5201 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5202 unsigned long pinned, bound, unbound, freed;
5203 bool was_interruptible;
5204 bool unlock;
5205
5206 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5207 schedule_timeout_killable(1);
5208 if (timeout == 0) {
5209 pr_err("Unable to purge GPU memory due lock contention.\n");
5210 return NOTIFY_DONE;
5211 }
5212
5213 was_interruptible = dev_priv->mm.interruptible;
5214 dev_priv->mm.interruptible = false;
5215
5216 freed = i915_gem_shrink_all(dev_priv);
5217
5218 dev_priv->mm.interruptible = was_interruptible;
5219
5220 /* Because we may be allocating inside our own driver, we cannot
5221 * assert that there are no objects with pinned pages that are not
5222 * being pointed to by hardware.
5223 */
5224 unbound = bound = pinned = 0;
5225 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5226 if (!obj->base.filp) /* not backed by a freeable object */
5227 continue;
5228
5229 if (obj->pages_pin_count)
5230 pinned += obj->base.size;
5231 else
5232 unbound += obj->base.size;
5233 }
5234 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5235 if (!obj->base.filp)
5236 continue;
5237
5238 if (obj->pages_pin_count)
5239 pinned += obj->base.size;
5240 else
5241 bound += obj->base.size;
5242 }
5243
5244 if (unlock)
5245 mutex_unlock(&dev->struct_mutex);
5246
5247 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5248 freed, pinned);
5249 if (unbound || bound)
5250 pr_err("%lu and %lu bytes still available in the "
5251 "bound and unbound GPU page lists.\n",
5252 bound, unbound);
5253
5254 *(unsigned long *)ptr += freed;
5255 return NOTIFY_DONE;
5256}
5257
5c2abbea
BW
5258struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5259{
5260 struct i915_vma *vma;
5261
19656430
OM
5262 /* This WARN has probably outlived its usefulness (callers already
5263 * WARN if they don't find the GGTT vma they expect). When removing,
5264 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5265 if (WARN_ON(list_empty(&obj->vma_list)))
5266 return NULL;
5267
5268 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5269 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5270 return NULL;
5271
5272 return vma;
5273}