]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Only update i845/i865 CURBASE when disabled (v2)
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
0108a3ed 38static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
2dafb1e0 39static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
42static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
de151cf6 51static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
52static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
be72615b 55static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 56
31169714
CW
57static LIST_HEAD(shrink_list);
58static DEFINE_SPINLOCK(shrink_list_lock);
59
7d1c4804
CW
60static inline bool
61i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
62{
63 return obj_priv->gtt_space &&
64 !obj_priv->active &&
65 obj_priv->pin_count == 0;
66}
67
79e53945
JB
68int i915_gem_do_init(struct drm_device *dev, unsigned long start,
69 unsigned long end)
673a394b
EA
70{
71 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 72
79e53945
JB
73 if (start >= end ||
74 (start & (PAGE_SIZE - 1)) != 0 ||
75 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
76 return -EINVAL;
77 }
78
79e53945
JB
79 drm_mm_init(&dev_priv->mm.gtt_space, start,
80 end - start);
673a394b 81
79e53945
JB
82 dev->gtt_total = (uint32_t) (end - start);
83
84 return 0;
85}
673a394b 86
79e53945
JB
87int
88i915_gem_init_ioctl(struct drm_device *dev, void *data,
89 struct drm_file *file_priv)
90{
91 struct drm_i915_gem_init *args = data;
92 int ret;
93
94 mutex_lock(&dev->struct_mutex);
95 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
96 mutex_unlock(&dev->struct_mutex);
97
79e53945 98 return ret;
673a394b
EA
99}
100
5a125c3c
EA
101int
102i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
103 struct drm_file *file_priv)
104{
5a125c3c 105 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
106
107 if (!(dev->driver->driver_features & DRIVER_GEM))
108 return -ENODEV;
109
110 args->aper_size = dev->gtt_total;
2678d9d6
KP
111 args->aper_available_size = (args->aper_size -
112 atomic_read(&dev->pin_memory));
5a125c3c
EA
113
114 return 0;
115}
116
673a394b
EA
117
118/**
119 * Creates a new mm object and returns a handle to it.
120 */
121int
122i915_gem_create_ioctl(struct drm_device *dev, void *data,
123 struct drm_file *file_priv)
124{
125 struct drm_i915_gem_create *args = data;
126 struct drm_gem_object *obj;
a1a2d1d3
PP
127 int ret;
128 u32 handle;
673a394b
EA
129
130 args->size = roundup(args->size, PAGE_SIZE);
131
132 /* Allocate the new object */
ac52bc56 133 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
134 if (obj == NULL)
135 return -ENOMEM;
136
137 ret = drm_gem_handle_create(file_priv, obj, &handle);
86f100b1 138 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
139 if (ret)
140 return ret;
141
142 args->handle = handle;
143
144 return 0;
145}
146
eb01459f
EA
147static inline int
148fast_shmem_read(struct page **pages,
149 loff_t page_base, int page_offset,
150 char __user *data,
151 int length)
152{
153 char __iomem *vaddr;
2bc43b5c 154 int unwritten;
eb01459f
EA
155
156 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
157 if (vaddr == NULL)
158 return -ENOMEM;
2bc43b5c 159 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
160 kunmap_atomic(vaddr, KM_USER0);
161
2bc43b5c
FM
162 if (unwritten)
163 return -EFAULT;
164
165 return 0;
eb01459f
EA
166}
167
280b713b
EA
168static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
169{
170 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 171 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
172
173 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
174 obj_priv->tiling_mode != I915_TILING_NONE;
175}
176
99a03df5 177static inline void
40123c1f
EA
178slow_shmem_copy(struct page *dst_page,
179 int dst_offset,
180 struct page *src_page,
181 int src_offset,
182 int length)
183{
184 char *dst_vaddr, *src_vaddr;
185
99a03df5
CW
186 dst_vaddr = kmap(dst_page);
187 src_vaddr = kmap(src_page);
40123c1f
EA
188
189 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
190
99a03df5
CW
191 kunmap(src_page);
192 kunmap(dst_page);
40123c1f
EA
193}
194
99a03df5 195static inline void
280b713b
EA
196slow_shmem_bit17_copy(struct page *gpu_page,
197 int gpu_offset,
198 struct page *cpu_page,
199 int cpu_offset,
200 int length,
201 int is_read)
202{
203 char *gpu_vaddr, *cpu_vaddr;
204
205 /* Use the unswizzled path if this page isn't affected. */
206 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207 if (is_read)
208 return slow_shmem_copy(cpu_page, cpu_offset,
209 gpu_page, gpu_offset, length);
210 else
211 return slow_shmem_copy(gpu_page, gpu_offset,
212 cpu_page, cpu_offset, length);
213 }
214
99a03df5
CW
215 gpu_vaddr = kmap(gpu_page);
216 cpu_vaddr = kmap(cpu_page);
280b713b
EA
217
218 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
219 * XORing with the other bits (A9 for Y, A9 and A10 for X)
220 */
221 while (length > 0) {
222 int cacheline_end = ALIGN(gpu_offset + 1, 64);
223 int this_length = min(cacheline_end - gpu_offset, length);
224 int swizzled_gpu_offset = gpu_offset ^ 64;
225
226 if (is_read) {
227 memcpy(cpu_vaddr + cpu_offset,
228 gpu_vaddr + swizzled_gpu_offset,
229 this_length);
230 } else {
231 memcpy(gpu_vaddr + swizzled_gpu_offset,
232 cpu_vaddr + cpu_offset,
233 this_length);
234 }
235 cpu_offset += this_length;
236 gpu_offset += this_length;
237 length -= this_length;
238 }
239
99a03df5
CW
240 kunmap(cpu_page);
241 kunmap(gpu_page);
280b713b
EA
242}
243
eb01459f
EA
244/**
245 * This is the fast shmem pread path, which attempts to copy_from_user directly
246 * from the backing pages of the object to the user's address space. On a
247 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
248 */
249static int
250i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
251 struct drm_i915_gem_pread *args,
252 struct drm_file *file_priv)
253{
23010e43 254 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
255 ssize_t remain;
256 loff_t offset, page_base;
257 char __user *user_data;
258 int page_offset, page_length;
259 int ret;
260
261 user_data = (char __user *) (uintptr_t) args->data_ptr;
262 remain = args->size;
263
264 mutex_lock(&dev->struct_mutex);
265
4bdadb97 266 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
267 if (ret != 0)
268 goto fail_unlock;
269
270 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
271 args->size);
272 if (ret != 0)
273 goto fail_put_pages;
274
23010e43 275 obj_priv = to_intel_bo(obj);
eb01459f
EA
276 offset = args->offset;
277
278 while (remain > 0) {
279 /* Operation in this page
280 *
281 * page_base = page offset within aperture
282 * page_offset = offset within page
283 * page_length = bytes to copy for this page
284 */
285 page_base = (offset & ~(PAGE_SIZE-1));
286 page_offset = offset & (PAGE_SIZE-1);
287 page_length = remain;
288 if ((page_offset + remain) > PAGE_SIZE)
289 page_length = PAGE_SIZE - page_offset;
290
291 ret = fast_shmem_read(obj_priv->pages,
292 page_base, page_offset,
293 user_data, page_length);
294 if (ret)
295 goto fail_put_pages;
296
297 remain -= page_length;
298 user_data += page_length;
299 offset += page_length;
300 }
301
302fail_put_pages:
303 i915_gem_object_put_pages(obj);
304fail_unlock:
305 mutex_unlock(&dev->struct_mutex);
306
307 return ret;
308}
309
07f73f69
CW
310static int
311i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
312{
313 int ret;
314
4bdadb97 315 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
316
317 /* If we've insufficient memory to map in the pages, attempt
318 * to make some space by throwing out some old buffers.
319 */
320 if (ret == -ENOMEM) {
321 struct drm_device *dev = obj->dev;
07f73f69 322
0108a3ed
DV
323 ret = i915_gem_evict_something(dev, obj->size,
324 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
325 if (ret)
326 return ret;
327
4bdadb97 328 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
329 }
330
331 return ret;
332}
333
eb01459f
EA
334/**
335 * This is the fallback shmem pread path, which allocates temporary storage
336 * in kernel space to copy_to_user into outside of the struct_mutex, so we
337 * can copy out of the object's backing pages while holding the struct mutex
338 * and not take page faults.
339 */
340static int
341i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
342 struct drm_i915_gem_pread *args,
343 struct drm_file *file_priv)
344{
23010e43 345 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
346 struct mm_struct *mm = current->mm;
347 struct page **user_pages;
348 ssize_t remain;
349 loff_t offset, pinned_pages, i;
350 loff_t first_data_page, last_data_page, num_pages;
351 int shmem_page_index, shmem_page_offset;
352 int data_page_index, data_page_offset;
353 int page_length;
354 int ret;
355 uint64_t data_ptr = args->data_ptr;
280b713b 356 int do_bit17_swizzling;
eb01459f
EA
357
358 remain = args->size;
359
360 /* Pin the user pages containing the data. We can't fault while
361 * holding the struct mutex, yet we want to hold it while
362 * dereferencing the user data.
363 */
364 first_data_page = data_ptr / PAGE_SIZE;
365 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
366 num_pages = last_data_page - first_data_page + 1;
367
8e7d2b2c 368 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
369 if (user_pages == NULL)
370 return -ENOMEM;
371
372 down_read(&mm->mmap_sem);
373 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 374 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
375 up_read(&mm->mmap_sem);
376 if (pinned_pages < num_pages) {
377 ret = -EFAULT;
378 goto fail_put_user_pages;
379 }
380
280b713b
EA
381 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
382
eb01459f
EA
383 mutex_lock(&dev->struct_mutex);
384
07f73f69
CW
385 ret = i915_gem_object_get_pages_or_evict(obj);
386 if (ret)
eb01459f
EA
387 goto fail_unlock;
388
389 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
390 args->size);
391 if (ret != 0)
392 goto fail_put_pages;
393
23010e43 394 obj_priv = to_intel_bo(obj);
eb01459f
EA
395 offset = args->offset;
396
397 while (remain > 0) {
398 /* Operation in this page
399 *
400 * shmem_page_index = page number within shmem file
401 * shmem_page_offset = offset within page in shmem file
402 * data_page_index = page number in get_user_pages return
403 * data_page_offset = offset with data_page_index page.
404 * page_length = bytes to copy for this page
405 */
406 shmem_page_index = offset / PAGE_SIZE;
407 shmem_page_offset = offset & ~PAGE_MASK;
408 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
409 data_page_offset = data_ptr & ~PAGE_MASK;
410
411 page_length = remain;
412 if ((shmem_page_offset + page_length) > PAGE_SIZE)
413 page_length = PAGE_SIZE - shmem_page_offset;
414 if ((data_page_offset + page_length) > PAGE_SIZE)
415 page_length = PAGE_SIZE - data_page_offset;
416
280b713b 417 if (do_bit17_swizzling) {
99a03df5 418 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 419 shmem_page_offset,
99a03df5
CW
420 user_pages[data_page_index],
421 data_page_offset,
422 page_length,
423 1);
424 } else {
425 slow_shmem_copy(user_pages[data_page_index],
426 data_page_offset,
427 obj_priv->pages[shmem_page_index],
428 shmem_page_offset,
429 page_length);
280b713b 430 }
eb01459f
EA
431
432 remain -= page_length;
433 data_ptr += page_length;
434 offset += page_length;
435 }
436
437fail_put_pages:
438 i915_gem_object_put_pages(obj);
439fail_unlock:
440 mutex_unlock(&dev->struct_mutex);
441fail_put_user_pages:
442 for (i = 0; i < pinned_pages; i++) {
443 SetPageDirty(user_pages[i]);
444 page_cache_release(user_pages[i]);
445 }
8e7d2b2c 446 drm_free_large(user_pages);
eb01459f
EA
447
448 return ret;
449}
450
673a394b
EA
451/**
452 * Reads data from the object referenced by handle.
453 *
454 * On error, the contents of *data are undefined.
455 */
456int
457i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458 struct drm_file *file_priv)
459{
460 struct drm_i915_gem_pread *args = data;
461 struct drm_gem_object *obj;
462 struct drm_i915_gem_object *obj_priv;
673a394b
EA
463 int ret;
464
465 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
466 if (obj == NULL)
467 return -EBADF;
23010e43 468 obj_priv = to_intel_bo(obj);
673a394b
EA
469
470 /* Bounds check source.
471 *
472 * XXX: This could use review for overflow issues...
473 */
474 if (args->offset > obj->size || args->size > obj->size ||
475 args->offset + args->size > obj->size) {
bc9025bd 476 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
477 return -EINVAL;
478 }
479
280b713b 480 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 481 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
482 } else {
483 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
484 if (ret != 0)
485 ret = i915_gem_shmem_pread_slow(dev, obj, args,
486 file_priv);
487 }
673a394b 488
bc9025bd 489 drm_gem_object_unreference_unlocked(obj);
673a394b 490
eb01459f 491 return ret;
673a394b
EA
492}
493
0839ccb8
KP
494/* This is the fast write path which cannot handle
495 * page faults in the source data
9b7530cc 496 */
0839ccb8
KP
497
498static inline int
499fast_user_write(struct io_mapping *mapping,
500 loff_t page_base, int page_offset,
501 char __user *user_data,
502 int length)
9b7530cc 503{
9b7530cc 504 char *vaddr_atomic;
0839ccb8 505 unsigned long unwritten;
9b7530cc 506
fca3ec01 507 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
508 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
509 user_data, length);
fca3ec01 510 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
511 if (unwritten)
512 return -EFAULT;
513 return 0;
514}
515
516/* Here's the write path which can sleep for
517 * page faults
518 */
519
ab34c226 520static inline void
3de09aa3
EA
521slow_kernel_write(struct io_mapping *mapping,
522 loff_t gtt_base, int gtt_offset,
523 struct page *user_page, int user_offset,
524 int length)
0839ccb8 525{
ab34c226
CW
526 char __iomem *dst_vaddr;
527 char *src_vaddr;
0839ccb8 528
ab34c226
CW
529 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
530 src_vaddr = kmap(user_page);
531
532 memcpy_toio(dst_vaddr + gtt_offset,
533 src_vaddr + user_offset,
534 length);
535
536 kunmap(user_page);
537 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
538}
539
40123c1f
EA
540static inline int
541fast_shmem_write(struct page **pages,
542 loff_t page_base, int page_offset,
543 char __user *data,
544 int length)
545{
546 char __iomem *vaddr;
d0088775 547 unsigned long unwritten;
40123c1f
EA
548
549 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
550 if (vaddr == NULL)
551 return -ENOMEM;
d0088775 552 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
553 kunmap_atomic(vaddr, KM_USER0);
554
d0088775
DA
555 if (unwritten)
556 return -EFAULT;
40123c1f
EA
557 return 0;
558}
559
3de09aa3
EA
560/**
561 * This is the fast pwrite path, where we copy the data directly from the
562 * user into the GTT, uncached.
563 */
673a394b 564static int
3de09aa3
EA
565i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
567 struct drm_file *file_priv)
673a394b 568{
23010e43 569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 570 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 571 ssize_t remain;
0839ccb8 572 loff_t offset, page_base;
673a394b 573 char __user *user_data;
0839ccb8
KP
574 int page_offset, page_length;
575 int ret;
673a394b
EA
576
577 user_data = (char __user *) (uintptr_t) args->data_ptr;
578 remain = args->size;
579 if (!access_ok(VERIFY_READ, user_data, remain))
580 return -EFAULT;
581
582
583 mutex_lock(&dev->struct_mutex);
584 ret = i915_gem_object_pin(obj, 0);
585 if (ret) {
586 mutex_unlock(&dev->struct_mutex);
587 return ret;
588 }
2ef7eeaa 589 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
590 if (ret)
591 goto fail;
592
23010e43 593 obj_priv = to_intel_bo(obj);
673a394b 594 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
595
596 while (remain > 0) {
597 /* Operation in this page
598 *
0839ccb8
KP
599 * page_base = page offset within aperture
600 * page_offset = offset within page
601 * page_length = bytes to copy for this page
673a394b 602 */
0839ccb8
KP
603 page_base = (offset & ~(PAGE_SIZE-1));
604 page_offset = offset & (PAGE_SIZE-1);
605 page_length = remain;
606 if ((page_offset + remain) > PAGE_SIZE)
607 page_length = PAGE_SIZE - page_offset;
608
609 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
610 page_offset, user_data, page_length);
611
612 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
613 * source page isn't available. Return the error and we'll
614 * retry in the slow path.
0839ccb8 615 */
3de09aa3
EA
616 if (ret)
617 goto fail;
673a394b 618
0839ccb8
KP
619 remain -= page_length;
620 user_data += page_length;
621 offset += page_length;
673a394b 622 }
673a394b
EA
623
624fail:
625 i915_gem_object_unpin(obj);
626 mutex_unlock(&dev->struct_mutex);
627
628 return ret;
629}
630
3de09aa3
EA
631/**
632 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
633 * the memory and maps it using kmap_atomic for copying.
634 *
635 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
636 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
637 */
3043c60c 638static int
3de09aa3
EA
639i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
640 struct drm_i915_gem_pwrite *args,
641 struct drm_file *file_priv)
673a394b 642{
23010e43 643 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
644 drm_i915_private_t *dev_priv = dev->dev_private;
645 ssize_t remain;
646 loff_t gtt_page_base, offset;
647 loff_t first_data_page, last_data_page, num_pages;
648 loff_t pinned_pages, i;
649 struct page **user_pages;
650 struct mm_struct *mm = current->mm;
651 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 652 int ret;
3de09aa3
EA
653 uint64_t data_ptr = args->data_ptr;
654
655 remain = args->size;
656
657 /* Pin the user pages containing the data. We can't fault while
658 * holding the struct mutex, and all of the pwrite implementations
659 * want to hold it while dereferencing the user data.
660 */
661 first_data_page = data_ptr / PAGE_SIZE;
662 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
663 num_pages = last_data_page - first_data_page + 1;
664
8e7d2b2c 665 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
666 if (user_pages == NULL)
667 return -ENOMEM;
668
669 down_read(&mm->mmap_sem);
670 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
671 num_pages, 0, 0, user_pages, NULL);
672 up_read(&mm->mmap_sem);
673 if (pinned_pages < num_pages) {
674 ret = -EFAULT;
675 goto out_unpin_pages;
676 }
673a394b
EA
677
678 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
679 ret = i915_gem_object_pin(obj, 0);
680 if (ret)
681 goto out_unlock;
682
683 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
684 if (ret)
685 goto out_unpin_object;
686
23010e43 687 obj_priv = to_intel_bo(obj);
3de09aa3
EA
688 offset = obj_priv->gtt_offset + args->offset;
689
690 while (remain > 0) {
691 /* Operation in this page
692 *
693 * gtt_page_base = page offset within aperture
694 * gtt_page_offset = offset within page in aperture
695 * data_page_index = page number in get_user_pages return
696 * data_page_offset = offset with data_page_index page.
697 * page_length = bytes to copy for this page
698 */
699 gtt_page_base = offset & PAGE_MASK;
700 gtt_page_offset = offset & ~PAGE_MASK;
701 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
702 data_page_offset = data_ptr & ~PAGE_MASK;
703
704 page_length = remain;
705 if ((gtt_page_offset + page_length) > PAGE_SIZE)
706 page_length = PAGE_SIZE - gtt_page_offset;
707 if ((data_page_offset + page_length) > PAGE_SIZE)
708 page_length = PAGE_SIZE - data_page_offset;
709
ab34c226
CW
710 slow_kernel_write(dev_priv->mm.gtt_mapping,
711 gtt_page_base, gtt_page_offset,
712 user_pages[data_page_index],
713 data_page_offset,
714 page_length);
3de09aa3
EA
715
716 remain -= page_length;
717 offset += page_length;
718 data_ptr += page_length;
719 }
720
721out_unpin_object:
722 i915_gem_object_unpin(obj);
723out_unlock:
724 mutex_unlock(&dev->struct_mutex);
725out_unpin_pages:
726 for (i = 0; i < pinned_pages; i++)
727 page_cache_release(user_pages[i]);
8e7d2b2c 728 drm_free_large(user_pages);
3de09aa3
EA
729
730 return ret;
731}
732
40123c1f
EA
733/**
734 * This is the fast shmem pwrite path, which attempts to directly
735 * copy_from_user into the kmapped pages backing the object.
736 */
3043c60c 737static int
40123c1f
EA
738i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file_priv)
673a394b 741{
23010e43 742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length;
673a394b 747 int ret;
40123c1f
EA
748
749 user_data = (char __user *) (uintptr_t) args->data_ptr;
750 remain = args->size;
673a394b
EA
751
752 mutex_lock(&dev->struct_mutex);
753
4bdadb97 754 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
755 if (ret != 0)
756 goto fail_unlock;
673a394b 757
e47c68e9 758 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
759 if (ret != 0)
760 goto fail_put_pages;
761
23010e43 762 obj_priv = to_intel_bo(obj);
40123c1f
EA
763 offset = args->offset;
764 obj_priv->dirty = 1;
765
766 while (remain > 0) {
767 /* Operation in this page
768 *
769 * page_base = page offset within aperture
770 * page_offset = offset within page
771 * page_length = bytes to copy for this page
772 */
773 page_base = (offset & ~(PAGE_SIZE-1));
774 page_offset = offset & (PAGE_SIZE-1);
775 page_length = remain;
776 if ((page_offset + remain) > PAGE_SIZE)
777 page_length = PAGE_SIZE - page_offset;
778
779 ret = fast_shmem_write(obj_priv->pages,
780 page_base, page_offset,
781 user_data, page_length);
782 if (ret)
783 goto fail_put_pages;
784
785 remain -= page_length;
786 user_data += page_length;
787 offset += page_length;
788 }
789
790fail_put_pages:
791 i915_gem_object_put_pages(obj);
792fail_unlock:
793 mutex_unlock(&dev->struct_mutex);
794
795 return ret;
796}
797
798/**
799 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
800 * the memory and maps it using kmap_atomic for copying.
801 *
802 * This avoids taking mmap_sem for faulting on the user's address while the
803 * struct_mutex is held.
804 */
805static int
806i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
807 struct drm_i915_gem_pwrite *args,
808 struct drm_file *file_priv)
809{
23010e43 810 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
811 struct mm_struct *mm = current->mm;
812 struct page **user_pages;
813 ssize_t remain;
814 loff_t offset, pinned_pages, i;
815 loff_t first_data_page, last_data_page, num_pages;
816 int shmem_page_index, shmem_page_offset;
817 int data_page_index, data_page_offset;
818 int page_length;
819 int ret;
820 uint64_t data_ptr = args->data_ptr;
280b713b 821 int do_bit17_swizzling;
40123c1f
EA
822
823 remain = args->size;
824
825 /* Pin the user pages containing the data. We can't fault while
826 * holding the struct mutex, and all of the pwrite implementations
827 * want to hold it while dereferencing the user data.
828 */
829 first_data_page = data_ptr / PAGE_SIZE;
830 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
831 num_pages = last_data_page - first_data_page + 1;
832
8e7d2b2c 833 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
834 if (user_pages == NULL)
835 return -ENOMEM;
836
837 down_read(&mm->mmap_sem);
838 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
839 num_pages, 0, 0, user_pages, NULL);
840 up_read(&mm->mmap_sem);
841 if (pinned_pages < num_pages) {
842 ret = -EFAULT;
843 goto fail_put_user_pages;
673a394b
EA
844 }
845
280b713b
EA
846 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
847
40123c1f
EA
848 mutex_lock(&dev->struct_mutex);
849
07f73f69
CW
850 ret = i915_gem_object_get_pages_or_evict(obj);
851 if (ret)
40123c1f
EA
852 goto fail_unlock;
853
854 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
855 if (ret != 0)
856 goto fail_put_pages;
857
23010e43 858 obj_priv = to_intel_bo(obj);
673a394b 859 offset = args->offset;
40123c1f 860 obj_priv->dirty = 1;
673a394b 861
40123c1f
EA
862 while (remain > 0) {
863 /* Operation in this page
864 *
865 * shmem_page_index = page number within shmem file
866 * shmem_page_offset = offset within page in shmem file
867 * data_page_index = page number in get_user_pages return
868 * data_page_offset = offset with data_page_index page.
869 * page_length = bytes to copy for this page
870 */
871 shmem_page_index = offset / PAGE_SIZE;
872 shmem_page_offset = offset & ~PAGE_MASK;
873 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874 data_page_offset = data_ptr & ~PAGE_MASK;
875
876 page_length = remain;
877 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - shmem_page_offset;
879 if ((data_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - data_page_offset;
881
280b713b 882 if (do_bit17_swizzling) {
99a03df5 883 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
99a03df5
CW
887 page_length,
888 0);
889 } else {
890 slow_shmem_copy(obj_priv->pages[shmem_page_index],
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
894 page_length);
280b713b 895 }
40123c1f
EA
896
897 remain -= page_length;
898 data_ptr += page_length;
899 offset += page_length;
673a394b
EA
900 }
901
40123c1f
EA
902fail_put_pages:
903 i915_gem_object_put_pages(obj);
904fail_unlock:
673a394b 905 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
906fail_put_user_pages:
907 for (i = 0; i < pinned_pages; i++)
908 page_cache_release(user_pages[i]);
8e7d2b2c 909 drm_free_large(user_pages);
673a394b 910
40123c1f 911 return ret;
673a394b
EA
912}
913
914/**
915 * Writes data to the object referenced by handle.
916 *
917 * On error, the contents of the buffer that were to be modified are undefined.
918 */
919int
920i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
921 struct drm_file *file_priv)
922{
923 struct drm_i915_gem_pwrite *args = data;
924 struct drm_gem_object *obj;
925 struct drm_i915_gem_object *obj_priv;
926 int ret = 0;
927
928 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
929 if (obj == NULL)
930 return -EBADF;
23010e43 931 obj_priv = to_intel_bo(obj);
673a394b
EA
932
933 /* Bounds check destination.
934 *
935 * XXX: This could use review for overflow issues...
936 */
937 if (args->offset > obj->size || args->size > obj->size ||
938 args->offset + args->size > obj->size) {
bc9025bd 939 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
940 return -EINVAL;
941 }
942
943 /* We can only do the GTT pwrite on untiled buffers, as otherwise
944 * it would end up going through the fenced access, and we'll get
945 * different detiling behavior between reading and writing.
946 * pread/pwrite currently are reading and writing from the CPU
947 * perspective, requiring manual detiling by the client.
948 */
71acb5eb
DA
949 if (obj_priv->phys_obj)
950 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
951 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
952 dev->gtt_total != 0 &&
953 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
954 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
957 file_priv);
958 }
280b713b
EA
959 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
960 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
961 } else {
962 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
963 if (ret == -EFAULT) {
964 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
965 file_priv);
966 }
967 }
673a394b
EA
968
969#if WATCH_PWRITE
970 if (ret)
971 DRM_INFO("pwrite failed %d\n", ret);
972#endif
973
bc9025bd 974 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
975
976 return ret;
977}
978
979/**
2ef7eeaa
EA
980 * Called when user space prepares to use an object with the CPU, either
981 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
982 */
983int
984i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
985 struct drm_file *file_priv)
986{
a09ba7fa 987 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
988 struct drm_i915_gem_set_domain *args = data;
989 struct drm_gem_object *obj;
652c393a 990 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
991 uint32_t read_domains = args->read_domains;
992 uint32_t write_domain = args->write_domain;
673a394b
EA
993 int ret;
994
995 if (!(dev->driver->driver_features & DRIVER_GEM))
996 return -ENODEV;
997
2ef7eeaa 998 /* Only handle setting domains to types used by the CPU. */
21d509e3 999 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1000 return -EINVAL;
1001
21d509e3 1002 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1003 return -EINVAL;
1004
1005 /* Having something in the write domain implies it's in the read
1006 * domain, and only that read domain. Enforce that in the request.
1007 */
1008 if (write_domain != 0 && read_domains != write_domain)
1009 return -EINVAL;
1010
673a394b
EA
1011 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1012 if (obj == NULL)
1013 return -EBADF;
23010e43 1014 obj_priv = to_intel_bo(obj);
673a394b
EA
1015
1016 mutex_lock(&dev->struct_mutex);
652c393a
JB
1017
1018 intel_mark_busy(dev, obj);
1019
673a394b 1020#if WATCH_BUF
cfd43c02 1021 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1022 obj, obj->size, read_domains, write_domain);
673a394b 1023#endif
2ef7eeaa
EA
1024 if (read_domains & I915_GEM_DOMAIN_GTT) {
1025 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1026
a09ba7fa
EA
1027 /* Update the LRU on the fence for the CPU access that's
1028 * about to occur.
1029 */
1030 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1031 struct drm_i915_fence_reg *reg =
1032 &dev_priv->fence_regs[obj_priv->fence_reg];
1033 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1034 &dev_priv->mm.fence_list);
1035 }
1036
02354392
EA
1037 /* Silently promote "you're not bound, there was nothing to do"
1038 * to success, since the client was just asking us to
1039 * make sure everything was done.
1040 */
1041 if (ret == -EINVAL)
1042 ret = 0;
2ef7eeaa 1043 } else {
e47c68e9 1044 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1045 }
1046
7d1c4804
CW
1047
1048 /* Maintain LRU order of "inactive" objects */
1049 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1050 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1051
673a394b
EA
1052 drm_gem_object_unreference(obj);
1053 mutex_unlock(&dev->struct_mutex);
1054 return ret;
1055}
1056
1057/**
1058 * Called when user space has done writes to this buffer
1059 */
1060int
1061i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1062 struct drm_file *file_priv)
1063{
1064 struct drm_i915_gem_sw_finish *args = data;
1065 struct drm_gem_object *obj;
1066 struct drm_i915_gem_object *obj_priv;
1067 int ret = 0;
1068
1069 if (!(dev->driver->driver_features & DRIVER_GEM))
1070 return -ENODEV;
1071
1072 mutex_lock(&dev->struct_mutex);
1073 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1074 if (obj == NULL) {
1075 mutex_unlock(&dev->struct_mutex);
1076 return -EBADF;
1077 }
1078
1079#if WATCH_BUF
cfd43c02 1080 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1081 __func__, args->handle, obj, obj->size);
1082#endif
23010e43 1083 obj_priv = to_intel_bo(obj);
673a394b
EA
1084
1085 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1086 if (obj_priv->pin_count)
1087 i915_gem_object_flush_cpu_write_domain(obj);
1088
673a394b
EA
1089 drm_gem_object_unreference(obj);
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092}
1093
1094/**
1095 * Maps the contents of an object, returning the address it is mapped
1096 * into.
1097 *
1098 * While the mapping holds a reference on the contents of the object, it doesn't
1099 * imply a ref on the object itself.
1100 */
1101int
1102i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1103 struct drm_file *file_priv)
1104{
1105 struct drm_i915_gem_mmap *args = data;
1106 struct drm_gem_object *obj;
1107 loff_t offset;
1108 unsigned long addr;
1109
1110 if (!(dev->driver->driver_features & DRIVER_GEM))
1111 return -ENODEV;
1112
1113 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1114 if (obj == NULL)
1115 return -EBADF;
1116
1117 offset = args->offset;
1118
1119 down_write(&current->mm->mmap_sem);
1120 addr = do_mmap(obj->filp, 0, args->size,
1121 PROT_READ | PROT_WRITE, MAP_SHARED,
1122 args->offset);
1123 up_write(&current->mm->mmap_sem);
bc9025bd 1124 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1125 if (IS_ERR((void *)addr))
1126 return addr;
1127
1128 args->addr_ptr = (uint64_t) addr;
1129
1130 return 0;
1131}
1132
de151cf6
JB
1133/**
1134 * i915_gem_fault - fault a page into the GTT
1135 * vma: VMA in question
1136 * vmf: fault info
1137 *
1138 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1139 * from userspace. The fault handler takes care of binding the object to
1140 * the GTT (if needed), allocating and programming a fence register (again,
1141 * only if needed based on whether the old reg is still valid or the object
1142 * is tiled) and inserting a new PTE into the faulting process.
1143 *
1144 * Note that the faulting process may involve evicting existing objects
1145 * from the GTT and/or fence registers to make room. So performance may
1146 * suffer if the GTT working set is large or there are few fence registers
1147 * left.
1148 */
1149int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1150{
1151 struct drm_gem_object *obj = vma->vm_private_data;
1152 struct drm_device *dev = obj->dev;
7d1c4804 1153 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1154 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1155 pgoff_t page_offset;
1156 unsigned long pfn;
1157 int ret = 0;
0f973f27 1158 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1159
1160 /* We don't use vmf->pgoff since that has the fake offset */
1161 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1162 PAGE_SHIFT;
1163
1164 /* Now bind it into the GTT if needed */
1165 mutex_lock(&dev->struct_mutex);
1166 if (!obj_priv->gtt_space) {
e67b8ce1 1167 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1168 if (ret)
1169 goto unlock;
07f4f3e8 1170
07f4f3e8 1171 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1172 if (ret)
1173 goto unlock;
de151cf6
JB
1174 }
1175
1176 /* Need a new fence register? */
a09ba7fa 1177 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1178 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1179 if (ret)
1180 goto unlock;
d9ddcb96 1181 }
de151cf6 1182
7d1c4804
CW
1183 if (i915_gem_object_is_inactive(obj_priv))
1184 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1185
de151cf6
JB
1186 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1187 page_offset;
1188
1189 /* Finally, remap it using the new GTT offset */
1190 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1191unlock:
de151cf6
JB
1192 mutex_unlock(&dev->struct_mutex);
1193
1194 switch (ret) {
c715089f
CW
1195 case 0:
1196 case -ERESTARTSYS:
1197 return VM_FAULT_NOPAGE;
de151cf6
JB
1198 case -ENOMEM:
1199 case -EAGAIN:
1200 return VM_FAULT_OOM;
de151cf6 1201 default:
c715089f 1202 return VM_FAULT_SIGBUS;
de151cf6
JB
1203 }
1204}
1205
1206/**
1207 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1208 * @obj: obj in question
1209 *
1210 * GEM memory mapping works by handing back to userspace a fake mmap offset
1211 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1212 * up the object based on the offset and sets up the various memory mapping
1213 * structures.
1214 *
1215 * This routine allocates and attaches a fake offset for @obj.
1216 */
1217static int
1218i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1219{
1220 struct drm_device *dev = obj->dev;
1221 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1222 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1223 struct drm_map_list *list;
f77d390c 1224 struct drm_local_map *map;
de151cf6
JB
1225 int ret = 0;
1226
1227 /* Set the object up for mmap'ing */
1228 list = &obj->map_list;
9a298b2a 1229 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1230 if (!list->map)
1231 return -ENOMEM;
1232
1233 map = list->map;
1234 map->type = _DRM_GEM;
1235 map->size = obj->size;
1236 map->handle = obj;
1237
1238 /* Get a DRM GEM mmap offset allocated... */
1239 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1240 obj->size / PAGE_SIZE, 0, 0);
1241 if (!list->file_offset_node) {
1242 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1243 ret = -ENOMEM;
1244 goto out_free_list;
1245 }
1246
1247 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1248 obj->size / PAGE_SIZE, 0);
1249 if (!list->file_offset_node) {
1250 ret = -ENOMEM;
1251 goto out_free_list;
1252 }
1253
1254 list->hash.key = list->file_offset_node->start;
1255 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1256 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1257 ret = -ENOMEM;
de151cf6
JB
1258 goto out_free_mm;
1259 }
1260
1261 /* By now we should be all set, any drm_mmap request on the offset
1262 * below will get to our mmap & fault handler */
1263 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1264
1265 return 0;
1266
1267out_free_mm:
1268 drm_mm_put_block(list->file_offset_node);
1269out_free_list:
9a298b2a 1270 kfree(list->map);
de151cf6
JB
1271
1272 return ret;
1273}
1274
901782b2
CW
1275/**
1276 * i915_gem_release_mmap - remove physical page mappings
1277 * @obj: obj in question
1278 *
af901ca1 1279 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1280 * relinquish ownership of the pages back to the system.
1281 *
1282 * It is vital that we remove the page mapping if we have mapped a tiled
1283 * object through the GTT and then lose the fence register due to
1284 * resource pressure. Similarly if the object has been moved out of the
1285 * aperture, than pages mapped into userspace must be revoked. Removing the
1286 * mapping will then trigger a page fault on the next user access, allowing
1287 * fixup by i915_gem_fault().
1288 */
d05ca301 1289void
901782b2
CW
1290i915_gem_release_mmap(struct drm_gem_object *obj)
1291{
1292 struct drm_device *dev = obj->dev;
23010e43 1293 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1294
1295 if (dev->dev_mapping)
1296 unmap_mapping_range(dev->dev_mapping,
1297 obj_priv->mmap_offset, obj->size, 1);
1298}
1299
ab00b3e5
JB
1300static void
1301i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1302{
1303 struct drm_device *dev = obj->dev;
23010e43 1304 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1305 struct drm_gem_mm *mm = dev->mm_private;
1306 struct drm_map_list *list;
1307
1308 list = &obj->map_list;
1309 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1310
1311 if (list->file_offset_node) {
1312 drm_mm_put_block(list->file_offset_node);
1313 list->file_offset_node = NULL;
1314 }
1315
1316 if (list->map) {
9a298b2a 1317 kfree(list->map);
ab00b3e5
JB
1318 list->map = NULL;
1319 }
1320
1321 obj_priv->mmap_offset = 0;
1322}
1323
de151cf6
JB
1324/**
1325 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1326 * @obj: object to check
1327 *
1328 * Return the required GTT alignment for an object, taking into account
1329 * potential fence register mapping if needed.
1330 */
1331static uint32_t
1332i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1333{
1334 struct drm_device *dev = obj->dev;
23010e43 1335 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1336 int start, i;
1337
1338 /*
1339 * Minimum alignment is 4k (GTT page size), but might be greater
1340 * if a fence register is needed for the object.
1341 */
1342 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1343 return 4096;
1344
1345 /*
1346 * Previous chips need to be aligned to the size of the smallest
1347 * fence register that can contain the object.
1348 */
1349 if (IS_I9XX(dev))
1350 start = 1024*1024;
1351 else
1352 start = 512*1024;
1353
1354 for (i = start; i < obj->size; i <<= 1)
1355 ;
1356
1357 return i;
1358}
1359
1360/**
1361 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1362 * @dev: DRM device
1363 * @data: GTT mapping ioctl data
1364 * @file_priv: GEM object info
1365 *
1366 * Simply returns the fake offset to userspace so it can mmap it.
1367 * The mmap call will end up in drm_gem_mmap(), which will set things
1368 * up so we can get faults in the handler above.
1369 *
1370 * The fault handler will take care of binding the object into the GTT
1371 * (since it may have been evicted to make room for something), allocating
1372 * a fence register, and mapping the appropriate aperture address into
1373 * userspace.
1374 */
1375int
1376i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1377 struct drm_file *file_priv)
1378{
1379 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1380 struct drm_gem_object *obj;
1381 struct drm_i915_gem_object *obj_priv;
1382 int ret;
1383
1384 if (!(dev->driver->driver_features & DRIVER_GEM))
1385 return -ENODEV;
1386
1387 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1388 if (obj == NULL)
1389 return -EBADF;
1390
1391 mutex_lock(&dev->struct_mutex);
1392
23010e43 1393 obj_priv = to_intel_bo(obj);
de151cf6 1394
ab18282d
CW
1395 if (obj_priv->madv != I915_MADV_WILLNEED) {
1396 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1397 drm_gem_object_unreference(obj);
1398 mutex_unlock(&dev->struct_mutex);
1399 return -EINVAL;
1400 }
1401
1402
de151cf6
JB
1403 if (!obj_priv->mmap_offset) {
1404 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1405 if (ret) {
1406 drm_gem_object_unreference(obj);
1407 mutex_unlock(&dev->struct_mutex);
de151cf6 1408 return ret;
13af1062 1409 }
de151cf6
JB
1410 }
1411
1412 args->offset = obj_priv->mmap_offset;
1413
de151cf6
JB
1414 /*
1415 * Pull it into the GTT so that we have a page list (makes the
1416 * initial fault faster and any subsequent flushing possible).
1417 */
1418 if (!obj_priv->agp_mem) {
e67b8ce1 1419 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
de151cf6
JB
1425 }
1426
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429
1430 return 0;
1431}
1432
6911a9b8 1433void
856fa198 1434i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1435{
23010e43 1436 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1437 int page_count = obj->size / PAGE_SIZE;
1438 int i;
1439
856fa198 1440 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1441 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1442
856fa198
EA
1443 if (--obj_priv->pages_refcount != 0)
1444 return;
673a394b 1445
280b713b
EA
1446 if (obj_priv->tiling_mode != I915_TILING_NONE)
1447 i915_gem_object_save_bit_17_swizzle(obj);
1448
3ef94daa 1449 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1450 obj_priv->dirty = 0;
3ef94daa
CW
1451
1452 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1453 if (obj_priv->dirty)
1454 set_page_dirty(obj_priv->pages[i]);
1455
1456 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1457 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1458
1459 page_cache_release(obj_priv->pages[i]);
1460 }
673a394b
EA
1461 obj_priv->dirty = 0;
1462
8e7d2b2c 1463 drm_free_large(obj_priv->pages);
856fa198 1464 obj_priv->pages = NULL;
673a394b
EA
1465}
1466
1467static void
852835f3
ZN
1468i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1469 struct intel_ring_buffer *ring)
673a394b
EA
1470{
1471 struct drm_device *dev = obj->dev;
1472 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1473 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1474 BUG_ON(ring == NULL);
1475 obj_priv->ring = ring;
673a394b
EA
1476
1477 /* Add a reference if we're newly entering the active list. */
1478 if (!obj_priv->active) {
1479 drm_gem_object_reference(obj);
1480 obj_priv->active = 1;
1481 }
1482 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1483 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1484 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1485 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1486 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1487}
1488
ce44b0ea
EA
1489static void
1490i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1491{
1492 struct drm_device *dev = obj->dev;
1493 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1494 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1495
1496 BUG_ON(!obj_priv->active);
1497 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1498 obj_priv->last_rendering_seqno = 0;
1499}
673a394b 1500
963b4836
CW
1501/* Immediately discard the backing storage */
1502static void
1503i915_gem_object_truncate(struct drm_gem_object *obj)
1504{
23010e43 1505 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1506 struct inode *inode;
963b4836 1507
ae9fed6b
CW
1508 /* Our goal here is to return as much of the memory as
1509 * is possible back to the system as we are called from OOM.
1510 * To do this we must instruct the shmfs to drop all of its
1511 * backing pages, *now*. Here we mirror the actions taken
1512 * when by shmem_delete_inode() to release the backing store.
1513 */
bb6baf76 1514 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1515 truncate_inode_pages(inode->i_mapping, 0);
1516 if (inode->i_op->truncate_range)
1517 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1518
1519 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1520}
1521
1522static inline int
1523i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1524{
1525 return obj_priv->madv == I915_MADV_DONTNEED;
1526}
1527
673a394b
EA
1528static void
1529i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1530{
1531 struct drm_device *dev = obj->dev;
1532 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1533 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1534
1535 i915_verify_inactive(dev, __FILE__, __LINE__);
1536 if (obj_priv->pin_count != 0)
1537 list_del_init(&obj_priv->list);
1538 else
1539 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1540
99fcb766
DV
1541 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1542
ce44b0ea 1543 obj_priv->last_rendering_seqno = 0;
852835f3 1544 obj_priv->ring = NULL;
673a394b
EA
1545 if (obj_priv->active) {
1546 obj_priv->active = 0;
1547 drm_gem_object_unreference(obj);
1548 }
1549 i915_verify_inactive(dev, __FILE__, __LINE__);
1550}
1551
63560396
DV
1552static void
1553i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1554 uint32_t flush_domains, uint32_t seqno,
1555 struct intel_ring_buffer *ring)
63560396
DV
1556{
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558 struct drm_i915_gem_object *obj_priv, *next;
1559
1560 list_for_each_entry_safe(obj_priv, next,
1561 &dev_priv->mm.gpu_write_list,
1562 gpu_write_list) {
a8089e84 1563 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1564
1565 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1566 obj->write_domain &&
1567 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1568 uint32_t old_write_domain = obj->write_domain;
1569
1570 obj->write_domain = 0;
1571 list_del_init(&obj_priv->gpu_write_list);
852835f3 1572 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1573
1574 /* update the fence lru list */
007cc8ac
DV
1575 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1576 struct drm_i915_fence_reg *reg =
1577 &dev_priv->fence_regs[obj_priv->fence_reg];
1578 list_move_tail(&reg->lru_list,
63560396 1579 &dev_priv->mm.fence_list);
007cc8ac 1580 }
63560396
DV
1581
1582 trace_i915_gem_object_change_domain(obj,
1583 obj->read_domains,
1584 old_write_domain);
1585 }
1586 }
1587}
8187a2b7 1588
5a5a0c64 1589uint32_t
b962442e 1590i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1591 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1592{
1593 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1594 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1595 struct drm_i915_gem_request *request;
1596 uint32_t seqno;
1597 int was_empty;
673a394b 1598
b962442e
EA
1599 if (file_priv != NULL)
1600 i915_file_priv = file_priv->driver_priv;
1601
9a298b2a 1602 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1603 if (request == NULL)
1604 return 0;
1605
852835f3 1606 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1607
1608 request->seqno = seqno;
852835f3 1609 request->ring = ring;
673a394b 1610 request->emitted_jiffies = jiffies;
852835f3
ZN
1611 was_empty = list_empty(&ring->request_list);
1612 list_add_tail(&request->list, &ring->request_list);
1613
b962442e
EA
1614 if (i915_file_priv) {
1615 list_add_tail(&request->client_list,
1616 &i915_file_priv->mm.request_list);
1617 } else {
1618 INIT_LIST_HEAD(&request->client_list);
1619 }
673a394b 1620
ce44b0ea
EA
1621 /* Associate any objects on the flushing list matching the write
1622 * domain we're flushing with our flush.
1623 */
63560396 1624 if (flush_domains != 0)
852835f3 1625 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1626
f65d9421
BG
1627 if (!dev_priv->mm.suspended) {
1628 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1629 if (was_empty)
1630 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1631 }
673a394b
EA
1632 return seqno;
1633}
1634
1635/**
1636 * Command execution barrier
1637 *
1638 * Ensures that all commands in the ring are finished
1639 * before signalling the CPU
1640 */
3043c60c 1641static uint32_t
852835f3 1642i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1643{
673a394b 1644 uint32_t flush_domains = 0;
673a394b
EA
1645
1646 /* The sampler always gets flushed on i965 (sigh) */
1647 if (IS_I965G(dev))
1648 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1649
1650 ring->flush(dev, ring,
1651 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1652 return flush_domains;
1653}
1654
1655/**
1656 * Moves buffers associated only with the given active seqno from the active
1657 * to inactive list, potentially freeing them.
1658 */
1659static void
1660i915_gem_retire_request(struct drm_device *dev,
1661 struct drm_i915_gem_request *request)
1662{
1663 drm_i915_private_t *dev_priv = dev->dev_private;
1664
1c5d22f7
CW
1665 trace_i915_gem_request_retire(dev, request->seqno);
1666
673a394b
EA
1667 /* Move any buffers on the active list that are no longer referenced
1668 * by the ringbuffer to the flushing/inactive lists as appropriate.
1669 */
5e118f41 1670 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1671 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1672 struct drm_gem_object *obj;
1673 struct drm_i915_gem_object *obj_priv;
1674
852835f3 1675 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1676 struct drm_i915_gem_object,
1677 list);
a8089e84 1678 obj = &obj_priv->base;
673a394b
EA
1679
1680 /* If the seqno being retired doesn't match the oldest in the
1681 * list, then the oldest in the list must still be newer than
1682 * this seqno.
1683 */
1684 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1685 goto out;
de151cf6 1686
673a394b
EA
1687#if WATCH_LRU
1688 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1689 __func__, request->seqno, obj);
1690#endif
1691
ce44b0ea
EA
1692 if (obj->write_domain != 0)
1693 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1694 else {
1695 /* Take a reference on the object so it won't be
1696 * freed while the spinlock is held. The list
1697 * protection for this spinlock is safe when breaking
1698 * the lock like this since the next thing we do
1699 * is just get the head of the list again.
1700 */
1701 drm_gem_object_reference(obj);
673a394b 1702 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1703 spin_unlock(&dev_priv->mm.active_list_lock);
1704 drm_gem_object_unreference(obj);
1705 spin_lock(&dev_priv->mm.active_list_lock);
1706 }
673a394b 1707 }
5e118f41
CW
1708out:
1709 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1710}
1711
1712/**
1713 * Returns true if seq1 is later than seq2.
1714 */
22be1724 1715bool
673a394b
EA
1716i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1717{
1718 return (int32_t)(seq1 - seq2) >= 0;
1719}
1720
1721uint32_t
852835f3 1722i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1723 struct intel_ring_buffer *ring)
673a394b 1724{
852835f3 1725 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1726}
1727
1728/**
1729 * This function clears the request list as sequence numbers are passed.
1730 */
b09a1fec
CW
1731static void
1732i915_gem_retire_requests_ring(struct drm_device *dev,
1733 struct intel_ring_buffer *ring)
673a394b
EA
1734{
1735 drm_i915_private_t *dev_priv = dev->dev_private;
1736 uint32_t seqno;
1737
8187a2b7 1738 if (!ring->status_page.page_addr
852835f3 1739 || list_empty(&ring->request_list))
6c0594a3
KW
1740 return;
1741
852835f3 1742 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1743
852835f3 1744 while (!list_empty(&ring->request_list)) {
673a394b
EA
1745 struct drm_i915_gem_request *request;
1746 uint32_t retiring_seqno;
1747
852835f3 1748 request = list_first_entry(&ring->request_list,
673a394b
EA
1749 struct drm_i915_gem_request,
1750 list);
1751 retiring_seqno = request->seqno;
1752
1753 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1754 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1755 i915_gem_retire_request(dev, request);
1756
1757 list_del(&request->list);
b962442e 1758 list_del(&request->client_list);
9a298b2a 1759 kfree(request);
673a394b
EA
1760 } else
1761 break;
1762 }
9d34e5db
CW
1763
1764 if (unlikely (dev_priv->trace_irq_seqno &&
1765 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1766
1767 ring->user_irq_put(dev, ring);
9d34e5db
CW
1768 dev_priv->trace_irq_seqno = 0;
1769 }
673a394b
EA
1770}
1771
b09a1fec
CW
1772void
1773i915_gem_retire_requests(struct drm_device *dev)
1774{
1775 drm_i915_private_t *dev_priv = dev->dev_private;
1776
be72615b
CW
1777 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1778 struct drm_i915_gem_object *obj_priv, *tmp;
1779
1780 /* We must be careful that during unbind() we do not
1781 * accidentally infinitely recurse into retire requests.
1782 * Currently:
1783 * retire -> free -> unbind -> wait -> retire_ring
1784 */
1785 list_for_each_entry_safe(obj_priv, tmp,
1786 &dev_priv->mm.deferred_free_list,
1787 list)
1788 i915_gem_free_object_tail(&obj_priv->base);
1789 }
1790
b09a1fec
CW
1791 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1792 if (HAS_BSD(dev))
1793 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1794}
1795
673a394b
EA
1796void
1797i915_gem_retire_work_handler(struct work_struct *work)
1798{
1799 drm_i915_private_t *dev_priv;
1800 struct drm_device *dev;
1801
1802 dev_priv = container_of(work, drm_i915_private_t,
1803 mm.retire_work.work);
1804 dev = dev_priv->dev;
1805
1806 mutex_lock(&dev->struct_mutex);
b09a1fec 1807 i915_gem_retire_requests(dev);
d1b851fc 1808
6dbe2772 1809 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1810 (!list_empty(&dev_priv->render_ring.request_list) ||
1811 (HAS_BSD(dev) &&
1812 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1813 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1814 mutex_unlock(&dev->struct_mutex);
1815}
1816
5a5a0c64 1817int
852835f3
ZN
1818i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1819 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1820{
1821 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1822 u32 ier;
673a394b
EA
1823 int ret = 0;
1824
1825 BUG_ON(seqno == 0);
1826
ba1234d1 1827 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1828 return -EIO;
1829
852835f3 1830 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1831 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1832 ier = I915_READ(DEIER) | I915_READ(GTIER);
1833 else
1834 ier = I915_READ(IER);
802c7eb6
JB
1835 if (!ier) {
1836 DRM_ERROR("something (likely vbetool) disabled "
1837 "interrupts, re-enabling\n");
1838 i915_driver_irq_preinstall(dev);
1839 i915_driver_irq_postinstall(dev);
1840 }
1841
1c5d22f7
CW
1842 trace_i915_gem_request_wait_begin(dev, seqno);
1843
852835f3 1844 ring->waiting_gem_seqno = seqno;
8187a2b7 1845 ring->user_irq_get(dev, ring);
48764bf4 1846 if (interruptible)
852835f3
ZN
1847 ret = wait_event_interruptible(ring->irq_queue,
1848 i915_seqno_passed(
1849 ring->get_gem_seqno(dev, ring), seqno)
1850 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1851 else
852835f3
ZN
1852 wait_event(ring->irq_queue,
1853 i915_seqno_passed(
1854 ring->get_gem_seqno(dev, ring), seqno)
1855 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1856
8187a2b7 1857 ring->user_irq_put(dev, ring);
852835f3 1858 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1859
1860 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1861 }
ba1234d1 1862 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1863 ret = -EIO;
1864
1865 if (ret && ret != -ERESTARTSYS)
1866 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1867 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1868
1869 /* Directly dispatch request retiring. While we have the work queue
1870 * to handle this, the waiter on a request often wants an associated
1871 * buffer to have made it to the inactive list, and we would need
1872 * a separate wait queue to handle that.
1873 */
1874 if (ret == 0)
b09a1fec 1875 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1876
1877 return ret;
1878}
1879
48764bf4
DV
1880/**
1881 * Waits for a sequence number to be signaled, and cleans up the
1882 * request and object lists appropriately for that event.
1883 */
1884static int
852835f3
ZN
1885i915_wait_request(struct drm_device *dev, uint32_t seqno,
1886 struct intel_ring_buffer *ring)
48764bf4 1887{
852835f3 1888 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1889}
1890
8187a2b7
ZN
1891static void
1892i915_gem_flush(struct drm_device *dev,
1893 uint32_t invalidate_domains,
1894 uint32_t flush_domains)
1895{
1896 drm_i915_private_t *dev_priv = dev->dev_private;
1897 if (flush_domains & I915_GEM_DOMAIN_CPU)
1898 drm_agp_chipset_flush(dev);
1899 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1900 invalidate_domains,
1901 flush_domains);
d1b851fc
ZN
1902
1903 if (HAS_BSD(dev))
1904 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1905 invalidate_domains,
1906 flush_domains);
8187a2b7
ZN
1907}
1908
673a394b
EA
1909/**
1910 * Ensures that all rendering to the object has completed and the object is
1911 * safe to unbind from the GTT or access from the CPU.
1912 */
1913static int
1914i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1915{
1916 struct drm_device *dev = obj->dev;
23010e43 1917 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1918 int ret;
1919
e47c68e9
EA
1920 /* This function only exists to support waiting for existing rendering,
1921 * not for emitting required flushes.
673a394b 1922 */
e47c68e9 1923 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1924
1925 /* If there is rendering queued on the buffer being evicted, wait for
1926 * it.
1927 */
1928 if (obj_priv->active) {
1929#if WATCH_BUF
1930 DRM_INFO("%s: object %p wait for seqno %08x\n",
1931 __func__, obj, obj_priv->last_rendering_seqno);
1932#endif
852835f3
ZN
1933 ret = i915_wait_request(dev,
1934 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1935 if (ret != 0)
1936 return ret;
1937 }
1938
1939 return 0;
1940}
1941
1942/**
1943 * Unbinds an object from the GTT aperture.
1944 */
0f973f27 1945int
673a394b
EA
1946i915_gem_object_unbind(struct drm_gem_object *obj)
1947{
1948 struct drm_device *dev = obj->dev;
4a87b8ca 1949 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1950 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1951 int ret = 0;
1952
1953#if WATCH_BUF
1954 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1955 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1956#endif
1957 if (obj_priv->gtt_space == NULL)
1958 return 0;
1959
1960 if (obj_priv->pin_count != 0) {
1961 DRM_ERROR("Attempting to unbind pinned buffer\n");
1962 return -EINVAL;
1963 }
1964
5323fd04
EA
1965 /* blow away mappings if mapped through GTT */
1966 i915_gem_release_mmap(obj);
1967
673a394b
EA
1968 /* Move the object to the CPU domain to ensure that
1969 * any possible CPU writes while it's not in the GTT
1970 * are flushed when we go to remap it. This will
1971 * also ensure that all pending GPU writes are finished
1972 * before we unbind.
1973 */
e47c68e9 1974 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1975 if (ret == -ERESTARTSYS)
673a394b 1976 return ret;
8dc1775d
CW
1977 /* Continue on if we fail due to EIO, the GPU is hung so we
1978 * should be safe and we need to cleanup or else we might
1979 * cause memory corruption through use-after-free.
1980 */
673a394b 1981
5323fd04
EA
1982 BUG_ON(obj_priv->active);
1983
96b47b65
DV
1984 /* release the fence reg _after_ flushing */
1985 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1986 i915_gem_clear_fence_reg(obj);
1987
673a394b
EA
1988 if (obj_priv->agp_mem != NULL) {
1989 drm_unbind_agp(obj_priv->agp_mem);
1990 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1991 obj_priv->agp_mem = NULL;
1992 }
1993
856fa198 1994 i915_gem_object_put_pages(obj);
a32808c0 1995 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
1996
1997 if (obj_priv->gtt_space) {
1998 atomic_dec(&dev->gtt_count);
1999 atomic_sub(obj->size, &dev->gtt_memory);
2000
2001 drm_mm_put_block(obj_priv->gtt_space);
2002 obj_priv->gtt_space = NULL;
2003 }
2004
2005 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2006 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2007 if (!list_empty(&obj_priv->list))
2008 list_del_init(&obj_priv->list);
4a87b8ca 2009 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2010
963b4836
CW
2011 if (i915_gem_object_is_purgeable(obj_priv))
2012 i915_gem_object_truncate(obj);
2013
1c5d22f7
CW
2014 trace_i915_gem_object_unbind(obj);
2015
8dc1775d 2016 return ret;
673a394b
EA
2017}
2018
b47eb4a2 2019int
4df2faf4
DV
2020i915_gpu_idle(struct drm_device *dev)
2021{
2022 drm_i915_private_t *dev_priv = dev->dev_private;
2023 bool lists_empty;
d1b851fc 2024 uint32_t seqno1, seqno2;
852835f3 2025 int ret;
4df2faf4
DV
2026
2027 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2028 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2029 list_empty(&dev_priv->render_ring.active_list) &&
2030 (!HAS_BSD(dev) ||
2031 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2032 spin_unlock(&dev_priv->mm.active_list_lock);
2033
2034 if (lists_empty)
2035 return 0;
2036
2037 /* Flush everything onto the inactive list. */
2038 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2039 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2040 &dev_priv->render_ring);
d1b851fc 2041 if (seqno1 == 0)
4df2faf4 2042 return -ENOMEM;
d1b851fc
ZN
2043 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2044
2045 if (HAS_BSD(dev)) {
2046 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2047 &dev_priv->bsd_ring);
2048 if (seqno2 == 0)
2049 return -ENOMEM;
2050
2051 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2052 if (ret)
2053 return ret;
2054 }
2055
4df2faf4 2056
852835f3 2057 return ret;
4df2faf4
DV
2058}
2059
6911a9b8 2060int
4bdadb97
CW
2061i915_gem_object_get_pages(struct drm_gem_object *obj,
2062 gfp_t gfpmask)
673a394b 2063{
23010e43 2064 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2065 int page_count, i;
2066 struct address_space *mapping;
2067 struct inode *inode;
2068 struct page *page;
673a394b 2069
778c3544
DV
2070 BUG_ON(obj_priv->pages_refcount
2071 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2072
856fa198 2073 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2074 return 0;
2075
2076 /* Get the list of pages out of our struct file. They'll be pinned
2077 * at this point until we release them.
2078 */
2079 page_count = obj->size / PAGE_SIZE;
856fa198 2080 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2081 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2082 if (obj_priv->pages == NULL) {
856fa198 2083 obj_priv->pages_refcount--;
673a394b
EA
2084 return -ENOMEM;
2085 }
2086
2087 inode = obj->filp->f_path.dentry->d_inode;
2088 mapping = inode->i_mapping;
2089 for (i = 0; i < page_count; i++) {
4bdadb97 2090 page = read_cache_page_gfp(mapping, i,
985b823b 2091 GFP_HIGHUSER |
4bdadb97 2092 __GFP_COLD |
cd9f040d 2093 __GFP_RECLAIMABLE |
4bdadb97 2094 gfpmask);
1f2b1013
CW
2095 if (IS_ERR(page))
2096 goto err_pages;
2097
856fa198 2098 obj_priv->pages[i] = page;
673a394b 2099 }
280b713b
EA
2100
2101 if (obj_priv->tiling_mode != I915_TILING_NONE)
2102 i915_gem_object_do_bit_17_swizzle(obj);
2103
673a394b 2104 return 0;
1f2b1013
CW
2105
2106err_pages:
2107 while (i--)
2108 page_cache_release(obj_priv->pages[i]);
2109
2110 drm_free_large(obj_priv->pages);
2111 obj_priv->pages = NULL;
2112 obj_priv->pages_refcount--;
2113 return PTR_ERR(page);
673a394b
EA
2114}
2115
4e901fdc
EA
2116static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2117{
2118 struct drm_gem_object *obj = reg->obj;
2119 struct drm_device *dev = obj->dev;
2120 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2121 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2122 int regnum = obj_priv->fence_reg;
2123 uint64_t val;
2124
2125 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2126 0xfffff000) << 32;
2127 val |= obj_priv->gtt_offset & 0xfffff000;
2128 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2129 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2130
2131 if (obj_priv->tiling_mode == I915_TILING_Y)
2132 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2133 val |= I965_FENCE_REG_VALID;
2134
2135 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2136}
2137
de151cf6
JB
2138static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2139{
2140 struct drm_gem_object *obj = reg->obj;
2141 struct drm_device *dev = obj->dev;
2142 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2144 int regnum = obj_priv->fence_reg;
2145 uint64_t val;
2146
2147 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2148 0xfffff000) << 32;
2149 val |= obj_priv->gtt_offset & 0xfffff000;
2150 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2151 if (obj_priv->tiling_mode == I915_TILING_Y)
2152 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2153 val |= I965_FENCE_REG_VALID;
2154
2155 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2156}
2157
2158static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2159{
2160 struct drm_gem_object *obj = reg->obj;
2161 struct drm_device *dev = obj->dev;
2162 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2163 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2164 int regnum = obj_priv->fence_reg;
0f973f27 2165 int tile_width;
dc529a4f 2166 uint32_t fence_reg, val;
de151cf6
JB
2167 uint32_t pitch_val;
2168
2169 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2170 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2171 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2172 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2173 return;
2174 }
2175
0f973f27
JB
2176 if (obj_priv->tiling_mode == I915_TILING_Y &&
2177 HAS_128_BYTE_Y_TILING(dev))
2178 tile_width = 128;
de151cf6 2179 else
0f973f27
JB
2180 tile_width = 512;
2181
2182 /* Note: pitch better be a power of two tile widths */
2183 pitch_val = obj_priv->stride / tile_width;
2184 pitch_val = ffs(pitch_val) - 1;
de151cf6 2185
c36a2a6d
DV
2186 if (obj_priv->tiling_mode == I915_TILING_Y &&
2187 HAS_128_BYTE_Y_TILING(dev))
2188 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2189 else
2190 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2191
de151cf6
JB
2192 val = obj_priv->gtt_offset;
2193 if (obj_priv->tiling_mode == I915_TILING_Y)
2194 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2195 val |= I915_FENCE_SIZE_BITS(obj->size);
2196 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2197 val |= I830_FENCE_REG_VALID;
2198
dc529a4f
EA
2199 if (regnum < 8)
2200 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2201 else
2202 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2203 I915_WRITE(fence_reg, val);
de151cf6
JB
2204}
2205
2206static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2207{
2208 struct drm_gem_object *obj = reg->obj;
2209 struct drm_device *dev = obj->dev;
2210 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2211 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2212 int regnum = obj_priv->fence_reg;
2213 uint32_t val;
2214 uint32_t pitch_val;
8d7773a3 2215 uint32_t fence_size_bits;
de151cf6 2216
8d7773a3 2217 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2218 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2219 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2220 __func__, obj_priv->gtt_offset);
de151cf6
JB
2221 return;
2222 }
2223
e76a16de
EA
2224 pitch_val = obj_priv->stride / 128;
2225 pitch_val = ffs(pitch_val) - 1;
2226 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2227
de151cf6
JB
2228 val = obj_priv->gtt_offset;
2229 if (obj_priv->tiling_mode == I915_TILING_Y)
2230 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2231 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2232 WARN_ON(fence_size_bits & ~0x00000f00);
2233 val |= fence_size_bits;
de151cf6
JB
2234 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2235 val |= I830_FENCE_REG_VALID;
2236
2237 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2238}
2239
ae3db24a
DV
2240static int i915_find_fence_reg(struct drm_device *dev)
2241{
2242 struct drm_i915_fence_reg *reg = NULL;
2243 struct drm_i915_gem_object *obj_priv = NULL;
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 struct drm_gem_object *obj = NULL;
2246 int i, avail, ret;
2247
2248 /* First try to find a free reg */
2249 avail = 0;
2250 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2251 reg = &dev_priv->fence_regs[i];
2252 if (!reg->obj)
2253 return i;
2254
23010e43 2255 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2256 if (!obj_priv->pin_count)
2257 avail++;
2258 }
2259
2260 if (avail == 0)
2261 return -ENOSPC;
2262
2263 /* None available, try to steal one or wait for a user to finish */
2264 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2265 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2266 lru_list) {
2267 obj = reg->obj;
2268 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2269
2270 if (obj_priv->pin_count)
2271 continue;
2272
2273 /* found one! */
2274 i = obj_priv->fence_reg;
2275 break;
2276 }
2277
2278 BUG_ON(i == I915_FENCE_REG_NONE);
2279
2280 /* We only have a reference on obj from the active list. put_fence_reg
2281 * might drop that one, causing a use-after-free in it. So hold a
2282 * private reference to obj like the other callers of put_fence_reg
2283 * (set_tiling ioctl) do. */
2284 drm_gem_object_reference(obj);
2285 ret = i915_gem_object_put_fence_reg(obj);
2286 drm_gem_object_unreference(obj);
2287 if (ret != 0)
2288 return ret;
2289
2290 return i;
2291}
2292
de151cf6
JB
2293/**
2294 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2295 * @obj: object to map through a fence reg
2296 *
2297 * When mapping objects through the GTT, userspace wants to be able to write
2298 * to them without having to worry about swizzling if the object is tiled.
2299 *
2300 * This function walks the fence regs looking for a free one for @obj,
2301 * stealing one if it can't find any.
2302 *
2303 * It then sets up the reg based on the object's properties: address, pitch
2304 * and tiling format.
2305 */
8c4b8c3f
CW
2306int
2307i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2308{
2309 struct drm_device *dev = obj->dev;
79e53945 2310 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2312 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2313 int ret;
de151cf6 2314
a09ba7fa
EA
2315 /* Just update our place in the LRU if our fence is getting used. */
2316 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2317 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2318 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2319 return 0;
2320 }
2321
de151cf6
JB
2322 switch (obj_priv->tiling_mode) {
2323 case I915_TILING_NONE:
2324 WARN(1, "allocating a fence for non-tiled object?\n");
2325 break;
2326 case I915_TILING_X:
0f973f27
JB
2327 if (!obj_priv->stride)
2328 return -EINVAL;
2329 WARN((obj_priv->stride & (512 - 1)),
2330 "object 0x%08x is X tiled but has non-512B pitch\n",
2331 obj_priv->gtt_offset);
de151cf6
JB
2332 break;
2333 case I915_TILING_Y:
0f973f27
JB
2334 if (!obj_priv->stride)
2335 return -EINVAL;
2336 WARN((obj_priv->stride & (128 - 1)),
2337 "object 0x%08x is Y tiled but has non-128B pitch\n",
2338 obj_priv->gtt_offset);
de151cf6
JB
2339 break;
2340 }
2341
ae3db24a
DV
2342 ret = i915_find_fence_reg(dev);
2343 if (ret < 0)
2344 return ret;
de151cf6 2345
ae3db24a
DV
2346 obj_priv->fence_reg = ret;
2347 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2348 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2349
de151cf6
JB
2350 reg->obj = obj;
2351
4e901fdc
EA
2352 if (IS_GEN6(dev))
2353 sandybridge_write_fence_reg(reg);
2354 else if (IS_I965G(dev))
de151cf6
JB
2355 i965_write_fence_reg(reg);
2356 else if (IS_I9XX(dev))
2357 i915_write_fence_reg(reg);
2358 else
2359 i830_write_fence_reg(reg);
d9ddcb96 2360
ae3db24a
DV
2361 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2362 obj_priv->tiling_mode);
1c5d22f7 2363
d9ddcb96 2364 return 0;
de151cf6
JB
2365}
2366
2367/**
2368 * i915_gem_clear_fence_reg - clear out fence register info
2369 * @obj: object to clear
2370 *
2371 * Zeroes out the fence register itself and clears out the associated
2372 * data structures in dev_priv and obj_priv.
2373 */
2374static void
2375i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2376{
2377 struct drm_device *dev = obj->dev;
79e53945 2378 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2379 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2380 struct drm_i915_fence_reg *reg =
2381 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2382
4e901fdc
EA
2383 if (IS_GEN6(dev)) {
2384 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2385 (obj_priv->fence_reg * 8), 0);
2386 } else if (IS_I965G(dev)) {
de151cf6 2387 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2388 } else {
dc529a4f
EA
2389 uint32_t fence_reg;
2390
2391 if (obj_priv->fence_reg < 8)
2392 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2393 else
2394 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2395 8) * 4;
2396
2397 I915_WRITE(fence_reg, 0);
2398 }
de151cf6 2399
007cc8ac 2400 reg->obj = NULL;
de151cf6 2401 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2402 list_del_init(&reg->lru_list);
de151cf6
JB
2403}
2404
52dc7d32
CW
2405/**
2406 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2407 * to the buffer to finish, and then resets the fence register.
2408 * @obj: tiled object holding a fence register.
2409 *
2410 * Zeroes out the fence register itself and clears out the associated
2411 * data structures in dev_priv and obj_priv.
2412 */
2413int
2414i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2415{
2416 struct drm_device *dev = obj->dev;
23010e43 2417 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2418
2419 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2420 return 0;
2421
10ae9bd2
DV
2422 /* If we've changed tiling, GTT-mappings of the object
2423 * need to re-fault to ensure that the correct fence register
2424 * setup is in place.
2425 */
2426 i915_gem_release_mmap(obj);
2427
52dc7d32
CW
2428 /* On the i915, GPU access to tiled buffers is via a fence,
2429 * therefore we must wait for any outstanding access to complete
2430 * before clearing the fence.
2431 */
2432 if (!IS_I965G(dev)) {
2433 int ret;
2434
2dafb1e0
CW
2435 ret = i915_gem_object_flush_gpu_write_domain(obj);
2436 if (ret != 0)
2437 return ret;
2438
52dc7d32
CW
2439 ret = i915_gem_object_wait_rendering(obj);
2440 if (ret != 0)
2441 return ret;
2442 }
2443
4a726612 2444 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2445 i915_gem_clear_fence_reg (obj);
2446
2447 return 0;
2448}
2449
673a394b
EA
2450/**
2451 * Finds free space in the GTT aperture and binds the object there.
2452 */
2453static int
2454i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2455{
2456 struct drm_device *dev = obj->dev;
2457 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2458 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2459 struct drm_mm_node *free_space;
4bdadb97 2460 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2461 int ret;
673a394b 2462
bb6baf76 2463 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2464 DRM_ERROR("Attempting to bind a purgeable object\n");
2465 return -EINVAL;
2466 }
2467
673a394b 2468 if (alignment == 0)
0f973f27 2469 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2470 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2471 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2472 return -EINVAL;
2473 }
2474
654fc607
CW
2475 /* If the object is bigger than the entire aperture, reject it early
2476 * before evicting everything in a vain attempt to find space.
2477 */
2478 if (obj->size > dev->gtt_total) {
2479 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2480 return -E2BIG;
2481 }
2482
673a394b
EA
2483 search_free:
2484 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2485 obj->size, alignment, 0);
2486 if (free_space != NULL) {
2487 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2488 alignment);
db3307a9 2489 if (obj_priv->gtt_space != NULL)
673a394b 2490 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2491 }
2492 if (obj_priv->gtt_space == NULL) {
2493 /* If the gtt is empty and we're still having trouble
2494 * fitting our object in, we're out of memory.
2495 */
2496#if WATCH_LRU
2497 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2498#endif
0108a3ed 2499 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2500 if (ret)
673a394b 2501 return ret;
9731129c 2502
673a394b
EA
2503 goto search_free;
2504 }
2505
2506#if WATCH_BUF
cfd43c02 2507 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2508 obj->size, obj_priv->gtt_offset);
2509#endif
4bdadb97 2510 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2511 if (ret) {
2512 drm_mm_put_block(obj_priv->gtt_space);
2513 obj_priv->gtt_space = NULL;
07f73f69
CW
2514
2515 if (ret == -ENOMEM) {
2516 /* first try to clear up some space from the GTT */
0108a3ed
DV
2517 ret = i915_gem_evict_something(dev, obj->size,
2518 alignment);
07f73f69 2519 if (ret) {
07f73f69 2520 /* now try to shrink everyone else */
4bdadb97
CW
2521 if (gfpmask) {
2522 gfpmask = 0;
2523 goto search_free;
07f73f69
CW
2524 }
2525
2526 return ret;
2527 }
2528
2529 goto search_free;
2530 }
2531
673a394b
EA
2532 return ret;
2533 }
2534
673a394b
EA
2535 /* Create an AGP memory structure pointing at our pages, and bind it
2536 * into the GTT.
2537 */
2538 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2539 obj_priv->pages,
07f73f69 2540 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2541 obj_priv->gtt_offset,
2542 obj_priv->agp_type);
673a394b 2543 if (obj_priv->agp_mem == NULL) {
856fa198 2544 i915_gem_object_put_pages(obj);
673a394b
EA
2545 drm_mm_put_block(obj_priv->gtt_space);
2546 obj_priv->gtt_space = NULL;
07f73f69 2547
0108a3ed 2548 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2549 if (ret)
07f73f69 2550 return ret;
07f73f69
CW
2551
2552 goto search_free;
673a394b
EA
2553 }
2554 atomic_inc(&dev->gtt_count);
2555 atomic_add(obj->size, &dev->gtt_memory);
2556
bf1a1092
CW
2557 /* keep track of bounds object by adding it to the inactive list */
2558 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2559
673a394b
EA
2560 /* Assert that the object is not currently in any GPU domain. As it
2561 * wasn't in the GTT, there shouldn't be any way it could have been in
2562 * a GPU cache
2563 */
21d509e3
CW
2564 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2565 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2566
1c5d22f7
CW
2567 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2568
673a394b
EA
2569 return 0;
2570}
2571
2572void
2573i915_gem_clflush_object(struct drm_gem_object *obj)
2574{
23010e43 2575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2576
2577 /* If we don't have a page list set up, then we're not pinned
2578 * to GPU, and we can ignore the cache flush because it'll happen
2579 * again at bind time.
2580 */
856fa198 2581 if (obj_priv->pages == NULL)
673a394b
EA
2582 return;
2583
1c5d22f7 2584 trace_i915_gem_object_clflush(obj);
cfa16a0d 2585
856fa198 2586 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2587}
2588
e47c68e9 2589/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2590static int
e47c68e9
EA
2591i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2592{
2593 struct drm_device *dev = obj->dev;
1c5d22f7 2594 uint32_t old_write_domain;
852835f3 2595 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2596
2597 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2598 return 0;
e47c68e9
EA
2599
2600 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2601 old_write_domain = obj->write_domain;
e47c68e9 2602 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2603 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2604 return -ENOMEM;
1c5d22f7
CW
2605
2606 trace_i915_gem_object_change_domain(obj,
2607 obj->read_domains,
2608 old_write_domain);
2dafb1e0 2609 return 0;
e47c68e9
EA
2610}
2611
2612/** Flushes the GTT write domain for the object if it's dirty. */
2613static void
2614i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2615{
1c5d22f7
CW
2616 uint32_t old_write_domain;
2617
e47c68e9
EA
2618 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2619 return;
2620
2621 /* No actual flushing is required for the GTT write domain. Writes
2622 * to it immediately go to main memory as far as we know, so there's
2623 * no chipset flush. It also doesn't land in render cache.
2624 */
1c5d22f7 2625 old_write_domain = obj->write_domain;
e47c68e9 2626 obj->write_domain = 0;
1c5d22f7
CW
2627
2628 trace_i915_gem_object_change_domain(obj,
2629 obj->read_domains,
2630 old_write_domain);
e47c68e9
EA
2631}
2632
2633/** Flushes the CPU write domain for the object if it's dirty. */
2634static void
2635i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2636{
2637 struct drm_device *dev = obj->dev;
1c5d22f7 2638 uint32_t old_write_domain;
e47c68e9
EA
2639
2640 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2641 return;
2642
2643 i915_gem_clflush_object(obj);
2644 drm_agp_chipset_flush(dev);
1c5d22f7 2645 old_write_domain = obj->write_domain;
e47c68e9 2646 obj->write_domain = 0;
1c5d22f7
CW
2647
2648 trace_i915_gem_object_change_domain(obj,
2649 obj->read_domains,
2650 old_write_domain);
e47c68e9
EA
2651}
2652
2dafb1e0 2653int
6b95a207
KH
2654i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2655{
2dafb1e0
CW
2656 int ret = 0;
2657
6b95a207
KH
2658 switch (obj->write_domain) {
2659 case I915_GEM_DOMAIN_GTT:
2660 i915_gem_object_flush_gtt_write_domain(obj);
2661 break;
2662 case I915_GEM_DOMAIN_CPU:
2663 i915_gem_object_flush_cpu_write_domain(obj);
2664 break;
2665 default:
2dafb1e0 2666 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2667 break;
2668 }
2dafb1e0
CW
2669
2670 return ret;
6b95a207
KH
2671}
2672
2ef7eeaa
EA
2673/**
2674 * Moves a single object to the GTT read, and possibly write domain.
2675 *
2676 * This function returns when the move is complete, including waiting on
2677 * flushes to occur.
2678 */
79e53945 2679int
2ef7eeaa
EA
2680i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2681{
23010e43 2682 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2683 uint32_t old_write_domain, old_read_domains;
e47c68e9 2684 int ret;
2ef7eeaa 2685
02354392
EA
2686 /* Not valid to be called on unbound objects. */
2687 if (obj_priv->gtt_space == NULL)
2688 return -EINVAL;
2689
2dafb1e0
CW
2690 ret = i915_gem_object_flush_gpu_write_domain(obj);
2691 if (ret != 0)
2692 return ret;
2693
e47c68e9
EA
2694 /* Wait on any GPU rendering and flushing to occur. */
2695 ret = i915_gem_object_wait_rendering(obj);
2696 if (ret != 0)
2697 return ret;
2698
1c5d22f7
CW
2699 old_write_domain = obj->write_domain;
2700 old_read_domains = obj->read_domains;
2701
e47c68e9
EA
2702 /* If we're writing through the GTT domain, then CPU and GPU caches
2703 * will need to be invalidated at next use.
2ef7eeaa 2704 */
e47c68e9
EA
2705 if (write)
2706 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2707
e47c68e9 2708 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2709
e47c68e9
EA
2710 /* It should now be out of any other write domains, and we can update
2711 * the domain values for our changes.
2712 */
2713 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2714 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2715 if (write) {
2716 obj->write_domain = I915_GEM_DOMAIN_GTT;
2717 obj_priv->dirty = 1;
2ef7eeaa
EA
2718 }
2719
1c5d22f7
CW
2720 trace_i915_gem_object_change_domain(obj,
2721 old_read_domains,
2722 old_write_domain);
2723
e47c68e9
EA
2724 return 0;
2725}
2726
b9241ea3
ZW
2727/*
2728 * Prepare buffer for display plane. Use uninterruptible for possible flush
2729 * wait, as in modesetting process we're not supposed to be interrupted.
2730 */
2731int
2732i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2733{
2734 struct drm_device *dev = obj->dev;
23010e43 2735 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2736 uint32_t old_write_domain, old_read_domains;
2737 int ret;
2738
2739 /* Not valid to be called on unbound objects. */
2740 if (obj_priv->gtt_space == NULL)
2741 return -EINVAL;
2742
2dafb1e0
CW
2743 ret = i915_gem_object_flush_gpu_write_domain(obj);
2744 if (ret)
2745 return ret;
b9241ea3
ZW
2746
2747 /* Wait on any GPU rendering and flushing to occur. */
2748 if (obj_priv->active) {
2749#if WATCH_BUF
2750 DRM_INFO("%s: object %p wait for seqno %08x\n",
2751 __func__, obj, obj_priv->last_rendering_seqno);
2752#endif
852835f3
ZN
2753 ret = i915_do_wait_request(dev,
2754 obj_priv->last_rendering_seqno,
2755 0,
2756 obj_priv->ring);
b9241ea3
ZW
2757 if (ret != 0)
2758 return ret;
2759 }
2760
b118c1e3
CW
2761 i915_gem_object_flush_cpu_write_domain(obj);
2762
b9241ea3
ZW
2763 old_write_domain = obj->write_domain;
2764 old_read_domains = obj->read_domains;
2765
b9241ea3
ZW
2766 /* It should now be out of any other write domains, and we can update
2767 * the domain values for our changes.
2768 */
2769 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2770 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2771 obj->write_domain = I915_GEM_DOMAIN_GTT;
2772 obj_priv->dirty = 1;
2773
2774 trace_i915_gem_object_change_domain(obj,
2775 old_read_domains,
2776 old_write_domain);
2777
2778 return 0;
2779}
2780
e47c68e9
EA
2781/**
2782 * Moves a single object to the CPU read, and possibly write domain.
2783 *
2784 * This function returns when the move is complete, including waiting on
2785 * flushes to occur.
2786 */
2787static int
2788i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2789{
1c5d22f7 2790 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2791 int ret;
2792
2dafb1e0
CW
2793 ret = i915_gem_object_flush_gpu_write_domain(obj);
2794 if (ret)
2795 return ret;
2796
2ef7eeaa 2797 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2798 ret = i915_gem_object_wait_rendering(obj);
2799 if (ret != 0)
2800 return ret;
2ef7eeaa 2801
e47c68e9 2802 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2803
e47c68e9
EA
2804 /* If we have a partially-valid cache of the object in the CPU,
2805 * finish invalidating it and free the per-page flags.
2ef7eeaa 2806 */
e47c68e9 2807 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2808
1c5d22f7
CW
2809 old_write_domain = obj->write_domain;
2810 old_read_domains = obj->read_domains;
2811
e47c68e9
EA
2812 /* Flush the CPU cache if it's still invalid. */
2813 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2814 i915_gem_clflush_object(obj);
2ef7eeaa 2815
e47c68e9 2816 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2817 }
2818
2819 /* It should now be out of any other write domains, and we can update
2820 * the domain values for our changes.
2821 */
e47c68e9
EA
2822 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2823
2824 /* If we're writing through the CPU, then the GPU read domains will
2825 * need to be invalidated at next use.
2826 */
2827 if (write) {
2828 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2829 obj->write_domain = I915_GEM_DOMAIN_CPU;
2830 }
2ef7eeaa 2831
1c5d22f7
CW
2832 trace_i915_gem_object_change_domain(obj,
2833 old_read_domains,
2834 old_write_domain);
2835
2ef7eeaa
EA
2836 return 0;
2837}
2838
673a394b
EA
2839/*
2840 * Set the next domain for the specified object. This
2841 * may not actually perform the necessary flushing/invaliding though,
2842 * as that may want to be batched with other set_domain operations
2843 *
2844 * This is (we hope) the only really tricky part of gem. The goal
2845 * is fairly simple -- track which caches hold bits of the object
2846 * and make sure they remain coherent. A few concrete examples may
2847 * help to explain how it works. For shorthand, we use the notation
2848 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2849 * a pair of read and write domain masks.
2850 *
2851 * Case 1: the batch buffer
2852 *
2853 * 1. Allocated
2854 * 2. Written by CPU
2855 * 3. Mapped to GTT
2856 * 4. Read by GPU
2857 * 5. Unmapped from GTT
2858 * 6. Freed
2859 *
2860 * Let's take these a step at a time
2861 *
2862 * 1. Allocated
2863 * Pages allocated from the kernel may still have
2864 * cache contents, so we set them to (CPU, CPU) always.
2865 * 2. Written by CPU (using pwrite)
2866 * The pwrite function calls set_domain (CPU, CPU) and
2867 * this function does nothing (as nothing changes)
2868 * 3. Mapped by GTT
2869 * This function asserts that the object is not
2870 * currently in any GPU-based read or write domains
2871 * 4. Read by GPU
2872 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2873 * As write_domain is zero, this function adds in the
2874 * current read domains (CPU+COMMAND, 0).
2875 * flush_domains is set to CPU.
2876 * invalidate_domains is set to COMMAND
2877 * clflush is run to get data out of the CPU caches
2878 * then i915_dev_set_domain calls i915_gem_flush to
2879 * emit an MI_FLUSH and drm_agp_chipset_flush
2880 * 5. Unmapped from GTT
2881 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2882 * flush_domains and invalidate_domains end up both zero
2883 * so no flushing/invalidating happens
2884 * 6. Freed
2885 * yay, done
2886 *
2887 * Case 2: The shared render buffer
2888 *
2889 * 1. Allocated
2890 * 2. Mapped to GTT
2891 * 3. Read/written by GPU
2892 * 4. set_domain to (CPU,CPU)
2893 * 5. Read/written by CPU
2894 * 6. Read/written by GPU
2895 *
2896 * 1. Allocated
2897 * Same as last example, (CPU, CPU)
2898 * 2. Mapped to GTT
2899 * Nothing changes (assertions find that it is not in the GPU)
2900 * 3. Read/written by GPU
2901 * execbuffer calls set_domain (RENDER, RENDER)
2902 * flush_domains gets CPU
2903 * invalidate_domains gets GPU
2904 * clflush (obj)
2905 * MI_FLUSH and drm_agp_chipset_flush
2906 * 4. set_domain (CPU, CPU)
2907 * flush_domains gets GPU
2908 * invalidate_domains gets CPU
2909 * wait_rendering (obj) to make sure all drawing is complete.
2910 * This will include an MI_FLUSH to get the data from GPU
2911 * to memory
2912 * clflush (obj) to invalidate the CPU cache
2913 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2914 * 5. Read/written by CPU
2915 * cache lines are loaded and dirtied
2916 * 6. Read written by GPU
2917 * Same as last GPU access
2918 *
2919 * Case 3: The constant buffer
2920 *
2921 * 1. Allocated
2922 * 2. Written by CPU
2923 * 3. Read by GPU
2924 * 4. Updated (written) by CPU again
2925 * 5. Read by GPU
2926 *
2927 * 1. Allocated
2928 * (CPU, CPU)
2929 * 2. Written by CPU
2930 * (CPU, CPU)
2931 * 3. Read by GPU
2932 * (CPU+RENDER, 0)
2933 * flush_domains = CPU
2934 * invalidate_domains = RENDER
2935 * clflush (obj)
2936 * MI_FLUSH
2937 * drm_agp_chipset_flush
2938 * 4. Updated (written) by CPU again
2939 * (CPU, CPU)
2940 * flush_domains = 0 (no previous write domain)
2941 * invalidate_domains = 0 (no new read domains)
2942 * 5. Read by GPU
2943 * (CPU+RENDER, 0)
2944 * flush_domains = CPU
2945 * invalidate_domains = RENDER
2946 * clflush (obj)
2947 * MI_FLUSH
2948 * drm_agp_chipset_flush
2949 */
c0d90829 2950static void
8b0e378a 2951i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2952{
2953 struct drm_device *dev = obj->dev;
88f356b7 2954 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2955 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2956 uint32_t invalidate_domains = 0;
2957 uint32_t flush_domains = 0;
1c5d22f7 2958 uint32_t old_read_domains;
e47c68e9 2959
8b0e378a
EA
2960 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2961 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2962
652c393a
JB
2963 intel_mark_busy(dev, obj);
2964
673a394b
EA
2965#if WATCH_BUF
2966 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2967 __func__, obj,
8b0e378a
EA
2968 obj->read_domains, obj->pending_read_domains,
2969 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2970#endif
2971 /*
2972 * If the object isn't moving to a new write domain,
2973 * let the object stay in multiple read domains
2974 */
8b0e378a
EA
2975 if (obj->pending_write_domain == 0)
2976 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2977 else
2978 obj_priv->dirty = 1;
2979
2980 /*
2981 * Flush the current write domain if
2982 * the new read domains don't match. Invalidate
2983 * any read domains which differ from the old
2984 * write domain
2985 */
8b0e378a
EA
2986 if (obj->write_domain &&
2987 obj->write_domain != obj->pending_read_domains) {
673a394b 2988 flush_domains |= obj->write_domain;
8b0e378a
EA
2989 invalidate_domains |=
2990 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2991 }
2992 /*
2993 * Invalidate any read caches which may have
2994 * stale data. That is, any new read domains.
2995 */
8b0e378a 2996 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2997 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2998#if WATCH_BUF
2999 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3000 __func__, flush_domains, invalidate_domains);
3001#endif
673a394b
EA
3002 i915_gem_clflush_object(obj);
3003 }
3004
1c5d22f7
CW
3005 old_read_domains = obj->read_domains;
3006
efbeed96
EA
3007 /* The actual obj->write_domain will be updated with
3008 * pending_write_domain after we emit the accumulated flush for all
3009 * of our domain changes in execbuffers (which clears objects'
3010 * write_domains). So if we have a current write domain that we
3011 * aren't changing, set pending_write_domain to that.
3012 */
3013 if (flush_domains == 0 && obj->pending_write_domain == 0)
3014 obj->pending_write_domain = obj->write_domain;
8b0e378a 3015 obj->read_domains = obj->pending_read_domains;
673a394b 3016
88f356b7
CW
3017 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3018 if (obj_priv->ring == &dev_priv->render_ring)
3019 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3020 else if (obj_priv->ring == &dev_priv->bsd_ring)
3021 dev_priv->flush_rings |= FLUSH_BSD_RING;
3022 }
3023
673a394b
EA
3024 dev->invalidate_domains |= invalidate_domains;
3025 dev->flush_domains |= flush_domains;
3026#if WATCH_BUF
3027 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3028 __func__,
3029 obj->read_domains, obj->write_domain,
3030 dev->invalidate_domains, dev->flush_domains);
3031#endif
1c5d22f7
CW
3032
3033 trace_i915_gem_object_change_domain(obj,
3034 old_read_domains,
3035 obj->write_domain);
673a394b
EA
3036}
3037
3038/**
e47c68e9 3039 * Moves the object from a partially CPU read to a full one.
673a394b 3040 *
e47c68e9
EA
3041 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3042 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3043 */
e47c68e9
EA
3044static void
3045i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3046{
23010e43 3047 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3048
e47c68e9
EA
3049 if (!obj_priv->page_cpu_valid)
3050 return;
3051
3052 /* If we're partially in the CPU read domain, finish moving it in.
3053 */
3054 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3055 int i;
3056
3057 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3058 if (obj_priv->page_cpu_valid[i])
3059 continue;
856fa198 3060 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3061 }
e47c68e9
EA
3062 }
3063
3064 /* Free the page_cpu_valid mappings which are now stale, whether
3065 * or not we've got I915_GEM_DOMAIN_CPU.
3066 */
9a298b2a 3067 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3068 obj_priv->page_cpu_valid = NULL;
3069}
3070
3071/**
3072 * Set the CPU read domain on a range of the object.
3073 *
3074 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3075 * not entirely valid. The page_cpu_valid member of the object flags which
3076 * pages have been flushed, and will be respected by
3077 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3078 * of the whole object.
3079 *
3080 * This function returns when the move is complete, including waiting on
3081 * flushes to occur.
3082 */
3083static int
3084i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3085 uint64_t offset, uint64_t size)
3086{
23010e43 3087 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3088 uint32_t old_read_domains;
e47c68e9 3089 int i, ret;
673a394b 3090
e47c68e9
EA
3091 if (offset == 0 && size == obj->size)
3092 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3093
2dafb1e0
CW
3094 ret = i915_gem_object_flush_gpu_write_domain(obj);
3095 if (ret)
3096 return ret;
3097
e47c68e9 3098 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3099 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3100 if (ret != 0)
6a47baa6 3101 return ret;
e47c68e9
EA
3102 i915_gem_object_flush_gtt_write_domain(obj);
3103
3104 /* If we're already fully in the CPU read domain, we're done. */
3105 if (obj_priv->page_cpu_valid == NULL &&
3106 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3107 return 0;
673a394b 3108
e47c68e9
EA
3109 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3110 * newly adding I915_GEM_DOMAIN_CPU
3111 */
673a394b 3112 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3113 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3114 GFP_KERNEL);
e47c68e9
EA
3115 if (obj_priv->page_cpu_valid == NULL)
3116 return -ENOMEM;
3117 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3118 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3119
3120 /* Flush the cache on any pages that are still invalid from the CPU's
3121 * perspective.
3122 */
e47c68e9
EA
3123 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3124 i++) {
673a394b
EA
3125 if (obj_priv->page_cpu_valid[i])
3126 continue;
3127
856fa198 3128 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3129
3130 obj_priv->page_cpu_valid[i] = 1;
3131 }
3132
e47c68e9
EA
3133 /* It should now be out of any other write domains, and we can update
3134 * the domain values for our changes.
3135 */
3136 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3137
1c5d22f7 3138 old_read_domains = obj->read_domains;
e47c68e9
EA
3139 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3140
1c5d22f7
CW
3141 trace_i915_gem_object_change_domain(obj,
3142 old_read_domains,
3143 obj->write_domain);
3144
673a394b
EA
3145 return 0;
3146}
3147
673a394b
EA
3148/**
3149 * Pin an object to the GTT and evaluate the relocations landing in it.
3150 */
3151static int
3152i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3153 struct drm_file *file_priv,
76446cac 3154 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3155 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3156{
3157 struct drm_device *dev = obj->dev;
0839ccb8 3158 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3160 int i, ret;
0839ccb8 3161 void __iomem *reloc_page;
76446cac
JB
3162 bool need_fence;
3163
3164 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3165 obj_priv->tiling_mode != I915_TILING_NONE;
3166
3167 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3168 if (need_fence &&
3169 !i915_gem_object_fence_offset_ok(obj,
3170 obj_priv->tiling_mode)) {
3171 ret = i915_gem_object_unbind(obj);
3172 if (ret)
3173 return ret;
3174 }
673a394b
EA
3175
3176 /* Choose the GTT offset for our buffer and put it there. */
3177 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3178 if (ret)
3179 return ret;
3180
76446cac
JB
3181 /*
3182 * Pre-965 chips need a fence register set up in order to
3183 * properly handle blits to/from tiled surfaces.
3184 */
3185 if (need_fence) {
3186 ret = i915_gem_object_get_fence_reg(obj);
3187 if (ret != 0) {
76446cac
JB
3188 i915_gem_object_unpin(obj);
3189 return ret;
3190 }
3191 }
3192
673a394b
EA
3193 entry->offset = obj_priv->gtt_offset;
3194
673a394b
EA
3195 /* Apply the relocations, using the GTT aperture to avoid cache
3196 * flushing requirements.
3197 */
3198 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3199 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3200 struct drm_gem_object *target_obj;
3201 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3202 uint32_t reloc_val, reloc_offset;
3203 uint32_t __iomem *reloc_entry;
673a394b 3204
673a394b 3205 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3206 reloc->target_handle);
673a394b
EA
3207 if (target_obj == NULL) {
3208 i915_gem_object_unpin(obj);
3209 return -EBADF;
3210 }
23010e43 3211 target_obj_priv = to_intel_bo(target_obj);
673a394b 3212
8542a0bb
CW
3213#if WATCH_RELOC
3214 DRM_INFO("%s: obj %p offset %08x target %d "
3215 "read %08x write %08x gtt %08x "
3216 "presumed %08x delta %08x\n",
3217 __func__,
3218 obj,
3219 (int) reloc->offset,
3220 (int) reloc->target_handle,
3221 (int) reloc->read_domains,
3222 (int) reloc->write_domain,
3223 (int) target_obj_priv->gtt_offset,
3224 (int) reloc->presumed_offset,
3225 reloc->delta);
3226#endif
3227
673a394b
EA
3228 /* The target buffer should have appeared before us in the
3229 * exec_object list, so it should have a GTT space bound by now.
3230 */
3231 if (target_obj_priv->gtt_space == NULL) {
3232 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3233 reloc->target_handle);
673a394b
EA
3234 drm_gem_object_unreference(target_obj);
3235 i915_gem_object_unpin(obj);
3236 return -EINVAL;
3237 }
3238
8542a0bb 3239 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3240 if (reloc->write_domain & (reloc->write_domain - 1)) {
3241 DRM_ERROR("reloc with multiple write domains: "
3242 "obj %p target %d offset %d "
3243 "read %08x write %08x",
3244 obj, reloc->target_handle,
3245 (int) reloc->offset,
3246 reloc->read_domains,
3247 reloc->write_domain);
3248 return -EINVAL;
3249 }
40a5f0de
EA
3250 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3251 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3252 DRM_ERROR("reloc with read/write CPU domains: "
3253 "obj %p target %d offset %d "
3254 "read %08x write %08x",
40a5f0de
EA
3255 obj, reloc->target_handle,
3256 (int) reloc->offset,
3257 reloc->read_domains,
3258 reloc->write_domain);
491152b8
CW
3259 drm_gem_object_unreference(target_obj);
3260 i915_gem_object_unpin(obj);
e47c68e9
EA
3261 return -EINVAL;
3262 }
40a5f0de
EA
3263 if (reloc->write_domain && target_obj->pending_write_domain &&
3264 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3265 DRM_ERROR("Write domain conflict: "
3266 "obj %p target %d offset %d "
3267 "new %08x old %08x\n",
40a5f0de
EA
3268 obj, reloc->target_handle,
3269 (int) reloc->offset,
3270 reloc->write_domain,
673a394b
EA
3271 target_obj->pending_write_domain);
3272 drm_gem_object_unreference(target_obj);
3273 i915_gem_object_unpin(obj);
3274 return -EINVAL;
3275 }
3276
40a5f0de
EA
3277 target_obj->pending_read_domains |= reloc->read_domains;
3278 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3279
3280 /* If the relocation already has the right value in it, no
3281 * more work needs to be done.
3282 */
40a5f0de 3283 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3284 drm_gem_object_unreference(target_obj);
3285 continue;
3286 }
3287
8542a0bb
CW
3288 /* Check that the relocation address is valid... */
3289 if (reloc->offset > obj->size - 4) {
3290 DRM_ERROR("Relocation beyond object bounds: "
3291 "obj %p target %d offset %d size %d.\n",
3292 obj, reloc->target_handle,
3293 (int) reloc->offset, (int) obj->size);
3294 drm_gem_object_unreference(target_obj);
3295 i915_gem_object_unpin(obj);
3296 return -EINVAL;
3297 }
3298 if (reloc->offset & 3) {
3299 DRM_ERROR("Relocation not 4-byte aligned: "
3300 "obj %p target %d offset %d.\n",
3301 obj, reloc->target_handle,
3302 (int) reloc->offset);
3303 drm_gem_object_unreference(target_obj);
3304 i915_gem_object_unpin(obj);
3305 return -EINVAL;
3306 }
3307
3308 /* and points to somewhere within the target object. */
3309 if (reloc->delta >= target_obj->size) {
3310 DRM_ERROR("Relocation beyond target object bounds: "
3311 "obj %p target %d delta %d size %d.\n",
3312 obj, reloc->target_handle,
3313 (int) reloc->delta, (int) target_obj->size);
3314 drm_gem_object_unreference(target_obj);
3315 i915_gem_object_unpin(obj);
3316 return -EINVAL;
3317 }
3318
2ef7eeaa
EA
3319 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3320 if (ret != 0) {
3321 drm_gem_object_unreference(target_obj);
3322 i915_gem_object_unpin(obj);
3323 return -EINVAL;
673a394b
EA
3324 }
3325
3326 /* Map the page containing the relocation we're going to
3327 * perform.
3328 */
40a5f0de 3329 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3330 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3331 (reloc_offset &
fca3ec01
CW
3332 ~(PAGE_SIZE - 1)),
3333 KM_USER0);
3043c60c 3334 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3335 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3336 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3337
3338#if WATCH_BUF
3339 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3340 obj, (unsigned int) reloc->offset,
673a394b
EA
3341 readl(reloc_entry), reloc_val);
3342#endif
3343 writel(reloc_val, reloc_entry);
fca3ec01 3344 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3345
40a5f0de
EA
3346 /* The updated presumed offset for this entry will be
3347 * copied back out to the user.
673a394b 3348 */
40a5f0de 3349 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3350
3351 drm_gem_object_unreference(target_obj);
3352 }
3353
673a394b
EA
3354#if WATCH_BUF
3355 if (0)
3356 i915_gem_dump_object(obj, 128, __func__, ~0);
3357#endif
3358 return 0;
3359}
3360
673a394b
EA
3361/* Throttle our rendering by waiting until the ring has completed our requests
3362 * emitted over 20 msec ago.
3363 *
b962442e
EA
3364 * Note that if we were to use the current jiffies each time around the loop,
3365 * we wouldn't escape the function with any frames outstanding if the time to
3366 * render a frame was over 20ms.
3367 *
673a394b
EA
3368 * This should get us reasonable parallelism between CPU and GPU but also
3369 * relatively low latency when blocking on a particular request to finish.
3370 */
3371static int
3372i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3373{
3374 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3375 int ret = 0;
b962442e 3376 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3377
3378 mutex_lock(&dev->struct_mutex);
b962442e
EA
3379 while (!list_empty(&i915_file_priv->mm.request_list)) {
3380 struct drm_i915_gem_request *request;
3381
3382 request = list_first_entry(&i915_file_priv->mm.request_list,
3383 struct drm_i915_gem_request,
3384 client_list);
3385
3386 if (time_after_eq(request->emitted_jiffies, recent_enough))
3387 break;
3388
852835f3 3389 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3390 if (ret != 0)
3391 break;
3392 }
673a394b 3393 mutex_unlock(&dev->struct_mutex);
b962442e 3394
673a394b
EA
3395 return ret;
3396}
3397
40a5f0de 3398static int
76446cac 3399i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3400 uint32_t buffer_count,
3401 struct drm_i915_gem_relocation_entry **relocs)
3402{
3403 uint32_t reloc_count = 0, reloc_index = 0, i;
3404 int ret;
3405
3406 *relocs = NULL;
3407 for (i = 0; i < buffer_count; i++) {
3408 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3409 return -EINVAL;
3410 reloc_count += exec_list[i].relocation_count;
3411 }
3412
8e7d2b2c 3413 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3414 if (*relocs == NULL) {
3415 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3416 return -ENOMEM;
76446cac 3417 }
40a5f0de
EA
3418
3419 for (i = 0; i < buffer_count; i++) {
3420 struct drm_i915_gem_relocation_entry __user *user_relocs;
3421
3422 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3423
3424 ret = copy_from_user(&(*relocs)[reloc_index],
3425 user_relocs,
3426 exec_list[i].relocation_count *
3427 sizeof(**relocs));
3428 if (ret != 0) {
8e7d2b2c 3429 drm_free_large(*relocs);
40a5f0de 3430 *relocs = NULL;
2bc43b5c 3431 return -EFAULT;
40a5f0de
EA
3432 }
3433
3434 reloc_index += exec_list[i].relocation_count;
3435 }
3436
2bc43b5c 3437 return 0;
40a5f0de
EA
3438}
3439
3440static int
76446cac 3441i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3442 uint32_t buffer_count,
3443 struct drm_i915_gem_relocation_entry *relocs)
3444{
3445 uint32_t reloc_count = 0, i;
2bc43b5c 3446 int ret = 0;
40a5f0de 3447
93533c29
CW
3448 if (relocs == NULL)
3449 return 0;
3450
40a5f0de
EA
3451 for (i = 0; i < buffer_count; i++) {
3452 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3453 int unwritten;
40a5f0de
EA
3454
3455 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3456
2bc43b5c
FM
3457 unwritten = copy_to_user(user_relocs,
3458 &relocs[reloc_count],
3459 exec_list[i].relocation_count *
3460 sizeof(*relocs));
3461
3462 if (unwritten) {
3463 ret = -EFAULT;
3464 goto err;
40a5f0de
EA
3465 }
3466
3467 reloc_count += exec_list[i].relocation_count;
3468 }
3469
2bc43b5c 3470err:
8e7d2b2c 3471 drm_free_large(relocs);
40a5f0de
EA
3472
3473 return ret;
3474}
3475
83d60795 3476static int
76446cac 3477i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3478 uint64_t exec_offset)
3479{
3480 uint32_t exec_start, exec_len;
3481
3482 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3483 exec_len = (uint32_t) exec->batch_len;
3484
3485 if ((exec_start | exec_len) & 0x7)
3486 return -EINVAL;
3487
3488 if (!exec_start)
3489 return -EINVAL;
3490
3491 return 0;
3492}
3493
6b95a207
KH
3494static int
3495i915_gem_wait_for_pending_flip(struct drm_device *dev,
3496 struct drm_gem_object **object_list,
3497 int count)
3498{
3499 drm_i915_private_t *dev_priv = dev->dev_private;
3500 struct drm_i915_gem_object *obj_priv;
3501 DEFINE_WAIT(wait);
3502 int i, ret = 0;
3503
3504 for (;;) {
3505 prepare_to_wait(&dev_priv->pending_flip_queue,
3506 &wait, TASK_INTERRUPTIBLE);
3507 for (i = 0; i < count; i++) {
23010e43 3508 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3509 if (atomic_read(&obj_priv->pending_flip) > 0)
3510 break;
3511 }
3512 if (i == count)
3513 break;
3514
3515 if (!signal_pending(current)) {
3516 mutex_unlock(&dev->struct_mutex);
3517 schedule();
3518 mutex_lock(&dev->struct_mutex);
3519 continue;
3520 }
3521 ret = -ERESTARTSYS;
3522 break;
3523 }
3524 finish_wait(&dev_priv->pending_flip_queue, &wait);
3525
3526 return ret;
3527}
3528
43b27f40 3529
673a394b 3530int
76446cac
JB
3531i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3532 struct drm_file *file_priv,
3533 struct drm_i915_gem_execbuffer2 *args,
3534 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3535{
3536 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3537 struct drm_gem_object **object_list = NULL;
3538 struct drm_gem_object *batch_obj;
b70d11da 3539 struct drm_i915_gem_object *obj_priv;
201361a5 3540 struct drm_clip_rect *cliprects = NULL;
93533c29 3541 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3542 int ret = 0, ret2, i, pinned = 0;
673a394b 3543 uint64_t exec_offset;
40a5f0de 3544 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3545 int pin_tries, flips;
673a394b 3546
852835f3
ZN
3547 struct intel_ring_buffer *ring = NULL;
3548
673a394b
EA
3549#if WATCH_EXEC
3550 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3551 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3552#endif
d1b851fc
ZN
3553 if (args->flags & I915_EXEC_BSD) {
3554 if (!HAS_BSD(dev)) {
3555 DRM_ERROR("execbuf with wrong flag\n");
3556 return -EINVAL;
3557 }
3558 ring = &dev_priv->bsd_ring;
3559 } else {
3560 ring = &dev_priv->render_ring;
3561 }
3562
4f481ed2
EA
3563 if (args->buffer_count < 1) {
3564 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3565 return -EINVAL;
3566 }
c8e0f93a 3567 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3568 if (object_list == NULL) {
3569 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3570 args->buffer_count);
3571 ret = -ENOMEM;
3572 goto pre_mutex_err;
3573 }
673a394b 3574
201361a5 3575 if (args->num_cliprects != 0) {
9a298b2a
EA
3576 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3577 GFP_KERNEL);
a40e8d31
OA
3578 if (cliprects == NULL) {
3579 ret = -ENOMEM;
201361a5 3580 goto pre_mutex_err;
a40e8d31 3581 }
201361a5
EA
3582
3583 ret = copy_from_user(cliprects,
3584 (struct drm_clip_rect __user *)
3585 (uintptr_t) args->cliprects_ptr,
3586 sizeof(*cliprects) * args->num_cliprects);
3587 if (ret != 0) {
3588 DRM_ERROR("copy %d cliprects failed: %d\n",
3589 args->num_cliprects, ret);
3590 goto pre_mutex_err;
3591 }
3592 }
3593
40a5f0de
EA
3594 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3595 &relocs);
3596 if (ret != 0)
3597 goto pre_mutex_err;
3598
673a394b
EA
3599 mutex_lock(&dev->struct_mutex);
3600
3601 i915_verify_inactive(dev, __FILE__, __LINE__);
3602
ba1234d1 3603 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3604 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3605 ret = -EIO;
3606 goto pre_mutex_err;
673a394b
EA
3607 }
3608
3609 if (dev_priv->mm.suspended) {
673a394b 3610 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3611 ret = -EBUSY;
3612 goto pre_mutex_err;
673a394b
EA
3613 }
3614
ac94a962 3615 /* Look up object handles */
6b95a207 3616 flips = 0;
673a394b
EA
3617 for (i = 0; i < args->buffer_count; i++) {
3618 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3619 exec_list[i].handle);
3620 if (object_list[i] == NULL) {
3621 DRM_ERROR("Invalid object handle %d at index %d\n",
3622 exec_list[i].handle, i);
0ce907f8
CW
3623 /* prevent error path from reading uninitialized data */
3624 args->buffer_count = i + 1;
673a394b
EA
3625 ret = -EBADF;
3626 goto err;
3627 }
b70d11da 3628
23010e43 3629 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3630 if (obj_priv->in_execbuffer) {
3631 DRM_ERROR("Object %p appears more than once in object list\n",
3632 object_list[i]);
0ce907f8
CW
3633 /* prevent error path from reading uninitialized data */
3634 args->buffer_count = i + 1;
b70d11da
KH
3635 ret = -EBADF;
3636 goto err;
3637 }
3638 obj_priv->in_execbuffer = true;
6b95a207
KH
3639 flips += atomic_read(&obj_priv->pending_flip);
3640 }
3641
3642 if (flips > 0) {
3643 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3644 args->buffer_count);
3645 if (ret)
3646 goto err;
ac94a962 3647 }
673a394b 3648
ac94a962
KP
3649 /* Pin and relocate */
3650 for (pin_tries = 0; ; pin_tries++) {
3651 ret = 0;
40a5f0de
EA
3652 reloc_index = 0;
3653
ac94a962
KP
3654 for (i = 0; i < args->buffer_count; i++) {
3655 object_list[i]->pending_read_domains = 0;
3656 object_list[i]->pending_write_domain = 0;
3657 ret = i915_gem_object_pin_and_relocate(object_list[i],
3658 file_priv,
40a5f0de
EA
3659 &exec_list[i],
3660 &relocs[reloc_index]);
ac94a962
KP
3661 if (ret)
3662 break;
3663 pinned = i + 1;
40a5f0de 3664 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3665 }
3666 /* success */
3667 if (ret == 0)
3668 break;
3669
3670 /* error other than GTT full, or we've already tried again */
2939e1f5 3671 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3672 if (ret != -ERESTARTSYS) {
3673 unsigned long long total_size = 0;
3d1cc470
CW
3674 int num_fences = 0;
3675 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3676 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3677
07f73f69 3678 total_size += object_list[i]->size;
3d1cc470
CW
3679 num_fences +=
3680 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3681 obj_priv->tiling_mode != I915_TILING_NONE;
3682 }
3683 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3684 pinned+1, args->buffer_count,
3d1cc470
CW
3685 total_size, num_fences,
3686 ret);
07f73f69
CW
3687 DRM_ERROR("%d objects [%d pinned], "
3688 "%d object bytes [%d pinned], "
3689 "%d/%d gtt bytes\n",
3690 atomic_read(&dev->object_count),
3691 atomic_read(&dev->pin_count),
3692 atomic_read(&dev->object_memory),
3693 atomic_read(&dev->pin_memory),
3694 atomic_read(&dev->gtt_memory),
3695 dev->gtt_total);
3696 }
673a394b
EA
3697 goto err;
3698 }
ac94a962
KP
3699
3700 /* unpin all of our buffers */
3701 for (i = 0; i < pinned; i++)
3702 i915_gem_object_unpin(object_list[i]);
b1177636 3703 pinned = 0;
ac94a962
KP
3704
3705 /* evict everyone we can from the aperture */
3706 ret = i915_gem_evict_everything(dev);
07f73f69 3707 if (ret && ret != -ENOSPC)
ac94a962 3708 goto err;
673a394b
EA
3709 }
3710
3711 /* Set the pending read domains for the batch buffer to COMMAND */
3712 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3713 if (batch_obj->pending_write_domain) {
3714 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3715 ret = -EINVAL;
3716 goto err;
3717 }
3718 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3719
83d60795
CW
3720 /* Sanity check the batch buffer, prior to moving objects */
3721 exec_offset = exec_list[args->buffer_count - 1].offset;
3722 ret = i915_gem_check_execbuffer (args, exec_offset);
3723 if (ret != 0) {
3724 DRM_ERROR("execbuf with invalid offset/length\n");
3725 goto err;
3726 }
3727
673a394b
EA
3728 i915_verify_inactive(dev, __FILE__, __LINE__);
3729
646f0f6e
KP
3730 /* Zero the global flush/invalidate flags. These
3731 * will be modified as new domains are computed
3732 * for each object
3733 */
3734 dev->invalidate_domains = 0;
3735 dev->flush_domains = 0;
88f356b7 3736 dev_priv->flush_rings = 0;
646f0f6e 3737
673a394b
EA
3738 for (i = 0; i < args->buffer_count; i++) {
3739 struct drm_gem_object *obj = object_list[i];
673a394b 3740
646f0f6e 3741 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3742 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3743 }
3744
3745 i915_verify_inactive(dev, __FILE__, __LINE__);
3746
646f0f6e
KP
3747 if (dev->invalidate_domains | dev->flush_domains) {
3748#if WATCH_EXEC
3749 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3750 __func__,
3751 dev->invalidate_domains,
3752 dev->flush_domains);
3753#endif
3754 i915_gem_flush(dev,
3755 dev->invalidate_domains,
3756 dev->flush_domains);
88f356b7 3757 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
b962442e 3758 (void)i915_add_request(dev, file_priv,
88f356b7
CW
3759 dev->flush_domains,
3760 &dev_priv->render_ring);
3761 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3762 (void)i915_add_request(dev, file_priv,
3763 dev->flush_domains,
3764 &dev_priv->bsd_ring);
646f0f6e 3765 }
673a394b 3766
efbeed96
EA
3767 for (i = 0; i < args->buffer_count; i++) {
3768 struct drm_gem_object *obj = object_list[i];
23010e43 3769 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3770 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3771
3772 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3773 if (obj->write_domain)
3774 list_move_tail(&obj_priv->gpu_write_list,
3775 &dev_priv->mm.gpu_write_list);
3776 else
3777 list_del_init(&obj_priv->gpu_write_list);
3778
1c5d22f7
CW
3779 trace_i915_gem_object_change_domain(obj,
3780 obj->read_domains,
3781 old_write_domain);
efbeed96
EA
3782 }
3783
673a394b
EA
3784 i915_verify_inactive(dev, __FILE__, __LINE__);
3785
3786#if WATCH_COHERENCY
3787 for (i = 0; i < args->buffer_count; i++) {
3788 i915_gem_object_check_coherency(object_list[i],
3789 exec_list[i].handle);
3790 }
3791#endif
3792
673a394b 3793#if WATCH_EXEC
6911a9b8 3794 i915_gem_dump_object(batch_obj,
673a394b
EA
3795 args->batch_len,
3796 __func__,
3797 ~0);
3798#endif
3799
673a394b 3800 /* Exec the batchbuffer */
852835f3
ZN
3801 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3802 cliprects, exec_offset);
673a394b
EA
3803 if (ret) {
3804 DRM_ERROR("dispatch failed %d\n", ret);
3805 goto err;
3806 }
3807
3808 /*
3809 * Ensure that the commands in the batch buffer are
3810 * finished before the interrupt fires
3811 */
852835f3 3812 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3813
3814 i915_verify_inactive(dev, __FILE__, __LINE__);
3815
3816 /*
3817 * Get a seqno representing the execution of the current buffer,
3818 * which we can wait on. We would like to mitigate these interrupts,
3819 * likely by only creating seqnos occasionally (so that we have
3820 * *some* interrupts representing completion of buffers that we can
3821 * wait on when trying to clear up gtt space).
3822 */
852835f3 3823 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3824 BUG_ON(seqno == 0);
673a394b
EA
3825 for (i = 0; i < args->buffer_count; i++) {
3826 struct drm_gem_object *obj = object_list[i];
852835f3 3827 obj_priv = to_intel_bo(obj);
673a394b 3828
852835f3 3829 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3830#if WATCH_LRU
3831 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3832#endif
3833 }
3834#if WATCH_LRU
3835 i915_dump_lru(dev, __func__);
3836#endif
3837
3838 i915_verify_inactive(dev, __FILE__, __LINE__);
3839
673a394b 3840err:
aad87dff
JL
3841 for (i = 0; i < pinned; i++)
3842 i915_gem_object_unpin(object_list[i]);
3843
b70d11da
KH
3844 for (i = 0; i < args->buffer_count; i++) {
3845 if (object_list[i]) {
23010e43 3846 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3847 obj_priv->in_execbuffer = false;
3848 }
aad87dff 3849 drm_gem_object_unreference(object_list[i]);
b70d11da 3850 }
673a394b 3851
673a394b
EA
3852 mutex_unlock(&dev->struct_mutex);
3853
93533c29 3854pre_mutex_err:
40a5f0de
EA
3855 /* Copy the updated relocations out regardless of current error
3856 * state. Failure to update the relocs would mean that the next
3857 * time userland calls execbuf, it would do so with presumed offset
3858 * state that didn't match the actual object state.
3859 */
3860 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3861 relocs);
3862 if (ret2 != 0) {
3863 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3864
3865 if (ret == 0)
3866 ret = ret2;
3867 }
3868
8e7d2b2c 3869 drm_free_large(object_list);
9a298b2a 3870 kfree(cliprects);
673a394b
EA
3871
3872 return ret;
3873}
3874
76446cac
JB
3875/*
3876 * Legacy execbuffer just creates an exec2 list from the original exec object
3877 * list array and passes it to the real function.
3878 */
3879int
3880i915_gem_execbuffer(struct drm_device *dev, void *data,
3881 struct drm_file *file_priv)
3882{
3883 struct drm_i915_gem_execbuffer *args = data;
3884 struct drm_i915_gem_execbuffer2 exec2;
3885 struct drm_i915_gem_exec_object *exec_list = NULL;
3886 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3887 int ret, i;
3888
3889#if WATCH_EXEC
3890 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3891 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3892#endif
3893
3894 if (args->buffer_count < 1) {
3895 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3896 return -EINVAL;
3897 }
3898
3899 /* Copy in the exec list from userland */
3900 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3901 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3902 if (exec_list == NULL || exec2_list == NULL) {
3903 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3904 args->buffer_count);
3905 drm_free_large(exec_list);
3906 drm_free_large(exec2_list);
3907 return -ENOMEM;
3908 }
3909 ret = copy_from_user(exec_list,
3910 (struct drm_i915_relocation_entry __user *)
3911 (uintptr_t) args->buffers_ptr,
3912 sizeof(*exec_list) * args->buffer_count);
3913 if (ret != 0) {
3914 DRM_ERROR("copy %d exec entries failed %d\n",
3915 args->buffer_count, ret);
3916 drm_free_large(exec_list);
3917 drm_free_large(exec2_list);
3918 return -EFAULT;
3919 }
3920
3921 for (i = 0; i < args->buffer_count; i++) {
3922 exec2_list[i].handle = exec_list[i].handle;
3923 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3924 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3925 exec2_list[i].alignment = exec_list[i].alignment;
3926 exec2_list[i].offset = exec_list[i].offset;
3927 if (!IS_I965G(dev))
3928 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3929 else
3930 exec2_list[i].flags = 0;
3931 }
3932
3933 exec2.buffers_ptr = args->buffers_ptr;
3934 exec2.buffer_count = args->buffer_count;
3935 exec2.batch_start_offset = args->batch_start_offset;
3936 exec2.batch_len = args->batch_len;
3937 exec2.DR1 = args->DR1;
3938 exec2.DR4 = args->DR4;
3939 exec2.num_cliprects = args->num_cliprects;
3940 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3941 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3942
3943 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3944 if (!ret) {
3945 /* Copy the new buffer offsets back to the user's exec list. */
3946 for (i = 0; i < args->buffer_count; i++)
3947 exec_list[i].offset = exec2_list[i].offset;
3948 /* ... and back out to userspace */
3949 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3950 (uintptr_t) args->buffers_ptr,
3951 exec_list,
3952 sizeof(*exec_list) * args->buffer_count);
3953 if (ret) {
3954 ret = -EFAULT;
3955 DRM_ERROR("failed to copy %d exec entries "
3956 "back to user (%d)\n",
3957 args->buffer_count, ret);
3958 }
76446cac
JB
3959 }
3960
3961 drm_free_large(exec_list);
3962 drm_free_large(exec2_list);
3963 return ret;
3964}
3965
3966int
3967i915_gem_execbuffer2(struct drm_device *dev, void *data,
3968 struct drm_file *file_priv)
3969{
3970 struct drm_i915_gem_execbuffer2 *args = data;
3971 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3972 int ret;
3973
3974#if WATCH_EXEC
3975 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3976 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3977#endif
3978
3979 if (args->buffer_count < 1) {
3980 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3981 return -EINVAL;
3982 }
3983
3984 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3985 if (exec2_list == NULL) {
3986 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3987 args->buffer_count);
3988 return -ENOMEM;
3989 }
3990 ret = copy_from_user(exec2_list,
3991 (struct drm_i915_relocation_entry __user *)
3992 (uintptr_t) args->buffers_ptr,
3993 sizeof(*exec2_list) * args->buffer_count);
3994 if (ret != 0) {
3995 DRM_ERROR("copy %d exec entries failed %d\n",
3996 args->buffer_count, ret);
3997 drm_free_large(exec2_list);
3998 return -EFAULT;
3999 }
4000
4001 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4002 if (!ret) {
4003 /* Copy the new buffer offsets back to the user's exec list. */
4004 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4005 (uintptr_t) args->buffers_ptr,
4006 exec2_list,
4007 sizeof(*exec2_list) * args->buffer_count);
4008 if (ret) {
4009 ret = -EFAULT;
4010 DRM_ERROR("failed to copy %d exec entries "
4011 "back to user (%d)\n",
4012 args->buffer_count, ret);
4013 }
4014 }
4015
4016 drm_free_large(exec2_list);
4017 return ret;
4018}
4019
673a394b
EA
4020int
4021i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4022{
4023 struct drm_device *dev = obj->dev;
23010e43 4024 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4025 int ret;
4026
778c3544
DV
4027 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4028
673a394b 4029 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4030
4031 if (obj_priv->gtt_space != NULL) {
4032 if (alignment == 0)
4033 alignment = i915_gem_get_gtt_alignment(obj);
4034 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4035 WARN(obj_priv->pin_count,
4036 "bo is already pinned with incorrect alignment:"
4037 " offset=%x, req.alignment=%x\n",
4038 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4039 ret = i915_gem_object_unbind(obj);
4040 if (ret)
4041 return ret;
4042 }
4043 }
4044
673a394b
EA
4045 if (obj_priv->gtt_space == NULL) {
4046 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4047 if (ret)
673a394b 4048 return ret;
22c344e9 4049 }
76446cac 4050
673a394b
EA
4051 obj_priv->pin_count++;
4052
4053 /* If the object is not active and not pending a flush,
4054 * remove it from the inactive list
4055 */
4056 if (obj_priv->pin_count == 1) {
4057 atomic_inc(&dev->pin_count);
4058 atomic_add(obj->size, &dev->pin_memory);
4059 if (!obj_priv->active &&
bf1a1092 4060 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4061 list_del_init(&obj_priv->list);
4062 }
4063 i915_verify_inactive(dev, __FILE__, __LINE__);
4064
4065 return 0;
4066}
4067
4068void
4069i915_gem_object_unpin(struct drm_gem_object *obj)
4070{
4071 struct drm_device *dev = obj->dev;
4072 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4073 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4074
4075 i915_verify_inactive(dev, __FILE__, __LINE__);
4076 obj_priv->pin_count--;
4077 BUG_ON(obj_priv->pin_count < 0);
4078 BUG_ON(obj_priv->gtt_space == NULL);
4079
4080 /* If the object is no longer pinned, and is
4081 * neither active nor being flushed, then stick it on
4082 * the inactive list
4083 */
4084 if (obj_priv->pin_count == 0) {
4085 if (!obj_priv->active &&
21d509e3 4086 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4087 list_move_tail(&obj_priv->list,
4088 &dev_priv->mm.inactive_list);
4089 atomic_dec(&dev->pin_count);
4090 atomic_sub(obj->size, &dev->pin_memory);
4091 }
4092 i915_verify_inactive(dev, __FILE__, __LINE__);
4093}
4094
4095int
4096i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file_priv)
4098{
4099 struct drm_i915_gem_pin *args = data;
4100 struct drm_gem_object *obj;
4101 struct drm_i915_gem_object *obj_priv;
4102 int ret;
4103
4104 mutex_lock(&dev->struct_mutex);
4105
4106 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4107 if (obj == NULL) {
4108 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4109 args->handle);
4110 mutex_unlock(&dev->struct_mutex);
4111 return -EBADF;
4112 }
23010e43 4113 obj_priv = to_intel_bo(obj);
673a394b 4114
bb6baf76
CW
4115 if (obj_priv->madv != I915_MADV_WILLNEED) {
4116 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4117 drm_gem_object_unreference(obj);
4118 mutex_unlock(&dev->struct_mutex);
4119 return -EINVAL;
4120 }
4121
79e53945
JB
4122 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4123 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4124 args->handle);
96dec61d 4125 drm_gem_object_unreference(obj);
673a394b 4126 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4127 return -EINVAL;
4128 }
4129
4130 obj_priv->user_pin_count++;
4131 obj_priv->pin_filp = file_priv;
4132 if (obj_priv->user_pin_count == 1) {
4133 ret = i915_gem_object_pin(obj, args->alignment);
4134 if (ret != 0) {
4135 drm_gem_object_unreference(obj);
4136 mutex_unlock(&dev->struct_mutex);
4137 return ret;
4138 }
673a394b
EA
4139 }
4140
4141 /* XXX - flush the CPU caches for pinned objects
4142 * as the X server doesn't manage domains yet
4143 */
e47c68e9 4144 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4145 args->offset = obj_priv->gtt_offset;
4146 drm_gem_object_unreference(obj);
4147 mutex_unlock(&dev->struct_mutex);
4148
4149 return 0;
4150}
4151
4152int
4153i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4154 struct drm_file *file_priv)
4155{
4156 struct drm_i915_gem_pin *args = data;
4157 struct drm_gem_object *obj;
79e53945 4158 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4159
4160 mutex_lock(&dev->struct_mutex);
4161
4162 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4163 if (obj == NULL) {
4164 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4165 args->handle);
4166 mutex_unlock(&dev->struct_mutex);
4167 return -EBADF;
4168 }
4169
23010e43 4170 obj_priv = to_intel_bo(obj);
79e53945
JB
4171 if (obj_priv->pin_filp != file_priv) {
4172 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4173 args->handle);
4174 drm_gem_object_unreference(obj);
4175 mutex_unlock(&dev->struct_mutex);
4176 return -EINVAL;
4177 }
4178 obj_priv->user_pin_count--;
4179 if (obj_priv->user_pin_count == 0) {
4180 obj_priv->pin_filp = NULL;
4181 i915_gem_object_unpin(obj);
4182 }
673a394b
EA
4183
4184 drm_gem_object_unreference(obj);
4185 mutex_unlock(&dev->struct_mutex);
4186 return 0;
4187}
4188
4189int
4190i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4191 struct drm_file *file_priv)
4192{
4193 struct drm_i915_gem_busy *args = data;
4194 struct drm_gem_object *obj;
4195 struct drm_i915_gem_object *obj_priv;
4196
673a394b
EA
4197 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4198 if (obj == NULL) {
4199 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4200 args->handle);
673a394b
EA
4201 return -EBADF;
4202 }
4203
b1ce786c 4204 mutex_lock(&dev->struct_mutex);
d1b851fc 4205
0be555b6
CW
4206 /* Count all active objects as busy, even if they are currently not used
4207 * by the gpu. Users of this interface expect objects to eventually
4208 * become non-busy without any further actions, therefore emit any
4209 * necessary flushes here.
c4de0a5d 4210 */
0be555b6
CW
4211 obj_priv = to_intel_bo(obj);
4212 args->busy = obj_priv->active;
4213 if (args->busy) {
4214 /* Unconditionally flush objects, even when the gpu still uses this
4215 * object. Userspace calling this function indicates that it wants to
4216 * use this buffer rather sooner than later, so issuing the required
4217 * flush earlier is beneficial.
4218 */
4219 if (obj->write_domain) {
4220 i915_gem_flush(dev, 0, obj->write_domain);
4221 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4222 }
4223
4224 /* Update the active list for the hardware's current position.
4225 * Otherwise this only updates on a delayed timer or when irqs
4226 * are actually unmasked, and our working set ends up being
4227 * larger than required.
4228 */
4229 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4230
4231 args->busy = obj_priv->active;
4232 }
673a394b
EA
4233
4234 drm_gem_object_unreference(obj);
4235 mutex_unlock(&dev->struct_mutex);
4236 return 0;
4237}
4238
4239int
4240i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4241 struct drm_file *file_priv)
4242{
4243 return i915_gem_ring_throttle(dev, file_priv);
4244}
4245
3ef94daa
CW
4246int
4247i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4248 struct drm_file *file_priv)
4249{
4250 struct drm_i915_gem_madvise *args = data;
4251 struct drm_gem_object *obj;
4252 struct drm_i915_gem_object *obj_priv;
4253
4254 switch (args->madv) {
4255 case I915_MADV_DONTNEED:
4256 case I915_MADV_WILLNEED:
4257 break;
4258 default:
4259 return -EINVAL;
4260 }
4261
4262 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4263 if (obj == NULL) {
4264 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4265 args->handle);
4266 return -EBADF;
4267 }
4268
4269 mutex_lock(&dev->struct_mutex);
23010e43 4270 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4271
4272 if (obj_priv->pin_count) {
4273 drm_gem_object_unreference(obj);
4274 mutex_unlock(&dev->struct_mutex);
4275
4276 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4277 return -EINVAL;
4278 }
4279
bb6baf76
CW
4280 if (obj_priv->madv != __I915_MADV_PURGED)
4281 obj_priv->madv = args->madv;
3ef94daa 4282
2d7ef395
CW
4283 /* if the object is no longer bound, discard its backing storage */
4284 if (i915_gem_object_is_purgeable(obj_priv) &&
4285 obj_priv->gtt_space == NULL)
4286 i915_gem_object_truncate(obj);
4287
bb6baf76
CW
4288 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4289
3ef94daa
CW
4290 drm_gem_object_unreference(obj);
4291 mutex_unlock(&dev->struct_mutex);
4292
4293 return 0;
4294}
4295
ac52bc56
DV
4296struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4297 size_t size)
4298{
c397b908 4299 struct drm_i915_gem_object *obj;
ac52bc56 4300
c397b908
DV
4301 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4302 if (obj == NULL)
4303 return NULL;
673a394b 4304
c397b908
DV
4305 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4306 kfree(obj);
4307 return NULL;
4308 }
673a394b 4309
c397b908
DV
4310 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4311 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4312
c397b908 4313 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4314 obj->base.driver_private = NULL;
c397b908
DV
4315 obj->fence_reg = I915_FENCE_REG_NONE;
4316 INIT_LIST_HEAD(&obj->list);
4317 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4318 obj->madv = I915_MADV_WILLNEED;
de151cf6 4319
c397b908
DV
4320 trace_i915_gem_object_create(&obj->base);
4321
4322 return &obj->base;
4323}
4324
4325int i915_gem_init_object(struct drm_gem_object *obj)
4326{
4327 BUG();
de151cf6 4328
673a394b
EA
4329 return 0;
4330}
4331
be72615b 4332static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4333{
de151cf6 4334 struct drm_device *dev = obj->dev;
be72615b 4335 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4336 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4337 int ret;
673a394b 4338
be72615b
CW
4339 ret = i915_gem_object_unbind(obj);
4340 if (ret == -ERESTARTSYS) {
4341 list_move(&obj_priv->list,
4342 &dev_priv->mm.deferred_free_list);
4343 return;
4344 }
673a394b 4345
7e616158
CW
4346 if (obj_priv->mmap_offset)
4347 i915_gem_free_mmap_offset(obj);
de151cf6 4348
c397b908
DV
4349 drm_gem_object_release(obj);
4350
9a298b2a 4351 kfree(obj_priv->page_cpu_valid);
280b713b 4352 kfree(obj_priv->bit_17);
c397b908 4353 kfree(obj_priv);
673a394b
EA
4354}
4355
be72615b
CW
4356void i915_gem_free_object(struct drm_gem_object *obj)
4357{
4358 struct drm_device *dev = obj->dev;
4359 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4360
4361 trace_i915_gem_object_destroy(obj);
4362
4363 while (obj_priv->pin_count > 0)
4364 i915_gem_object_unpin(obj);
4365
4366 if (obj_priv->phys_obj)
4367 i915_gem_detach_phys_object(dev, obj);
4368
4369 i915_gem_free_object_tail(obj);
4370}
4371
29105ccc
CW
4372int
4373i915_gem_idle(struct drm_device *dev)
4374{
4375 drm_i915_private_t *dev_priv = dev->dev_private;
4376 int ret;
28dfe52a 4377
29105ccc 4378 mutex_lock(&dev->struct_mutex);
1c5d22f7 4379
8187a2b7 4380 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4381 (dev_priv->render_ring.gem_object == NULL) ||
4382 (HAS_BSD(dev) &&
4383 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4384 mutex_unlock(&dev->struct_mutex);
4385 return 0;
28dfe52a
EA
4386 }
4387
29105ccc 4388 ret = i915_gpu_idle(dev);
6dbe2772
KP
4389 if (ret) {
4390 mutex_unlock(&dev->struct_mutex);
673a394b 4391 return ret;
6dbe2772 4392 }
673a394b 4393
29105ccc
CW
4394 /* Under UMS, be paranoid and evict. */
4395 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4396 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4397 if (ret) {
4398 mutex_unlock(&dev->struct_mutex);
4399 return ret;
4400 }
4401 }
4402
4403 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4404 * We need to replace this with a semaphore, or something.
4405 * And not confound mm.suspended!
4406 */
4407 dev_priv->mm.suspended = 1;
4408 del_timer(&dev_priv->hangcheck_timer);
4409
4410 i915_kernel_lost_context(dev);
6dbe2772 4411 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4412
6dbe2772
KP
4413 mutex_unlock(&dev->struct_mutex);
4414
29105ccc
CW
4415 /* Cancel the retire work handler, which should be idle now. */
4416 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4417
673a394b
EA
4418 return 0;
4419}
4420
e552eb70
JB
4421/*
4422 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4423 * over cache flushing.
4424 */
8187a2b7 4425static int
e552eb70
JB
4426i915_gem_init_pipe_control(struct drm_device *dev)
4427{
4428 drm_i915_private_t *dev_priv = dev->dev_private;
4429 struct drm_gem_object *obj;
4430 struct drm_i915_gem_object *obj_priv;
4431 int ret;
4432
34dc4d44 4433 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4434 if (obj == NULL) {
4435 DRM_ERROR("Failed to allocate seqno page\n");
4436 ret = -ENOMEM;
4437 goto err;
4438 }
4439 obj_priv = to_intel_bo(obj);
4440 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4441
4442 ret = i915_gem_object_pin(obj, 4096);
4443 if (ret)
4444 goto err_unref;
4445
4446 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4447 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4448 if (dev_priv->seqno_page == NULL)
4449 goto err_unpin;
4450
4451 dev_priv->seqno_obj = obj;
4452 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4453
4454 return 0;
4455
4456err_unpin:
4457 i915_gem_object_unpin(obj);
4458err_unref:
4459 drm_gem_object_unreference(obj);
4460err:
4461 return ret;
4462}
4463
8187a2b7
ZN
4464
4465static void
e552eb70
JB
4466i915_gem_cleanup_pipe_control(struct drm_device *dev)
4467{
4468 drm_i915_private_t *dev_priv = dev->dev_private;
4469 struct drm_gem_object *obj;
4470 struct drm_i915_gem_object *obj_priv;
4471
4472 obj = dev_priv->seqno_obj;
4473 obj_priv = to_intel_bo(obj);
4474 kunmap(obj_priv->pages[0]);
4475 i915_gem_object_unpin(obj);
4476 drm_gem_object_unreference(obj);
4477 dev_priv->seqno_obj = NULL;
4478
4479 dev_priv->seqno_page = NULL;
673a394b
EA
4480}
4481
8187a2b7
ZN
4482int
4483i915_gem_init_ringbuffer(struct drm_device *dev)
4484{
4485 drm_i915_private_t *dev_priv = dev->dev_private;
4486 int ret;
68f95ba9 4487
8187a2b7 4488 dev_priv->render_ring = render_ring;
68f95ba9 4489
8187a2b7
ZN
4490 if (!I915_NEED_GFX_HWS(dev)) {
4491 dev_priv->render_ring.status_page.page_addr
4492 = dev_priv->status_page_dmah->vaddr;
4493 memset(dev_priv->render_ring.status_page.page_addr,
4494 0, PAGE_SIZE);
4495 }
68f95ba9 4496
8187a2b7
ZN
4497 if (HAS_PIPE_CONTROL(dev)) {
4498 ret = i915_gem_init_pipe_control(dev);
4499 if (ret)
4500 return ret;
4501 }
68f95ba9 4502
8187a2b7 4503 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4504 if (ret)
4505 goto cleanup_pipe_control;
4506
4507 if (HAS_BSD(dev)) {
d1b851fc
ZN
4508 dev_priv->bsd_ring = bsd_ring;
4509 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4510 if (ret)
4511 goto cleanup_render_ring;
d1b851fc 4512 }
68f95ba9 4513
6f392d54
CW
4514 dev_priv->next_seqno = 1;
4515
68f95ba9
CW
4516 return 0;
4517
4518cleanup_render_ring:
4519 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4520cleanup_pipe_control:
4521 if (HAS_PIPE_CONTROL(dev))
4522 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4523 return ret;
4524}
4525
4526void
4527i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4528{
4529 drm_i915_private_t *dev_priv = dev->dev_private;
4530
4531 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4532 if (HAS_BSD(dev))
4533 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4534 if (HAS_PIPE_CONTROL(dev))
4535 i915_gem_cleanup_pipe_control(dev);
4536}
4537
673a394b
EA
4538int
4539i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4540 struct drm_file *file_priv)
4541{
4542 drm_i915_private_t *dev_priv = dev->dev_private;
4543 int ret;
4544
79e53945
JB
4545 if (drm_core_check_feature(dev, DRIVER_MODESET))
4546 return 0;
4547
ba1234d1 4548 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4549 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4550 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4551 }
4552
673a394b 4553 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4554 dev_priv->mm.suspended = 0;
4555
4556 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4557 if (ret != 0) {
4558 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4559 return ret;
d816f6ac 4560 }
9bb2d6f9 4561
5e118f41 4562 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4563 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4564 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4565 spin_unlock(&dev_priv->mm.active_list_lock);
4566
673a394b
EA
4567 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4568 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4569 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4570 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4571 mutex_unlock(&dev->struct_mutex);
dbb19d30 4572
5f35308b
CW
4573 ret = drm_irq_install(dev);
4574 if (ret)
4575 goto cleanup_ringbuffer;
dbb19d30 4576
673a394b 4577 return 0;
5f35308b
CW
4578
4579cleanup_ringbuffer:
4580 mutex_lock(&dev->struct_mutex);
4581 i915_gem_cleanup_ringbuffer(dev);
4582 dev_priv->mm.suspended = 1;
4583 mutex_unlock(&dev->struct_mutex);
4584
4585 return ret;
673a394b
EA
4586}
4587
4588int
4589i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4590 struct drm_file *file_priv)
4591{
79e53945
JB
4592 if (drm_core_check_feature(dev, DRIVER_MODESET))
4593 return 0;
4594
dbb19d30 4595 drm_irq_uninstall(dev);
e6890f6f 4596 return i915_gem_idle(dev);
673a394b
EA
4597}
4598
4599void
4600i915_gem_lastclose(struct drm_device *dev)
4601{
4602 int ret;
673a394b 4603
e806b495
EA
4604 if (drm_core_check_feature(dev, DRIVER_MODESET))
4605 return;
4606
6dbe2772
KP
4607 ret = i915_gem_idle(dev);
4608 if (ret)
4609 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4610}
4611
4612void
4613i915_gem_load(struct drm_device *dev)
4614{
b5aa8a0f 4615 int i;
673a394b
EA
4616 drm_i915_private_t *dev_priv = dev->dev_private;
4617
5e118f41 4618 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4619 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4620 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4621 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4622 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4623 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4624 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4625 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4626 if (HAS_BSD(dev)) {
4627 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4628 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4629 }
007cc8ac
DV
4630 for (i = 0; i < 16; i++)
4631 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4632 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4633 i915_gem_retire_work_handler);
31169714
CW
4634 spin_lock(&shrink_list_lock);
4635 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4636 spin_unlock(&shrink_list_lock);
4637
94400120
DA
4638 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4639 if (IS_GEN3(dev)) {
4640 u32 tmp = I915_READ(MI_ARB_STATE);
4641 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4642 /* arb state is a masked write, so set bit + bit in mask */
4643 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4644 I915_WRITE(MI_ARB_STATE, tmp);
4645 }
4646 }
4647
de151cf6 4648 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4649 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4650 dev_priv->fence_reg_start = 3;
de151cf6 4651
0f973f27 4652 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4653 dev_priv->num_fence_regs = 16;
4654 else
4655 dev_priv->num_fence_regs = 8;
4656
b5aa8a0f
GH
4657 /* Initialize fence registers to zero */
4658 if (IS_I965G(dev)) {
4659 for (i = 0; i < 16; i++)
4660 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4661 } else {
4662 for (i = 0; i < 8; i++)
4663 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4664 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4665 for (i = 0; i < 8; i++)
4666 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4667 }
673a394b 4668 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4669 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4670}
71acb5eb
DA
4671
4672/*
4673 * Create a physically contiguous memory object for this object
4674 * e.g. for cursor + overlay regs
4675 */
4676int i915_gem_init_phys_object(struct drm_device *dev,
4677 int id, int size)
4678{
4679 drm_i915_private_t *dev_priv = dev->dev_private;
4680 struct drm_i915_gem_phys_object *phys_obj;
4681 int ret;
4682
4683 if (dev_priv->mm.phys_objs[id - 1] || !size)
4684 return 0;
4685
9a298b2a 4686 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4687 if (!phys_obj)
4688 return -ENOMEM;
4689
4690 phys_obj->id = id;
4691
e6be8d9d 4692 phys_obj->handle = drm_pci_alloc(dev, size, 0);
71acb5eb
DA
4693 if (!phys_obj->handle) {
4694 ret = -ENOMEM;
4695 goto kfree_obj;
4696 }
4697#ifdef CONFIG_X86
4698 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4699#endif
4700
4701 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4702
4703 return 0;
4704kfree_obj:
9a298b2a 4705 kfree(phys_obj);
71acb5eb
DA
4706 return ret;
4707}
4708
4709void i915_gem_free_phys_object(struct drm_device *dev, int id)
4710{
4711 drm_i915_private_t *dev_priv = dev->dev_private;
4712 struct drm_i915_gem_phys_object *phys_obj;
4713
4714 if (!dev_priv->mm.phys_objs[id - 1])
4715 return;
4716
4717 phys_obj = dev_priv->mm.phys_objs[id - 1];
4718 if (phys_obj->cur_obj) {
4719 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4720 }
4721
4722#ifdef CONFIG_X86
4723 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4724#endif
4725 drm_pci_free(dev, phys_obj->handle);
4726 kfree(phys_obj);
4727 dev_priv->mm.phys_objs[id - 1] = NULL;
4728}
4729
4730void i915_gem_free_all_phys_object(struct drm_device *dev)
4731{
4732 int i;
4733
260883c8 4734 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4735 i915_gem_free_phys_object(dev, i);
4736}
4737
4738void i915_gem_detach_phys_object(struct drm_device *dev,
4739 struct drm_gem_object *obj)
4740{
4741 struct drm_i915_gem_object *obj_priv;
4742 int i;
4743 int ret;
4744 int page_count;
4745
23010e43 4746 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4747 if (!obj_priv->phys_obj)
4748 return;
4749
4bdadb97 4750 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4751 if (ret)
4752 goto out;
4753
4754 page_count = obj->size / PAGE_SIZE;
4755
4756 for (i = 0; i < page_count; i++) {
856fa198 4757 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4758 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4759
4760 memcpy(dst, src, PAGE_SIZE);
4761 kunmap_atomic(dst, KM_USER0);
4762 }
856fa198 4763 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4764 drm_agp_chipset_flush(dev);
d78b47b9
CW
4765
4766 i915_gem_object_put_pages(obj);
71acb5eb
DA
4767out:
4768 obj_priv->phys_obj->cur_obj = NULL;
4769 obj_priv->phys_obj = NULL;
4770}
4771
4772int
4773i915_gem_attach_phys_object(struct drm_device *dev,
4774 struct drm_gem_object *obj, int id)
4775{
4776 drm_i915_private_t *dev_priv = dev->dev_private;
4777 struct drm_i915_gem_object *obj_priv;
4778 int ret = 0;
4779 int page_count;
4780 int i;
4781
4782 if (id > I915_MAX_PHYS_OBJECT)
4783 return -EINVAL;
4784
23010e43 4785 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4786
4787 if (obj_priv->phys_obj) {
4788 if (obj_priv->phys_obj->id == id)
4789 return 0;
4790 i915_gem_detach_phys_object(dev, obj);
4791 }
4792
4793
4794 /* create a new object */
4795 if (!dev_priv->mm.phys_objs[id - 1]) {
4796 ret = i915_gem_init_phys_object(dev, id,
4797 obj->size);
4798 if (ret) {
aeb565df 4799 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4800 goto out;
4801 }
4802 }
4803
4804 /* bind to the object */
4805 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4806 obj_priv->phys_obj->cur_obj = obj;
4807
4bdadb97 4808 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4809 if (ret) {
4810 DRM_ERROR("failed to get page list\n");
4811 goto out;
4812 }
4813
4814 page_count = obj->size / PAGE_SIZE;
4815
4816 for (i = 0; i < page_count; i++) {
856fa198 4817 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4818 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4819
4820 memcpy(dst, src, PAGE_SIZE);
4821 kunmap_atomic(src, KM_USER0);
4822 }
4823
d78b47b9
CW
4824 i915_gem_object_put_pages(obj);
4825
71acb5eb
DA
4826 return 0;
4827out:
4828 return ret;
4829}
4830
4831static int
4832i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4833 struct drm_i915_gem_pwrite *args,
4834 struct drm_file *file_priv)
4835{
23010e43 4836 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4837 void *obj_addr;
4838 int ret;
4839 char __user *user_data;
4840
4841 user_data = (char __user *) (uintptr_t) args->data_ptr;
4842 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4843
44d98a61 4844 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4845 ret = copy_from_user(obj_addr, user_data, args->size);
4846 if (ret)
4847 return -EFAULT;
4848
4849 drm_agp_chipset_flush(dev);
4850 return 0;
4851}
b962442e
EA
4852
4853void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4854{
4855 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4856
4857 /* Clean up our request list when the client is going away, so that
4858 * later retire_requests won't dereference our soon-to-be-gone
4859 * file_priv.
4860 */
4861 mutex_lock(&dev->struct_mutex);
4862 while (!list_empty(&i915_file_priv->mm.request_list))
4863 list_del_init(i915_file_priv->mm.request_list.next);
4864 mutex_unlock(&dev->struct_mutex);
4865}
31169714 4866
1637ef41
CW
4867static int
4868i915_gpu_is_active(struct drm_device *dev)
4869{
4870 drm_i915_private_t *dev_priv = dev->dev_private;
4871 int lists_empty;
4872
4873 spin_lock(&dev_priv->mm.active_list_lock);
4874 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4875 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4876 if (HAS_BSD(dev))
4877 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4878 spin_unlock(&dev_priv->mm.active_list_lock);
4879
4880 return !lists_empty;
4881}
4882
31169714 4883static int
7f8275d0 4884i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4885{
4886 drm_i915_private_t *dev_priv, *next_dev;
4887 struct drm_i915_gem_object *obj_priv, *next_obj;
4888 int cnt = 0;
4889 int would_deadlock = 1;
4890
4891 /* "fast-path" to count number of available objects */
4892 if (nr_to_scan == 0) {
4893 spin_lock(&shrink_list_lock);
4894 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4895 struct drm_device *dev = dev_priv->dev;
4896
4897 if (mutex_trylock(&dev->struct_mutex)) {
4898 list_for_each_entry(obj_priv,
4899 &dev_priv->mm.inactive_list,
4900 list)
4901 cnt++;
4902 mutex_unlock(&dev->struct_mutex);
4903 }
4904 }
4905 spin_unlock(&shrink_list_lock);
4906
4907 return (cnt / 100) * sysctl_vfs_cache_pressure;
4908 }
4909
4910 spin_lock(&shrink_list_lock);
4911
1637ef41 4912rescan:
31169714
CW
4913 /* first scan for clean buffers */
4914 list_for_each_entry_safe(dev_priv, next_dev,
4915 &shrink_list, mm.shrink_list) {
4916 struct drm_device *dev = dev_priv->dev;
4917
4918 if (! mutex_trylock(&dev->struct_mutex))
4919 continue;
4920
4921 spin_unlock(&shrink_list_lock);
b09a1fec 4922 i915_gem_retire_requests(dev);
31169714
CW
4923
4924 list_for_each_entry_safe(obj_priv, next_obj,
4925 &dev_priv->mm.inactive_list,
4926 list) {
4927 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4928 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4929 if (--nr_to_scan <= 0)
4930 break;
4931 }
4932 }
4933
4934 spin_lock(&shrink_list_lock);
4935 mutex_unlock(&dev->struct_mutex);
4936
963b4836
CW
4937 would_deadlock = 0;
4938
31169714
CW
4939 if (nr_to_scan <= 0)
4940 break;
4941 }
4942
4943 /* second pass, evict/count anything still on the inactive list */
4944 list_for_each_entry_safe(dev_priv, next_dev,
4945 &shrink_list, mm.shrink_list) {
4946 struct drm_device *dev = dev_priv->dev;
4947
4948 if (! mutex_trylock(&dev->struct_mutex))
4949 continue;
4950
4951 spin_unlock(&shrink_list_lock);
4952
4953 list_for_each_entry_safe(obj_priv, next_obj,
4954 &dev_priv->mm.inactive_list,
4955 list) {
4956 if (nr_to_scan > 0) {
a8089e84 4957 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4958 nr_to_scan--;
4959 } else
4960 cnt++;
4961 }
4962
4963 spin_lock(&shrink_list_lock);
4964 mutex_unlock(&dev->struct_mutex);
4965
4966 would_deadlock = 0;
4967 }
4968
1637ef41
CW
4969 if (nr_to_scan) {
4970 int active = 0;
4971
4972 /*
4973 * We are desperate for pages, so as a last resort, wait
4974 * for the GPU to finish and discard whatever we can.
4975 * This has a dramatic impact to reduce the number of
4976 * OOM-killer events whilst running the GPU aggressively.
4977 */
4978 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4979 struct drm_device *dev = dev_priv->dev;
4980
4981 if (!mutex_trylock(&dev->struct_mutex))
4982 continue;
4983
4984 spin_unlock(&shrink_list_lock);
4985
4986 if (i915_gpu_is_active(dev)) {
4987 i915_gpu_idle(dev);
4988 active++;
4989 }
4990
4991 spin_lock(&shrink_list_lock);
4992 mutex_unlock(&dev->struct_mutex);
4993 }
4994
4995 if (active)
4996 goto rescan;
4997 }
4998
31169714
CW
4999 spin_unlock(&shrink_list_lock);
5000
5001 if (would_deadlock)
5002 return -1;
5003 else if (cnt > 0)
5004 return (cnt / 100) * sysctl_vfs_cache_pressure;
5005 else
5006 return 0;
5007}
5008
5009static struct shrinker shrinker = {
5010 .shrink = i915_gem_shrink,
5011 .seeks = DEFAULT_SEEKS,
5012};
5013
5014__init void
5015i915_gem_shrinker_init(void)
5016{
5017 register_shrinker(&shrinker);
5018}
5019
5020__exit void
5021i915_gem_shrinker_exit(void)
5022{
5023 unregister_shrinker(&shrinker);
5024}